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“In every mathematical investigation, the question will arise whether we can apply

our mathematical results to the real world ”

V. I. Arnold.



Abstract

Large amplitude internal solitary waves in the coastal ocean are commonly modelled

with the Korteweg-de Vries (KdV) equation or a closely related evolution equation.

The characteristic feature of these models is the solitary wave solution, and it is well

documented that these provide the basic paradigm for the interpretation of oceanic

observations. However, often internal waves in the ocean survive for several inertial

periods, and in that case, the KdV equation is supplemented with a linear non-local term

representing the e↵ects of background rotation, commonly called the Ostrovsky equation.

This equation does not support solitary wave solutions, and instead a solitary-like initial

condition collapses due to radiation of inertia-gravity waves, with instead the long-time

outcome typically being an unsteady nonlinear wave packet. The KdV equation and

the Ostrovsky equation are formulated on the assumption that only a single vertical

mode is used. In this thesis we consider the situation when two vertical modes are

used, due to a near-resonance between their respective linear long wave phase speeds.

This phenomenon can be described by a pair of coupled Ostrovsky equations, which is

derived asymptotically from the full set of Euler equations and solved numerically using

a pseudo-spectral method. The derivation of a system of coupled Ostrovsky equations

is an important extension of coupled KdV equations on the one hand, and a single

Ostrovsky equation on the other hand. The analytic structure and dynamical behaviour

of the system have been elucidated in two main cases. The first case is when there is

no background shear flow, while the second case is when the background state contains

current shear, and both cases lead to new solution types with rich dynamical behaviour.

We demonstrate that solitary-like initial conditions typically collapse into two unsteady

nonlinear wave packets, propagating with distinct speeds corresponding to the extremum

value in the group velocities. However, a background shear flow allows for several types

of dynamical behaviour, supporting both unsteady and steady nonlinear wave packets,

propagating with the speeds which can be predicted from the linear dispersion relation.

In addition, in some cases secondary wave packets are formed associated with certain

resonances which also can be identified from the linear dispersion relation. Finally,

as a by-product of this study it was shown that a background shear flow can lead to

the anomalous version of the single Ostrovsky equation, which supports a steady wave

packet.
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Chapter 1

Introduction

The ubiquity of internal waves in the ocean and atmosphere has been recognised,

and these waves have been intensively studied over the past few decades. They

commonly occur in shallow coastal seas, straits, fjords and lakes, see the reviews

by Grimshaw [2], Holloway et al. [3], Helfrich and Melville [4]. Oceanic internal

waves can sometimes be seen through their surface signature, although the largest

displacements occur in the ocean interior. Atmospheric internal waves can also

be seen as formations of clouds, which are made up of numerous rows of small

clouds known as ‘mackerel sky’ and can emerge as several roll clouds known as

‘morning glory’ in the atmospheric boundary layer [5, 6]. The common occurrence

of internal waves in the ocean and atmosphere is well documented, due to in situ

observations, satellite images and also several significant laboratory experiments

[3]. Mathematical modelling of these phenomena aims to generate nonlinear equa-

tions that describe their properties, which is a significant and important step in

research.

The emphasis of the present study is on internal waves in the ocean, which is

currently a very active research topic. Oceanic internal waves are waves in the

interior of the ocean, which exist in density-stratified fluids. The di↵erence in

water density is mostly due to a di↵erence in water temperature, but can also be

due to a di↵erence in salinity. The interface between layers of di↵erent densities is

1



Chapter 1. Introduction 2

called a pycnocline. However, when the density di↵erence is due to temperature

it is called a thermocline, and when it is due to salinity it is called a halocline.

It is now widely accepted that the weakly nonlinear long wave model, Korteweg-

de Vries (KdV) equation plays an important role in describing the dynamics of

internal waves. It is the simplest equation which incorporates both nonlinearity

and dispersion. The characteristic feature of this model is the solitary wave, which

results from a balance between these two e↵ects. Nonlinearity tends to localise

the wave while dispersion spreads it out. This concept is fascinating and well

documented in many papers, which provide the basic paradigm for the interpreta-

tion of the oceanic observations, see Benjamin [7], Grimshaw et al. [8], Grimshaw

[2], Holloway et al. [3], Ostrovsky and Stepanyants [9], Grimshaw et al. [10].

The solitary wave is the nonlinear wave of permanent form, initially observed

in 1834, when the Scottish engineer John Scott Russell accidently noticed the

‘great wave of translation’ or the ‘great solitary wave’ while he was riding on

horseback along the Edinburgh - Glasgow canal for a few miles before losing it

in the meanders of the canal. He observed that a wave emerged at the front of

a boat when it abruptly stopped and then he reported his observations and his

subsequent experiments to the British Association in his Report on Waves, see

Russell [11].

The first mathematical theory which aimed to describe Russell’s findings of solitary

waves had to wait more than three decades. It was first performed by Boussinesq

who proposed such a theory and later this was confirmed by some investigations

by Rayleigh [12]. Later, Korteweg and de Vries [13] derived a nonlinear evolution

equation governing long one dimensional, small amplitude, surface gravity waves

propagating in a shallow water channel of constant depth and they found solitary

wave solutions, see Miles [14, 15]. This equation now bears their names (abbrevi-

ated as the KdV equation) although Boussinesq appeared to derive it first. Since

its development by Korteweg and de Vries in 1895, hundreds of papers have been

published based on KdV-type models for solitary waves in a wide variety of physi-

cal contexts, to name but a few (see, for example Lee and Beardsley [16], Ostrovsky
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[17], Maslowe and Redekopp [18], Holloway et al. [19], Grimshaw [2], Helfrich and

Melville [4]).

The phenomenon was forgotten until Zabusky and Kruskal [20] integrated the KdV

equation numerically while they were investigating the Fermi-Pasta-Ulam (FPU)

lattice model problem. They showed that these solitary wave solutions have a

remarkable property of preserving their shapes and speeds while they travel and

after the collisions with other solitary waves, and furthermore, the interaction of

the KdV solitary wave is elastic with some additional spatial phase shift. The

study of solitons by Zabusky and Kruskal [20] has led to the theoretical work by

Gardner et al. [21] which showed that the KdV equation was integrable through

an inverse scattering transform and led to a milestone in the discovery of the

soliton theory. Nowadays, soliton theory is a very active and interesting research

area, which is closely related to modern physics because this theory is applied to

explain many physical phenomena, in particular to describe the behaviour of long,

weakly nonlinear waves. For this reason, both mathematicians and physicists pay

much attention to soliton theory and until now, this theory has been continuously

progressing and developing.

The weakly nonlinear models for long internal waves are based on the KdV equa-

tion and its generalisations, which include various extensions including the roles of

topography and stratification, mean flows, friction, higher order nonlinearity and

the Earth’s rotation [4, 22]. In the real world, oceanic internal waves are often

observed to survive for long distances over several inertial periods, and therefore

the Earth’s background rotation becomes notable and needs to be taken into ac-

count. The simplest model equation which takes account of background rotation

is the Ostrovsky equation, also known as the rotation-modified Korteweg-de Vries

equation (e.g. Chen and Boyd [23]), which is a modification of the KdV equation.

The Ostrovsky equation is widely used in application to many physical problems,

including the description of surface and internal waves in a rotating ocean, see Os-

trovsky [17], Grimshaw [24], Grimshaw et al. [25, 26], Ostrovsky and Stepanyants

[27] and magneto-sonic waves in a rotating plasma, see Obregon and Stepanyants

[28]. Recently, Whitfield and Johnson [29] studied the strong and weak rotational
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e↵ects on the wave packets evolution. The Earth’s background rotation plays a

very important role in the present research, since in the presence of the Earth’s

rotation when there is no shear flow, a steady solitary wave solution does not exist,

see Leonov [30] and Gilman et al. [31].

The studies from Renouard and Germain [32], Helfrich [33], Grimshaw and Hel-

frich [1], Grimshaw et al. [26], Grimshaw and Helfrich [34], using a combination

of asymptotic analysis, numerical simulations, and laboratory experiments, have

shown that the radiation of an inertial gravity wave causes a complete decay of the

initial solitary wave, and eventually the long-time outcome is a coherent steadily

propagating wave packet. Grimshaw and Helfrich [1] and Helfrich [33] explained

that their numerical results show that the localised wave packet propagates with

the associated maximum group velocity. Then, they constructed a weakly non-

linear theory of a higher order nonlinear Schrödinger (NLS) equation to describe

the numerically found wave packet for the Ostrovsky equation, which propagates

with the wavenumber of the extremum of the group velocity, see Grimshaw and

Helfrich [1], Daisuke and Takuji [35]. Note that both equations, KdV and Ostro-

vsky, are formulated on the assumption that only a single vertical mode is used.

Recent studies by Grimshaw et al. [36], Johnson and Grimshaw [37] have shown

that strong rotation prevents the formation of undular bores structures.

Eckart [38] reported that it is possible for internal waves to have a nearly coincident

phase speed of di↵erent modes, and there can be a resonant transfer of energy

between waves. In this scenario, the KdV equation is replaced by two coupled KdV

equations, see Gear and Grimshaw [39] and Grimshaw [40], describing a strong

interaction between internal solitary waves of di↵erent modes. Various families of

solitary waves can be expected from coupled KdV equations such as pure solitary

waves, generalised solitary waves and envelope solitary waves depending on the

structure of the linear dispersion relation [40]. In the present work, the study of

the coupled KdV equations is extended by taking account of background rotation

as well as background shear flow. It is found that the single Ostrovsky equation

is replaced by two coupled Ostrovsky equations, each equation having both linear

and nonlinear coupling terms.
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The Ostrovsky equation, and a system of coupled Ostrovsky equations, belong to

the class of universal mathematical models of nonlinear wave theory, and a study

of the behaviour of their solutions is valuable for a variety of applications. In ad-

dition to the oceanographic applications already cited above, we can also mention

the two-directional generalisation of the Ostrovsky equation derived by Gerkema

[41]. The latter equation is related to the dynamics of a modified Toda lattice on

an elastic substrate, considered by Daisuke and Takuji [35], where the emergence

of nonlinear wave packets was also found, independently of the analogous results

obtained by Grimshaw and Helfrich [1] for the Ostrovsky equation. Recently,

a system of coupled Boussinesq equations has been derived as a model for long

nonlinear waves in a layered solid waveguide with a soft bonding layer, see Khus-

nutdinova et al. [42]. A nonsecular weakly-nonlinear solution of the initial-value

problem for this system has been constructed, under certain conditions, in terms of

solutions of coupled and uncoupled Ostrovsky equations for unidirectional waves,

see Khusnutdinova and Moore [43] and Khusnutdinova et al. [44]. Wave packets

described by a single Ostrovsky equation were clearly observed in the numerical

simulations for the coupled Boussinesq equations. Generalised solitary waves were

generated in the case described in terms of solutions of the coupled Ostrovsky

equations. Therefore, in general, solutions of the coupled Ostrovsky equations can

significantly di↵er from the solutions of a single Ostrovsky equation, depending

on the structure of the linear dispersion relation.

The structure of the thesis is given as follows. Chapter 2 introduces the theoretical

background of the KdV-Ostrovsky model consisting of the balance between weak

nonlinearity and weak dispersion and with additional background rotation e↵ect.

We review and re-derive the Ostrovsky equation from the complete set of equations

of motion for an inviscid, incompressible, density stratified fluid with boundary

conditions appropriate to an oceanic situation, using the asymptotic multiple-

scales expansion method. We employ an Eulerian formulation for the derivation,

and follow a similar strategy to the derivation of the KdV equation discussed by

Grimshaw [2]. In the same chapter, we also discuss a soliton solutions of the KdV

equation and nonlinear wave packet solutions of the Ostrovsky equation.
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Chapter 3 demonstrates how a pair of coupled Ostrovsky equations can be sys-

tematically derived from the full set of Euler equations with free surface and rigid

bottom boundary conditions, pertinent to the oceanic situation, using the asymp-

totic multiple-scales expansion method. This is an extension of the derivation

from Chapter 2 when two di↵erent linear long wave modes have nearly coincident

phase speeds.

Chapter 4 explains the numerical method that is used to solve the main equations.

The numerical method is known as the pseudo-spectral method. This method

is complemented with a linear damping region known as a sponge layer at the

end of the domain and with a de-aliasing technique to treat the nonlinear and

sponge layer terms in the system. Here, we considered two di↵erent types of

initial conditions: an approximation to solitary wave solutions of coupled KdV

equations; and a nonlinear wave packet based on certain predicted wavenumbers.

We added a pedestal to the initial conditions.

The study is focussed on the situation where there are two di↵erent long wave

modes with nearly coincident phase speeds in the presence of rotation. The main

results of this thesis are divided into two di↵erent topics in Chapter 5 and Chapter

6, both of which take the Earth’s rotation, or more specifically the Coriolis force

into account. One of them concerns the easier problem in which the shear flow is

not considered. This will be discussed in Chapter 5. Using parameters based on

a three-layer model of the oceanic stratification, it is shown that typically initial

solitary-like waves in the coupled system are destroyed, and replaced by nonlinear

envelope wave packets, a two-component counterpart of the outcome for the single

Ostrovsky equation (typical case).

Chapter 6 extends the problem considered in Chapter 5 by including the e↵ect of

shear flow. These studies simulate the propagation of internal solitary waves in a

rotating fluid in the presence of shear flow in some idealised situations modelling

the oceanic conditions. The dispersion relation of the system discloses various

behaviours of weakly nonlinear oceanic internal waves including the existence of

unsteady and steady envelope wave packets.
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The final chapter provides the summary and the conclusions of the work through-

out the thesis, together with description of the directions for future work.

As a by-product of the main study it was also shown that su�ciently strong shear

near a pycnocline may lead to the anomalous version of the single Ostrovsky

equation, which is discussed in Appendix A.



Chapter 2

Theoretical Background of KdV

equation and Ostrovsky equation

2.1 Introduction

The KdV and Ostrovsky equations are the canonical models for the description of

internal solitary waves and their relatives, commonly observed in the oceans (for

example, see the reviews in Grimshaw [2], Helfrich and Melville [4], Grimshaw et al.

[25] and references therein). Both equations are derived on the assumption that

the dynamics is dominated only by a single linear long wave mode and written in a

reference frame moving with the linear long wave speed. The Ostrovsky equation

given by Ostrovsky [17], Grimshaw [24],

{A
t

+ ⌫AA
x

+ �A
xxx

}
x

= �A , (2.1)

is an extension of the KdV equation

A
t

+ ⌫AA
x

+ �A
xxx

= 0 , (2.2)

in the presence of background rotation. Here A(x, t) is the amplitude of the linear

long wave mode �(z) corresponding to the linear long wave phase speed c, which

8
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is determined from the modal equations

(⇢0W
2�

z

)
z

+ ⇢0N
2� = 0 , (2.3)

� = 0 at z = �h , and W 2�
z

= g� at z = 0 ; (2.4)

⇢0(z) is the stable background density stratification, ⇢0N2 = �g⇢0z, W = c � u0

where u0(z) is the background shear flow, and it is assumed there are no critical

levels, that is W 6= 0 for any z in the flow domain. The coe�cients in the equations

are given by

I⌫ = 3

Z 0

�h

⇢0W
2�3

z

dz , I� =

Z 0

�h

⇢0W
2�2 dz , I� = f 2

Z 0

�h

⇢0��
z

dz , (2.5)

where

I = 2

Z 0

�h

⇢0W�2
z

dz , ⇢0W� = ⇢0W�
z

� (⇢0u0)z� , (2.6)

and f is the Coriolis parameter. Note that when there is no shear flow, that is

u0(z) ⌘ 0, then � ⌘ �
z

and � = f 2/2c.

In this chapter, we briefly review the derivation of the Ostrovsky equations from

the complete set of Euler equations for an inviscid, incompressible, density strati-

fied fluid with boundary conditions appropriate to an oceanic situation, using the

asymptotic multiple-scales expansions. This asymptotic derivation is done using

the Eulerian formulation, following a similar strategy in Grimshaw [2] for the KdV

equation. Then, we will discuss some general mathematical properties of solitary

wave and wave packet solutions. We show the linear dispersion relation and present

some preliminary numerical simulations using a pseudo-spectral method. Detailed

description of the numerical method is given in Chapter 4.
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2.2 Problem formulation and derivation of KdV-

Ostrovsky type model equations

We consider the flow of an inviscid and incompressible fluid on a rotating frame. It

is assumed that the fluid occupies the region �h 6 z 6 0 with the plane z = �h

as the rigid bottom boundary and the plane z = 0 as the upper free surface

boundary in the undisturbed state, see Figure 2.1. The problem is formulated by

two dimensional governing equations in the xz-plane, where x and z denote the

horizontal and vertical coordinates, respectively.

z

x0

-h

free surface

flat rigid bottom

rotation

η(x,t)

u0(z)

Figure 2.1: Configuration of the flow

In the basic state, the fluid has a background density stratification ⇢0(z), a cor-

responding pressure p0(z) such that p0z = �g⇢0 and a horizontal shear flow u0(z)

in the x-direction. When u0 6= 0, this basic state is maintained by a body force

i.e, the term ⇢0fu0 in (2.7b) is balanced by this body force. The body force can

be anything to maintain the stream or the current [45]. Then, the equations of
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motion relative to this basic state are:

⇢0(ut

+ u0ux

+ wu0z) + p
x

= �(⇢0 + ⇢)(uu
x

+ wu
z

� fv) � ⇢(u
t

+ u0ux

+wu0z) , (2.7a)

⇢0(vt + u0vx + fu) + ⇢fu0 = �(⇢0 + ⇢)(uv
x

+ wv
z

) � ⇢(v
t

+ u0vx)

�⇢fu, (2.7b)

p
z

+ g⇢ = �(⇢0 + ⇢)(w
t

+ (u0 + u)w
x

+ ww
z

) , (2.7c)

g(⇢
t

+ u0⇢x

) � ⇢0N
2w = �g(u⇢

x

+ w⇢
z

) , (2.7d)

u
x

+ w
z

= 0 . (2.7e)

Here, the terms (u0+u, v, w) are the corresponding velocity components in (x, y, z)

directions, ⇢0 + ⇢ is the density, p0 + p is the pressure, t is time, N(z) is called the

buoyancy frequency or Brunt-Väisälä frequency , defined by ⇢0N2 = �g⇢0z. The

free surface and rigid bottom boundary conditions to the above problem are given

by:

w = 0, at z = �h , (2.8a)

p0 + p = 0, at z = ⌘ , (2.8b)

⌘
t

+ (u0 + u)⌘
x

= w, at z = ⌘ . (2.8c)

The constant h is the undisturbed depth of the fluid, and ⌘ describes the displace-

ment of the free surface from its undisturbed position z = 0. In the subsequent

derivation, a new variable ⇣ is used as the vertical particle displacement relative

to the basic state, which is related to the vertical speed, w. It is defined by the

equation:

D⇣

Dt
= ⇣

t

+ (u0 + u)⇣
x

+ w⇣
z

= w, (2.9)

and satisfies the boundary condition:

⇣ = ⌘ at z = ⌘. (2.10)
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The Ostrovsky equation is a modification of the KdV equation, which first ap-

peared in the study of oceanic waves which included background rotation in the

model [17]. So, the derivation of the Ostrovsky equation follows the same strategy

as the derivation of the KdV equation [2, 3, 10]. By taking the leading linear long

wave order of equations (2.7a)-(2.7e), and linearised boundary conditions (2.8b)

and (2.8c), the solution of ⇣ is given by an expression of the form A(x � ct)�(z),

while the remaining dependent variables are given in (2.15). In general there is

an infinite set of solutions for [�(z);c]. When considering only one mode, the

asymptotic procedure leads to the Ostrovsky equation. The modal function �(z)

is defined by the following boundary-value problem:

(⇢0W
2�

z

)
z

+ ⇢0N
2� = 0 in � h < z < 0 (2.11a)

� = 0 at z = �h , (2.11b)

W 2�
z

= g� at z = 0 . (2.11c)

Here, W = c � u0(z) where c is the long wave speed and u0(z) is the background

shear flow. It is assumed that there are no critical levels, that is W 6= 0 for any z

in the flow domain.

