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Abstract

This thesis analyses the effects caused by the introduction of convolutional coding schemes over
the power spectral density (PSD) of impulse radio (IR) based ultra wideband (UWB)
communication systems. This is an important topic since UWB emissions are expected to comply
with spectral masks imposed by various regulatory bodies.

The spectral analysis of convolutionally coded/Markov-driven IR-based UWB signals is carried
out by assuming that the data stream at the encoder input is generated by a binary Markov source
(BMS). The signal model covers a wide variety of IR-based modulation schemes such as pulse
position modulation (PPM), binary phase shift keying (BPSK), pulse amplitude modulation (PAM),
biorthogonal PPM (BOPPM), PAM/PPM and pulse shape modulation (PSM), combined with
periodic or random time hopping (TH) and/or direct sequence (DS) multiplication. In addition the
inclusion of attenuation and random jitter has been accounted for in the signal model. Novel closed
form PSD expressions for convolutionally coded/Markov-driven IR-based UWB signals are
obtained by performing the spectral analysis of the signal model. The formulas provided clearly
identify. the relative contributions of different parameters allowing enhanced design of UWB
systems.

It is shown that convolutional encoders can be used to generate IR-based UWB signals with
advantageous PSD characteristics. The analysis presented in this dissertation focuses on spectral
line suppression/elimination. Novel maximum free distance (MFD) binary to M-ary convolutional
encoders with spectral line suppression capabilities for M-ary PPM based UWB systems are
presented. Moreover, novel MFD binary convolutional encoders which generate BPSK/Q-BOPPM
IR-based UWB signals whose PSD is spectral line-free are introduced. Results show that for IR-
based UWB systems these convolutional encoders offer improved PSD characteristics when
compared to the standard non-coded case and the best convolutional encoders known. As well, it is
demonstrated that by using these convolutional encoders improved PSD characteristics and

improved bit error rates (BER) can be achieved simultaneously.
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system The signal parameters are T, = 10 ns, 7, = 10 ns, T, = 2 ns, Tz =1 ns and no jitter.
The 4™ derivative Gaussian pulse is used with duration T,, ~ 0.4 ns. The sequences {-1, 1, -
1,1,-1,-1,1,1,-1,1} and {0, 2,4, 1, 3} were used for DS and TH respectively.

Figure 3-7. Analytical and simulated PSDs obtained when using the recursive systematic binary
convolutional encoder defined in Equations (3.6) and (3.16) with a Q-BOPPM IR-based
UWRB system. The BMS has one step transition probabilities p,o; = 1/5 and py,10 = 3/5. The
signal parameters are 7, = 10 ns, 7, = 10 ns, 7, = 2 ns, Tz = 1 ns and jitter uniform
distributed in the interval (0, T,). The 4th derivative Gaussian pulse is used with duration 7,
~ 0.4 ns. The sequences {-1, 1,-1,1,-1,-1,1,1,-1, 1 } and {0, 2, 4, 1, 3} were used for DS
and TH respectively.

Figure 3-8. Analytical and simulated PSDs obtained when using the recursive systematic binary
convolutional encoder defined by Equations (3.6) and (3.16) in a quaternary PPM IR-based
UWRB system. The signal parameters are 7, = 10 ns, 7,=10ns, T, = 2 ns, Tg= 0.5 ns, ¢yt
uniform distributed over the set {0, 1, 2, 3, 4} and no jitter. The 4™ derivative Gaussian
pulse is used with duration T,, = 0.4 ns,

Figure 3-9. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB
system with pulse repetition and no convolutional coding. The signal parameters are 7, = 20
ns, T,= 10 ns, 7. = 2 ns, Tg= 1 ns and no jitter. The 4™ derivative Gaussian pulse is used
with duration T, ~ 0.4 ns. The sequences {-1, 1,-1,1,-1,-1, 1, 1,-1, 1} and {02 4 1 3}
were used for DS and TH respectively.

Figure 3-10. Analytical and simulated PSDs obtained when using the maximum free distance
feedforward binary convolutional encoder (5, 5, 7, 7)s in a Q-BOPPM IR-based UWB
system. The signal parameters are 7; = 20 ns, 7, = 10 ns T.=2ns, Tg= 1 ns and ¢+
uniform distributed over the set {0, 1, 2, 3, 4}. The 4" derivative Gaussian pulse is used
with duration T, = 0.4 ns.
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Figure 3-11. Analytical and simulated PSDs obtained when using the maximum free distance
feedforward binary convolutional encoder (5, 7, 7, 5); in a Q-BOPPM IR-based UWB
system. The signal parameters are 7, = 20 ns, 7, = 10 ns, T. = 2 ns, Tg= 1 ns and ¢
uniform distributed over the set {0, 1, 2, 3, 4}. The 4™ derivative Gaussian pulse is used
with duration 7, = 0.4 ns.

Figure 4-1. Binary to M-ary convolutionally coded M-ary PPM TH-IR-based UWB system.
Figure 4-2. Basic diagrams of the PCTH encoder and Viterbi’s orthogonal convolutional encoder.

Figure 4-3. State transition diagrams equivalent to the Bernoulli shift and tent map encoders for
8-ary PCTH. Both encoders have different binary free distance, d.., but the same M-ary
free distance, dype. = 3.

Figure 4-4. Generic diagram of a rate 1/x feedforward binary to M-ary convolutional encoder.

Figure 4-5. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM
with pseudo-random and perfectly random 4-ary TH. The signal parameters are N,, = 1,
T, =125 ns, T, = 125 ns, T, = T,/4 and Tg= T,/8. The 3™ derivative Gaussian pulse was
used with duration T, ~ 0.35 ns.

Figure 4-6. Analytical and simulated PSDs for a TH-IR-based UWB system using the 8-ary
Bernoulli shift map PCTH scheme. The signal parameters are N, =1, T, =12.5ns, 7, = 12.5
ns and Tz = T,/8. The 3 derivative Gaussian pulse was used with duration T,, ~ 0.35 ns.

Figure 4-7. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1/3
MFD feedforward binary convolutional code (5, 7, 7)s coupled to 8-ary PPM. The signal
parameters are N, = 1, T, = 12.5 ns, T, = 12.5 ns and Tz = T,/8. The 3™ derivative Gaussian
pulse was used with 7,, ~ 0.35 ns.

Figure 4-8. Flowchart diagram of the code search procedure for feedforward SLS
binary to M-ary convolutional encoders.

Figure 4-9. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM
with pseudo-random and perfectly random 16-ary TH. The signal parameters are N, = 1,
T,=125ns, T,=12.5 ns, T, = T,/16 and Tp = T,/32. The 3 derivative Gaussian pulse was
used with duration 7, »~ 0.35 ns.

Figure 4-10. Analytical and simulated PSDs of a periodic pulse train. The signal pulse repetition
period is Tp,, = 12.5 ns. The 3™ derivative Gaussian pulse was used with duration T,, ~ 0.35
ns.

Figure 4-11. Analytical and simulated PSDs for a TH-IR-based UWB system using the 32-ary
Bemoulli shift map PCTH scheme. The signal parameters are N, =1, T, = 12.5ns, T, = 12.5
ns and Tp= T,/32. The 3 derivative Gaussian pulse was used with duration T, = 0.35 ns.

Figure 4-12. Analytical and simulated PSDs for a TH-IR-based UWB system using several of the
FSLS binary to 32-ary convolutional encoders from Table 4-1. The signal parameters are
N,=1,T,=125ns,7T,=12.5ns and Tp= T,/32. The 3" derivative Gaussian pulse was used
with duration T,, = 0.35 ns.

Figure 4-13. Block diagram of a binary to M-ary convolutionally coded TH-IR-based UWB
system,

Figure 4-14. Bit error rate versus bit energy to noise ratio for hard Viterbi decoding (HVD) in
PPM TH-IR-based UWB systems using the rate 1 FSLS binary to 32-ary convolutional
encoders from Table 4-1, 32-ary PCTH, and binary orthogonal PPM. All the plots were
obtained by simulation for AWGN channel. The total encoder memory, v, of each code is
indicated in the legend. The branch and path metrics used with FSLS encoders were based
on the M-ary Hamming distances. For the PCTH scheme HVD was performed by using
branch and path metrics based on binary Hamming distances.

Figure 4-15. Upper bounds on the bit error probability for a PPM TH-IR-based UWB system
using the rate 1, v = 6, FSLS binary to 32-ary convolutional encoder from Table 4-1 with
HVD. The upper bound A was calculated using Equations (4.64) and (4.65) whereas for
upper bound B Equations (4.66) and (4.67) were used. The first 20 elements of the IWS
were used to calculate both bounds.
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Figure 4-16. Bit error rate versus bit energy to noise ratio for soft Viterbi decoding (SVD) in PPM
TH-IR-based UWB systems using the rate 1 FSLS binary to 32-ary convolutional encoders
presented in Table 4-1 and 32-ary PCTH. The BER plots for rate 1, v = 6, FSLS binary to
32-ary convolutional encoders with HVD and binary orthogonal PPM are provided as a
reference. All the plots were obtained by simulation for the AWGN channel. The total
encoder memory, v, of each code is indicated in the legend.

Figure 4-17. Upper and lower bounds on the bit error probability for SVD in a PPM TH-IR-based
UWB system employing the rate 1, v = 6, FSLS binary to 32-ary convolutional encoders
presented in Table 4-1. For the upper bound the first 20 elements of the IWS were used in
Equation (4.78) whereas for the lower bound only the first element of the IWS was
considered.

Figure 4-18. Side by side BER performance and PSD shape (analytical) comparisons between
PPM TH-IR-based UWB systems employing: the rate 1, v = 7, binary to 32-ary FSLS
convolutional encoder from Table 4-1, the 32-ary Bernoulli shift map PCTH scheme and
non-coded orthogonal binary PPM with pseudo-random 16-ary TH. The input data stream is
assumed to consist on i.i.d. binary symbols with uniform distribution. The periodic sequence
{0, 14, 1,5, 13,6,3,15,7, 11, 8, 12, 9, 2, 10, 4} was used for TH in the system employing
non-coded orthogonal binary PPM. The BER performance plots were obtained by
simulation for soft Viterbi decoding (SVD) and hard Viterbi decoding (HVD) in the AWGN
channel. For the PCTH scheme HVD was performed by using branch and path metrics
based on binary Hamming distances. The signal parameters are ¥, = 1, T, = 12.5 ns,
T, = 12.5 ns and Tp = T/32 (T, = T,/16 for the system employing pseudo-random 16-ary
TH). The 3™ derivative Gaussian pulse was used with duration T,, ~ 0.35 ns.

Figure 5-1. Block diagram of the binary to M-ary convolutionally coded M-ary PPM TH-IR-based
UWB system with first order binary Markov source (BMS).

Figure 5-2. Generic diagram of a rate 1/x feedforward binary to M-ary convolutional encoder.
Figure 5-3. Generic diagram of a rate 1/x recursive binary to M-ary convolutional encoder.

Figure 5-4. Flowchart diagram of the code search procedure for RSLS binary to M-ary
convolutional encoders.

Figure 5-5. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM
with ideal perfectly random 16-ary TH. The signal parameters are N, = 1, T, = 12.5 ns,
T,=12.5ns, T, = T;/16, Tg= T,/32 and cyy,+; uniform distributed over the set {0, 1,..., 15}.
The 3" derivative Gaussian pulse was used with duration T, = 0.35 ns.

Figure 5-6. Analytical and simulated PSDs for a TH-IR-based UWB system using the 32-ary
Bernoulli shift map PCTH scheme. The signal parameters are N, = 1, T, = 12.5 ns,
T, = 12.5 ns and Tz = T,/32. The 3" derivative Gaussian pulse was used with duration
T, ~0.35ns.

Figure 5-7. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1,
v = 6, FSLS binary to 32-ary convolutional encoder from Table 4-1 (Section 4.4.4). The
signal parameters are N, = 1, T, = 12.5 ns, T, = 12.5 ns and Tz = T,/32. The 3" derivative
Gaussian pulse was used with duration 7, ~ 0.35 ns.

Figure 5-8. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1,
v = 6, RSLS binary to 32-ary convolutional encoder from Table 5-1 with feedback
polynomial b(D) = 1 + D® = 1015 The signal parameters are N, = 1, T, = 12.5 ns,
T, = 12.5 ns and Tp = T/32. The 3 derivative Gaussian pulse was used with duration
T, = 0.35 ns.

Figure 5-9. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1,
v = 6, RSLS binary to 32-ary convolutional encoder from Table 5-2 with primitive feedback
polynomial (D) =1 + D + D®= 141,. The signal parameters are N, = 1, T; = 12.5 ns,
T, = 12.5 ns and Ty = T/32. The 3" derivative Gaussian pulse was used with duration
T, =~ 0.35 ns.
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Figure 5-10. Bit error rate versus bit energy to noise ratio for hard Viterbi decoding (HVD) in
PPM TH-IR-based UWB systems using 32-ary PCTH, the rate 1 RSLS binary to 32-ary
convolutional encoders presented in Tables 5-1 (Fdbk Poly = 101 and 201) and 5-2 (Fdbk
Poly = 141 and 203 — primitive polynomials), and the rate 1 FSLS binary to 32-ary
convolutional encoders introduced in Table 4-1 (Section 4.4.4). The BER plot for binary
orthogonal PPM is provided as a reference. All the plots were obtained by simulation for the
AWGN channel. The total encoder memory, v, of each code is indicated in the legend.

Figure 5-11. Bit error rate versus bit energy to noise ratio for soft Viterbi decoding (SVD) in PPM
TH-IR-based UWB systems using 32-ary PCTH, the rate 1 RSLS binary to 32-ary
convolutional encoders presented in Tables 5-1 (Fdbk Poly = 101 and 201) and 5-2 (Fdbk
Poly = 141 and 203 — primitive polynomials), and the rate 1 FSLS binary to 32-ary
convolutional encoders presented in Table 4-1 (Section 4.4.4). The BER plot for binary
orthogonal PPM is provided as a reference. All the plots were obtained by simulation for the
AWGN channel. The total encoder memory, v, of each code is indicated in the legend.

Figure 5-12. Side by side BER performance and PSD shape (analytical) comparisons between
PPM TH-IR-based UWB systems employing: the rate 1, v = 6, binary to 32-ary FSLS
convolutional encoder from Table 5-2 (primitive feedback polynomial:
(D) =1+ D + D%.= 141,), the 32-ary Bernoulli shift map PCTH scheme and non-coded
orthogonal binary PPM with pseudo-random 16-ary TH. The input binary data stream is
assumed to be generated by an unbalanced BMS with p, = 2/5 and p,o = 3/5. The
periodic sequence {0, 14, 1, 5, 13,6, 3,15, 7, 11, 8, 12, 9, 2, 10, 4} was used for TH in the
system employing non-coded orthogonal binary PPM. The BER performance plots were
obtained by simulation for soft Viterbi decoding (SVD) and hard Viterbi decoding (HVD)
in the AWGN channel. For the PCTH scheme HVD was performed by using branch and
path metrics based on binary Hamming distances. The signal parameters are N, = 1, T, =
12.5 ns, T, = 12.5 ns and Tz = T,/32 (T, = T/16 for the system employing pseudo-random
16-ary TH) . The 3™ derivative Gaussian pulse was used with duration T,, =~ 0.35 ns.

Figure 6-1. Block diagram of the binary convolutionally coded BPSK/Q-BOPPM IR-based UWB
system with first order binary Markov Source (BMS).

Figure 6-2. Generic diagram of a rate 1/« feedforward binary convolutional encoder.
Figure 6-3. Generic diagram of a rate 1/x recursive binary convolutional encoder.

Figure 6-4. Flowchart diagram of the code search procedure for RSLF binary convolutional
encoders.

Figure 6-5. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB

system with four pulses repetition and no convolutional coding. The signal parameters are

s =40 ns, T, = 10 ns and Tz = 0.5 ns. The 4% derivative Gaussian pulse is used with
duration 7, ~ 0.4 ns. No TH or DS is considered.

Figure 6-6. Analytical and simulated PSDs obtained when using the optimum distance spectrum
feedforward (25, 27, 33, 37); binary convolutional encoder in a Q-BOPPM IR-based UWB
system. The signal parameters are T; = 20 ns, T, = 10 ns and Tz = 0.5 ns. The 4™ derivative
Gaussian pulse is used with duration 7, ~ 0.4 ns. No TH or DS is considered.

Figure 6-7. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the
MFD rate 1/4, v = 4, RSLF binary convolutional encoder from Table 6-3 with feedback
polynomial (D) = 1 + D* = 21,. The signal parameters are T, = 20 ns, 7, = 10 ns and
Tp= 0.5 ns. The 4" derivative Gaussian pulse is used with duration T;, = 0.4 ns. No TH or
DS is considered. :

Figure 6-8. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the
MFD rate 1/4, v = 4, RSLF binary convolutional encoder from Table 6-4 with feedback
polynomial 5(D) = 1 + D* + D* = 23,. The signal parameters are T, = 20 ns, 7, = 10 ns and

Tg= 0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7, ~ 0.4 ns. No TH or

DS is considered.
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Figure 6-9. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB
system with four pulses repetition and no convolutional coding. The BMS probabilities are
pym 1/5 and py,01 = 3/5 = m,0 = 3/4 and 7, = 1/4. The signal parameters are T = 40 ns,

=10 ns and 7= 0.5 ns. The 4" derivative Gaussian pulse is used with duration 7, =~ 0.4
ns The periodic Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is used for DS
pulse polarity randomisation purposes. No TH is considered.

Figure 6-10. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the
MFD rate 1/4, v = 4, RSLF binary convolutional encoder from Table 6-4 with feedback
polynomial 5(D) = 1 + D’ + D* = 235. The BMS probabilities are p,,o, = 1/5 and p,,o; = 3/5
=> 7,0 = 3/4 and 7,; = 1/4. The signal parameters are 7, =20 ns, 7, = 10 ns and 7= 0.5 ns.
The 4™ derivative Gaussian pulse is used with duration T, ~ 0.4 ns. The periodic Barker
sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is used for DS pulse polarity
randomisation purposes. No TH is considered.

Figure 6-11. Block diagram of a binary convolutionally coded Q-BOPPM (Gray) IR-based UWB
system

Figure 6-12. BER performance in AWGN channel for SVD of Q-BOPPM DS-IR-based UWB
systems using the rate 1/4, v = 4, RSLF convolutional encoder with primitive feedback
polynomial (RSLF PP) and the best rate 1/4, v = 4, convolutional encoder known with
optimum IWS (Ffwd OIWS). The theoretical BER plot for non-coded Q-BOPPM DS-IR-
based UWB systems is provided as a reference. All the plots were obtained assuming
coherent reception and perfect DS synchronisation.

Figure 6-13. BER performance in IEEE 802.15.3a UWB channel model 1 (CM1) for SVD of
Q-BOPPM DS-IR-based UWB systems using the rate 1/4, v = 4, RSLF convolutional
encoder with primitive feedback polynomial (RSLF PP), the best rate 1/4, v = 4,
convolutional encoder known with optimum IWS (Ffwd OIWS) and a rate equivalent non-
coded Q-BOPPM DS-IR-based UWB system. Results are presented for several SRAKE
receivers with different numbers of fingers (Nsy.y). Perfect channel side information and DS
synchronisation was assumed.

Figure 6-14. Side by side BER performance and PSD shape (analytical) comparisons between Q-
BOPPM IR-based UWB systems employing: the rate 1/4, v = 4, RSLF convolutional
encoder with primitive feedback polynomial (RSLF PP), the best rate 1/4, v = 4,
convolutional encoder known with optimum IWS (Ffwd OIWS) and a rate equivalent non-
coded Q-BOPPM IR-based UWB system. The input binary data stream is assumed to be
generated by an unbalanced BMS with p,, o, = 4/5 and p,,o; = 3/5. The signal parameters are

=20 ns, T, = 10 ns and T = 0.5 ns. The 4™ derivative Gaussian pulse is used with
duration T, = 0.4 ns. No TH or DS is considered.

Figure A-1. Analytical and simulated power spectrum of a periodic pulse train. The signal pulse
repetition period is Tp,, = 10 ns. The 4% derivative Gaussian pulse was used with duration
T, ~ 0.4 ns..

Figure A-2. Analytical and simulated PSDs of the BPSK TH-IR-based UWB signal defined by
Equation (A.8). The signal parameters are N, =5, T, =50 ns, 7, = 10 ns, T, =2 ns, Tg=1ns
and ¢+ uniform distributed over the set {0, 1, 2, 3, 4}. The 4t derlvatlve Gaussian pulse

is used with duration T, = 0.4 ns.

Figure A-3. Analytical and Simulated PSDs of the PPM TH-IR-based UWB signal defined by
Equation (A.3). The signal parameters are N, =5, T, =50 ns, T,=10ns, T, =2ns, Tg=1ns
and ¢+ uniform distributed over the set {0, 1, 2, 3, 4}. The 4th derivative Gaussian pulse
was used with duration T, ~ 0.4 ns.

Figure A-4. Simulated PSDs for a TH-IR-based UWB system using binary PPM with pseudo-
random and perfectly random 16-ary TH. The simulation used a |X,(0)]° = 1 rectangular data
window with duration 7= 1 ps (equivalent to a 1 MHz RBW). The signal parameters are
N,=1,T,=12.5ns, T, = 12.5 ns, T, = 0.78125 ns and Tz = 0.30965 ns. The 3" derivative
Gaussian pulse was used with duration 7,, ~ 0.35 ns.

155

156

158

160

163

166

191

191

192

195




List of Figures

Figure A-5. Simulated PSDs for a TH-IR-based UWB system using 32-ary PCTH and the rate 1,
v = 6, FSLS binary to M-ary convolutional encoder from Table 4-1 (Section 4.4.4). The
simulation used a [X,,(0)* = 1 rectangular data window with duration T= 1 pus (equivalent to
a 1 MHz RBW). The signal parameters are N, = 1, T, = 12.5 ns, T, = 12.5 ns and
Tg=0.39 ns. The 3" derivative Gaussian pulse was used with duration 7,, = 0.35 ns.

Figure A-6. Simulated PSDs for a TH-IR-based UWB system using the rate 1, v = 6, RSLS binary
to 32-ary convolutional encoders reported in Tables 5-1 and 5-2 (Section 5.4.2). The
simulation used a |X,,(0)” = 1 rectangular data window with duration 7= 1 ps (equivalent to
a 1 MHz RBW). The signal parameters are N, = 1, T, = 12.5 ns, 7, = 12.5 ns and
T=0.39 ns. The 3" derivative Gaussian pulse was used with duration T,, ~ 0.35 ns.

Figure A-7. Simulated PSDs for a non-coded Q-BOPPM IR-based UWB system with four pulses
repetition. The simulation used a |X,(0){* = 1 rectangular data window with duration 7 = 1
ps (equivalent to a 1 MHz RBW). The signal parameters are T; = 40 ns, 7, = 10 ns and
Tg = 0.5 ns. The 4™ derivative Gaussian pulse is used with duration T,, ~ 0.4 ns. No TH is
considered. The periodic Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is used
for DS pulse polarity randomisation purposes in Figure A-7b.

Figure A-8. Simulated PSDs for a Q-BOPPM IR-based UWB system using the rate 1/4, v = 4,
RSLF binary convolutional encoder from Table 6-4 (Section 6.5). The simulation used a
|X,(0)]* = 1 rectangular data window with duration 7= 1 ps (equivalent to a | MHz RBW).
The signal parameters are T, = 20 ns, 7, = 10 ns and 7= 0.5 ns. The 4™ derivative Gaussian
pulse is used with duration 7,, = 0.4 ns. No TH is considered. The periodic Barker sequence
{+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is used for DS pulse polarity randomisation
purposes in Figure A-8b.

Figure A-9. Simulated PSDs for a Q-BOPPM IR-based UWB system using the rate 1/4 RSLF
binary convolutional encoders from Table 6-4 (Section 6.5). The simulation used a
X, (0)]* = 1 rectangular data window with duration 7'= 1 ps (equivalent to a 1 MHz RBW).
The signal parameters are T, = 20 ns, 7, = 10 ns and Tz = 0.5 ns. The 4™ derivative Gaussian
pulse is used with duration 7, ~ 0.4 ns. No TH or DS is considered.

Figure A-10. Simulated PSDs for a Q-BOPPM IR-based UWB system using the best rate 1/4
RSLF binary convolutional encoders known reported [111]. The simulation used a
1X,(0)]* = 1 rectangular data window with duration 7= 1 ps (equivalent to a 1 MHz RBW).
The signal parameters are T, = 20 ns, 7, = 10 ns and Tz = 0.5 ns. The 4™ derivative
Gaussian pulse is used with duration 7,, = 0.4 ns. No TH or DS is considered.
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Table 2-1. Spectral masks for UWB average emission limits in terms of EIRP in dBm/MHz
established by the FCC.

Table 2-2. CEPT/ECC decision ECC/DEC/(06)04 on the emission limits for devices using UWB
technology.

Table 2-3. A comparison of spectral shaping mechanisms for IR-based UWB signals.

Table 4-1. Best feedforward spectral line suppressive binary to M-ary convolutional encoders
with the first 18 elements of its IWS and distance spectrum.

Table 5-1. Best recursive spectral line suppressive (RSLS) binary to M-ary convolutional
encoders with feedback polynomial (D) = 1 + D". The feedback and feedforward
polynomials are given in octal form. The first 15 elements of the IWS and distance spectrum
are reported in the last column.

Table 5-2. Best recursive spectral line suppressive (RSLS) binary to M-ary convolutional
encoders with primitive feedback polynomials. The feedback and feedforward polynomials
are given in octal form. The first 15 elements of the IWS and distance spectrum are reported
in the last column.

Table 6-1. Best rate 1/2 recursive spectral line-free (RSLF) binary convolutional encoders with
feedback polynomial b(D) = 1 + D". The feedback and feedforward polynomials are given
in octal form. The first 15 elements of the IWS and distance spectrums are reported in the
last column.

Table 6-2. Best rate 1/2 recursive spectral line-free (RSLF) binary convolutional encoders with
primitive feedback polynomials. The feedback and feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last
column.

Table 6-3. Best rate 1/4 recursive spectral line-free (RSLF) binary convolutional encoders with
feedback polynomial (D) = 1 + D", The feedback and feedforward polynomials are given
in octal form. The first 15 elements of the IWS and distance spectrum are reported in the
last column.

Table 6-4. Best rate 1/4 recursive spectral line-free (RSLF) binary convolutional encoders with
primitive feedback polynomials. The feedback and feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last
column.

Table 6-5. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 5 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with
feedback polynomial 67; and feedforward polynomials (47, 65, 73, 57); reported in Table 6-
4 was used as parent code. The additional feedforward polynomials are given in octal form.
The first 15 elements of the IWS and distance spectrum are reported in the last two
columns.

Table 6-6. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 6 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with
feedback polynomial 103 and feedforward polynomials (123, 171, 175, 133)s reported in
Table 6-4 was used as parent code. The additional feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last
column.
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Table 6-7. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 7 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with
feedback polynomial 2035 and feedforward polynomials (273, 327, 375, 231); reported in
Table 6-4 was used as parent code. The additional feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last
column.

Table 6-8. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 8 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with
feedback polynomial 607 and feedforward polynomials (467, 635, 533, 771); reported in
Table 6-4 was used as parent code. The additional feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last
column.

Table 6-9. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 9 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with
feedback polynomial 1333; and feedforward polynomials (1137, 1255, 1571, 1663)s
reported in Table 6-4 was used as parent code. The additional feedforward polynomials are
given in octal form. The first 15 elements of the IWS and distance spectrum are reported in
the last column.

Table 6-10. Peak to average ratios (dB) for the first 5 rate 1/2 RSLF binary convolutional
encoders reported in Tables 6-1 and 6-2. It is assumed that BPSK is used and that the data
stream is generated by an unbalanced BMS with p, o; = 1/5 and p, o, = 3/5.

Table 6-11. Peak to average ratios (dB) for the first 5 rate 1/4 RSLF binary convolutional
encoders reported in Tables 6-3 and 6-4. It is assumed that Q-BOPPM is used and that the
data stream is generated by an unbalanced BMS with p, o, = 1/5 and p, ; = 3/5.

Table B-1. IEEE 802.15.3a UWB multipath channel model parameters
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Chapter 1

Introduction

Currently there are several technologies and standards in the market allowing wireless
communication among devices and wireless networking (e.g. IEEE 802.11x, Bluetooth,
HiperLAN). These technologies are suitable for applications that require low to moderate bit rates
over the wireless link (e.g. file transfer, web browsing, e-mail, etc). For example, the IEEE 802.11g
standard provides a wireless link bit rate up to 54 Mbps in an operating range of 50 metres while
Bluetooth in its low power mode provides speeds up to 1 Mbps in a range of up to 10 metres. Both
technologies have achieved worldwide success as evidenced by the increase of wireless networking
in private and communal areas such as airports and the large amount of mobile phones equipped
with Bluetooth. Nevertheless, due to the dramatic demand growth for new and improved wireless
applications and services these technologies can be considered to be rapidly ageing. Thus there is a
need for new wireless technologies able to fulfil the new challenges arising in areas such as
wireless sensor networks and high-speed wireless personal area networks among others. One such
technology that over the past few years has gained a lot of attention is ultra wideband (UWB) radio.
UWB promises low power consumption, high capacity, spectrum coexistence and comparatively
high data rates, [6-19].

Nevertheless, despite the potential offered by the introduction of UWB, there have been
concerns about possible harmful interference from UWB to other established communication
deployments, [1-5, 162]. As a consequence regulatory bodies such as the U.S. Federal
Communications Commission (FCC) and the European Conference of Postal and
Telecommunications Administrations/Electronic Communications Committee (CEPT/ECC) have
established power limits in the form of spectral masks for intentionally generated UWB emissions,
[2, 4, 5]. In this context the analysis, estimation and shaping of the power spectral density (PSD) of

UWRB signals is a topic of major interest for the design of compliant UWB systems.

1.1 Ultra Wideband Definition

Over the years the term ultra wideband (UWB) has been applied to several communication and
radar systems, [6-11]. It turns out that terms like impulse radio, time domain, carrier-free and sub-
nanosecond communications had been frequently used as synonymous of UWB. However, since its
introduction in 2002 the definition provided by the U.S. Federal Communications Commission
(FCC) in its 2002 Report and Order, [2], regarding UWB transmission systems has been widely
adopted, [10-19].
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The FCC defines a UWB emission as radio frequency energy intentionally radiated having a
fractional bandwidth (to be defined in Chapter 2 — Section 2.2) larger than 20% or a bandwidth
wider than 500 MHz, [2]. Thus, the FCC definition is based on spectrum occupancy and is not
linked to a particular transmission technology. A consequence of this definition was that, besides
the original impulse radio (IR) based UWB systems, [6-8, 20], new UWB approaches compliant
with the FCC definition emerged, [13-19]. This research is focused on the IR-based UWB
approach.

In brief, IR-based UWB systems convey information by transmitting low power ultra short
pulses (on the order of few nanoseconds), [6-8, 20]. Several modulation schemes have been
proposed for IR-based UWB systems including pulse position modulation (PPM), pulse amplitude
modulation (PAM), on-off keying (OOK), binary phase shift keying (BPSK), biorthogonal PPM
(BOPPM) and pulse shape modulation (PSM), [6-8, 13-20]. Traditionally, several pulses are
transmitted per data symbol in order to increase the symbol energy and achieve an acceptable bit
error rate (BER) performance, [6-8, 13-20]. Alternatively, this basic pulse repetition scheme can be
replaced by a rate equivalent coded scheme to increase the system’s BER performance without
increasing the transmit power, [21-32].

Another important characteristic of typical IR-based UWB signals is that they usually employ
pseudo-random (PR) time hopping (TH) and/or PR direct sequence (DS) multiplication for multiple
access and/or PSD shaping purposes, [6-8, 13-19]. Basically, a TH-IR-based UWB system
transmits pulses with a very low duty cycle. The relative position of each pulse within a specified
time frame is then determined by a PR-TH sequence. In a pure DS-IR-based UWB system the
relative position of each pulse within a time frame remains unchanged but the pulse amplitude is
multiplied by a PR-DS usually taking values of the set {—1, +1}. Thus the duty cycle of a DS-IR-
based UWB signal can be higher than the duty cycle of a TH-IR-based UWB signal. Finally a TH-
DS IR-based UWB signal combines both techniques and its duty cycle can be as low as that of a
TH-IR-based UWB signal.

1.2 Motivation of this Research

As previously mentioned, various regulatory bodies such as the FCC and the CEPT/ECC have
established power limits for UWB emissions in the form of spectral masks, [2, 4, 5]. The aim of
these masks is to enable the coexistence of UWB systems with already established narrowband
systems and harmonise the use of the frequency spectrum. Therefore, unlike traditional narrowband
systems, the UWB emissions are not necessarily limited in terms of spectrum occupancy (as most
narrowband systems are) but in terms of the maximum allowed transmit power across an “ultra”
wide range of frequencies. Thus one of the main research areas when considering IR-based UWB
systems is the maximisation of the signal’s transmit power while maintaining compliance with the

spectral mask limits imposed by current UWB regulations.
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As an example, the spectral mask for average emission limits as defined by the FCC regulation
for indoor UWB systems, [2], is shown in Figure 1-1 (the European mask will be introduced in
Chapter 2 - Section 2.2.2). This spectral mask is specified in terms of effective isotropic radiated
power (EIRP) in dBm as measured with a 1 MHz resolution bandwidth (RBW), root mean square

(RMS) average detector and an average time of 1 ms or less, [2].
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Figure 1-1. FCC’s spectral mask for indoor UWB systems (the European mask will be introduced in
Chapter 2 - Section 2.2.2).

Note that any non-compliant UWB system can be forced to fit under a spectral mask by
properly adjusting its transmit power. However such a method would have the drawback that less
energy would be transmitted per data symbol and thus the BER may worsen. A way to circumvent
this BER performance loss would be to increase the number of transmitted pulses per symbol.
Nevertheless this scheme would imply decreasing the system’s data rate. Therefore alternative
spectral shaping methods which do not incur such performance penalties can be usefully considered.

As an example let us look at how the simulated PSD of an IR-based UWB signal using binary
PPM without TH compares with the FCC’ spectral mask for indoor UWB systems shown in Figure
1-1. This comparison is shown in Figure 1-2. It can be seen that this particular signal does not
comply with the FCC’s spectral mask. Moreover, to make it fit by reducing the overall power a

reduction of more than 10 dBm/MHz would be needed.
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Figure 1-2. Comparison between the simulated PSD (red) of a binary PPM IR-based UWB signal and the
FCC'’s spectral mask for indoor UWB systems (continuous black line). The 3™ derivative Gaussian pulse was
used with duration 7,, ~ 0.35 ns. The transmit power was 0.005 mW. No TH was used in this signal.
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Note how the PSD in Figure 1-2 consists of a continuous component and spectral lines spaced at
160 MHz intervals. The spectral lines that appear in the PSD are due to the periodic components
present in the UWB signal. These periodic components may arise due to deterministic elements in
the signal; the modulation format used, or/and the statistics of the data stream, [13, 83].

Let us now consider what happens when perfectly random (ideal) 16-ary TH is added to the
previous binary PPM IR-based UWB signal. The comparison between the simulated PSD for this
case and the FCC spectral mask is shown in Figure 1-3. Note that the signal used for this example
has the same base parameters (e.g. transmit power and data rate) as the signal used to obtain Figure
1-2. The only difference is the addition of TH in the second signal. It can be seen in Figure 1-2 that
the addition of perfectly random TH enables the compliance with the FCC regulation without the
need of reducing the signal’s transmit power. Furthermore, note how in this case the number of
spectral lines is reduced as they now appear spaced at 2.56 GHz intervals.

It is important to highlight that the use of perfectly random TH is an idealisation that in practice
is addressed by generating a pseudo-random (PR) TH sequence with extremely long period.
Nevertheless, the use PR-TH sequences with extremely long period increases the transmitter and
receiver complexity. However, this complexity increase may not be reflected in significant BER
performance improvements (when comparing systems with the same transmit power). Thus, there
exists the possibility of finding novel PSD shaping mechanisms that enable compliance with the
current UWB regulations while providing significant BER performance improvements when
compared to traditional UWB systems’ implementations.
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Figure 1-3. Comparison between the simulated PSD (red) of a binary PPM IR-based UWB signal using
perfectly random 16-ary TH and the FCC’s spectral mask for indoor UWB applications (continuous black line).
The 3" derivative Gaussian pulse was used with duration 7, ~ 0.35 ns. The transmit power was 0.005 mW. Note

how the signal used for this example has the same base parameters (e.g. transmit power and data rate) as
the signal used to obtain Figure 1-2.

Based on the previous discussion it can be said that the analysis, estimation and shaping of the
PSD of UWB signals is a topic of major interest for in the design of IR-based UWB systems as a
properly designed system will enable compliance with the UWB regulations without incurring
significant performance loss. This work deals with these topics in general and in particular

proposes ways to simultaneously achieve improved BER performance and convenient PSD
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characteristics in IR-based UWB systems through the use of properly designed convolutional
encoders. This matter is important due to the likely introduction of error correction mechanisms in

UWRB systems for BER and/or capacity improvement purposes, [19, 21-40].

1.3 Scope and Objectives of the Thesis

The research presented in this thesis deals with the spectral analysis and spectral shaping of
impulse radio (IR) based ultra wideband (UWB) signals. In particular this work studies the effects
over the transmitted signal’s power spectral density (PSD) caused by the introduction of
convolutional coding in IR-based UWB systems.

This thesis aims and objectives can be listed as follows:

= Perform the spectral analysis of convolutionally coded IR-based UWB signals such that
different variables inherent to this kind of signals like time hopping (TH), direct sequence
(DS) multiplication, attenuation and/or jitter are included.

= Provide an analytical closed form expression for the spectral analysis of convolutionally
coded IR-based UWB signals.

= Analyse the spectral shaping effects caused by the introduction of convolutional coding in
IR-based UWB systems.

= Identify ways to use the convolutional encoding operation not only for bit error rate (BER)
performance improvement but as well for spectral shaping purposes.

= Suggest and find convolutional encoders which provide both convenient PSD
characteristics and good BER performance (compared with an equivalent non-coded
system) when used on IR-based UWB systems.

The first step for achieving these objectives consists of the definition of a model for the
convolutional encoding operation such that the theoretical analysis of the signal’s PSD can be
performed. The second step consists of obtaining an analytical expression for the PSD of
convolutionally coded IR-based UWB signals and verifying the validity of this result through
examples and PSD estimates obtained from simulation. The third step involves analysing the
previous results to identify the variables which enable the spectral shaping of the signal’s PSD.
Once these variables have been identified, a fourth step can be made to determine which conditions
a convolutional encoder must fulfil to provide advantageous spectral shaping. Next the fifth step is
to devise an algorithm to find convolutional encoders that provide both improved PSD
characteristics and good BER performance. The sixth and last step consists of comparing the PSD
characteristics and BER performance of IR-based UWB systems using the convolutional encoders
found, the best convolutional encoders known and no convolutional coding through analysis and
simulation.

The literature survey of previous work relevant to the research presented in this thesis is

introduced in the next section.
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1.4 Literature Survey

As established in Section 1.3, this work deals with two main topics: the PSD of convolutionally
coded IR-based UWB signals and the use of convolutional encoders for simultaneous spectral
shaping of IR-based UWB signals and BER improvement. Thus a summary of previous research
related to the areas of spectral analysis of IR-based UWB signals, spectral shaping of IR-based
UWRB signals and application of convolutional coding in IR-based UWB systems is presented in the
following subsections. An extended review of the main results relevant for this thesis will be

provided in Chapter 2.

1.4.1 Previous Work on the Spectral Analysis of IR-Based UWB Signals

The spectral analysis of IR-based UWB signals has been widely addressed in the literature, [13,
18, 41-50]. In these works PSD expressions for non-coded IR-based UWB signals have been reported
including with more or less degree different signal variables such as pseudo-random (PR)/random
time hopping (TH), pseudo-random (PR) /random direct sequence multiplication (DS), timing jitter
and/or attenuation. A brief description of the results reported in these works is provided next.

The PSD expression for non-coded digital pulse based signals subject to timing jitter is reported
in [41] for PAM signals. Their model considers the PAM modulating stream to be wide sense
stationary. This observation is important due to it determines the applicability range of the PSD
expressions introduced in this paper.

The PSD expression for non-coded PAM/PPM TH-IR-based UWB signals subject to timing
jitter is reported in [42, 44, 45]. All the signal models adopted in these works assumed mutual
independence between the PAM modulating stream, the PPM modulating stream and the timing
jitter. In [44] the PAM data stream is assumed to be wide sense stationary while the PPM data
stream and the jitter are assumed to be second order stationary in the strict sense. The model used
in [45] assumes the PAM and PPM data streams to be stationary and uncorrelated. Lastly in [42]
the PAM and PPM data streams are assumed to be independent identically distributed (i.i.d.).

The signal model used in [43] is similar to the model used in [44] but focuses on the effects of
deterministic TH codes and therefore do not consider timing jitter. In this paper the PAM and PPM
data streams are assumed to be i.i.d. Furthermore, mutual independence between the PAM and
PPM data streams is assumed as in the previous papers. The analytical method introduced in [43]
was used in [48] to evaluate the PSD of M-ary code shift keying (MCSK) IR-based UWB signals.

The results and analysis presented in [13] and [18] are equivalent to the results and analysis
introduced in the previously mentioned works (that is [42-45]).

In [47] the spectral analysis of UWB multiple access (MA) schemes is addressed assuming perfect
(ideal) random scrambling, no timing jitter, no attenuation and statistically independent data bits.

A shot noise approach was used in [46, 49, 50] for the spectral analysis of PAM/PPM IR-based
UWB signals with TH-DS, timing jitter and attenuation. These works were based on the
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assumption of i.i.d. data streams for PPM, i.i.d. and wide sense stationary data streams for PAM,
i.i.d. timing jitter and mutual independence of the PAM and PPM data streams.

Even though the general analytical framework presented in some of the previously mentioned
papers could be further developed for the analysis of different modulation schemes, most of the
analysis actually performed in these works focuses on PAM, PPM and related modulation formats
(e.g. PAM/PPM) where all data streams and random variables are assumed to be mutually
independent. Furthermore, as most of these papers assume mutual independence of the PAM and
PPM data streams, the results presented there are not applicable in a straightforward way to the
spectral analysis of IR-based UWB signals where the PAM and PPM data streams are correlated.

An important case of mutually dependent PAM and PPM data streams arises when the input to
the IR-based UWB modulator is given by the output of a convolutional encoder. Thus the results
presented in the previously mentioned papers do not cover this particular case. This is due to the
correlation introduced by the convolutional encoder on the data stream. For example, if the IR-
based UWB system uses biorthogonal PPM (BOPPM), [51], in conjunction with a convolutional
encoder, then the PAM and PPM data streams will be correlated and a different approach must be
used to perform the spectral analysis. Therefore it may be postulated that prior to this thesis there
was a lack of studies addressing the spectral analysis of UWB signals when the data input driving
the modulator consists of symbols generated by a convolutional encoder.

Spectral analysis of coded signals has been previously addressed in [52-54] for block codes, in
[55, 56] for line codes, in [57, 58] for trellis codes and [59, 60] for convolutional codes. All these
works assume ideal synchronous data pulse streams. Therefore these results do not consider the
effects of variables such as time hopping, DS multiplication, timing jitter and pulse attenuation.
Furthermore the spectral analysis presented in [59, 60] for convolutionally coded signals focuses on
feedforward encoders and PAM/binary phase shift keying (BPSK) modulation and therefore cases
such as PPM, BOPPM and PSM are not covered.

1.4.2 Previous Work on Spectral Shaping of IR-Based UWB Signals

The current approaches used for spectral shaping of IR-based UWB signals can be classified
into the categories of pulse shape based spectral shaping, TH code based spectral shaping and DS
code based spectral shaping. All these approaches look to shape the transmitted signal’s PSD such
that compliance with emission limits is achieved and/or interference from/to narrowband users of

the spectrum is minimised.

1.4.2.1 Pulse Shape Based Spectral Shaping of IR-Based UWB Signals

The basic pulse shapes used in most of the original papers introducing IR-based UWB were the
first and second order derivatives of the Gaussian pulse, [6-8, 20]. However, as these waveforms do
not fit well under the FCC’s proposed limits, the use of higher order derivatives has been proposed
in [61, 62] as they offer a better fit for the FCC’s spectral masks. There exist other pulse shapes and
pulse shaping mechanisms proposed in the literature, [13, 14, 63-69]. The use of any particular

7
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pulse shape or pulse shaping mechanism depends on the target application and design goals. For
example, orthogonal pulses with convenient characteristics for pulse shape modulation (PSM) have
been proposed in [14, 64-66], pulse shaping mechanisms for maximum spectral mask utilization
have been devised in [13, 67] and pulse shaping mechanisms for narrowband interference
suppression have been introduced in [68, 69].

The use of a particular waveform determines the general PSD shape of an IR-based UWB
signal. Furthermore, by properly designing the pulse shape, notches at specific frequencies of the
signal’s PSD can be generated as shown in [68, 69]. However, important PSD characteristics such
as the appearance and suppression of spectral lines depend on other variables such as the
modulation scheme employed and the use of TH and/or DS multiplication as exemplified in
Section 1.2. So we see that once a particular pulse shape has been chosen, additional spectral
shaping mechanisms may be needed to further improve the signal’s PSD characteristics.

Lastly, it is worth mentioning that a specific pulse shape may be distorted by the antenna used
in the system and the channel, [163]. Thus, pulse shape based spectral shaping is further

constrained by these extra factors.

1.4.2.2 Time Hopping Code Based Spectral Shaping of IR-Based UWB Signals

From the PSD examples presented in Section 1.2 (Figures 1-2 and 1-3), it can be seen that the
introduction of perfectly random (ideal) time hopping (TH) has positive effects on the signal’s PSD
(Figure 1-3) as a significant number of spectral has been suppressed and compliance with the
FCC’s spectral mask is achieved. Thus the TH code can be effectively used to shape the PSD.

The topic of spectral shaping of IR-based UWB signals through time hopping has been
previously addressed in [70-77]. These works analyse different issues related to use of the TH code
for spectral shaping purposes as explained next.

The effects of the time hopping code characteristics over the signal’s PSD are addressed in [71,
73] for TH-IR-based UWB systems. Similarly, the effects of the TH code design over the PSD
characteristics of M-ary code shift keying (MCSK) IR-based UWB signals are investigated in [77].
All these works address the topic of spectral line elimination/attenuation through proper design of
the TH code.

In [70] a pseudo-chaotic time hopping (PCTH) scheme has been introduced. As explained in
[70], PCTH uses the symbolic dynamics of chaotic maps to generate aperiodic random-like TH
sequences and thus eliminates a significant number of spectral lines in the signal’s PSD. This
scheme aims to resemble ideal perfectly random TH by using the data stream to drive a specifically
designed PCTH encoder.

The spectral line suppression issue is addressed as well in [76] where the concept of fluid TH is
introduced. Shortly, fluid time hopping uses real-valued TH codes instead of traditional discrete
valued codes to perform spectral shaping. The real-valued TH codes are generated by sampling a
real-valued signal (or function) at predefined intervals and then using the samples to determine the

pulse position on the time axis, [76].




Chapter 1 Introduction

Besides eliminating spectral lines, the TH code can be used to produce notches in the PSD. This
approach has been particularly followed in [72, 74, 75] where different algorithms are proposed for

the construction of codes generating spectral notches in specific frequency bands of the PSD.

1.4.2.3 Direct Sequence Based Spectral Shaping of IR-Based UWB Signals

The use of a direct sequence (DS) code for spectral shaping purposes of IR-based UWB signals
has been previously addressed in [78-81]. All these works propose the multiplication of each

transmitted symbol and/or pulse by a pseudo-random (PR) DS code taking values on the set {—1,1}.