To proceed with the derivation of the evolution equation, it is necessary to set

up the two small parameters, ↵ and ✏, characterising the wave amplitude and

the dispersion of particle displacement of interface, respectively. Thus, the scaled

variables are assigned by:

⌧ = ✏↵t , s = ✏(x � ct) , f = ↵f̃ , (2.12)

where ↵ = ✏2 and we seek a solution in the form of asymptotic multiple-scales

expansions:

[⇣, u, ⇢, p] = ↵[⇣1, u1, ⇢1, p1] + ↵2[⇣2, u2, ⇢2, p2] + · · · , (2.13)

[w, v] = ↵✏[w1, v1] + ↵2✏[w2, v2] + · · · . (2.14)
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Substituting these expansions into the system (2.7a) - (2.7e), the leading order

expressions take the form:

⇣1 = A(s, ⌧)�(z) , (2.15a)

u1 = A{W�}
z

, (2.15b)

w1 = �A
s

W� , (2.15c)

p1 = ⇢0AW 2�
z

, (2.15d)

g⇢1 = ⇢0N
2⇣1 , (2.15e)

v1 = f̃B� , ⇢0W� = ⇢0W�
z

� (⇢0u0)z� , B
s

= A , (2.15f)

where the modal function �(z) satisfies the equations (2.11a)-(2.11c).

By collecting terms of second order, the following set of equations is obtained:

⇢0(�Wu2s + u0zw2) + p2s = �⇢0(u1⌧ + u1u1s + w1u1z) +

⇢1(Wu1s � u0zw1) + ⇢0f̃ v1, (2.16a)

⇢0(f̃u2 � Wv2s) + ⇢2f̃u0 = �⇢0(v1⌧ + u1v1s + w1v1z) +

⇢1Wv1s � ⇢1f̃u1 , (2.16b)

p2z + g⇢2 = ⇢0Ww1s , (2.16c)

�gW⇢2s � ⇢0N
2w2 = �g(⇢1⌧ + u1⇢1s + w1⇢1z) , (2.16d)

u2s + w2z = 0 , (2.16e)

W ⇣2s + w2 = ⇣1⌧ + u1⇣1s + w1⇣1z . (2.16f)

Equations (2.16a), (2.16c) and (2.16e) respectively imply that:

p2s = �⇢0(u1⌧ + u1u1s + w1u1z) + ⇢1(Wu1s � u0zw1) + ⇢0f̃ v1

�⇢0(�Wu2s + u0zw2) , (2.17)

g⇢2 = ⇢0Ww1s � p2z , (2.18)

u2s = �w2z . (2.19)
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Substituting (2.18) into (2.16d), using the fact that (p2z)s = (p2s)z, and equations

(2.17) and (2.19), it can be shown that

�W (⇢0(�Ww2z � u0zw2))z + ⇢0N
2w2 = g(⇢1⌧ + u1p1s + w1⇢1z) (2.20)

�⇢0W
2w1ss � W (⇢0(u1⌧ + u1u1s + w1u1z) � ⇢1(Wu1s � u0zw1) � ⇢0f̃ v1)z .

Then, it is necessary to obtain w2 from w = ⇣
t

+ (u0 + u)⇣
x

+ w⇣
z

and also

w = ↵✏w1 + ↵2✏w2 + · · · and therefore, by equating these two expressions for w,

the following equation is obtained:

↵✏w1 + ↵2✏w2 = ✏(u0 � c)(↵⇣1s + ↵2⇣2s + · · · ) + ↵✏(↵⇣1⌧ + ↵2⇣2⌧ + · · · )

+✏(↵u1 + ↵2u2 + · · · )(↵⇣1s + ↵2⇣2s + · · · )

+(↵✏w1 + ↵2✏w2 + · · · )(↵⇣1z + ↵2⇣2z + · · · ).

Collecting terms of order ↵2✏, it can be shown that

w2 = �W ⇣2s + ⇣1⌧ + u1⇣1s + w1⇣1z. (2.21)

Substituting equation (2.21) and solutions obtained for u1, w1, ⇢1, p1 and ⇣1 which

are obtained from (2.15) into (2.20), the following is obtained:

{⇢0W
2⇣2sz}z + ⇢0N

2⇣2s = J2 at � h < z < 0 , (2.22)

where J2 is an expression containing terms in A(s, ⌧), derivatives of A(s, ⌧) and

the modal function, �(z), given by:

J2 = 2{⇢0W�
z

}
z

A
⌧

� ⇢0W
2�A

sss

+ C1AA
s

� f̃ 2{B⇢0�}
z

, (2.23)

with C1 = {3⇢0W
2�

z

2}
z

+ 2{⇢0W
2�

z

}
z

�
z

� 2{⇢0W
2(��

z

)}
z

.

Note that � and B are defined in (2.15f). The corresponding boundary conditions,

(2.8a)-(2.8c) and (2.10) are treated in analogous manner to the second order,
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yielding:

w2 = 0 at z = �h , (2.24)

p2 � ⇢0g⌘2 + p1z⌘1 �
1

2
⇢0zg⌘2

1 = 0 at z = 0 , (2.25)

w2 + w1z⌘1 � ⌘1⌧ + W⌘2s � u0z⌘1⌘1s � u1⌘1s = 0 at z = 0 , (2.26)

⇣2 + ⇣1z⌘1 � ⌘2 = 0 at z = 0 . (2.27)

The corresponding boundary condition to (2.24) is:

⇣2s = 0 at z = �h. (2.28)

Then, it is necessary to di↵erentiate (2.25) with respect to s in order to use

(2.17),(2.19),(2.21) to obtain the following equation:

⇢0W
2⇣2sz � ⇢0g⇣2s = K2 at z = 0 , (2.29)

where K2 is known and given by:

K2 = 2⇢0W�
z

A
⌧

+ {3⇢0W
2�2

z

� 2⇢0W
2��

zz

}AA
s

+ f̃ 2B⇢0� . (2.30)

Hence, there are three equations which need to be satisfied by ⇣2, namely equations

(2.22),(2.28) and (2.29). The left hand sides of these equations are identical to the

boundary value problem in (2.11a - 2.11c), which are used to define the modal

function �(z) and hence can be solved only if a certain compatibility condition is

satisfied. The required compatibility condition is that the inhomogenous terms in

(2.22) and (2.29) should be orthogonal to the solution of the adjoint of the modal

equations (2.11a) and (2.11c). To obtain this compatibility condition, we define

the linear operator L:

L(�) = {⇢0W
2�

z

}
z

+ ⇢0N
2� , (2.31)

where W = c � u0. Then, we consider a pair of functions ⇣2s and � satisfying the
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boundary condition on the bottom (2.28) of the problem (⇣2s = 0 and � = 0 at

z = �h) and also satisfying

zZ

�h

{⇣2sL(�) � �L(⇣2s)}dz = ⇢0W
2(⇣2s�z

� �⇣2sz) . (2.32)

Now we have a solution of equation (2.22) for ⇣2s, so that

�L(⇣2s) � ⇣2sL(�) = �J2 . (2.33)

We substitute this into (2.29) and apply at the free surface at z = 0. By recalling

that ⇢0W 2�
z

= ⇢0g� at z = 0, finally we will obtain the compatibility condition

as
0Z

�h

J2� dz = [K2�]
z=0 . (2.34)

Then, the substitution of expressions of J2 and K2 into (2.34), gives the following

governing evolution equation of weakly-nonlinear, long internal waves known as

the Ostrovsky equation [17, 24, 25, 26] (this derivations did not include the shear

flow):

A
⌧

+ ⌫AA
s

+ �A
sss

= �B , (2.35)

where B(s, ⌧)
s

= A(s, ⌧) and A(s, ⌧) is the wave amplitude. The coe�cients µ, �

and � are parameters of terms representing nonlinearity, dispersion and rotation,

respectively. They are found in the expressions involving the modal function and

background density stratification, which are presented in the form:

I⌫ = 3

0Z

�h

⇢0W
2�3

z

dz , I� =

0Z

�h

⇢0W
2�2 dz , I� = f̃ 2

0Z

�h

⇢0��
z

dz , (2.36)

where I is given by:

I = 2

0Z

�h

⇢0W�2
z

dz .
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The Ostrovsky equation (2.46) holds two conservation laws for the localised solu-

tions:

1Z

�1

A ds = 0 and (2.37)

@

@⌧

1Z

�1

A2 ds = 0 . (2.38)

Note that (2.37) is a zero mass condition, and when A is localised, then B also

satisfies zero mean condition. The second conservation law (2.38), expresses mo-

mentum conservation.

2.3 Soliton solutions of the KdV equation

The KdV equation

A
t

+ ⌫AA
x

+ �A
xxx

= 0 , (2.39)

is widely recognised as a model of weakly nonlinear long waves. The coe�cients ⌫

and � represent the nonlinear and dispersion e↵ects, respectively. The nonlinear

e↵ect causes the steepening of waveform, while the dispersion e↵ect makes the

waveform spread. Due to a balance between these two e↵ects, a solitary wave

solution arises and is given by

A(x, t) = a sech2(k(x � ct)), c =
⌫a

3
= 4�k2. (2.40)

Note that the speed c is proportional to the wave amplitude a, or to the square of

the wavenumber k2, which means that the solitary waves propagate with a speed

that increases with the amplitude of the waves. Hence, the larger amplitude waves

are narrower and travel faster than smaller ones. A soliton is a solitary wave that

behave like a ‘particle’ and satisfies the following conditions:
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1. A soliton must maintain its shape when it propagates at a constant speed .

2. When two soliton interact, they retain their shapes and speeds. The only

result of interaction is a phase shift .

This solitary wave solution found by Korteweg and de Vries had earlier been ob-

tained directly from the governing equations independently by Boussinesq (1871,

1877) and Rayleigh (1876) who were motivated to explain a very well-known ob-

servations and experiments of Russell (1844). The linear dispersion relation of the

KdV equation for the phase velocity c
p

= !/k and the group velocity c
g

are given

by:

c
p

= ��k2 , c
g

=
dw

dk
= �3�k2 , (2.41)

as shown in blue curve in Figure 2.2 when � = 1. The graph of the phase velocity

of the KdV equation shows that there is a gap in the spectrum for all c
p

> 0 where

solitary waves can exist. An example of a typical solution of the KdV equation

(2.39) for a localised initial condition leads to the generation of a finite number of

solitary waves and some dispersive radiation, see Figure 2.3.

0.5 1.0 1.5 2.0 2.5 k
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c

Figure 2.2: Phase (solid curve) and group (dashed curve) velocities of the
KdV equation.
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Figure 2.3: A typical solution of the KdV equation (2.39) when ⌫ = 1 and
� = 0.01 commencing with A(x, 0) = sech2(x). Here three solitary waves have

been generated, of which the two largest are clearly visible.

The KdV equation can be written as a conservation law:

@
t

A = �@
x

(A
xx

+
1

2
A2) , (2.42)

and so u is a conserved density. In fact there are more conserved densities, three

relevant conserved densities are given below. The integrability of the KdV equation

is also characterised by the existence of an infinite set of independent conservation

laws. The first three are

1Z

�1

A dx = constant , (2.43)

1Z

�1

A2 dx = constant , (2.44)

1Z

�1

A3 � 1

2
A2

x

dx = constant , (2.45)

which are related with the conservation of mass, momentum and energy, respec-

tively. Indeed (2.43) is obtained from the KdV equation (2.39) by integrating over
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x, while (2.44, 2.45) are obtained in an analogous manner after first multiplying

(2.39) by A, A2, respectively (see, for example, Ablowitz and Segur [46]).

2.4 Wave packet solutions of the Ostrovsky equa-

tion

As discussed before, in the weakly nonlinear long wave limit, oceanic internal

solitary waves for the single linear long wave mode are described by the well-

known KdV equation, extended to the Ostrovsky equation in the presence of the

Earth’s background rotation. Thus, the Ostrovsky equation is

A
⌧

+ ⌫AA
s

+ �A
sss

= �B . (2.46)

The e↵ect of the Earth’s background rotation for the time evolution of the internal

wave becomes important when the wave propagates for several inertial periods.

Although this e↵ect is small for an individual wave, but it is significant for the

wave evolution [33]. The background rotation is represented by the coe�cient �,

which in the absence of shear flow is given by

� =
f̃ 2

2c
, (2.47)

where f is the Coriolis parameter. For oceanic internal waves �� > 0, it is known

that the Ostrovsky equation does not support steady solitary wave solutions of

the KdV equation, see Grimshaw and Helfrich [34] and the references therein.

Strictly speaking, if � 6= 0, but su�ciently small, � << 1, then the soliton solution

(2.40) is no longer valid. Recently, it was established that the long-time e↵ect of

rotation is the destruction of the initial internal solitary wave through the terminal

radiation damping, and the eventual emergence of a coherent steadily propagating

nonlinear wave packet, see Grimshaw and Helfrich [1], Helfrich [33] and Grimshaw

and Helfrich [34]. It is worth noting that the same phenomenon was observed

independently in Daisuke and Takuji [35] in the context of waves in solids. Indeed,
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the discrete model in Daisuke and Takuji [35] can be related to the two-directional

generalisation of the Ostrovsky equation derived in Gerkema [41].

Indeed, the linear dispersion relation of the Ostrovsky equation for sinusoidal

waves of frequency ! and wavenumber k, for the phase velocity c
p

= !/k and the

group velocity c
g

are given by:

c
p

=
�

k2
� �k2 , c

g

=
dw

dk
= � �

k2
� 3�k2. (2.48)

It is important to note that the group velocity c
g

is negative for all wavenumbers

k, and then has a local maximum at finite wavenumber when dc
g

/dk = 0 at k = k
c

where 3�k4
c

= �. The local maximum is c
gm

= �2�/k2
c

= �2
p

3��.
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Figure 2.4: Phase (solid curves) and group (dashed curves) velocities of the
KdV (blue) and Ostrovsky (red) equations.

The blue curve in Figure 2.4 shows the phase velocity of the KdV equation (� = 0,

� = 1) as in Figure 2.2 and the red curve shows the phase velocity of the Ostrovsky

equation (� = � = 1). The additional term on the right hand side of Ostrovsky

equation is a linear long-wave perturbation to the KdV equation, and it has the

ability of removing the spectral gap on which solitary waves exist for the KdV

equation, as shown in the red curve. Hence no solitary waves are expected to

occur when there is no shear flow since then �� > 0 for internal waves.
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Grimshaw and Helfrich [34] provide mathematical evidence to show that the Os-

trovsky equation with �� > 0 has no steady solitary wave solutions. The proof

of the non-existence of solitary waves also was given in Leonov [30] and Galkin

and Stepanyants [47]. In the opposite case when �� < 0, which can arise in other

physical applications, solitary waves do exist, see Obregon and Stepanyants [28].

Several studies from Grimshaw and Helfrich [1], Helfrich [33], Grimshaw et al. [48]

have revealed that the long-time e↵ect of background rotation is the decay of the

initial internal solitary wave into the trailing radiating waves, and eventually a

coherent steadily propagating nonlinear wave packet emerges with the maximum

value of the group velocity c
gm

with a carrier wavenumber k
c

.

An example of the numerical solution of the Ostrovsky equation for the initial

KdV solitary wave with the amplitude a = 32 and all coe�cients in (2.46) equal

to unity is given in Figure 2.5. It can be seen that an initial solitary wave rapidly

decays into the radiation of inertia-gravity waves and eventually forms a nonlinear

envelope wave packet. Numerical experiments have been performed by Grimshaw

and Helfrich [1], who run the simulation with amplitude a between 2 and 32.

Notice that for the small amplitudes a = 2 and 4, the packet does not completely

separate from the trailing radiation. However, the larger amplitudes a = 8, 16 and

32 illustrate that the separation of the packet is clear, whether it was a steady or

nearly steady state.

We solve the Ostrovsky equation (2.46) numerically using the pseudo-spectral

method, which uses a Fourier transform treatment of the space dependence. The

numerical results are in agreement with the known experiment [1].

2.5 Conclusion

In this chapter we performed the systematic derivation of the Ostrovsky equation

from the full set of Euler equations with the boundary conditions corresponding

to the oceanic applications by using the multiple scale expansion method. The

Ostrovsky equation is formulated on the assumption that only single vertical mode
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Figure 2.5: Numerical solution of the Ostrovsky equation for an initial con-
dition given by a KdV solitary wave with amplitude a = 32, the same as in [1].

Note that only the interval containing the wave packet is shown.

is used. The Ostrovsky equation is an extension of the KdV equation in the

presence of background rotation describing the weakly nonlinear oceanic internal

waves for a single linear long wave mode. The characteristic feature of the KdV

model is the solitary wave and for the Ostrovsky equation is the nonlinear wave

packet. The Ostrovsky equation in the absence of a shear flow does not support

solitary wave solutions, and instead a solitary-like initial condition collapses due

to radiation of inertia gravity waves, with the long time outcome being a nonlinear

wave packet (shear flow can lead to �� < 0, see Appendix A). In another situation,

when two vertical modes are used, due to a near-resonance between their respective

linear long wave phase speeds is described by a system of two coupled Ostrovsky

equations. The derivation of the coupled Ostrovsky equation will be discussed in

the next chapter.



Chapter 3

Coupled Ostrovsky equations

3.1 Introduction

It is known that for internal waves it is possible for the phase speeds of di↵erent

modes to be nearly coincident, and then there will be a resonant transfer of energy

between the waves, see Eckart [38]. In this case, the KdV equation is replaced by

two coupled KdV equations, describing a strong interaction between internal soli-

tary waves of di↵erent modes, see Gear and Grimshaw [39] and Grimshaw [40].

Various families of solitary waves are supported by coupled KdV equations depend-

ing on the structure of the linear dispersion relation, namely pure solitary waves,

generalised solitary waves and envelope solitary waves, see the review Grimshaw

[40].

This chapter is devoted to an outline of the derivation of a new model of a pair of

coupled Ostrovsky equations describing internal waves in the rotating ocean. The

derivation is an extension of the Gear and Grimshaw [39] work, which however

did not included a shear flow and used Lagrangian variables. The system of

coupled Ostrovsky equation is systematically derived in Eulerian variables from the

complete set of fluid equations of motion for an inviscid, incompressible density-

stratified fluid with a shear flow and boundary conditions appropriate to an oceanic

situation, see Alias et al. [49]. The coupled Ostrovsky equations were also derived

24
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in the context of waves in layered elastic waveguides, see Khusnutdinova et al.

[42], Khusnutdinova and Moore [43]. Thus, this model belongs to the class of

canonical mathematical models of nonlinear wave theory, inviting a detailed study

of the dynamics of its solutions.

The coupled Ostrovsky equations are given by

I1(A1⌧ + µ1A1A1s + �1A1sss � �1B1)

+⌫1[A1A2]s + ⌫2A2A2s + �12A2sss � �12B2 = 0 , (3.1)

I2(A2⌧ + µ2A2A2s + �2A2sss + �A2s � �2B2)

+⌫2[A1A2]s + ⌫1A1A1s + �21A1sss � �21B1 = 0 , (3.2)

where B
i

s

= A
i

with i = 1, 2 and each equation has both linear and nonlinear

coupling terms. Equations (3.1, 3.2) are automatically reduced to the coupled

KdV equations in the absence of rotation terms, �1 and �2. The full formulas are

defined in equations (3.28a - 3.28h).

3.2 Formulation and Asymptotic derivation

Overall, the derivation of coupled Ostrovsky equations follows a similar strategy to

the derivation of the coupled KdV equations. At the leading linear long wave order,

and in the absence of any rotation, the solution for ⇣ is given by an expression of the

form A(x� ct)�(z) where the modal function is given by (2.11a). In general there

is an infinite set of solutions for [�(z), c] [2]. Here, we extend the derivation of the

Ostrovsky equation from Chapter 2. When all speeds of the modes are distinct

c1 6= c2, then the asymptotic expansion can proceed for each mode separately,

yielding a single Ostrovsky equation for each mode [17, 24, 25]. This is known as

the weak interaction scenario. Here, instead, we are concerned with the case when

there are two modes with nearly coincident speeds c1 = c and c2 = c+ ✏2�, ✏ ⌧ 1,

where � is the detuning parameter. Importantly, the modal functions �1(z), �2(z)
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are distinct, and each satisfy the system (2.11a), that is:

(⇢0W
2
i

�
iz

)
z

+ ⇢0N
2�

i

= 0 , i = 1, 2 (3.3)

�
i

= 0 at z = �h , and W 2
i

�
iz

= g�
i

at z = 0 . (3.4)

Here W
i

= c
i

� u0(z) where c
i

is the long wave speed corresponding to the mode

�
i

(z), i = 1, 2.

It is readily shown from the two modal systems (3.3), (3.4) that:

Z 0

�h

⇢0(W
2
1 � W 2

2 )�1z�2zdz = 0 ,

by multiplying (3.3) for i = 1 by �2(z) and for i = 2 by �1(z), subtracting and

then integrating them from �h to 0 using integration by parts and the boundary

conditions (3.4). Since in general W1 � W2 = c1 � c2 6= 0, it follows that the two

modes satisfy an orthogonality condition:

Z 0

�h

⇢0[c1 + c2 � 2u0]�1z�2z dz = 0 , so that

Z 0

�h

⇢0W�1z�2z dz ⇡ 0 . (3.5)

Note that here, and in the sequel, W
i

= W = c � u0(z) with an error of the order

✏2.

Next, by using the same scaled variables as for the single mode:

⌧ = ✏↵t , s = ✏(x � ct) , f = ↵f̃ , (3.6)

where ↵ = ✏2, we seek a solution in the form of asymptotic multiple-scales expan-

sions:

[⇣, u, ⇢, p] = ↵[⇣1, u1, ⇢1, p1] + ↵2[⇣2, u2, ⇢2, p2] + · · · , (3.7)

[w, v] = ↵✏[w1, v1] + ↵2✏[w2, v2] + · · · . (3.8)
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Substituting these expansions into the system (2.7a) - (2.7e), at the leading order

we obtain the following set of equations:

⇢0(�Wu1s + u0zw1) + p1s = 0 , (3.9)

⇢0(f̃u1 � Wv1s) + ⇢1f̃u0 = 0 , (3.10)

p1z + g⇢1 = 0 , (3.11)

�gW⇢1s � ⇢0N
2w1 = 0 , (3.12)

u1s + w1z = 0 , (3.13)

W ⇣1s + w1 = 0 . (3.14)

Note that by assuming that two waves are present at the leading order, the fol-

lowing are obtained:

⇣1 = A1(s, ⌧)�1(z) + A2(s, ⌧)�2(z) , (3.15a)

u1 = A1{W�1}z + A2{W�2}z , (3.15b)

w1 = �A1sW�1 � A2sW�2 , (3.15c)

p1 = ⇢0A1W
2�1z + ⇢0A2W

2�2z , (3.15d)

g⇢1 = ⇢0N
2⇣1 , (3.15e)

v1 = f̃(B1�1 + B2�2) . (3.15f)

where, ⇢0W�1,2 = ⇢0W�1z,2z � (⇢0u0)z�1,2 and B1s,2s = A1,2 . Vitally, the exact

solution of the linearised equations should contain the exact expressions W1 and

W2 in the terms related to the first and second waves, respectively, rather than

just W . In fact, W1 = W through the choice of c1 = c, but there is an O(✏2)

di↵erence between W2 and W since c2 = c + ✏2�. This di↵erence between the

exact and leading order solutions necessitates the introduction of correction terms

at the next order, in order to recover the distinct modal equations for the functions

�1 and �2.

By collecting terms of the second order for each equation, and calculating the

correction terms originating from the leading order, the following set of equations
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are obtained:

⇢0(�Wu2s + u0zw2) + p2s = �⇢0(u1⌧ + u1u1s + w1u1z)

+⇢1(Wu1s � u0zw1) + ⇢0f̃ v1, (3.16a)

⇢0(f̃u2 � Wv2s) + ⇢2f̃u0 = �⇢0(v1⌧ + u1v1s + w1v1z)

+⇢1Wv1s � ⇢1f̃u1 , (3.16b)

p2z + g⇢2 = ⇢0Ww1s + 2�A2{⇢0W�2z}z , (3.16c)

�gW⇢2s � ⇢0N
2w2 = �g(⇢1⌧ + u1⇢1s + w1⇢1z) , (3.16d)

u2s + w2z = 0 , (3.16e)

W ⇣2s + w2 = ⇣1⌧ + u1⇣1s + w1⇣1z . (3.16f)

Here, the extra term proportional to A2 in (3.16c) comes from the afore-mentioned

di↵erence between W2 and W in the leading order pressure term (3.15d) creating

in e↵ect a contribution to p1. There is no analogous term in (3.16a) as there is a

cancellation between the corrections to u1 and p1. The boundary conditions (2.8a)

- (2.8c), (2.10) are treated in analogous manner to yield:

w2 = 0 at z = �h , (3.17)

p2 � ⇢0g⌘2 + p1z⌘1 �
1

2
⇢0zg⌘2

1 � 2�⇢0W�2zA2 = 0 at z = 0 , (3.18)

w2 + w1z⌘1 � ⌘1⌧ + W⌘2s � u0z⌘1⌘1s � u1⌘1s = 0 at z = 0 , (3.19)

⇣2 + ⇣1z⌘1 � ⌘2 = 0 at z = 0 . (3.20)

Eliminating all variables in favour of ⇣2 yields:

{⇢0W
2⇣2sz}z + ⇢0N

2⇣2s = M2 at � h < z < 0 , (3.21)

⇣2 = 0 at z = �h , ⇢0W
2⇣2sz � ⇢0g⇣2s = N2 at z = 0 , (3.22)

where M2, N2 are known expressions containing terms in A
i

and their derivatives.

The expression for M2 in (3.21) is given by

M2 = M1
2 +M2

2 +M12[A1A2]s+2{⇢0W�2z}z�A2s�f̃ 2{B1⇢0�1+B2⇢0�2}z , (3.23)
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where

M j

2 = 2{⇢0W�
jz

}
z

A
j⌧

� ⇢0W
2�

j

A
jsss

+ (3{⇢0W
2�

jz

2}
z

+2{⇢0W
2�

jz

}
z

�
jz

� 2{⇢0W
2(�

j

�
jz

)
z

}
z

)AA
js

, j = 1, 2,

M12 = 3{⇢0W
2�1z�2z}z � ⇢0W

2(�1z�2zz + �2z�1zz)

�{⇢0W
2(�1�2zz + �2�1zz)}z .

Similarly, the expression for N2 in (3.22) is given by

N2 = N1
2 + N2

2 + N12[A1A2]s + 2⇢0W�2z�A2s � f̃ 2{B1⇢0�1 + B2⇢0�2} , (3.24)

where

N j

2 = 2⇢0W�
jz

A
j⌧

+ (3⇢0W
2�2

jz

� 2⇢0W
2�

j

�
jzz

)A
j

A
js

, j = 1, 2 ,

N12 = 3⇢0W
2�1z�2z � ⇢0W

2(�1�2zz + �2�1zz).

Here, we need two compatibility conditions for coupled modes to be imposed on

the system (3.21), (3.22), given by

Z 0

�h

M2�1,2 dz � [N2�1,2]z=0 = 0 , (3.25)

where �1,2 are evaluated at the leading order. As a result, these compatibility

conditions lead to the coupled Ostrovsky equations:

I1(A1⌧ + µ1A1A1s + �1A1sss � �1B1)

+⌫1[A1A2]s + ⌫2A2A2s + �12A2sss � �12B2 = 0 , (3.26)

I2(A2⌧ + µ2A2A2s + �2A2sss + �A2s � �2B2)

+⌫2[A1A2]s + ⌫1A1A1s + �21A1sss � �21B1 = 0 , (3.27)
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where B1
s

= A1, B2
s

= A2, and the coe�cients are given by

I
i

µ
i

= 3

Z 0

�h

⇢0W
2�

i

3
z

dz , (3.28a)

I
i

�
i

=

Z 0

�h

⇢0W
2�

i

2 dz , (3.28b)

I
i

= 2

Z 0

�h

⇢0W�
i

2
z

dz , (3.28c)

�12 = �21 =

Z 0

�h

⇢0W
2�1�2 dz , (3.28d)

⌫1 = 3

Z 0

�h

⇢0W
2�2

1z�2z dz , (3.28e)

⌫2 = 3

Z 0

�h

⇢0W
2�2

2z�1z dz , (3.28f)

I
i

�
i

= f̃ 2

Z 0

�h

⇢0�i

�
iz

dz , (3.28g)

�
ij

= f̃ 2

Z 0

�h

⇢0�i

�
jz

dz . (3.28h)

Here i, j = 1, 2. If there is no shear flow, that is u0 = 0, then �1 = �2 = f̃ 2/2c and

�12 = �21 = 0. Also note the Cauchy-Schwartz inequality �2
12 < I1I2�1�2, which is

readily shown by considering
R 0

�h

⇢0W 2(x�1 + y�2)2 dz > 0 for all real x, y. Thus

x2I1�1 + 2xy�12 + y2I2�2 > 0 , for all real x, y and so �2
12 < I1I2�1�2.

When, there is no Earth’s rotation, this system reduces to two coupled KdV

equations, see Gear and Grimshaw [39] for the derivation in the absence of a shear

flow. For the coupled KdV equation, Grimshaw and Gerard [50] predicted that

there exist three possible families of solitary waves namely pure solitary waves,

generalised solitary waves and envelope solitary waves depending on the sign of

the coe�cients �1,2 when � > 0 without loss of generality and �1,2 > 0. Detailed

studies of the generalised solitary waves have been discussed in Fochesato et al.

[51].
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3.2.1 Reducing the parameters

The number of parameters in the coupled Ostrovsky equations (3.26) and (3.27)

can be reduced. We scale the dependent and independent variables,

A1 =
u

µ1
, A2 =

v

µ2
, s = �1/2

1 X , ⌧ = �1/2
1 T , (3.29)

assuming that �1 > 0, µ1,2 6= 0 without loss of generality. We transform the

equations (3.26), (3.27) to the form:

(u
T

+ uu
X

+ u
XXX

+ n(uv)
X

+ mvv
X

+ ↵v
XXX

)
X

= �u + �v, (3.30)

(v
T

+ vv
X

+ �v
XXX

+ �v
X

+ p(uv)
X

+ quu
X

+ �u
XXX

)
X

= µv + ⌫u, (3.31)

where

n =
⌫1

I1µ2
, m =

µ1⌫2
I1µ2

2

, ↵ =
�12µ1

�1I1µ2
, � = �1�1, � =

�12µ1�1

I1µ2
,

� =
�2

�1
, p =

⌫2
I2µ1

, q =
µ2⌫1
I2µ2

1

, � =
�21µ2

�1I2µ1
, µ = �2�1, ⌫ =

�21µ2�1

I2µ1
.(3.32)

Especially note that:

q

n
=

p

m
=

�

↵
=

�12⌫

�21�
=

I1µ2
2

I2µ2
1

,
↵�

�
=

�2
12

�1�2I1I2
< 1 . (3.33)

Note that the scaled variables u and v, and the coe�cient p should not be confused

with the velocity components and the pressure.

3.2.2 Conservation laws

The coupled Ostrovsky equations (3.30, 3.31) possess three conservation laws:

Z 1

�1
A1 ds = 0 ,

Z 1

�1
A2 ds = 0 , when I1I2�1�2 � �12�21 6= 0(3.34)

Z 1

�1
[I1A

2
1 + I2A

2
2] ds = constant , when �12 = �21. (3.35)
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All three hold when there is no shear flow, since then �12 = �21 = 0. Note that

when I1I2 > 0, then (3.35) guarantees stability in the framework of the coupled

equations. But if I1I2 < 0, then (3.35) does not constrain the solutions and

then indicates possible instability of the coupled equations. Also note that when

I1I2 < 0, implying there is a critical layer in the background of shear flow, and this

also implies that this background shear flow may be linearly unstable. A critical

level occurs when u0(z) = c where u0(z) is the background shear flow and c is a

wave speed. A critical layer is a small zone around the critical level where the

usual linearised theory fails.

After the scaling of parameters, the counterparts of the conservation laws are:

Z 1

�1
u dX = 0 ,

Z 1

�1
v dX = 0 , when �µ � �⌫ 6= 0 , (3.36)

Z 1

�1
[�u2 + ↵v2] dX = constant , when �12 = �21 , that is ↵⌫ = �� .(3.37)

3.3 Conclusion

In this chapter, two coupled Ostrovsky equations are systematically derived for

a density-stratified ocean from the full set of Euler equations with the boundary

conditions corresponding to the oceanic applications. The asymptotic multiple-

scales expansion method was used to perform the derivation. Typically, the ini-

tial solitary-like waves are destroyed and replaced by two coupled nonlinear wave

packets, propagating usually with distinct speeds, which is discussed in the next

chapter. This is the counterpart of the same phenomenon in the single Ostrovsky

equation. Using the derived coupled Ostrovsky equations, we now aim to develop

a numerical method for solving these equations, with the view to further develop

our understanding of the behaviour of nonlinear waves governed by such models.
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Numerical Method

4.1 Introduction

The numerical approach used in the thesis is based on the pseudo-spectral (PS)

method, which allows us to solve of the coupled Ostrovsky equations in a periodic

domain by means of the discrete Fourier transform. The numerical solution of

coupled systems is fascinating and delicate work, and only a few numerical works

have been performed for coupled KdV equations. The PS method has been used to

solve many nonlinear evolution equations and systems of the KdV type, see Chan

and Kerkhoven [52], Canuto et al. [53], Nouri and Sloan [54], Boyd [55], Huang

and Zhang [56], Rashid [57], Thomas and Ruo [58], Klein [59], Gulkac and Ozis

[60], Rashid and Ismail [61], Yaguchi et al. [62] and references therein. Various

numerical codes were developed for the solution of the single Ostrovsky equation,

see Grimshaw and Helfrich [1], Grimshaw et al. [26], Gilman et al. [31], Yaguchi

et al. [62], although it is noted that explicit finite-di↵erence schemes can be used

as well, see [63] for instance.

In the past several decades, Nouri and Sloan [54] have compared six Fourier pseudo-

spectral methods for the KdV equation which di↵er in terms of the time discreti-

sation. One of the most e�cient methods tested was the semi-implicit scheme of

Chan and Kerkhoven [52]. They integrated the KdV equation in time in Fourier

33
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space using two Fast Fourier Transforms (FFT) per time step. Here, we extend

this scheme to solve the coupled Ostrovsky equations.

The advantages of this method are the simplicity of its implementation and the

low computing cost of using the fast Fourier transform (FFT), known to be a very

e�cient algorithm for calculating the discrete Fourier transform (DFT). The FFT

algorithm is called the Cooley-Tukey algorithm, after the two authors who univer-

salised it in 1965 [64], although they actually re-invented an algorithm developed

by Gauss in 1805 [65]. Note that, when implementing the PS method, certain op-

erations such as di↵erentiation are computed in the spectral domain by applying

the FFT to the data whereas other operations such as the multiplication of two

functions are best done in real space with the inverse FFT. Finally, the scheme is

complemented with a linear damping technique known as “sponge layer” at the

ends of the domain and with the de-aliasing technique to treat the nonlinear and

sponge layer terms in the systems. Both techniques will be discussed in subsections

4.2.1 and 4.2.2.

4.2 The pseudo-spectral method

In this work, we have set parameters � and ⌫ in equations (3.30) and (3.31) to

be zero. This is based on the calculation of these parameters using the three-

layer stratification model. Details of this calculation will be discussed in the next

chapter. Equations (3.30) and (3.31) with � = ⌫ = 0 read,

{u
T

+ uu
X

+ u
XXX

+ n(uv)
X

+ mvv
X

+ ↵v
XXX

}
X

= �u , (4.1)

{v
T

+ vv
X

+ �v
XXX

+ �v
X

+ p(uv)
X

+ quu
X

+ �u
XXX

}
X

= µv . (4.2)

Thus, we formulate the problem over a periodic domain �L < x < L, with

L > 0 su�ciently large such that the periodicity assumption u(�L, t) = u(L, t)

and v(�L, t) = v(L, t) hold for the localised solutions. Initially, we transform the

solution interval [�L, L] to the periodicity interval [0, 2⇡] using ⇠ = sX + ⇡ where
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s = ⇡/L. Then equations (4.1) and (4.2) will be transformed to:

{u
T

+ suu
⇠

+ s3u
⇠⇠⇠

+ ns(uv)
⇠

+ msvv
⇠

+ ↵s3v
⇠⇠⇠

}
⇠

=
�

s
u, (4.3)

{v
T

+ svv
⇠

+ �s3v
⇠⇠⇠

+ �sv
⇠

+ ps(uv)
⇠

+ qsuu
⇠

+ �s3u
⇠⇠⇠

}
⇠

=
µ

s
v. (4.4)

It is now convenient to use the following notation for the nonlinear terms:

suu
⇠

= w
u⇠

, where w
u

=
su2

2
,

svv
⇠

= w
v⇠

, where w
v

=
sv2

2
,

s(uv)
⇠

= w
c⇠

, where w
c

= suv .

In this method, the derivatives are computed in the frequency domain by first

applying the FFT to the data, then multiplying by the appropriate values and

converting back to the spatial domain with the inverse FFT. The interval [0, 2⇡]

is discretised by N equidistant points with the spacing �⇠ = 2⇡/N , generating

the values u(⇠
j

, T ) and v(⇠
j

, T ) at ⇠ = ⇠
j

= j�⇠, j = 0, 1, · · · , N � 1. Here, N is

chosen to be a power of two. Transforming u(⇠
j

, T ) and v(⇠
j

, T ) by a DFT gives:

bu(, T ) = F (u) =
1p
N

N�1X

j=0

u(⇠
j

, T )e�i⇠j , �N

2
   N

2
� 1,  6= 0 ,

bv(, T ) = F (v) =
1p
N

N�1X

j=0

v(⇠
j

, T )e�i⇠j , �N

2
   N

2
� 1,  6= 0 , (4.5)

where i =
p
�1 and  is an integer, which can be interpreted as a discretised and

scaled version of a wavenumber. The inverse formulas for the discrete transform

are:

u(⇠
j

, T ) = F�1(bu) =
1p
N

N/2�1X

=�N/2

bu(, T )ei⇠j , j = 0, 1, · · · , N � 1 ,

v(⇠
j

, T ) = F�1(bu) =
1p
N

N/2�1X

=�N/2

bv(, T )ei⇠j , j = 0, 1, · · · , N � 1 . (4.6)

Note that we used F (.) and F�1(.) to denote the discrete Fourier transform and
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inverse Fourier transform, respectively. These transformations (4.5) and (4.6) can

be performed e�ciently using the FFT algorithm, which significantly reduces the

amount of required calculations. The standard number of arithmetical operations

for calculating the DFT is O(N2), however, by using the FFT algorithm, the DFT

can be computed in O(N log N) operations, see Huang and Zhang [56].

The derivatives of u and v with respect to X can be calculated by:

@nu

@Xn

= F�1{(ik)nF{u}}, n = 1, 2, . . . . (4.7)

The DFT of equations (4.3) and (4.4) with respect to ⇠ yields:

bu
T

+ i bw
u

� i3s3bu + in bw
c

+ im bw
v

� i↵3s3bv = � i�

s
bu, (4.8)

bv
T

+ i bw
v

� i�3s3bv + i�sbv + ip bw
c

+ iq bw
u

� i�3s3bu = � iµ

s
bv. (4.9)

Next, we use the time discretizations:

bu
T

(, T ) ⇡ bu(, T + �T ) � bu(, T � �T )

2�T
,

bu(, T ) ⇡ bu(, T + �T ) + bu(, T � �T )

2
, (4.10)

bv
T

(, T ) ⇡ bv(, T + �T ) � bv(, T � �T )

2�T
,

bv(, T ) ⇡ bv(, T + �T ) + bv(, T � �T )

2
.

Finally, we obtain the forward scheme for the coupled Ostrovsky equations in the

form:

bu(, T + �T ) =
1

(1 � i3s3�T + i��T

s

)
{(1 + i3s3�T

� i��T

s
)bu(, T � �T ) � 2i�T bw

u

� 2i�Tn bw
c

�2i�Tm bw
v

+ 2i3s3�T↵bv} , (4.11)
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bv(, T + �T ) =
1

(1 � i3s3�T � + is(�T )� + iµ�T

s

)
{[1 + i3s3�T �

�is(�T )� � iµ�T

s
]bv(, T � �T ) � 2i�T bw

v

�2i�Tp bw
c

� 2i�Tq bw
u

+ 2i3s3�T�bu} . (4.12)

The scheme was successfully tested by checking the single Ostrovsky equation us-

ing the initial KdV solitary wave with di↵erent amplitudes and comparing with

the results from Grimshaw and Helfrich [1]. To validate and illustrate the robust-

ness of the developed numerical scheme, we have undertaken several runs with

theoretically predicted results. We tested the code for single KdV and Ostro-

vsky equations as well as the coupled KdV equations with the periodic boundary

conditions.

4.2.1 Domain truncation: sponge layer

In the periodic domain, �L < x < L, some waves propagate out of the region

of interest and sometimes the radiated waves re-enter the region of interest and

interfere with the main wave structure. A solution to prevent the possibility of

radiated waves coming back to the main domain is by adding a linear damping

region (‘sponge layer’) at each end of the domain [55]. This approach produces

better results because the sponge layer absorbs the waves so that the centre of

the domain is una↵ected by spurious waves. This technique was also used in

[1, 33, 56, 66].

Adding the sponge layer to the coupled Ostrovsky equations (4.1) and (4.2), gives:

{u
T

+ uu
X

+ u
XXX

+ n(uv)
X

+ mvv
X

+ ↵v
XXX

+ r(x)u}
X

= �u, (4.13)

{v
T

+ vv
X

+ �v
XXX

+ �v
X

+ p(uv)
X

+ quu
X

+ �u
XXX

+ r(x)v}
X

= µv, (4.14)



Chapter 4. Numerical Methods 38

where the sponge layer r(x) is a combination of “tanh” functions to damp the

solution towards zero at the end of the periodic domain defined by:

r(x) =
⌫

2
{(1 + tanh (x � 3L/4)) + (1 � tanh (x + 3L/4))} ,

for some constants ⌫ and . For instance, we chose L = 12 and the value of ⌫ is

chosen so that the damping occurs quickly.