This is the reason why this spectral shaping technique is often referred as polarity randomisation,
[78, 80, 81].

If an ideal perfectly random DS, code taking values on the set {~1,1} is assumed, then the IR-
based UWB signal’s PSD will not show any spectral lines, [78-81]. However, this is an idealisation
that in practical terms is addressed by generating a PR-DS code with an extremely long period, [80,
81]. Note that in this approach the DS code may or may not be explicitly used for multiple access

or spreading purposes.

1.4.3 Previous Work on the Application of Convolutional Coding in
IR-Based UWB Systems

The application of convolutional coding in IR-based UWB systems has been previously
addressed in [21, 22, 24, 25, 27, 30-32]. All these works have shown that the use of convolutional
codes and related turbo codes in IR-based UWB systems offer great benefits in terms of bit error
rate (BER) performance when compared with the original (non-coded) pulse repetition schemes
used in [6-8, 20].

The authors in [21] showed that for binary PPM TH-IR-based UWB, a system using
convolutional codes can outperform a system using the traditional pulse repetition scheme in terms
of BER and/or number of supported users without increasing the transmitted power. Similar results
for other modulation schemes have been reported in [22, 24, 25, 27, 30-32, 35]. Particularly the use
of superorthogonal convolutional codes, [82], has been proposed in [21, 25, 32] for binary PPM IR-
based UWB, in [24, 27, 30] for PAM IR-based UWB, and in [35] for PSM IR-based UWB.

Well known binary convolutional encoders such as superorthogonal codes, [82], maximum free
distance (MFD) codes, [83], and rate compatible punctured convolutional codes, [84], have been
used in [22, 33, 37, 38] for M-ary PPM IR-based UWB.

Orthogonal convolutional coded modulation schemes for IR-based UWB have been analysed in
[31] while a biorthogonal convolutional coded modulated scheme has been proposed in [39].

It is worth mentioning that the IEEE 802.15.4a draft specification for Low-Rate Wireless
Personal Area Networks considers the use of a rate 1/2 systematic convolutional encoder in its
forward error correction (FEC) layer, [40]. As well the IEEE study group 802.15.3a (now disbanded)

considered the use of convolutional codes for FEC purposes, [19].
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Most of the papers dealing with the application of convolutional codes in IR-based UWB
systems focus on BER analysis without considering the effects of the convolutional encoder over
the signal’s PSD. The only two exceptions are the schemes proposed in [33, 37] where the use of
binary maximum free distance convolutional encoders, [83, 85], combined with M-ary PPM is
proposed. In fact the goal of these works is to achieve enhanced PSD characteristics similar to
those obtained with PCTH, [70], through the use of the binary MFD convolutional encoders.
However, the binary convolutional encoders used in these works were not specifically designed for
M-ary signalling. Thus there exists the possibility of improving the BER while achieving similar
PSD characteristics by properly designing binary to M-ary convolutional encoders. Finally, it is
worth mentioning that the spectral analysis presented in [33] was performed using simulation,
while [37] uses a simplified model for the signal’s spectral analysis which is based on the
assumption of uniform distributed i.i.d. streams at the encoder output (that is the correlation
introduced by the convolutional encoders is not considered). As well, neither [33] nor [37] consider

the use of other variables such as PAM, TH, DS, timing jitter and attenuation.

1.5 Original Contributions of the Thesis

The effects over the transmitted signal’s power spectral density (PSD) produced by the
introduction of convolutional coding in impulse radio (IR) based ultra wideband (UWB) systems
has been analysed in this thesis. A first order binary Markov source (BMS) has been chosen to
perform the analysis. This kind of source enables the modelling of unbalanced (that is non-
uniformly distributed) independent identically distributed (i.i.d.) memoryless data streams as well
as data streams with memory, thus offering a wide applicability range. From this analysis, the
conditions that a particular encoder must fulfil to provide advantageous spectral shaping
characteristics have been identified. Furthermore, a method to design and find convolutional
encoders with convenient PSD characteristics and good bit error rate (BER) performance has been
proposed. The original contributions of the thesis can be outlined as follows:

= Derivation of a source-encoder (SE) pair model that enables us to describe the interaction
of the BMS and the convolutional encoder with a single Markov model which can be
classified as being of the Moore type (within the definition adopted for finite state
sequential machines).

= An original spectral analysis for convolutionally coded IR-based UWB systems. The model
used for the analysis and the closed form PSD expressions obtained from it cover different
modulation schemes such as pulse amplitude modulation (PAM), binary phase shift keying
(BPSK), pulse position modulation (PPM), biorthogonal PPM (BOPPM), PAM/PPM, and
pulse shape modulation (PSM), combined with pseudo-random (periodic)/random time
hopping (TH) and/or pseudo-random/random direct sequence (DS). In addition the signal

model and PSD expressions account for the inclusion of attenuation and/or timing jitter.
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The identification of convolutional encoder’s characteristics that have a positive or
negative effect in the transmitted signal’s PSD.

The classification of pseudo-chaotic time hopping (PCTH) and related schemes as
feedforward binary to M-ary convolutionally coded PPM IR-based UWB systems.

The identification of the variables that enable the design of feedforward binary to M-ary
convolutional encoders with similar PSD characteristics to those achieved with the PCTH
scheme under the same operation constraints (that is i.i.d. binary data streams with uniform
distribution are assumed at the encoder input).

A code search procedure to seek feedforward binary to M-binary convolutional encoders
with PSD characteristics similar to those achieved with PCTH and improved BER
performance.

A set of new M-ary maximum free distance (MFD) feedforward binary to M-ary
convolutional encoders that have the same spectral line suppressive characteristics as the
PCTH scheme (under similar operation conditions) and provide improved BER
performance over the PCTH scheme.

The identification of the variables and conditions that enable the design of binary to M-ary
convolutional encoders with similar PSD characteristics to those achieved with the PCTH
scheme even when the encoder input does not consist of an i.i.d. binary data stream with
uniform distribution. In particular the data stream is assumed to be generated by a generic
first order BMS.

The modification of the code search procedure such that spectral line suppressive binary to
Me-ary convolutional encoders for unbalanced (that is, non-uniform distributed) BMS’s can
be found.

Two sets of novel M-ary MFD spectral line suppressive binary to M-ary convolutional
encoders which eliminate as many spectral lines as the PCTH scheme but keep its spectral
line suppressive characteristics even when the binary stream at the encoder input is
generated by an unbalanced BMS (that is, the data stream does not consists of uniform
distributed i.i.d. binary symbols).

The novel proposal of using binary convolutional encoders for spectral line elimination
purposes in BPSK and quaternary BOPPM (Q-BOPPM) IR-based UWB systems.

The identification of the variables and conditions that enable the design of binary
convolutional encoders which generate signals with spectral line-free PSDs when used in
BPSK/Q-BOPPM IR-based UWB systems with unbalanced BMS inputs.

A code search procedure aimed to seek spectral line-free binary convolutional encoders
with good BER performance.

The introduction of nine sets of novel MFD binary convolutional encoders which generate
a spectral line-free signal even when the binary stream at the encoder input is generated by

an unbalanced BMS (that is, the data stream does not consists of uniform distributed i.i.d.
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binary symbols). Encoders with rates from 1/2 up to 1/32 and memory orders from 3 up to

9 are provided.

1.6 Outline of the Thesis

Chapter 2 introduces concepts, terminology and definitions that will be used throughout this
entire thesis. Two main areas can be identified in Chapter 2. The first area describes the UWB
approach adopted in this work where several important topics such as current UWB regulations, the
classic IR-based UWB scheme, the PSD of non-coded IR-based UWB signals and spectral shaping
mechanisms for IR-based UWB signals are reviewed. The second area addresses concepts related
to convolutional coding. In particular an overview of convolutional coding applied to IR-based
UWB systems and a review of basic concepts related to convolutional coding is provided.

In Chapter 3 the spectral analysis of convolutionally coded/Markov-driven IR-based UWB
signals is performed. The system and signal models used throughout Chapters 4, 5, 6 and 7 are
introduced in this chapter. First a source-encoder Markov model is obtained as this is the starting
point of the analysis. The corresponding signal model is then introduced followed by the derivation
and analysis of the signal’s average autocorrelation and average power spectrum. Afterwards,
illustrative application examples which enable to assess and identify the effects of the
convolutional coding operation over the PSD are provided. Comparisons between analytical and
simulated PSD results are provided for validation purposes.

In Chapter 4 we look at the design of feedforward binary to M-ary convolutional encoders with
similar PSD characteristics to those obtained with pseudo-chaotic time hopping (PCTH) and
improved bit error rate (BER) performance. The constraints that a binary to M-ary convolutional
encoder must fulfil to suppress as many spectral lines as PCTH under the same operation
conditions (i.i.d. binary data streams with uniform distribution at the encoder input) are identified.
Then new feedforward binary to AM-convolutional encoders with spectral line suppression
capabilities are presented. These encoders were found through a code search procedure introduced
in this chapter. Afterwards comparisons between PSD plots obtained when using the new encoders
and the PCTH scheme are shown. Next BER performance comparisons between the new encoders
and the PCTH scheme are provided. Lastly, conclusions drawn from these comparisons are presented.

Chapter 5 addresses the problem of designing spectral line suppressive binary to M-ary
convolutional encoders which eliminate as many spectral lines as PCTH even when the binary
stream at the encoder input does not consist of i.i.d. symbols with uniform distribution. Here it is
assumed that encoder’s input consists of data streams generated by an unbalanced (that is, non-
uniform distributed) first order binary Markov source (BMS). In a similar way to Chapter 4, the
constraints that a binary to M-ary convolutional encoder must fulfil to achieve the desired spectral
line suppressive characteristics are identified. This is followed by the modification of the code
search procedure introduced in Chapter 4 to account for the new constraints. Novel binary to M-ary

convolutional encoders that satisfy the spectral line suppression condition for unbalanced BMS’s
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are then introduced. Afterwards comparisons in terms of PSD characteristics and BER performance
between the new encoders and the encoders introduced in Chapter 4 are presented. Lastly,
conclusions drawn from these comparisons are provided.

The novel idea of using binary convolutional encoders for spectral line elimination purposes in
binary phase shift keying (BPSK) and quaternary biorthogonal pulse position modulation
(Q-BOPPM) IR-based UWB systems is introduced in Chapter 6. This chapter deals with the design
of binary convolutional encoders that generate BPSK/Q-BOPPM IR-based UWB signals with
spectral line-free PSDs even when the binary stream at the encoder input consist of symbols
generated by an unbalanced BMS. The conditions that the binary convolutional encoders must
fulfil to generate such spectral line-free signals are identified and a specific code search procedure
is introduced. Novel “spectral line-free” binary convolutional encoders for BPSK/Q-BOPPM IR-
based UWB systems are then introduced. Afterwards, comparisons in terms of PSD characteristics
and BER performance between BPSK/Q-BOPPM IR-based UWB systems using the newly found
convolutional encoders, the best convolutional encoders known and no convolutional coding are
presented. Lastly, conclusions drawn from these comparisons are provided.

Finally, Chapter 7 presents the general conclusions of the thesis and outlines the key findings.

This chapter finalises with suggestions of future research areas.




Chapter 2

Theoretical Background

2.1 Introduction

The purpose of this chapter is to introduce the concepts, terminology and definitions that will be
used in the chapters that follow. A key theme of this research is the effect of the convolutional
encoding operation on the power spectral density (PSD) of ultra wideband (UWB) signals.
Therefore two main areas can be identified in this chapter. The first area is dealt with in Sections
2.2 to 2.5 and describes the UWB approach adopted for this work. The second area is written in
Sections 2.6 and 2.7 and concerns several important concepts related to convolutional coding

In summary, the structure of Chapter 2 is as follows. Section 2.2 introduces definitions for
UWB and regulatory issues. A basic non-coded impulse radio (IR) based UWB approach is
introduced in Section 2.3 while its power spectral density (PSD) is presented in Section 2.4. In
Section 2.5 a description of spectral shaping mechanisms for IR-based UWB signals is provided.
Section 2.6 gives an overview of convolutional coding applied to IR-based UWB while Section 2.7
introduces basic concepts related to convolutional codes. Finally conclusions are provided in

Section 2.8.

2.2 Ultra Wideband Definition and Regulatory Issues

As mentioned in Chapter 1, since its introduction in 2002 the definition provided by the U.S.
Federal Communications Commission (FCC) in its 2002 Report and Order, [2], regarding UWB
transmission systems has been widely be adopted, [10-19]. The FCC defines a UWB emission as
radio frequency energy intentionally radiated having a fractional bandwidth larger than 20% or a
bandwidth wider than 500 MHz, where the fractional bandwidth is defined as

Fractional Bandwidth = ZM 2.1

(Ju + /1)
with fi and f;, set at the -10 dB upper and lower emission points in the signal spectrum. Thus, the
FCC definition is based on spectrum occupancy and is not linked to a particular transmission
technology. However, as mentioned in the introduction, this work focuses on IR-based UWB

implementations.
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2.2.1 FCC Emission Limits for UWB Emissions

The FCC's 2002 Report and Order [2] established emission limits for UWB emissions in the
form of spectral masks. In Table 2-1 and Figure 2-1 the average emission limits for UWB

emissions as specified by the FCC for indoor and outdoor applications are presented, [2].

Table 2-1. Spectral masks for UNB average emission limits in terms of
EIRP in dBm/MHz established by the FCC.

' Frequency band Power levers in terms of EIRP (dBm/MHz) v
- inGHz . [|.Devices for indoor applications | Devices for outdoor applications
0.000009-.960 —41.3 -41.3
.960-1.610 —75.3 -75.3
1.610-1.990 —53.3 —63.3
1.990-3.100 —51.3 -61.3
3.100-10.600 —-41.3 —41.3
10.600-22.000 —51.3 -61.3
22.000-29.000 —51.3 —-61.3
Above 29.000 -51.3 —61.3
— -40 — -40
¥ o] ¥ []
E 45 E 45
> 0 > 50
: — &
o 55 o 55
; ;
c 60 c 60 —
TE: -85 % €5
r r
ué’ 75 875
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a) Indoor applications b) Outdoor applications

Figure 2-1. FCC UWB spectral masks for indoor and outdoor applications.

These average emission limits are given in terms of effective isotropic radiated power (EIRP) in
dBm as measured with a 1 MHz resolution bandwidth (RBW), root mean square (RMS) average
detector and average time of 1 ms or less (in case a spectrum analyser is used to perform the
measurements), {2]. In addition the FCC regulation establishes a limit of 0 dBm EIRP on the peak
emission level contained within a 50 MHz bandwidth centred on the frequency at which the highest
radiated emission occurs.

The FCC set these limits for protection of previously established users of the spectrum,

particularly GPS and military systems.

2.2.2 CEPT/ECC Emission Limits for UWB Emissions

In 2006 the European Conference of Postal and Telecommunications Administrations/Electronic
Communications Committee (CEPT/ECC) released the decisions ECC/DEC/(06)04 and
ECC/DEC/(06)12 regulating the operation of UWB devices in Europe, [4, 5]. In Table 2-2 the
emissions limits as specified in the March 2007 decision ECC/DEC/(06)04 are presented. Note the
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CEPT/ECC limits only agree with the FCC regulation on the 6 to 8.5 GHz band as extra protection

for diverse radiocommunications systems deployed across Europe is provided.

Table 2-2. CEPT/ECC decision ECC/DEC/(06)04 on the emission limits
for devices using UWB technology.

. b .o 1 Maximum peak EIRP
Frequency Range .| Maximum mean EIRP o mr.
L__ eq CiG | density (@Bm/MEzy | ensity @Bm/SOMHZ)

Below 1.6 -90 -50

1.6 to 3.8 —85 —45

3.8104.8 -70 -30

4.8 to 6.0 -70 -30

6.0 to 8.5 —-41.3 0

8.5 t0 10.6 —-65 -25

Above 10.6 -85 -45

Note 1:  The peak EIRP can be alternatively measured in a 3 MHz bandwidth. In this case, the maximum peak
e.i.r.p. limits to be applied is scaled down by a factor of 20log(50/3) =24.4 dB.

On December 2007 the CEPT/ECC released the decision ECC/DEC/(06)12 relaxing the
ECC/DEC/(06)04 limits on the 3.8 to 4.8 GHz band for devices employing Low Duty Cycle (LDC)
mitigation mechanisms. This decision allows the operation of LDC UWB devices at a level of
—41.3 dBm/MHz in the frequency band 3.8 to 4.8 GHz with the following requirements:

e T, max =5ms, where T,, is defined as the duration of a burst irrespective of the number of
pulses contained.

e T, rmean > 38 ms (averaged over 1 s), where T is defined as the time interval between
two consecutive bursts when the UWB emission is idle.

o The sum of the Toy periods must be larger than 950 ms per second.

e The sum of the T,, periods must be less than 5% per second and 0.5% per hour.

Further decisions from CEPT/ECC are expected regarding UWB systems using Detect and
Avoid (DAA) mechanisms, [4, 5].

2.3 Impulse Radio Based UWB Systems

As previously mentioned this work focuses on impulse radio (IR) based UWB implementations.
The IR-based UWB approach uses low power ultra short pulses (on the order of few nanoseconds)
to transmit information, [6-8, 13-20]. Several modulation schemes have been proposed for IR-
based UWB systems including pulse position modulation (PPM), pulse amplitude modulation
(PAM), on-off keying (OOK), binary phase shift keying (BPSK), biorthogonal PPM (BOPPM) and
pulse shape modulation (PSM), [6-8, 13-20]. The Figure 2-2 shows BPSK, binary PPM, binary
PSM and quaternary BOPPM (Q-BOPPM) with Gray mapping. Each modulation scheme has its
own advantages and disadvantages in terms of bit error rate (BER) performance, complexity and
PSD characteristics of the signal. As well it is worth noting that due to the pulse’s low power the

transmission of several pulses per data symbol may be needed in order to achieve an acceptable
BER, [6-8, 13-20].
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d) Quaternary biorthogonal pulse position modulation (BOPPM) with Gray mapping

Figure 2-2. Several modulation schemes for IR-based UWB. Ty is the PPM modulation index and 7, is the
mean repetition time between pulses.

The next subsections introduce the particular IR approaches relevant for this research.

2.3.1 Time Hopping IR-Based UWB

As originally introduced in [6-8, 20], time hopping (TH) IR UWB used PPM to convey the
information. Nevertheless it will be more useful to define a general model covering other
modulation formats as well. Bearing this in mind, the transmitted and received signals in a typical

single user TH-IR-based UWB system can be described by

o Nyl

xp (£) = Z Z oywr, (¢ 1T, — kT, —cpy, 4T, — BT,)

e 2.2)
=3 Y, qwelt—IT, kT, =y T, = BT, —7)+n(0)

I=—0 k=0

where w,, (f) and w, (f) are the waveforms of the transmitted and received pulses respectively,
{a;} and { B} are the PAM and PPM data streams (not restricted to be binary) and N, is the

number of transmitted pulses per data symbol. The pseudo-random (PR) TH sequence {Cw i}

takes values on the set {0, 1, 2 ..., N — 1} with period y.. The TH sequence {c, ,,} is normally
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used for multiple access purposes and to improve the spectral characteristics of the transmitted
signal, [6-8, 20]. T,,r and T\, are the durations of the transmitted and received pulses, 7, is the mean

repetition time between pulses, T is the symbol time (T, = N,T, ), Tp is the PPM modulation index

and T is the nominal shift caused by the PR-TH sequence. Usually T, >>max(T,,T, ), hence the

signal has a very low duty cycle. The basic TH concept for two different PR-TH sequences is shown
in Figure 2-3. Finally 7 is the propagation delay and n(f) is additive noise. It is worth mentioning
that the two pulse shapes model used for the transmitted and received signals was introduced to

account for the antennas and channel effects over the shape of the originally transmitted pulse, [7, 8].

—— Signal 1 =Y=0,4,2,...,0,4,2,...
———Signal2=>®=2,0,1,...,2,0, 1,...

Mool

T,

xTr

Figure 2-3. Pulse positions for two TH-IR UWB signals using different PR-TH sequences. ¢ and ¢® are two
different PR-TH sequences, 7, is the mean repetition time between pulses, T is the nominal shift caused by
the PR-TH sequence and y, is the period of the PR-TH sequence.

The use of ¢, and B, in Equation (2.2) allows the modelling of several modulation schemes
such as BPSK, PAM, PPM, OOK and BOPPM. For example, if M-ary PPM is considered, then
a,=1 and S, will take values on the set {0, 1, 2 ..., M —1}. For clarity and unless otherwise

stated only orthogonal PPM will be considered in this work. In order to guarantee the M-ary PPM
symbols are orthogonal and avoid intersymbol interference (ISI), it will be assumed that

T, 2max(7,

w

r-T,p)> I.2MTy, and T, 2 N_T_. It is worth mentioning that, although not explicitly

covered by the signal model defined by Equation (2.2), PSM has been proposed as well for TH-IR-
based UWB systems, [14, 64-66].

If BPSK is considered then «, € {~1,1} and S, =0 whereas for M-ary BOPPM ¢, € {-1,1} and
B, €{0,1,...,(M /2) -1}, [51]. Note BPSK, BOPPM énd orthogonal PPM TH-IR-based UWB are in
fact carrier free/pulse based implementations of antipodal, biorthogonal and orthogonal signaling.
Hence, if {c,y_,, } and rare known at the receiver, all the data symbols are equiprobable and n(?) is
additive white Gaussian noise (AWGN) with two sided power spectral density N,/2, then the

optimum receiver is the correlation/matched filter receiver followed by maximum likelihood (ML)

detection, [83, 86]. Therefore, the symbol error probability, P,, for BPSK IR-based UWB is given by

where F, is the bit error probability, E; is the symbol energy, E, is the energy per bit, E, is the

pulse energy and Q() is defined as ([83, 86])
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@)=L j: ¥ 2d (2.4)

For M-ary PPM the symbol error probability can be found to be

=1-o{E}-olE)-o ). sy

P =Ry =gz | [-( [ ey Jel-+(r- By Ny s -no(E). a-ary poa

-

(2.5)

where the inequality in the left side is a union bound for the error probability. Note for both BPSK
and binary PPM the symbol error probability, P, and the bit error probability, P, are equivalent. It
is important to recall as well that the error probability depends on the Euclidean distance between
symbols as obtained when the signals are represented as vectors, [83, 86].

Of particular interest for this research is the case of quaternary BOPPM (Q-BOPPM) with Gray
code mapping. This modulation format is geometrically equivalent to quaternary phase shift keying

(QPSK) with Gray mapping, [83, 87], and therefore its bit error probability can be found to be,

(183, 87, 88))
R =0 {%)-o( =)o %) @5

‘Thus _the bit error probability of BPSK and Q-BOPPM (Gray) IR-based UWB is the same in terms
of the spent energy per bit, E.

The theoretical formulas introduced in this section for the evaluation of error probabilities will
be used in the following chapters to compare the BER performances of non-coded IR-based UWB
systems and convolutionally coded IR-based UWB systems.

2.3.2 Direct Sequence IR-Based UWB and Mixed TH-DS IR-Based UWB

In the direct sequence (DS) IR-based UWB approach the pulse amplitude is multiplied by a
pseudo-random (PR) sequence combined with the elimination or reduction of time hopping, [16,

89, 90]. Therefore a typical DS-IR-based UWB signal can be described by

]

Nyl
xn (1) = Z Z Ay, Wi (t =T, —kT)
I=—0 k=0 (2.7)

w0 Ny-l

5w®=Y D Gy @ W ((=IT, KT, =7)+n(2)

I=—0 k=0

sequence {a,y ., } is normally used for multiple access purposes as in traditional code division

\
where {a, ., } is a PR-DS sequence with period y, usually taking values from the set {-1,1} . The
|
multiple access (CDMA). Commonly in DS-IR-based UWB T, is set to be just slightly larger than

max(T

w

r»1,z) (although this is not mandatory). Thus the signal’s duty cycle may not be as low as in

‘ the TH-IR-based UWB approach, [16]. A typical DS-IR-based UWB signal is shown in Figure 2-4.
The modulation format typically used for DS-IR-based UWB is BPSK, although PAM, OOK and

PSM can be implemented as well. Orthogonal and biorthogonal signalling can be achieved by using

standard CDMA techniques through the use of Hadamard or Walsh-Hadamard codes, [16, 82, 91].
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Figure 2-4. Typical DS-IR-based UWB signal where {¢;} is the PAM data stream, N, is the number of
transmitted pulses per data symbol, T, is the mean repetition time between pulses, T is the symbol time and
. is the period of the PR-DS code {a, . :}. Note T, = T, =N,T,.

vy~

A mixed TH-DS IR-based UWB signal can be defined as

w  Ny-1

xp ()= Z Z ap, kW (O =IT, = KT, —cpy 4T, - BiT4)

’=:° l::(il (2'8)
Xp (1) = Z z ap, kO Wr (A =11, = kT, —ciy T, = BTy —7) +n(1)

I=~0 k=0

In this case each parameter in Equation (2.8) can be set to fulfil a specific design requirement. For
example, in, [92, 93], the TH sequence is used for multiple access purposes whereas the DS code is

used to smooth the signal’s PSD.

2.4 Spectral Analysis of TH-IR-Based UWB Signals

Power spectral density expressions for IR-based UWB signals have been reported in, [41-50].
Most of these works assumed mutual independence between data streams driving different
modulation variables such as PAM and PPM.

Consider the signal described by Equation (2.2) and assume that the PAM data stream, {«, },
and the PPM data stream, { B}, consists of i.i.d. discrete valued random variables (not necessarily
uniformly distributed) with probability mass functions (p.m.f.) p,, =Pr{e, =i} =Pr{e =i} and
Ps,; =Pr{B, = j}=Pr{f = j} respectively. For clarity it will be assumed that the antennas and
channel do not significantly distort the pulse shape and therefore wy (f)=w, (¢)=w(t). By

assuming that {«, } and { £, } are mutually independent the signal’s PSD can be found to be

S(f)=S:.,(N+Sp () N, =1

_ (2.9)
S()=Sc,(N+Sc,(H+S,(f) N, >1
5 Auc=l [Ny-1 . 2
Ser() =W ()P Efjafy - ZLLHNGUE S X praest, g2 nnn (2.10)
n=0 k=0
A“’ N
S, (f) = ZIW(?IA i(lalz) z Z Z Re{¢ /2S00, g2 i =envysi)y @.11)

k=0 k'=k+1 n=0
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Nyl Ay~ 2

WRE@IRIG (/)P 2afT, T, S e | N
Sp(f) =TT )2,, DD SRS Wl Y S - ) (2.12)
sThwe k=0 n=0 r=—w

where S, ,(f) and S.,(f) conform the PSD’s continuous part, S,(f) is the PSD’s discrete part,
A, =lem(y,,N,)/N, (Icm stands for least common multiple), W(f) is the Fourier transform of
w(r), () is the Dirac delta function, E{} is the expected value and

|Gy () =Bl 777 BP0} (2.13)
Equations (2.9) to (2.13) were obtained as a particular case of the spectral analysis presented in
Chapter 3. Equivalent PSD expressions can be found in the papers mentioned at the beginning of
this section.

From Equations (2.9) to (2.13) it can be seen that the PSD shape is affected by the pulse’s
energy density spectrum (EDS) |W(f)|*, the TH sequence {cw, . + and the statistics of { e, } and
{ B, }. Note as well from Equation (2.13) that the appearance of spectral lines can be expected at
multiples of 1/(T,A,,) . From Equation (2.13) it can be seen that the appearance/suppression of
spectral lines is influenced by deterministic elements in the signal (that is the symbol time,

T =N,T

whro

the mean pulse repetition time, 7,, and the characteristics of the PR-TH sequence

{¢w_+ })» the modulation format used (that is: PAM, PPM or PAM/PPM) and mean statistics of the

data stream (that is | E{@}| and |G, () [*).

For the PSD plots presented in the rest of this section it will be assumed that @, and S, have

p.m.f.

Pom =Prie,=+1} =Pr{ia=+1}; p, =Pr{e,=-1}=Pria=-1}=1-p,,

Ppo =Pr{f; =0} =Pr{f=0}; Ppy =Pr{f =1} =Pr{f=1}=1-py, (@.19)

that is, BPSK is used in combination with binary PPM where 0<p,,, <1 and 0< p,, <1. Note

that due to the fact that {e, } and { B, } are mutually independent this model does not cover the
case in which Q-BOPPM is used for the transmission of quaternary data streams in which @, and
B, are correlated.

In Figure 2-5 several PSD plots for different values of p, ., and p,, are shown. These plots

were obtained by evaluating Equations (2.9) to (2.13) in MATLAB®. The signal parameters are
N,=5,T,=50ns, I,=10ns, I =2 ns, Tg=1 ns. The periodic sequence {0 2 4 1 3} was used for
TH. The 4™ derivative Gaussian pulse was used for these plots (see Section 2.5) with approximate

duration of 0.4 ns. For this set of parameters A,. =1 as y.=5 and thus spectral lines can be
expected at 1/(T,A,,.) =20 MHz intervals.
Note how for p, ., =1/5 and p,,=1/2 the PSD plots in Figures 2-5a and 2-5b show a large

number of spectral lines spaced at 20 MHz intervals as predicted. However, some spectral lines are

eliminated due to nulls present in the absolute value of Equation (2.12) as seen in Figure 2-5b. The
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spectral lines in Figures 2-5a and 2-5b may cause interference to established communication
deployments and may limit the maximum transmit power of the UWB system in order to comply
with the emission masks imposed by regulatory bodies such as those introduced in Section 2.2.
This can be seen by noting that the maximum spectral line height in Figures 2-5a and 2-5b is about
11 dBm above the —41.3 dBm limit imposed by the FCC.
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Figure 2-5. Analytical PSDs for a TH-IR-based UWB signal using BPSK and binary PPM. The signal
parameters are N, =35, T;,=50ns, 7,= 10ns, T, =2 ns and Tg=1ns. The 4™ derivative Gaussian pulse
was used with duration T,, ~ 0.4 ns. The periodic sequence {0, 2, 4, 1, 3} was used for TH.

An improvement on the PSD’s characteristics is observed in Figures 2-5¢ and 2-5d for

Pan =1/2 and p,,=1/5. Note how for this case the spectral lines are completely eliminated
even when the PPM data stream has a biased p.m.f. ( py, =1/5). The spectral lines disappear due
to the BPSK data stream is perfectly random (p, ., =p,_,=1/2) and thus Equation (2.12)
becomes zero as |E{a}’=0 when Dot =P =1/2.

In order to better assess the effects of the modulating data streams in the PSD’s shape let us now

consider a non-modulated periodic pulse train with period T,, defined as

Xpo @ = Wt—AkT,,) @.15)
k=—0
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Using classic Fourier analysis the PSD of x,,,(f) can be found to be ([94])

S N =5 X WG 6~ | 2.16)

Per n=-w

Thus the PSD of a periodic pulse train consists of spectral lines appearing at multiples of the pulse

repetition frequency, PRF = 1/T,,, . The PSD of a periodic pulse train with pulse repetition period
T,

er =10 ns is shown in Figure 2-6. Note how this PSD consists of spectral lines spaced at

PRF = 1/T,,, = 100 MHz intervals.
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Figure 2-6. Analytical PSD of a periodic pulse train. The signal pulse repetition period is Tp,, = 10 ns. The 4*
derivative Gaussian pulse was used with duration 7, ~ 0.4 ns.
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Comparing Equation (2.16) with Equations (2.9) to (2.13) it can be seen that the introduction of
modulation and time hopping shapes the signal’s PSD in relation to the power spectrum of a non-
modulated periodic pulse train. That is, upon the introduction of modulation and TH some of the
power that otherwise would entirely be distributed over spectral lines (Equation (2.16)) is
transformed into a continuous PSD component (Equations (2.10) and (2.11)). In order to further see
this consider a binary PPM TH-IR-based UWB system employing a perfectly random TH sequence

(that is, the TH sequence is i.i.d. with uniform distribution) with ¢,, ,, uniformly distributed over

the set {0,. 1,2, 3, 4}. The PSD plots for this system are shown in Figure 2-7 for different values of
Py, (note for this case p, ,, =1 as BPSK is not considered).

By comparing Figure 2-7 with Figures 2-5a, 2-5b and 2-6 it can be seen that by assuming a
perfectly random (ideal) TH sequence the number of spectral lines in the PSD can be reduced.

Furthermore, note how for p,,=1/5 spectral lines appear at 500 MHz intervals (Figure 2-7a)
while for I’k,o =1/2 they appear at 1 GHz intervals (Figure 2-7b). This is an important observation

which implies that better PSD characteristics can be achieved when the binary PPM data stream is
perfectly random (that is, the data stream is an i.i.d sequence of binary random variables with

uniform distribution).
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Figure 2-7. Analytical PSDs for a TH-IR-based UWB system using binary PPM with perfectly random TH. The
signal parameters are N,, =5, T,=50ns, T,= 10 ns, T. =2 ns, Tg=1 ns and ¢y, uniformly distributed over the
set {0, 1,2, 3, 4}. The 4" derivative Gaussian pulse was used with duration T, ~ 0.4 ns.

Now consider a BPSK TH-IR-based UWB system employing a perfectly random TH sequence
with ¢,y ,, uniformly distributed over the set {0, 1, 2, 3, 4}. The PSD plots for different values of

D... are shown in Figure 2-8 (note for this case p,, =1 as PPM is not considered). Similar to the
previous example, spectral lines appear at 500 MHz intervals for p,, =1/5 (Figure 2-8a).

Nevertheless when p, ,, =1/2 the spectral lines are completely eliminated (Figure 2-8b) due to

|E{a} =0 as in Figures 2-5¢c and 2-5d.
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Figure 2-8. Analytical PSDs for a TH IR-based UWB system using BPSK with perfectly random TH. The
signal parameters are N, =5, T, =50ns, 7, = 10 ns, T, =2 ns, Tg= 1 ns and ¢y, uniformly distributed over the
set {0, 1,2, 3, 4}. The 4" derivative Gaussian pulse is used with duration T, ~ 0.4 ns.

The next section introduces some common spectral shaping mechanisms proposed for IR-based

UWB systems.
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2.5 Spectral Shaping Methods for IR-Based UWB
Signals

This section introduces the main spectral shaping mechanisms proposed for IR-based UWB
signals. We can classify current spectral shaping methods into the categories of pulse shape based

spectral shaping, TH code based spectral shaping and DS code based spectral shaping.

2.5.1 Pulse Shape Based Spectral Shaping Mechanisms for IR-Based
UWB Signals

From Equations (2.9) to (2.12) it can be seen that the pulse’s energy density spectrum (EDS),
|[W(f)I?, dictates the overall form acquired by the IR signal’s PSD. The basic waveforms used in

most of the original papers introducing IR-based UWB were the first and second order derivatives

of the Gaussian pulse, [6-8, 20]. The basic Gaussian pulse can be defined as

wg o () = —A=e 12 2.17)

o2

where o can be used to control the pulse duration. The Fourier transform of w; ,(¢) is

Wyo(f) = A V2= 12 (2.18)
Therefore the Fourier transform for the &™ order derivative of the Gaussian pulse will be
W, (f) = A(j2r f )k e eI’ 12 2.19)

and the time domain representation can be recursively obtained by using ([61])

Wo (D)= “:Tl W k-2 () =27 W54 () (2.20)
with the 1* derivative Gaussian pulse defined by
Wy () = A& 2 @.21)

Figure 2-9 shows time domain and EDS, | W, ,(f)[*, plots for the 1% to 5" order derivatives of the

Gaussian pulse. The FCC indoor spectral mask is plotted together with the EDS plots for
comparison purposes. It.can be seen from Figure 2-9b that the 1% and 2™ order derivatives of the
Gaussian pulse do not fit under the FCC’s proposed limits. In contrast the 4™ and 5™ order
derivative offer a better fit. ‘

There exist other pulse shapes and pulse shaping mechanisms proposed in the literature, [13, 14,
62-69]. Similar to the modulation schemes, the use of any particular pulse shape or pulse shaping
mechanism depends on the target application and design goals. For example, orthogonal pulses with
convenient characteristics for PSM have been proposed in [14, 64-66], pulse shaping mechanisms for
maximum spectral mask utilization have been devised in [13, 67] and pulse shaping mechanisms for
narrowband interference suppression have been introduced in [68, 69]. However, important PSD
characteristics such as the appearance and suppression of spectral lines depend on other variables

such as the modulation scheme employed and the use of TH and/or DS multiplication as
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exemplified in Section 2.4. So we see that once a particular pulse shape has been chosen, additional
spectral shaping mechanisms can be used to further improve the signal’s PSD characteristics.
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Figure 2-9. Pulse shape and EDS plots of the 1% to 5™ order derivatives of a Gaussian pulse. The value of &
was set such that all EDS plots reach its maximum value at 6.7 GHz.

It is worth mentioning that a specific pulse shape may be distorted by the antenna used in the
system and the channel, [163]. Therefore, even if we select a given pulse shape for specific spectral
shaping purposes, the radiated signal may show a different PSD due to these extra factors. Hence,
the effects of the antenna and channel should be accounted for when using pulse shape based

spectral shaping.

2.5.2 Time Hopping Code Based Spectral Shaping Mechanisms for
IR-Based UWB Signals

As in the previous case, from Equations (2.9) to (2.12) it can be seen that besides multiple
access purposes a pseudo-random (PR) time hopping (TH) sequence can be used to shape the PSD
of the IR-based UWB signal. In fact, the topic of spectral shaping of IR-based UWB signals
through time hopping has been previously addressed in [70-77]. These works analyse different
issues related to use of the TH code for spectral shaping purposes as explained next.

The effects of the time hopping code characteristics over the signal’s PSD are addressed in [71,
73] for TH-IR-based UWB systems. Similarly, the effects of the TH code design over the PSD
characteristics of M-ary code shift keying (MCSK) IR-based UWB signals are investigated in [77].
All these works address the topic of spectral line elimination/attenuation through proper design of
the TH code.

The effectiveness of TH code-based spectral shaping can be observed by comparing the PSD
plot shown in Figure 2-6, corresponding to a periodic signal, with the PSD plots shown in
Figure 2-7 where perfectly random TH was assumed. In particular note how several spectral lines
were eliminated when the TH sequence was assumed to be perfectly random. Nevertheless, as
previously mentioned in Section 1.2, the use of perfectly random TH is an idealisation that in

practice is addressed by generating a pseudo-random (PR) TH sequence with extremely long
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period. Bearing this in mind, pseudo-chaotic time hopping (PCTH), [70], and fluid time hopping,
[76], have been proposed to generate TH sequences with improved spectral line elimination
capabilities. Shortly, fluid time hopping uses real-valued TH codes instead of traditional discrete-
valued codes to perform spectral shaping, [76]. The real-valued TH codes are generated by
sampling a real-valued signal (or function) at predefined intervals and then using these samples to
determine the pulse position on the time axis, [76]. In contrast, PCTH uses the symbolic dynamics
of chaotic maps to generate aperiodic random-like TH sequences, [70]. The PCTH scheme will be
discussed with more detail in Section 2.5.5.

Besides eliminating spectral lines, the TH code can be used to produce notches in the PSD. This
approach has been particularly followed in [72, 74, 75] where different algorithms are proposed for

the construction of TH codes generating spectral notches in specific frequency bands of the PSD.

2.5.3 Direct Sequence Code Based Spectral Shaping Mechanisms for IR-
Based UWB Signals

As noted in Figures 2-7 and 2-8a some spectral lines remain in the PSD even with the use of
perfectly random TH. However, when BPSK is used and the modulating data stream is perfectly

random (that is p, ., = p, _, =1/2) the spectral lines are eliminated as seen in Figures 2-5c, 2-5d

and 2-8b. As previously explained this is due to the multiplicative term | E{a}|* in Equation (2.12)
becomes zero when p, ., =p, , =1/2, and thus the PSD’s discrete part, S,,(f), becomes zero.

Bearing this in mind, the authors in [78-81] proposed the use of polarity randomisation for spectral
shaping of TH IR UWB signals.

Basically the polarity randomisation scheme proposes the multiplication of each pulse (pulse
based polarity randomisation) or each PAM/PPM symbol (symbol based polarity randomisation),
by a perfectly random (ideal) direct sequence (DS) {a,} (where a, €{-1,1}). Thus this scheme
assumes that {a,} is a sequence of i.i.d. random variables with uniform distribution (that is
p;'_l = p, . =1/2) independent of the PAM, {a,}, and PPM, { B}, data streams. Using this
technique the PAM symbol in Equation (2.2) becomes @', =a,a, where @, is the original PAM
data symbol and a, is a uniform distributed random variable over the set {1, +1}. Hence the mean
of the PAM symbol stream becomes

E{a'} = E{aa} = E{a}E{a} =0 (2.22)
since E{a} =0 . Therefore the spectral lines are eliminated as S,(f)=0 (Equation (2.12)) due to
|E{e'}'=0.

Generating a DS sequence with infinite period is an idealisation which in practice is addressed
by generating a PR-DS code with an extremely long period. However, as it will be shown in

Chapter 6, if the period of the PR-DS code is relatively short the height of the spectral lines may be

reduced but the actual number of spectral lines in the PSD may be simultaneously increased.
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Note that even though the pulse or symbol polarities (as driven by the DS code) can be
discarded when using PPM, [81], the same can not be done for PAM, BOPPM or any other
modulation format conveying information in the pulse amplitude. Therefore acquisition and
synchronisation of the DS code in the receiver side is required for these modulation schemes, [95].
Nevertheless the acquisition and synchronisation of extremely long DS codes becomes a challenge
for IR-based UWB systems in terms of large acquisition times and complexity of the acquisition
system, [96-98]. Furthermore, [96-98] assume periodic DS codes while dealing with the acquisition
problem. Thus the use of polarity randomisation with extremely long period PR-DS sequences may

complicate the receiver design, [81].

2.5.4 Pseudo-Chaotic Time Hopping for IR-Based UWB

As previously mentioned, pseudo-chaotic time hopping (PCTH) uses the symbolic dynamics of
chaotic maps to generate aperiodic random-like TH sequences, [70]. In particular the PCTH
scheme introduces encoders that resemble the dynamics of the Bernoulli and tent maps when its
input consists of i.i.d. binary symbols with uniform distribution. The basic structure of the PCTH

encoder is shown in Figure 2-10.

Compression
Data \ % Zn d Y Shift register with L
Source . e |__|v_| memory elements
Scrambling Ty
2 —
Modified Gray 3| [Binary to M-ary w(t=IT, - BT,)
. ° PPM Mapper and
Code Based Mapping | o
- Modulator

(optional) s . M=k

Figure 2-10. Basic block diagram of the PCTH transmitter. M-ary PPM is used as the modulation format with
M =log, (L) where L is the number of memory elements in the shift register.

The compression and scrambling block in Figure 2-10 is needed in order to feed the shift
register with a uniform distributed i.i.d. binary stream. After compression and scrambling each bit,
Vs, is fed to the least significant bit (LSB) position of a shift register with L memory elements. The
PCTH system state, 6, at the /" bit interval is thus defined as

L
6,-08,6,,..8,, =26, (2.23)
i=1

where 6, € {0,1} and 6, is an approximation to the Bernoulli shift map [70]. The modified Gray

code based mapper is introduced in order to implement the tent map. In some particular cases this
may help to improve the system’s BER as well. For Bernoulli shift map PCTH realisations the

modified Gray mapper is not used. The shift register content, 6,,6,,..6,, , (or its modified Gray

code based representation) is used to drive the PPM modulator, that is

L-1
B=220. (2.24)
i=0
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and therefore the pulse can occupy any of M =2" different positions (M-ary PPM). Finally the
mapper and modulator generate the pulse

w(t—IT, - B,T,) : (2.25)
corresponding to the /™ bit interval and where the PPM modulation index is set to T, »=11M.

Note in PCTH all time hopping is driven by the encoder.

The PCTH scheme can also be described by a Markov chain model with M =2" states, where
each state is related to one M-ary PPM symbol. In [70] it was shown that if the input to the shift
register consists of uniform distributed i.i.d. binary symbols then the steady state probabilities, 7,
of the PCTH Markov chain are equal to

T =1/M; i=12,..M (2.26)

Therefore in steady state the PCTH scheme generates a sequence of M-ary symbols, f,, whose
statistics resemble those of a perfectly random TH sequence. Thus by setting 7, =T,/ M several

spectral lines can be eliminated in a similar fashion to that shown in Figure 2-7 where a perfectly
random sequence was assumed.

It is important to note that in the original PCTH system model no additional time hopping or
direct sequence multiplication was considered. Hence in [70] the PSD of the PCTH signal is
obtained by using the results presented in [99] for the spectral analysis of synchronous Markov-
driven signals. An extended analysis of the PCTH Markov chain model and its respective PSD is
addressed in Chapter 4.

Finally on this topic, it is worth mentioning that the PCTH scheme can be interpreted as a form
of convolutional coding. Particularly, in [70] it was considered that PCTH can be seen as a rate 1/L
binary convolutional encoder due to each input bit causes an output of L bits. Moreover, this
interpretation implies that maximum likelihood decoding using the Viterbi algorithm is feasible as

a mean to recover the original data.

2.5.5 Summary of the Spectral Shaping Mechanisms for IR-Based UWB
Signals

To finalize this section Table 2-3 (next page) presents a summary of the advantages and
disadvantages of each spectral shaping method. The comments regarding the spectral line
elimination capabilities of each scheme were made taking as a reference the spectral line content of

a periodic signal (see Section 2.4).
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Table 2-3. A comparison of spectral shaping mechanisms for IR-based UWB signals.
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- The pulse EDS can be - The pulse shape may be distorted
The pulse ener designed for maximum by the antenna and channel. Thus
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Based Spectral | (EDS) determines -
. implement orthogonal EDS.
Shaping the overall PSD ionalli .
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) - Can be used to produce eliminate spectral lines in the
. P
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Based Spectral lines or er?erate spectral lines can be the transmitter and receiver
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2.6 Application of Convolutional Codes in IR-Based
UWB Systems

As previously mentioned, in most of the IR-based UWB approaches several pulses are normally
used to transmit one data symbol. This is because of the restrictions imposed over the maximum
allowed transmit power. This repetition scheme increases the total symbol power and thus
improves the system’s bit error rate (BER) performance.

Previously, references [21, 23, 28] have pointed out that such a pulse repetition scheme can be
interpreted as a simple repetition block coded system. As an example of this let us consider a basic
PPM TH-IR-based UWB system transmitting N,, pulses per data symbol as defined in Section 2.3.

A block diagram of a possible implementation for this system is shown in Figure 2-11.

Data \ V' | RepetitionBlock | % PPM TH-IR Random or Pseudo X (1)
Source Code UWB Modulator Random TH

Figure 2-11. Block diagram of an IR-based UWB system where the pulse repetition scheme is interpreted as
repetition block code. z, is a code vector with N, elements all equal to y, .

In Figure 2-11 the repetition block code is used to map the input data symbol y, into N,

consecutive pulses. Thus z, =[y,, y,,...,y,] is a code vector with N,, elements all equal to y,. Then

one pulse is generated for each element of z, and the transmitted signal would be

o Ny-l
xp () = Z Z wr (=11, —kT, —ciy 4T, = y/Tp) (2.27)
I=—0 k=0

where T, =N,T, is the input symbol time equal to the code vector time. Note Equation (2.27)

defines a typical PPM TH-IR-based UWB signal transmitting N,, pulses per data symbol. Therefore
in the following discussion and chapters the terms “non-coded” and “non-convolutionally coded”
IR-based UWB will be used for IR-based UWB systems employing the pulse repetition/repetition
block code scheme.

From the coding theory point of view, the repetition block code is not as good as other coding
schemes, [83, 100]. Therefore it is possible to improve the system’s BER without increasing the
transmit power by replacing the “repetition block code” with a better code. One easy way to
achieve this is through the use of convolutional codes and in fact this idea has been proposed in
several papers in the UWB literature, [21, 22, 24, 25, 27, 30-32]. Thus in the convolutionally coded
scheme the repetition block code in Figure 2-11 is replaced by a rate 1/N,, convolutional encoder as
shown in Figure 2-12,

In a way similar to the repetition block code in Figure 2-11, the rate 1/N,, convolutional encoder

in Figure 2-12 generates a code vector z, =[z{?,z?,...,z">™] with N,, code symbols, z*’, per
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input symbol, y,. However, in this case each element, z{*’, of z, is not necessarily equal to the

input symbol, y,. This is explained in Section 2.7. Therefore the transmitted signal now becomes
w Ny-1
X (O=D > wy(~IT,—kT, -y, ,T. ~2zPT,) , (2.28)

I=—0 k=0

where again the input symbol time T, = N,T, is equal to the code vector time.

Data \ Vi C&fgllﬁg‘; " L PPM TH-IR .| Random or Pseudo X (1)
Source Encoder UWB Modulator Random TH

Figure 2-12. Block diagram of a convolutionally coded IR-based UWB system. z, is a code vector with N,,

elements not necessarily equal to y,.

In Figure 2-13 typical binary PPM TH-IR-based UWB signals for the pulse repetition and

convolutionally coded schemes are shown (where for clarity ¢, ,, =0). It can be seen in this

figure that the introduction of the convolutional encoder changes the signal mapping used for the

transmission of the data stream { y, }.
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TVT w1

7}+Tp
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a) Typical signal generated by the repetition block coded system of Figure 2-11 as
described by Equation (2.27)
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b) Typical signal generated by the convolutionally coded system of Figure 2-12 as
described by Equation (2.28)

Figure 2-13. Typical binary PPM TH-IR-based UWB signals for the systems shown in Figures 2-11 and 2-12.
For clarity ¢,y ,, =0 in these signals.
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The authors in [21] have shown that for binary PPM TH-IR-based UWB, a system using
convolutional codes can outperform a system using the traditional pulse repetition scheme in terms
of BER and/or number of supported users without increasing the transmitted power. Similar results
for other modulation schemes have been reported in [22, 24, 25, 27, 31, 32, 35]. Particularly, the
use of superorthogonal convolutional codes, [82], has been proposed in [21, 25, 32] for binary PPM
IR-based UWB, in [24, 27, 30] for PAM IR-based UWB, and in [35] for PSM IR-based UWB.
Well known binary convolutional encoders such as superorthogonal codes, [82], maximum free

distance (MFD) codes, [83], and rate compatible punctured convolutional codes, [84], have been
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used in [22, 33, 37, 38] for M-ary PPM IR-based UWB. Orthogonal convolutional coded
modulation schemes for IR-based UWB have been analysed in [31] while a biorthogonal
convolutional coded modulated scheme has been proposed in [39]. Finally, the use of turbo codes
and turbo-like decoding schemes for IR-based UWB has been addressed in [23, 26, 28, 29, 34, 36].
All these works have shown that the use of convolutional codes and related turbo codes in IR-based
UWB systems offer great benefits in terms of BER performance when compared with non-coded
pulse repetition schemes. It is worth mentioning that the IEEE 802.15.4a draft specification for
Low-Rate Wireless Personal Area Networks considers the use of a rate 1/2 systematic
convolutional encoder in its forward error correction (FEC) layer, [40]. As well, the IEEE study
group 802.15.3a considered the use of convolutional codes for FEC purposes, [19].

Most of the previously mentioned papers (dealing with the application of convolutional codes in
IR-based UWB systems) focus on BER analysis without considering the effects of the convolutional
encoder over the signal’s PSD. The only two exceptions are the schemes proposed in [33] and [37]
where the use of binary MFD encoders combined with M-ary PPM is proposed. The scheme in [33]

uses constraint length X =log,(M), rate 1/K MFD binary convolutional encoders with interleaving.
Besides, the use of constraint length K =log,(M)+1, rate 1/log,(AM) MFD binary convolutional

encoders without interleaving is proposed in [37]. Both schemes assume uniform distributed i.i.d.
data streams at the encoder input. Similar to the PCTH scheme, [70], the output of the interleaver
([33])/encoder ([37]) is set to drive all time hopping without extra PR-TH or DS multiplication.
Under these constraints it is shown in [33] and [37] that both schemes provide enhanced PSD
characteristics similar to those obtained with PCTH. Nevertheless it is worth noting that the scheme
proposed in [33] needs the interleaver, since without it the number of spectral lines in the signal’s
PSD increases. The spectral analysis presented in [33] was performed using simulation, while [37]
uses a simplified model for the signal’s spectral analysis which is based on the assumption of
uniform distributed i.i.d. streams at the encoder output (that is the correlation introduced by the
convolutional encoders is not considered). As well, neither [33] nor [37] consider the use of other
variables such as PAM, TH, DS, timing jitter and attenuation. Finally it is important to mention that
the binary convolutional encoders used in these works were not specifically designed for M-ary
signalling. Thus, there exists the possibility of improving the BER while achieving similar PSD
characteristics by properly designing binary to M-ary convolutional encoders.

A review of basic concepts related to convolutional codes needed for a better understanding of
this work will be provided in the next section. Besides the particular system model used in this

thesis for convolutional coded IR-based UWB systems is introduced in Chapter 3.

2.7 Convolutional Codes Basics

Convolutional codes are widely used in digital communication systems to improve bit error

rates, [83, 100-104]. In effect they are used to protect the transmitted digital data from channel
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induced errors. Therefore it is likely that several practical UWB systems will include some sort of
convolutional coding for forward error correction (FEC) purposes, [21, 22, 24, 25, 27, 30, 31, 32,
40], as explained in the previous section.

This section introduces some basic definitions and results related to convolutional coding that

will be used throughout this thesis.

2.7.1 Basic Representations for Convolutional Encoders

There exist two main parameters related to convolutional encoders. These are the code rate and
the total encoder memory. The code rate, v/x, defines the number of code symbols, x, that the
encoder generates per v input symbols. The total encoder memory, v, is the number of memory
elements needed to generate the encoder’s output. The total encoder memory provides, as well, a
measure of decoding complexity, [100, 101, 104].

A generic diagram for a rate v/k convolutional encoder is shown in Figure 2-14. Note the
encoder is a sequential circuit consisting of v inputs, v' shift registers with v; memory elements
each, x outputs and several sum points. At each encoder time v source symbols are fed at once into
the encoder and x code symbols are simultaneously produced through a set of linear operations
over the current input and the shift registers’ content. The outputs and linear operations are not

restricted to be binary, allowing for binary to M-ary encoding operations.
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_.Qp...

Figure 2-14. Generic diagram of a convolutional encoder.

Note in Figure 2-14 that although all the shift registers have a feedback element this is not
mandatory as shown in Figure 2-15a. When no feedback is present the encoder will be referred as a
feedforward encoder. When feedback is present then the encoder will be referred as a recursive
encoder. If the input sequence appears completely unchanged at the output as in Figure 2-15b then

the encoder is referred as a systematic encoder which can be itself feedforward or recursive.
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Figure 2-15. Examples of binary feedforward and recursive systematic convolutional encoders.

Let v be the total number of memory elements used in the encoder, that is
v-1
v= Zv,. (2.29)
i=0
This is the definition of overall constraint length in [103] and total encoder memory in [100]. The
encoder state is usually defined as the content of its v memory elements. Therefore an encoder with
binary input symbols can assume up to 2" different states. Another quantity of interest is the
encoder memory (encoder memory order in [100]) defined as

m=maxv, (2.30)

that is the length of the largest shift register.
The relationship between the encoder’s inputs and outputs for a rate v/x convolutional encoder

can be described by the transfer function matrix, [100], (generator matrix in [103]) defined as

g (D) g’(D) .. g (D)

G(D)= g,“”:(D) g,‘”:(D) g,‘“':’(D)

231)
g (D) gl (D) .. g&5(D)
where each element, g’ (D), will be referred as a generator. Every single generator has the form

() ) () pvi
a5 +a7D+...+a D"
1+5,D+...+5,, D"

(D)= (2.32)

where “D” is the delay operator . As shown in Figure 2-16, the numerator in Equation (2.32)
describes the feedforward connections from shift register i to output j, and the denominator

describes the feedback connections of shift register i.

f) (/) )
o |4y |G

y‘” se

b, 1b. b

Ol

Figure 2-16. Basic structure of a convolutional encoder.

For binary to binary encoders a)’ and b,, take values from the binary Galois field (GF(2)) with

elements {0, 1}. Besides, for binary to M-ary encoders b, takes values from GF(2) while o}
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takes values from GF(M), [105, 106]. In the following the binary to binary encoders will be simply

referred as binary encoders.

For feedforward encoders the denominator of g’(D) equals 1 and G(D) is normally referred
as a polynomial generator matrix. In the following the term “rational generator” will be used for
generators, g)(D), with polynomial denominators whereas the term “generator polynomial” will

be used for generators with denominator equal to 1. Note for polynomial transfer function matrices

(generator matrices) it is customary to represent the generator polynomials in binary or octal
notation, e.g. 1+ D+ D* = 1101, = 155.
When the input sequence, y* =y 3,y,...y,..., to shift register i is expressed in terms of the
delay operator as
y2(D)=y, +»D+y,D* +..+y, D" +... (2.33)
the output, z’, can be obtained by
(D)= y"(D)g{” (D) (2.34)

assuming z) only has connections to shift register i. Therefore the encoding operation for a rate
v/x convolutional code can be represented as

z(D)=y(D)G(D) (2.35)
where y(D)=[y”(D),y"(D),....y*(D)] and z(D)=[z(D),z"(D),...,z*™(D)]. Note G(D)
defines a one-to-one linear mapping from the input (information) sequence represented by y(D),

to the code sequence represented by z(D), [85, 100, 102, 103].

It is important to recall that the convolutional code is the set of all possible code sequences
(codewords) generated from the linear mapping represented by Equation (2.35). Besides, the
convolutional encoder is the sequential circuit realization of the linear mapping with specific
transfer function matrix (generator matrix) G(D). Therefore different transfer function matrices
(generator matrices) with different input (information) to codeword mappings can generate the
same convolutional code, [85, 103].

There exist other description methods for convolutional codes such as the binary/M-ary
generator matrices, tree diagrams, trellis diagrams and state transition diagrams, [83, 100-103];
however it is necessary to clarify the use of some of these terms throughout this thesis. For instance
the term “generator matrix” is used in [102, 103] to designate both the “binary/M-ary generator
matrix” and the “transfer function matrix” as defined in [100, 101, 107]. In order to avoid
confusion, the term “binary/M-ary generator matrix” will be explicitly used for matrix
representations which do not use the delay operator “D” and whose elements are taken from a
binary or M-ary alphabet. Besides, the term “transfer function matrix” and “rational/polynomial
generator matrix” will be used for matrices whose elements consists of rational or polynomial
expressions of the form defined in Equation (2.32). The term “total encoder memory” will be used

to refer v as defined in Equation (2.29) instead of “overall constraint length”. Similarly the term
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“encoder memory” will be used to designate m in Equation (2.30) instead of the term “encoder
memory order”. Finally, for rate 1/x encoders the constraint length, K, will be defined as
K=v+l=m+l (2.36)

The use of other terms will be set during the subsequent discussion.

2.7.2 Schematic Representations for Convolutional Encoders

Two schematics representations will be of interest for the rest of this thesis: the state transition
diagrams and the trellis diagram.

As previously mentioned, a convolutional encoder is a sequential circuit with ¢ inputs, x outputs
and v memory elements. The state transition diagram is thus obtained, [83, 100-103], by defining
the encoder state as the content of its v memory elements with state transitions caused by the

current input vector (consisting of v input symbols), y, =[y{?,,...,y{*™], where [ is the time

index. Therefore the state transition diagram will have 2" states and there will be 2 state

transitions (branches) from/to each state. Note the current encoder output vector (consisting of x

code symbols), z, =[z?,z",...,z*™"], is a function of both the current encoder state and the

current input. As an example the state transition diagram of the binary encoder depicted in Figure
2-15a, with transfer function matrix given by

G(D)=[1+D+D’ 1+D+D*+D’] (2.37)
(or (15, 17)s in octal form), is shown in Figure 2-17. The states are labelled with the possible binary
content of the 3 memory cells where by convention, and unless otherwise stated, the content of the
leftmost memory cell is assumed to be most significant bit (MSB) of the binary representation.
Each state transition (branch) is labelled following the format y/z®2", indicating the input causing
the transition altogether with its respective output. Note from the state transition diagram and
Figure 2-14 that a convolutional encoder is in essence a finite state sequential machine (FSSM),

[101], as will be further shown in Chapter 3.

Figure 2-17. State transition diagram for the rate 1/2, v =m = 3, binary feedforward encoder (15, 17)s.

The second graphical representation of interest for this work is that of the trellis diagrams. A
trellis diagram can be interpreted as an expansion of the state transition diagram over time.
Therefore, the trellis diagrams provide a graphical representation of the paths defined by the state
transitions as produced when specific input sequences are fed to the encoder. For every path a

specific codeword is generated and therefore each state transition (branch) has an encoder output

37




Chapter 2 Theoretical Background

vector (consisting of x code symbols) associated to it. As an example the trellis diagram
corresponding to the encoder defined by Equation (2.37) is shown in Figure 2-18. In this figure the
states are labelled as g, <> (000), g, ©&(001),..., g, & (111), where again the content of the

leftmost memory cell is regarded to be the MSB. As well, each branch is labelled with the input

causing the transition and the output produced by such transition as 202

9@
g @
9@
794 @

e

1= =1 1=2
Figure 2-18. Trellis diagram for the rate 1/2, v =m = 3, binary feedforward encoder (15, 17)s.

In Figure 2-18 it is assumed that the encoder starts in state gy, and therefore only transitions
emanating from this node are possible at time /=0. By time /=m =3 branches are emanating
from all nodes with two branches coming out and two branches going into each node by time
[ =4. As previously mentioned, a particular input sequence will define a specific path through the
trellis and thus a specific sequence of code symbols (formed by several specific encoder output
vectors) will be generated. Hence, following a specific path through the trellis will define a specific

codeword. For example, the input sequence y={1,1,0,0,0,...} defines the path highlighted with

bold lines in Figure 2-18 and the code sequence (codeword) z={11,00,10,10,11,...} is generated.

2.7.3 Performance Related Parameters for Convolutional Codes

Before introducing the performance parameters for convolutional codes relevant to this thesis, it
is necessary to define the Hamming weight of a sequence and the Hamming distance between
sequences. A sequence’s Hamming weight is defined as the number of non-zero symbols in such
sequence. In the case of binary sequences the Hamming weight is just the number of “1°s” in the
sequence. The Hamming distance between two sequences of the same length is defined as the
number of positions in which both sequences differ. It is important to mention that for linear
codes, such as the convolutional codes, the Hamming distance between codewords is effectively a
metric, [100, 103].

There exists several distance measures for convolutional codes/encoders such as the column
distance, the distance profile, the minimum distance, the free distance and the row distance, [100,

101, 103]. Of all these measures the most important for the purposes of this thesis is the code free
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distance, dse.. This is due to d.. is one of the most important performance parameters when using
convolutional codes with binary antipodal or M-ary orthogonal signalling and maximum likelihood
decoding (such as that achieved with the Viterbi algorithm), [83, 100-103, 105-107]. The free
distance of a convolutional code is defined as the minimum Hamming distance between any two
codewords, that is:

d;, =min{d,,,. (2,2):y #y'} (2.38)
where z and z' are two valid codewords (code sequences) corresponding to the information

sequences y and y'; and dy,mn stands for Hamming distance. It is important to mention that due to

the convolutional codes are linear codes, the free distance of a convolutional code is equivalent to
the minimum Hamming weight of any valid codeword generated by a path starting and finishing in
the zero state of the trellis. For reasons that will become evident in the following chapters, the term
dsee Will be exclusively used to refer the free distance of binary convolutional codes. Besides, for
binary to M-ary convolutional codes the term dyp.. Will be used. This is due to for this kind of
codes the free distance is defined in terms of the M-ary Hamming weight between codewords.
There is an infinite number of valid codewords (code sequences) in a convolutional code
generated by trellis paths which diverge from the zero state and the all-zeros path at some point and
later remerge to them without leaving again, [83, 100-103]. Therefore there may be more than one
of such paths generating a codeword with Hamming weight equal to dje/dpgs.. and an infinite

number of such paths generating codewords with Hamming weight larger than dj../dp.. Counting

the number of such paths producing codewords with specific Hamming weight d ree +1 defines the

sequence

{4

ity =012, (2.39)
which is called the distance spectrum of the code. Besides, adding the total Hamming weight of all

information sequences (that is the total number of nonzero information symbols) driving paths with

codeword Hamming weight equal to d ;, , +i defines another sequence
{By, b =012, (2.40)

commonly called information weight spectrum (IWS). It is worth mentioning that while the free
distance is code specific, the distance spectrum and information weight spectrum is encoder
specific, [100, 103].

The free distance, distance spectrum and information weight spectrum are important because
they can be used to obtain upper bounds for the first event error probability and bit error rates
achievable with specific convolutional encoders, [83, 100-103, 105-107]. Therefore these distance
parameters can be effectively used as metrics to compare different encoders.

An important characteristic of convolutional encoders is that the free distance, distance
spectrum, information weight spectrum and related distance properties do not change when
interchanging the order of the columns in the transfer function matrix G(D), [83, 100-103, 105,
107]. This can be readily inferred from Figures 2-14, 2-17 and 2-18 where it can be seen that
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changing the output vector order from z, =[z{”,z",...,2*™"] to z, =[z"™",z?,...,z*™] (or any

other permutation) does not affect its Hamming weight. As consequence the output Hamming
weight associated to every branch is not altered by interchanging columns in G(D).

Calculation of the free distance, distance spectrum and information weight spectrum can be
done analytically by splitting the zero state of the state transition diagram into an “initial” and
“final” states and then computing the generating function of the resulting signal flow graph, [83,
100-103]. Nevertheless, excluding some particular cases such as Viterbi’s orthogonal and
superorthogonal codes, [82], the signal flow graph approach becomes impractical for convolutional
encoders with medium to large total encoder memory, v. Therefore, several computer algorithms
for free distance, distance spectrum and information weight spectrum calculation have been
developed over the years, [100, 103, 108]. In particular the FAST algorithm proposed by Cedervall
and Johannesson, [103, 108], is the most relevant for the purposes of this thesis.

Finally it is important to mention that there exist convolutional encoders that generate an output
sequence with finite Hamming weight even when the input sequence has infinite Hamming weight.
Such encoders are called catastrophic due to a finite number of channel errors can cause an infinite
number of decoding errors, [83, 100-103]. An easy way to identify a catastrophic encoder is
through its state transition diagram which will have a closed loop (not necessarily to the same state)

with non-zero input Hamming weight and zero output Hamming weight [83, 100, 101].

2.7.4 Union Bounds for Error Probabilities Achieved with Convolutional
Coding

As previously mentioned the free distance, distance spectrum and information weight spectrum
are used in the calculation of upper bounds for the bit and first event error probabilities achieved
when using specific convolutional encoders. As well the kind of modulation (signalling) used by
the system and the particular channel will affect these error probabilities. This work mainly deals
with binary antipodal signalling, quaternary biorthogonal signalling and M-ary orthogonal
signalling (such as orthogonal PPM). Therefore an upper bound on the bit error probability
achieved with binary and binary to M-ary convolutional encoders for output symmetric memoryless
channels can be obtained as ([83, 100-103, 105-107]),

o

B < > B,R(d) (2.41)

d=d e
where P,(d) is the pairwise error probability between two codewords (code sequences) with

Hamming distance d (that is two codewords differing in exactly d positions). Similarly, the code

first event error probability is upper bounded by

3

P< ) A4,P(d) (2.42)

e
d=d free

The form acquired by F,(d) will depend on the kind of signalling and detector used in the system

40




Chapter 2 Theoretical Background

and its evaluation for each particular case relevant for this thesis will be addressed in the following
chapters.

From Equation (2.41) it is readily seen that for convolutional encoders with the same rate and
total encoder memory, v, a good design strategy consists of finding the encoder with the largest free

distance and minimum {By, v} In fact maximising the free distance and optimizing the

information weight spectrum has been the main criteria used in works dealing with the search of
good convolutional encoders such as [105-107, 109-112]. These encoders are usually referred as

maximum free distance (MFD) and optimum distance spectrum (ODS) codes.

2.7.5 Branch Metrics and Maximum Likelihood Decoding for
Convolutional Codes

In this work it is assumed that the channel used for the transmission is memoryless and that
decoding is performed by means of the Viterbi algorithm. These assumptions are made to enable a
straightforward BER performance comparison between the new convolutional codes reported in
this thesis and the BER performance of convolutional codes previously reported in the literature,
[83, 100-103, 105-107, 109-112]. Note the Viterbi algorithm is a maximum likelihood (ML)
decoding technique, [83, 100-103].

Consider the system presented in Figure 2-19 where the data source produces a length N

information sequence ¥ ={y,,¥,»->¥y1} = {7 re0s Y sers Ve V") which defines a path

generating the code sequence z={z,,z,,....Zy_} = {z\”,.., 20" ™,..., 282, ..., 247} when fed to the

convolutional encoder. Next z is transmitted over a memoryless noisy channel (using some specific
modulation  format) and  demodulated to  produce the received  sequence

(x-1) (0)

(Dt O kDY . The received sequence, r, is then used by the

r {r09l~], ,rN ]}
Viterbi decoder to produce an estimate, z', of the transmitted sequence z and an estimate, y', of

the information sequence, y. Since the Viterbi algorithm is a ML decoder it selects z' such that the

conditional probability density function (probability mass function for discrete channels) g(r|z")

is maximized, [83, 100, 101]. As the channel is assumed to be memoryless we have

N-1 x-1

glr|z)= Hg(r lz)=TT11e¢"12 (2.43)
i=0 j=0
or taking the logarithm
N-l k-1
log(g(r|zY)) = 2 log(g(r; 12/ )) =) 3" log(g(r” |z'")) (244)
i=0 j=0

which is known as the log likelihood function, [83, 100, 101]. Note maximizing Equation (2.43) is

equivalent to maximizing Equation (2.44).
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Figure 2-19. Generic block diagram of a convolutionally coded system.

Since log(g(r|z") ) depends on z' and z' itself defines a specific path in the trellis, the quantity

log(g(r|z"))=PM(r|z") is referred as a path metric. Note z' is an encoder output vector
associated to a specific branch in the path related to z', therefore log(g(r,|z'))=BM(r,|z')) is

usually called branch metric. Similarly the terms log(g(r” | 2'?))=SM(r"” | z""’) are normally
referred as symbol metrics. Using this notation a partial path metric at time / in the trellis can be
defined for z' as

1

PM,(r|z) =) BM(r, |2") (2.45)

i=0
that is, PM,(r|z") is the partial path metric accumulated when transversing the first / branches of
path z'.

The concept of path metric, branch metric, symbol metric and partial branch metric are
important when performing ML through the Viterbi algorithm. In short the Viterbi algorithm can
be resumed as follows ([83, 100, 101]):

1. Assuming the encoder starts in the zero state, gy, at time / = 0, set the metric in this state to
be equal to 0.
2. For every state (node) in the trellis at time / + 1, calculate the partial path metrics for every

branch entering the node by adding the corresponding branch metric, BM(r,,,|z',,,), to

the respective surviving partial path metric, PM,(r|z"), assigned to each state at time /.

3. Compare all the path metrics entering a given state and store the path with the largest
metric, altogether with the respective path metric, while deleting the other paths. Do this
for all states in the trellis such that every state will be assigned a surviving partial path and
partial path metric, PM,,,(r|z"). Ties are solved by selecting a path at random.

4. If the end of the trellis has not been reached, increase / and go back to step 2. Otherwise
find the state with the largest metric and select its respective path and associated code
sequence as the decoded codeword. The information sequence, y', associated to the
decoded codeword, z', is then the decoded information sequence.

The form acquired by BM(r,|z';) depends on the way the received sequence r is fed to the
Viterbi decoder. Furthermore, the selection of an adequate metric is important because of the form
acquired by the pairwise error probability F,(d). Hence, the bit error probability depends on the

symbol and branch metrics used, [83, 100, 101]. As an example consider a binary convolutional

encoder is used in a system employing binary antipodal signalling over an additive white Gaussian
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noise (AWGN) channel with two sided power spectral density Ny/2. If the demodulator is able to

provide soft decisions to the decoder, that is

rP =xDen? = JE 2z -1)+n? (2.46)

where \/E, is the signal energy and n” is a Gaussian random variable with variance ¢* =N, /2,

s

then
sr12) = [ et (247)
iz j=0 TN,
and
N-1 x-1
In(g(rizN =Y Y {~-In(zN,)- (" -JE, (2z'P-1))*/N,} (2.48)
: i=0 j=0

By discarding terms common to all paths in Equation (2.48) we obtain

N-1 x-1
PM(r|z)=) > @z~ (2.49)

i=0 j=0

and therefore the branch metric is given by
x-] " 5
BM(r;|z') =) rP(2z'-1) (2.50)
e
When using Equation (2.50) as the branch metric in the Viterbi algorithm the decoder is usually
referred as soft Viterbi decoder (SVD). Note maximising Equations (2.48) and (2.49) is equivalent

to finding the path/codeword, z', which minimises the squared Euclidean distance,

A (X7 =5 S (9 - JE, 229 -1y 2.51)
i-0 j=0

If instead of providing soft decisions, the decoder makes a “hard” decision on the received
symbol before feeding the Viterbi decoder, then the channel becomes a binary symmetric channel

(BSC) with transition probabilities |
Pr{r? £z9}=p and Pr{rV =z"}=1-p (2.52)

and thus ([83, 100, 101])

log(g(r|z%) =log(Pr[r|z']) = dp,, (r,z)log 5 + N log(1- p) (2.53)
If p<1/2, then log(p/(1- p)) <0 and maximising Equation (2.53) is equivalent to minimising the

Hamming distance. If the Hamming distance is used as the path metric, then the Viterbi algorithm
must be modified such that the paths with the smallest partial Hamming distances are saved while

discarding the rest. Therefore the branch and partial path metrics are given by
x-1 1
BM(,12') = Y dyomn(r",2'") and PM,(r|2) = dygnn (1,2) = ), BM(5; | 2}) (2.54)
- T j=0 i=0 -

respectively and the hard Viterbi decoder (HVD) must find the path, z', with the smallest

Hamming distance to the received vector r.
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2.7.6 Representation Format for Binary to M-ary Convolutional
Encoders for M-ary Orthogonal Signalling

It will be useful to define the representation format used for binary to M-ary encoders. Unless
otherwise stated, it will be assumed that the binary to M-ary convolutional encoders considered in
this thesis will be used with M-ary orthogonal signalling. As well for these encoders the rate will be
defined in terms of the number of M-ary symbols produced per each encoder input. For clarity
assume M =2" and. feedforward encoders. Then there exist two basic representations
(implementations) for binary to M-ary convolutional encoders as depicted in Figures 2-20 and 2-21

for rate 1 encoders.

GF(2")
adder
M-ary
output
a, q a, a, M= 2n
binary n
input see a, eGF(2")
N J
g

v memory locations

Figure 2-20. Representation over GF(2") for rate 1 binary to M-ary convolutional encoders.

The binary implementation shown in Figure 2-21 has been used in [107] while the
representation over GF(2") shown in Figure 2-20 has been used in [105]. Formulas to obtain the
representation over GF(2") from the binary one are given in [106]. Note the representation over
GF(2") requires the definition of a primitive polynomial to obtain the code symbols. Therefore in

this work the representation depicted in Figure 2-21 will be adopted.

Binary to M-ary
M-ary | output
Converter [— >

M=2"

binary
input

H&—» FO-» & @ & -8 —

p
v memory locations

Figure 2-21. Binary representation for rate 1 binary to M-ary convolutional encoders.

A binary representation example for a rate 1/2, v = 3, binary to 8-ary convolutional encoder is
shown in Figure 2-22. This figure illustrates how an M-ary output (in this case M = 8) is generated

from the current memory content and the current input. For example, the binary value of the first

0) (0

set of binary outputs, {z\”,z®,z{”}, is calculated as
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0 =y06,00,00,=1010001=1;
20=6,06,=001=1;
2 =y®0,66,=10001=0

(2.55)

where @ stands for modulo 2 addition. Once the binary value of {zéo),zl(o),zéo)} has been
calculated, the corresponding 8-ary output is obtained from
29 =4z + 229 + 207 = 4(1)+2(1)+0 =6 (2.56)

as indicated in Figure 2-22. A similar process is followed to calculate the second 8-ary output, z" .

/7N
— 1,01 \ 7| Binaryto
Fo—L = 8ay [»:%=6
> .' 2;0) =0 | | Converter
—> | 8-ary
o 2P=0! outputs
_—ﬁ‘ H—\ L0 1 ,‘ ’ Binary to
binary —@"(,,—/‘* 8ary |—»:z"=3
input E@ \zy) =1 | Converter
y=1) l;irTa;y
24 »6, =116, =0fesl6, =11 outputs
— v
v=3

Figure 2-22. Generation of two 8-ary symbols from the current input and memory content of a rate 1/2, v=3,
binary to 8-ary convolutional encoder.

Note that when using the binary representation of Figure 2-21 a set of n=log,(M) generator

polynomials (or rational generators for recursive encoders) over GF(2) must be given to describe
the encoder. Similarly for a rate 1/x binary to M-ary convolutional code, x sets of n=log,(M)

generators must be provided (e.g. 2 sets of 3 generators polynomials each must be provided to
describe the encoder shown in Figure 2-22). However, care should be taken in how to interpret and
handle the generators sets as they should not be regarded as simple binary convolutional encoders
coupled to an M-ary orthogonal modulation scheme.

For instance, it may be tempting to try to use the generators of a rate 1/n maximum free distance
(MFD) binary convolutional encoder to construct the generator set of a rate 1 binary to 2"-ary
convolutional encoder. Nevertheless this does not necessarily mean that a good rate 1 binary to
2"-ary convolutional encoder will be obtained with such procedure. In order to see this remember
that for M-ary orthogonal signalling the Euclidean distance between every pair of signals is the
same regérdless of its label, [83, 86]. Therefore, for binary to M-ary convolutional codes used with
M:-ary orthogonal signalling, the squared Euclidean distance between two signals corresponding to
two different M-ary code symbols is proportional to its M-ary Hamming distance. Besides, the
squared Euclidean distance is not proportional to the binary Hamming distance as obtained from
the binary representations of the signal/symbol labels. As an example consider the quaternary
orthogonal signal set expressed in vector form as

x, =[yE,,0,0,0; x,=[0,{E,,0,0; x,=[0,0,{/E,,0]; x,=[0,0,0,\/E,]

(2.57)
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where Ej; is the signal energy. Next assign binary labels as
X, > 00; x, >0, x, >10; x; >11 (2.58)
Therefore the binary Hamming distance between the labels of x, and x; is 2 while for x; and x, is 1.

Nevertheless the squared Euclidean distance between x, and x; is identical to the squared Euclidean
distance between xp and Xx,, that is, 2E;. As a consequence the binary Hamming distance is not

proportional to the squared Euclidean distance. In contrast the M-ary Hamming distance between
every pair of signal/symbol labels is equal to 1, and this is in turn proportional to the squared
Euclidean distance between every pair of signals. This is the reason why the design goal in [105-
107] was the optimization of the M-ary distance properties.

2.8 Conclusions for Chapter 2

In this chapter some useful theoretical background has been presented. Moreover, basic
terminology and definitions extensively used in the rest of this thesis for the areas of impulse radio
(IR) based ultra wideband (UWB) and convolutional coding have been introduced.

Firstly the UWB definition and current related regulations were reviewed. Then the basic IR-
based UWB approaches adopted in this thesis were stated. A general explanation of time hopping
(TH) IR-based UWB, direct sequence (DS) IR-based UWB and TH-DS IR-based UWB was
presented.

Several important issues can be highlighted for the UWB systems introduced in this chapter. In
particular it was established that UWB systems are not confined to operate in a specific narrow
frequency band. Instead UWB emissions occupy “ultra” wide portions of the frequency spectrum
as far as compliance with well established average and peak emission limits in the form of spectral
masks is maintained. Thus UWB emissions are power limited over an ultra-wide frequency band.
Therefore one of the main issues for proper UWB operation is the spectral shaping of the
transmitted signal. Bearing this in mind the power spectral density of non-coded TH-IR-based
UWB signals was introduced in Section 2.4 while the main spectral shaping mechanisms for IR-
based UWB signals were introduced in Section 2.5.

In Section 2.6 a literature review of the use of convolutional codes in UWB systems has been
provided. It was pointed out that convolutional encoders can improve the BER performance of IR-
based UWB systems without increasing the transmitted power of the signal. For example, coding
gains of more than 2 dB for bit error rates below 107 have been reported in references [22, 24, 27,
31, 35, 39]. It is worth mentioning that traditional UWB spectral analysis and most UWB spectral
shaping mechanisms do not consider the spectral shaping effects caused by the introduction of a
convolutional coding operation in a typical IR-based UWB system. Conversely most of the work
done in convolutional coding applied to UWB does not consider the signal’s PSD. The only
exceptions to this are the PCTH and related schemes which focus on the particular case of M-ary

PPM TH-IR-based UWB signals where all the time hopping is driven by the encoder.
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After the introduction of UWB related issues, a review of basic concepts related to
convolutional coding was provided. Basic analytical and schematic representations and a review of
the main performance parameters for convolutional encoders were presented. Union bounds for
error probabilities and a review of branch metrics and Viterbi decoding were provided. Finally, the
representation format used in this thesis for binary to M-ary convolutional encoders was defined.
However, coding and more specifically convolutional coding are large topics and it has been assumed
that the reader will have some background in this area. More complete details on convolutional
coding can be found in [83, 100-103].
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Chapter 3

Power Spectral Density of
Convolutionally Coded Impulse
Radio Based Ultra Wideband Signals

3.1 Introduction

The contribution of this chapter consists of the spectral analysis of convolutionally
coded/Markov-driven impulse radio (IR) based ultra wideband (UWB) signals, which is novel. The
model used in the analysis and the closed form PSD expressions obtained from it cover different
modulation schemes such as pulse amplitude modulation (PAM), binary phase shift keying
(BPSK), pulse position modulation (PPM), [8], biorthogonal PPM (BOPPM), PAM/PPM, [51,
113], and pulse shape modulation (PSM), [14, 64, 65], all combined with pseudo-random
(periodic)/random time hopping (TH) and/or pseudo-random/random direct sequence (DS) spread
spectrum. In addition the signal model and PSD expressions account for the inclusion of
attenuation and/or timing jitter.

As mentioned in Chapter 1 and Section 2.2, the current regulations intended for UWB are
defined in terms of spectral masks which limit the maximum amount of transmit power over a
given frequency range, [2, 4, 5]. Therefore, the analysis estimation, and shaping of the power
spectral density (PSD) of UWB signals is a topic of major interest in the design of compliant UWB
systems. In this chapter the power spectral density of convolutionally coded/Markov-driven IR-
based UWB signals is obtained. This matter is important due to the likely introduction of error
correction mechanisms in UWB systems, [21-40], which will have an effect over the PSD of the
transmitted signal as shown later in this and subsequent chapters.

The spectral analysis approach presented in this chapter starts with the derivation of a finite
state sequential machine (FSSM)-Markov model for the source-encoder pair. Therefore the results
presented in spectral analysis of Markov-driven signals in [52, 99, 114] and on several digital
communication books, e.g. [83, 87, 115], should be regarded as previous work. Nevertheless, these
results are based on the assumption of ideal synchronous data pulse streams. Therefore the effects
of variables such as time hopping, DS multiplication, timing jitter and pulse attenuation are not

covered by these results.
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As introduced in Sections 1.4 and 2.4, PSD expressions for non-coded IR-based UWB signals
has been previously reported in the literature, [41-50]. PSD expressions for non-coded digital pulse
based signals subject to timing jitter are reported in [41] for PAM signals and in [42, 44, 45] for
PAM/PPM TH-IR-based UWB signals. All the signal models adopted in these works assumed
mutual independence between the PAM modulating stream, the PPM modulating stream and the
timing jitter. In [44] the PAM data stream is assumed to be wide sense stationary while the PPM
data stream and the jitter are assumed to be second order stationary in the strict sense. The model
used in [45] assumes the PAM and PPM data streams to be stationary and uncorrelated, while in
[42] the PAM and PPM data streams are assumed to be independent identically distributed (i.i.d.).
The model used in [43] is similar to the one used in [44] but focuses on the effects of deterministic
TH codes and does not consider timing jitter. In this paper the PAM and PPM data streams are
assumed to be i.i.d and mutually independent. The analytical method introduced in [43] was used in
[48] to evaluate the PSD of M-ary code shift keying (MCSK) IR-based UWB signals. In [47] the
spectral analysis of UWB multiple access (MA) schemes is addressed assuming perfect (ideal)
random scrambling, no timing jitter, no attenuation and statistically independent data bits. A shot
noise approach was used in [46, 49, 50] for the spectral analysis of PAM/PPM IR-based UWB
signals with TH/DS, timing jitter and attenuation. These works were based on the assumption of
i.i.d. data streams for PPM, i.i.d. and wide sense stationary data streams for PAM, i.i.d. timing jitter
and mutual independence of the PAM and PPM data streams. Although the results presented in [46,
49, 50] cover several of the results previously published for spectral analysis of IR-based UWB
signals, the case of convolutionally coded/Markov-driven IR-based UWB signals is not addressed
by these works. For example the case of correlated PPM as in the case of convolutionally
coded/Markov-driven PPM is not covered.

Note that most of the previously mentioned papers assume mutual independence between the
PAM and PPM data streams. Thus the results presented in these works are not applicable in a
straightforward way to the spectral analysis of IR-based UWB signals where the modulating
variables consists of data streams generated by a convolutional encoder. This is due to the
correlation introduced by the encoder. For example, if the IR-based UWB system uses BOPPM,
[51, 113], in conjunction with a convolutional encoder, then the PAM and PPM data streams will
be correlated and a different spectral analysis approach must be used. Therefore it may be
postulated that there is a lack of studies addressing the spectral analysis of UWB signals when the
data input driving the modulator consists of symbols generated by a convolutional encoder.

Spectral analysis of coded signals has been previously addressed in [52-54] for block codes, in
[55, 56] for line codes, in [57, 58] for trellis codes and [59, 60] for convolutional codes. All these
works assume ideal synchronous data pulse streams. Therefore these results do not cover the
effects of variables such as time hopping, DS multiplication, timing jitter and pulse attenuation.

Furthermore the spectral analysis presented in [59, 60] for convolutionally coded signals focuses on
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feedforward encoders and PAM/binary phase shift keying (BPSK) modulation and therefore cases
such as PPM, BOPPM and PSM are not covered.

This chapter is structured as follows. Section 3.2 describes the system model used throughout
this thesis. Of particular importance is the source-encoder Markov model introduced in Section
3.2.3 as it is the analysis starting point. The signal model is introduced in Section 3.3 while the
derivations of its average autocorrelation and average power spectrum are addressed in Section 3.4.
Section 3.5 presents some illustrative application examples. Finally conclusions are presented in

Section 3.6.

3.2 System Model for Convolutionally Coded Impulse
Radio Based Ultra Wideband Signals

The block diagram of the generic system model used in this thesis is shown in Figure 3-1. The
convolutional encoder is not restricted to be binary to binary. This allows for the inclusion of

binary to M-ary encoders. For each input vector (consisting of »  input symbols),

Y, =[72,32,.... » ™1, a convolutional encoder with rate v/x produces a encoder output vector

(consisting of x output symbols), z,=[z",z",...,z*"], which is then fed to the UWB

modulator. The UWB modulator then generates a pulse or series of pulses (depending on the
modulation format) which are further subject to an additional time shift specified by a random or
pseudo-random (PR) TH code and/or multiplication by a random or PR DS sequence. Note the UWB

modulator block is not specifically detailed to allow for the inclusion of different modulation

formats.
Yy, Convolutional z, UWB Modulator w, () I x(t)
ng:i‘c = 3| Encoder (Binary to |—==»| (PAM, PPM, BOPPM, |——» R;Z‘(‘)‘jr‘l”%f’l’ P f;“d‘l’)s
Binary/M-ary) PSM, etc) and/or

Figure 3-1. Block diagram of a generic convolutionally coded [R-based UWB system.

As this work focuses on the effects that the convolutional encoding operation has on the
transmitted signal’s PSD, it is assumed throughout this and all other chapters that the antenna does
not significantly distort the transmitted and received pulses or that the antenna effects over the
pulse shape are perfectly known and have been accounted for in the pulse and overall system
design. Note this is an idealisation assumed to enable a fair comparison between different systems
and different encoders. For a review of the antenna and channel effects over the pulse shape the
reader is referred to [163].

Further specifics on the operation of each block are given in the following sections where a
Markov chain model capturing the effects of the source-encoding operation is introduced. This
model will then be used in the spectral analysis of the convolutionally coded/Markov-driven IR-
based UWB signal.
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3.2.1 Data Source Model

It has been customary to assume a source model generating uniform (equally likely)
independent identically distributed (i.i.d.) symbols (e.g. p, =1/2 and p, =1/2 for a memoryless
binary source), when analysing the performance of error control coding schemes (such as those
involving convolutional coding). Although this model is perfectly suited for bit error rate (BER)
performance analysis, it is not the only case of interest when analysing the effects of the coding
operation over the signal’s PSD. This is particularly true since any unbalance in the data symbol
probabilities (e.g. p,#1/2and p, =1-p,) increases the number spectral lines appearing in the
PSD of non-coded IR-based UWB signals (see Section 2.4). Therefore a model covering cases of
sources generating non-uniform distributed (unbalanced) i.i.d. memoryless data sequences should
be considered for a better analysis of the convolutional encoding effects over the IR-based UWB
signal’s PSD.

A source model covering the unbalanced i.i.d memoryless case as well as information sequences
with memory is defined by the first order binary Markov source (BMS) depicted in Figure 3-2,
[116-118], where

py=Prla=rlp,=r}=Prly, =jly, =3 (€RY

and
Pow=1=Py0s Puu=1-Py0 (3.2)
are the Markov chain (MC) one step transition probabilities, p is the current state of the Markov
chain and y, is the current symbol produced by the source. Therefore the source model adopted in

this chapter consists of the BMS defined by the one step transition probabilities matrix

Py= Pyoo  Pyo (.3)
Pyio Pyn

and the initial probability mass function pﬁfi) .

Py,OI

Py1o

Figure 3-2. First order binary Markov source (BMS) model.

Avoiding trivial degenerate cases, such as p, , =1, the BMS model can be classified as an
ergodic regular (acyclic) MC, [119-120], (irreducible ergodic in [121-122] notation), and the
following properties apply:

z,, = 1i_131 p, =, ==n P, limP} =P G4

5y y

where 7,; is state 7; steady state probability, m,

is the vector [7,, 7,,], p) is the n" step

transition probability (that is the probability of being in state #; and after » transitions reach state r;),
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P is the n™ step transition probabilities matrix with elements p;",j and P is the matrix with

identical rows equal tom,. The corresponding steady state (stationary) probabilities for this
Markov chain (MC) can be found to be

my=(my, 7= 2] (3.5)

Pyo1*Pylo  Pyo1tPyro

where 7,, and z,, are the steady state probabilities of generating a “0” and a “1” respectively.

Throughout the rest of the analysis it is assumed that the MC has reached steady state and

Py =m,, and p{) =z . Note the i.i.d. memoryless case is obtained by setting p,,, = p,,, with

Pyoo=Pyios> Zyo=Pyio and T,0=DPyor-

3.2.2 Convolutional Encoder Model

As explained in Section 2.7 there exist several representations for convolutional encoders such
as binary/M-ary generator matrices, transfer function matrices, trellis diagrams and state transition
diagrams. In fact the spectral analysis of convolutionally coded signals reported in [59] and [60]
use the binary and M-ary generator (connection) matrices representations of the encoders
respectively and focus on feedforward encoders and PAM/PSK modulation. Nevertheless, as it will
be shown in subsequent chapters, the feedforward scheme is not the only case of interest for IR-
based UWB systems. Therefore the transfer function matrix, G(D), and state transition diagram
representations as defined in Section 2.7 will be adopted in this thesis as they allow for the
inclusion of a wider set of encoders such as those with feedback.

As briefly mentioned in Section 2.7, the convolutional encoder’s state transition diagram is in

essence finite state sequential machine (FSSM). Formally, an FSSM, Q, is defined by a quintuple
(Q,V,2,4,y) where Q:{qo,ql,...,qu_,} is a finite set of states (that is the set of all possible

memory content combinations of the encoder); ) = {zo,tl,...,zNy_,} is a set of input symbols or input

symbol vectors (that is the set of valid symbols/vectors generated by the source);
Z={{y,$),-»Gy 1} 1s a set of output symbols or output symbol vectors (that is the set of code
symbols/vectors generated by the encoder), ¢:YxQ—>Q is the next state function, and
¥:YxQ — Z is the output function. Note for convolutional encoders the output is usually a vector

consisting of all x¥ binary/M-ary code symbols generated by the encoder at each encoder time /.

A FSSM is classified as Melay if its output depends on both the current input and the current
state, that is,6,,, =@(y,,0)) and z,=y(y,,0,), where y,, 6 and z, are the current input, the
current state and the current output respectively. Besides, a FSSM is classified as Moore if y is
restricted to be a mapping of Q onto Z, that is, y:Q — Z and z, =y(6,). Therefore, the

encoder’s state transition diagram can be classified as a Melay FSSM owing to the fact that the

output depends on both the current state and the current input.
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As well as state transition diagram representations, there exist other representations for FSSM
such as transition matrices which are explained with the following example. Consider the binary to
binary systematic recursive convolutional encoder defined by the transfer function matrix (rational

generator matrix)

G(D)= [1 M] (3.6)

1+D?

with state transition diagram shown in Figure 3-3b.

a) Sequential circuit b) State transition diagram (Melay FSSM)
Figure 3-3. Systematic recursive convolutional encoder and its respective state transition diagram.

Remember the encoder state is defined as its memory content. Hence, the states in Figure 3-3b
are associated with the encoder’s memory content in the following way: ¢, < (6,,6,,)=(00),
g, © (01), g, & (10), g, < (11), where by convention the content of the leftmost memory cell,
6,,,is assumed to be the most significant bit (MSB). Therefore the transition matrix of the encoder

Melay machine model is given by

s Next State
9 4 9 q;
q,[0/00 - /11 - G.7)
Current | g,| 1/11 - 0/00 -
state |g,| - 0/01 - 110
g - V10 - 0/01

where the matrix elements are the input causing a transition from state g; to state g; and the output
produced by such transition, that is y/z®z,

Two general characteristics of the state transition diagrams of realisable convolutional encoders
are of importance for the rest of this chapter. The first is that the encoder’s state transition diagram
(hence its Melay machine) will have a self loop in the all zeros state, qo, producing the all-zeros

output, z, =[0,0",...,0V], when the all zeros input, y, =[0©,0?,...,0¢"], is applied. In order

to prove this consider the basic convolutional encoder structure introduced in Section 2.6

reproduced in Figure 3-4 with some minor modifications. If the encoder is in state zero, then

6} =u’, =0, for k=1,2,...,v, and i=0,1,...,0—1. Next note that

u? =)0 @ 62b, =3 ® Y b, G8
k=1 k=1

where @ stands for modulo 2 addition (that is over the binary Galois field — GF(2)). Thus, if

¥, =[0,07,..,0“] is the current input then u” =0, and the next state will be ¢, again as
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O, =u" =0. Similarly, if the encoder is in the all zeros state and the input is
y,=[0,0",...,0¢], then
v-l v-l ¥
-5 (g R a2 |- 5 Sttt -o 69
i=0 i=0 k=0

that is z, =[0©,0%,...,00™"], where the sums @ in Equation (3.9) are performed modulo 2 for

binary convolutional encoders and modulo M for binary to M-ary convolutional encoders.