The additional sponge layer terms are handled in the same manner as the nonlinear

terms, and we use the following new notation:

r(x)u = R
u

, r(x)v = R
v

.

Finally, the forward scheme for the coupled Ostrovsky equations with the sponge

layer can be written as:

bu(, T + �T ) =
1

(1 � i3s3�T + i��T

s

)
{(1 + i3s3�T

� i��T

s
)bu(, T � �T ) � 2i�T bw

u

� 2i�Tn bw
c

�2i�Tm bw
v

+ 2i3s3�T↵bv � 2�TR
u

} , (4.15)

bv(, T + �T ) =
1

(1 � i3s3�T � + is(�T )� + iµ�T

s

)
{[1 + i3s3�T �

�is(�T )� � iµ�T

s
]bv(, T � �T ) � 2i�T bw

v

�2i�Tp bw
c

� 2i�Tq bw
u

+ 2i3s3�T�bu

�2�TR
v

} . (4.16)

The solution in physical space is obtained by the inverse discrete Fourier transform

(4.6). The values of L and N and the appropriate time step �t were chosen through

numerical experiments.
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4.2.2 Dealiasing and Two-Thirds Rule

The PS method solves nonlinear partial di↵erential equations with periodic bound-

ary conditions by means of the discrete Fourier transform. The multiplication

operations used in the PS method can generate higher frequencies due to DFT.

These higher frequencies are referred to as aliasing error due to the pollution of

the numerically calculated Fourier transform by higher frequencies because of the

truncation of the series, see Canuto et al. [53] and Boyd [55] for details. This

operation is important to the nonlinear and sponge layer terms in the coupled

Ostrovsky equations. The implementation to control the development of high fre-

quency modes or to remove the aliasing error is called the de-aliasing technique.

There are several such techniques and one of them is the 2/3 dealiasing rule. The

aliasing error can be terminated by putting a certain number of high-frequency

components of bu and bv equal to 0 after the multiplication operations. Basically,

we put roughly 1/3 of the coe�cients equal to 0 [53]. Therefore, the scheme only

deals with a lower resolution that is 2/3 of the number N of modes. This should

be done every time that the nonlinear and the sponge layer terms in the equations

are computed. This implementation of the 2/3 de-aliasing rule has also been used

by Thomas and Ruo [58] to compare the behaviour of PS methods using 2/3

dealiasing rule between a high order Fourier smoothing in order to remove the

aliasing errors.

4.3 Initial conditions

4.3.1 Approximate solitary wave solution of coupled KdV

equations

The initial conditions are obtained as approximate solitary wave solutions of the

coupled KdV equations, (3.30) and (3.31) with the rotation terms omitted: � =
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µ = � = ⌫ = 0,

u
T

+ uu
X

+ u
XXX

+ n(uv)
X

+ mvv
X

+ ↵v
XXX

= 0, (4.17)

v
T

+ vv
X

+ �v
XXX

+ �v
X

+ p(uv)
X

+ quu
X

+ �u
XXX

= 0. (4.18)

Solitary wave solutions of these equations are found by seeking solutions which

depend only on X � c
s

T , where c
s

is the solitary wave speed to be found as part

of the solution. Thus, for solitary waves, (4.17) and (4.18) reduce to:

�c
s

u +
u2

2
+ u

XX

+ nuv +
mv2

2
+ ↵v

XX

= 0, (4.19)

�c
s

v +
v2

2
+ �v

XX

+ �v + puv +
qu2

2
+ �u

XX

= 0. (4.20)

The dynamical systems approach is used for small-amplitude waves, where the

solutions bifurcate from the linear long wave speeds, which are 0 in the first case

and � in the second one (see, for example, Grimshaw and Gerard [50]). Recall

that � < 0, so the bifurcation from 0 will yield a KdV solitary wave, and the

bifurcation from � will yield a generalised solitary wave.

4.3.1.1 Bifurcation from 0

In the linear long wave limit, v ! 0, and u is arbitrary. This is then expanded as

follows:

u = ✏2A(⇠) + ✏4A2(⇠) + · · · , v = ✏4B2(⇠) + · · · , c
s

= ✏2c2 + · · · , ⇠ = ✏X .

(4.21)

By collecting terms of O(✏4), we obtain the following equations:

� c2A +
A2

2
+ A

⇠⇠

= 0 , �B2 +
qA2

2
+ �A

⇠⇠

= 0 ; (4.22)
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where:

A = a sech2(�⇠) , c2 =
a

3
= 4�2 , (4.23)

B2 = ��a2

3�
sech2(�⇠) +

(� � q)a2

2�
sech4(�⇠) . (4.24)

Hence in the original coordinates the initial condition is:

u = a sech2(�X) , a = 12�2 , (4.25)

v = ��a2

3�
sech2(�X) +

(� � q)a2

2�
sech4(�X) , (4.26)

where a is a disposable parameter, ideally small (parameters have been rescaled

as ✏2a ! a and ✏� ! �). This asymptotic solution requires that � 6= 0 is order

unity. Note that the nonlinear term (u2/2)
XX

has a maximum absolute value

of 2a2�2
1 = a3/6. When instead � ⇠ O(a), then equations (4.17) and(4.18) are

strongly coupled, and the expressions (4.25) cannot be used.

4.3.1.2 Bifurcation from �

In the linear long wave limit, c
s

! �, u ! 0, and v is arbitrary. The expansion is

now given by:

u = ✏4A2(⇠)+ · · · , v = ✏2B(⇠)+ ✏4B2(⇠)+ · · · , c
s

= �+ ✏2c2 + · · · , ⇠ = ✏X .

(4.27)

By collecting the terms of O(✏4), the following is obtained:

� c2B +
B2

2
+ �B

⇠⇠

= 0 , ��A2 +
mB2

2
+ ↵B

⇠⇠

= 0 ; (4.28)

where:

B = b sech2(�⇠) , c2 =
b

3
= 4��2 , (4.29)

A2 =
↵b2

3��
sech2(�⇠) +

(�m � ↵)b2

2��
sech4(�⇠) . (4.30)
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Hence in the original coordinates the initial condition is:

v = b sech2(�X) , b = 12��2 , (4.31)

u =
↵b2

3��
sech2(�X) +

(�m � ↵)b2

2��
sech4(�X) , (4.32)

where b is a disposable parameter, ideally small (parameters have been rescaled

as ✏2b ! b and ✏� ! �). Formally, these are generalised solitary waves, with an

exponentially small radiating tail, but that is ignored here, as we only require an

initial condition for our computations. Note that the nonlinear term (v2/2)
XX

has a maximum absolute value of 2b2�2
2 = b3/6�. This asymptotic solution again

requires that � 6= 0 is order unity.

4.3.1.3 Weak coupling KdV solitary waves

The asymptotic solutions described above are not suitable when either � is small,

or when the amplitudes a, b are not small. However, if the coupling is weak, that

is m, n, p, q, ↵, � are all small, then the leading order approximation is just the free

solitary wave solution of each uncoupled equation. Here a small modification of

these solutions is proposed, that is:

u = a sech2(�1X) ,
a

3
= 4(1 + ↵)�2

1 , (4.33)

v = b sech2(�2X) ,
b

3
= 4(� + �)�2

2 . (4.34)

This should be useful especially when m = n = p = q = 0 and �, ↵, � are small.

This was implemented with the constraint �1 = �2. In the symmetric case, when

� = 1, and ↵ = �, this is an exact solution when � = 0, and it is this feature which

has motivated the incorporation of the terms ↵, � in these expressions. Note that

here the nonlinear terms (u2/2)
XX

and (v2/2)
XX

have maximum absolute values

of 2a2�2
1 = a3/6(1 + ↵) and 2b2�2

2 = b3/6(� + �) respectively.
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4.3.2 Nonlinear wave packet

The nonlinear wave packet initial condition is based on either a maximum point

in the group velocity curve where @c
g

/@k = 0 and k = k
m

, or a maximum point

in the phase velocity curve where c
p

= c
g

and k = k
s

. The former corresponds to

the unsteady nonlinear wave packet travelling at a speed close to the maximum

group velocity.

To obtain a suitable wave packet initial condition, the procedure is to choose k,

either k
m

or k
s

, and then find the ratio r = u0/v0 from (5.16) or (5.17) in the form

u0 = U0a0, v0 = V0a0 where a0 is an arbitrary function of X, but U0, V0 are known

functions of k. Based on the expected outcome that the nonlinear wave packet will

be governed by an evolution equation such as the nonlinear Schrödinger equation,

a0(X) = A0 sech(K0X) is chosen. Note that the underlying theory suggests that

the shape should be sech, and that K0 depends on the amplitude A0, see Grimshaw

and Helfrich [1]. Here instead a value of K0 << k is selected. Then the wave packet

initial conditions are:

u(X, 0) = rV0A0 sech(K0X) cos(kX) , (4.35)

v(X, 0) = V0A0 sech(K0X) cos(kX) , (4.36)

where r = U0/V0 is a known function of k, and V0 can be chosen arbitrarily.

4.3.3 Pedestal

Solutions of the coupled Ostrovsky equations must satisfy the zero mass con-

straints: Z
L

�L

u(X, T ) dX = 0 ,

Z
L

�L

v(X, T ) dX = 0 . (4.37)

If u(X, 0) = u0(X) and v(X, 0) = v0(X) then also:

Z
L

�L

u0(X) dX = 0 ,

Z
L

�L

v0(X) dX = 0 .
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Thus if the initial condition described above is, say ũ0(X), then this must be

corrected to have zero mass by adding a negative pedestal d̃(X) as follows:

u0(X) = ũ0(X) � d̃(X) ,

Z
L

�L

ũ0(X) dX =

Z
L

�L

d̃(X) dX .

Note that d̃(X) cannot be a constant here due to the presence of the sponge layer

in equations (4.13) and (4.14).

For instance, consider the case of bifurcation from �, where the v-mode is given

by:

ṽ0 = b sech2(�X) ,

v0(X) = ṽ0(X) � d̃
v

(X) ,

Z
L

�L

d̃
v

(X) dX =

Z
L

�L

ṽ0(X) dX ⇡ 2b

�
, �L � 1 .

Then, we can choose d̃
v

(X) as follows:

d̃
v

(X) =
d0v

2
{tanh (0(X + L/2)) � tanh (0(X � L/2))} , 0L/4 � 1 .

For example, let 0L = 12, then:

Z
L

�L

d̃
v

(X) dX ⇡ d0vL , so that d0v =
2b

�L
.

Next, for the u-mode given by:

ũ0 =
↵b2

3��
sech2(�X) +

(�m � ↵)b2

2��
sech4(�X) ,

the same method is used, that is we let

d̃
u

(X) =
d0u

2
{tanh (0(X + L/2)) � tanh (0(X � L/2))} , 0L/4 � 1 ,

d0uL =

Z
L

�L

ũ0(X) dX =

Z
L

�L

{ ↵b2

3��
sech2(�X) +

(�m � ↵)b2

2��
sech4(�X)} dX ,

so that d0u =
2↵b2

3���L
+

2(�m � ↵)b2

3���L
=

2mb2

3���L
.
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Now, the initial conditions with a negative pedestal are:

u0(x) = ũ0(x) � d̃
u

(X) ,

v0(x) = ṽ0(x) � d̃
v

(X) .

An analogous procedure was used for the other initial conditions.

4.4 Conclusion

In this chapter we first described the pseudo-spectral method used to solve the de-

rived coupled Ostrovsky equations numerically. The proposed numerical method

has been successfully used for the solution of the single KdV equation and Os-

trovsky equation by Nouri and Sloan [54], Gulkac and Ozis [60], Grimshaw and

Helfrich [1]. The method was complemented with the use of the linear ‘sponge

layer’ at the ends of the domain and the ‘2/3 dealiasing rule’. Next, we described

a number of initial conditions which will be used in the subsequent numerical

simulations.



Chapter 5

Coupled Ostrovsky equations for

internal waves in a three-layer

model without a shear flow

5.1 Introduction

In this chapter we consider the case when there is no shear flow, that is u0(z) = 0.

A three-layer model is used in order to illustrate the general theory and as a

guide to choosing the coe�cients in the coupled Ostrovsky equations. It has to be

stressed that the aim of this chapter is just an illustration of a general idea and the

model that we described is not necessarily realistic. It is an extension of the model

used by Gear and Grimshaw [39] and designed to allow for an explicit analytical

determination of the system parameters to guide the explicit construction of a suite

of linear dispersion curves, to be used as a basis for the numerical simulations.

However, it could be viewed as a simple model of a double thermocline. The

extension to include a background shear flow is described in Chapter 6.

46
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5.2 Analysis

5.2.1 Three-layer model

We consider a three-layer model, which is an extension of the model discussed by

Gear and Grimshaw [39]. We assume that there is no shear flow, u0(z) = 0, and

the buoyancy frequency is given by:

N = N1 + (N2 � N1)H(z + h2 + h3) + (N3 � N2)H(z + h3) . (5.1)

Here N is a constant, N1,2,3, in each of three layers of depths h1,2,3 where h =

h1 + h2 + h3, counted from the bottom to the top, see Figure 5.1, and H(z) is the

Heaviside step function (H(z) = 0 for z < 0 and H(z) = 1 for z � 0).

N3 = constant

N1 = constant

N2 = 0

0

-h

-h3

-h3-h2

z

h1

h2

h3

Figure 5.1: Schematic plot for a three-layer stratification without shear flow.

This is not meant to be a realistic model of a typical ocean stratification, but

nonetheless is representative of a double thermocline. The present example is

designed to be amenable to an analytic solution, so that the expressions for all

coe�cients can be found explicitly. Using the Boussinesq and rigid lid approxi-

mations with no shear flow, we can find two modes �1,2 each satisfying the modal
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equation (3.3) and the boundary conditions (3.4):

�
zz

+
N2

c2
� = 0 , (5.2)

� = 0 at z = �h, 0 . (5.3)

The modal equation (5.2) holds in each layer, and �, �
z

are continuous at the layer

boundaries. This is the extension of the case studied by Gear and Grimshaw [39]

who also put h1 = h2 = h3 and N2 = 0; their Figure 2 shows a near resonance

at N3 = 0.42N1. Here we also put N2 = 0, but leave h1,2,3 undetermined at this

stage. The solution is given by

� = A1
sin (N1(z + h)/c)

sin (N1h1/c)
, �h < z < �h + h1 , (5.4)

� = �A1
z + h3

h2
+ A3

z + h2 + h3

h2
, �h2 � h3 < z < �h3 , (5.5)

� = �A3
sin (N3z/c)

sin (N3h3/c)
, �h3 < z < 0 , (5.6)

where A1, A3 are the amplitudes at z = �h + h1, z = �h3 respectively, and the

continuity of � is already satisfied. Then, continuity of �
z

yields:

A1N1 cot (N1h1/c) = �A1
c

h2
+ A3

c

h2
, (5.7)

�A3N3 cot (N3h3/c) = A3
c

h2
� A1

c

h2
. (5.8)

The determinant of this 2 ⇥ 2-system of equations (5.7) and (5.8), will yield c.

Thus, we get that:

D1D3 � D2
2 = 0 , (5.9)

where:

D1 = N1 cot

✓
N1h1

c

◆
+

c

h2
,

D3 = N3 cot

✓
N3h3

c

◆
+

c

h2
,

D2 =
c

h2
.
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In order to obtain a resonance, that is a double solution c with two distinct modes,

it is required that D1 = D3 = D2 = 0 simultaneously in order to ensure that there

are two independent solutions for A1, A3. Formally, it is necessary to take the limit

h2 � h1,3. In this limit, D2 ! 0, and this obtains a desired resonance if c = c
res

is chosen so that D1 = D3 = 0, that is:

N1h1

c
res

=
N3h3

c
res

= (n +
1

2
)⇡ , n = 0, 1, 2, · · · . (5.10)

Clearly this requires that N1h1 = N3h3, which is satisfied, in particular, in the

symmetric case h1 = h3, N1 = N3. In this limit there is an exact resonance, with

a double solution for c
res

and A1, A3 can be chosen arbitrarily. A sensible choice

is A1 = 1, A3 = 0 and A1 = 0, A3 = 1 so that the two modes with the same speed

correspond to a lower interface mode, and an upper interface mode respectively.

In practice, it is assumed that h2 is finite, but h1,3 ⌧ h2. Then the detuning

parameter � is small, but non-zero. Letting c = c
res

+ � it is found that:

� = � c2
res

(N1 + N3)

h2N1N3(n + 1/2)⇡
. (5.11)

At the leading order, the modes defined by (5.4), (5.5), (5.6) are now given by:

�1 = (�1)n sin {(n + 1/2)⇡(z + h)

h1
} , �h < z < �h + h1 ,

�1 = �z + h3

h2
, �h2 � h3 < z < �h3 , (5.12)

�1 = 0 , �h3 < z < 0 ,

�2 = 0 , �h < z < �h + h1 ,

�2 =
z + h2 + h3

h2
, �h2 � h3 < z < �h3 , (5.13)

�2 = (�1)n+1 sin {(n + 1/2)⇡z

h3
} , �h3 < z < 0 .

Note that formally, �1,2 = 1 in the near field where z + h2 + h3 > 0, z + h3 < 0

respectively when z is fixed as h2 is large. All coe�cients in the coupled Ostrovsky
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system can now be evaluated, here for n = 0. Thus, we get that

c
res

= C , C =
2N1h1

⇡
=

2N3h3

⇡
,

I1 =
N2

1h1

C
=

⇡2C

4h1
, I2 =

N2
3h3

C
=

⇡2C

4h3
,

I1µ1 = 2N2
1 , I2µ2 = �2N2

3 ,

I1�1 = C2

✓
h1

2
+

h2

3

◆
, I2�2 = C2

✓
h3

2
+

h2

3

◆
�12 = �21 = C2h2

6
,

⌫1 = ⌫2 = 0 , �1 = �2 =
f̃ 2

2C
, �12 = �21 = 0 .

Note that the nonlinear coupling coe�cients ⌫1,2 are zero, but �12 6= 0 so the

coupling is purely through the linear dispersion terms. There is an apparent

serious deficiency here in that �1,2,12 all scale with h2, and h2 is large. In this

limit I1�1 ⇠ I2�2 ⇠ 2�12. However a rescaling of time and space in the coupled

Ostrovsky equations can remove this, as seen in the rescaled equations (3.30),

(3.31).

The simplest case here is the symmetric case when N1 = N3, h1 = h3, when the

symmetry indicates that µ1 = �µ2, �1 = �2. Then, except for the detuning param-

eter �, the coupled Ostrovsky system is symmetric. This reduces the parameter

space considerably, as then m = n = p = q = 0, � = 1, ↵ = � = �1/2, � = µ, � =

⌫ = 0, leaving only two parameters, �, �, which can be varied independently. The

non-symmetric case when N1 6= N3 has p = n = q = m = 0, � = ⌫ = 0, and

� = h3/h1 , � = µ, while ↵ = �h3/2h1 = ��/2, � = �1/2, so that ↵� = h3/4h1.

Hence there are now three parameters �, �, � = h3/h1, which can be varied inde-

pendently.
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5.2.2 Linear dispersion relation

The scaled coupled Ostrovsky equations obtained in Chapter 2 are given by

(u
T

+ uu
X

+ u
XXX

+ n(uv)
X

+ mvv
X

+ ↵v
XXX

)
X

= �u + �v, (5.14)

(v
T

+ vv
X

+ �v
XXX

+ �v
X

+ p(uv)
X

+ quu
X

+ �u
XXX

)
X

= µv + ⌫u, (5.15)

The linear dispersion relation is obtained by linearising the equations (5.14), (5.15)

and then seeking solutions in the form of:

u = u0e
ik(X�cpT ) + c.c., v = v0e

ik(X�cpT ) + c.c. ,

where k is the wavenumber and c
p

is the phase speed and c.c. denotes the complex

conjugate. This leads to:

(c
p

� C1(k))u0 + (↵k2 � �

k2
)v0 = 0 , (5.16)

(�k2 � ⌫

k2
)u0 + (c

p

� C2(k))v0 = 0 , (5.17)

where C1(k) = �k2 +
�

k2
, C2(k) = � � �k2 +

µ

k2
. (5.18)

The determinant of this 2 ⇥ 2 system yields the dispersion relation:

(c
p

� C1(k))(c
p

� C2(k)) = D(k) = (↵k2 � �

k2
)(�k2 � ⌫

k2
) . (5.19)

Solving this dispersion relation we obtain the two branches of the dispersion rela-

tion:

c
p

= c
p1,p2 =

C1 + C2

2
± 1

2
{4D + (C1 � C2)

2}1/2 . (5.20)

Here C1,2(k) are the linear phase speeds of the uncoupled Ostrovsky equations,

obtained formally by setting the coupling term D(k) = 0. If D(k) > 0 for all

k, then both branches are real-valued for all wavenumbers k, and the linearised

system is spectrally stable. This will be assumed henceforth, and it is noted that

this is assured in the absence of a background shear flow, as then � = ⌫ = 0 and

↵� > 0 so that D(k) > 0 for all k.