(i)
37

Figure 3-4. Basic structure of a convolutional encoder showing the connections
from shift register i to output 2

In order to further clarify this property consider the rate 1/3, v =3, binary convolutional encoder
shown in Figure 3-5. It can be seen in this figure that if the encoder is in the all zeros state and the

current input is zero, then the encoder generates the all zeros output and the next state will be the

all zeros state again as u, =0.

{F)2 =0

»=0

Figure 3-5. Rate 1/2, v =3, binary convolutional encoder producing the all zeros output.

The second characteristic is that the convolutional encoder is a strongly connected machine. A
FSSM, Q, is defined to be strongly connected if for every pair of states g, g, belonging
to Q, there exist and input sequence driving Q from g, to g, [123]. For convenience assume
that all the encoder’s shift registers have the same number of memory cells, v, =m. In order to
prove that the encoder’s state transition diagram is strongly connected assume that
(65,65, ... O =14, 40, 1, i=0,1,..,0-1, is the encoder’s memory content at time / and
that it defines state g, (n is the decimal representation of the memory content). Similarly, assume
[01(3; 1’91(2:,.,23 91(3» y 1=u

we can find

V4., p*P] defines state g,. By setting 4" = = 4" in Equation (3.8)

YO =u0® 008, =p Ve us, (3.10)
k=1 k=1

By assuming that the prev1ous value is used as an input in Equation (3.8), that is, 3 = »'®, and
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setting, () = 4", , we can recursively obtain

YW=, 0 b = a0 w5, @ 4, G.11)
k=1 k=1

k=n+1

by setting ), =" for n=12,..,v,~1. Note at time I+ (v, —1): ¥, =", ul, | =p'®,

l+n

(i) (i) (i)

. . , 0 _ @ )
[el(izw—l),l’el(lzv,.—l)ﬂ""’el(j-zv,-—l),v,»-l’allzv,-—l),v,.]_[Iu2 sH 3 e Y "], and the next state will be g,.

Therefore by using the sequence, { y')’ y'”...y'?, }, as defined above, the encoder’s FSSM, Q, can
be driven from state g, to state ¢,» and the machine is strongly connected.

The convolutional encoder representation used throughout this chapter has now been defined.

The source-encoder Markov model will be introduced in the next section.

3.2.3 Source-Encoder Markov Model

The next step in the analysis requires finding a joint source-encoder (SE) stochastic model when
the input to the convolutional encoder is given by the BMS introduced in Section 3.2.1. In order to
find such model, the methodology introduced in [123] pp. 514 - 518 for the analysis of strongly
connected deterministic sequential machines with linearly dependent stochastic inputs will be used.

Assume the Melay FSSM representation of the convolutional encoder, Q=(Q,Y,Z,4,7), as
defined in Section 3.2.2 has been obtained. Define the input to the encoder to be a sequence of
binary random variables, {y;}, generated by the BMS introduced in Section 3.2.1 with state set
R ={r,,n} and corresponding outputs {z,,4}={0,1}. Then the SE pair consists of a strongly
connected Melay FSSM, Q, with a linearly dependent input process, y;, which is Markov itself.

Let the number of encoder states be N, that is, Q={q0,ql,...,qu_,}. Now define a set of
N,x N, “next state” matrices, B, =[B,,], for each element in Y ={s,,4}={0,1}, n=0,1. Then,
B, , is defined to be equal to unity if g, =¢(s,,q,), and zero otherwise. For example, the next state

matrices of the encoder defined in Equation (3.6) are given by

1 0 00 0010
0010 1 0 00
B, = and B, = (.12)
01 00 00 01
0 0 01 0100

By using the BMS’s transition probabilities matrix, P,, defined in Equation (3.3), and the next
state matrices, a Markov model for the SE pair can be obtained by defining a new Markov chain

state process, g, with state set defined as

S =A{RXQ} ={(0:90), ("0 91 )s--s (s Gy, 1) (1 G0 (i G s (10 Gy, 1)} = {805 8150000824, 1) (3.13)
and transition probabilities matrix given by
Py,ooBo py,OlBO
P, = 3.14
i |:Py,mB| py,]lBl ( )

That Equation (3.14) defines indeed a transition matrix for the new state process can be seen from
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the fact that there will be a transition from state (r,,q,) to state (r,.,q,) only if g.=¢(,,.,q,) and
py,nn' = Pr{n =rn' l g—l =rn} + O .

Note from Figure 3-2 and Equation (3.1) that there is a one to one correspondence between the
BMS’s state, 7, and the BMS’s output symbol, z,. Therefore the state (r,,q,) can be relabelled as

(1,,9,) and the output mapping of the SE pair Markov model can be defined as

(x~1)

Congs I sG0 s S0 T= 1300 = 70,09 = P8, ) (3.15)

where n=0,1 and i=0,,..,N, —1. Equation (3.15) implies that the system output, 5 , depends

exclusively on the SE pair MC state, s,, ,, =(r,,¢9,) €S, and the SE pair Markov model can be

nN, +i
classified as Moore type. For this reason the SE pair Markov model’s output process, z;, is said to

be a projection of the MC state process o,. Note z; is not necessarily Markov as one specific output

symbol/vector £, can be assigned to more than one state in S. As an example the SE pair Markov

model for the convolutional encoder defined by Equation (3.6) has state transition matrix and

output mapping
Sy s, s, s, S, S5 g S,
So -pyOO 0 0 0 pou O 0 0] 8o = (r5,9,) = (0,00); ¥(s,)=[0,0]
s 0 pPw O 0 0 P 0 | 5=(r,9)=(0,01); y(s)=[0,0]

0 0 | s5,=(rq)=(0,10)% ¥(s,)=[0 1]

P = Pyor |8 =(r,q,) =(0,11); ¥(s;)=[0,1] (3.16)
78 0 py 0 0 pu 0 | s =0190)=(100); y(s)=[1, 1]
Ss| Pyro 0 0 0 Pyu 0 0 0 55 =(r,q)=@1,01); y(s5)=[1, 1]
Ss| O 0 0 pu 0 0 0 poul| ss=09)=(010); y(ss)=[1, 0]
s 0 pyy O 0 0 pu O 0 J s, =(n,q3) =(L,11); 7(s;)=[l, 0]

Avoiding trivial degenerate cases such as p,,, =0 and similar, an important characteristic of

the transition probabilities matrix, P,, is that it does not have transient states since the encoder’s
Melay FSSM model, Q, is strongly connected. Furthermore, P, has a transition from state

s, =(r,,9,) to itself due to b, =1 (because of the self loop in the all zeros state, go, on the
encoder’s Melay FSSM model, Q) and 0< p,,, <1. The self loop presence means state s, has

period one. Hence, the MC state process, o;, with transition probabilities matrix, P, can be
classified as an ergodic regular (acyclic) MC, [119, 120], (irreducible ergodic in [121, 122]
notation). Therefore the properties described in Equation (3.4) for the BMS apply for o; and P, as

well, that is

limP, =P7

n—-wo

7, ;=limpl). ®, =m,P,, (.17)

n T ()
where P =[p.; :

] is the n" step transition probabilities matrix, =, =[x 035y gy 4] 1s the

steady state probabilities vector, N, =2N, is the number of elements in S = {s,,s,,...,s, N1} » and
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P2 is the matrix with identical rows equal tox, . As an example the steady state probabilities for

the MC in Equation (3.16) are
_| ®vo ®yo Fyo ZTyo Zyy Ayl Aya Ay
x _[————————] (3.18)

where 7,9 and 7, are defined in Equation (3.5).
Another property of regular ergodic MCs related to n™ step transition probabilities (useful in
further calculations) is defined by ([119, 120])
P =n, + 9" (3.19)

where I&;") <br" with b constant and 0<r <1. Note Equation (3.19) implies convergence to the

steady state probabilities as in Equation (3.17).
Once the SE pair has been defined next sections introduce the signal model and spectral analysis

for the convolutionally/Markov-driven IR-based UWB signals.

3.3 Signal Model for Convolutionally Coded/Markov-
Driven IR-Based UWB Signals

As explained in Section 2.3, IR-based UWB systems convey the information by transmitting
low power ultra short pulses where more than one pulse is usually transmitted per information
symbol. Hence an encoder output symbol, z;, which consists of one or more binary/M-ary code
symbols, can be transmitted using one or several consecutive pulses depending on the modulation
scheme used. For example, the output of the encoder shown in Figure 3-3, consisting of the two

binary symbols z"z®

, can be coupled to binary PAM or PPM (two pulses or signals per output
symbol), and quaternary PAM, PPM, BOPPM or PSM (one pulse or signal per output symbol).
Following the general system model introduced in Section 3.2, once modulation has been
performed each pulse can be subject to an additional time shift ruled by a PR-TH sequence and/or
multiplication by a PR-DS. The PR-TH and PR-DS sequences can be used for multiple access or
spectral shaping purposes. Finally, although ideally each pulse is transmitted with fixed amplitude
at regular time intervals of length 7,, imperfections such as jitter and/or attenuation should be
considered in the model. A signal model including all these variables can be defined as

x(n) = i Nil S, ki, 1t Wo, 4 O = 1T, = KT, =iy T, = Ay ) (3.20)

l=—0 k=0

where o, is the SE pair Markov model state process with N, states; w, ,(¢—IT, —kT)) is the K

pulse used for the transmission of the encoder output vector z, =(0o;) (consisting of x output

symbols) at symbol time /; N, is the number of pulses used per encoder output vector; 7, is the mean

repetition time between pulses; 7, = N, T, is the encoder output vector time; {a, ., } is a PR-DS

sequence usually (but not restricted to) taking values on the sets {-1, 1} or {0, 1} with period %,;
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{cw, .} is a PR-TH sequence taking values oﬁ the set {0, 1, 2 ,..., N, —1} with period y.; T is the
nominal shift caused by the TH sequence; 4, ,, is random jitter (assumed to be second order
stationary at least) and &, ,, is random attenuation (assumed to be wide sense stationary).

Note w, ,(t—IT, —kT,) depends on the current state of the MC, g, at time / and the kind of

modulation used. As the purpose of this chapter is to evaluate the PSD’s average statistics, it is
assumed the MC has already reached steady state, which is reflected in the fact that the signal

model assumes -0 as starting time. It is further assumed that, a;, &, .,, Ay s Gy and Cy

are mutually independent which is the most common case. It will prove useful to further define
Xoow =lem(x,, z.,N,) and A=y, /N, 3.21)
where lcm stands for least common multiple.
For example, consider binary PPM is used with the encoder defined by Equation (3.6) with SE

pair Markov model defined by Equation (3.16). If the encoder is in state o, =s, with output vector
5 =2,=[2",2"]=y(0,=5)=¢, =[¢,{P], then the system output at time / (without

considering attenuation, jitter, TH or DS) would be given by
w, () =wt =0T, —IT) +w(t ¢ T, -IT, - T)) (3.22)

where T is the PPM modulation index. Besides, if quaternary BOPPM (Q-BOPPM) is used instead
of binary PPM, then the output signal at time / would be given by
w, () =aw(t - BTp) (3.23)

where @, =(2{” 1) and B =¢. It is important to note that @, and B are not mutually

independent as usually assumed but correlated.
Now the signal model has been defined the spectral analysis of the signal model is introduced in

the next section.

3.4 Spectral Analysis of the Signal Model for
Convolutionally Coded/Markov-Driven
IR-Based UWB Signals

Due to the introduction of variables such as attenuation and jitter and to the fact that Ko X are
usually more than N, PSD expressions for MC-driven signals such as those reported in [52, 83, 87
99, 114, 115], can not be straightforwardly used for the spectral analysis of the signal model
introduced in the previous section. The analysis presented in this correspondence is based on the
derivation of the average autocorrelation and average power spectrum (that is, the PSD) of the non-
stationary signal x(#). This is addressed using an approach similar to that introduced in [124] for the

analysis of non-stationary processes and therefore the cyclostationary hypothesis is not addressed.
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3.4.1 Average Autocorrelation of the Signal Model for Convolutionally
Coded/Markov-Driven IR-Based UWB Signals

The first step of the PSD derivation of the signal model is to calculate the signal’s average

autocorrelation, R_x(r) » which is defined as
R(r)= lim 57 B{ }x(r)x‘ (¢+7)dt} = }ij’T}o#E{er(T)} (3.24)
T
where E{} denotes the expected value, x*(#) stands for the complex conjugate of x(¢) and
E{R,_,(r)} = TjE{x(t)x‘ (t+7)}dt y (3.25)
T
substituting Equation (3.20) in Equation (3.24)

T (Nl w
E{R,,(7)} = IE{ z Z Sy kO, ik Wo, k= IT, kT, =iy 4T =By 1)
-r

k=0 /=-a

Nt (3.26)
Z Z §I‘Nw+k'al"Nw+k'w;,-,k'(t +1-I'T,—k'T, =y, T, _4'Nw+k')} dt
F=0 i
By introducing
W)= [W, ,@)e™dy (.27
Equation (3.26) can be written as
T N,-1 w ©®
E{R T(T)} = I I J‘ {ej27r(v+v')tej2;rv‘re—jZ:rT}(vHv'l')e-jZ;rT,(vk+v'lc’)
_Thk'=0 LiI'=—0 _g5 .00
. * ~j2xT (Ve 4k +V'ep )
E{iw, Sin, ok O,k Fpn, 1€ STk TV o (3.28)

Efe /et AN VB Gy VW, (=v)) Jdvdy'dr
where the mutual independence of 6, &y ;> A _4x»> Gy, ., and C,++ has been used to separate the

expectations.

Let us now define
G (L1 k kv, v) =B, (W, ,.(-v"} (3:29)

Under the stationary steady state assumption the following stands for the signal selection process

Pr{oy =5} = Prlo, ((=KT) =, (=KD} =Prid , )=, , 0D} = (330)
in addition
Pr{o, =s,,0, =5,} =Pr{o, =5,}Pr{o, =5, |0, =5,} =7, p{\" I's] 61,
Pr{o, =s,,0, =s5,.}=Pr{o, = si}Pr{o-l =5, |0, = s} = ”i‘p’_('li-l') I>] .
and thus
Ng-1
Z Wik (V)pVi,‘k‘('—V 7, I'=1
Gl bk =1, ' (332)
D W W (V)T I Il
i,i'=0
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where for clarity the subscript “o” has been dropped from 7, and p{"), . Note that G, is a function

of the difference between ' and /, that is
G (I KE v v =G ('- Lk k'\v,v) =G (mk,k'v,v") (3.33)

where m=1'-1 . Next we define
Gy v, v') =BG, i, oo YELE ™0t ) (3:349)
Note G, is also a function of the difference between /' and / since &y, ,, is wide sense stationary

and 4, ., is second order stationary. To illustrate this point we see that

E{&n, 4w, o} = Re(I'=DN, + k' k) (3.35)
and
E{e‘fZE(V4Vw4.k+V'4'Nw+k')} = J‘ .[e-jZI(VA+V'Ar)gA,A'(A,A';l (Iv_l)Nw +k'— k) l)dAdA' (336)

for IN, +k#I'N, +k", with

E{fINw#:fl;va} - Rc (0) and E{e‘j2ﬂ(V4Nw+k+V'4'Nw+k’)} - J'e—jz;r(vAw'A)g‘1 (4)dA (337)

-0

for IN,+k=I'N, +k', where g4 and g, are the first and second order probability density

functions (p.d.f.) of the jitter process. Therefore G, becomes
G, (LI k k', v) = Gy (=L k, k', v,v") = Gy (m, k, k', v,v") (3.38)
where again m=1["-1.
To continue we can define

~j2xT, (vepy Nk
G3(l,l',k,k',v,v') = a,Nw+ka;.Nw+k.e 2Tk VN i)
(3.39)

_ * —J2ET VO, kY Clem)N +k') '
=y, sk UtemyN, +4°€ " U =Gy(,m, k kv, V)

In Equation (3.39) the following properties apply due to the periodicity of the PR-TH and PR-DS
codes
GU+Amk,k'\v,v)=G,(I,mk,k'\v,v)
GU,m+ ANk EWwv)Y=G(,mk k' v,v") (3.40)
GU+Am+ Ak k\v,v)=G,(,mkk'\v,v"
where A was defined in Equation (3.21).
Using Gy, G, G3 and I'=1+m Equation (3.28) can be rewritten as

T o w» No-1 o ©
E{RT (T)} = I I I {ej2;r(v+v’)lej2zv'r z Z e—j2ﬂ;l(v+v') Z e—szT;mv'e—jZ;rT,(vk+v'I¢')
-7 -w-o kk'=0 I=-a0 m=—w (3.41)

G\(m,k,k',v,v") G,(m,k,k',v,v)G, (I, m,k,k',v,v')}dvdv'dt
For notational convenience we can write
G (m,k, k', v,v") = /2™ e I VG (m k, k', v,v') G,(m,k, k', v,v") (3.42)
and by setting /=u'A+n and using Equations (3.40) and (3.42), the sums in Equation (3.41)

become
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Ny-1 A-1 @ ©
z g /2 lnv4v) 2 G (m,k,k'\v,v") G,(n,m,k,k',v,v") Z g I2AT Alv4v) (3.43)
kk'=0 n=0 m=—aw u'=—0

By using the Poisson sum formula ([161])

o

y— 1< "
Z et =Fu=z_@6(x+7) (3.44)

u'=—aw

in Equation (3.43) and replacing the result in Equation (3.41) we get

T © o =l A-1 ® ©
E{R (T)} = {esz(v+v')tej27zvr e—jZ;rTn(w—v') —j2xT.my' —_127rT (vk+v'k")
s Hl kfv"o 20,220 (3.45)
G, (m,k,k',v,v") Gy (m,k, k', v,v )G, (n,m, k. kv, v NS (v +v'—) vy dt

where () is the Dirac delta function.

Evaluating the integrals in Equation (3.45) first in vand second in ¢ and substituting the result in

Equation (3.24) yields

Ny-1 A-1 o ©
sm(27rTAT) 2 J2xTnzie oo T, =28l 5k o ik —k
R(T)_hmZTTAZ z z J‘{jﬂvl‘e TAejxmve TAeJ;r,v( )
kk'=0 n=0m=-o0 u=—wo TsA -0 (3.46)
G, (m,k, k', 75 =V V)G,y (m, K, ', = v, v )Gy (m,m, kKt = v, v by

However

lim

T3 Zx,JLAT

sin(2x757) 1, u=0
0, u=0

and therefore Equation (3.46) becomes

Z Z i a]{ejbrvr —jZ;rvae—ﬂxTv(lr—lz)G (m k k - V')

G, (m,k,k',—v' V"G, (n,m,k,k',~v",v) }dv'

(3.47)

which is the desired result. Equation (3.47) provides the average autocorrelation function which

next will be used to obtain the signal’s PSD.

3.4.2 Power Spectral Density of Convolutionally Coded/Markov-Driven
IR-Based UWB Signals

The power spectral density, S(f), can now be obtained from the Fourier transform (FT) of

Equation (3.47) on 7 that is

_ _ Ne-l A-l o = ) , ] . e
S(f)= Sr{R(T)} = 3{ {e127rv r}e—Jz;rT,mv eIV -B) (m,k, k", —v',v")
" Z,,j { ‘ (3.48)
Gy (m, k,k',~v",v"\G, (n,m, k, k', v',v) }dv'*
where 3{} is the Fourier transform operator. Evaluating Equation (3.48) yields
—_— w-l A I X Y . 3 - .
S(f)= 8(f -y e /Hm g IVEDG (m, k k', -y v
Vo Z; mz;n! { ' ) (3.49)

G, (m, k,k',—v" V"G, (n,m, k, k',—v',v") }dv"

and performing the integration on v’
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Ny-1 A-l o

SN =% DY eI PIERRG (m,k, k'~ f, )Gy (m,k k'~ f, )G, (n,m K, k'~ £, ) (3.50)

kk'=0 n=0 m=—w

where from Equation (3.32)

Ny-1
N W W-)m, m=0

G (m, k=1, ) =4, (3.51)
Z kW (m P m0

or using Equation (3.19) in Equation (3.51)

G(mkk'\,~f,f)= Z ok W (=), (, + 850) (3.52)

i,i'=0

for m # 0. Similarly from Equations (3.34) and (3.37)

Gy(0,ks ks~ ) = Bl iy, u JELe A4y = R (0) (3.53)
for mN, +k'-k =0, (note / becomes a “dummy” index upon which the result does not depends).
From Equations (3.34), (3.35) and (3.36)

G, (m, ke, k', ~f, f) = E{fINw +k§(.1+m)Nw +k.}E{e-IZIf(4Im)Nw+k'-4vw+k)}

e (3.54)
= R.(mN, +k'-k) j’ J’ e @D (A4 mN, +k'-k|)dAd A"
for mN,, + k'-k #0 . Finally from Equation (3.39)
Gy b k' =, ) = G sk Gipamypr i€ ek Ent) (3.55)

Although Equation (3.50) could be used in its current form for generic PSD evaluations, it does
not differentiate between the PSD’s continuous and discrete parts nor provides any insight on the
influence of the different variables in the PSD shape. Therefore, in order to obtain the continuous

and discrete parts of the PSD let us now separate Equation (3.50) in four terms:

§(f) =S, (N +8,(N+Sc,(N)+Sc,(f) (3.56)

No-l Al o

Su(H)=7 ik ”T( kW * (= mm, ) /Sl
kk'=0 n=0 m%gze 1;) * ¢ (3.57)
G,(mk, k', —f, NG, (n,mk k', ~f, )
S () =75 2:f< R [2 CTpLA (—f)n.s,f'”"] s (358)
G,(m, ki~ f, /)G, (n,m,k, k', ~f, f)
No~1 A-1

c1(f)= e PEBE G (0,k,k,~ 1, )G, (0, k. k,~ £, )G, (,0,k, k,~ f, ) (3.59)

=-7:_l\- z e‘jz”f(*"”T’Gl(O,k,k',—f,f)GZ(O,k,k',—f,f)G3(n,O,k,k',—f,f) (3.60)

k_

"o
=
1]
[=

where Equation (3.52) was used to obtain Equations (3.57) and (3.58). By replacing Equations
(3.51),(3.53) and (3.55) in Equation (3.59) we obtain
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Rf(O)Ian a PV, NP 7, (3.61)

Now note that when N, =1, S.,(f) becomes zero and when N,, > 1 Equation (3.60) can be

rewritten as

Ny=2 Ny-1 A-l

-j2Ef (=K}, " -
2, 2Refe GOk k=1, NGOk k'~ 1. 1) (3.62)
G,(n,0,k,k',—f, )}
After some algebraic work using the periodicity of G,(n,m,k.k',—f,f) as described in

SC.Z(f) = A

k=0 k'=k+l

Equation (3.40), S ,,(f) can be expressed as

Ny-1 A-l o

SN= SN =R 3 3 5 S I, LW fym e
kk'=0 n=0 m=1 ii'=0 (363)
GZ (m’ ka k', _f’ f)aan+ka(‘n+m)Nw +k'e_j2xﬂ;(C("+M)Nw+k.-c"~w+k)}

Next by subtracting and adding

E{fww+k }E{g(‘n.m))vw+k~}E{ej2xf4vw+k }E{e-j21f4l+m)Nw+k'} = ,u{ﬂéc J‘ejZ;rngd (A)dA J.e—jZIngA (A)dA

(3.64)
=t P Ga(NGL () =Ipty PIG,(N P
to G,(m,k,k',~f, f) in Equation (3.57), S,,(f) it can be separated as
SAJ(f) = SA.I.I(f)+SA41A2(f)
Ny-1 A-l ) Ng-1
S ()= D eI ERE N (W (= )T T
KR=0 n=0 m= 7= (3.65)
{GZ(msk,k’s_f’f)—lluﬁ |2| GA(f) IZ}GB(nam’k:k'9_f’f)
Ny-1 A-l o ‘ ' Ny-1
12 (f) =7 D e HIENT N W, (W (-,
kk'=0 n=0 m=—wo i,i'=0 (3.66)

m#0

e-szstmLu{ |2| GA(f) |2 G3 (n,m,k9k" _f9f)
In a similar way to S,,(f), using the periodicity of G,(n,m,k.k',~f,f), S,,,(f) can be

expressed as

Ny=1 A-1 o Ny-l
Sl =Sei(N=FxRel 3 3, 2. Ze‘””""'“"W WS e (3.67)

{Gz (m, k k', _f, f)_lluf IZI GA (f) |2}aan+k a(‘"“")Nw +k'e‘fZZ/Te("(n+m)Nw+k“'~'n.Vw+k)}
Next by adding and subtracting the term at m=0 in Equation (3.66), S,,,(f) can be

expressed as

Si12() =812 +8 41,5, ()

A-

) e . . w
Sy121() =W z e PR szk IW,p (N7, Ze-ﬂ”ﬂsmGs (n,m,k,k',~f, f) (3.68)

k,k'=0 ii'=0 n=0 m=-w

8 122(f) = — AL ”Z Sl @R Z%(—f)VV, =N, Z G,(m,0.k,k'~f,f)  (3.69)

kk'=0 £,i'=0
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By substituting Equation (3.55) in S, ,,,(f) and reordering we get

Ny=1 Ng-1 2

Suaa)=Ses ()= LB SIS S ot g Py, o, (3.70)

n=0 | k=0 i=0

Working with the sums on # and m in Equation (3.68) we can find that

Al A=l A-1
-2z fmT, _ J2xfTecny ek j2x T, * P22 fTeCN ek - j27 AT,
E G, (n,mk,k',—f, e 5= E A, i€ T Y ay, e T g
=0 T =0 1=0
n m=-w® n (3.71)

% . g~ JIRIAT,
2
using Equation (3.44) in Equation (3.71), substituting the result in Equation (3.68) and simplifying

SA‘1.2‘1 (f ) becomes

Nyl Ny-1 A-t 2

e PIGAUNE [ 2T AT, V2R T ik j27 ST,
Sua(N)=Sp(N) =HEBDEIN T S S PH, (f)1,0, p SH

T,A)?
b =0 i=0 n=0

x i‘f(f ~7x (3.72)

r=—w

which is the PSD’s discrete part.
Therefore, grouping all together, the PSD of the convolutionally coded/Markov-driven
IR-based UWB signal model introduced in Section 3.3 is given by

S(f)=S.(N+5,(f) (3.73)
Sc(f)=Sc,x(f)+Sc3(f)+Sc.4(f)+Sc.5(f) N, =1

3.74

Sc(f)=8c1(N)+Sca(N)+Se;(f)+Sc()+Scs(f) N, >1 G749
Ny-=1 A-1 Ng-~1

C,(f)-T Z Ry (0) | ay . FIW (- =, (3.75)

Ny=2 N,-1 A-l

D Y D RefeEIEG (0,k, k'~ 1, )G, (0,k.k',— 1, [)G,(n,0,k. k'~ £, )} (3.76)

k=0 k'=k+1 n=0

SC.z N= T2A

N, -1 o Ng-l
( )_ —j2xfT;m —_/sz(lz -Iz)T,n,‘ _ W, _ "9‘(,Irnl)
Seal/ = (Wi (3.77)
G,(m, k. k',~f, )G, (n,m, k. k',—f, )}
Nu-1 A-l1 o N,-l ] ]
Sesf)= D e e A E R (— W ()7,
Ko w0 w0 (3.78)
{Gy(m,k, k'~ f, )ty P1 G4 () PIG, (nym ke k'~ £, 1) }
| IIG(f)“‘”"“”“" , i
Spo() =219 DT S Sy W (3.79)
n=0 k=0 i=0
|:u |2|G (f)|2 R Na_l & i2x j2m j2rfT.c,
Sn<f)=‘(T—A")2— DY e f""anwe’“’“”w**wk(—f)n 26(f—— (3.80)
s k=0 i=0 n=0

where i is the mean of & ,, and G,(f) is the Fourier transform of the first order probability

density function of 4, ,,.
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Equations (3.73) to (3.80) are the closed form expressions for the PSD of convolutionally
coded/Markov-driven IR-based UWB signals. Another form for Equation (3.74) (which may be

useful for numerical evaluation of the PSD by a computer) is obtained by defining

G, (kK )= Z MCTALAMCIN X (3.81)

1i'=0

and merging S.,(f) and S.,(f) into a single term

Ny-l A-l o
j2xf (k'~k)T, —j2xT, * —J2xfT; (¢ otk =CnNy k)
Scs(N)+Sc (f)= 732/\ Re{ z Z e S/ WDn g zﬂ.maan-fka(n-i-m)Nw-'»k'e T
kk'=0 n=0 m=1 (3.82)

{Z ok CIW 7, (7 + 80™NG (m, k= £, ) = Gy (k' Nl P G4 (f) |2}}

i,i'=0

to obtain
Ny-1 A-1 » ) , ) "
C6(f) ——Re{ z z z e—szf(k -k)7, e—/Z;r_ﬂ_‘vmaan#‘a(‘n+m)Nw+k'e‘J ST (Clnam) Ny 4tk —CoNptk ) -
kk'=0 n=0 m=1 (383)
(G (mk k'~ 1, )G, (m k. k'~ f, ) =G, (k. k', Nl P G ()P} }
Then

Sc(f)=Sca(N)+Sc2(N)+Scs()+Scs() (3.84)

It is useful to note that while the continuous part of the PSD is a function of the steady state and

n™ step transition probabilities, the discrete part is only a function of the steady state probabilities.
This means that, regardless of the n™ step transition probabilities’ convergence rate to the steady
state probabilities, the discrete part of the spectrum can be shaped by the encoder’s steady state
probabilities. Furthermore note that the spectral lines in the PSD are spaced at multiples of 1/(T;A),
showing dependence on the periodicity of y,, . and the number of pulses, N,, per encoder output

vector used.

3.4.3 Simplifications for Special Cases of Modulation Formats,
Attenuation/Jitter Statistics and Time Hopping/Direct Sequence

1. When only one basic pulse shape is used with PAM, PPM or BOPPM then
Way, ()= a,, Wt = ﬂ 1) (3.85)
where T} is the PPM modulation index. Note e, , and B, , are the K" PAM and PPM variables

used for the transmission of the /™ encoder output vector, z, =y(0o,), whose value depends on the

SE pair MC state at time /. Therefore in the frequency domain

iy oy 1T,
W, o (f)=a, J(f)e ™ PnsTs

W, o (=f)=a, W (=f)e " Pmss (3.86)

and asa Consequence
W, (W= = 0, W (= 1) 2T g W * (= f)e /77 PexTe

o 12 f Bp—Bip )T,
=W Q;, Q€ s

1,

(3.87)
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for state s;. Therefore

G](mak’k"—fsf) =| W(f) I2 GAP(m’k’k"_f!f) (3'88)
where
Ny-1
a; ka"k'e—jzﬁ('@y—ﬂi'kﬂp T; m=0
Goplmkk',=f,1)=1,", (3.89)
z a, e TR BOT g

i,i'=0
2. If the attenuation and jitter are i.i.d. processes then

E{| &£}, mN, +k'-k=0

3.90
e FIGA(F)F, mN, +k'—k =0 (3.90)

Gz(m’k’k'9_f’f)={

and S ,(f) becomes zero.

3. If PR-TH sequence is assumed to be random then our result can be used by “merging” the jitter

process 4y, ., and ¢, T, into a single random dither variable 4", ., , that is

Ay o =4y, oy, ull (3.91)
and
=1
%e (3.92)
Xacw =lem(z,,N,)
then

. = T2 (A tamy o k= A k)
Gy (m,k, k'~ [, 1) = Bl&, i€ orumyn, 1 JELE (em bk =gk )y
= E{éNw+k§(;+m)Nw " }E{e‘jZ”f(4l+m)Nw+k'+"(l+m)Nw+k'7;:‘4Vw+k "'va+k7c)} (3.93)

_ * —J 27 (Atemyn, vk = AN, +k) =27 (Cemn, s Te=Cv, 41 Te)
=E{Siw, Sitrmn, 4 1 ElE " JE{e I
since 4, ,,,and ¢, T, are independent.

Due to the PR-TH sequence is random, ¢,y ,,T. is a sequence of uniform i.i.d. random variables

with distribution

2 @)=Y 366 -iT) (3.94)

and

2

] N,-1
E{e-JZz/(c(l+m)Nw+k-Tc—tm/wuxTc)} - GcTC ) |2= # = NL +-2 Z (Nc ) COS(2ﬂich) (395)
€ ¢ i=1

NG

N1
z Pk
¢=0

for mN, +k'-k#0. A similar approach can be followed for a perfect direct sequence (DS) by

merging &y ., and a, ;.
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3.5 Application Examples for the Spectral Analysis of
Convolutionally Coded/Markov-Driven IR-Based
UWSB Signals

To illustrate the application of Equations (3.73) to (3.80), several PSD plots are introduced in
this section for two different encoders coupled with quaternary BOPPM (Q-BOPPM) and
quaternary PPM (Q-PPM). First, PSD plots obtained when using the recursive systematic
convolutional encoder defined in Equation (3.6) are introduced. Next, results obtained when using
the binary data stream generated by the BMS introduced in Section 3.2.1 without coding are
presented. Finally, the effects of interchanging the encoder’s generators order for a maximum free
distance (MFD), rate 1/4, feedforward non-systematic binary convolutional encoder are shown.
Note more application examples will be shown throughout the rest of the thesis as the results
presented in this chapter will be frequently used in the following chapters.

In order to be able to compare the analytical and simulated results, a double simulation-PSD
estimation procedure has been performed for PSDs with continuous and discrete components (that

is S,(f)#0 and S,(f)#0) as described in Appendix A. Thus, in several of the PSD plots

presented in this and the following chapters, two separate simulations using periodogram-discrete

Fourier transform (DFT) based PSD estimation have been performed. In these plots the simulation

results labelled as “Sim. |X,(0)[’=1" were obtained using a data window, x,(f), with the

frequency domain characteristic | X, (0)]*=1, where X,(f)=3{x,(#)}. The results from these

simulations have been used to validate the analytical results for the PSD’s discrete part (spectral
lines). On the other side, the continuous part of the PSD has been validated through the use of
simulations with unit energy data windows. The results from these simulations have been labelled

as “Sim. U. E.”. The reader is referred to Appendix A for more details on these procedures.

3.5.1 Rate 1/2 Recursive Systematic Convolutional Encoder Defined by
Equation (3.6)

Consider the encoder defined by Equation (3.6) with SE Markov model defined in Equation
(3.16) and steady state probabilities given in Equation (3.18). Using this information the PSD of the
convolutionally coded IR-based UWB signal for Q-BOPPM and quaternary PPM will be evaluated

for several particular cases.

3.5.1.1 Q-BOPPM with TH, DS and Jitter

For this case only one quaternary biorthogonal signal is needed to transmit one encoder output

vector as each vector consists of two bits per state, thus N, =1 and T, =T.. Therefore, if the

encoder is in state o,=s; at time [/ with corresponding encoder output vector
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5 =2,=[5",7"1=y(6,=5)=¢, =[£;",{."], then
W,y () =W, (0) = 2wl = BT,) (3.96)
with @, =(2¢{” -1) and B,=¢1", and where a; € {-1,1} and 4 € {0,1}.
Set the TH and DS sequences to be {0, 2, 4, 1, 3} (prime code over GF(5)) and {-1, 1, -1, 1, -1,
-1, 1, 1, -1, 1 } respectively, thus y. =5, ¥, =10, % = 10 and A = 10. Finally assume there is no
pulse attenuation and that the jitter is a sequence of i.i.d. random variables uniformly distributed in

the interval (0, T,), then

1, mN, +k'—k=0

3.97
sinc?(T,f), mN, +k'—k#0 (3-97)

Gg(m,k,k',—f,f) ={

Using the results of Section 3.4.3 and substituting Equation (3.97) into the PSD formulas yields

7 9
sin (3, WP 22 JZ’UTL‘NW J2xf BT,
SD(f) - sinc 1007,1 Z Z e’ xfls cCn ae ﬂ” IOT (3.98)
i=0 n=0 r=-o
and
1 2 _snd MOWE N J22 /e, . j25fBTp i
ScN=xIWNI ———5—" N, € e ;
n=0 |i=0
9 ©
2sinc (R NI ()P — j2r ST, . = J2% (T, (C(nem)N,, ~Ca,, )
+== 107, Re{z Z e’ ”ﬂman/vw Y pemN, € (a7 (3.99)
n=0 m=1

7 :
x D aae I ol —.} )
i,i'=0

The PSD plots obtained by using Equations (3.98) and (3.99) are shown in Figure 3-6 for
P10 =3/5 and different values of p,,, with 7, = 0 ns. For p,, =3/5 (Figures 3-6a and 3-6b) the
SE pair MC steady state probabilities are

Ty =%, Ty 1= 14050 b0 b0 5408 ) (3.100)
and therefore the discrete part, S,(f), and the negative term in S.(f) becomes zero. This means

that asymptotically (that is in steady state) the encoder’s output resembles a sequence of uniform

distributed i.i.d. symbols. Nevertheless the shape of S.(f) is not an exact replica of the pulse’s
energy density spectrum (ESD) due to the jitter and the MC convergence rate to steady state as
evidenced by the third term in Equation (3.99) and the small ripples in the PSD plot of Figure 3-6a
(magnification in Figure 3-6b).

Power spectral density (PSD) plots obtained when setting Py =2/5 and p,, =1/5 are shown
in Figures 3-6c to 3-6f. For these cases spectral lines appear at 1/(AT,)=10 MHz intervals. The
appearance of spectral lines when setting p,, =2/5 (Figures 3-6¢ and 3-6d) and Py =1/5
(Figures 3-6d and 3-6f) is due to the change in the stationary probabilities from Equation (3.100) to
T, =83 5000 0] and v, =4[3,3,3,3.4,4,4,4] (3.101)

respectively, which are no longer uniform like distributed.

a
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Figure 3-6. Analytical and simulated PSDs obtained when using the recursive systematic binary convolutional
encoder defined by Equations (3.6) and (3.16) in a Q-BOPPM IR-based UWB system. The signal parameters
are I,=10ns, 7,= 10 ns, 7, =2 ns, Ty= 1 ns and no jitter. The 4™ derivative Gaussian pulse is used with
duration 7,, ~ 0.4 ns. The sequences {-1,1,-1, 1,-1,-1, 1, 1, -1, 1 } and {0, 2, 4. 1, 3} were used
for DS and TH respectively.

In order further clarify the appearance of spectral lines, note that the absolute value in

Equation (3.98) for p ,, =2/5 (Figures 3-6¢ and 3-6d) becomes

2

7 9
2zl J27 fTepy j2xf BT,
Z Z P 7 il a, e Ny ae j /fﬂ_’

i=0 n=0 n=0

9 .
- 2 Jj2r fal, 72xfleen, ¢ 1
- e anN“e SR

n

1,027 gy
10 10 s

(3.102)
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which is no longer equal to zero for all values of f=r/(107,), r=0,£1,£2,.... It is worth

mentioning that the appearance of spectral lines was expected due to the encoder is systematic (that
is the input data stream appears unchanged in one of the outputs) and the BMS’ stationary

probabilities are m, =[3/5,2/5] for p ., =2/5 and =, 6=[3/4,1/4] for p , =1/5, meaning that

the BMS generates more “zeros” than “ones”.
The effects of timing jitter uniform distributed in the interval (0, 7,) are shown in Figure 3-7 for

7,=0.04 ns and 7,=0.08 ns with p , =1/5 and p ,=3/5. By comparing Figure 3-6e

U

(maximum spectral line height equal to —36.62 dBm) with Figure 3-7a (maximum spectral line
height equal to —37.73 dBm) and Figure 3-7c (maximum spectral line height equal to —40.59
dBm) it can be seen that the jitter helps to reduce the spectral lines height. Nevertheless the use of
timing jitter is not advisable for spectral shaping purposes. This is due to the presence of timing

jitter has adverse effects in the system’s bit error rate (BER) performance as explained in [125].
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Figure 3-7. Analytical and simulated PSDs obtained when using the recursive systematic binary convolutional
encoder defined in Equations (3.6) and (3.16) with a Q-BOPPM IR-based UWB system. The BMS has
one step transition probabilities p,,, = 1/5 and p,,,, = 3/5. The signal parameters are 7,= 10 ns, 7, = 10 ns,

T.=2ns, Tp= 1 ns and jitter uniform distributed in the interval (0, 7;). The 4™ derivative Gaussian
pulse is used with duration 7, ~ 0.4 ns. The sequences {-1, 1,-1,1,-1,-1, 1, 1,-1, 1 } and
{0, 2.4, 1, 3} were used for DS and TH respectively.
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Finally note how there is good agreement between the analytical and simulated results for both
the PSD’s continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. |XW(0)|2 = 1) in all the
previous figures.
3.5.1.2 Q-PPM with Random TH

In this case one PPM symbol is needed per encoder output vector, thus N, =1 and 7, =T, .

Therefore, if the encoder is in state o, =s, at time / with corresponding encoder output vector
7 =y(0,=5)=6, =[¢£,”.¢."], then

W, () =w, () =w(t-BT},) (3.103)
with B, =¢” +2¢", and therefore S, €{0,1,2,3}.

It is assumed the TH sequence is perfectly random with ¢, ., uniform distributed over the set
{0, 1, 2, 3, 4}. For this example DS multiplication, timing jitter and pulse attenuation are not
considered. Therefore using the results of Section 3.4.3 we get

Gy(m k'~ 1, 1) 4 G () P= +—2 (5-)cos2mIT.) (3.104)

and y, =1, y. =1 and A =1. Then replacing in the PSD formulas yields

2 | o URWDR o (N N jaxstm 25 BB,

Sc(N) =W +—=——Re{d | Y e/ PmApi" 7.3}
m=1 i,'=0

: (3.105)

7

22 f BT,

i=0

Ger, (/P ()P
- I.\

and

7

i=0

Ger, (/P ()P
72

36— (3.106)

r=—w

SI)(f)=

Power spectral density (PSD) plots obtained by using Equations (3.105) and (3.106) for p ,,=3/5
and different values of p, , are shown in Figure 3-8.

From Equation (3.106) it can be seen that spectral lines could be expected at 1/7, = 100 MHz

intervals in Figure 3-8. However, for p , =3/5 (Figure 3-8a) spectral lines appear at 2 GHz
intervals. This is due to the time hopping sequence, {c¢, ., }, is assumed to be perfectly random
over the set {0, 1, 2, 3, 4}; T, is like in Equation (3.100) and Tﬂ and 7, were set to eliminate as
many spectral lines as possible. Note how as soon as p, , is changed (Figure 3-8b) the number of

spectral lines in the PSD trebles as a consequence of the change on the MC steady state
probabilities from Equation (3.100) to Equation (3.101).

Again note the good agreement between the analytical and simulated results for both the PSD’s

continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[°=1) in Figure 3-8.
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Figure 3-8. Analytical and simulated PSDs obtained when using the recursive systematic binary convolutional
encoder defined by Equations (3.6) and (3.16) in a quaternary PPM IR-based UWB system. The signal
parameters are 7,=10ns, 7, = 10 ns, 7. =2 ns, 7= 0.5 ns, ¢+ uniform distributed over the set {0, 1, 2, 3, 4}
and no jitter. The 4™ derivative Gaussian pulse is used with duration 7}, ~ 0.4 ns.

3.5.2 Non-Coded Q-BOPPM with Pulse Repetition

Now consider the BMS introduced in Section 3.2.1 is coupled directly to a Q-BOPPM IR-based
UWB system. In this case two information bits can be transmitted per quaternary signal.
Nevertheless, in order to provide a meaningful comparison with the previous example, where two
quaternary signals are required to transmit two information bits because of the code rate, it will be
assumed that each quaternary signal is repeated in two consecutive frames. Thus, this is a pulse

repetition scheme where every couple of information bits, y, =[ ¥\, »"'], is transmitted twice, that is

(0)
({

n 2 .03)7_ 0 It 0 1
=2, =[2",2",22,221=1y", 5", 5, y"] (3.107)

Therefore a Markov model for this pulse repetition scheme can be defined as

So S ) S3
So| PyooPyoo  PyooPyot  PyoiPyio PyoiPyn s, =(00); y(s,)=[0,0,0,0]
S| PyioPyoo PyoPyo PynlPyio PynPyn | 8 = OD;  y(s,)=[0,1,0,1] (3.108)

P

o >

8| PyoPro PywPyo ProPyso ProiPyn | s =(10); 7(s;)=I1,0,1,0]
S5 PyioPyo0  PyioPyot  PynPyio PynPyn]| ss=Q0A1; y(s)=[1, 1, 1,1]
with steady state probabilities given by
m, = [ﬂy’opoo,ﬂy.opo, s Ty 1 Pios Ty 1 ) ,:| (3.109)
As previously mentioned two quaternary signals will be used per encoder output vector, thus

N, =2 and T =2T. . Therefore, if the encoder is in state o, =s, at time / with corresponding

output vector z, = y(o, =5,) =&, =[£0, e jf’,g ff’] , then

Wo i (=W, (O =0, w(t—B,T,), k=0, (3.110)

with @, =@, =2 -1 =(2¢P -1) e {-1, 1} and B,, =B, =& =¢P € {0, 1}.
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Set the TH and DS sequences to be as in Section 3.5.1.1, that is {0, 2, 4, 1, 3} (prime code over
GF(5)) and {-1,1,-1,1,-1, -1, 1, 1, -1, 1 } respectively, thus 3, = 10, 3. =5, Yuew =10and A =35.
Finally assume there are no pulse attenuation and no jitter.

Under the previous assumptions the discrete part of the PSD can be found to be

-

1 3 4 )

1”(/)IZ 22k, pi2mply /27 S LYY

Sy (N =BLY X X P et g, | R S(f -5 (BT
k=0 i=0 n=0 r=—w

while the PSD’s continuous part is given by

Se ()= 2 IWNE +2405 S Re(e G, (0,0,1,~, /)Gy (m0,0.L—f, )}

n=0
2 1 4 @0 3 ) . . _ BT
+2|¢z§i{)| Re z Z Z Ze-Jz”mme-,z;rAk gy e J25f Brg=Bs )T
; Kk'=0 n=0 m=l i,i'=0 (3.112)
x g {pi™ — 3G, (n,m,k,k',~f, f)}
2

4 1 3
W (/)12 J2n K, o P vk i2xf B xTp
z Z Ze ranN +k ! ai,ke ”l

n=0 |[k=0 i=0

where G, (m.,k.k',—f, f) was defined in Equation (3.89) as

Ng—1
2xf 1
Zarka,kej”(ﬂ‘ ﬂA)ﬁ” m=0

Gup(mkk's=f, ) =1 (3.113)

2 7
zaka’kefn/(ﬂ,A /’L)ﬂ”p(lm\) m£0
i,i'=0

Power spectral density (PSD) plots obtained by using Equations (3.111) and (3.112) with

P,,0 =3/5 and different values of p, ,, are shown in Figure 3-9.

Note how for this system spectral lines spaced at 1/(A7,) =10 MHz intervals appear in the PSD
even for the case with p,, =3/5 and p ,,=3/5 as shown in Figures 3-9a and 3-9b. This is due
to for this case the SE pair MC steady state probabilities are

%y =[7,0P00s 7, 0Pots By Pros Ty P | = [ 125501 (3.114)

which is not uniform like distributed.

By comparing the plots in Figure 3-9 with the plots in Figure 3-6 the effects of the encoding

operation over the PSD shape can be seen. These effects are particularly acute for the p, , = 375,
P, =3/5 case, as evidenced by the absence of spectral lines in Figure 3-6a and the presence of

spectral lines in Figure 3-9a. Therefore, it can be said that, for the particular case of the encoder
defined by Equations (3.6) and (3.16), the introduction of the encoding operation had positive
“spectral shaping” effects compared to the non-coded pulse repetition scheme.

Finally note the good agreement between the analytical and simulated results for both the PSD’s

continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[*=1) in Figure 3-9.
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Figure 3-9. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB system with
pulse repetition and no convolutional coding. The signal parameters are 7, =20 ns, 7, = 10ns, 7, =2 ns, Tp= 1 ns
and no jitter. The 4™ derivative Gaussian pulse is used with duration 7}, ~ 0.4 ns. The sequences {-1. 1. -1, 1, -1,

-1, 1, 1. -1, 1} and {0. 2, 4. 1. 3} were used for DS and TH respectively.
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3.5.3 Rate 1/4 Maximum Free Distance Feedforward Convolutional

Encoder (5, 5, 7, 7)s — Effects of the Generators Order

Consider now the rate 1/4, total encoder memory v =2, convolutional encoder defined by the
following polynomial transfer function matrix
G(D)=[1+D* 1+D* 1+D+D* 1+D+D*]1=(5,5,7,7) (3.115)
This encoder has maximum free distance and optimum distance spectrum, [83, 111].

The SE pair Markov model for this encoder is defined by

So S) S3 S; S4 S5 Se S;
So[ Proo O 0 0 po O 0 0 ] s,=(0,00); y(s,)=[0,0,0,0]
S| Py.00 0 0 0 Pyl 0 0 0 s, =(0,01); y(s)=[1, 1,1,1]
s, 0 Py.oo 0 0 0 Pyoi 0 0 s, =(0,10); y(s,)=[00,1,1]
p _S5 0 po O 0 0 pa 0 0 ; s; =(0,11); y(s;)=[1, 1,0,0] (3.116)
‘ Sy 0 0 Py10 0 0 0 Py 0 s, =(1,00); y(s)=[1, L1, 1]
ss| O 0 pyw O 0 0 pun O ss =(1,01); ¥(s5)=[0,0,0,0]
s¢| O 0 0 pw O 0 0 pyu| s=01,10) y(se)=[l, 1,0,0]
S7L 0 0 0 Pyo 0 0 0 Pynl $= L11D); x(s;)=[0,0,1,1]

with steady state probabilities given by
T, =I:”y,opoopom”y,]plopoo’”_y,opmploa”y,]pl|p|07”y,opoopo|,”y,xplopma”_y‘opmpna”y,[p]1p1|:I (3.117)
In order to see the effects of the generators order in the PSD shape, a Q-BOPPM IR-based
UWRB system will be considered with perfectly random TH uniformly distributed over the set {0, 1,
2, 3,4, 5}. Timing jitter, attenuation and DS multiplication will not be considered for this example.
For this case two quaternary biorthogonal signals are needed to transmit one encoder output

vector due to each vector consists of four bits per state, thus N, =2 and 7, =27,. Therefore,

if the encoder is in state o,=s, at time / with corresponding encoder output vector

=7(0,=5)=8, =[{0,¢P,¢2,¢ 2], then

wa,.lr(t)=W,\-,,k(t)zal‘kw(t_ﬂ:,krﬂ)’ k=0,1 (3.118)

with @,, =26 ~1), @, =(2¢® -1) e (-1, 1} and B,=¢", B,=¢O € {0, 1}.

Under these assumptions the discrete part of the PSD can be found to be

L. .7 R
Z Z 2 7Irfkl ,/2”./0..A’,97rl_

k=0 i=0

G NIPW I ;wmr

Sp(f)=

2.8/ ~) (3.119)
while the PSD’s continuous part is given by

1 7
27 KT, 22/ B4 7,

2 2 (G (PP
Sc(N)=%IW()f ———F—

k=0 i=0
7
2\(:‘.‘,‘(])\1\"'(_/)12( 2 ST © 2af (BB,
cle 2xjly e NP0 B
+ 2 Refe > a,ae ' 7} (3.120)
i=0
7
—j2nf (k'=k)1, —jZ;r/'Im * =127 f (B —=Bix)T, (|ml)
+Re{ z z Ze O 05 i@ i ) —n,.}}
kk'=0 m=l I,i'=0
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where |G, (/)| is defined as

|G (/‘)|2:§+;—5§4: (5-1)cos(2x fIT,) (3.121)
1=1

Power spectral density (PSD) plots for different values of p, , and p , are shown in

Figure 3-10. It is important to highlight the appearance of spectral lines in Figure 3-10a even

when p , =1/2 and p, ,=1/2 with corresponding SE pair MC steady state probabilities

m =[l 111111 i]. To further see this note that for n_az[i 111111 1] the PSD’s

a

discrete part becomes

o)

DX (3.122)

=—

Geg, (NIEIW ()P

27 /T, - 27 fT,
o R P {~1+¢ ”f”}

S/) (f) =

which is not equal to zero for all values of f=r/T,, r=0,£1,+2,....

Sim. |, () =1 == Sim. U. E. — Analytical

Sim. [ (0)? =1 === Sim_U. E. — Analytical

-20 -20}

40/ -40
60 5 tl J |
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|
-80} I I |
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Power Spectral Density (dBm/Hz)
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a) p,, =1/2 and p,,, =1/2 b) p,o =2/5 and p,,, =3/5

! ¥

Figure 3-10. Analytical and simulated PSDs obtained when using the maximum free distance feedforward
binary convolutional encoder (5, 5, 7, 7)s in a Q-BOPPM IR-based UWB system. The signal parameters are
Ty=20ns, 7,=10ns, 7. =2 ns, 5= 1 ns and ¢yy,,4 uniform distributed over the set {0, 1, 2, 3, 4}. The 4t
derivative Gaussian pulse is used with duration 7, ~ 0.4 ns.

Remember from Section 2.7.3 that the distance and bit error correction (BER) properties of a
convolutional encoder do not change when interchanging columns in its transfer function matrix.
Nevertheless consider what happens with the signal’s PSD when interchanging the second and last

columns in Equation (3.115) to
G(D)=[1+D* 1+D+D* 1+D+D* 1+D*1=(5,7,7,5), (3.123)
The corresponding SE pair Markov model has the same transition probabilities matrix, P, , given in

Equation (3.116) but the output mapping, y(-), changes to

7(50)2[0’07070] }/(Sl):[ L l’ l’ l] 7(‘92):[0’1’]’0] }’(5’3)=[l,0,0,1]
yG)=[LLLIT 7(s:)=[0,0,0,0] r(s,)=[1,0,0,1] y(s,)=[0,1,1,0]

This simple change has a significant impact in the signal’s PSD as shown in Figure 3-11. Note

(3.124)

how for p, ., =1/2 and p, ,=1/2 the PSD’s discrete part becomes zero as shown in
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Figure 3-11a. Furthermore, by comparing Figure 3-10b with Figure 3-11b it can be seen that the
height of the spectral lines has been reduced in Figure 3-11b. Therefore, it can be concluded that
even though interchanging the generators has no effects on the error correction capabilities of the

encoder, such change can have advantageous effects on the signal’s PSD.

|~ Sim U. E. — Analytical

o Sim. [, (0) =1 == Sim. U. E. — Analytical

40—} 1

-80/

‘ \
-80 ‘ f
| I
‘ ‘ I e

_120; ' S : ! ‘, 5 ¢ -120 |"|{ . . : !
T 3 § 5 & I & 9 10 11 N I e > Tisff 8 9 10 11
Frequency in Hz <10 Frequency in Hz %40’

a) p,,=1/2 and p,,, =1/2 b P =218 aid P, =315

Power Spectral Density (dBm/Hz)
Power Spectral Density (dBm/Hz)

(=}
()

Figure 3-11. Analytical and simulated PSDs obtained when using the maximum free distance feedforward
binary convolutional encoder (5, 7, 7, 5)s in a Q-BOPPM IR-based UWB system. The signal parameters are
v=20ns, 7,=10ns, T, =2ns, 7= 1 ns and ¢y, uniform distributed over the set {0, 1,2, 3. 4}. The 4t
derivative Gaussian pulse is used with duration 7,, ~ 0.4 ns.

Again note how there is good agreement between the analytical and simulated results for both
the PSD’s continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[’=1) in
Figures 3-10 and 3-11.

3.6 Conclusions for Chapter 3

In this chapter the spectral analysis of convolutionally coded/Markov-driven IR-based UWB
signals with binary Markov sources has been presented. Particularly, a first order binary Markov
source (BMS) was assumed as it enables the modelling of unbalanced (that is non-uniform
distributed) independent identically distributed (i.i.d.) memoryless binary data streams as well as
binary data streams with memory often found in practical applications. The analysis was performed
by introducing a source-encoder pair Markov model (of the Moore type) which describes the
statistics of the convolutional encoder when driven by the BMS. In order to obtain the SE pair
Markov model, it was shown that the encoder’s state diagram representation is essentially a Melay
FSSM which is strongly connected and has a self loop in state zero.

Based on the SE pair Markov model a general convolutionally coded/Markov-driven IR-based
UWB signal model was then introduced. This signal model covers a wide variety of IR-based
modulation schemes such as PPM, PAM, BPSK, BOPPM (BPSK/PPM), PAM/PPM and PSM,
combined with periodic or random TH and/or DS multiplication. Furthermore, the model accounts

for factors such as attenuation and timing jitter. Then the spectral analysis of the signal model was
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performed by using the properties of the SE pair Markov model and a non-cyclostationary based
approach.

From the spectral analysis, novel closed form PSD formulas for convolutionally coded/Markov-
driven IR-based UWB signals were obtained. Such formulas allow the spectral analysis of
complicated systems in a straightforward way by providing explicit expressions for the continuous
and discrete PSD components and by clearly differentiating the contributions of each variable (e.g.
timing jitter, attenuation, TH, etc.) to the PSD. Furthermore, as shown in Section 3.5, such
expressions can be easily applied for the analysis of non-coded systems and any other scheme that
can be described by an ergodic regular Moore Markov model.

Application examples of the formulas were presented for several cases of interest. With these
examples it was shown that the introduction of the convolutional encoding operation can be used for
spectral shaping purposes. It was demonstrated that for some cases the introduction of convolutional
coding has positive effects in the PSD shape of IR-based UWB signals when compared with the
non-convolutionally coded case, as spectral lines were attenuated or even eliminated by the coded
system. Nevertheless, it was shown as well that the introduction of a specific convolutional encoder
for spectral shaping purposes can not be trivially done, as even a simple change in the generators
order may have a significant impact in the PSD shape. Finally note how the analytical and simulation

results presented in all application examples of this chapter show a good agreement for both the
PSD’s continuous part (Sim. U.E.) and the PSD discrete part (Sim. | X, (0)|’=1) which validates

the closed form PSD expressions derived in Section 3.4.
The idea of using convolutional encoders for spectral shaping in IR-based UWB systems will be
addressed in the following chapters where convolutional encoders specifically designed to achieve

both improved PSD characteristics and bit error rate performance are introduced.
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Chapter 4

Maximum Free Distance Binary to
M-ary Convolutional Encoders for
Pseudo-Chaotic Time Hopping Type
Spectral Shaping of IR-Based UWB
Signals

4.1 Introduction

In this chapter novel maximum free distance (MFD) binary to M-ary convolutional encoders
with convenient power spectral density (PSD) characteristics for non-interleaved pulse position
modulated (PPM) time hopping (TH) impulse radio (IR) based ultra wideband (UWB) systems are
introduced. The PSD characteristics of the new encoders are similar to those obtained with the
pseudo-chaotic time hopping (PCTH) scheme introduced in [70] (Section 2.5.4) for M-ary PPM
TH-IR-based UWB systems.

The new encoders provide improved bit error rate (BER) performance over the non-coded and
PCTH schemes when used in UWB systems employing M-ary orthogonal signalling (not
necessarily restricted to be PPM based). Feedforward encoders with rates 1, 1/2 and 1/3, for 16-ary,
32-ary, 64-ary and 128-ary orthogonal modulation schemes are introduced. For these encoders the
free distance is defined in terms of the M-ary Hamming distance between codewords and the rate
is given as a function of the number of M-ary symbols produced per each input bit (Sections 2.7.3
and 2.7.6).

The design of convolutional codes for M-ary (where M is a power of 2) orthogonal signalling
schemes has been addressed in [105-107, 126, 127]. A construction method for rate 1 binary to
M-ary convolutional encoders with constraint length K =log,(AM) was introduced in [126, 127].
Maximum free distance (MFD) binary to M-ary convolutional encoders are reported in [105, 107]
for 4-ary, 8-ary and 16-ary orthogonal signalling. These encoders were found by computer search

with the constraint length, K, not limited to be equal to log,(M), [105, 107]. An analytical method
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for the design of rate 1 binary to M-ary convolutional codes is presented in [106] where maximum
M-ary free distance rate 1 binary to l6-ary encoders are introduced. The use of orthogonal
convolutional codes in code division multiple access (CDMA) systems is discussed in [82, 91, 128,
129] while its use in optical channels with PPM has been addressed in [130-133]. All of these
works are focused on BER analysis and do not consider the PSD of the transmitted signal.

The use of binary coﬁvolutional codes in TH-IR-based UWB systems with M-ary PPM
signalling has been proposed in [22, 33, 37, 38]. Nevertheless none of these papers consider the use
of binary to M-ary convolutional codes. Instead, the use of low rate binary superorthogonal codes,
[82], and high rate binary punctured convolutional codes, [84], without interleaving is proposed in
[22]. Binary rate compatible punctured convolutional codes with interleaving are employed in [38].

The use of rate 1/log, (M), K =log,(M), MFD binary convolutional encoders with interleaving is
proposed in [33] for M-ary PPM. Besides, rate 1/log,(M), K =log,(M)+1, MFD binary

convolutional encoders without interleaving are used in [37] for M-ary PPM. It is important to
highlight that none of the convolutional encoders used in these works were designed for M-ary
orthogonal alphabets or interpreted as binary to M-ary convolutional encoders. This interpretation
is important due to, as it will be shown in this chapter, the BER performance can be improved upon
the introduction of properly designed binary to M-ary convolutional encoders.

A form of orthogonal convolutional modulation for IR-based UWB systems has been proposed
in [31]. This scheme does not use traditional orthogonal M-ary PPM signalling. Instead, an
orthogonal signal set is constructed by using M non-overlapping TH sequences which define a
specific train of pulses for each M-ary symbol. Therefore, this scheme is similar to the
implementation of orthogonal convolutional coding through the use of binary Hadamard codes in
direct sequence (DS) CDMA systems, [82, 91, 128, 129].

As mentioned in Section 2.6, both [33] and [37] address the effects of the convolutional coding
operation on the signal’s PSD. Remember that, in a similar fashion to PCTH, in these schemes all
time hopping is driven by the interleaver/encoder output with no additional TH or DS
multiplication. The spectral analysis presented in [33] was performed using simulation, while [37]
uses a simplified model for the signal’s spectral analysis which is based on the assumption of
independent identically distributed (i.i.d.) streams with uniform distribution at the encoder output
(that is the correlation introduced by the convolutional encoders is not considered). The analysis
presented in both [33] and [37] showed that spectral characteristics similar to those obtained with
PCTH are feasible when using these schemes under similar operation constraints, that is uniform
distributed i.i.d. binary data streams are assumed at the encoder input. Nevertheless, the scheme
proposed in [33] relies on the interleaver to obtain such PSD characteristics and therefore a delay in
the decoding operation is introduced when compared to non-interleaved schemes.

Based on the previous discussion it can be said that the use of binary to M-ary convolutional
encoders in M-ary PPM IR-based UWB systems to achieve both PSD characteristics similar to
those obtained with the PCTH scheme and improved BER has not been previously addressed.
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Therefore the focus here is to suggest, identify and find good feedforward binary to M-ary
convolutional encoders with convenient PSD characteristics without interleaving.

This chapter is structured as follows. Section 4.2 describes the proposed system model. Section
4.3 introduces the signal model and its respective PSD. The code search procedure is introduced in
Section 4.4 altogether with the MFD binary to M-ary convolutional encoders found with such
procedure. Comparisons in terms of PSD characteristics between the new encoders and the PCTH
scheme are presented in Section 4.5. The BER performance analysis for the new encoders and BER
comparisons with the PCTH scheme are provided in Section 4.6. Finally conclusions are presented

in Section 4.7.

4.2 System Model for Binary to M-ary Convolutionally
Coded TH-IR-Based UWB Signals

The block diagram of the system model used for discussion in this chapter is shown in Figure
4-1. This model is similar to the PCTH scheme reviewed in Section 2.5.4, with the difference that
the PCTH encoder in Figure 2-10 (consisting of the shift register and the optional modified Gray

based mapper) is replaced with a binary to M-ary convolutional encoder.

Data Compression | y, Binary to M-ary % M-ary PPM TH-IR w(t=IT, = BTy)
Rourcs and —> Convolutional based UWB

Scrambling Encoder Modulator

A

Figure 4-1. Binary to M-ary convolutionally coded M-ary PPM TH-IR-based UWB system.

Throughout this chapter it will be assumed that M is a power of 2 and that {y,} is a uniformly
distributed i.i.d. binary stream as in the PCTH scheme, [70]. That is, y, has probability mass
function (p.m.f)

Pyo=Pr{y,=0}=1/2; and p,, =Pr{y,=l}=1-p  =1/2 4.1)

4.2.1 Interpretation of PCTH as a Rate 1 Binary to M-ary
Convolutionally coded Scheme

The encoders used in [70] and [37] were interpreted as binary encoders. However, these
encoders can be interpreted as binary to M-ary encoders as well. This interpretation is important
due to PCTH can be seen as a set of rate 1 binary to M-ary convolutional encoders with constraint

length K =L=log,(M) and total encoder memory v=log,(M)—1. One can see that is

interpretation is correct by comparing the basic PCTH encoder structure in Figure 4-2a (see also
Section 2.5.4 — Figure 2-10) with the binary representation for rate 1 binary to M-ary convolutional
encoders introduced in Section 2.7.6 — Figure 2-21. We can further confirm this interpretation by
comparing the basic structure of the PCTH encoder with that of the binary to M-ary orthogonal

convolutional encoders introduced by Viterbi in [126] as shown in Figure 4-2b. The main
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difference between both encoders is that in Figure 4-2b the modulation format has not been defined

while in the original PCTH scheme (Figure 4-2a) the modulation format used is M-ary PPM

binary74>[*' [ Shift register with L [ Binary to
> LN ]
input memory elements »  M-ary
y Orthogonal ——»

A . . Signalling
Modified Gray B e btnary r 3 m=2
Code Based Mapping : M:iypper —> input AL, + }’
(optional) . A= 2 » C ) K=v+l
v memory locations
a) PCTH encoder b) Viterbi's orthogonal convolutional encoder

Figure 4-2. Basic diagrams of the PCTH encoder and Viterbi's orthogonal convolutional encoder.

As mentioned in Section 2.5.4, the modified Gray code based mapper in Figures 2-10 and 4-2a
is needed for tent map PCTH implementations. However, for Bernoulli shift map PCTH
realisations the Gray code based mapper is discarded. The tent map implementation offers
improved BER performance for binary hard decision Viterbi decoding (HVD) compared to the

Bernoulli shift map realization, [70]. This is because of the larger binary free distance, d ., of the

free °
tent map encoder, which is the main performance parameter when using binary HVD (Sections
2.7.4 and 2.7.5) as in [70]. However, both PCTH realizations have the same M-ary free distance,

d . » When interpreted as binary to M-ary convolutional encoders. This is due to changing a

non-zero label with another non-zero Gray code based label does not change the M-ary Hamming
weight of a given M-ary symbol/signal (Section 2.7.6) as far as all changes are performed in a one
to one basis (such as with Gray code based labelling).

As an example consider Figure 4-3 where state transition diagrams equivalent to the Bernoulli
shift and tent maps encoders for 8-ary PCTH are shown. Starting in g, the path that defines the free
distance is highlighted with bold lines. It can be seen that the binary free distance is larger for the
tent map encoder. However, the M-ary free distance is the same for both encoders as the sequences

{1, 2,4} (Bernoulli shift map) and {1, 3, 7} (tent map) have the same M-ary Hamming weight.

(") 0/000 (0)

0/000 (0)

0/100 (4) 1/001 (1) 0/111 (7) 1/001 (1)

07010 (2)

/C]D/ q3 )
™
17111 (7) \_/ 1/101 (5)

a) Bernoulli shift map PCTH encoder, d, =3 b) Tent map PCTH encoder, d_,m, =6

0/011 (3)

0/110 (6) 1/011 (3) 0/100 (4)

free

Figure 4-3. State transition diagrams equivalent to the Bernoulli shift and tent map encoders for 8-ary PCTH.
Both encoders have different binary free distance, d,,, , but the same M-ary free distance, d,,,,, =3.

free *

From Figure 4-3 it is clear that the M-ary Hamming weight of every branch remains unchanged

when using the modified Gray code based labelling. Therefore, performance related parameters
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(see Section 2.7.3) such as the distance spectrum and information weight spectrum (IWS), are the
same for both encoders when calculated in terms of the M-ary Hamming weight. As a consequence
the performance of both encoders should be similar when interpreted as binary to M-ary
convolutional encoders. This can be inferred from the union bounds introduced in Section 2.7.4 for
bit and first event error probabilities since they would be identical for both binary to M-ary

encoders.

4.2.2 Source-Encoder Markov Model for the Binary to M-ary
Convolutionally Coded Time Hopping Scheme

The source-encoder (SE) model introduced in Section 3.2 will be used for the signal’s spectral
analysis. Therefore the binary Markov source (BMS) equivalent to the data source and

compression-scrambling blocks in Figure 4-1 is defined by the following one step transition

1/2 1/2
- (4.2)
» 172 172

where all the transitions have the same probability due to the uniform i.i.d. assumption for the

probabilities matrix

binary data stream.

This chapter focuses on feedforward binary to M-ary convolutional encoders. The total encoder
memory is not restricted to v=L-1=log,(M)-1 or v=L=log,(M) as in [70] and [37]
respectively and the code rate, 1/k, can be smaller than 1. Therefore, the encoders considered in
this chapter have the basic structure shown in Figure 4-4 (see as also Section 2.7.6 — Figure 2-21).

For clarity the operations defined by the encoder’s generator polynomials are generically

represented by the binary operations set blocks in Figure 4-4.

v memory locations

bi ‘ 7 7
i:]npal:l) L\._J\ 6“ »»J 9“ o> o .l‘?—bel." L<v+l=K
| . - :
1 IR o Bmary Py g Te— Binary to M-ary ®
| 5 perations | P C Orthogonal —>
1 = Set Signalling (M =2")
I
L]
b : K M-ary
° ° outputs
— e Bi Bi M- ¢ |
. o inary o ee— inary to M-ary P
> perations | ¢ gl 3 Orthogonal —>
— SV » Signalling (M =2")
o q o i S

Figure 4-4. Generic diagram of a rate 1/x feedforward binary to M-ary convolutional encoder.

From Section 3.2.3 the state process, o,, defined by the SE pair Markov model has transition

probabilities matrix given by

By 4.3
» (4.3)
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where By and B, are the N, x N, the next state matrices defined in Section 3.2.3. Remember

N, = 2" is the number of encoder states, g,, as defined by the encoder’s state transition diagram
representation (see Sections 2.7.2 and 3.2.2). Now assume the encoder memory content at time / to
be [6,,.6,,,....6, 1=, 1,....0,] with corresponding state label g, where by convention
i=p 2" +p,2" 7 +...+ u, as in the previous chapter. When the current input is y, =0 the next
state is [6),, .6, 250, ,1=[0, 4, 445.,..., st,_,] or using Section 3.2.3 notation:

6. =$01.6) = $(0.9) =, (4.4)
where |- | stands for the floor function and @(-) is the next state function of the encoder’s Melay

finite state sequential machine model (FSSM) equivalent to the encoder’s state transition diagram.

Therefore each element, B, ;, of By is equal to

o, j=lir2]
Bo.u _{L j=‘_i/2J (45)

Similarly when the current input is y, =1 the next state is given by
6/+I = ¢(yl’el) = ¢(1’ ql ) = qg"-l +Ll/2J (46)

since [6),, 1,6, 250, 1=, 4, 5., 4, ], and each element, B, ;, of B, is equal to

0, j=2""+|i/2]
B, = ;
Lij {], j = 2!'—] +[_[/2J (4 7)

Finally the state set for the SE pair Markov model is defined as
S ={(:90): (124 )s-s (s g 1) (11, G )5 (134, s (1, Gy 1)}

(4.8)
={(0,4,),(0,4,),....,(0, ANg1 ). (L), (1, q,),....(1, ANg-1 )} = {5055, s SaNg-1 }
with corresponding output mapping
C'\‘"\"I“ = [g‘(}?\i]ﬂ 2 ;‘(.’:\)Il/” Ll él\(:\;i)j ] = 7(San+j) = }’(ﬂ, q[) (49)

where y(-) is the output mapping function, n=0,1 and j=0,1,...,N, —1.

From Equations (4.2) to (4.7) it can be seen that for the particular case of uniform distributed

i.i.d. binary streams the entries in each column of the transition probabilities matrix, P_, sum to
unity. Thus P_ is a double stochastic matrix and therefore all the steady state probabilities are
equal, [134], that is

n, =l

o 0,02

LT SO [ B (4.10)

As an example the next state matrices for feedforward encoders with v=2 (e.g. the Bernoulli

shift and tent map encoders shown in Figure 4-3) are given by

1000 0010

gl 000 g0 00D @.11)
0100 000 1
0100 000 1
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Hence the SE pair Markov model for the 8-ary Bernoulli shift map encoder is defined by

So S S S35, S5 Sg S7
s[1/2 0 0 0 1/2 0 0 07 s=00g) (s,)=0
s[1/2 0 0 0 1/72 0 0 0| s5=(0g); y(s)=4
500 12 0 0 0 1/2 0 0| s,=004); y(s,)=2
p 5[0 12 0 0 0 12 0 0| 5=(04) rs)=6 (4.12)
? & 0 0 1/2 0 0 0 1/2 0| s,=(04q); 7(s,)=1
sl 0 0 172 0 0 0 172 0| ss=(0gq) y(s)=5
sl 0 0 0 172 0 0 0 12| s,=(g); y(s)=3
;L0 0 0 1/2 0 0 0 1/2] s,=0,g5); y(s,)=7
with steady state probabilities vector equal to
T, =[7zayo,ﬂo‘,,...,7rav7]=[§,%,...,§] (4.13)

It is important to recall that for binary to M-ary encoders the rate is defined in terms of the

number of M-ary symbols produced per input bit. This is the reason why the decimal representation

of the Bernoulli shift map encoder’s output is used for the output mapping defined by y(:) in

Equation (4.12). As another example consider the rate 1/2, v=2, MFD binary to 8-ary encoder
with transfer function matrix

G(D)=[1 D D»)® (1 D+D* D»M] (4.14)
The two sets of generators polynomials corresponding to the two M-ary outputs are clearly
differentiated by the parenthesis in Equation (4.14). This encoder is equivalent to the one reported

in [105] with representation over GF(8). The corresponding SE pair Markov model is defined by

So S Sy S5 8, S5 S 8

s[1/2 0 0 0 1/2 0 0 07 s,=004): y(s,)=[0,0]

(172 0 0 0 1/2 0 0 0| s5=(00q) ys)=[13]

500 1/72 0 0 0 1/2 0 0] s=004g)ys,)=[22]
p 5[0 12 0 0 0 12 0 0 5=0.g)%7(s)=[1 (4.15)
sl 0 0 12 0 0 0 172 0| s,=(gq) 7(s,)=[4.4]

{0 0 172 0 0 0 1/2 0| s;=0q) ys)=[57]

|0 0 0 1/2 0 0 0 1/2] s,=(q); y(s)=[66]

L0 0 0 12 0 0 0 1/2] s=(0g); y(s,)=[75]

with steady state probabilities given in Equation (4.13).

4.3 Signal Model and Power Spectral Density of the
Binary to M-ary Convolutionally Coded Time
Hopping Scheme for PPM IR-Based UWB

In this section the signal model of the binary to M-ary convolutionally coded time hopping PPM
IR-based UWB scheme is introduced. The power spectral density of the signal model is then
provided as obtained when using the results from Section 3.4. Finally, some PSD examples

obtained when using known convolutional encoders are presented.
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4.3.1 Signal Model for the Binary to M-ary Convolutionally Coded Time
Hopping Scheme

The signal model for the binary to M-ary convolutionally coded TH-IR-based UWB scheme

analyzed in this chapter is defined as

=

=l

x(1) = i Wit —IT, kT, = B, . T,) (4.16)

where w(7) is the waveform used; o, is the SE pair Markov model’s state process with N, =2N,
states; B, , €{0.1,....M —1} is the K™ M-ary symbol transmitted when the encoder is in state &, ; N,

is the number of M-ary symbols transmitted per state as defined by the encoder rate 1/x=1/N_;

T}, is the PPM modulation index; 7, is the mean repetition time between pulses and 7, = N, 7, is the

encoder’s output vector time. As in Chapter 3 the notation 7z, =7,, and p;" = p"). will be used

th

for the steady state and the " step transition probabilities of the state process, o, , respectively.

If the rate 1/x encoder is in state o,=s, at time / with corresponding output vector
z :ﬁ=[z}°’,z,‘",...,z}"'”]=7(a, =s5,)=C, =[ -:,O)’ .f,”,...,;\‘,,""”] , then
Boi=2"=¢P=48,  k=01.,N,-1 4.17)

W

where N, =x and B, =¢" €{0,1,...M -1}

4.3.2 Power Spectral Density of the Binary to M-ary Convolutionally
coded Time Hopping Signal

Using the results presented in Section 3.4 the PSD of the signal described by Equation (4.16)

can be found to be

g(f)=S(‘1(f)+S<'J(f)‘*'Su(f) N, =1

N (4.18)
S(.f)=S(~|(/‘)+L (‘2(Af)+S<‘3(f)+S/)(f) Nw >]
] , 1 N Ny=1 No—1 ) N - A 2
Serx(N=—IWNE——IW(F|Y Y &2 h ™ hulsy (4.19)
Tr T\ k=0 =0
2|W(f) ’2 R —j2mf (k'-k)T, &' —127f(Bx-Bix)p
S(,z(f)zT; k;l Re{e™/*" 'Z(;e S raleg (4.20)
- 2 [ W(f) |2 & 2, & -j2xf(k'-k)T, —j2xfl;m —. 275 f (B =Bix )1, m
i 1 i Ny-1 Ng-1 N ) 2 f BT, 2 o
Sp(N)=—= W (NP e S gl N S -5 (4.22)
(T\) k=0 =0 r=—w '

where §.(f) is the PSD’s continuous part, S ,(f) is the PSD’s discrete part and

W (f)=3{w()}. Note spectral lines in the PSD are expected to appear at multiples of 1/(T).
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Now we will focus on the PSD’s discrete part, S, (f) . If the steady state probabilities, =, and

output mapping function, (-), of the state process, o, are such that

Ng-1 M-l

o2 Bixlp =Lzel2ﬂf§7ﬂ; k=0,1,.,N -1 (4.23)

W

i=0 ¢=0
for every value of k and where S, €{0,1,..., M}, then Equation (4.22) becomes

2

8(f~%) (4.24)

2

Sp(f) = 3
k= (T) Z

r=—w

1 M-

2
Z J2r(rlTs)sTp
M

¢=0

N,y -1
z e_/27r(r/Nw )k
k=0

where some of the absolute values were brought into the sum. By setting

Ty = (4.25)

and assuming Equation (4.23) is satisfied it can be proved that

l M-1 21T )T %
2 (r/T;
e E:e./ sIElp |

¢=0

N,-1

2
Z ev/27r(r/N\.r )k

k=0

(4.26)

{(Nw)z, r=0,+MN,,+2MN,,...
0, otherwise

and as a consequence the number of spectral lines in Equation (4.24) is reduced. Thus the space
between successive spectral lines is increased from 1/7, to M /T, =MN, /T, and it can be
concluded that when the SE pair Markov model is such that Equation (4.23) is satisfied the number

of spectral lines in the PSD can be reduced.

4.3.3 Power Spectral Density of a Non-Coded Binary PPM IR-Based
UWB Signal with Random and Pseudo Random TH

It is convenient to define a signal model for a non-coded TH-IR-based UWB signal for
comparison purposes. For meaningful comparisons the rate of the non-coded system must be
equivalent to the convolutionally coded one. Similarly, the number of TH positions available

within a pulse frame (as defined by the mean repetition time between pulses 7, ) must be the same

for both systems. Therefore the model adopted in this chapter for non-coded (uncoded) PPM TH-
IR-based UWB signals is defined by

N, -

x,0=3 Y wIT, ~kT, - yT,~cy_,T.) (4.27)

=—o k=0

~

where y, € {0,1} is the I data bit; N,, is the number of transmitted pulses per bit; 7, is the binary
PPM modulation index; {c, ., } is a pseudo-random (PR) TH sequence taking values on the set
{0, 1, 2 ,..., (M/2)~—1} with period . T. is the nominal shift caused by the TH sequence; 7, is
the mean repetition time between pulses and 7, = N, 7, is the bit time.

It is assumed that { y, } is a uniform distributed (balanced) i.i.d. binary sequence with p.m.f. as

defined by Equation (4.1). Moreover, T, and T, are set to
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7=t a7l (4.28)
M/2 . 2

Thus the PR-TH sequence, {c;, .}, combined with binary PPM defines M different pulse positions

which are equivalent to the M different symbols used in the binary to M-ary convolutionally coded
system. Furthermore, as in the rate 1/x binary to M-ary convolutionally coded scheme x M-ary

symbols are generated per input bit, the number of transmitted pulses per bit, N, , in the non-coded

w2

system will be setto N, =«x.

Using Section 3.4 results the PSD of the signal described by Equation (4.27) can be found to be
S_IM(A/V):‘SM('I(f)-‘-SuI)(f) Nwzl

B (4.29)
Su(f)=Su('l(f)+Sn(‘2(f)+Sul)(f) Nw>1
e (D= IWNE LS XY e, st (4.30)
n=0 | k=0

Ny=2 N,-1 A -l

"( 7(f) Hl/)] z Z Z Re{e_'lz’tj(k._k)rre_',z’r'ﬂ;(L'"’\“'*k'_c"\““)} (4.3])

k=0 k'sk+1 n=0

Z z e/”;r/kl,eﬂ;rfnl 2R fleCan,, 4k
=0

n=0

W (PG, (f)l
(,A,)

S, p(H= (4.32)

where S, .(f) is the PSD’s continuous part, S, ,(f) is the PSD’s discrete part,

A, =lem(z,.N,)/N, and

|G, ()P =E{e”*" }E”""} = (4.33)

= %zl: ev/27rcf/'v

¢=0

Note how for this case spectral lines in the PSD are expected to appear at multiples of 1/(7,A,).
Let us focus on the PSD’s discrete part, S, ,(f). Assuming the TH sequence is perfectly

random (that is i.i.d. with uniform distribution) with ¢, ,, uniformly distributed over the set

{0, 1, 2 ,..., (M /2)—1} Equation (4.32) becomes

5 L i 2 (M12)-1 2|N, -1 2
_ N 1 J2r(riTs)ely, 1 —j2m(r I T HIT, 27 (r I T,)KT, ,
Sun()=755 12 e | [t 2, € | ) 6(f-+) (4.34)
Yor=w| =0 1=0 k=0 :

where |G, (f) | was substituted using Equation (4.33). Then for this ideal case

2 2 2
I (M /2)-1 2|N,,-1 2 _
1 j2r(riiy)el, | - j2r(r/THIT, J2r(r/TORT, | _ (NM) s F= O,iMN“‘,i‘ZMN“_,... 4
5 Lo D) € e = y (4.35)
23 =0 k=0 0, otherwise

and therefore the number of spectral lines in Equation (4.34) is less than in Equation (4.32) where
non-ideal TH is considered.

By comparing Equations (4.34) and (4.35) with Equations (4.24) and (4.26) it can be concluded
that for PPM TH-IR-based UWB systems with uniform distributed i.i.d. binary data streams at the
input the number of spectral lines suppressed in the PSD is equal for:

a) A binary to M-ary convolutionally coded scheme with state process, o,, and output
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mapping function, y(-), such that Equation (4.23) is strictly fulfilled. All TH is driven by
the encoder and therefore M-ary PPM is implemented.
b) A system using binary PPM combined with perfectly random (ideal) TH over the set
{0, 1, 2,..., (M/2)-1}.
Therefore, in the subsequent Equation (4.23) will be referred as the spectral line suppression

condition for binary to M-ary convolutional encoders.

4.3.4 PSD Examples of Binary to M-ary Convolutionally Coded and Non-
Coded TH-IR-Based UWB Signals

This section presents PSD examples of TH-IR-based UWB signals using: non-coded binary
PPM combined with random and pseudo-random (PR) 4-ary TH; the 8-ary Bernoulli shift map
PCTH scheme; and the rate 1/3 MFD feedforward binary convolutional encoder (5, 7, 7)s, [83],
coupled to 8-ary PPM. In order to be able to compare the analytical results with results obtained
from simulation, a double simulation-estimation procedure was performed for all the plots in this
chapter as described in Appendix A.

Power spectral density plots for a TH-IR-based UWB signal employing binary PPM combined
with pseudo-random and perfectly random 4-ary TH are shown in Figure 4-5. The sequence {0, 2,

1,3,2, 1,0, 3} with period y, =8 was used for PR-TH in Figure 4-5a. Note the significant amount
of spectral lines in this PSD plot appearing at 1/(A7,)=10 MHz intervals. In contrast, when the

TH sequence is assumed to be perfectly random (ideal case) over the set {0, 1, 2, 3}, the number of
spectral lines in the PSD is considerably reduced as seen in Figure 4-5b where the spectral lines

appear at 640 MHz intervals.

-20 B = -20

30 Sim. \.\’W(O)\2 =] m===Sim. U. E. — Analytical 30 Sim. L\'N(O)lz =] w===Sim. U. E. — Analytical
-40 -40
-50 -50
-60 60
-70 -70
-80 -80
-90 -90

-100| -100|

Power Spectral Density (dBm/Hz)
Power Spectral Density (dBm/Hz)

-110
|

-120

-110 |
| '

. m |

-130 - B ’
0

Frequency in Hz x10° Frequency in Hz x10°

a) PR-TH driven by the periodic sequence b) Ideal perfectly random TH with ¢, uniform
$0.2,1,3,2, 1,03} distributed over the set {0. 1, 2, 3}

Figure 4-5. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM with pseudo-
random and perfectly random 4-ary TH. The signal parameters are N,,= 1, 7,=12.5ns, I,=12.5ns, .= T,/4
and 7;=1,/8. The 3" derivative Gaussian pulse was used with duration 7, ~ 0.35 ns.

-130 I
0

The Figure 4-6 shows that the spectral line suppression capabilities of the 8-ary Bernoulli shift
map PCTH scheme are equivalent to those obtained with a system employing binary PPM
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combined with perfectly random (ideal) TH over the set {0, 1, 2, 3}. These can be seen by noting
that in this PSD plot the spectral lines appear at 640 MHz intervals as in Figure 4-5b.

-20
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70+
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130!
0

Frequency in Hz x10°

Figure 4-6. Analytical and simulated PSDs for a TH-IR-based UWB system using the 8-ary Bernoulli shift
map PCTH scheme. The signal parameters are N,,= 1, 7,=12.5ns, T, = 12.5 ns and 7= 7,/8.
The 3" derivative Gaussian pulse was used with duration 7,, ~ 0.35 ns.

Finally Figure 4-7 shows that good spectral line suppression capabilities are not necessarily
obtained when combining good rate 1/log,(M) binary convolutional encoders with M-ary PPM.
This plot was obtained by using the rate 1/3 MFD binary convolutional encoder (5, 7, 7)s with
8-ary PPM. The SE pair Markov model for this encoder has transition probabilities matrix, P_,

identical to the one defined in Equation (4.12) but with output mapping changed to
7(s)=0 y(s)=7 y(s,)=3 y(s5)=4 p(s,)=7 y(s5)=0 y(s5)=4 y(s;)=3 (4.36)

A consequence of this change is that Equation (4.23) is not satisfied, that is

i o/l 7 =10+ Iy | PRI e"z”ﬂr”} 21 MZ‘ P (4.37)
i=0 ¢=0

Therefore the signal’s PSD for this system (shown in Figure 4-7) has 3 times more spectral lines

than the PSD of signals generated when using the PCTH scheme or the system employing perfectly

random TH (Figures 4-5b and 4-6).
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. -40 i ;
N
m ! |
=) | \ § |
< 60 : - ! |
2 { ‘
£ ; i ‘
s ™| : e
(=] | g ! ‘
8 -80! g [ |
153 ‘
2 .90 - .
o ‘ |
2 100/ : H : | [
o |
a ‘ : |
110/ i ’ ‘ - i
-120} | ‘
| |
1I L - N 1 1 — ' J
Wy 2 8 A 5 6 7 8 9 10 11
Frequency in Hz x10°

Figure 4-7. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1/3 MFD
feedforward binary convolutional code (3, 7, 7)s coupled to 8-ary PPM. The signal parameters are N,, = 1,
T,=12.5ns, 7,=12.5ns and 7= 7,/8. The 3" derivative Gaussian pulse was used with 7}, ~ 0.35 ns.
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4.4 Code Search Procedure for Feedforward Spectral
Line Suppressive Binary to M-ary Convolutional

Encoders

In this section a code search procedure for feedforward “spectral line suppressive” binary to M-
ary convolutionally encoders with uniform distributed i.i.d. binary data streams is introduced. First
the two main criteria used in the algorithm to discard and compare encoders are introduced. Then
the code search procedure is described by using a flowchart and lastly the results of the code search

are presented.

4.4.1 Verification of the Spectral Line Suppression Condition

From the results presented in the previous sections it can be seen that a binary to M-ary
convolutional encoder can be effectively used to eliminate spectral lines in M-ary PPM IR-based
UWRB systems. In order to do so the encoder must satisfy Equation (4.23). For the case under study
(uniform distributed i.i.d. binary data streams at the encoder input), all steady state probabilities are

of the form 7, =1/(2N,)=1/N,, as shown in Section 4.2.2 and therefore Equation (4.23) becomes

IN—I

g M-
jxfpyry _ 1 s2afcly,
I L1 =0,1,...,N, -1 438
L3 X (439)

o 1=0
where N, =2N, =2""=pM with n>1.
Now assume k has been fixed and that the states, s,, are relabelled to, s, such that the first 7,

M-ary symbols, B, = g“‘ are equal to 0, the following 7, M-ary symbols are equal to 1, and so

on until the last 7,, , M-ary symbols are equal to M —1. Using this new ordering Equation (4.38)

can be expanded as

Ng -l 22/ BT U/ 7o +m 1 2T Ng-1 27 (M=)T, 1 M- R "
\fz e/ ’-‘ﬁzt{z e’ + Z & 4+ Z " )ﬂ}zﬁz g (4.39)
=0 =0 1=ty i'=Ng—nys1-1 ¢=0
Therefore if N, =nM Equations (4.38) and (4.39) only hold when 1, =7, =...=7n,,_, =n.

As a consequence a code search procedure aimed to find binary to M-ary convolutional

encoders with good spectral line suppression characteristics must verify that the state process, o,
and output mapping function, y(-), are such that Equation (4.39) is satisfied or equivalently
Noy=m=-.=0,,=n=N_/M. In fact this is the first discarding criteria used in the code

search procedure introduced later in Section 4.4.3.

4.4.2 Superior Information Weight Spectrum Criteria

If an encoder complies with the spectral line suppression property, then an assessment of its

error correction capabilities must be performed for comparison and selection purposes. In this work
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the superior information weight spectrum (IWS) criteria, [105-107, 109, 111], will be adopted as a
performance measure when comparing different encoders with the same basic characteristics such
as total encoder memory, v, rate and output alphabet (e.g. binary, 4-ary, M-ary).

The superior IWS criteria is based on the form acquired by the upper bound on the bit error
probability achieved when using binary and binary to M-ary convolutional encoders in output
symmetric memoryless channels as introduced in Section 2.7.4. Remember this bound has the form

([83, 100-103, 105-107])

R< Y BAW (4.40)

d=d\ff,
where P,(d) is the pairwise error probability between two codewords with M-ary Hamming

distance d, and {B,} is the IWS introduced in Section 2.7.3. Thus, as explained in Section 2.7.4, a

good design strategy consists of finding the encoder with the largest M-ary free distance, d,,,,, and
minimum {B,}. As an example assume Code 1 has M-ary free distance d,,, and IWS {B{"}.

Similarly assume Code 2 has free distance dj;),, and IWS { B{” }. Then Code 1 has superior IWS

compared to Code 2 if dy,,, >d,;)., . Alternatively if dy; , =d;).. , then Code 1 has superior IWS

compared to Code 2 if B =B7 B =B . B . =B" . and

gprve ? A e+ dy e +1 A ffree +1 e +i

(1) (2)
Ay ffroe Fi+] dy e Hitl *

In the code search procedure used in this work the M-ary free distance and IWS are calculated

using the FAST algorithm introduced by Cedervall and Johannesson, [103, 108].

4.4.3 Code Search Procedure for Feedforward Spectral Line Suppressive
Binary to M-ary Convolutional Encoders

Once the two main encoder discarding/comparison criteria have been defined we can introduce
the code search procedure. Based on the previous discussion, there exists the possibility to find
feedforward binary to M-ary convolutional encoders with better BER performance than PCTH and
the same spectral line suppression capabilities. Therefore an extended search to find this kind of
spectral line suppressive (SLS) convolutional encoders has been performed.

The flowchart of the code search procedure is shown in Figure 4-8. The goal is to find the
encoders with spectral line suppression capabilities and the best possible IWS. This code search
procedure is similar to that introduced in [105, 106] with some modifications. Briefly, the main
difference in our code search procedure is the verification the encoder’s spectral line suppression
capabilities, which is novel. Thus encoders with inferior or no spectral line suppression capabilities
are discarded before calculating the encoder’s IWS.

The code search procedure has not been restricted to rate 1 binary to M-ary convolutional codes

as rate 1/2 and rate 1/3 encoders have been included. Similarly the total encoder memory, v, can be
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larger than log,(M)—1=L—1. Remember from Sections 2.7.6 and 4.2.2 that for a rate 1/x binary
to M-ary convolutional code x sets of L=1log,(M) generators must be provided, therefore the
following notation will be used for the transfer function matrix
G(D)=[{gs" (D) g (D)..gZ (D} ... {g5"(D) g (D)..g/5" (D)}* "] (4.41)
The i" generator of the k™ set corresponding to the A" M-ary output has the form
g (D)=al) +a)D+...+a") D’ (4.42)
where D is the delay operator a,.‘v';’ e{0,1}, i=0,1,..,L—-1 and k=0,1,...,x—1. If the input
sequence, ¥ ={y,¥,V,...y,...} , is expressed in terms of the delay operator as
y(D)=y, +»D+y,D* +...+ 3D +... (4.43)
then the M-ary symbols produced by the k™ generator set can be obtained by using
z®(D) =27 y(D)g’ (D) +2“7? y(D)g{* (D) +...+ y(D)g;", (D) (4.44)
Thus the encoder output mapping function, y(:), is defined by the generator sets in Equation (4.41)
and the binary to M-ary conversion defined by Equation (4.44).

For a better understanding of the code search procedure several main tasks have been identified
in the flowchart of Figure 4-8. Task I consists of defining the main parameters of the code search
such as the M-ary alphabet, the total encoder memory, v, and the code rate, 1/x. In order to provide
rate adaptability a nested code search approach has been adopted, [112]. This means that first the
best generator set (in terms of spectral line suppression capabilities and IWS) for rate 1 SLS
encoders must be found. Afterwards this set is used as the first generator set of a rate 1/2 encoder
while the second generator set is searched in such a way that the best possible rate 1/2 SLS encoder
is formed. This approach is then repeated by searching the additional generator set needed to form
the best possible rate 1/3 SLS encoder from the rate 1/2 SLS encoder.