Chapter 5. Coupled Ostrovsky equations for internal waves in a three-layer model
without a shear flow 52

The case when there is no background shear is the main concern in this chapter,

and in that case � = ⌫ = 0, and it can be assumed also that c > 0, I1 > 0, I2 > 0

without loss of generality. It follows that then �1,2 > 0, so that � > 0, � = µ > 0

and 0 < ↵� < �. In particular the coupling coe�cient D(k) = ↵�k4 > 0 for all

k > 0. Also it is recalled that � < 0 without loss of generality. Then (5.20)

reduces to:

c
p1,p2 =

�

k2
+

�

2
� (1 + �)k2

2
± 1

2

p
[� + (1 � �)k2]2 + 4↵�k4. (5.21)

The group velocities are given by c
g

= d(kc
p

)/dk:

c
g1,g2 = � �

k2
+

�

2
� 3(1 + �)k2

2
±

[� + (1 � �)k2][12� + 3
2(1 � �)k2] + 6↵�k4

p
[� + (1 � �)k2]2 + 4↵�k4

.

(5.22)

It is useful now to examine the limits k ! 0,1. Thus:

c
p1,p2 !

�

k2
+ (0, �) + O(k2), as k ! 0 , (5.23)

c
p1,p2 ! E1,2k

2 , as k ! 1 , (5.24)

where 2E1,2 = �(1 + �) ± {(1 � �)2 + 4↵�}1/2.

Note that since 0 < ↵� < �, E2 < E1 < 0. It follows that both branches have no

spectral gaps, and it is inferred that there are no solitary waves. Note that the two

branches coalesce as k ! 0, implying that in this limit there is a strong coupling

between the two modes. This can be compared with the case for no rotation,

when � = 0, and there is a spectral gap for both modes when c > 0 where KdV

solitary waves for mode 1 exist, and a spectral gap for mode 2 when c > � and

then generalised solitary waves exist, in resonance with mode 1. But when there

is rotation � > 0, both gaps are removed, which is the same scenario that arises

for the single Ostrovsky equation.

Note that with the scaling (3.29), X, T are scaled variables and have dimensions

of C�1/2, C�3/2 respectively, where C is a velocity scale, i.e ms�1 . The dependent

variables u and v have the dimension of C. The coe�cients n, m, ↵, �, p, q, � are
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dimensionless, while �, �, µ, ⌫ have dimensions of C2, and � has the dimension of

C. The wavenumber k and c
p

, c
g

have the dimensions of C1/2 and C respectively.

In what follows we omit writing the dimensions for the scaled variables.

A typical dispersion curve is shown in Figure 5.2, which is based on the parameter

values obtained from the three-layer example discussed above in section 5.2.1. The

significant features are that there is no spectral gap, and that both group velocity

curves have a turning point with maximum speed. Hence, based on the results

for the single Ostrovsky equation obtained by Grimshaw and Helfrich [1], it is

expected that the initial solitary-like wave initial conditions will collapse through

the radiation of inertia-gravity waves, followed by the emergence of two nonlinear

wave packets associated with each of these maximum group velocities.

1 2 3 4 5

!15

!10

!5

5

10

15

 speed
 k

Cp1
Cg1

Cp2
Cg2

Figure 5.2: Typical dispersion curves from (5.21) with � = 1 ,↵ = � =
�0.5 ,� = µ = 0.5 . The solid curves are the phase speed, and the dashed

curves are the group velocity.

5.3 Numerical results

The coupled Ostrovsky equations (3.30), (3.31) are solved numerically with the PS

scheme and the initial conditions described in Chapter 3, which model a solitary

wave solution of the coupled KdV system obtained by removing the rotation terms.

The derivation of this initial data is described in (4.3.1.1), (4.3.1.2) when � is

O(1) and the initial amplitudes a, b of u, v are small, and by (4.3.1.3) when �

is small but a, b are not small. Note that then in order for nonlinear e↵ects to
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be significant initially, it is required that (u2/2)
XX

> �u and (v2/2)
XX

> µv.

For the initial conditions (4.3.1.1) and (4.3.1.2) these imply that a2 > 6� and

b2 > 6�µ, and a2 > 6�|1 + ↵| and b2 > 6µ|� + �| respectively. Although the initial

conditions (4.3.1.1) and (4.3.1.2) are firmly based on a valid bifurcation analysis,

in practice the initial conditions were too small to generate significant nonlinear

e↵ects, and consequently the emergence of the expected nonlinear wave packets

was suppressed. Consequently, all the results shown here used the initial condition

(4.3.1.3). A summary of some typical simulations is set out in Table 5.1 and 5.3.

Three cases will be discussed based on the three-layer example of section (5.2.1).

These are the symmetric case N1 = N3 when m = n = p = q = 0, ↵ = � = �1/2

and � = 1, and two non-symmetric cases N1 6= N3 with N3/N1 = 4, where � =

h3/h1 = 1.5, 0.2, ↵ = �h3/2h1 = �0.75,�0.1 respectively. Note that � = �1/2

in all cases. As diagnostics, we compare the speeds of the numerically found wave

packets with the maximum group speeds c
g1, cg2 from the linear dispersion relation,

see (5.22), and also the modal structure, that is the ratio r1,2 = |u0|/|v0| computed

from either (5.16) or (5.17) for the corresponding wave numbers. A summary of

the results from our simulations is shown in Tables 5.2 and 5.4. Overall, there is

good agreement with the predicted speeds c
g1,g2 and ratios r1,2 and those found in

the simulations, C
g1,g2 and R1,2. In the following subsections, some typical plots

of numerical simulations are shown.

5.3.1 Symmetric case

Here, when � = 0, the initial condition 4.3.1.3 used has u = v at t = 0. But in

this special case, u = v is an exact solution for all time, each satisfying a single

Ostrovsky equation. Hence in this case only one mode is activated and the solution

is the same as that found for a single Ostrovsky equation by Grimshaw and Helfrich

[1]. As |�| is increased, the signature of a second wave packet emerges. A typical

result is shown in Figures 5.3 and 5.4. Two wave packets are clearly visible in

the plots for the v-component, but the second packet is barely discernible in the
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plots for the u-component, where its predicted amplitude is too small for it to be

distinguished from the background field of radiating waves.

Simulation N L �t � � � ↵ � a b

1 2048 1200 0.0001 �0.1 1 1 �0.5 �0.5 5 5

2 2048 1200 0.0001 �0.5 1 1 �0.5 �0.5 5 5

3 2048 1200 0.0001 �1.0 1 1 �0.5 �0.5 5 5

Table 5.1: Simulation parameters for symmetric case

-500
-400

-300
-200

-100
 0  0

 20

 40

 60

 80

 100

-1
 0
 1
 2
 3
 4
 5

 u(X,T)

X

T

 u(X,T)

-500
-400

-300
-200

-100
 0  0

 20

 40

 60

 80

 100

-1
 0
 1
 2
 3
 4
 5

  v(X,T)

X

T

  v(X,T)

Figure 5.3: Numerical simulations for the symmetric case (N1 = N3) using a
KdV initial condition of weak coupling with the parameter a = b = 5.
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Figure 5.4: Same as Figure 5.3, but a cross-section at T = 100 for both modes.

Data c
g1 C

g1 c
g2 C

g2 r1 R1 r2 R2

1 �2.502 �2.548 �4.288 �4.238 1.130 1.143 0.810 0.789

2 �2.749 �2.778 �4.452 �4.500 1.781 1.905 0.400 0.320

3 �3.008 �3.056 �4.783 �4.778 2.950 3.167 0.235 0.238

Table 5.2: Numerically determined group velocities, C
g1,g2 and modal ratio

R1,2 versus theoretical predictions c
g1,g2 and ratio r1,2 for each case.

5.3.2 Non-symmetric case

When � 6= 1, the symmetry is broken even when � = 0, and now two wave packets

are clearly seen. Typical plots are shown when � = 1.5, � = 0.1 and � = �0.1 in

Figures 5.5 and 5.6, and for � = 0.2, � = 0.5 and � = �0.1 in Figures 5.7 and 5.8.

Numerical results for � = �0.01 and the same values of � and � are qualitatively

similar. The comparison between the predicted and numerical values shown in

Table 5.3 is now very good. In some simulations, the results were qualitatively

similar to Figure 4, when two wave packets can be seen in the v-component, but

one of them is too small to be seen in the u-component.
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Simulation N L �t � � � ↵ � a b

4 2048 1500 0.0001 �0.01 0.1 1.5 �0.75 �0.5 0.75 3

5 2048 1500 0.0001 �0.1 0.1 1.5 �0.75 �0.5 0.75 3

6 2048 800 0.0001 �0.01 0.5 0.2 �0.1 �0.5 3 �1

7 2048 800 0.0001 �0.1 0.5 0.2 �0.1 �0.5 3 �1

Table 5.3: Simulation parameters for the non-symmetric case
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Figure 5.5: Numerical simulations for the non-symmetric case (N1 6= N3)
using a KdV initial condition of weak coupling with the parameter � = 1.5 ,

� = �0.1 , a = 0.75 and b = 3.



Chapter 5. Coupled Ostrovsky equations for internal waves in a three-layer model
without a shear flow 58

−500 −400 −300 −200 −100 0−1

−0.5

0

0.5

1

X

u(
X
,T

)

T = 200

−500 −400 −300 −200 −100 0−1

−0.5

0

0.5

1

X

v(
X
,T

)

T = 200

Figure 5.6: Same as Figure 5.5, but a cross-section at T = 200 for both modes.
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Figure 5.7: Numerical simulations for the non-symmetric case (N1 6= N3)
using a KdV initial condition of weak coupling with the parameter � = 0.2 ,

� = �0.1 , a = 3 and b = �1.
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Figure 5.8: Same as Figure 5.7, but a cross-section at T = 100 for both modes.
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Data c
g1 C

g1 c
g2 C

g2 r1 R1 r2 R2

4 �0.844 �0.857 �1.521 �1.536 1.881 1.938 0.778 0.655

5 �0.876 �0.881 �1.579 �1.548 2.450 2.333 0.498 0.370

6 �0.932 �0.947 �2.520 �2.579 0.118 0.125 1.669 1.622

7 �1.017 �1.026 �2.523 �2.526 0.129 0.143 1.254 1.243

Table 5.4: Numerically determined group velocities, C
g1,g2 and modal ratio

R1,2 versus theoretical predictions c
g1,g2 and ratio r1,2 for each case.

5.4 Conclusion

In this chapter we evaluated the coe�cients of coupled Ostrovsky equations for

the case of a three-layer stratification in the absence of shear flow. This is an

extension of the special case considered by Gear and Grimshaw [39]. Within the

scope of this and similar models of the density stratification, both branches of the

dispersion relation of the linearised equations resemble the dispersion curve of a

typical single Ostrovsky equation, with no spectral gaps, and with an extremum

in both group velocity curves. Importantly, in all the cases shown here these

extrema are distinct. Hence, based on the results for the single Ostrovsky equation

obtained by Grimshaw and Helfrich [1], it was expected to observe the emergence

of two separated nonlinear wave packets associated with the extrema in these

group velocity curves.

This generic outcome has been confirmed in the numerical simulations, using a

pseudo-spectral code, and initiated using solitary-type initial conditions. As for

the single Ostrovsky equation, it is expected that each of these wave packets

can be described by an extended nonlinear Schrödinger equation, although the

derivation of that asymptotic reduction is beyond the scope of this research. Of

course, at early times, for example around T = 10 to 20 in Figure 5.3, there is

an interaction between these wave packets, and indeed, there is continuing small-

amplitude radiation from the leading wave packet which does then interact with
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the second wave packet. But this does not seem to greatly a↵ect its coherence as

a stable and persistent nonlinear wave packet.

In the oceanic context, it might be helpful to show an example of some more

realistic model. Therefore, the extension of the work from this chapter will include

the shear flow and density stratification and provide such an example.



Chapter 6

Coupled Ostrovsky equations for

internal waves in a three-layer

shear flow

6.1 Introduction

This chapter is devoted to studying the e↵ects of a nonzero shear flow when

u0(z) 6= 0. This is an extension of the previous work for coupled KdV equa-

tions, particularly in Grimshaw [67], Grimshaw and Skyrnnikov [68], Grimshaw

[40]. A very useful model which will be considered here is a fluid consisting of

three layers when the middle layer depth is much greater than upper layer and

the lower one. The density and shear flow are presented as piecewise-constant and

then we will obtain the coe�cients of the system of coupled Ostrovsky equations

for this model.

Our analysis shows that the dispersion relation of the system of coupled Ostrovsky

equations discloses various behaviours of weakly nonlinear oceanic internal waves

including the existence of unsteady and steady wave packets. The shear flow

allows for a configuration when initial solitary-like waves in the coupled system are

61
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destroyed, and replaced by a variety of nonlinear envelope wave packets, extending

the scenarios previously studied in the absence of the shear flow in Chapter 5.

6.2 Analysis

6.2.1 Three-layer shear flow

As an illustrative example with su�cient parameters to explore several cases of

interest, a three-layer fluid is considered, �h < z < 0, with interfaces at z =

�h2 � h1, z = �h1, and h = h1 + h2 + h3, as shown in Figure 6.1. Here, ⇢0 and

u0 are piecewise-constant density and velocity fields, respectively, and they are

represented using the Heaviside step function as follows:

⇢0(z) = ⇢3 + (⇢2 � ⇢3)H(z + h2 + h1) + (⇢1 � ⇢2)H(z + h1) ,

u0(z) = U3 + (U2 � U3)H(z + h2 + h1) + (U1 � U2)H(z + h1) .

With rigid boundaries at z = �h, 0, the modal functions are given by:

� = A3
h + z

h3
, �h < z < �h2 � h1 ,

� = A1
h1 + h2 + z

h2
� A3

h1 + z

h2
, �h2 � h1 < z < �h1 ,

� = �A1
z

h1
, �h1 < z < 0 .

(6.1)

This is normalized so that � = A1,3 at z = �h1,�h1 � h2. At each interface there

is the density jump relation:

[⇢0(c � u0)
2�

z

] = g[⇢0]� .



Chapter 6. Coupled Osrovsky equations for internal waves in a three-layer shear
flow 63

0
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-h1

-h2-h1

z

h3

U1,�ȡ1

U2,�ȡ2

U3,�ȡ3

h1

h2 h1,3>>

8

Figure 6.1: A schematic representation of the three-layer model with a shear
flow.

This yields the system:

{⇢1(c � U1)2

h1
+

⇢2(c � U2)2

h2
� g(⇢2 � ⇢1)}A1 �

⇢2(c � U2)2

h2
A3 = 0 , (6.2)

�⇢2(c � U2)2

h2
A1 + {⇢3(c � U3)2

h3
+

⇢2(c � U2)2

h2
� g(⇢3 � ⇢2)}A3 = 0 , (6.3)

which can be written as

D1A1 � D2A3 = 0 , �D2A1 + D3A3 = 0 , (6.4)

D1 =
⇢1(c � U1)2

h1
+

⇢2(c � U2)2

h2
� g(⇢2 � ⇢1) , (6.5)

D3 =
⇢3(c � U3)2

h3
+

⇢2(c � U2)2

h2
� g(⇢3 � ⇢2) , (6.6)

D2 =
⇢2(c � U2)2

h2
. (6.7)

Without loss of generality we put U2 = 0 henceforth.

The dispersion relation, determining the speed c is then:

D1D3 = D2
2 . (6.8)

A resonance with two distinct modes requires that D1 = D3 = D2 = 0 simulta-

neously. There are two cases, either c = 0 or h2 � h1,3. The first case contains
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implicit critical layers, and hence is not considered here. The second case is,

h2 � h1,3 , c = U1 ± {gh1(⇢2 � ⇢1)

⇢1
}1/2 = U3 ± {gh3(⇢3 � ⇢2)

⇢3
}1/2 . (6.9)

For given densities ⇢1,2,3 and layer depths h1,3, these determine the allowed shear

U1 � U3. There are four cases, but to avoid a critical layer we must choose c > 0,

which then imposes a constraint on the allowed choices for U1 � U3.

The modal functions and their derivatives are given by:

�1 = 0 , �1z = 0 , � h < z < �h2 � h1 ,

�1 =
h1 + h2 + z

h2
, �1z =

1

h2
, � h2 � h1 < z < �h1 ,

�1 = � z

h1
, �1z = � 1

h1
, � h1 < z < 0 ,

(6.10)

�2 =
h + z

h3
, �2z =

1

h3
, � h < z < �h2 � h1 ,

�2 = �h1 + z

h2
, �2z = � 1

h2
, � h2 � h1 < z < �h1 ,

�2 = 0 , �2z = 0 , � h1 < z < 0 .

(6.11)

Now all coe�cients in the coupled Ostrovsky equation can be calculated, by taking

into account h2 � h1, h3 where appropriate:

I1µ1 = �3⇢1(c � U1)2

h2
1

, I2µ2 =
3⇢3(c � U3)2

h2
3

(6.12)

I1�1 = I2�2 =
c2⇢2h2

3
, (6.13)

I1 =
2⇢1(c � U1)

h1
, I2 =

2⇢3(c � U3)

h3
, (6.14)

�12 = �21 =
c2⇢2 h2

6
, (6.15)

⌫1 = ⌫2 = 0 . (6.16)

For the coe�cients �1,2,12 we must evaluate �1,2:

�1,2 = �1z,2z �
(⇢0u0)z
⇢0W

�1,2 , (6.17)
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I
i

�
i

= f̃ 2

Z 0

�h

⇢0�i

�
iz

dz , (6.18)

�
ij

= f̃ 2

Z 0

�h

⇢0�i

�
jz

dz . (6.19)

Here ⇢0, W = c � u0 are piecewise constant, so the second term in (6.17) behaves

like a �-function. Specifically, we write:

�1,2 = �1z,2z + {(log |W |)
z

� u0

W
(log ⇢0)z}�1,2 ,

where the last term can be ignored in the Boussinesq approximation, but is kept

here, and we treat log |W | and log ⇢0 as piecewise-constant functions. The deriva-

tives of [· · · ] are �-functions, leading to the product of a �-function with a discon-

tinuous function in (6.18, 6.19). In order to evaluate these expressions it is first

noted that �1z, �2z are zero except in the upper and bottom layer respectively,

where they are constants, and also �1 = 0 in the bottom layer, and �2 = 0 in the

top layer. Hence:

I1�1 = �⇢1f̃ 2

h1

Z 0

�h

�1H(z + h1) dz

=
⇢1f̃ 2

h1
{1 +

1

2
log (

|W2|
|W1|

) � U1

2W1
log (

⇢2

⇢1
)} , (6.20)

I2�2 =
⇢3f̃ 2

h3

Z 0

�h

�2H(�z � h1 � h2)dz

=
⇢3f̃ 2

h3
{1 +

1

2
log (

|W2|
|W3|

) � U3

2W3
log (

⇢2

⇢3
)} , (6.21)

�12 = �21 = 0 . (6.22)

Here we have used the expression that when a �-function multiplies a discontinuous

function f(x): Z
f(x)�(x)dx =

1

2
(f(0+) + f(0�)) .
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Next, letting g1 = g(⇢2 � ⇢1)/⇢1, g3 = g(⇢3 � ⇢2)/⇢3 and using the Boussinesq

approximation that otherwise ⇢1 ⇡ ⇢2 ⇡ ⇢3, it is then obtained that

n = m = p = q = � = ⌫ = 0 , (6.23)

� =
h3(c � U1)

h1(c � U3)
= �2↵ , � = �1

2
, (6.24)

� =
c2h1h2f̃ 2(1 + 1

2 log |c/(c � U1)|)
12(c � U1)2

, (6.25)

µ =
c2h1h2f̃ 2(1 + 1

2 log |c/(c � U3)|)
12(c � U1)(c � U3)

, (6.26)

so that µ = �F , F = (
c � U1

c � U3
)
1 + 1

2 log |c/(c � U3)|
1 + 1

2 log |c/(c � U1)|
. (6.27)

Then there are four possibilities according to the value of c:

Case 1 : c = U1 +
p

g1h1 = U3 +
p

g3h3 ,

Case 2 : c = U1 �
p

g1h1 = U3 �
p

g3h3 ,

Case 3 : c = U1 +
p

g1h1 = U3 �
p

g3h3 ,

Case 4 : c = U1 �
p

g1h1 = U3 +
p

g3h3 .

(6.28)

Considering the right-propagating waves and bearing in mind that a piecewise-

constant shear flow is a simplified model of a continuous shear flow, then in order

to avoid an implicit critical layer, we require that c > max[U1, 0, U3] , where it is

recalled that we have set U2 = 0. This condition then implies that we consider

Case 1.

In full detail, for Case 1:

� =

s
g1h3

g3h1
= �2↵ , � = �1

2
, (6.29)

� =
h2f̃ 2(

p
g1h1 + U1)2(1 + 1

2 log |(
p

g1h1 + U1)/
p

g1h1|)
12g1

, (6.30)

µ = �F , F =

s
g1h1

g3h3

(1 + 1
2 log |(

p
g3h3 + U3)/

p
g3h3|)

(1 + 1
2 log |(

p
g1h1 + U1)/

p
g1h1|)

. (6.31)
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Note that � > 0 unless U1 is such that:

|1 +
U1p
g1h1

| < e�2 , �1 <
U1p
g1h1

< e�2 � 1 = �0.865 ,

when � < 0. Similarly µ > 0 unless U3 is such that:

|1 +
U3p
g3h3

| < e�2 , �1 <
U3p
g3h3

< e�2 � 1 = �0.865 ,

when µ < 0. But note that U1, U3 are constrained by the resonance condition

(6.28). Nevertheless, all four possibilities can be realised, that is; Case A: � >

0, µ > 0, Case B: � > 0, µ < 0, Case C: � < 0, µ > 0, Case D: � < 0, µ < 0.

Specifically, we choose f̃ = 5 ⇥ 10�3 s�1 and choose g1,3 of the order 10�1 $

10�3 m s�2. The upper layer and lower depths h1,3 are chosen to be of order

50 $ 1000 m. Next, we choose U1 and use the resonance condition (6.28) to

determine the value of U3, since U1 and U3 are not independent. Finally, h2 is a

free parameter, so � can be chosen arbitrarily, but then µ = �F is determined.

Typically, we choose � so that h2 � h1,3 but of order 4 $ 6 km. For instance,

choose U1 = 1 ms�1, h1 = 50 m, g1 = 0.1 ms�2, and then � > 0; in this case,

also µ > 0 when
p

g3h3 < 23.97, and µ < 0 when
p

g3h3 > 23.97, on using the

resonance condition (6.28) to determine U3 = 3.236�
p

g3h3. Alternatively, choose

U1 = �1.8 ms�1, h1 = 500 m, g1 = 0.01 ms�2, and again � > 0, but now U3 =

0.436 �
p

g3h3, so that µ < 0 when
p

g3h3 > 3.22, which is a more realistic value.

Next, choose U1 so that �1 < U1/
p

g1h1 < �0.865, for instance U1 = �1.8 ms�1,

h1 = 800 m, g1 = 0.005 ms�2 and then � < 0; in this case U3 = 0.2 �
p

g3h3, so

that µ > 0 when
p

g3h3 < 1.48, and µ < 0 when
p

g3h3 > 1.48. Alternatively,

choose U1 = �1.4 ms�1, h1 = 1000 m, g1 = 0.0025 ms�2 and then again � < 0;

but now U3 = 0.181 �
p

g3h3, so that µ > 0 when
p

g3h3 < 1.34, and µ < 0 when
p

g3h3 > 1.34.

Notice that the type of current model considered in our three-layer model with

shear flow can also lead to the anomalous version of the single Ostrovsky equation

when �� < 0. Detailed explanation is given in Appendix A.
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6.2.2 Linear dispersion relation

As in Chapter 4, the structure of the linear dispersion relation is obtained by

seeking solutions of the linearised equations proportional to eik(X�cpT ), where k is

the wavenumber and c
p

(k) is the phase speed. The result is:

(c
p

� C1(k))u0 + (↵k2 � �

k2
)v0 = 0 , (6.32)

(�k2 � ⌫

k2
)u0 + (c

p

� C2(k))v0 = 0 , (6.33)

where C1(k) = �k2 +
�

k2
, C2(k) = � � �k2 +

µ

k2
. (6.34)

The determinant of this 2 ⇥ 2 system yields the dispersion relation:

(c
p

� C1(k))(c
p

� C2(k)) = D(k) = (↵k2 � �

k2
)(�k2 � ⌫

k2
) . (6.35)

Solving this dispersion relation we obtain the two branches of the dispersion rela-

tion:

c
p

= c
p1,p2 =

C1 + C2

2
± 1

2
{4D + (C1 � C2)

2}1/2 . (6.36)

Here C1,2(k) are the linear phase speeds of the uncoupled Ostrovsky equations,

obtained formally by setting the coupling term D(k) = 0. If D(k) > 0 for all

k, then both branches are real-valued for all wavenumbers k, and the linearised

system is spectrally stable. Here � = ⌫ = 0 and ↵� > 0 so that D(k) = ↵�k4 > 0

for all k.

Consider now Case 1, where c > 0, I1 > 0, I2 > 0, and so �1,2 > 0, so that � > 0,

and 0 < ↵� = �/4. Also recall that � < 0 without loss of generality. The main

e↵ect of the background shear is that now � 6= µ, and indeed each can be either

positive or negative. Then (6.36) reduces to

c
p1,p2 =

� + µ

2k2
+

�

2
� (1 + �)k2

2
± 1

2

r
(
� � µ

k2
� � � (1 � �)k2)2 + 4↵�k4. (6.37)
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The group velocities are given by c
g

= d(kc
p

)/dk,

c
g1,g2 = �� + µ

2k2
+

�

2
� 3(1 + �)k2

2

±
{� + (1 � �)k2 � ��µ

k

2 }{3
2(1 � �)k2 + 1

2(� + ��µ

k

2 )} + 6↵�k4

q
(� + (1 � �)k2 � ��µ

k

2 )2 + 4↵�k4
.(6.38)

Next it is useful to examine the limits k ! 0,1. Thus,

c
p1,p2 !

F1,2

k2
and c

g1,g2 ! �F1,2

k2
as k ! 0 , (6.39)

c
p1,p2 ! E1,2 k2 and c

g1,g2 ! 3E1,2 k2 as k ! 1 , (6.40)

where

2F1,2 = � + µ ± |� � µ| , (6.41)

2E1,2 = �(1 + �) ± {(1 � �)2 + 4↵�}1/2. (6.42)

Note that since 0 < ↵� < �, E2 < E1 < 0. One can see that there are four possi-

bilities of qualitatively di↵erent behaviour of the dispersion relation, depending on

the signs of the coe�cients � and µ, as Case A: � > 0, µ > 0, Case B: � > 0, µ < 0,

Case C: � < 0, µ > 0, Case D: � < 0, µ < 0.

Note again that with the scaling (3.29), X, T are scaled variables and have dimen-

sions of C�1/2, C�3/2 respectively, where C is a velocity scale, i.e ms�1 . The depen-

dent variables u and v have the dimension of C. The coe�cients n, m, ↵, �, p, q, �

are dimensionless, while �, �, µ, ⌫ have dimensions of C2, and � has the dimension

of C. The wavenumber k and c
p

, c
g

have the dimensions of C1/2 and C respectively.

In what follows we omit writing the dimensions for the scaled variables, but write

the unscaled physical parameters in dimensional form.

6.2.2.1 Case A: (� > 0 , µ > 0)

Case A happens when � > 0 and µ > 0. Then F1 = max[� , µ] > F2 = min[� , µ] >

0. There is no spectral gap in either mode, and this case is similar to the situation
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without any background shear, which has been discussed in Chapter 5. But there

is now a significant di↵erence since here � 6= µ due to the e↵ect of the background

shear flow. A typical dispersion curve is shown in Figure 6.2, where � = 1 , µ =

0.604 , � = �0.5 , � = 1.414 , ↵ = �0.707 , � = �0.5 when setting h1 = 50 m ,h2 ⇡

3.9 km , h3 = 100 m , g1 = g3 = 0.1 ms�2 , U1 = 1 m s�1 , U3 = 0.074 m s�1 , ⇢1 =

0.99 ⇢2 and ⇢3 = 1.01 ⇢2. Here, and in the subsequent plots of dispersion curves, the

letters A , B, · · · indicate the turning points and possible resonant points, identified

for comparison with the numerical results. For both modes the group velocities are

negative for all k, and each has a single turning point at k = k
m1,m2 respectively.

In general it is possible that there are 0 , 2 , 4 , · · · turning points for c
p

where

dc
p

/dk = 0 and c
p

= c
g

. Each such turning point can generate a generalised

envelope solitary wave, see Grimshaw and Gerard [50] for instance. Further it is

also possible that there are 1 , 3 , 5 , · · · turning points for c
g

where dc
g

/dk = 0,

and each such turning point is expected to generate an unsteady wave packet

analogous to those found by Grimshaw and Helfrich [1] for the single Ostrovsky

equation. Figure 2 shows the simplest case when there are 0 , 1 turning points

respectively. But since there are four independent parameters � , µ , � , ↵� (note

that � = �2↵ , � = �0.5, see (6.29)) in the expressions (6.37, 6.38) for c
p

, c
g

respectively, it cannot be ruled out that there is a possibility that other “non-

typical” cases may occur. Even though the expressions (6.37, 6.38) are explicit,

a full exploration of the 4-dimensional parameter space is beyond the scope of

the present study. Nevertheless an asymptotic expansion in the parameter ↵� ⌧

1 described below confirms that only the typical case arises in this asymptotic

regime.
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Figure 6.2: Typical dispersion curve for Case A with � = 1.414 ,↵ =
�0.707 ,� = �0.5 ,� = �0.5 ,� = 1 and µ = 0.604 .

Point Speed Wavenumber, k Ratio, u0/v0
A �2.912|

maxCg1 0.895 3.692|
Cp1

B �3.854|
maxCg2 0.584 �0.132|

Cp2

C �9.628|
Cg2 1.274 �0.602|

Cp2

D �12.131|
Cg2 1.446 �0.659|

Cp2

E �9.135|
Cg1 2.251 1.829|

Cp1

F �11.786|
Cg1 2.574 1.788|

Cp1

G1,2 �6.118|
Cg1 1.806 1.938|

Cp1

�18.501|
Cg2 �0.730|

Cp2

Table 6.1: Values of the group speed, wavenumber and ratio, calculated using
the phase speed, at each point in Figure 6.2.

6.2.2.2 Case B: (� > 0 , µ < 0)

Case B occurs when � > 0 and µ < 0. Then F1 = � > 0 , F2 = µ < 0. A

typical dispersion curve is shown in Figure 6.3, where � = 0.04 , µ = �0.02 , � =

�1.5 , � = 1 , ↵ = �0.5 , � = �0.5 when setting h1 = 500 m ,h2 ⇡ 5.5 km , h3 =

1000 m , g1 = 0.01 ms�2 , g3 = 0.02 ms�2 , U1 = �1.8 m s�1 , U3 = �4.036 m s�1 ,

⇢1 = 0.999 ⇢2 and ⇢3 = 1.002 ⇢2 . There is no spectral gap in mode 1, and the

group velocity is negative for all k with a turning point at k = k
m1. But mode 2

has a spectral gap, as the phase speed has a maximum value, c
s2 at k = k

s2. For

this mode the group velocity is positive as k ! 0 and negative as k ! 1. At the
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value c
p2 = c

s2, the phase and group velocities are equal, and then this mode 2 can

support a steady wave packet. However, this wave packet lies in the spectrum of

mode 1, and hence may decay by radiation into mode 1; strictly, it is a generalised

solitary wave. Here, in general it is possible that there are 0 , 2 , 4 , · · · turning

points for c
p

for mode 1, and 1 , 3 , 5 , · · · for mode 2. Further it is also possible

here that there are 1 , 3 , 5 , · · · turning points for c
g

in mode 1, and 0 , 2 , 4 , · · · for

mode 2. However, the asymptotic expansion in the parameter ↵� ⌧ 1 described

below confirms that only the typical case 0 , 1 , 1 , 0 of turning points arises in this

asymptotic regime.

A
B

Cg1

Cp2

Cg2

Cp1

C

D

F

E

0.5 1.0 1.5 2.0 2.5 3.0 k

-10

-5

5

speed

Figure 6.3: Typical dispersion curve for Case B with � = 1 ,↵ = �0.5 ,� =
�0.5 ,� = �1.5 ,� = 0.04 and µ = �0.02 .

Point Speed Wavenumber, k Ratio, u0/v0
A �0.683|

maxCg1 0.345 33.696|
Cp1

B �1.785|
maxCp2=Cg2 0.372 �0.036|

Cp2

C �2.0430|
Cg1 0.914 4.012|

Cp1

D1,2 �2.987|
Cg1 0.117 871.768|

Cp1

�0.068|
Cg2 �0.001|

Cp2

E �4.676|
Cg1 1.583 1.779|

Cp1

F1,2 �9.722|
Cg1 2.433 1.287|

Cp1

�27.297|
Cg2 �0.778|

Cp2

Table 6.2: Values of the group speed, wavenumber and ratio, calculated using
the phase speed, at each point for Figure 6.3.
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6.2.2.3 Case C: (� < 0 , µ > 0)

Case C happens when � < 0 and µ > 0 . Then F1 = µ > 0, F2 = � < 0. Two

examples of case C are shown here with the dispersion relation.

Example 1:

A typical dispersion curve is shown in Figure 6.4, where � = �1 , µ = 0.56 , � =

�0.5 , � = 1.414 , ↵ = �0.707 , � = �0.5 when we set h1,3 = 50 m , g1 = 0.1 ms�2,

g3 = 0.05 ms�2, U1 = �2 m s�1,U3 = �1.345 m s�1 , ⇢1 = 0.99 ⇢2 and ⇢3 =

1.005 ⇢2. However, this does not correspond to the realistic model for ocean since

the value of h2 ⇡ 7 x 106 km which is too deep as the average depth of the ocean is

around 4 km. As for case B, this is the typical case when there are 0, 1, 1, 0 turning

points for c
p1, cp2, cg1, cg2, and the asymptotic analysis described below confirms

that this is the only case when ↵� ⌧ 1. But, it is interesting to note that there is a

“flat” part in mode 1 for c
g1, which suggests there is almost a turning point in c

g1

around that point, called C in the Figure 6.4. We infer that an unsteady nonlinear

wave packet might emerge from this point. This “flat” part can be interpreted as

due to the existence of three turning points in the curve for c
g1 and coalescence

of two of these as the available parameters are varied. Indeed, by varying the

parameters �, �, µ, cases can be found for which c
g1 has three turning points, see

Figure 6.5 with the value of h2 is more close to the realistic ocean. However, we

will not show the numerical simulations for this example since it is not a relevant

value for the ocean.

Example 2:

A typical dispersion curve is shown in Figure 6.5, where � = �0.01 , µ = 0.002 , � =

�0.1 , � = 1.414 , ↵ = �0.707 , � = �0.5 when setting h1 = h3 = 800 m ,h2 ⇡

4.0 km , g1 = 0.005 m s�2 , g3 = 0.0025 ms�2 , U1 = �1.8 m s�1 , U3 = �1.214 m s�1,

⇢1 = 0.9995 ⇢2 and ⇢3 = 1.00025 ⇢2. At first glance, this is overall similar to case

B because there is no spectral gap in mode 1, and the group velocity is negative

for all k; but now the group velocity c
g1 has three turning points, a global max-

imum at A, a local minimum at K and a local maximum at B. This is not the

simplest case, where only one turning point is expected, but it is displayed here as
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Figure 6.4: Typical dispersion curve for Case C with � = 1.414 ,↵ =
�0.707 ,� = �0.5 ,� = �0.5 ,� = �1 , µ = 0.56.

Point Speed, c Wavenumber, k Ratio, u0/v0
A �2.650|

maxCg1 1.122 1.028|
Cp1

B �2.223|
maxCp2=Cg2 0.879 �3.505|

Cp2

C �3.461|
Cg1 0.665 0.109|

Cp1

D 0.556|
Cg2 0.681 �11.668|

Cp2

E �6.365|
Cg2 1.107 �1.425|

Cp2

F �5.754|
Cg1 1.819 1.685|

Cp1

G �7.143|
Cg1 2.024 1.712|

Cp1

H 2.114|
Cg2 0.565 �0.823|

Cp2

I �9.555|
Cg2 1.306 �1.031|

Cp2

J �9.702|
Cg1 2.357 1.726|

Cp1

Table 6.3: Value of the group velocity, wavenumber and ratio, at each point
for Figure 6.4.

potentially there could be energy focussing associated with each of these turning

points, and the consequent emergence of three unsteady nonlinear wave packets.

As in case B, mode 2 has a spectral gap, as the phase speed has a maximum at

C; the group velocity is positive as k ! 0 and negative as k ! 1. At this point,

the phase and group velocities are equal, and so then this mode 2 can support a

steady wave packet. However, this wave packet lies in the spectrum of mode 1,

and hence may decay by radiation into mode 1. We will discuss the numerical

results for this example in more details in the next section.
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Figure 6.5: Typical dispersion curve for Case C with � = 1.414 ,↵ =
�0.707 ,� = �0.5 ,� = �0.1 ,� = �0.01 and µ = 0.002 .

Point Speed, Wavenumber, k Ratio, u0/v0
A �0.164|

maxCg1 0.306 1.309|
Cp1

B �0.281|
maxCg1 0.152 0.040|

Cp1

C �0.238|
maxCp2=Cg2 0.259 �2.164|

Cp2

D1,2 �0.263|
Cg1 0.245 0.472|

Cp1

�0.137|
Cg2 �2.994|

Cp2

E �0.273|
Cg1 0.404 1.898|

Cp1

F1,2 �0.294|
Cg1 0.199 0.149|

Cp1

0.1081|
Cg2 �9.497|

Cp2

G 0.075|
Cg2 0.206 �7.874|

Cp2

H �0.623|
Cg2 0.326 �0.932|

Cp2

I �0.577|
Cg1 0.571 1.944|

Cp1

J �0.722|
Cg1 0.638 1.914|

Cp1

K �0.296|
minCg1 0.209 0.191|

Cp1

L �0.681|
Cg2 0.339 �0.870|

Cp2

M �0.770|
Cg1 0.659 1.904|

Cp1

N 0.111|
Cg2 0.199 �9.651|

Cp2

Table 6.4: Values of the group speed, wavenumber and ratio, calculated using
the phase speed, at each point for Figure 6.5.

6.2.2.4 Case D: (� < 0 , µ < 0)

Case D occurs when � < 0 , µ < 0. Then F2 = min[� , µ] < F1 = max[� , µ] <

0. A typical dispersion curve for this case is shown in Figure 6.6, where � =
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�0.01 , µ = �0.02 , � = �0.5 , � = 0.707, ↵ = �0.354, � = �0.5 when setting

h1 = h3 = 1000 m, h2 ⇡ 4.4 km , g1 = 0.0025 m s�2 , g3 = 0.005 m s�2 , U1 =

�1.4 m s�1 , U3 = �2.055 m s�1 , ⇢1 = 0.9998 ⇢2 and ⇢3 = 1.0005 ⇢2. Now both

modes have phase speeds with maxima c
s1 , c

s2 at k = k
s1 , k

s2, denoted by the

points A , B respectively. For both modes, the group velocity is positive as k ! 0,

but negative as k ! 1, and at the point of maximum phase speed, the phase and

group velocities for each mode are equal. Hence a steady wave packet can exist

for each mode, but will be radiating for mode 2.
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Figure 6.6: Typical dispersion curve for Case D with � = 0.707 ,↵ =
�0.354 ,� = �0.5 ,� = �0.5 ,� = �0.01 and µ = �0.02 .

Point Speed Wavenumber, k Ratio, u0/v0
A �0.197|

maxCp1=Cg1 0.322 10.973|
Cp1

B �0.747|
maxCp2=Cg2 0.395 �0.105|

Cp2

C 0.692|
Cg1 0.117 180.200|

Cp1

D �1.781|
Cg1 1.066 1.011|

Cp1

E1,2 0.033|
Cg1 0.231 25.339|

Cp1

�0.241|
Cg2 �0.028|

Cp2

F1,2 �0.931|
Cg1 0.664 2.117|

Cp1

�1.761|
Cg2 �0.334|

Cp2

G1,2 �2.894|
Cg1 1.438 0.794|

Cp1

�8.182|
Cg2 �0.892|

Cp2

Table 6.5: Values of the group speed, wavenumber and ratio, calculated using
the phase speed, at each point for Figure 6.6.
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6.3 Analysis of asymptotic expansion for turning

points

As indicated above, an asymptotic expansion is used with ✏ = ↵� ⌧ 1 to find all

turning points explicitly. From (6.35), since here � = ⌫ = 0:

(c
p

� C1(k))(c
p

� C2(k)) = ✏k4 , (6.43)

where C1(k) and C2(k) are given in (6.34) and ✏ = ↵� ⌧ 1. Note that the e↵ective

expansion parameter is ✏k4 and so this can only be valid when k is also su�ciently

small, say k < 1. Expanding in powers of ✏ then yields:

c
p̃i

= C1 +
✏k4

C1 � C2
� ✏2k8

(C1 � C2)3
+ · · · ,

c
pj̃

= C2 �
✏k4

C1 � C2
+

✏2k8

(C1 � C2)3
+ · · · .