During 7Task 2 the target M-ary free distance is set. Initially the following upper bound on the
M-ary free distance of rate 1/x binary to M-ary convolutional codes is used ([105])

e < Apr = (V+ 1K (4.45)
If no MFD spectral line suppressive encoder is found when using the current target free distance
then d,,,, is decreased until an encoder is found.

Note the total number of transfer function matrices to be searched in every stage of the nested
code search procedure is 2"*" . Nevertheless this number is reduced in 7ask 3 by identifying and
discarding encoders with identical IWS. Three main equivalence criteria have been used in Taks 3
([105, 107]):

1. Generator sets with interchanged generator polynomials are equivalent. This is due to a

change in the generators order in the k" set from {g* (D) g®(D)..g" (D}* to

(g (D) g*,(D)...g" (D)}® (or any other permutation) does not modify the M-ary Hamming

weight of the M-ary symbols generated.
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Figure 4-8. Flowchart diagram of the code search procedure for feedforward SLS
binary to M-ary convolutional encoders.
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2. Any rate 1/x binary to M-ary code is equivalent to one with
gh(D)=1+al, D+..+d", D" and g¥(D)=0+da"'D+..+ad")D" (4.46)

for i=0,1,...,L —2 . This equivalence rule halves the number of encoders to search.

3. Two generators sets are equivalent (in the IWS sense) if one can be obtained by performing
a column operation in the other.

Task 4 verifies the encoder’s spectral line suppression capabilities. The encoder is discarded if it

does not satisfy the spectral line suppression condition introduced in Sections 4.3.2 and 4.4.1.
Task 5 verifies if the current encoder is catastrophic (see Section 2.7.3). If the encoder is not

catastrophic then its free distance, d,,

Curr

=d,. » is calculated and compared with the target free

distance, d

Muar *

Task 6 is performed if the current free distance, d,,.,,, is at least equal to the target free

distance, d If this task is reached the current encoder’s IWS is calculated and compared to the

Miar *
best IWS. The encoder is discarded if its IWS is worst than the current best. If the encoder’s IWS is
equal to the current best it is saved in a file containing all encoders found with the same IWS.
Finally if the encoder’s IWS is better than the current best all previously stored encoders are
discarded, the current encoder is saved and its IWS is set as the current best. The algorithm ends
when an encoder with spectral line suppressive capabilities and the best possible IWS is found.

All different tasks involved in of the code search procedure flowchart have been programmed in

MATLAB®.

4.4.4 Code Search Results for Feedforward Spectral Line Suppressive
Binary to M-ary Convolutional Encoders

New maximum free distance (MFD) feedforward binary to M-ary convolutional encoders with
the spectral line suppression property have been found using the code search procedure introduced
in the previous section. Table 4-1 presents the code search results for feedforward spectral line
suppressive (FSLS) binary to 16-ary, 32-ary, 64-ary and 128-ary convolutional encoders with rates
1, 1/2 and 1/3.

The results in Table 4-1 are interpreted as follows: for each M-ary alphabet and total encoder

memory, v, the first line gives the set of generators {g\” (D) g!”(D)...g\",(D)}'* (in octal form),

the M-ary free distance, dj.., and the first 18 components of the information weight and distance
spectrums for rate 1 FSLS convolutional encoders. The second and third lines give the second and
third generator sets needed to form the rate 1/2 and 1/3 FSLS convolutional encoders with their
respective spectrums. All these encoders have optimum IWS within the FSLS set while the binary

to 16-ary encoders presented here have better IWS than the encoders reported in [105-107].
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Table 4-1. Best feedforward spectral line suppressive binary to M-ary convolutional encoders with
the first 18 elements of its IWS and distance spectrum.

v o] e it o | 4 Information weight spectrum (IWS): [Buusees Bisgime s 1+ Batigree + 18]
M Distance spectrumn: { A Adigpe + 15--2 Advie + 18}
17.15. 13. 12 4 [1,2,5, 12,26, 56, 118, 244, 499, 1010, 2027, 4040, 8004, 15776, 30956, 60504, 117845, 228818]
(17,15,13,12) {1,1,2,4,7, 13,24, 44, 81, 149, 274, 504, 927, 1705, 3136, 5768, 10609, 19513}
3 3 [1,0,2,0,5,0,12,0,26,0,56,0, 118, 0, 244, 0, 499, 0]
(15,13, 12, 17) $ {1,0,1,0,2,0,4,0,7,0,13,0,24, 0,44, 0, 81, 0}
[1,0,0,2,0,0,5,0,0, 12, 0,0, 26,0, 0, 56, 0, 0]
(13,17, 15,12) 12 ] 10,0,1.0,0,2,0,0,4,0,0,7,0,0, 13, 0,0}
21.10.4.2 5 [1,2,5, 14, 32, 74, 171, 382, 847, 1864, 4060, 8788, 18917, 40506, 86361, 183426, 388248, 819294]
(21,10,4,2) {1.1,2,5,9, 18,37, 73, 146, 293, 585, 1170, 2341, 4681, 9362, 18725, 37449, 74898}
[1,0,2,0,5,0, 12, 5, 23, 14, 48, 41, 95, 112, 198, 260, 412, 602]
4 (22,10, 4,3) 10 {1,0,1,0.2,0,4,2.6,4, 11, 10, 19, 24, 36, 48, 68, 100}
[1,0,0,2,0,0,5,0,0, 12,0, 8, 20, 0, 22, 40, 4, 56]
(24,21,10,2) 15 {1,0,0,1,0,0,2,0,0,4,0,3,5,0,6.9, 1, 13}
02.21.11.4) 6 [1,2.5, 17, 35, 87, 219, 474, 1121, 2570, 5669, 12879, 28605, 63035, 139739, 306254, 670001, 1464450]
(2,21, 11, {1,1,2,6,9, 21, 46, 86, 189, 389, 786, 1662, 3409, 7029, 14630, 30134, 62357, 129141}
[1,0,2.0,5,0, 12, 11, 17, 24, 44, 63, 84, 177, 207, 327, 501, 795]
M9 (50,32,13, 4) 12 {1,0,1,0,2,0,4,4,4,6,11,14, 18 35,41, 54, 88, 129}
[1,0,0,2,0,0,5,0,0,12,0,19,9,0, 36, 28,9, 91]
(43,22,12,4) 18 {1,0,0,1,0,0,2,0,0,4,0,6,2,0,9,7, 2,20}
124, 66.21. 10 7 [1,2, 5,20, 36, 95, 247, 521, 1252, 2993, 6532, 15150, 34443, 76167, 172361, 384126, 849663, 1891486)
(124, 66,21, 10) {1,1,2,7,9,23, 53,95, 215, 466, 921, 2008, 4225, 8708, 18608, 38973, 81492, 172380}
[1,0,2,0,5,0, 12, 19,9, 30, 37, 81, 108, 145, 254, 342, 629, 773]
6 (143, 61,44, 10) 14 {1,0,1,0,2,0,4,6,2,8,9, 18,23, 30, 48, 62, 110, 125}
[1,0,0,2,0,0,5,0,0, 12,2, 26,0, 3, 40, 24, 34, 59]
(164, 114, 106, 21) 21 {1,0,0,1,0,0,2,0,0,4,1,7,0,1,10,6,7, 13}
(210, 161, 122, 104) 3 [1,2.5,23, 41, 113, 293, 584, 1629, 3499, 8228_ 19429, 43371, 100244, 226734, 512425, 1156579, 2596939]
e {1,1,2,8. 10,26, 58, 106, 262, 515, 1122, 2426, 5059, 10926, 23161, 49388, 105309, 224199}
[1,0,2.0,5,0, 12, 28, 0, 38, 65, 49, 130, 187, 273, 369, 764, 888]
7 (305,122, 113, 46) 16 ] §1.0,1,0,2.0,4,8,0, 10, 14, 11, 27, 35, 53, 62, 130, 138}
[1.0,0,2,0,0,5,0,0, 12, 11, 17, 0, 10, 45, 22, 38, 68]
(326, 136, 42, 21) 24 {1,0,0,1,0,0,2,0,0,4,4,4,0,3,11,5,8, 15}
(33.27.25.17.35) 5 [1,2.5, 12, 28, 62, 136, 294, 628, 1328, 2787, 5810, 12043, 24840, 51016, 104380, 212848, 432732]
i e e {1,1,2,4,8, 15,29, 56, 108, 208, 401, 773, 1490, 2872, 5536, 10671, 20569, 39648}
[1,0,2,0,5,0, 12,0, 28,0, 62, 0, 136, 0, 294, 0, 628, 0]
4 (25,17, 35, 33,27) 10 ] {10,1.0.2.0,4.0,8,0, 15, 0,29, 0, 56, 0, 108, 0}
- 5 [1.0,0,2,0,0,5,0,0,12,0,0, 28, 0,0, 62, 0, 0]
(27,17,25,35,33) 15 {1,0,0,1,0,0,2,0,0.4,0.0,8,0,0, 15,0, 0}
41.20.10. 4 7) § [1,2,5, 12,30, 68, 154, 344, 763, 1670, 3631, 7844, 16856, 36040, 76740, 162800, 344245, 725770]
(81, 20,10, 4,2 {1,1,2,4.9, 17,34, 68, 137, 273, 546, 1092, 2185, 4369, 8738, 17476, 34953, 69905 }
5 [1,0,2.0,5,0, 12,0, 28, 5, 59, 14, 128, 41, 271, 112, 566, 292]
. (50,20, 11, 4,2) 12 {1,0,1,0,2,0,4,0,8,2, 14,4,27, 10,51, 24, 96, 56}
[1,0,0,2,0,0,5,0, 0,12, 0,0, 28, 0, 8, 56, 0, 22]
3 (60,21, 10, 4,2) 18 {1,0,0,1,0,0,2,0,0,4,0,0,8,0,3,13,0, 6}
(102, 44. 20, 10, 5) = [1,2,5, 12, 33, 71, 167, 377, 860, 1886, 4197, 9188, 20101, 43568, 94407, 203331, 437037, 935829]
i e {1,1,2,4,10, 17,37, 74, 154, 304, 629, 1269, 2590, 5240, 10686, 21673, 44089, 89526}
[1,0,2,0,5,0, 12,0, 28, 11, 53, 22, 122, 67, 251, 180, 520, 456]
6 (141, 103,20, 10, 4) 14 {1,0,1,0,2,0,4,0,8,4, 12, 6,26, 16,47, 38, 88, 86}
[1.0,0,2,0,0,5,0, 0, 12, 0, 0, 28, 0, 18, 46, 0, 34]
(111, 50,20, 13, 4) 21 {1,0,0,1,0,0,2,0,0,4,0,0,8.0,6, 10,0, 9}
o [1,2,5, 12,36, 72, 175, 388, 930, 1989, 4485, 9947, 21952, 47695, 104436, 226879, 491513, 1059996]
(205, 41, 107, 20, 10) 8 {1,1,2,4, 11,17, 39, 77, 169, 323, 681, 1396, 2871, 5822, 12021, 24606, 50453, 103231}
[1,0,2,0,5,0, 12,0, 28, 18, 46, 32, 116, 82, 255, 198, 538, 503]
L (341, 145, 120, 103, 10) 16 {1,0,1,0,2,0,4,0,8,6, 10, 8, 25, 18, 49, 40, 93, 91}
[1,0,0,2,0,0,5,0,0,12, 0,0, 28, 0, 30, 34, 0, 48, 96, 8, 124, 188]
(303, 111, 104, 41, 20) 24 | {10.0,1,0,0,2,0,0.4,0,0,8,0.9.7,0, 12, 20, 2. 26, 36}
[1,2,5, 12,28, 64, 142, 312, 678, 1460, 3120, 6624, 13987, 20394, 61515, 128264, 266568, 552384]
(76,75, 71, 67, 55, 53) 6 {1,1,2,4,8, 16,31, 61, 120, 236, 464, 912, 1793, 3525, 6930, 13624, 26784, 52656}
[1,0,2,0,5,0, 12,0, 28,0, 64, 0, 142, 0, 312, 0, 678, 0]
3 (67,55, 53,76, 75, 71) 12 {1,0,1,0,2,0,4,0,8,0, 16,0,31,0, 61,0, 120, 0}
[1,0,0,2,0,0,5,0,0,12, 0, 0,28, 0,0, 64,0,0]
(55, 53,76, 75,71, 67) 18 {1,0,0,1,0,0,2,0,0,4,0,0,8.0,0, 16,0, 0}
(101, 40, 20, 10, 4, 2) 7 [1,2,5, 12, 28, 66, 148, 330, 728, 1592, 3459, 7462, 16015, 34212, 72788, 154308, 326072, 687060]
> > {1,1,2,4, 8, 17,33, 66, 132, 264, 529, 1057, 2114, 4228, 8456, 16913, 33825, 67650}
5 [1,0,2,0,5,0,12,0,28,0, 64, 5, 139, 14, 304, 41, 655, 112]
64 01| @ (140, 41,20, 10, 4,2) 14 {1,0,1,0,2,0,4,0,8,0, 16,2, 30,4, 59, 10, 115, 24}
. 5 = [1,0,0,2,0,0,5,0,0,12,0,0, 28, 0, 0, 64, 0, 8]
(120, 40,21, 10,4,2) 21 {1,0,0,1,0,0,2,0,0,4,0,0,8,0,0, 16,0, 3}
> [1,2,5,12,28, 69, 151, 343, 761, 1676, 3680, 7974, 17277, 37172, 79705, 170316, 362604, 770139]
(202, 104, 40, 20, 10, 5) 8 {1,1,2,4,8, 18,33, 69, 138, 278, 564, 1128, 2285, 4597, 9270, 18692, 37656, 75942}
[1,0,2.0,5,0, 12,0, 28, 0, 64, 11, 133, 22, 298, 67, 635, 180]
7 (301,203, 40, 20, 10, 4) 16 {1,0,1,0,2,0,4,0,8,0, 16, 4,28,6,58, 16, 111, 38}
o [1,0,0,2,0,0,5,0,0, 12, 0,0, 28, 0, 0, 64, 0, 17]
(320,122, 101, 40, 10, 4) 2 {1,0,0,1,0,0,2,0,0,4,0,0,8,0,0, 16,0, 6}
[1,2,5, 12,28, 64, 144, 318, 696, 1510, 3252, 6960, 14816, 31392, 66243, 139282, 201915, 610056]
(173,140,117,136,67.41,10) 7 {1.1,2.4, 8, 16,32, 63, 125, 248, 492, 976, 1936, 3840, 7617, 15109, 20970, 59448}
[1,0,2,0,5,0, 12, 0,28, 0, 64, 0, 144, 0, 318, 0, 696, 0]
6 | (173,140,117,136,67,41,10) 14 {1.0,1,0.2.0,4,0. 8.0, 16,0, 32,0, 63. 0, 125, 0}
[1,0,0,2,0,0,5,0,0,12 0,0, 28, 0, 0, 64, 0, 0]
- (173,140,117,136,67,41,10) 21 {1.0,0,1,0,0,2,0,0,4,0,0,8,0,0, 16, 0, 0}
(201,100, 40, 20, 10,4, 2) 3 [1,2,5, 12, 28, 64, 146, 324, 714, 1560, 3384, 7296, 15651, 33414, 71055, 150564, 318036, 669888]
£y LU, {1,1,2,4,8, 16, 33, 65, 130, 260, 520, 1040, 2081, 4161, 8322, 16644, 33288, 66576}
[1.0,2,0, 5.0, 12,0, 28, 0, 64, 0, 144, 5, 315, 14, 688, 41]
7| (240,100,41,20,10,4,2) 16 {1,0,1,0,2,0,4,0,8,0, 16,0,32, 2, 62, 4,123, 10}
o) ~ o [1,0,0,2,0,0,5,0,0,12,0,0,28,0,0, 64,0, 0]
(300, 101, 40, 20, 10, 4,2) 24 {1,0,0,1,0,0,2,0,0,4,0,0,8,0,0, 16,0, 0}

The next sections show that improved bit error rate (BER) performance over the PCTH scheme
can be obtained by using the new encoders reported in Table 4-1 while preserving the same spectral

line suppression properties.
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4.5 PSD Comparisons of the FSLS Binary to 32-ary
Convolutional Encoders and 32-ary PCTH

This section presents PSD examples of TH-IR-based UWB signals obtained when using non-
coded binary PPM with random and pseudo-random 16-ary TH, the 32-ary Bernoulli map PCTH
scheme, and several of the rate 1 FSLS binary to 32-ary convolutional encoders introduced in
Table 4-1.

The PSD plots for non-coded binary PPM combined with pseudo-random and perfectly random
16-ary TH are shown in Figure 4-9. In Figure 4-9a the periodic sequence {0, 14, 1, 5, 13, 6, 3, 15, 7,
11, 8, 12,9, 2, 10, 4} with y, =16 was used for TH. It can be seen that when the TH sequence is
not assumed to be perfectly random the PSD has a significant amount of spectral lines as shown in

Figure 4-9a. Particularly, the spectral lines appear at 1/(A7.) =5 MHz intervals in this figure. When

the TH sequence is assumed to be perfectly random (ideal case) over the set {0, 1,..., 15}, the
number of spectral lines is considerably reduced as shown in Figure 4-9b. Note how in this figure
the spacing between successive spectral lines increases to 2.56 GHz. As reference, recall from
Section 2.4 that the power spectrum of a periodic pulse train consists of spectral lines spaced at

multiples of the pulse repetition frequency 1/7,,, . Thus the power spectrum of a periodic pulse train

with the same set of parameters consists of spectral lines appearing at 1/7,, =80 MHz intervals as

shown in Figure 4-10.

20 e S 20,
_30‘ ‘ Sim. X (0)f =1 === Sim. U. E. —Analytical‘ 30 7Sim I.Y“(O}?z :71 = ?in]}J. E. —Analyticalr :
: -40
50!
-60
-70;
-
90!

-100

Power Spectral Density (dBm/Hz)
Power Spectral Density (dBm/Hz)

-110

-120- -

-130

Frequency in Hz x10° Frequency in Hz

x10°
a) PR-TH driven by the periodic sequence b) Ideal perfectly random TH with ¢4 uniform
{0,14,1,5,13,6,3,15,7,11,8,12,9,2, 10, 4} distributed over the set {0, 1, ..., 15}

Figure 4-9. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM with pseudo-
random and perfectly random 16-ary TH. The signal parameters are N,,= 1, T;=12.5ns, 7,= 12.5 ns,
T.=T/16 and T3=T,/32. The 3" derivative Gaussian pulse was used with duration 7}, ~ 0.35 ns.

The Figures 4-11 and 4-12 show that by using the 32-ary Bernoulli shift map PCTH scheme or
the binary to 32-ary convolutional encoders from Table 4-1 the same amount of spectral lines can
be eliminated as when using binary PPM with perfectly random 16-ary TH. This is because the

spectral line suppression property is satisfied, that is
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Figure 4-10. Analytical and simulated PSDs of a periodic pulse train. The signal pulse repetition period is
Tp., = 12.5 ns. The 3™ derivative Gaussian pulse was used with duration 7, ~ 0.35 ns.
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Figure 4-11. Analytical and simulated PSDs for a TH-IR-based UWB system using the 32-ary Bernoulli shift
map PCTH scheme. The signal parameters are N,,= 1, 7,=12.5ns, 7, = 12.5 ns and 73 = 7,/32. The 3
derivative Gaussian pulse was used with duration 7, ~ 0.35 ns.

By comparing Figures 4-9b, 4-11 and 4-12 it can be seen that even though the FSLS binary to

32-ary convolutional encoders, the 32-ary Bernoulli shift map PCTH scheme and the system

employing binary PPM with perfectly random 16-ary TH eliminate the same amount of spectral

lines, some differences can be detected on the PSD’s continuous part. The differences are explained

by the dependence of the continuous PSD on the steady state and #n™ step transition probabilities of

the SE pair Markov model for convolutionally coded systems (including the PCTH scheme), as

evidenced by Equations (4.18) to (4.21). Nevertheless, note how for the binary to 32-ary

convolutional encoders given in Table 4-1 the continuous PSD becomes smoother as v increases.

Finally note how there is good agreement between the analytical and simulated results for both

the PSD’s continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[*=1) in the all the

figures presented in this and previous sections.
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Figure 4-12. Analytical and simulated PSDs for a TH-IR-based UWB system using several of the FSLS

binary to 32-ary convolutional encoders from Table 4-1. The signal parameters are N,,= 1, 7, = 12.5 ns,
T,=125nsand 7T3=T7,/32 ns. The 3" derivative Gaussian pulse was used with duration 7}, ~ 0.35 ns.

4.6 BER Performance Comparisons of FSLS Binary
to M-ary Convolutional Encoders and the PCTH

Scheme

In this section comparisons in terms of BER performance between FSLS binary to M-ary
convolutional encoders and the PCTH scheme are provided for hard Viterbi decoding (HVD) and
soft Viterbi decoding (SVD). It is shown that performing HVD based on the M-ary Hamming
distances improves the BER performance compared to HVD decoding based on binary Hamming
distances as in the PCTH scheme.

As explained in Section 2.3, orthogonal PPM TH-IR-based UWB is a particular implementation
of an orthogonal signalling system. Therefore an IR-based UWB system using binary to M-ary

convolutional encoders can be described by the block diagram shown in Figure 4-13.
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Binary to Orthogonal Pul -
Data Y | May _z’ PPM TH-IR xT,(l)< ) Receiver | *ke(1) X o r | viterbi [Z'Y
Source Convolutional based UWB Front End Den?(s)g:fl):tor Decoder
Encoder Modulator
Noise, n(f),
(AWGN)

Figure 4-13. Block diagram of a binary to M-ary convolutionally coded TH-IR-based UWB system.

Using the same notation as in Section 2.7.5 the data source produces a binary sequence

Y={Vo»Vys-s ¥yt of length N which defines a path generating the code sequence
2={Zy,ZrerZy_y} = {20500 28 e 20 s 2050} where 2P €{0,1,..,M -1}. Next z is

transmitted over a memoryless noisy channel using an M-ary orthogonal PPM TH-IR-based UWB

system. The transmitted signal, x, (¢), for this sequence is defined by

N=1 Ny-1
x'/;r(t) = Z W(f—lT‘_ _kT; _ﬂa',.ltTﬁ) (448)
1=0 k=0

where w(r) has energy E, and B, , =z €{0,l,...M -1}. In vector form x,(r) can be

represented as

X= [xgo),...,xg’“"),..., , S e (4.49)
with
) k) Lk k
X3 =[x,‘0,x,(‘,’,...,x,(‘;,q]=[0,0,..., JE, ,...,0] (4.50)
.
ﬂo/.k Position

Note x{* is an M dimensional vector.

The received signal can be described as
N=1 N,,-1
Xp ()= D Wt=IT,—kT, - B, , T, +7)+n(1) (4.51)
1=0 k=0
where 7is the delay and n(f) is additive noise. For comparison purposes it will be assumed that 7 is
known at the receiver and that n(?) is additive white Gaussian noise (AWGN) with zero mean and
power spectral density Ny/2. After signal reception the pulse position demodulator (PPD) produces

the received sequence

0 -1 0 (k-1
r={Tg,Bsees My} L R B (4.52)
where r'*) is itself a vector. Due to orthogonal signalling is being used, and assuming perfect

synchronisation between receiver and transmitter has been achieved (coherent detection), r'* can

be expressed in vector form as ([83, 86]):

(k) _1,.(k) (k) k) 71—

0 =8 by sty ) = [BsBseosol B, +nﬂ01.k,...,n,‘,,_,] (4.53)
where ny, n,..., n,_, are zero mean mutually independent Gaussian random variables with

variance Ny/2. Note the PPD can be implemented by using a set of M correlators (the actual number

can be reduced) such that
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1T +(k+1)1,
= [ xeOWE=IT, ~KT, ~iT, + 1)t
1T, +kT,
[T, +(k+1)1, (4.54)
= | We—IT, KT, - B, Ty)+ n(O)}w(e ~IT, = KT, —iT, )t

1T, +KT,
for i=0,1,..M —1.

The received sequence, r, is then used by the Viterbi decoder to produce an estimate,

2'= {20, 2 sees 2y} = A2 sees 20T s 2 s 2V ), Of the transmitted sequence z and an

estimate, y'={y',,»".....»"y_}, of the information sequence, y. Hard Viterbi decoding (HVD) or

soft Viterbi decoding (SVD) can be implemented depending on the way r* is fed to the decoder

as explained in the following sections.

4.6.1 Bit Error Rate Performance for Hard Viterbi Decoding

In this section the metrics used for hard Viterbi decoding of the FSLS binary to M-ary
convolutional encoders are introduced. A union bound on the bit error probability for M-ary
Hamming distance based HVD over memoryless AWGN channels is derived. Also examples of

BER plots for FSLS binary to 32-ary convolutional encoders are provided.

4.6.1.1 Branch Metrics for Hard Viterbi Decoding

When the PPD makes a hard decision on the received pulse position hard Viterbi decoding must

(k)

be implemented. In this case 7"’ is no longer a vector but an M-ary symbol. For the coherent PPD

detector under consideration the effect of performing a hard decision before decoding is the
transformation of the AWGN channel into an M-ary symmetric discrete channel with transition
probabilities ([95])

()_ (k)
-B, Z

(k)

(4.55)

Pt (k)
gy * 2

1
Prir® | 7"} ={
where P, is the error probability for M-ary orthogonal signals given by (see Section 2.3)

P=py == | -k [ a ) e3>~ o lwsor-no( i) @s6)

- -

where O(-) was defined in Section 2.3.1.
Assume the M-ary Hamming distance between the estimated sequence z' and the received

sequence to be d, (r,z"). Then the conditional probability mass function (p.m.f.), Pr{r|z'}

{Hamm

can be found to be

Pr{r|z'} =(1-P, YN ~stamn (7.2 (ﬂ.

d\fr1amm (v.2')
M-1

(4.57)

Remember the Viterbi algorithm maximizes the log-likelihood function log(g(r|z")

introduced in Section 2.7.5. Therefore substituting Equation (4.57) in log(g(r|z") yields

log(g(r | z)) = log(Pr{r [ 2'}) = dyyuy (. 2) l0g Gty + N log(1- B, ) (4.58)
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For most cases of interest Py, < 1/2, hence maximising the log-likelihood function is equivalent to

minimising the M-ary Hamming distance d,,,,,. (r,z") since N log(l—- £, ) is a constant for all z'.

Tamm

Therefore the path and branch metrics are given by

N-l K-l
PM(I' | Z') = dMHamm(r’Z’) = z BM(E | Z_',) and BM(I'_, | Z_‘/) = z dMHumm (r’(./)’ Z'fj)) (4‘59)

i-0 =
where 7,z €{0,1,...,M —1} and the hard Viterbi decoder (HVD) must find the path, z', with
the smallest M-ary Hamming distance to the received vector r. It is important to note that the
metrics defined in Equation (4.59) are different to the hard metrics proposed in [70] for the PCTH
scheme which are based on the binary Hamming distance.

Figure 4-14 shows BER plots for PPM TH-IR-based UWB systems using the rate 1 FSLS
binary to 32-ary convolutional encoders from Table 4-1 with M-ary Hamming distance based
HVD, 32-ary PCTH with binary Hamming distance based HVD, and binary PPM. From Figure 4-14
it can be seen that the system’s BER performance can be improved by using the encoders reported

in Table 4-1.

Bit Error Rate (BER)

Binary PPM
32-ary PCTH Binary HVD |
+ v=4, 32-ary FSLS HVD
© v=35, 32-ary FSLS HVD
v=6, 32-ary FSLS HVD |
v=17, 32-ary FSLS HVD
1 2 3 4 5 6 7 8 9 10 1
Bit Energy to Noise Ratio - £,/N, (dB)

10°!

Figure 4-14. Bit error rate versus bit energy to noise ratio for hard Viterbi decoding (HVD) in PPM TH-IR-
based UWB systems using the rate 1 FSLS binary to 32-ary convolutional encoders from Table 4-1, 32-ary
PCTH, and binary orthogonal PPM. All the plots were obtained by simulation for AWGN channel. The total
encoder memory, v, of each code is indicated in the legend. The branch and path metrics used with FSLS
encoders were based on the M-ary Hamming distances. For the PCTH scheme HVD was performed by
using branch and path metrics based on binary Hamming distances.

4.6.1.2 Upper Bound on the Bit Error Probability for Hard Viterbi Decoding

An upper bound for the bit error probability can be obtained by calculating the pairwise error
probability, P,(d), and substituting it in Equation (4.40). Without loss of generality (due to the
linearity property of convolutional codes) assume the transmitted M-ary sequence to be the all
zeros sequence and name it z.. As well consider a symbol sequence, z;, that diverges from z. at
some point and later remerges with it after accumulating an M-ary Hamming weight d. Consider

the d positions at which z- and z; differ and label them as z., and z,, with i=0,1,...d 1.
Similarly label the corresponding received symbols at these positions as r,. Define ¢, to be the

number of positions at which r =z.,#z,, and ¢, to be the number of positions at which
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1

r=z,, #2.,. As well define @, =d-@.—¢,, that is the number of positions at which

1. #Z.,,z;, . By noting that

1= PM ’; = Z('.l
—J st 77
Pr{’; ( Z("l} ) M-l ’; — &g (460)
Py (M=2)
M- n#Zeis 2k

we can find the following p.m.f.

Pri@e = 00 = 000 = d =00 ~0; | 20} = gy (- )™ ()" (A02)™™ ™ (4.61)
Due to the fact that hard Viterbi decoding is equivalent to finding the path with the smaller
M-ary Hamming distance to the received sequence, r, the pairwise error probability between the
sequences z and z;; can be found as
P(d)=P(z; > z;.) =Pr{d, 1 (' Z1) < Dy yr1omm (T Z) | Z( } +
+ 3 Pr{dypramm (V. 21) = Ay o (V.20 ) | 20}

(4.62)

where P(z,. —>1z,) stands for the pairwise probability of erroneously selecting z, when
transmitting z.. Using @, @, and @, Equation (4.62) becomes

P,(d)=P(z, >z,;)=Pr{p. <@, |z.}+1Pr{p. =@, | 2.} (4.63)
hence

d_ min(gg-1.d-gp) )J*W("W

! (B \PE (A -2
B@=Pc>2)=2, Y, ity 1-R)" (ﬁ) (% +
o=l oc=0
. (4.64)
1 & d! o (P \PE [ Py M-2) 400k
+2 e ey L 73 (m) (_Ml—)
oc =0 =0
By replacing Equation (4.64) in Equation (4.40):
P< Y B,P(d) (4.65)

d=d) (e,
and upper bound on the bit error probability for HVD based on the M-ary Hamming distances is

obtained. It is worth mentioning that a different looser upper bound for HVD of binary to M-ary

encoders is provided in [95]. This bound has the form

©

B< > BD! (4.66)
d=d\(fee
where 2 is given by
4P, (1-P,,) ¥
D=7 +5= Py (4.67)

Figure 4-15 shows plots of the bounds defined by Equations (4.65) and (4.66) compared with
simulation results for the rate 1, v=6, FSLS binary to 32-ary encoder. These bounds were
calculated by considering the first 20 elements of the IWS (as reference consider that the upper
bounds for BER performance of convolutional encodes reported in [135], [110] and [111] were
calculated using 8, 13 and 15 elements of the IWS respectively). The plots in Figure 4-15 show that
the upper bound “A” defined by Equations (4.64) and (4.65) is tighter than the upper bound “B”
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defined by Equations (4.66) and (4.67).

Bit Error Rate (BER)
=

-5
107 v=6, 32-ary FSLS HVD
| | = Upper Bound A
“ Upper Bound B
10-6 =" == = 1 1 A 1 3
1 2 3 4 5 6 7 8 9

Bit Energy to Noise Ratio - EN, (dB)

Figure 4-15. Upper bounds on the bit error probability for a PPM TH-IR-based UWB system using the rate 1,
v =6, FSLS binary to 32-ary convolutional encoder from Table 4-1 with HVD. The upper bound A was
calculated using Equations (4.64) and (4.65) whereas for upper bound B Equations (4.66) and (4.67)

were used. The first 20 elements of the IWS were used to calculate both bounds.

4.6.2 Bit Error Rate Performance for Soft Viterbi Decoding

In this section the metrics used for soft Viterbi decoding of the FSLS binary to M-ary
convolutional encoders are introduced. Also the bit error probability union bound for SVD over
memoryless AWGN channels with coherent detection is provided. Examples of BER plots for

feedforward spectral line suppressive binary to 32-ary convolutional encoders are presented.

4.6.2.1 Branch Metrics for Soft Viterbi Decoding

When the received vector r'*’is fed to the decoder as a measure of the Euclidean distance

(k
!
between the received signal and each one of the possible M-ary orthogonal PPM signals, soft
Viterbi decoding can be implemented. Remember from Section 2.7.5 that for soft decoding the

Viterbi algorithm maximizes the log-likelihood function

K-l

N-1 N-1 x-1 N-
In(g(r|z) =), In(g(r; |z,) =2 D In(g” |z"N=2" Y In(g?” x'") (4.68)
i=0 e i=0 j=0 i=0 j=
with
W =l el V=0, JE, o 00] (4.69)
:'S;TP,—‘osilinn
and where g(r|z") is the conditional probability density function of r given z'. For M-ary
orthogonal signalling we have ([83, 127])
M-1 ) ()2
W7 (r‘.: ~Xig)
2 [Py = Wexp(—; =) (4.70)
and therefore
N-1 x-1 i M-l (r(nix.m)z
In(g(r|z')= Z {—In((iz’NO)' “)—Z—N“——} 4.71)
i=0 j=0 ¢=0

Maximising Equation (4.71) is equivalent to maximise
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N-

PM(r|2) =Y BM(r|z') =3,

M-1

N-1 x-1
2 (D)) — 2 z (), ()
rl,g X e = rl 'xi (4'72)
0

K-l
i=0 i J=0 i=0  j=0

"

where terms common to all paths have been discarded. Due to x"” =0 for ¢ # z'”’ we have

/ / ~W) —
) Ew( Ew + nﬁn,.k ) &g = ﬂg-,_k
P [ 1)
Eu- n:.(/) = # ﬂa,,k
1

and therefore the use of r'*) to form the path and branch metrics is straightforward. The BER plots

r/(,/) X

(4.73)

obtained when implementing SVD by using these metrics are shown in Figure 4-16.

10" —— T X 1
‘ Binary PPM !
‘ v=8 FSLS HVD| |
y PCTH SVD [
10} e ~ v=4,FSLSSVD ||
[ ‘ v=5FSLSSVD | |
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E|

Bit Error Rate (BER)
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Figure 4-16. Bit error rate versus bit energy to noise ratio for soft Viterbi decoding (SVD) in PPM TH-IR-based
UWB systems using the rate 1 FSLS binary to 32-ary convolutional encoders presented in Table 4-1 and
32-ary PCTH. The BER plots for rate 1, v=6, FSLS binary to 32-ary convolutional encoders with HVD and
binary orthogonal PPM are provided as a reference. All the plots were obtained by simulation for
the AWGN channel. The total encoder memory, v, of each code is indicated in the legend.

The BER plots in Figure 4-16 are for PPM TH-IR-based UWB systems using the rate 1 FSLS
binary to 32-ary convolutional encoders from Table 4-1 with SVD, 32-ary PCTH with SVD, and
binary PPM. From this figure it is clear that the BER is further improved when using SVD
compared to HVD as expected.

Finally note that maximising Equations (4.71) and (4.72) is equivalent to finding the

path/codeword, z', which minimises the squared Euclidean distance:

N-1 x M-1

dl;'m'(r’ X ')2 = Z Z (’;(;'l) -X 'fjg) )2 (4.74)

-1
i= Jj=0 ¢=
4.6.2.2 Upper Bound on the Bit Error Probability for Soft Viterbi Decoding

As in the previous case, the pairwise error probability, P,(n), must be calculated in order to
obtain an upper bound on the bit error probability for SVD. Assume again that the all zeros
sequence, z., is transmitted and name its respective signal sequence as x.. Now assume the symbol
sequence, zj;, with respective signal sequence, x; diverges from z. at some point and later
remerges with it after accumulating an M-ary Hamming weight d. Denote d,, (x.,x,) the
Euclidean distance between the signal sequences x. and x;. As the channel is assumed to be

AWGN with two sided power spectral density Ny/2 and soft Viterbi decoding is equivalent to
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finding the signal sequence with the smaller Euclidean distance to the received sequence, r, the

pairwise error probability between the sequences x. and x;; is given by ([83, 101])

P,(d) = P(x. = X;) = Q(\/—‘”““;‘N;;"”'”l J (4.75)

where P(x.—>x,) stands for the pairwise probability of erroneously selecting x; when
transmitting x.. Because of the symmetry of the orthogonal signal set:
(g (%c-x)) =((JE, -0 +(0—JE, )*)d =2E,d (4.76)

and therefore

Pz(d)=Q( ﬁ—:d)zQ(\/k_';';o d) 4.77)
where Ej is the information bit energy and x is the number of M-ary symbols produced per data bit.

Therefore for SVD the probability of error of a binary to M-ary convolutional code is upper
bounded by

< Z, B,P,(d) = Z, 5,0( |5 4) (4.78)

In Figure 4-17 the plots of the bound defined by Equation (4.78) compared to simulation results
for the rate 1, v=6, FSLS binary to 32-ary encoder are shown. The upper bound was obtained by
considering the first 20 element of the IWS whereas for the lower bound only the first element was

used. The plots in Figure 4-17 show there is a good agreement between the bounds and the

simulated results.

—— Upper Bound (20 Terms) | |
v=6, 32-ary FSLS SVD | |
Lower B()und (1 Termr)i {

Bit Error Rate (BER)
)

10'8‘ 1 i .l
05 1 15 2 25 3 35 4 45 5

Bit Energy to Noise Ratio - Eb/NO (dB)

Figure 4-17. Upper and lower bounds on the bit error probability for SVD in a PPM TH-IR-based UWB system
employing the rate 1, v=6, FSLS binary to 32-ary convolutional encoders presented in Table 4-1. For the
upper bound the first 20 elements of the IWS were used in Equation (4.78) whereas for the lower bound
only the first element of the IWS was considered.

4.7 Conclusions for Chapter 4

In this chapter feedforward spectral line suppressive (FSLS) binary to M-ary convolutional
encoders have been introduced. First, it was shown that the PCTH scheme can be interpreted as a

binary to M-ary convolutionally coded system using M-ary orthogonal PPM signalling. Therefore it
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was concluded that there existed the possibility to find good binary to M-ary convolutional
encoders with similar PSD characteristics and better BER than the PCTH encoders. Based on this
premise the condition needed for a binary to M-ary convolutional encoder to eliminate as many
spectral lines as the PCTH scheme was obtained through analysis. It has also been shown that
binary to M-ary convolutional encoders complying with the spectral line suppression condition can
eliminate as many spectral lines as a TH-IR-based UWB system employing binary PPM and
perfectly random M/2-ary TH.

Based on the spectral line suppression analysis a code search procedure for rate 1, 1/2 and 1/3
FSLS binary to M-ary convolutional encoders with the best possible information weight spectrum
(IWS) was introduced. The code search procedure verifies that the spectral line suppression
condition is fulfilled before comparing the IWS of the encoder under test. Using this code search
procedure maximum free distance FSLS binary to M-ary convolutional encoders with the best
possible IWS were found. A table of the best FSLS convolutional encoders for 16-ary, 32-ary, 64-
ary and 128-ary orthogonal signalling has been provided. These encoders are able to eliminate as
many spectral lines as the M-ary PCTH scheme and binary PPM with perfectly random A/2-ary
TH under the same operation constraints (uniform distributed i.i.d. binary inputs).

Power spectral density examples of PPM TH-IR-based UWB signals using FSLS binary to 32-
ary convolutional encoders, 32-ary PCTH and binary PPM with perfectly random and pseudo-
random (PR) 16-ary TH have been provided. These examples show that all these systems have the
same spectral line suppression capabilities with the exception of the system employing binary PPM
with periodic PR-TH.

Lastly the bit error rate performance of the proposed convolutionally coded system has been
addressed. A derivation of the branch and path metrics used for hard and soft Viterbi decoding has
been provided. Upper bounds on the bit error probability for hard and soft Viterbi decoding have
been introduced and BER plots examples have been given for 32-ary encoders. The BER plots
examples showed that improved BER performance over PCTH and binary PPM can be achieved by
using the FSLS binary to M-ary convolutional encoders introduced in Table 4-1 for both HVD and
SVD. Furthermore, by using the M-ary Hamming distance to compute the branch and path metrics
needed for HVD a significant improvement on the BER performance over PCTH and binary PPM
can be achieved with the FSLS binary to M-ary convolutional encoders. This characteristic is
important if such encoders are intended to be used in low rate low complexity systems where soft
Viterbi decoding may not be feasible. It is worth mentioning that the use of the FSLS binary to M-
ary convolutional encoders is not restricted to orthogonal M-ary PPM as they can be used in any
system employing M-ary orthogonal signalling.

It is clear that the use of binary to M-ary convolutional encoders in TH-IR-based UWB systems
may increase the system’s complexity compared with non-coded binary PPM TH-IR-based UWB
systems. However, in order to achieve similar PSD characteristics to those obtained with the PCTH

and the FSLS binary to M-ary convolutionally coded schemes, the non-coded system must employ
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a perfectly random (ideal) TH sequence. In practice the generation of this ideal TH sequence may be
approximated by generating a PR-TH sequence with extremely long period which would increase the
system’s complexity as well (note this PR-TH sequence must be generated in both the transmitter and
the receiver in order to be able to recover the original information). In any case the complexity
difference between the binary to M-ary convolutionally coded scheme and the non-coded scheme
would reside in the receiver side and particularly in the implementation of the Viterbi decoder.
Nevertheless, this possible increase in complexity is compensated by the improved BER performance
achieved when using the binary to M-ary convolutional encoders as shown in Section 4.6.

It is worth mentioning that the decoding complexity of the FSLS binary to M-ary convolutional
encoders introduced in this chapter can be regarded to be low to medium as their total encoder
memory ranges (a measure of decoding complexity, [100, 101, 104]) from 3 to 7 and the industry
de facto standard binary convolutional encoder has total encoder memory equal to 6, [104]. As
well, the decoding complexity of the encoders reported in Table 4-1 can be equal to or larger than
the decoding complexity of the PCTH encoders, as several FSLS binary to M-ary convolutional
encoders with different total encoder memory were reported for the same AM-ary alphabet.
However, this increase in complexity is compensated by the improved BER performance achieved

when increasing the total encoder memory as evidenced by the results presented in Section 4.6.
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Figure 4-18. Side by side BER performance and PSD shape (analytical) comparisons between PPM TH-IR-
based UWB systems employing: the rate 1, v= "7, binary to 32-ary FSLS convolutional encoder from Table 4-1,
the 32-ary Bernoulli shift map PCTH scheme and non-coded orthogonal binary PPM with pseudo-random
16-ary TH. The input data stream is assumed to consist on i.i.d. binary symbols with uniform distribution. The
periodic sequence {0, 14, 1, 5,13,6,3, 15,7, 11, 8,12, 9, 2, 10, 4} was used for TH in the system employing
non-coded orthogonal binary PPM. The BER performance plots were obtained by simulation for soft
Viterbi decoding (SVD) and hard Viterbi decoding (HVD) in the AWGN channel. For the PCTH scheme
HVD was performed by using branch and path metrics based on binary Hamming distances. The signal
parameters are N,,= 1, 7,=12.5ns, 7,=12.5 ns and 7= 7,/32 (T, = T,/16 for the system employing
pseudo-random 16-ary TH). The 3" derivative Gaussian pulse was used with duration 7, ~ 0.35 ns.
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Chapter 5

Maximum Free Distance
Spectral Line Suppressive Binary
to M-ary Convolutional Encoders for

Unbalanced Binary Markov Sources

5.1 Introduction

In this chapter novel maximum free distance (MFD) recursive spectral line suppressive (SLS)
binary to M-ary convolutional encoders for pulse position modulated (PPM) time hopping (TH)
impulse radio (IR) based ultra wideband (UWB) systems with first order binary Markov sources
(BMS) are introduced. These convolutional encoders eliminate as many spectral lines as the
feedforward SLS (FSLS) convolutional encoders introduced in the previous chapter and the
pseudo-chaotic time hopping (PCTH) scheme even when the binary stream at the encoder input
does not consist of independent identically distributed (i.i.d.) symbols with uniform distribution. In
particular it is assumed that the data stream is generated by an unbalanced (that is non-uniform
distributed) binary Markov source.

The main characteristic of the SLS convolutional encoders presented in this chapter is the
introduction of feedback, which is novel for binary to M-ary encoders. It is shown that through the
introduction of recursive structures the spectral line suppression condition introduced in Section
4.3.2 can be satisfied even when the data stream is generated by an unbalanced first order BMS.

Good encoders with rates 1, 1/2 and 1/3 for 16-ary, 32-ary, 64-ary and 128-ary orthogonal
modulation schemes (not restricted to be PPM based) are reported. It is shown that these recursive
SLS (RSLS) convolutional encoders provide enhanced power spectral density (PSD) characteristics
compared to the FSLS convolutional encoders with a slight degradation on the system’s bit error
rate (BER) performance.

One of the main limitations of the PCTH scheme and the FSLS binary to M-ary convolutional
encoders introduced in the previous section is that they strictly require the encoder input to consist
of uniform distributed i.i.d binary streams in order to satisfy the spectral line suppression condition.

As explained in Sections 2.5 and 4.2 in [70, 33, 37] it is assumed that these uniform distributed
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i.i.d. binary streams can be obtained through a compression and scrambling operation over the
original data stream generated by the source. Nevertheless, in order to guarantee this constraint is
fulfilled, the compression algorithm must be optimal meaning that it should be able to completely
eliminate all the redundancy on the source’s data stream, [136]. However achieving this in practice
may prove difficult excluding a few specific cases. Furthermore, most real world source encoders
are suboptimal or asymptotically optimal and therefore some residual redundancy, in the form of
non-uniformity and/or memory, is usually left in the data stream after compression, [117, 137-141].
Therefore it can be asserted that for many cases of interest the assumption of uniform distributed
i.i.d. binary streams at the encoder input can not be sustained, even with the inclusion of
compression and scrambling operations.

As previously mentioned, the source model adopted in this chapter is the first order BMS
introduced in Section 3.2. This is due to the first order BMS enables the modelling of unbalanced
i.i.d. memoryless binary data streams as well as binary data streams with memory, [116-118]. Note
these kinds of data streams can be generated by the combination of data sources with suboptimal
source encoders (e.g. suboptimal compression algorithms) or by stand alone data sources.
Therefore, the SLS convolutional encoders introduced in this chapter have a much wider
applicability range than the PCTH scheme and the FSLS encoders introduced in Chapter 4.

This chapter is structured as follows. Section 5.2 describes the system model. Section 5.3 shows
that a recursive structure for binary to M-ary convolutional encoders is advantageous for the design
of SLS encoders with unbalanced first order BMS inputs. A modification of the code search
procedure introduced in Section 4.4 is presented in Section 5.4 altogether with the novel recursive
SLS (RSLS) binary to M-ary convolutional encoders found with such procedure. Comparisons in
terms of PSD characteristics and BER performance between the RSLS, FSLS and PCTH encoders

are provided in Section 5.5. Lastly conclusions are presented in Section 5.6.

3.2 System Model for Binary to M-ary Convolutionally
Coded TH-IR-Based UWB Signals with First Order

Binary Markov Sources

The block diagram of the system model assumed in this chapter is shown in Figure 5-1. This
model is similar to the one introduced in Section 4.2 with the difference that this time the data
source is assumed to be the first order binary Markov Source (BMS) introduced in Section 3.2.1.