The derivatives are given by:

c
p̃ik

= �2k � 2�

k3
+ ✏{ 4k3

C1 � C2
� k4(C1k � C2k)

(C1 � C2)2
} + · · · , (6.44)

c
pj̃k

= �2�k � 2µ

k3
� ✏{ 4k3

C1 � C2
� k4(C1k � C2k)

(C1 � C2)2
} + · · · . (6.45)

The corresponding group velocities are found from c
g

= c
p

+ kc
pk

:

c
gĩ

= �3k2 � �

k2
+ ✏{ 5k4

C1 � C2
� k5(C1k � C2k)

(C1 � C2)2
} + · · · , (6.46)

c
gj̃

= � � 3�k2 � µ

k2
� ✏{ 5k4

C1 � C2
� k5(C1k � C2k)

(C1 � C2)2
} + · · · , (6.47)

c
gĩk

= �6k +
2�

k3
+ ✏{ 20k3

C1 � C2
� 10k4(C1k � C2k)

(C1 � C2)2
� k5{(C1k � C2k)

(C1 � C2)2
}
k

}

+ · · · , (6.48)

c
gj̃k

= �6�k +
2µ

k3
� ✏{ 20k3

C1 � C2
� 10k4(C1k � C2k)

(C1 � C2)2
� k5{(C1k � C2k)

(C1 � C2)2
}
k

}

+ · · · . (6.49)
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The turning points for c
p

can now be found by equating (6.44, 6.45) to zero,

and those for c
g

found by equating (6.48, 6.49) to zero. Consistently with this

asymptotic expansion, the solutions for k are sought in the form k = k0 + ✏k1 +

✏2k2 + . . . by collecting the O(1) and O(✏) terms. Then, we obtain the following

formal asymptotic solutions:

c
p̃ik

= 0 : k = k0 + ✏
k9
0(k

4
0(�1 + �) � 2k2

0� + 3(� � µ))

(k4
0 � 3�)(� + k4

0(�1 + �) � k2
0� � µ)2

+ . . .

with k0 = 4
p

��;

c
pj̃k

= 0 : k = k0 � ✏
k9
0(k

4
0(�1 + �) � 2k2

0� + 3(� � µ))

(k4
0� � 3µ)(� + k4

0(�1 + �) � k2
0� � µ)2

+ . . .

with k0 = 4

r
�µ

�
;

c
gĩk

= 0 : k = k0 +

✏k9
0{

3k8
0(�1 + �)2 � 9k6

0(�1 + �)� + 21(� � µ)2 + 27k2
0�(�� + µ)

3(k4
0 + �)(� + k4

0(�1 + �) � k2
0� � µ)3

+
2k4

0(4�(�1 + �) + 5�2 + 4µ(1 � �)

3(k4
0 + �)(� + k4

0(�1 + �) � k2
0� � µ)3

} + . . .

with k0 =
4

r
�

3
;

c
gj̃k

= 0 : k = k0 �

✏k9
0{

3k8
0(�1 + �)2 � 9k6

0(�1 + �)� + 21(� � µ)2 + 27k2
0�(�� + µ)

3(k4
0� + µ)(� + k4

0(�1 + �) � k2
0� � µ)3

� 2k4
0(4�(�1 + �) + 5�2 + 4µ(1 � �)

3(k4
0� + µ)(� + k4

0(�1 + �) � k2
0� � µ)3

} + . . .

with k0 = 4

r
µ

3�
.

The outcomes for each case are described below:

Case A: (� > 0 , µ > 0)

Here put ĩ = 1 , j̃ = 2 and find that both c
p1k < 0 and c

p2k < 0. Thus there are

no turning points for c
p1 and c

p2 in this approximation. However, c
g1k = 0 yields
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just one turning point k = k0 + ✏k1 ⇡ 0.868 for the parameter values of Figure

6.2, compared to the exact value 0.895. Also c
g2k = 0 yields just one turning point

k = k0 + ✏k1 ⇡ 0.574, compared to the exact value 0.584.

Case B: (� > 0 , µ < 0)

Here, again, put ĩ = 1 , j̃ = 2 and find that c
p1k < 0 and so there is no turning

point for c
p1. However, there is a single turning point for c

p2, given by c
p2k = 0,

k = k0 + ✏k1 ⇡ 0.372, for the parameter values of Figure 6.3 compared to the

exact value 0.372. Next, there is a single turning point for c
g1 when c

g1k = 0 gives

k = k0 + ✏k1 ⇡ 0.345, compared to the exact value 0.345. Since c
g2k < 0, there are

no turning points for c
g2.

Case C: (� < 0 , µ > 0)

Example 1:

Here we put ĩ = 2 , j̃ = 1 and find that c
p1k < 0 and so there is no turning

point for c
p1. However, there is a single turning point for c

p2, given by c
p2k = 0,

k = k0 + ✏k1 ⇡ 0.308 for the parameter values of Figure 6.4, compared to the

exact value of 0.879. However, we note here that k0 = 1 and the correction term

✏k1 indicates that the asymptotic expansion is not very useful in this case. Next

there is a single turning point for c
g1 and c

g1k = 0 gives k = k0 + ✏k1 ⇡ 0.633,

compared to the exact value of 1.122 that is point A in Figure 6.4. However, it is

pertinent to note here that the ‘flat’ point C in Figure 6.4 is 0.665. Hence here

it seems that the asymptotic expansion selects the point C rather than the point

A for which the real expansion parameter of ✏k4 is too large. Since c
g2k < 0 there

are no stationary point in c
g2. Note that the detailed numerical simulations for

this example are not discussed.

Example 2:

Same as example 1 by putting ĩ = 2, j̃ = 1 and find that c
p1k < 0 and so there is

no turning point for c
p1. However, there is a single turning point for c

p2, given by

c
p2k = 0, k = k0 + ✏k1 ⇡ �0.408 for the parameter values of Figure 6.5, compared

to the exact value of 0.259. However, note here that k0 = 0.316 and the correction
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term |✏k1| is much too large, indicating that the asymptotic expansion is not at

all useful in this case. Next there is a single turning point for c
g1 and c

g1k = 0

which gives k = k0 + ✏k1 ⇡ 0.151, compared to the exact value of 0.152 that is

point B in Figure 6.5. However, note here that there also exists a minimum point

K in Figure 6.5 at k = 0.209, and a maximum point A at k = 0.306 which are not

found by this asymptotic analysis. Since c
g2k < 0 there are no stationary points

in c
g2.

Case D: (� < 0 , µ < 0)

Here put ĩ = 1 , j̃ = 2. There are turning points for both c
p1, cp2 and c

p1k =

0, c
p2k = 0 yielding k = k0 + ✏k1 ⇡ 0.322, 0.392, respectively, for the parameter

values of Figure 6.6, compared to the exact values of 0.322, 0.395. Here both

c
g1k < 0 and c

g2k < 0 and hence there are no turning points in both c
g1 and c

g2.

6.4 Numerical results

In this section we present some results from numerical simulations of the scaled

equations (3.30 , 3.31), using the pseudo-spectral method for the four di↵erent

cases, corresponding to the parameters of the linear dispersion curves described in

section 6.2.2. For all cases considered here we have n = m = p = q = � = ⌫ = 0.

For the initial conditions we use either an approximation to a solitary wave solution

of the corresponding coupled KdV system, which is mainly suitable for Case A,

or an approximation to a nonlinear wave packet, which is more suitable for Cases

B,C,D. The former initial condition is described by Alias et al. [49] (see also Section

4.3), is denoted as ‘weak coupling KdV solitary waves’, and given by,

u = a sech2(�1X) , a

3 = 4(1 + ↵)�2
1 , (6.50)

v = b sech2(�2X) , b

3 = 4(� + �)�2
2 . (6.51)
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Then, the nonlinear wave packet initial condition is based on either a maximum

point in the group velocity curve where @c
g

/@k = 0 and k = k
m

, or a maximum

point in the phase velocity curve where c
p

= c
g

and k = k
s

. The former corresponds

to the unsteady nonlinear wave packet travelling at a speed close to the maximum

group velocity, and is relevant for both modes in Case A, but only for mode 1 in

Cases B and C. The latter corresponds to a steady wave packet and is relevant for

mode 2 in Cases B and C, and both modes in Case D.

To obtain a suitable wave packet initial condition, the procedure is to choose k,

either k
m

or k
s

, and then find the ratio r = u0/v0 from (6.32) or (6.33) in the form

u0 = U0a0 , v0 = V0a0 where a0 is an arbitrary function of X, but U0 , V0 are known

functions of k. Based on the expected outcome that the nonlinear wave packet will

be governed by an evolution equation such as the nonlinear Schrödinger equation,

we choose a0(X) = A0 sech(K0X). Note that the underlying theory suggests

that the shape should be sech, and that K0 depends on the amplitude A0 (e.g.,

Grimshaw and Helfrich [1]). Here instead we choose a value of K0 << k. Then

the wave packet initial condition is

u(X, 0) = rV0A0 sech(K0X) cos(kX) , (6.52)

v(X, 0) = V0A0 sech(K0X) cos(kX) , (6.53)

where r = U0/V0 is a known function of k, and we can choose V0 arbitrarily.

Our main aim is to understand and interpret the observed dynamical behaviour

by relating it to the main features of the relevant dispersion curves, comparing

especially the theoretically predicted group speeds and r = u0/v0 amplitude ratios

with those found in the numerical simulations. For the latter, we adopt the follow-

ing methodology; the speed is measured at the maximum of the dominant wave

packet, and the numerical ratio is measured as R = max |u|/ max |v| in the interval

between the two nearest peaks, containing the maximum value of the dominant

wave packet. Note that R is necessarily positive, unlike r, since phase determi-

nation numerically is quite di�cult. In some cases wave packets generated in the

numerical simulations are either contaminated by radiation, or show signs of more
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than one carrier wavelength. In these cases the ratio is not so instructive, and

instead we choose the relevant points on the dispersion curves primarily by the

speed of the wave packet, ruling out some points if the corresponding wavelength

is too long or too short.

6.4.1 Case A: � > 0, µ > 0

A typical numerical result is shown in Figures 6.7 and 6.8 using the KdV solitary

wave initial condition (6.50). The generation of two wave packets can be seen in

the u-component, but one of them is too small to be seen in the v-component.

The comparison of the numerical modal ratio R, determined as described above,

shows very good agreement with the theoretical prediction from the dispersion

relation, see Table 6.1. The theoretical modal ratio is r = 3.692 for mode 1 and

r = �0.132 for mode 2, while the speeds are c
g1 = �2.912, c

g2 = �3.854 and

k
m1 = 0.895, k

m2 = 0.584. The ratios of the numerically found wave packets

obtained from the vertical blue dashed lines A and B in Figure 6.8 are given,

respectively by R = 3.433 for mode 1 and R = 0.176 for mode 2, which are

in agreement with the theoretical predictions, and the numerically found speeds

�2.960,�3.933 are also in good agreement. However, it can be seen that there is

also some significant radiation to the left of these wave packets, and in particular

some focussing possibly associated with the point G1 in Figure 6.2. This is a

resonance between the group velocity of mode 1 and the phase velocity of mode

2. The numerical speed and ratio at this point are given by, respectively, �4.937

and 0.639 in reasonable agreement with the theoretical prediction. However, this

resonance is perhaps contaminated here because the resonance points C, D, E, F

on the dispersion curves near G1,2 are quite close for a wide range of wavenumber

k.
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Figure 6.7: Numerical simulations for Case A using a KdV initial condition
of weak coupling with a = 1.4 and b = 4.38 in (6.50). The green, yellow and

blue lines in both plots refer to the points A, B and G1 in Figure 6.2.
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Figure 6.8: Same as Figure 6.7, but a cross-section at T = 200.
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Next Figure 6.9 shows the numerical results initiated using the wave packet initial

conditions (6.52) with k = k
m1 = 0.895 and ratio r = 3.692 for mode 1, while

setting A0 = 0.1. These parameters correspond to mode 1, see point A in Figure

6.2. In qualitative agreement with the analogous results for a single Ostrovsky

equation, we can see the emergence of a nonlinear wave packet propagating to the

left with speed �2.940 and ratio 3.685, which are both close to the theoretical

prediction for point A, see Table 6.1. Here we can also detect a mode 2 wave

packet, corresponding to point B in Figure 6.2, as well as some radiation due to

modal energy exchange associated with the resonance point G1. The numerically

found speeds are, respectively, �4.805 for point B and �5.996 for point G1, with

ratios R = 0.411 and R = 1.162. In this simulation, there is no evidence of waves

associated with the points C, D, E, F .
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Figure 6.9: Numerical simulations for Case A using the wave packet initial
condition (6.52) with k = k

m1 = 0.895 for mode 1, and A0 = 0.1,K0 = 0.1 k.
The yellow, green and blue lines refer to the points A, B and G1 in Figure 6.2.
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Figure 6.10: Same as Figure 6.9, but a cross-section at T = 100.

Figures 6.11, 6.12 and 6.13 show the numerical results which commenced with

wave packet initial conditions (6.52) with k = k
m2 = 0.584 and ratio r = �0.132

for mode 2. These parameters correspond to point B in Figure 6.2. Again, we can

clearly see one wave packet emerging and propagating with a speed �3.904 and

ratio 0.177, both close to the theoretical prediction for point B, see Table 6.1. But

here there is also a small unsteady wave packet, seen in the u-component, moving

with the speed �3.281 close to the theoretical prediction of c
g1 = �2.912 and ratio

R = 2.555 for a mode 1 wave packet, corresponding to point A in Figure 6.2 and

Table 6.1. Here we can also see the formation of wave packets to the left, corre-

sponding to points G1 and C, E with the numerically found speeds �6.050,�8.262

and ratios 1.436, 0.567 also in reasonable agreement with the theoretical prediction.
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Figure 6.11: Numerical simulations for Case A using the wave packet ini-
tial condition (6.52) with k = k

m2 = 0.584 for mode 2, and A0 = 0.5,K0 =
0.1 k, V0 = 1. The blue, yellow, green and magenta lines refer to the points A,
B, G1 and (C,E) in Figure 6.2. Note that the scales for the u and v components

are di↵erent.
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Figure 6.12: Same as Figure 6.11, but a cross-section at T = 200.
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Figure 6.13: Same as Figure 6.11, but a cross-section at T = 100 of the
domain �1200 < X < �400 and with rescaled u and v.

6.4.2 Case B: � > 0, µ < 0

A typical numerical result is shown in Figures 6.14, 6.15 using the KdV solitary

wave initial condition (6.50). We can clearly see a wave packet in the u-component

identified by the vertical blue dashed line A, with speed �0.710 and ratio 4.815.

The corresponding theoretical predictions are a speed c
g1 = �0.6834 and ratio

r = 33.696, corresponding to point A in Figure 6.3, see Table 6.2. However, here

the wave packet is strongly nonlinear, and it is noted that if v is measured at

the point where |u| is at maximum, then the numerical ratio is 25, closer to the

theoretical value. Another wave packet can be clearly seen in v-component with

speed �1.743 and ratio �0.221. Here the corresponding theoretical predictions

are a speed �1.785 and ratio r = �0.036, corresponding to point B in Figure 6.3,

see Table 6.2. Again, this wave packet is strongly nonlinear, and if u is measured

at the point where |v| is at maximum, then the numerical ratio is �0.023, closer

to the theoretical value. It is also noted that there is considerable radiation in the

plot, so that it is not possible to see the wave packet associated to point A in the

v-plot, and similarly for the point B in the u-plot.

In Figures 6.16 and 6.17 we use the wave packet initial condition (6.52), with

k = k
m1 = 0.345 and the ratio R = 33.696 corresponding to a maximum group

velocity c
g1 = �0.683 in mode 1 corresponding to point A in Figure 6.3, see Table

6.2. As expected, an unsteady wave packet emerges, clearly seen in both the

u and v plots in the first yellow line, propagating with speed �0.610 and ratio

21.261 in reasonable agreement with the theoretical predictions. The blue line
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Figure 6.14: Numerical simulations for Case B using a KdV initial condition
of weak coupling with the parameter a = b = 1.
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Figure 6.15: Same as Figure 6.14, but a cross-section at T = 200 for both
modes.
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in the v-plot shows a wave packet propagating with speed �1.343, but the ratio

cannot be measured here as in the u-plot, this location is the tail of the larger

wave packet associated with point A. Based on the speed and wavenumber, it is

suggested that this is associated with point B in Figure 6.3, see Table 6.2. A third

small wave packet can be observed in the v -mode represented by the green line

with speed �2.446 and ratio 3.160, which is associated with the resonance point

C for mode 1 in Figure 6.3, see Table 6.2, generated by a mode 1 unsteady wave

packet associated with the point A. Then, a fourth small wave packet can also be

observed in the v-mode represented by the magenta line with speed �3.057 and

ratio 0.148, which is associated with the point E, based on ratio and wavenumber

considerations. Both these third and fourth wave packets have speeds which might

be associated with the point D1, but this connection has been ruled out due to a

large disparity between the predicted and observed ratio and wavenumber.

Figures 6.18 and 6.19 show the case when the wave packet initial condition (6.52)

has k = k
s2 = 0.372 with ratio R = �0.036 corresponding to a maximum phase

speed in mode 2, represented by the point B in Figure 6.3, see Table 6.2. In both

modes, the main feature is a steady wave packet with speed �1.787 and ratio

0.042, see the yellow line, in good agreement with the predicted values from the

dispersion relation, see Table 6.2. There is a very small wave packet indicated by

the green line with a speed �0.461 which is associated with point A based on the

speed. Here the ratio cannot be measured as this location lies the tail of the larger

wave packet associated with point B. There is a third wave packet shown by the

blue line with speed �3.362 and ratio 0.144, which is associated with the point E,

based on the consideration of the speed and wavenumber, as the ratio cannot be

measured accurately since in the v-plot this location lies in the tail of the main

wave packet. Wave packets have speeds which might be associated with the point

D1, but this connection has been ruled out due to a large disparity between the

predicted and observed ratio and wavenumber.
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Figure 6.16: Numerical simulations for Case B using a nonlinear wave
packet initial condition corresponding to the value k = k

m1 = 0.345 with
A0 = 0.01 ,K0 = 0.05 k and V0 = 1. The yellow, blue, green and magenta
lines respectively refer to points A, (B,C), (C,D1) and (D1, E) in the disper-

sion relation.
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Figure 6.17: Same as Figure 6.16, but a cross-section at T = 300 for both
modes.
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Figure 6.18: Numerical simulations for Case B using a nonlinear wave
packet initial condition corresponding to the value k = k

s2 = 0.372 with
A0 = 0.05,K0 = 0.05 k, V0 = 1. The green, yellow and blue lines respectively

refer to points A, B and (D1, E) in the dispersion relation.
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Figure 6.19: Same as Figure 6.18, but a cross-section at T = 200 for both
modes.
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6.4.3 Case C: � < 0, µ > 0

Case C is analogous to the Case B. A typical numerical result is shown in Figures

6.20 and 6.21 using the KdV solitary wave initial condition (6.50). But here we

chose �1 6= �2 in order that the ratio a/b should coincide with the predicted ratio

1.3 corresponding to the point A in Figure 6.5. A strongly nonlinear unsteady

wave packet emerges, denoted by the vertical line A in Figure 6.21, with speed

�0.156 and ratio 0.5496, in agreement with the theoretical predictions from the

point A in the dispersion plots of Figure 6.5 and Table 6.4. This wave packet

has a phase speed which is very close to the group velocity over the range of wave

numbers from the point D to E, leading to strongly nonlinear e↵ects and di�culty

in numerically determining a ratio.

In Figures 6.20 and 6.21 there is also evidence of significant radiation both to the

right and to the left of the main wave packet. The waves to the right with positive

speed can be associated with the points F2 and/or N as these have a positive group

velocity for mode 2 and a ratio of nearly �10, which means that the amplitude in

the v-plot is too small to be seen. Although the points F and N are very close,

they have a di↵erent interpretation. The point F2 is a resonance between c
g1 and

c
p2, while the point N is a resonance between the speed at the minimum point

of c
g1 with c

p2. Moreover, this wave to the right has the appearance of a linear

dispersive wave, and hence there is no very clear identifiable speed or wavenumber.