Remember this BMS source model is defined by the state set R ={r,,} with corresponding

outputs {z,,4} ={0,1} and the one step transition probabilities matrix defined by

Py= Pyoo  Pyo (5.1)
Pyro  Pyn




Chapter 5 SLS Binary to M-ary Convolutional Encoders for Unbalanced BMS
Py =Pla=rla =n}=Prly =4y, =13 =Priy, = jly. =8} (5-2)

with
Pyw=1-p,u and p,, =1- pyv,o( (5.3)

The corresponding steady state probabilities for this Markov chain (MC) are then given by
m, =17, 7] =Rl ] (54)

Pyo1tPy 10 Pyo1+Py10

where 7,, and z,, are the steady state probabilities of generating a “0” and a “1” respectively.
In order to avoid trivial degenerate cases such as p, , =1, it will be assumed that

0<p,; <1 (5.5)
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Figure 5-1. Block diagram of the binary to M-ary convolutionally coded M-ary PPM TH-IR-based UWB system
with first order binary Markov source (BMS).

In Section 3.4 it was shown that the PSD’s discrete part of a convolutionally coded — Markov
driven IR-based UWB signal is a function of the steady state probabilities of the source encoder
(SE) pair Markov model. Therefore it is pertinent to analyse the SE pair Markov model steady state
behaviour when using feedforward and feedback structures to construct binary to M-ary
convolutional encoders. This analysis will be provided in the next sections where, as in the
previous chapter, it will be assumed that M is a power of 2.

Before starting the analysis it is convenient to remember from Section 3.2.3 that the state
process, o, defined by the SE pair Markov model has transition probabilities matrix given by

P - Py,ooBo Py,mBo (5.6)
Pya0B PyuBy

where By and B, are the N , XN, the next state matrices defined in Section 3.2.3 and ¥, , =2" isthe

number of encoder states, g;, as defined by the encoder’s state transition diagram representation

(see Sections 2.7.2 and 3.2.2). Recall the state set for the SE pair Markov model is defined as

S={(0,45,(0,91)s--> (0, g ), (146D, (1, G )50, (1, Gy )} = {05 8150005 S50 (5.7
with corresponding output mapping
Qs"Nq*, = [gs(,?;q” 943:,4” yeee ’Cs(;/;:_)j I= 7(anq+j) = }’(n’qj) (5.8)

where y(-) is the output mapping function, n=0,1 and j=0,1,...,.N , 1.
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5.2.1 Source-Encoder pair Markov Model Analysis for Feedforward
Convolutional Encoders

Consider the feedforward structure for binary to M-ary convolutional encoders introduced in

Section 4.4.2 — Figure 4-4 and reproduced for convenience in Figure 5-2.

v memory locations

( — )
bin _
inp‘fg LB Y N NN B e W L<v+l=K
. Binary T Binary to M-ary ©
. L binary ¢ 4
+ | Operations : outputrsy: . Ox‘fhogonal , =
Set Signalling (M =2")
] L] x M-ary
: : > outputs
Bi Bi to M.
. inary : inary to M-ary (x-1)
+ | Operations E I;Etl:zgs Orthogonal z,_b
Set » Signalling (M=2%)
. J

\p
Output mapping — y (v, 6)
Figure 5-2. Generic diagram of a rate 1/x feedforward binary to M-ary convolutional encoder.

Recall from Section 4.2.2 that for feedforward convolutional encoders each element B, ;. of the

N, x N, the next state matrices, B, =[B, ;.], is equal to

o, jrelir2] o, 24l jr2]
B°f"'_{1, j'=ljl2] and B"‘f'"{l, jr=27"4j/2] )

where | - | stands for the floor function. Since the BMS’ one step transition probabilities Py are
not restricted to be 1/2 as in the previous chapter (see Sections 4.1 and 4.2), the entries in each
column of the transition probabilities matrix, P_, do not necessarily sum to unity. Thus, it can not
be guaranteed that P, ’s steady state probabilities are all equal to 1/(2N,) as in Section 4.2.

Before providing a closed form expression for P, ’s steady state probabilities it is necessary to
analyse the state transitions defined by the SE pair Markov model. Assume the state of the SE pair
MC process at time / to be o, =(9,6)=(»,,6)=(n',q,) =Sy, With corresponding encoder
memory content [6,,,6,,,...6,, ]=[#'", #t's,... ', ], Where j'=p' 2" +p', 2"+ +pu', with
4', €{0,1} as in the previous chapters. Remember from Section 3.2.3 that this SE pair MC state
can only be reached from a previous SE pair MC state o,_, =(a_,,0,,) = (¥.,,6.,) = (n,q,) = SuN+s
if

q9;=¢(nq;) and p,,, =Pr{y, =n'|y_,=n}#0 (5.10)
where @(-) is the next state function of the encoder’s Melay finite state sequential machine (FSSM)

model equivalent to the encoder’s state transition diagram. From Figure 5-2 it can be seen that the
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encoder state g, can only be reached from two previous encoder states g,,, and g, with

respective memory content at time / —1 given by
1115611250 O, =1 550 1,01 and [6,,1,6,,250,0, 1= [ "5e s 8',51] (5.11)
where k=p',2"" +..+4',2=(2j'mod2’) and mod stands for the modulus operation.

Furthermore, in order to reach q,. from any of these states it is needed that

Vi =4, (5.12)
Thus the SE pair MC state (n',q,.)=s,, v,y can only be accessed from the states
W'yq) = Sy N, +k and (4',q;,,)= Sy Ny +k1 (5.13)
As a consequence the i'=(n'N, + j N column corresponding to state (n',q ) =S, Ny+s in the one
step transition probabilities matrix P_ has row entries equal to
p”.={17y,”~,,,- s i=p Nq+k,,u.'l N, +k+1 (5.14)
' 0, otherwise

where k=(2j'mod2") and i=nN_+j is the row index corresponding to state (n,q ) =S4
with n=0,1 and j=0,1,..,N, —1. This property will now be used to prove the following theorem.

Theorem 5.1: Consider a feedforward convolutional encoder with first order BMS input defined
by Equations (5.1) to (5.5). Then the steady state probabilities of the SE pair Markov model state
process, o, with one step transition probabilities matrix, P, and state set, S, as defined by
Equations (5.6) and (5.7) respectively, are given by

z V4 (5.15)

onNg+j = ﬂ"',(",q/) = ”a-sn~q+; = Py.un Py Py spys Pyssin Ty,

wheren=0,1, &

. and p, .. are BMS’ steady state and one step transition probabilities, and

(15,18, is the encoder’s memory content defining the encoder state ¢ . With

J=u 2" .
Proof: Remember from Section 3.2 that the steady state probabilities satisfy ([119, 120])
T, =7, P, (5.16)

or equivalently ([122])
2N, -1
Rgjp = z Yy .17
i=0
where By =703 g 150es Ty 5 Nq—I] . Substituting Equation (5.14) in Equation (5.17) yields
”a',i' = ”o-,n'Nq+j' = ”o,y‘, N, +k py,y'ln' + ”a’,y'l Nq+lz+|py,y'ln' (5 1 8)

where i'=n'N, +j'=n'N_ +u', 27 4+, and k =42 +..+p',2=(2j'mod2"). Thus, in

order to proof Theorem 5.1 it is necessary to demonstrate that Equation (5.18) holds when

replacing 7, by Equation (5.15), that is
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Py uin Py Py iy Py, Tyw, =Ty = ”a:”qu"’j' = oy N.,+kpy.ﬂ'1n' +”cr.u'. Nq+k+1py,#'1n‘ (5'19)
Substituting Equation (5.15) in the right side of Equation (5.18) gives
”a.u'l Ny +k p,v,u'nn' + ”a.ﬂ'l N.,+k+1py,/4'1n' = p}'.ll'z H py.#‘; H "'py.u'vﬂ'v-x (p)’-ol"v ”y,o + p,v,lﬂ'v ”y.l)py,ﬂ'ln' (5'20)
However note that
Pyrao(Pyoo+pyor) _ .., " =0
Pyow,®y0 ¥ Pyaw, %y1 = Pyow, py,:y;l;,,m Py, py;y::;,_,o = py_:y(':,:::i‘:'“) & #' (5.21)
oatmm s ML =1
where Equation (5.4) was used. Replacing Equation (5.21) into Equation (5.20) yields
”a,ﬂ'l Ny+k py,/l'ln‘ +”tr.n'1 Ng+k+1 p.v,ﬂ'ln' = py,#’ln'py.u‘z H py,u‘: H "‘py.ﬂ'v Hyq ”y.u‘v (5‘22)

which is identical to the leftmost side of Equation (5.19). Therefore for feedforward convolutional
encoders the steady state probabilities of the SE pair Markov model state process, o;, are given by
Equation (5.15).

It is worth mentioning that a distribution equivalent to Equation (5.15) has been reported in
[142] where the correlation of the output of feedforward binary convolutional encoders is analysed.
Nevertheless in [142] no formal proof of Equation (5.15) is provided and the analysis is performed

in a different way.

5.2.2 Source-Encoder pair Markov Model Analysis for Recursive
Convolutional Encoders

Now consider the recursive structure for binary to M-ary convolutional encoders shown in

Figure 5-3. For reasons that will become clear in the following analysis, this work focuses on

structures with b, =1 while the rest of the feedback coefficients, b, , can be freely set to be 0 or 1.

(VY
yed
b b, b, b, =1
b.inary Y »0“ «»0,2«»...+>0, » Lsv+l=K
input : : i
. Binary [ Binary to M-ary (©
. . L binary ® RN
o | Operations S outputs o | _. thogonal . e
Set Signalling (M =2")
® bt k M-ary
. . s outputs
Bi Bi M.
. MY o7 binarys inary to M-ary | ze-b
+ | Operations e outpug,: . O@ogonal . _I_’/
Set Signalling (M =2")
Q J

v
Output mapping — ¥ (.. 6)
Figure 5-3. Generic diagram of a rate 1/x recursive binary to M-ary convolutional encoder.

The transition probabilities matrix of the state process, o,, defined by this encoder’s SE pair
Markov model can be found by using Equation (5.6). However this time the N, x N, next state

matrices, By and B, acquire a completely different form. In order find B, and B; consider the
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encoder memory content at time / to be [6,,,6,,,....6,,1=[4, 14,,...,44,] With corresponding state
label g, where j= 2427+ 1,22 + ...+ u, . Two different cases regarding the encoder’s feedback

structure and the current memory content can now be identified namely:

M. by, ®bu,®.0b,_u,,=0 and (2). by Sbu, ®..05,_u, , =1 (5.23)
where @ stands for modulo 2 addition (that is over the binary Galois field — GF(2)). Let us focus
first on case with b @..®b,_u, ,=0. When the current input is y,=0 and u =0
(that is j is even) the next state is [6),,,,6,25050..,1=10, 1,555 4,,] due to
y,Obu®..0b,_u,  ®bu =0. In contrast, when g, =1 (that is j is odd) the next state is
(611156112550 =L sty i1, ] since y, @b, ©..0b,_p,, ®b,pu, =1. Therefore using
Section 3.2.3 notation

92 Jj even

9/+1 =¢(y1’01)=¢(0’qj)={ (524)

qzv_l*Ll'/ZJ J odd
for case (1) with by, ®...® b, ,u, , =0. Using a similar analysis when the current input is y, =1
we can find

Jj even

qz”“+j 2
0., =6(3,6) =4(l.q,) = { ’ (5.25)

Qi j odd
for case (1).

Consider now case (2) with by ©..®b, 4, , =1. When the current input is y, =0 and j is
even (that is g, ,=0) the next state is [0,+,,1,49,+,,2,...,42+1,v]=[1, MisMyses i, ] due to
@by ®..8b,_u, ,®bu, =1. In contrast, when j is odd (that is g, =1) the next state is
16111561125+ 60, 1= [0, 4, sy i, ] since y, ® b, ®...®b,_u, , Ob,pu, =0. Hence

94y J even

a7 odd (5.26)

0., =¢(y,6) = ¢(O,qj) ={

for case (2) with b ©..®b,_ 4, =1. Using a similar analysis when the current input is y, =1

we can find
92 j even
6., =0(3,6)=¢(,q9,)= 5.27
o =0(31,0)) = §( ‘L) {qzv*'afu/zj j odd ( )
for case (2).
Therefore each element B, ;. of B, =[B, ;.]is equal to
1, forj even, j'=j/2 and by +..+b,_u, , =0
1, forj odd, j'=2""+|;/2] and By +..+b,_ 4, , =0
B, ; =11, for j even, j'=2""+;/2 and by +..+b,_u, =1 (5.28)
1, forj odd, j'=|j/2| and b +..+b, =1
0, otherwise

-
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whereas each element B, ;. of B, =[B, ;.]is equal to

1, for j even, j'=2""+j/2 and by +...+b,_pt,, =0
1, forj odd, j'=|j/2| and b +..+b, 4, , =0
B, ;=11, forj even, j'=j/2 and b +...+b,_ 4, =1 (5.29)
1, forj odd, j'=2""+|j/2] and by +..+b, =1
|0, otherwise

Using these results the behaviour of the SE pair Markov model’s state transitions can now be
analysed. Assume the state of the SE pair MC state process at time [/ to be

0,=(n,0)=(»,0)=(n'q;)=s, Nyt with  corresponding encoder memory content
[0,,,0,,5--.0,,1=[u", 4'5,...., 44", . From Figure 5-3 it can be seen that the encoder state g, can
only be reached from two previous encoder stateés g, and g,,, with respective memory content at
time /-1 given by
(G115 G125 Oy 1 =[5 1,00 and [61,6, 5500 6y, 1 =[50, p7,51] (5.30)
where k=p',2"" +...+ u',2=(2j'mod 2") . From Equation (5.10) and the previous analysis it can
be seen that in order to reach g, from any of these states it is needed that
Vo, =\ ®Obu',®.0b _u', =n® and y,_ =pu\@bu',®..0b,_u' &b, =n**" (531
for the states g, and g,,, respectively. Note n*’ #n**” =n® @1 as far as b, =1. Thus the SE

pair MC state (n',q,)=s, N+ AN only be accessed from the states

(k+1)

(n",q,)= 50N,k and (n"7",q;,,) = S0y i (5.32)

Therefore the i'=(n'N, + )™ column in the one step transition probabilities matrix P_,

corresponding to state (n',q,)=s with encoder memory content [z, u',,...,22',], has row

n'N,+j'

entries equal to

Py i=n®N, +k
Poiit =\ P, sty > i= n(“l)Nq +k+1 (5.33)
0, otherwise

where k=(2j'mod2"), n® =u'\@bu',®..Ob_u',, "*=p' ©bp',®..05

v=1

u.®b,, and

i=nN,+j is the row index corresponding to state (n,q,)=s with »=0,1 and

Ny +j
J=0,1,..,N, —1.Now Theorem 5.2 can be introduced.

Theorem 5.2: Consider a recursive convolutional encoder with b, =1 and first order BMS input
defined by Equations (5.1) to (5.5). Then the steady state probabilities of the SE pair Markov model
state process, ©,, with one step transition probabilities matrix, P_, and state set, S, as defined by
Equations (5.6) and (5.7) respectively, are given by

T

— _ _
”c,an+j _ﬂo',(n,qj) —”U-Sanﬂ - N (534)
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where n=0,1, «

is the BMS’ steady state probability corresponding to state r, with BMS’
output n, and j=pu 2" +..+u, is defined by the encoder’s memory content [, s,,...,8,]
corresponding to the encoder state q; .

Proof: 1t is only needed to prove that

2N,-1

”o',i' = ”o’,n'Nq+j' = ”o’,(n',qj-) = z ”o’,ipa,ii' (535)

i=!

holds for every n'=0,1 and j'=0,l,..,N, —1. First note i'=n'N, +j' and assume that

j'=4', 2" +...+ u', corresponds to the encoder memory content [x',',,...,1¢',]. Substituting
Equation (5.33) in Equation (5.35) gives
(5.36)

ﬂo':i' - ”o’,n'Nq+j' - ”o-,n(")Nq+kpy,n(")n' +”a',n(“')Nq+Iz+1py.n(“”n'

where n® ="\ ®@bu',®..®b,_u',, "=y Obu',®..0b,_u' ®b, and k=(2j'mod2")
1 172 v-1 1 172 v—-1/ v v

(note k=pu',2"" +...+ u',2). Replacing 7, in Equation (5.36) by Equation (5.34) yields

T,
y.n — —
=i = ”man*j' - ”a',n(k)Nq-f»kpy,n(")n' + ”a,n(’”")Nq+k+lpy,n("“)n' (5'37)
q
Substituting Equation (5.34) in the right side of Equation (5.36) gives
k) E (k)
= e Zpnt
”o-,n(")Nq+kpy,n(")n' +”o‘,n("“)Nq+k+1py,n(k+l)n' - N, py,n(")n' + N, py,n““”)n' (538)
Replacing Equation (5.4) in the right side of Equation (5.38) yields
ju » g p _ 1 py,(n(")ﬂal)n(")py,n(")n' +py,(n"””@l)n(’“")py,n("”)n' (5 39)
a,n(k)Nq-i-k y,n(k)n' a',n(k+l)Nq+k+l y,n(’”’”n' Nq (py,ol +py,lo) :
(k+1) _ (k) —
Nevertheless "’ =n"’ @1 as b, =1 and therefore
r, _"(hl)n(k)(l’y"(k)”(k)"‘Py‘"(k)"(kﬂ)) - ' = n(")
P, iRty 0P, 00, P, (el (KD P, (A1), - Pyo1+Pya0 R G - ( 5 40)
(Pyp01+Py10) Py‘"(k)"(kﬂ)(l’y NOOTORES k), (k41) ) _ (k) :
Py01*Py 10 _”y,n("‘”) » h=n
Hence Equation (5.38) becomes
Y. uk n' = n(k)
’
X Ak E, Atk q
_— YA —
”o‘,n(")Nq+kpy,n"‘)n‘ +”a,n"‘”)Nq+k+1py,n("*“n' TN py,n(")n' + Ny py,n"‘*l)n' - T (541)
yalks) v (k4D
—_—, =n
N

q
which is equivalent to the leftmost side of Equation (5.37). Therefore for recursive convolutional

encoders with b, =1 the steady state probabilities of the SE pair Markov model state process, o,
are given by Equation (5.34). Furthermore, it is important to highlight that b, =1 is a necessary

condition owing to the fact that otherwise n'¥ =n**" and Equations (5.37) to (5.41) would not be

valid for this case.
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5.3 Spectral Line Suppression Capabilities of the Binary
to M-ary Convolutional Encoders with First Order
BMS Inputs for PPM IR-Based UWB Systems

The signal model considered in this chapter for the binary to M-ary convolutionally coded time
hopping (TH) scheme with first order BMS for PPM IR-based UWB is that introduced in Section
4.3.1. The main difference is that this time the SE pair Markov model is defined by Equations (5.6),
(5.7), (5.8), (5.14) and (5.15) for feedforward encoders, and Equations (5.6), (5.7), (5.8), (5.28),
(5.29), (5.33) and (5.34) for recursive encoders. Therefore the power spectral density formulas

introduced in Section 4.3.2 can be used for these encoders as well, that is

S(f) =S, (N +Se3()+Sp(f) N, =1

_ (5.42)

SN =Sci(N)+Sc,()+Sc;(N+Sp(f) N, >1

N,=1 Ng-1 , . 2
cx(f)——IW(f)l ——IW(f)I Y e ATy (5.43)
k=0 =0
Sc2(f) =MNWZ_2 Afl Re{e—jzn/(k'—lc)r, Nijl e‘ﬂﬂf(ﬂu('-ﬂuc)Tﬂ”i} (5.44)
‘ T, k=0 k'=k+1 iz0 ‘
C3(f) 2|W;f)| Re { = i Naz_]e-jZ:rj(k'-k)T —j2xfTm —Jfo(ﬁ, -ﬂu)Tp” (p(|m|) ”’_')} (5.45)
s '=0 m=1 ii'=0
Ny=1 Np-1 ' L
Sp(f) = (T) WP Y, X e Pula) S 6(f -4) (5.46)
k=0 =0 r=—w

where S . (f) is the PSD’s continuous part, S ,,(f) is the PSD’s discrete part, W(f) is the Fourier
transform of the transmitted pulse shape w(t); B, =¢ s(.-k) €{0,1,...,.M —1} is the " M-ary symbol
generated when the encoder is in state s,; N, =2N, is the number of states in the SE pair Markov

model; N, is the number of M-ary symbols transmitted per state as defined by the encoder rate

1/x=1/N,; T, is the PPM modulation index; T, is the mean repetition time between pulses and

T,=N,T, is the encoder’s output vector time. As in Section 4.3.2 the notation 7, =7x,, and

(n) _ ,,(n)

= has been used for the steady state and the n™ step transition probabilities of the SE pair
pll pa’ i’ p p p

Markov model’s state process, g, respectively.

Remember we are interested in binary to M-ary convolutional encoders whose SE pair Markov

model satisfies the spectral line suppression condition

N1 M-
szf[?,‘Tﬁ _ 1 J2nf¢Ty _
e T,=— E e ; k=01,..,N, -1 5.47
i=0 M §=0 ( )

as defined in Sections 4.3.2 and 4.3.3. Therefore in the next sections the feasibility of fulfilling

Equation (5.47) when using feedforward and recursive convolutional encoders will be assessed.
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5.3.1 Failure of the Spectral Line Suppression Condition for
Feedforward Binary to M-ary Convolutional Encoders
with First Order BMS Inputs

This section analyses the spectral line suppression condition when feedforward implementations
for binary to M-ary convolutional encoders are considered. Theorem 5.1 defines the steady state
behaviour of the SE pair Markov model for this set of convolutional encoders. By analysing
Equation (5.15) in Theorem 5.1, it can be seen that satisfying the spectral line suppression
condition defined by Equation (5.47) may be difficult to achieve for most combinations of BMS’
transition probabilities. This is due to every steady state probability 7, =z, is a function of at

least two probabilities from the following set:

= =]- = P10 =P
0<pyo<l, 0<p, o<l Pyoo=1=Pyos Py =1=Dy10» 7,0 = ProttPyn’ 0 T ByoitPym (5.48)

Moreover, even though the fulfilment of Equation (5.47) for particular combinations of p,,
and p,,, can be achieved through proper specific designs of the output mapping function (like in
Chapter 4 for p, ,. =1/2), there exist combinations for which the spectral line suppression

condition can not be satisfied no matter what (valid) output mapping function, y(-), is used. In

order to see this note that it is not difficult to find values of p,, and p,, such that

. L (5.49)

i = TuNgvs = Fsypny = Pywn Py Py,py i Py i Ty, M

which concludes to the no fulfilment of Equation (5.47). Therefore it can be stated that feedforward
structures do not provide a good construction framework for spectral line suppressive (SLS) binary

to M-ary convolutional encoders with unbalanced first order BMS inputs.

5.3.2 Spectral Line Suppression Condition Analysis for Recursive Binary
to M-ary Convolutional Encoders with First Order BMS Inputs

Now consider recursive implementations for binary to M-ary convolutional encoders with b, =1

(see Figure 5-3). The SE pair Markov model for this kind of convolutional encoders has steady
stated probabilities defined by Theorem 5.2. From Equation (5.34) in Theorem 5.2 these

probabilities can only assume one of two values namely

/4 7
= =20 j = - = =2n =
= Ty = N, , for i=0,1,..,N,~1 and =, =Ty = N, , for i=N,N,+1,..,2N, -1 (5.50)

where j=0,1,..., N, —1.Therefore the recursive structures with b, =1 provide a better framework

for the construction of SLS encoders as shown next.

Let the number of encoder states to be N, =2" =pM with 7 >1. Thus the number of states in

the SE Markov model will be N, =2npM . Now assume k& has been fixed in Equation (5.47) and
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focus on the first set of states s, =5, ,; with i=j=0,1,..,N, -1 and 7, =x,,/N,. Change the
label of these states to s, such that the &* M-ary output symbol, S, , =45 ® | of the first 7{® states

is equal to 0; then the following 7’ states will have & M-ary output symbol equal to 1, and so on
until the last 70, states have K" M-ary output symbol equal to M —1. Similarly change the label
of the set of states s, =sy ,; with i=N_+j=N,,..,2N, -1 and 7, =z, /N, to s, such that the

first 7§ states have K" M-ary output symbol, B , =¢, f:’ , equal to 0, and so on until the last 7{*),

states have k™ M-ary output symbol equal to M —1. Using this new labelling the left hand side of
Equation (5.47) can be expanded as

o)y (o), (0)_ N1

NG arraar x, ™ 2T, < 2 f (M=1)T,
z A A ’°{Z e+ z e 4+ Z e "}+
i=0 ig=0 ip=n{® ip=N,-n9) -1
q - (5‘51)
17(")—1 ,,(q)+ (i) _; N,-1 .
R { Z e+ Z e’z”ﬂ’ ot D &/ M-01s
i=0 i .-r,((]") i =Nq —r])(\;lll—l

for this kind of recursive convolutional encoders. Note Equation (5.51) can be simplified to
Z eﬂﬁ//’,ﬂpﬂ. z ( v.0 ‘(_:0) £ (rl))e_lz”fCTp (5.52)

Therefore in order to satisfy the spectral line suppressive condition the output mapping function,

7(-), must designed such that

Ny-1 . M-1 ;
3 e I = z (G2 +52000)e ™ =23 &/, (5.53)
i= ¢=0
is satisfied.
For Equation (5.53) to be true it is needed that
i i _ 1
;077;0) ’31 r)é‘) = (5.54)

for ¢=0,1,..,M~-1. However O<mz,,<l with x,=1-7x,, for every combination of

0<p,q<land 0<p, , <1 (see Equation (5.4)). Therefore if y(-) is such that

(GY]

) —
up '

=nM =p (5.55)

then

(/ s i 1
NI RN = = (5.56)

and Equation (5.53), thus the spectral line suppression condition, is satisfied for every combination

of 0<p,, <l and 0<p ,<I.

Consequently it can be concluded that by using recursive structures with total encoder memory

v2log,(M)=L and feedback loop with b, =1 (see Figure 5-3), spectral line suppressive (SLS)
binary to M-ary convolutional encoders for unbalanced (that is p, . #1/2) binary Markov sources

(BMS) can be constructed.
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5.4 Code Search Procedure for Recursive Spectral
Line Suppressive Binary to M-ary Convolutional

Encoders with Unbalanced First Order BMS Inputs

The code search procedure used in this chapter for recursive spectral line suppressive (RSLS)
binary to M-ary convolutional encoders is based on that introduced in Section 4.4.3 for feedforward
spectral line suppressive encoders (FSLS). The main difference is that this time the main goal is to
find RSLS convolutional encoders which eliminate as many spectral lines as the FSLS
convolutional encoders and the PCTH scheme even when the input consists of binary data streams

generated by an unbalanced (that is p,,. #1/2) BMS. As in Chapter 4, the second aim of the code

search procedure is the optimisation of the information weight spectrum (IWS) so that an RSLS
binary to M-ary convolutional encoder with the best possible IWS is found. The modified flowchart
of the code search procedure is shown in Figure 5-4 where the changes/additions to the flowchart
introduced in Section 4.4.3 — Figure 4-8 have been highlighted with bold lines.

In a similar way to that shown in Section 4.4.3, the code search procedure has not been
restricted to rate 1 binary to M-ary convolutional codes as rate 1/2 and rate 1/3 encoders have been
included. Furthermore the notation introduced in Section 4.4.3 will be used in this section and thus
for a rate 1/x binary to M-ary convolutional code x sets of L=1Ilog,(M) generators will be
provided. However, this time each element of the transfer function matrix

G(D)=[{g;”(D) &”(D)..gX (D)} ... {g§*"(D) gi*"(D)..g{"(D)}*™"] (5.57)
has the form

ai(")(D) 3 a,-(f)) +a,.("1‘)D+...+af,':)D"
b(D) 1+bD+..+b, D" +b D"

g(D)= (5.58)

where D is the delay operator, a*) e{0,1}, b,€{0,1}, i=0,1,...,L—1, k=0,l,.,x—1, and

g (D) is the i" rational generator of the & set corresponding to the K" M-ary output. The
numerator in Equation (5.58)
a?(Dy=a®) +aPD+...+a® D" (5.59)
describes the generator’s feedforward connections (feedforward polynomial) while the
denominator
bD)=1+bD+...+b,,D"" +b,D" (5.60)
is the feedback polynomial describing the shift register’s feedback connections in Figure 5-3 (see
Section 2.7).
If the input sequence, y ={y,»,»,...y,...} , is expressed in terms of the delay operator as
y(D)=y, +yD+y,D* +..4y,D +... (5.61)

then the M-ary symbols produced by the £” generator set can be obtained by using

121




Chapter 5 SLS Binary to M-ary Convolutional Encoders for Unbalanced BMS

z®(D) =21 y(D)g{" (D) +2"? y(D)g{" (D) +...+ y(D)g {2, (D) (5.62)
and therefore the encoder output mapping function, (), is defined by the rational generator sets in

Equation (5.57) and the binary to M-ary conversion defined by Equation (5.62).

5.4.1 Modifications to the Code Search Procedure Introduced in
Section 4.4 for the Search of RSLS Binary to M-ary Convolutional
Encoders with Unbalanced First Order BMS Inputs

As previously mentioned, the code search procedure described by the flowchart in Figure 5-4 is
based on the flowchart introduced in Section 4.4.3 — Figure 4-8. Therefore only an explanation of
the main flowchart’s modifications will be provided referring the reader to Section 4.4.3 for the
explanation of the unmodified tasks.

The main modification on Task I is the addition of the feedback polynomial selection block.

The feedback polynomials’ selection pool for an encoder with total encoder memory
v2log,(M)=L was chosen to consist of the simple 5(D)=1+ D" polynomial plus all known

primitive polynomials of degree v. The heuristic reason for the inclusion of the primitive
polynomials is based on the fact that the pseudo noise (PN) linear-feedback shift register sequences
with the longest period (m-sequences), hence best noise-like properties, are generated when the
feedback connections are defined by a primitive polynomial, [82, 83, 95, 136]. Furthermore, it has
been shown that for self-synchronizing scrambled sequences the selection of primitive scrambling
polynomials is the best in terms of the signal’s PSD characteristics when used in pulse amplitude
modulation (PAM) based systems, [143]. Therefore it is expected that RSLS convolutional

encoders with primitive polynomial based feedback will provide better PSD characteristics than
encoders with 5(D)=1+ D" based feedback. 4

Task 2 has not been modified while Task 3 was slightly modified to account for the use rational
generators instead of polynomial ones. Thus the new generator sets are obtained by defining new
feedforward polynomials (numerator in Equation (5.58)) each time while the feedback polynomial
remains unchanged.

Task 4 is modified to obtain the SE pair Markov model from an unbalanced BMS with

stationary probabilities 7z,,# 7,; #1/2. One or two specific numeric values for p , #1/2 and
Dy10 # P, are used at this stage. The encoder is discarded if it does not satisfy Equation (5.53)

and hence does not satisfy the spectral line suppression condition defined by Equation (5.47) (see
Section 5.3).

Task 5 has not been modified as it deals with standard encoder’s properties.

Finally in Task 6 the operations related to the comparison of the encoder’s IWS are the same as
in Figure 4-8 (Section 4.4.3). Nevertheless two blocks have been added before storing the encoder

under test in case its IWS is as good as or better than the current best. These blocks further verify
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that Equations (5.47), (5.53) and (5.56) are satisfied by the encoder under test for all combinations
of p,, ={0.1,0.2,..,0.9} and p,, ={0.1,0.2,..,0.9}.

:

I Chose the M-ary alphabet I
¥
Set the total encoder memory
v2log(M)=1L
Y
Get a feedback polynomial
Task 1 < with b, = 1 iom the pool
[ Set the code rate, 1/x

Use the generator sets from the rate
1/(x— 1) encoder as the first x— 1
generator sets

NTe I
¥
Set the initial target free distance,

Task 2 dywr =¥ + Dx
34 Decrease dyg., i(—
Get the new encoder to be tested
Task 3 by setting a new xth generator set
¥
Obtain the SE Markov model by
setting py.10 # py01 # %2 such that
70 # 7,1 # V2 for the BMS
N
Task 4 < Is the spectral line H ave all
suppression condition N y possible encoders

fulfilled?

Is the encoder
catastrophic?

Has a code
been found?

Task § J Calculate the encoder free
distance and set dicurr = drgiree

Aiicurr < Arttor 7

/_é N
Calculate the first 20 elements of
the IWS using the FAST
algorithm

Is the encoder
IWS worst than the
current best?

Verify the spectral line suppression condition
for all combinations of p,.10 = {0.1,0.2, ..., 0.9}
and p,o1={0.1,02, ..., 0.9}

Task 6 <

Is the spectral

ine suppression condition

fulfilled for all previous
combinations?
Is the encoder

IWS equal to the
current best?
Replace all best encoders Store the current encoder
and their IWS with this altogether with the best
encoder and its IWS encoders
. ¥ ¥ \

Figure 5-4. Flowchart diagram of the code search procedure for RSLS
binary to M-ary convolutional encoders.
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The algorithm ends when an encoder with spectral line suppressive capabilities for unbalanced

BMS and the best possible IWS is found.

5.4.2 Code Search Results of RSLS Binary to M-ary Convolutional
Encoders for Unbalanced First Order BMS Inputs

Novel maximum free distance (MFD) recursive spectral line suppressive (RSLS) binary to
Me-ary convolutional encoders for unbalanced first order BMS inputs have been found using the
code search procedure introduced in the previous section. RSLS encoders with the best possible
IWS for 16-ary, 32-ary, 64-ary and 128-ary orthogonal signalling are reported in Table 5-1 for

recursive structures with feedback polynomials of the form #(D)=1+ D" and in Table 5-2 for

recursive structures with primitive feedback polynomials.

Table 5-1. Best recursive spectral line suppressive (RSLS) binary to M-ary convolutional encoders
with feedback polynomial 5(D) =1 + D", The feedback and feedforward polynomials are given in
octal form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

71| v | Feedback T Fecdiorward polynomials w@ﬁmm spectrum (IWS): [Bgws Banw 2155-; By 151 _]
polynomial in octal form __W;“ Distance spectrum: {Aame: Adgpe + 1.3 Adpes 15} ‘
(22,10,4,1) 5 (2, 4, 14, 24, 60, 116, 280, 566, 1276, 2626, 5744, 11942, 25616, 53408, 113160)
{1,1,3,4, 11,18, 42, 75, 163, 307, 642, 1243, 2546, 5004, 10137}
ol @z | w [Eaiamomn i
anomn | 15 | B53isemett e
(21, 10, 44, 42) 6 [2, 4, 10, 34, 64, 132, 348, 692, 1554, 3580, 7488, 16718, 36636, 78514, 172118]
{1,1,2,6,9,21, 46, 86, 189, 389, 786, 1662, 3409, 7029, 14630}
s| @105 R R e
’ ey | | Begtas BISHE L0
G0 | 7| Bha 1o o ik i v 7 v
o 0w [ mwmism | e [Bostlommnd e m s
(164,70, 62,21) 2| G 06T60200417.0010
(254,150, 42,21 8| G012, 1o 26,5, 106,262 515, 1122, 2426, 5059, 10096, 231611
B I R e B L e
(362, 172, 104, 21) 24 | BG40 ‘(’, ’2°0°0°42‘f4 ?03‘; ‘}ff- 0]
o i0s | o | By 10585 e s o s o o
s| @ [ ewsmen | o [E3jamimnmn e
@wamy | w |Goesnimsimiicii
Qoo 00y | 7| 4103 0 3l e e o e
2 |6 101 (142, 120, 10, 4, 103) 1 e e e ey Y
I N | o
Gon w6, 20,10, 19| a | P00 27 9550 i o o 7 s i
7 201 (254, 144,20, 12, 41) 16 | B enssinngs
w0 | | Eaetis it dia
T A N A O S e e
6 101 (40,20, 10,104,102, 1) 1| s taa e
. A BT B A e
a0 0 a0y | 8| B850 B8 4 et 5T T o s T
7 201 (302, 142,20, 10, 4, 101) 16 | O ae s o ons e o
(202, 40,22, 10, 104, 101) 2 [(2,%%“%% T f)"o‘; o
a2 om0 0 0,1y _| 8| B4 19 % U 30,5 0 s T e, o)
w7 | o Cammanmenion | e | BeleES B D Do T
(200, 40,20, 10, 4, 102, 101) | 24 [(21 %%41% %_ ‘2°o°o°42‘(')% ‘; ffo‘; o
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Table 5-2. Best recursive spectral line suppressive (RSLS) binary to M-ary convolutional encoders
with primitive feedback polynomials. The feedback and feedforward polynomials are given in octal
form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

r;' 5 Feedbagk Fecdforvyard polynomials sets ipor In_fonnation weigh? spectrum (IWS): [Bagw, Bagw 1,544 B + 15} ‘
polynonial in octal form Distance spectrum: {Aasme, Adwee + 1ot Adype <15}
[3, 4, 11, 24, 52, 118, 255, 556, 1199, 2582, 5523, 11784, 25049, 53096, 112238]
(30’ 4.2, 21) 5 {1,1,2,5,9,19, 37, 76, 151, 305, 612, 1231, 2474, 4973, 9997}
o om @niney | 0 | Bosamuuimi s i
Gamm |15 |ELsanasEe e
[3, 6, 11, 31, 59, 160, 292, 763, 1531, 3579, 7599, 16886, 36652, 79623, 173386]
(51,30, 15, 12) 6 {1,1,2,6,9,23,40, 96, 181, 395, 794, 1664, 3427, 7085, 14696}
5| @y | o | Dasatimmmio e
i} @ | w | henetiiasiuniim
[3, 4, 11, 46, 68, 154, 460, 788, 2038, 4738, 9496, 22860, 50634, 107778, 247857)
(162’ 10, 104, 143) 7 {1,1,2,7,10,21,57, 95,224, 489, 941, 2117, 4462, 9106, 19844}
6| 103 (122,70,24, 11) 14| G s ns i age st as )
G | | BeLeaeliiad s
A I B L e
| o [ esmmamoy | e [Gasatim@enh o
Gy | |Basioo iR e
o inatn | 6 | Dol s s i s o o v
s| s [ ewmmes | n [hasolemeninmmd
oy | w |Eeeesaliiiniiasm
Gon w2200 || Bt 48 ol 5 g s
32 |6 141 (60, 110, 104, 102, 21) 14 ["] %“l ‘(’) '2‘0°42% ‘;§°]i029730";323535}” 467]
Gmannam | | Boaeanissisduon
Gon a6, 0. _| | Be 1 e 30,1 o T o
| ow [Comwmimny | e [Bosanesinmin ier
(243,141, 22, 10, 44) 24 ﬁ %%‘:%% ‘2‘0°0°42f]‘(’) ‘;‘(’,"9‘; 70
Qoo 10, 2| 7| Gyt 0 i 500 o
6 103 (120, 60, 10, 4, 22, 21) 14 530°1“0°2‘ }) %"8006‘;602' ‘;‘3' 235292(7) 28,478]
“ (40, 20, 10, 4, 102, 101) 21 53]%%“1%% 004008, ‘300‘; o
oL 0.0 00020 _| 8| B35 120135 ot o S s e
7 301 (140, 20, 210, 204, 202, 41) 16 [(’] ‘(’,‘} ‘(’) '2‘0"42% ‘;%‘),‘; 1‘3302‘; 26313} 12, 527]
(340, 260, 10, 4, 202, 241) 24 [(3] ‘(’) %“1%% ‘2'0°0°42f)% g%"o‘; a
Qo090 20,104 0n, oy | 8| 541 1820 5 T T o e
e R B e e T P
(300, 40, 20, 10, 4, 2, 101) 24 [(’, %‘(’)‘} ‘(’,% ! '0"0"42%%‘;%"0‘; o

The results in Tables 5-1 and 5-2 are interpreted as follows: for each M-ary alphabet, total
encoder memory, v, and feedback polynomial 5(D) (presented in octal form), the first line gives
the set of feedforward polynomials {a{”(D) a”(D)...a,(D)}* (in octal form), the M-ary free
distance, dyp.., and the first 15 components of the information weight and distance spectrums for
rate 1 RSLS convolutional encoders. The second and third lines give the second and third sets of
feedforward polynomials needed to form the rate 1/2 and 1/3 RSLS convolutional encoders with
their respective spectrums.

It is important to note that the RSLS convolutional encoders reported in Tables 5-1 and 5-2 have
slightly inferior IWS compared to the FSLS convolutional encoders reported in Section 4.4.4 —
Table 4-1. Therefore it is expected that the RSLS convolutional encoders will have slightly inferior

bit error rate (BER) performance compared to the FSLS convolutional encoders previously
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introduced. However, as it will be demonstrated in the next sections, this minor decrease in BER
performance is compensated by the superior spectral line suppressive characteristics shown by the

Chapter 5 SLS Binary to M-ary Convolutional Encoders for Unbalanced BMS
RSLS convolutional encoders, especially when the data stream is generated by an unbalanced
|

binary Markov source.

Another interesting result is that in general convolutional encoders with feedback polynomials

of the form b5(D)=1+ D" as reported in Table 5-1, have better IWS than convolutional encoders

next, the RSLS convolutional encoders with primitive feedback polynomials have better PSD
characteristics than encoders with (D) =1+ D" feedback polynomial.

In the next sections comparisons between RSLS binary to 32-ary convolutional encoders, FSLS
binary to 32-ary convolutional encoders and 32-ary PCTH in terms of PSD characteristics and BER

performance will be provided.

5.5 Comparisons between RSLS Binary to 32-ary
Convolutional Encoders, FSLS Binary to 32-ary
Convolutional Encoders and 32-ary PCTH

This section introduces comparisons between PPM TH-IR-based UWB systems employing
RSLS binary to 32-ary convolutional encoders, FSLS binary to 32-ary convolutional encoders and
32-ary PCTH in terms of both PSD characteristics and BER performance.

5.5.1 PSD Comparisons of RSLS Binary to 32-ary Convolutional

Encoders, FSLS Binary to 32-ary Convolutional Encoders and
32-ary PCTH for Unbalanced First Order BMS Inputs

with primitive feedback polynomials as reported in Table 5-2. Nevertheless as it will be shown

This section presents PSD examples of PPM TH-IR-based UWB signals obtained when using
the 32-ary Bernoulli map PCTH scheme, the rate 1 FSLS binary to 32-ary convolutional encoder
introduced in Table 4-1 (Section 4.4.4) with v=6, and the rate 1 RSLS binary to 32-ary
convolutional encoders reported in Tables 5-1 and 5-2 with v =6 . Furthermore, PSD examples of a

non-coded binary PPM TH-IR-based UWB signal with perfectly random (ideal) 16-ary TH are
provided as well for comparison purposes.
The input binary data stream is assumed to be generated by an unbalanced first order BMS for

two different combinations of p,, and p,,,:
1). pyo=2/5and p,,=3/5thus z,,=3/5 and 7,, =2/5
2). pyo=1/5and p,,,=3/5 thus 7, , =3/4 and 7, =1/4

Note the source’s steady state statistics are unbalanced for both cases.
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The PSD plots for non-coded binary PPM combined with ideal perfectly random 16-ary TH are
shown in Figure 5-5. Remember from Section 4.5 — Figure 4-9b that spectral lines appear at 2.56
GHz intervals when ideal perfectly random 16-ary TH is assumed and the data stream consists of
i.i.d. binary symbols with uniform distribution. However in Figure 5-5 it can be seen that when the
source’s stationary distribution is not uniform like the number of spectral lines in the PSD is
doubled (the spectral lines appear at 1.28 GHz intervals in Figures 5-5a and 5-5b). It is worth
pointing out that if a periodic pseudo-random (PR) sequence had been used instead of an ideal one,

then the PSD would have shown a larger number of spectral lines (see Section 4.5-Figure 4-9a).
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Figure 5-5. Analytical and simulated PSDs for a TH-IR-based UWB system using binary PPM with ideal
perfectly random 16-ary TH. The signal parameters are N,,= 1, T,=12.5ns, 7,= 12.5 ns, 7, = T,/16,
Ty=T,/32ns and ¢y, uniform distributed over the set {0, 1..... 15}. The 3" derivative Gaussian
pulse was used with duration 7,, ~ 0.35 ns.

The PSD plots obtained when using the 32-ary Bernoulli shift map PCTH encoder and the rate
1, v==6, FSLS binary to 32-ary convolutional encoder from Table 4-1 (Section 4.4.4) are shown in
Figures 5-6 and 5-7 respectively. Remember from Section 4.5 — Figures 4-11 and 4-12 that spectral
lines appear at 2.56 GHz intervals when the data input to these encoders consists of a uniform
distributed i.i.d. binary stream. Nevertheless, in Figures 5-6 and 5-7 spectral lines appear at 80
MHz intervals. Thus, fewer spectral lines are eliminated by these encoders when the source
generates a non-uniform distributed binary stream. Furthermore, it can be seen that the number of
spectral lines generated by these encoders is larger than the number of spectral lines produced by
the system employing ideal perfectly random 16-ary TH for both combinations of BMS’ one step
transition probabilities.

To conclude Figures 5-8 and 5-9 show that the best PSD characteristics are obtained when using
the rate 1, v=6, RSLS binary to 32-ary convolutional encoders introduced in Tables 5-1 and 5-2.
It can be seen in Figures 5-8 and 5-9 that these encoders eliminate the same amount of spectral
lines regardless of the values acquired by the BMS’ one step transition probabilities. In fact the
spectral lines in these figures are spaced at 2.56 GHz intervals. This is the same spectral line
spacing achieved when assuming ideal perfectly random 16-ary TH is used in a non-coded binary

PPM system with uniform distributed i.i.d. binary data streams (Section 4.5 — Figure 4-9b).

127




Chapter 5 SLS Binary to M-ary Convolutional Encoders for Unbalanced BMS

-20 =—— 20 e T . =3
30 Sim. |,\’“,(O)\2 =1 ====Sim. U. E. — Analytical | 30 Sim. 1«\'“.(0)|2 =1 === Sim. U. E. — Analytical
. 40 : ¢ i 40
T =
% -50 T 50|
g g
RS T &0l
= 60 > 0
173 | [z
S 70 S 70|
[a) | o [
B 80 B 80/
g g
2 90 - [
»n ! 7 | |
2 _100| : i 2 100} I fff i
o 1 I ‘ o I |
a | a |
-110 I -110} I
| il
120 120! |
-130. l" [ -130 I B i L i
0 1 2 0 1 2 3 4 5 6 7 8
Frequency in Hz x10° Frequency in Hz x10
a) p,o, =2/5and p,,,=3/5 b) p,o, =1/5and p,,, =3/5

Figure 5-6. Analytical and simulated PSDs for a TH-IR-based UWB system using the 32-ary Bernoulli shift
map PCTH scheme. The signal parameters are N,,= 1, 7,=12.5 ns, 7, = 12.5 ns and 7= 7,/32. The 3
derivative Gaussian pulse was used with duration 7,, ~ 0.35 ns.
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Figure 5-7. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1, v=6, FSLS
binary to 32-ary convolutional encoder from Table 4-1 (Section 4.4.4). The signal parameters are
N,=1, T,=12.5ns, T,=12.5nsand Tz="T1,/32. The 3" derivative Gaussian pulse was used
with duration 7}, ~ 0.35 ns.
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Figure 5-8. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1, v =6, RSLS
binary to 32-ary convolutional encoder from Table 5-1 with feedback polynomial 5(D) = 1 + D° = 101s.
The signal parameters are N,,= 1, T,=12.5ns, 7, = 12.5 ns and 73 = 0.39 ns. The 3" derivative
Gaussian pulse was used with duration 7,, ~ 0.35 ns.
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Figure 5-9. Analytical and simulated PSDs for a TH-IR-based UWB system using the rate 1, v= 6, RSLS
binary to 32-ary convolutional encoder from Table 5-2 with primitive feedback polynomial
b(D)=1+ D+ D®= 141,. The signal parameters are N,,= 1, 7,=12.5ns, 7,=12.5 ns and
T5=0.39 ns. The 3" derivative Gaussian pulse was used with duration 7, ~ 0.35 ns.