The waves to the left show both small-scale and large scale features in both u and

v, with the small-scale features more prominent in u and the large-scale features

more prominent in v. The large-scale feature may be associated with either B or K

and the small-scale with either J or M . That is, these are mode 1 waves associated

with turning points in the group velocity, and a resonance with the phase velocity.

Also note that for both B and K, the ratio is such that v dominates, while for J

and M it is u that dominates, features consistent with the numerical simulation.

Thus, overall all the features in the numerical simulation can be associated with

the turning points in the group velocity curve c
g1 for mode 1.
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Figure 6.20: Numerical simulations for Case C using a KdV initial condition
of weak coupling (6.50) with a = 1.3 and b = 1.
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Figure 6.21: Same as Figure 6.20, but a cross-section at T = 400 for both
modes.
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As noted above, the group velocity curve c
g1 for mode 1 has three turning points,

while there are no such turning points for c
g2. To examine each of these, the turning

point A was examined in Figure 6.5 and Table 6.4, whilst using the wave packet

initial condition (6.52) with wavenumber k = k
m1 = 0.306 and ratio R = 1.309.

The numerical results are shown in Figures 6.22, 6.23 and the emergence of a

nonlinear wave packet is clearly seen. At the vertical line A, the speed is �0.146

with ratio 1.387, in agreement with the theoretical prediction. There is a secondary

wave packet now discernible on the vertical line I, moving with speed �0.625 and

ratio 1.910, which from the dispersion relation in Figure 6.5 is identified with the

point I, which is a resonance between the maximum value of the phase speed of

mode 2 (point C) with mode 1. However, it is noted that the resonance points

J, M are close by with similar values, and so may also be relevant.

Next was used the wave packet initial condition associated with the turning point

B in Figure 6.5, with k = 0.152 and A0 = 0.25, K0 = 0.2k, V0 = 1. The numerical

result is shown in Figures 6.24 and 6.25. A nonlinear wave packet emerges with

speed �0.156 and ratio 0.380. However, these values are not consistent with the

theoretical predictions for point B in Table 6.4. Instead the outcome for the speed

would seem to be more consistent with the points A or D2, but the ratios are not

in agreement. Examination of the v-plot suggests that possibly packets associated

with both these points are generated, and the consequent interaction between

them makes determination of a consistent ratio quite di�cult.

The corresponding numerical results for an initial condition associated with the

turning point K are shown in Figures 6.26 and 6.27. A strongly nonlinear wave

packet emerges, with speed �0.303 and ratio 0.492, as can be seen in both the u

and v plots, and is in reasonable agreement with the theoretical prediction. How-

ever, the resonance points D1, F1 have similar speeds and the strong nonlinearity

suggests there may be some interaction here, leading to di�culty in determining

a numeral ratio. There is also a small wave propagating to the right, seen in the

u-plot, with the speed 0.234 and the ratio 4.939, indicated by the vertical line

N , which can be associated with one or more of the resonance points N, F2, G in

Figure 6.5.
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Figure 6.22: Numerical simulations for Case C using the wave packet initial
condition (6.52) with k = k

m1 = 0.306 corresponding to point A with A0 =
0.1,K0 = 0.2 k, V0 = 1. The yellow and blue lines respectively refer to points A

and (I, J,M) indicated in Figure 6.23.
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Figure 6.23: Same as Figure 6.22, but a cross-section at T = 300 for both
modes.
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Figure 6.24: Numerical simulations for Case C using the wave packet initial
condition (6.52) with k = 0.152 corresponding to point B with A0 = 0.25,K0 =

0.2 k, V0 = 1.
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Figure 6.25: Same as Figure 6.24, but a cross-section at T = 300 for both
modes.
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Figure 6.26: Numerical simulations for Case C using the wave packet initial
condition (6.52) with k = 0.209 corresponding to point K with A0 = 0.1,K0 =

0.2 k, V0 = 1.
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Figure 6.27: Same as Figure 6.26, but a cross-section at T = 300 for both
modes.
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Finally, the simulation associated with the turning point C in Figure 6.5 is ex-

amined, using the wave packet initial condition (6.52) with A0 = 0.025, K0 =

0.05k, V0 = 1. The numerical result is shown in Figures 6.28 and 6.29. In this case

a steady wave packet clearly emerges, indicated by the green vertical line, with

speed �0.244 and ratio 1.874, in good agreement with the predicted theoretical

values. Note that the resonance point E has a similar speed, but quite di↵erent

wavenumber, and indeed the wave formation associated with this point is not seen.
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Figure 6.28: Numerical simulations for Case C using the wave packet initial
condition (6.52) with k = k

s2 = 0.259 corresponding to point C with A0 =
0.025,K0 = 0.05 k, V0 = 1.
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Figure 6.29: Same as Figure 6.28, but a cross-section at T = 300 for both
modes.

6.4.4 Case D: � < 0, µ < 0

A typical numerical result is shown in Figures 6.30 and 6.31 using the KdV solitary

wave initial condition (6.50). The numerical results show two steady wave packets

emerging, as expected, with speeds �0.146,�0.586 and ratios 10.136, 1.753 asso-

ciated with the vertical lines A and B respectively in Figure 6.31, in reasonable

agreement with the theoretical values. These wave packets are strongly nonlinear

and there is considerable evidence of resonances and radiation. In particular, the

vertical line F in Figure 6.31 is interpreted as an interaction between the points

B and F1, the latter being a resonance between the group velocity of mode 1 and

the phase speed of mode 2, see Figure 6.6 and Table 6.5. There is also a transient

wave propagating to the right, probably due to fact that the negative signs of both

� and µ allow both modes to have positive group velocities for low wavenumbers.

There are two di↵erent wavenumbers to consider when using the wave packet

initial condition (6.52) corresponding to the points A and B in Figure 6.6. First,

choose k = k
s1 = 0.3221 and R = 10.9729 corresponding to the point A in Figure

6.6, see Table 6.5. The numerical results are shown in Figures 6.32, 6.33 and we

see that the solution is dominated by a steady mode 1 wave packet, with speed

�0.189 and ratio 7.934 in good agreement with the theoretical values. Another

wave packet can be seen corresponding to the points B, F2 in Figure 6.6, with

speed �0.846 and ratio 3.056. Here there is some interaction between these two

points. Further, there is a very small wave packet associated with the point F2

in Figure 6.6, with speed �1.706 and ratio 0.368, in good agreement with the
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Figure 6.30: Numerical simulations for Case D using a KdV initial condition
of weak coupling (6.50) with a = 0.6 and b = 0.2. The yellow line in both plots

refers to point A.
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Figure 6.31: Same as Figure 6.30, but a cross-section at T = 300 for both
modes.
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theoretical values, although there may be some contamination here due to the

point D, which has a similar speed.
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Figure 6.32: Numerical simulations for Case D using the wave packet initial
condition (6.52) with k = k

m1 = 0.322 corresponding to the point A in Figure
6.6, with A0 = 0.05,K0 = 0.05 k, V0 = 0.25. The yellow, blue and green lines

respectively refer to points A, (B,F1) and (F2, D).

Secondly, use the wave packet initial condition (6.52) with k = k
s2 = 0.395 and

ratio, R = �0.105 corresponding to the point B in Figure 6.6, see Table 6.5.

The numerical results are shown in Figures 6.34, 6.35 and the solution is now

dominated by a steady mode 2 wave packet, as expected, with speed �0.820 and

ratio �0.229, in good agreement with the theoretical values. There is also some
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Figure 6.33: Same as Figure 6.32, but a cross-section at T = 300 for both
modes.

interaction with the point F1 here, seen in the u-plot where two wavenumbers

can be seen. However, the dispersion curves in Figure 6.6 show that here there

are potential resonances with mode 1 at k = 0.1168 and k = 1.0657, associated

with the points C and D, see Table 6.5. There is no discernible evidence here

of radiation into the wavenumber k = 0.1168 due to the large ratio of O(200)

needed, but a wave packet is seen with wavenumber k = 1.0657, indicated by

the blue vertical line D in Figure 6.35, with the speed �2.014 and ratio 0.814, in

reasonable agreement with the theoretical prediction, although there could also be

some interaction with the point F2 here, which has quite similar values. Another

small wave packet can be seen, possibly corresponding to point G1 in Figure 6.35

with the speed �2.578 and ratio 0.503.
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Figure 6.34: Numerical simulations for Case D using the wave packet initial
condition (6.52) with k = k

s2 = 0.395, corresponding to the point B in Figure
6.6 with A0 = 0.25,K0 = 0.05 k, V0 = 1. The yellow, blue and green lines

respectively refer to points (B,F1), (F2, D) and G1.
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Figure 6.35: Same as Figure 6.34, but a cross-section at T = 200 for both
modes.
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6.5 Conclusion

In an extension of Chapter 5, here the focus is on the e↵ect of a background

shear flow, using a three-layer model as a guide to the possible values that the

normalised coe�cients may take. The significant di↵erence that emerges is that

the coe�cients �, µ of the rotation terms in the coupled Ostrovsky equations (3.30,

3.31), are not necessarily equal, or indeed positive, as is the case in the absence

of a background shear flow. Instead, there are four essentially di↵erent cases

corresponding to di↵erent sign combinations of � and µ.

Then, the system was examined numerically, using two di↵erent initial conditions.

Firstly, the initial condition was a solitary wave type, based on an approximation

to the coupled KdV systems obtained when the rotation terms are removed, and for

which there is no a priori wavenumber selection, see subsection (6.50). Second,

the initial condition was a wave packet, see subsection (6.52) based on certain

predicted wavenumbers, obtained from the linear dispersion relation where either

the phase velocity, or the group velocity, has a turning point. The former can be

associated with the possible emergence of a nonlinear steady wave packet, and the

latter with the possible emergence of an unsteady nonlinear wave packet.

These two contrasting scenarios were examined numerically for each of the four

cases. In each case, these predicted wave packets are identified as the dominant

feature of the numerical solution. However, in many cases there was also evidence

of nonlinear interactions generating other wave packets associated with some of

the possible resonant points identified on each linear dispersion curve. Thus, in

comparison with the simulations of the single Ostrovsky equation reported by

Grimshaw and Helfrich [1] where only a single unsteady nonlinear wave packet

typically emerges, the coupled Ostrovsky system can support a wide variety of

nonlinear wave packets. Importantly, it has been shown that the dominant features

of the observed dynamical behaviours can be classified and interpreted in terms

of the main features of the relevant dispersion curves. This is a first step towards

predicting the long-time asymptotic behaviour of the solutions of the initial-value

problems for this coupled system of equations.



Chapter 7

Conclusions

7.1 Summary of Research

Our main theme in this thesis has been the development of the coupled Ostrovsky

equations, as an appropriate model for the description of resonantly interacting

internal waves in a rotating fluid. The introduction of the Earth’s background

rotation causes significant changes in the wave characteristics. In particular, we

have focussed on the emergence of a coherent steadily propagating nonlinear wave

packets due to this e↵ect. Helfrich [33] and Grimshaw and Helfrich [1, 34] showed

that the long time e↵ect of rotation in the absence of a shear flow is the destruction

of the initial internal solitary wave solution by the radiation of small amplitude

inertia gravity wave, and the emergence of an unsteady nonlinear wave packet.

The coupled Ostrovsky equations were derived to describe the evolution of the

amplitudes of two weakly-nonlinear wave modes whose phase speeds are close,

c1 ⇡ c2 with c1 = c and c2 = c + ✏2� where ✏ << 1 and � is the detuning

parameter. They are derived from the full set of Euler equations for an inviscid,

incompressible fluid with the free surface and rigid bottom boundary conditions,

appropriate for the oceanic applications. The PS method has been used in order

to develop a numerical solution of the coupled Ostrovsky equations, as explained

in Chapter 4. This method is an e�cient approach because it can be employed in

105



Chapter 7. Conclusions 106

simulating both single and coupled system, also can reduce the necessary computer

memory and computation time. The scheme is complemented with the sponge

layer at the ends of the domain and with the de-aliasing to treat nonlinear terms

in the systems.

Chapter 5 is devoted to the case when the shear flow is not present. The coef-

ficients in coupled Ostrovsky equations for the case of a three-layer stratification

have been evaluated. Within the scope of this model, both branches of the disper-

sion relation of the linearised equations resemble the dispersion curve of a typical

single Ostrovsky equation, with no spectral gaps, and with an extremum in both

group velocity curves. Importantly, in all the cases shown here these extrema are

distinct. Hence, based on the results for the single Ostrovsky equation obtained

by Grimshaw and Helfrich [1], it is expected that we will observe the emergence of

two unsteady nonlinear wave packets associated with the extrema in these group

velocity curves. We have discussed two main cases; symmetric case (N1 = N3)

and non-symmetric case (N1 6= N3).

The e↵ect of the background shear flow was studied in Chapter 6 and a three-

layer model was considered in details. According to the analysis of the dispersion

relation, four essentially di↵erent cases have been found corresponding to di↵erent

sign combinations of � and �, as Case A: � > 0, µ > 0, Case B: � > 0, µ < 0,

Case C: � < 0, µ > 0 and Case D: � < 0, µ < 0. The complicated dynamics

observed in numerical simulations was interpreted in terms of the main features of

the linear dispersion curves. Overall, from the dispersion relations and numerical

simulations, we emphasise the emergence of steady and unsteady nonlinear wave

packets associated with the turning points for either group or phase velocity curve.

The formation of a leading nonlinear wave packet with carrier wavenumber, carrier

phase speed, and packet group speed is in good agreement with the theoretical

predictions from the linear dispersion relation.

An important results has been also obtained for a single Ostrovsky equation, where

we showed that a background shear flow can result in a combination of signs of
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coe�cients in the equation which leads to the emergence of a steady wave packet

(see Appendix A).

7.2 Future research

Several extensions to the work in this thesis are possible. Firstly, one could develop

a nonlinear Schrödinger (NLS) type model similar to the paper by Grimshaw and

Helfrich [1]. In our case with the coupled system, we would construct a weakly

nonlinear theory leading to a single higher-order NLS equation for each turning

point in order to describe the numerically found wave packets. Secondly, we have

derived the coupled Ostrovsky equations to model the strong interaction between

the small amplitude internal waves with the consideration of the Earth’s rotation.

It would be interesting to consider the interaction between the waves of moderate

amplitude, extending the recent work by Obregon and Stepanyants [63] for a single

Gardner-Ostrovsky equation.

Thirdly, the rotation-modified Kadomtsev-Petviashvili (KP) equation has been

studied in Chen et al. [69] to describe small-amplitude, long internal waves in a

rotating fluid in two-dimensions. It would be useful to extend the derivation of

single rotation-modified KP equation to coupled rotation-modified KP equations.

In addition, it would be interesting to investigate the existence of near-resonances

for the realistic ocean density and current profiles. This can be done by solving

the modal equations numerically.



Appendix A

Single Ostrovsky equation with

shear flow

It should be pointed out that the type of the current model considered in Chapter

6 can also lead to the anomalous version of the single Ostrovsky equation when

�� < 0. In particular, it can be shown that the two-layer reduction of this three-

layer model obtained by taking the h2 � h1,3, that is a single shallow layer with

the density ⇢1 and current U1 overlying a deep layer with the density ⇢2 and zero

current can lead to this anomalous situation. Indeed, for this special case, the

dispersion relation determining the speed c is again given by (6.8), now letting

h2 � h1,3, so that D2 = 0, and then, for a single mode, either D1 = 0 or D3 = 0.

Here, choose D1 = 0 and with now D3 6= 0, it follows from (6.4) that A3 = 0, A1

is arbitrary and set A1 = 1. Then the modal function � obtained from (6.1) is

given by:

� = 0 , �
z

= 0 , �h < z < �h2 � h1 , (A.1)

� =
h1 + h2 + z

h2
, �

z

=
1

h2
, �h2 � h1 < z < �h1 , (A.2)

� = � z

h1
, �

z

= � 1

h1
, �h1 < z < 0 . (A.3)
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Without loss of generality, we put U2 = 0 henceforth. Then the speed c is given

by:

c1,2 =
⇢1U1h2 ±

p
(⇢1U1h2)2 � (⇢1h2 + ⇢2h1)[g(⇢1 � ⇢2)h1h2 + ⇢1U2

1h2]

⇢1h2 + ⇢2h1
. (A.4)

In the limit h2 � h1, we obtain

c1,2 = U1 ± (g0h1)
1/2 where g0 =

g(⇢2 � ⇢1)

⇢1
. (A.5)

Note that the third layer is not involved at all. To avoid an implicit critical layer,

we choose c > max[U1, 0], or c < min[U1, 0]. The first case, denoted as the positive

mode propagating to the right, holds provided that U1 + (g0h1)1/2 > 0 , and the

latter, denoted as the negative mode propagating to the left, holds provided that

U1 � (g0h1)1/2 < 0.

Now all coe�cients in the Ostrovsky equation (2.46) can be calculated, taking into

account that h2 � h1 where appropriate:

I⌫ =
3 c2⇢2

h2
2

� 3⇢1g0

h1
! �3⇢1g0

h1
, (A.6)

I� =
c2⇢2h2

3
+

⇢1h2
1 g0

3
! c2⇢2h2

3
, (A.7)

I� =
⇢1f̃ 2

h1
[1 +

1

2
log

|W2|
|W1|

� U1

2W1
log

⇢2

⇢1
+

⇢2h1

⇢1h2
(1 � 1

2
log

|W2|
|W1|

+
U2

2W2
log

⇢2

⇢1
)]

! ⇢1f̃ 2

h1
(1 +

1

2
log

|W2|
|W1|

� U1

2W1
log

⇢2

⇢1
) , (A.8)

I =
2⇢1W1

h1
� 2⇢2W2

h2
! 2⇢1W1

h1
. (A.9)

Note that I > 0, so that ⌫ < 0, � > 0, for the mode to the right, and I < 0, so that

⌫ > 0, � < 0, for the mode to the left. As expected ⌫� < 0 for both modes, which

describes waves of depression. In the Boussinesq approximation when ⇢1 ⇡ ⇢2, the

following is obtained:

I� =
⇢1f̃ 2

h1
{ h

h2
+

h2 � h1

2h2
log [

|c|
|c � U1|

]} . (A.10)
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Thus, I� > 0 unless U1 is such that:

|c|p
g0h1

= |1 ± U1p
g0h1

| < e�2↵ , (A.11)

where ↵ = h/(h2 � h1). Since h2 is large, ↵ ! 1 and in this limit (A.11) becomes

�1 < U1p
g

0
h1

< e�2 � 1 = �0.865 ,

or , 1 > U1p
g

0
h1

> 1 � e�2 = 0.865 , (A.12)

for the mode to the right and left respectively. Here we also used the exclusion

of an implicit critical layer condition. Note that the two modes are essentially

the same, so it is enough to consider the mode to the right. Then unless (A.12)

holds, �� > 0 and we have the typical Ostrovsky equation with only unsteady

wave packet solutions. But if instead (A.12) holds then �� < 0 and this leads

to the anomalous Ostrovsky equation for which there is a steady envelope wave

packet solution, discussed by Obregon and Stepanyants [28] in a di↵erent setting.

A typical dispersion curve is shown in Figure A.1, where ⌫ = �4.7 x 10�3 , � =

41.64 and � = �1.9 x 10�5 , when setting h1 = 0.1 km, h2 ⇡ 3.0 km, U1 = �0.3 m s�1,

⇢1 = 1 kg m�3 and ⇢2 = 1.0001 kg m�3 . Here, ↵ ⇡ 1.069 and U1/
p

g0h1 ⇡ �0.958,

while e�2↵ � 1 ⇡ �0.822. There exists a spectral gap for the phase speed, which

has a maximum value c = �0.057 at k = 0.026. The group velocity is positive as

k ! 0, but negative as k ! 1, and at the point of maximum phase speed, the

phase and group velocities are equal. Hence a steady wave packet can exist.

A typical numerical result is shown in Figures (A.2) and (A.3) using the wave

packet initial condition given as:

A(s, 0) = V0A0 sech(K0X) cos(kX) , (A.13)

where V0 = 1 , A0 = 8 , K0 = 0.25 k and k = 0.026. The solution is dominated

by a steady wave packet, as expected, with the speed �0.069, which is in good

agreement with the theoretical value.
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Figure A.1: Dispersion relation for the single Ostrovsky equation when
�� < 0.
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Figure A.2: Numerical simulation for the single Ostrovsky equation when
�� < 0 using the wave packet initial condition (A.13) with k = 0.026 , A0 =

8,K0 = 0.25 k and V0 = 1.
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