By comparing Figures 5-8 and 5-9 it can be seen that even though the RSLS binary to 32-ary
convolutional encoder with A(D)=1+ D° feedback polynomial and the RSLS binary to 32-ary

convolutional encoder with A(D)=1+ D+ D° primitive feedback polynomial eliminate the same

amount of spectral lines, there exist noticeable differences on the PSD’s continuous part. Therefore
the RSLS convolutional encoders with primitive feedback polynomials reported in Table 5-2 must
be used if getting a continuous PSD component as smooth as possible is required.

Finally note how there is good agreement between the analytical and simulated results for both
the PSD’s continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[’=1) in the all the

figures presented in this section.

5.5.2 BER Comparisons of RSLS Binary to 32-ary Convolutional

Encoders, FSLS Binary to 32-ary Convolutional Encoders and
32-ary PCTH

In this section comparisons in terms of bit error rate (BER) performance between RSLS and
FSLS binary to 32-ary convolutional encoders in additive white Gaussian noise (AWGN) channel
are provided for hard Viterbi decoding (HVD) and soft Viterbi decoding (SVD). The
implementation particularities for each system are described in Section 4-6 and therefore only
results in terms of BER plots will be presented in this section.

Simulated BER plots for a PPM IR-based UWB system employing rate 1 RSLS (Tables 5-1 and
5-2) and FSLS (Table 4-1) binary to 32-ary convolutional encoders are shown in Figure 5-10 for
M-ary Hamming distance based HVD. From this figure it can be seen that for HVD the BER
performance loss of both RSLS convolutional encoders is negligible compared to the BER
performance of the FSLS convolutional encoders introduced in Chapter 4. Furthermore, the BER

performance of RSLS convolutional encoders with primitive feedback polynomials (Fdbk Poly = 141
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and 203 — see Table 5-2) is nearly identical to the BER performance achieved with RSLS
convolutional encoders with feedback polynomials of the form A(D)=1+ D" (Fdbk Poly = 101

and 201 — see Table 5-1).
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Figure 5-10. Bit error rate versus bit energy to noise ratio for hard Viterbi decoding (HVD) in PPM TH-IR-
based UWB systems using 32-ary PCTH, the rate 1 RSLS binary to 32-ary convolutional encoders presented
in Tables 5-1 (Fdbk Poly = 101 and 201) and 5-2 (Fdbk Poly = 141 and 203 — primitive polynomials), and the
rate 1 FSLS binary to 32-ary convolutional encoders introduced in Table 4-1 (Section 4.4.4). The BER plot for
binary orthogonal PPM is provided as a reference. All the plots were obtained by simulation for the AWGN
channel. The total encoder memory, v, of each code is indicated in the legend.

Simulated BER plots for a PPM IR-based UWB system employing rate 1 RSLS (Tables 5-1 and
5-2) and FSLS (Table 4-1) binary to 32-ary convolutional encoders are shown in Figure 5-11 for
SVD. In this case the performance loss when using RSLS convolutional encoders is not as
negligible as for HVD. Nevertheless this performance loss can still be considered to be acceptable
as the bit energy to noise ratio difference between the FSLS convolutional encoders and both RSLS
convolutional encoders is less than 0.5 dB for BER values below 107 Finally note that the BER

performance of both RSLS convolutional encoders is nearly identical for SVD as in the HVD case.
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Figure 5-11. Bit error rate versus bit energy to noise ratio for soft Viterbi decoding (SVD) in PPM TH-IR-based
UWB systems using 32-ary PCTH, the rate 1 RSLS binary to 32-ary convolutional encoders presented in
Tables 5-1 (Fdbk Poly = 101 and 201) and 5-2 (Fdbk Poly = 141 and 203 — primitive polynomials), and the rate
1 FSLS binary to 32-ary convolutional encoders presented in Table 4-1 (Section 4.4.4). The BER plot for
binary orthogonal PPM is provided as a reference. All the plots were obtained by simulation for the AWGN
channel. The total encoder memory, v, of each code is indicated in the legend.
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5.6 Conclusions for Chapter 5

In this chapter recursive spectral line suppressive (RSLS) binary to M-ary convolutional
encoders for unbalanced (non-uniform distributed) binary Markov sources (BMS) have been
introduced. First it was shown that the traditional feedforward structures do not provide a good
framework for the construction of SLS encoders when the binary data stream is generated by an
unbalanced first order BMS. Next it was shown that by introducing recursive structures a better
framework is provided, as the distribution acquired by the steady state probabilities of the source
encoder (SE) pair Markov model only depends on the BMS’s steady state probabilities.

It was shown analytically that binary to M-ary convolutional encoders based on feedforward
structures do not satisfy the spectral line suppression condition for all combinations of BMS’ one

step transition probabilities, 0< p  <1. It was also demonstrated that by using binary to M-ary

encoders with recursive structures the spectral line suppression condition can be satisfied for all

combinations of 0<p <1 as far as the output mapping function, y(-), is properly designed.

Based on this analysis a code search procedure for rate 1, 1/2 and 1/3 RSLS binary to M-ary
convolutional encoders with the best possible information weight spectrum (IWS) was introduced.
The code search procedure verifies that the spectral line suppression condition is fulfilled for
unbalanced first order BMS’s. Using this code search procedure maximum free distance RSLS
binary to M-ary convolutional encoders have been found. Two tables with the best RSLS

convolutional encoders found for 16-ary, 32-ary, 64-ary and 128-ary orthogonal signalling have
been provided: one for recursive structures with b(D)=1+ D" feedback polynomials and another

for recursive structures with primitive feedback polynomials. These encoders are able to eliminate
as many spectral lines as PCTH and the FSLS binary to M-ary convolutional encoders introduced
in Chapter 4 even when the data stream at the encoder input consists of binary symbols generated
by an unbalanced first order BMS.

Power spectral density examples of PPM TH-IR-based UWB signals using RSLS and FSLS
binary to 32-ary convolutional encoders, 32-ary PCTH and binary PPM with ideal perfectly
random 16-ary TH have been provided. These examples showed that compared to all the other
schemes the RSLS encoders offer superior PSD characteristics when the data stream is generated
by an unbalanced first order BMS. Moreover, based on these examples it can be concluded that if
the main constraint in the design of spectral line suppressive convolutionally coded PPM TH-IR-
based UWB systems is maximising the number of spectral lines suppressed while keeping the
continuous PSD component as smooth as possible, then the RSLS convolutional encoders with

primitive feedback polynomials reported in Table 5-2 must be preferred over the encoders with
b(D)=1+ D" feedback polynomials reported in Table 5-1.

Lastly comparisons of the bit error rate (BER) performance achievable with RSLS and FSLS

binary to 32-ary convolutional encoders for hard and soft decision Viterbi decoding were
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introduced. The BER plots presented showed that the RSLS binary to 32-ary convolutional
encoders provide negligible performance loss compared to equivalent FSLS binary to 32-ary
convolutional encoders for hard Viterbi decoding. Furthermore, these plots showed that for SVD
the performance loss is limited to no more than 0.5 dB for bit error rates below 107, Nevertheless,
this slight BER performance loss is compensated by the superior PSD characteristics achieved with
the RSLS binary to M-ary convolutional encoders when the data streams are generated by an
unbalanced binary Markov source.

Finally it is worth mentioning that the complexity of the RSLS binary to M-ary convolutional
encoders introduced in this chapter is equivalent to the complexity of the FSLS binary to M-ary
convolutional encoders introduced in Chapter 4 (as far a both encoders have the same total encoder
memory). Moreover, similar to the FSLS binary to M-ary convolutional encoders, the use of the
RSLS binary to M-ary convolutional encoders is not restricted to orthogonal M-ary PPM as they

can be used in any system employing M-ary orthogonal signalling.
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a) BER performance comparison b) PSD shape comparison

Figure 5-12. Side by side BER performance and PSD shape (analytical) comparisons between PPM TH-IR-
based UWB systems employing: the rate 1, v=6, binary to 32-ary FSLS convolutional encoder from Table 5-2
(primitive feedback polynomial: 5(D) =1 + D + D°.= 141;), the 32-ary Bernoulli shift map PCTH scheme and
non-coded orthogonal binary PPM with pseudo-random 16-ary TH. The input binary data stream is assumed
to be generated by an unbalanced BMS with p, ,, = 2/5 and p,o; = 3/5. The periodic sequence {0, 14, 1, 5, 13, 6,
3,15,7,11,8, 12,9, 2, 10, 4} was used for TH in the system employing non-coded orthogonal binary PPM. The
BER performance plots were obtained by simulation for soft Viterbi decoding (SVD) and hard Viterbi decoding
(HVD) in the AWGN channel. For the PCTH scheme HVD was performed by using branch and path metrics
based on binary Hamming distances. The signal parameters are N,,= 1, 7,=12.5 ns, 7,= 12.5 ns and
Tp=T,32 (T.= T,/16 for the system employing pseudo-random 16-ary TH) . The 3" derivative
Gaussian pulse was used with duration 7), ~ 0.35 ns.
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Chapter 6

Maximum Free Distance Spectral Line
Free Binary Convolutional Encoders
for BPSK/Q-BOPPM IR-Based UWB
Systems with Unbalanced Binary

Markov Sources

6.1 Introduction

In this chapter new binary convolutional encoders with maximum free distance (MFD) are
introduced. The main characteristic of this set of new convolutional encoders is that they generate a
spectral line-free (SLF) signal when used in binary phase shift keying (BPSK) and quaternary
biorthogonal pulse position modulation (Q-BOPPM) impulse radio (IR) based ultra wideband
(UWB) systems. Furthermore, the power spectral density (PSD) of the signals driven by these
encoders is spectral line-free even when the binary stream at the encoder input does not consist of
independent identically distributed (i.i.d.) symbols with uniform distribution.

The binary convolutional encoders introduced in this chapter are based on recursive
non-systematic (RNS) structures and were specifically designed to generate signals with spectral
line-free PSDs even when the data stream is generated by an unbalanced first order binary Markov
source (BMS). These recursive spectral line-free (RSLF) convolutional encoders provide enhanced
PSD characteristics when used in BPSK/Q-BOPPM IR-based UWB systems compared to the
non-coded pulse repetition scheme and traditional feedforward and recursive-systematic binary
convolutional encoders.

In common with the recursive spectral line suppressive (RSLS) binary to M-ary convolutional
encoders introduced Chapter 5, the RSLF binary convolutional encoders introduced in this chapter
have a wide applicability range, as the first order BMS can be used to model both unbalanced (that
is non-uniform distributed) i.i.d. memoryless binary data streams and binary data streams with

memory, [116-118].
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As introduced in Sections 1.4 and 2.6, the application of binary convolutional and related codes
(for example turbo codes) in binary IR-based UWB systems has been previously addressed in [21,
23-30, 32]. However, these works do not consider the effects of the convolutional coding operation
over the signal’s PSD and focus their analysis on the improvement of the system’s BER performance.
Therefore the idea of using binary convolutional encoders to achieve both a spectral line-free PSD
and improved BER performance in IR-based UWB systems has not been previously addressed.

As previously explained in Sections 1.4.2 and 2.5.3 the main approach proposed for the
elimination of the PSD’s spectral lines is the polarity randomisation technique, [78-81]. This
technique requires the multiplication of each transmitted symbol (symbol based polarity
randomisation) or pulse (pulse based polarity randomisation) by an ideal perfectly random direct
sequence (DS). In practice it is assumed that this ideal case can be approximated by the use of a
pseudo-random (PR) DS code with an extremely long period, [81]. Nevertheless, as it will be shown
later in this chapter, when the length of the PR-DS code is relatively short the height of the spectral
lines may be reduced but the actual number of spectral lines in the PSD may be simultaneously
increased. Although the analysis presented in this chapter focuses in single user scenarios, it is
worth mentioning that in systems employing time hopping (TH) — code division multiple access
(CDMA) the polarity randomisation technique may help to improve the system’s BER performance
in the presence of multiple access interference (MAI), compared to TH-IR-based UWB systems
where no DS multiplication is used, [92]. However, in single user scenarios the polarity
randomisation technique does not necessarily provide significant BER performance improvements
when compared with TH-IR-based UWB systems in which no DS multiplication is used.

The RSLF binary convolutional encoders introduced in this chapter provide a novel alternative
method for spectral line elimination when the input symbols are generated by an unbalanced first
order BMS. It will be shown that these encoders provide a spectral line-free PSD while
simultaneously improving the system’s BER performance for single user scenarios.

It is worth mentioning that the use of convolutional codes for spectral shaping purposes with
error correction capabilities has been previously addressed in [144-150]. However the main
objective in all these papers is to obtain a DC-free signal which is a different goal from the one
pursued in this chapter. The schemes proposed in these papers are based on feedforward structures
which are modified through the addition of specific mechanisms that increase both the encoder and
decoder complexity compared to normal convolutionally coded schemes.

This chapter is structured as follows. Section 6.2 describes the system model. Section 6.3
introduces the signal model and its respective PSD. Section 6.4 shows that a recursive
non-systematic structure for binary convolutional encoders enables the design of spectral line-free
encoders. The code search procedure is introduced in Section 6.5 altogether with the RSLF binary
convolutional encoders found with such procedure. Comparisons in terms of PSD characteristics
between the RSLF binary convolutional encoders, the best binary convolutional encoders known

and a rate equivalent non-coded scheme are presented in Section 6.6 while comparisons in terms of
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BER performance are provided in Section 6.7. Finally conclusions are presented in Section 6.8.

6.2 System Model for Binary Convolutionally Coded
BPSK/QBOPPM IR-Based UWB Signals with First
Order Binary Markov Sources

The block diagram of the system model assumed in this chapter is shown in Figure 6-1. This
model assumes the data source to be the first order binary Markov Source (BMS) introduced in
Section 3.2.1. However, unlike Chapters 4 and 5 this time the analysed convolutional encoder is set
to be binary and the modulation format is assumed to be BPSK or Q-BOPPM (with natural or Gray

based mapping).

First Order v Binary % BPSK/Q-BOPPM | (¢) T x(1)
Binary Markov Convolutional » IR-Based UWB > Beniom TH andlor BE
Source Encoder Modulator

Compression |

Data and
Source Scrambling ||
(Optional)

first order binary Markov Source (BMS).

Recollect that this BMS source model is defined by the state set R = {r,,#} with corresponding

outputs {z,,4} =1{0,1} and the one step transition probabilities matrix defined by

Pyoo  Pyo
P =" N 6.1
’ I:Py,lo Pyn ] o)

with corresponding steady state probabilities given by

. s Pylo Pyoi
ﬁ - [7[,!"0 7[')‘,1] - |:/’v.(l| +Py.10 Pyo1+Py10 :’ (62)

6‘19’

where 7,, and 7, are the steady state probabilities of generating a “0” and a respectively.

As in the previous chapters it will be assumed that

Bzp,, <1 (6.3)
in order to avoid trivial degenerate cases.

Remember from Section 3.4 that for convolutionally coded/Markov driven IR-based UWB
signals the discrete part of the PSD is a function of the steady state probabilities of the source
encoder (SE) pair Markov model. Recall as well that the state process, o,, defined by the SE pair
Markov model has state set defined by

S ={(0,9),(0,4,),-,(0, G5, ) (1, 40), (1, G, )s s (1, Gy )} = {805 815005 Sy } (6.4)

with corresponding transition probabilities matrix given by
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P, - py.OOBO py,OlBO (6.5)
py_lOB] py,nBl

where By and B, are the N, x N, the next state matrices defined in Section 3.2.3 and N, =2" is the

number of encoder states, g;, as defined by the encoder’s state transition diagram representation

(see Sections 2.7.2 and 3.2.2). Furthermore, remember that the output mapping is defined as

L SIS Jeate, Jeplngy) (6.6)

SaNg+j SaNg+i SaNg+j SaNg+j
where y(-) is the output mapping function, »=0,1 and j=0,1,..,N, ~1.

As in Section 5.2, it is convenient to analyse separately the steady state behaviour of the SE pair
Markov model when feedforward and feedback structures are used to construct binary

convolutional encoders.

6.2.1 Source-Encoder pair Markov Model Behaviour for Rate 1/x

Feedforward Binary Convolutional Encoders

Consider the feedforward structure for rate 1/x binary convolutional encoders shown in Figure
6-2. Note how the base shift register structure shown in this figure is essentially the same as that
introduced in Section 5.2.1 — Figure 5-2 for feedforward binary to M-ary convolutional encoders.

The main difference between both encoders resides in their output mapping function, y(:), owing

to the fact that in Figure 6-2 the output consists of binary symbols while in Figure 5-2 the output
consists of M-ary symbols.

The output mapping is defined by the encoder’s particular generator polynomials and it is a
function of the current SE pair Markov chain (MC) state (see Section 3.2.3 and Equation (6.6)).
Furthermore, remember from Section 3.2.3 that the SE pair output process, z;, is said to be a

projection of the MC state process, o, that is

z,=y(0,=s5,) (6.7)
Therefore by definition a change in the output mapping function, y(-), does not change the MC
state process, o,, of the SE pair Markov model. This means that the state process, o,, of
feedforward binary convolutional encoders and feedforward binary to M-ary convolutional
encoders with the same base shift register structure are equivalent. As a consequence the SE pair
Markov model analysis presented in Section 5.2.1 for feedforward binary to M-ary convolutional
encoders applies to binary convolutional encoders whose base structure is equivalent to that shown
in Figure 6-2.
Therefore, based on the previous discussion and according to Theorem 5.1, for feedforward
encoders with base structure as shown in Figure 6-2 the steady state probabilities of the SE pair

Markov model state process, o, are given by

7 (6.8)

”a,anf/ e ﬂa‘(n‘q/) - ”U"‘."'\VII” - py,y,n p_y,pz;q "'py,y‘,_ly‘,_z py_y“y‘._] Vil
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where n=0,1, «

B

and p, . are BMS’ steady state and one step transition probabilities, and
[t My, pit,] is the encoder’s memory content defining the encoder state ¢, with

JEp 2 oy,

)
a()

K binary

(k-1) outputs

a()

(x=1)
a,_

binary ,
input

> 0’,[ > 0 © 0 &) 6/,\’ g

v memory locations

Figure 6-2. Generic diagram of a rate 1/x feedforward binary convolutional encoder.

6.2.2 Source-Encoder pair Markov Model Behaviour for Rate 1/x

Recursive Binary Convolutional Encoders
Now consider the recursive structure for rate 1/x binary convolutional encoders shown in
Figure 6-3. As in Section 5.2.2 the feedback coefficients, b, , can be freely set to 0 or 1 with the

exception of the last one which is setto 1, thatis b, =1.

0)
)

coe ® k binary
. s

(x-1) outputs

binary Y T
input I

Figure 6-3. Generic diagram of a rate 1/« recursive binary convolutional encoder.

Similar to the previous case, the base recursive structure used in Section 5.2.1 — Figure 5-2 for
recursive binary to M-ary convolutional encoders is equivalent to the recursive structure introduced
in Figure 6-2 for rate 1/x recursive binary convolutional encoders. The main difference between

both encoders resides in the output mapping function, y(-). Therefore Theorem 5.2 applies as well

for recursive binary convolutional encoders with base structure as shown in Figure 6-2. This means
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that SE pair Markov model state process, o, for this kind of recursive convolutional encoders has

steady state probabilities given by

”'"
z = =z =2 (6.9)

a',nN,l +J o‘,(n.q/ ) 0--"n,\‘,+1
q

where n=0,1, «

... is the BMS’ steady state probability corresponding to state 7, with respective
output 7, and j =g, 2" +...+ 4, is defined by the encoder’s memory content [, 4,.,..., 1, ] .

The next section introduces the corresponding signal model and PSD obtained when using these

binary convolutional encoders in BPSK/Q-BOPPM IR-based UWB systems.

6.3 Signal Model and Power Spectral Density of the

Binary Convolutionally coded Scheme for

BPSK/Q-BOPPM IR-Based UWB

In this section the signal model of the binary convolutionally coded BPSK/Q-BOPPM IR-based
UWB scheme is introduced. The power spectral density of the signal model is then provided as
obtained when using the results from Section 3.4. Finally the required conditions to obtain a

spectral line-free PSD through the convolutional encoding operation are derived.

6.3.1 Signal Model for the Binary Convolutionally coded

BPSK/Q-BOPPM IR-Based UWB Scheme
The signal model for the binary convolutionally coded BPSK/Q-BOPPM IR-based UWB

scheme analysed in this chapter is defined as

0 N,

x()=Y Y ay ., Wt-B, T, —IT, kT, —c, ,T.) (6.10)

I=—0 k=0

where o; is the SE pair Markov model state process with N, =2N,_ states; «,, € {-1,1} and
B, €1{0,1} are the K™ PAM and PPM symbols used for the transmission of the /th encoder output

vector, z, =y(0,), whose value depends on the SE pair MC state at time /; ,, is the number of

pulses used per output vector; 7 is the PPM modulation index; 7, is the mean repetition time

between pulses; 7, = N, T, is the encoder’s output vector time; {a,, ., } is a pseudo-random (PR)-

DS sequence taking values on the set {-1, 1} with period 7. {¢, .} is a PR-TH sequence taking
values on the set {0, 1, 2 ,..., N -1} with period g and 7, is the nominal shift caused by the TH
sequence. If BPSK is used then ¢, e{-1L1}, B,=0 and 7,=0. In contrast for Q-BOPPM
a,,€{-L1}, B,€{0,1} and T, #0.

Assume that the rate 1/x binary convolutional encoder is in state o, =s, with corresponding
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encoder output vector z, =z, =[z",2",....z"]=y(0, =5,) = g, = s il gl ], IFBPSK

is used then N, =« and
x=Qz"-D=2P-N=a, and B,,=0, k=0,,..,N,-I (6.11)
where «,, € {-1,1}. If Q-BOPPM with natural mapping is used then N, =x/2 and thus

x=@z-D=2" -D=a, ad B,,=z*"={*V=p,  k=01.,N,-1 (6.12)

Si

where «,, € {-1,1} and S, €{0,1}. Lastly, if Gray mapping based Q-BOPPM is used then

[$7,6701=10,01= (@4, 8,,) = (-1,0); [&77,¢7V1=[0,11=> (@4, B,4) = (-1,1);

6.13
[£89,£0 N =[1,01=> (@4, 8) = (+LD);  [€8Y, P =[1,1]1=> (@, B ) = (+1,0); el

Note how the code bits to signal assignment is different for Q-BOPPM with natural mapping and
Q-BOPPM with Gray mapping.

6.3.2 Power Spectral Density of the Binary Convolutionally coded

BPSK/Q-BOPPM IR-Based UWB Scheme
Using the results presented in Section 3.4 the PSD of the signal described by Equation (6.10)

can be found to be

S()=S.()+S,(f) (6.14)
S(.(f)=S('|(f)+S(.3(f) N“,=] (6 ]5)
Sc(f)=8c,(f)+8c,(f/)+Sc5(f) N, >1
1 . IW(f)l &4 el et s PO |
S(‘ ](f)zFlw(f) |~ Z Z Z -~ raan+ke i al,lre S ,’”: (6‘16)
r n=0 | k=0 =0
2|W(f)|2 R —j2xf (k'-k)T, /sz(ﬂ =Bix )1
B ffpatit Wl Re{e™/ (Y a0 =halle g )
‘ T.A ; k;. Z; Z e (6.17)
X anN“ +k al‘lN“ +k' e_l’,”ﬂ e )}
2IW (NP o ¢S 8 &G onfim - iomfebt . b i8S BBy o
8. (Ffi==1_27 Re { g2 /m o= j2x, ha, e P ﬂ”/(P,,Iv")—ﬁ,-)
N T.A k.kz-:’o = MZ Zo e (6.18)
X a,,Nu +k a(‘n+m)Nw +k<e-l2ﬂ./’/;(c(,,+,,,) S o }
2 [Nyl At Wood T y 27 fT.Con
/)(f) = I W(f)' Z ek/lnfnli\ e,/Zl(,/kI, a,,/\,"r+/¢ej- Sleen,, ﬂ /sz[? ‘lp zé\(f-___ (6]9)

(TA) |3 = =
where S .(f) is the PSD’s continuous part, S ,(f) is the PSD’s discrete part, W (f)= 3{w(r)}
and 3{:} is the Fourier transform operator. Remember
Xoew =lem(y,, x.,N,) and A=y, /N, (6.20)
where lem stands for least common multiple. Note how spectral lines in the PSD are expected to

appear at frequencies multiples of 1/(AT).
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6.3.3 Spectral Line Free Condition for Binary Convolutionally coded
BPSK/Q-BOPPM IR-Based UWB

Let us now focus on the PSD’s discrete part, S,,( /). By reordering the sums in Equation (6.19)

we get

2

|W(f) |2 ' j2xfuly j2mfkl, 27 flecny, 4k X J2xfBixlp % r

S')(f):i(TA)z Ze el ra,y e z a, e 7, 25(-f‘/;7) (6.21)
S k=0 n=0

i=0 r=—w

Now note how all spectral lines can be eliminated by making the absolute value in Equation (6.21)

equal to zero. Thus all spectral lines can be eliminated if

Ng-1 . B
Y, o,y =0 (6.22)

i=0
for all values of k=0,1,...,N, —1. Therefore Equation (6.22) will be referred as the spectral line-

[free condition (SLF) for binary convolutional encoders.

6.4 Spectral Line Elimination Capabilities of Binary
Convolutional Encoders with First Order BMS

Inputs for BPSK/Q-BOPPM IR-Based UWB
Systems

In this section the spectral line elimination capabilities of feedforward and recursive
convolutional encoders will be assessed. Particularly the feasibility of fulfilling the spectral line-

free condition defined by Equation (6.22) when using these structures is analysed.

6.4.1 Failure of the Spectral Free Suppression Condition for Rate 1/x
Feedforward Binary to M-ary Convolutional Encoders with First

Order BMS Inputs
As explained in Section 6.2.1, the Theorem 5.1 describes the SE pair Markov model’s steady
state behaviour for rate 1/x feedforward convolutional encoders. Thus from Equation (6.8) the

steady state probabilities 7, = 7, are a function of at least two probabilities from the following set:

0< Pyor < I, 0< Pyio < 1, Pyoo = 1 —Pyor Pyni =l—p)',|0’ TT,o= - T, = (6.23)

Pyor+Pyio ’ ¥ pyoi+pyao

Therefore although the output mapping function, y(-), defined by the encoder’s generator

polynomials can be designed to satisfy the spectral line-free condition for particular cases, there
exist combinations for which the spectral line suppression condition can not be fulfilled no matter
what (valid) output mapping function is used. In order to see this, note that it is not difficult to find

values of p,  and p,, such that
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— e (6.24)

i "er+’ = ”x‘\»qﬂ = py,/l,n p)'v;lz,u[ "‘py,‘u‘._,y\._z py,uvu\,_l Vil 2
which concludes to the no fulfilment of Equation (6.22) as ¢,, € {-1,1}. Therefore it can be stated

that feedforward structures do not provide a good construction framework for spectral line-free

(SLF) binary to M-ary convolutional encoders with first order BMS inputs.

6.4.2 Spectral Line Suppression Condition Analysis for Rate 1/x
Recursive Binary Convolutional Encoders with First Order

BMS Inputs

Now consider recursive implementations for rate 1/x binary convolutional encoders with 5, =1
(see Figure 6-3). As introduced in Section 6.2.2, the SE pair Markov model for this kind of
convolutional encoders has steady stated probabilities defined by Theorem 5.2. Hence, from
Equation (6.9) these probabilities can only assume one of two values namely

7,5 7

m=m, =—2% fori=01l..,N,~1 and = =m,  =-2% fori=N,N, +1,.,2N, -1 (6.25)
i -\(l\qﬂ Nq q SN, gt N q q
where j=0,1,..., N, —1. Therefore, the recursive structures with b, =1 provide a better framework

for the design of spectral line-free (SLF) encoders. Next an analysis similar to that introduced in
Section 5.3.2 for recursive binary to M-ary convolutional encoders will be performed for rate 1/x

recursive binary convolutional encoders coupled to Q-BOPPM and BPSK IR-based UWB systems.

6.4.2.1 Analysis for Q-BOPPM IR-Based UWB Systems

Assume that £ has been fixed in Equation (6.22) and that the number of encoder states is

N,=2"24 corresponding to N, =2"">8 states in the SE pair Markov model. Note there are

four different valid Q-BOPPM symbols:
(@,,,B,:)=(=10); (@,.B,)=(LD); (@,4,B8,)=(10); (¢ I:’ﬂ:A) (+L1) (6.26)
corresponding to the binary outputs [0, 0], [0, 1], [1, 0] and [1, 1] respectively and where

k=0,1,..,N, —1. Remember for this case N, =k /2.

Now define 7{"*’ to be the number of states s, = s whose & Q-BOPPM symbol is equal to

an +J

(@ »B,)=(=1,0) where n=0,1. Note from Equation (6.25) that these states’ steady state

(nk) (n,k)

probability is 7, =7z, /N, . Similarly define 7", 7{"*" and 7{"* to be the number of

states s, = whose " Q-BOPPM symbol is equal to (@,B,:)=(LD, (&,,B,)=(10)

nIV T
and («, . ,)=(+11) respectively. Using these variables the spectral line-free condition defined

by Equation (6.22) becomes

=1
J2xf BT, z 0,k 0,k) J2xfl 0,k 0.k) J2xfl,
D, e g, ST 0B PR R gt PR

(6.27)
fn 1 { n(l k) m(l.k)eﬂﬂfl'ﬂ +77;I.k) g n}(]_k)e,mrf/); } =0
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for this kind of recursive convolutional encoders.
Therefore our goal will be to find convolutional encoders with output mapping (defined by the

rational generators) such that Equation (6.27) holds for every possible combination of 0< p, , <1
and 0<p ,, <1 (or equivalently for every 0 <z, , <1 with 7, =1-7x ) and every value of k.

Note a way to do this is by looking for encoders with output mapping, (), such that

77&0./() = n;o.k); 77](0,/() = ’7;0,/(); ”él,k) =77§I,k); nl(l‘k) - n;l,k) (628)
holds for every value of &.
Consequently it can be concluded that by using recursive structures with b, =1 (see Figure 6-3)

the construction of spectral line-free binary convolutional encoders with unbalanced (that is

P, #1/2) BMS inputs for Q-BOPPM IR-based UWB systems is feasible.

Before continuing, it is important to mention that the verification of the spectral line-free
condition must be performed separately for Q-BOPPM with natural mapping and Q-BOPPM with
Gray mapping. This is due to the code bits to signal assignment is different for each mapping (see

Equations (6.12) and (6.13)). Therefore the kK™ Q-BOPPM symbol, (., ). corresponding to state,
s;, may be different for Gray mapping based Q-BOPPM and natural mapping based Q-BOPPM.
6.4.2.2 Analysis for BPSK IR-Based UWB Systems

For this case there are only two different symbols: «,, =—1 and «,, =+1. Therefore the

spectral line suppression condition defined by Equation (6.22) becomes

Ng-1

Q

a7, =0 (6.29)

i, 1

Il
=

i

Performing an analysis similar to the one presented in the previous section Equation (6.29) can be

rewritten as
Ny-1
2 @ =5 P+ S e P Py =0 (6.30)
i=0
where 7'/* and 7'}’ are the number of states s, =s,, ,, whose " BPSK symbol is equal to
a,, =—1 and «,, =+1 respectively. Remember for this case N, =« and thus £ =0,1,...,.x —1.

Therefore, for BPSK IR-based UWB systems a rate 1/x recursive binary convolutional encoder

with b, =1 will be spectral line-free for every possible combination of 0<p, , <1 and
0<p,,o <l (or equivalently for every 0<z,, <1 with 7z, =1-7z ;) if it has output mapping,

7(-), such that

1(0,k) 1(0,k)

'GP =n'GY and P =p0 (6.31)

holds for every value of .
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6.5 Code Search Procedure to Seek Recursive Spectral
Line Free Binary Convolutional Encoders for
BPSK/Q-BOPPM IR-Based UWB Systems with
Unbalanced First Order BMS Inputs

The code search procedure introduced in this section for recursive spectral line-free (RSLF)
binary convolutional encoders is similar to that introduced in Section 5.4 for recursive spectral line
suppressive (RSLS) binary to M-ary convolutional encoders. The principal differences are that this
time the encoders are binary and the main goal is to find spectral line-free encoders for
BPSK/Q-BOPPM IR-based UWB systems with unbalanced BMS inputs.

Before continuing it is convenient to recall from Section 2.7.1 that a rate 1/x recursive binary

convolutional encoder can be described by the transfer function matrix
G(D)=[g"(D) g"(D) .. g*“(D)] (6.32)
where D is the delay operator. Each rational generator, g*)(D), of G(D) has the form

a?D) _ a +a"D+..+4dPD"
b(D) 1+bD+..+b_D""'+bD"

g" (D)= (6.33)

in which @'’ €{0,1}, b, €{0,1} and k =0,1,...,x —1. The numerator in Equation (6.33) describes

the generator’s feedforward connections (feedforward polynomial) while the denominator is the
feedback polynomial describing the shift register’s feedback connections (see Figure 6-3).

Therefore to define a particular rate 1/x recursive binary convolutional encoder it is sufficient to

specify one feedback polynomial, (D), and x feedforward polynomials a*’(D).

6.5.1 Superior Information Weight Spectrum Criteria

As in Chapters 4 and 5, another important aim of the code search procedure is to find the RSLF
binary convolutional encoders with the best possible information weight spectrum (IWS).
Therefore, the superior IWS criteria introduced in Section 4.4.2 will be used for comparison and
selection purposes. Remember from Sections 4.4.2 and 2.7.4 that the superior IWS criteria is based
on the form acquired by the upper bound on the bit error probability achieved when using binary
convolutional encoders in output symmetric memoryless channels, [83, 100-103, 105-107]. This

bound is given by

©

B< Y BA(d) (6.34)

d=d e
where {B,;} is the IWS introduced in Section 2.7.3 and P,(d) is the pairwise error probability
between two codewords with binary Hamming distance d. It is worth noting that for this case the

IWS is based on the binary Hamming distance properties of the encoder (see Sections 2.7.3). Thus,

as explained in Sections 2.7.4 and 4.4.2, the superior IWS criteria consists of finding the encoder
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with the largest binary free distance, a’fm, , and minimum {B,}.

In the code search procedure introduced in this chapter the binary free distance and IWS are

calculated using the FAST algorithm introduced by Cedervall and Johannesson, [103-108].

6.5.2 Code Search Procedure for Recursive Spectral Line Free Binary

Convolutional Encoders

The flowchart of the code search procedure is shown in Figure 6-4. The goal is to find spectral
line-free encoders with the best possible IWS. Note how this flowchart is similar to the one
introduced in Section 5.4 for recursive spectral line suppressive binary to M-ary convolutional
encoders. As in Section 5.4, several main tasks have been identified in the flowchart of Figure 6-4
for a better understanding of the code search procedure.

Task 1 consists of defining the main parameters of the code search procedure such as the total
encoder memory, the feedback polynomial used and the code rate 1/x. As in Section 5.4 the
feedback polynomials’ selection pool for an encoder with total encoder memory, v, was chosen to
consist of the simple b(D)=1+ D" polynomial plus all known primitive polynomials of degree v.
Again it is expected that RSLF binary convolutional encoders with primitive polynomial based

feedback will provide better PSD characteristics than encoders with (D) =1+ D" based feedback.

In order to provide rate adaptability a nested code search approach has been adopted for
convolutional encoders with rates 1/x <1/4 as in [112]. Due to the target here is to find RSLF
convolutional encoders for both BPSK and Q-BOPPM, « is always set to be a multiple of 2 as each
Q-BOPPM symbol can transmit 2 code bits. Therefore in order to search for a rate 1/x<1/4

RSLF convolutional encoder, the generators of the best 1/(x —2) RSLF convolutional encoder are

used as the first k¥ —2 generators of the new encoder. Thus only two new generators are searched
each time. The best rate 1/4 RSLF binary convolutional encoders are used as the parent encoders of
RSLF convolutional encoders with rates 1/x<1/4.

During Task 2 the target binary free distance, d

o » 15 set. Initially the free distance of the best
rate 1/x convolutional encoders found up to date as reported in [107, 109, 111, 112] is used as the
target free distance. For rate 1/x <1/4 encoders with total encoder memory v=6 the improved
Heller upper bound on the binary free distance of rate 1/x binary convolutional codes reported in
[135] is used. If no maximum free distance (MFD) spectral line-free convolutional encoder is
found when using the current target free distance, then target free distance is decreased until an

encoder is found.

Note the total number of transfer function matrices to be searched for rate 1/4 encoders is 24"

(v+1)

while for rate 1/2 and nested codes this total is 2°"*" . However this number is reduced in Task 3

by identifying and discarding encoders with identical IWS.
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Figure 6-4. Flowchart diagram of the code search procedure for RSLF
binary convolutional encoders.
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As mentioned in Section 2.7.3 an important characteristic of binary convolutional encoders is
that the free distance, distance spectrum, information weight spectrum and related distance
properties do not change when interchanging the order of the columns in the transfer function
matrix, G(D), [83, 100-103, 107]. Therefore this property is used in Task 3 to discard equivalent
polynomials before advancing to the next task in the flowchart.

During Task 4 the SE pair Markov model is obtained by assuming the source to be an

unbalanced BMS with stationary probabilities z,,#7, #1/2. One or two specific numeric

values for p ,, #1/2 and p,,, # p,, areused at this stage. The encoder is discarded if it does not

satisfy the spectral line-free condition for BPSK, Q-BOPPM with natural mapping and Q-BOPPM
with Gray mapping. Hence the encoder must satisfy both Equations (6.27) (Q-BOPPM natural and
Gray mapping) and (6.30) (BPSK) or equivalently Equations (6.28) and (6.31).

Task 5 verifies if the current encoder is catastrophic (see Section 2.7.3). If the encoder is not

catastrophic then its binary free distance, d,.,,, =d

urr free ®

is calculated and compared with the target

free distance, d

war *

Task 6 is performed if the current free distance, d, is at least equal to the target free distance,

Curr >
d,, . If this task is reached the current encoder IWS is calculated and compared to the best IWS.
The encoder is discarded if its IWS is worst than the current best. If the encoder’s IWS is at least
equal to the current best, then the fulfilment of the spectral line-free condition for BPSK and

Q-BOPPM (natural and Gray mapping) is verified for all combinations of p, , =1{0.1,0.2,...,0.9}
and p,,,=10.1,0.2,...,0.9} . If the spectral line-free condition is satisfied and the encoder’s IWS is

equal to the current best it is saved in a file containing all encoders found with the same IWS.
Finally if the encoder’s IWS is better than the current best all previously stored encoders are
discarded, the current encoder is saved and its IWS is set as the current best. The algorithm ends
when an encoder with spectral line-free capabilities and the best possible IWS is found.

All different tasks in the code search procedure flowchart have been programmed in

MATLAB®.

6.5.3 Code Search Results for RSLF Binary Convolutional Encoders
for BPSK/Q-BOPPM IR-Based UWB Systems with Unbalanced
First Order BMS Inputs

Using the code search procedure previously introduced, new maximum free distance (MFD)
recursive binary convolutional encoders showing the spectral line-free property for
BPSK/Q-BOPPM IR-based UWB with unbalanced BMS inputs have been found.

The best rate 1/2 recursive spectral line-free (RSLF) convolutional encoders are reported in
Table 6-1 for recursive structures with feedback polynomials of the form A(D)=1+ D" and in

Table 6-2 for recursive structures with primitive feedback polynomials. Similarly, the best rate 1/4
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RSLF convolutional encoders are reported in Table 6-3 for recursive structures with feedback
polynomials of the form A(D)=1+D" and in Table 6-4 for recursive structures with primitive
feedback polynomials. The first column in Tables 6-1 to 6-4 gives the total encoder memory v. The
second and third columns give the feedback polynomial 5(D) and the feedforward polynomials
a* (D) (represented in octal form) of the best RSLF convolutional encoders found. The last two

columns give the code’s binary free distance, d,, , and the first 15 components of the information

free >

weight (IWS) and distance spectrums.

Table 6-1. Best rate 1/2 recursive spectral line-free (RSLF) binary convolutional encoders with
feedback polynomial (D) = 1 + D". The feedback and feedforward polynomials are given in octal
form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

’ Feedback Feedforward o, | Information weight spectrum (iWS) [Bm,Bm t1oee s Byeiidl
lynomial lynomials 7= | Distance spectrum: A 4
4 i (13,17 6 | [412,28.70, 174,430, 1046, 2520, 6035, 14348, 33046, 79946, 187522, 438284, 1021 124]
. {1.3.5. 11,25, 55. 121, 267, 589, 1299, 2865, 6319, 13937, 30739, 67797}
r = 23,35) 2| 18.18.30, 114, 296, 628, 1742, 4568, 10670, 26702, 67660, 163510, 398728, 983612, 2388524]
2 23,35 (2.3, 4, 16,37, 68, 176, 432, 925, 2156, 5153, 11696, 26868, 62885, 145085}
: p” 5575 g | [4 54 52 85, 440,920, 2980, 6964, 15342, 43692, 103970, 265998, 672438, 1620268, 4074604]
. {1.8.7, 12,48, 95, 281, 605, 1272, 3334, 7615, 18131, 43197, 99210, 237248}
- o= 17, 155) 10| 168.0.340,0, 1990, 0, 15650, 0, 98842, 0. 614686, 0, 3954342. 0, 24756766]
. {11,0,38,0, 193, 0, 1331, 0, 7275, 0, 40406, 0, 234969, 0, 1337714}
. - 237, 345) 10| 1440, 108,244, 540, 1454, 3720, 9418, 24804, 64028, 164172, 409724, 1034640, 2613160, 6353839]
2 - {1..6. 12, 26, 52, 132, 317, 730, 1823, 4446, 10739, 25358, 60773, 146396, 350399}
6. 0, 490, 0, 3424, 0, 21776, 0, 144868, 0, 919460, 0, 5909052, 0, 37371990]
8 401 (435, 657) 121 {11, 0,50,0,286, 0, 1630, 0, 9639, 0, 55152, 0, 320782, 0, 1859184}
m po— (1151, 1753) 12| 14 42,180,324, 780, 2278, 5432, 14208, 37146, 93452, 234394, 600822, 1524076, 3826906, 9640382]
p L (1,7, 19,28, 69, 185, 411, 1010, 2492, 5963, 14192, 34584, 83567, 200343, 483393}
[108, 0, 1130, 0, 5864, 0, 40366, 0, 260952, 0, 1650952, 0, 10471980, 0, 6180302]
10 2001 (2473,3217) 14| {14,0,92,0, 46,0, 2595, 0, 15221, 0, 87694, 0, 509876, 0. 2975097}

Table 6-2. Best rate 1/2 recursive spectral line-free (RSLF) binary convolutional encoders with
primitive feedback polynomials. The feedback and feedforward polynomials are given in octal
form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

v Feedback Feedfom{ard dy Information welghtspectrmn (IWS) {Butpes Biiee + 122 Batpe 1 151
polynomial polynomials "™ | Distance spectrunt. {Aupee, Adpee+ 1s.-0s Aeto+ 15}
3 s (13, 17) 6 | [413,28,71, 180, 439, 1064, 2563, 6126, 14555, 34406, 80965, 189778, 443281, 1032192]
< : {1,3,5, 11,25, 55, 121, 267, 589, 1299, 2865, 6319, 13937, 30739, 67797}
4 3 27.31) 7 [8, 20, 28, 104, 309, 638, 1668, 4556, 10741, 26236, 66907, 163078, 394832, 972948, 2371517]
“la {2,3.4, 16,37, 68, 176, 432, 925, 2156, 5153, 11696, 26868, 62885, 145085}
5 s1 (53.75) g | [454 46,80, 436,911,2926, 6731, 14922, 42966, 104164, 261315, 659994, 1592486, 4012396]
: > {1, 8,7, 12,48, 95, 281, 605, 1272, 3334, 7615, 18131, 43197, 99210, 237248}
6 103 (117, 155) 10 | [72.0.335,0,2012,0, 15779, 0, 98797, 0, 617558, 0, 3973717, 0, 24839366]
> > {11,0,38,0, 193, 0, 1331, 0, 7275, 0, 40406, 0, 234969, 0, 1337714}
2 253 (255. 363) 10 | [4.22,106,202, 472, 1237, 3234, 8233, 22228, 55753, 142118, 364648, 920678, 2312367, 5837064]
= S {1, 4,13, 24, 50, 117, 285, 689, 1724, 4089, 9764, 23638, 56531, 134963, 324501}
8 551 (557, 751) 12 | [64.69, 288 505, 1716, 3848, 10914, 25539, 71834, 172755, 454420, 1130823, 2909024, 7245902, 18427122]
’ {10, 9, 30, 51, 156, 340, 875, 1951, 5127, 11589, 28740, 68191, 166304, 396120, 961154}
[4, 55, 132,359, 700, 1953, 5500, 12916, 34022, 88432, 222430, 565157, 1441878, 3629621, 9138132]
9 1257 (1053, 1657) 12| 117,15, 37, 65. 167, 446, 974, 2408, 5930, 14101, 34021, 82502, 198077, 476528
[110,0, 1020, 0, 5370, 0, 37539, 0, 244463, 0, 1558017, 0, 9926179, 0, 63022211]
10 2475 (2473,3217) 14| {14.0,92,0, 426, 0, 2595, 0, 15221, 0, 87694, 0, 509876, 0, 2975097}

Table 6-3. Best rate 1/4 recursive spectral line-free (RSLF) binary convolutional encoders with
feedback polynomial 5(D) = 1 + D". The feedback and feedforward polynomials are given in octal
form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

y };‘;'l’;‘ FeedforwardmlynomialsJ o | T we@tsmmaz,s? [B”"”ff‘s”"'”’ femvid
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Table 6-4. Best rate 1/4 recursive spectral line-free (RSLF) binary convolutional encoders with
primitive feedback polynomials. The feedback and feedforward polynomials are given in octal
form. The first 15 elements of the IWS and distance spectrum are reported in the last column.

v I;g:’;‘ Feedforward polynomials | e lnfonnaﬁ::e\:&e‘iﬂ]:t mﬁﬁ,s)}szgnﬂ ,,,,, B+ 15]

I T W NP R s ol

N O T W e e A

R T T e e i

N R I A N R e P

T e T R e e i

I I R e e e

o R e e G S e A

All the encoders reported in Tables 6-1 to 6-4 have maximum free distance with the exception
of the v=3 encoder in Table 6-4 (no MFD rate 1/4 RSLF convolutional code with primitive

feedback polynomial was found for v=3). Note as well that not all the encoders with
b(D)=1+ D" feedback polynomial have better IWS than the encoders with primitive feedback

polynomials. It is worth mentioning that the IWS of the spectral line-free encoders reported in
Tables 6-1 to 6-4 is slightly inferior than the IWS of the best rate 1/2 and 1/4 binary convolutional
encoders known reported in [107, 109, 111]. However it is important to highlight that all the
convolutional encoders reported in [107, 109, 111] are feedforward and thus they do not fulfil the

spectral line-free condition for all combinations of 0<p , <1 and 0<p, , <1 as shown in
Section 6.4.1, (commonly the spectral line-free condition is only satisfied for p ,,=p, ., =1/2).

Therefore, the possible decrease in bit error rate (BER) performance due to the inferior IWS of the
RSLF convolutional encoders would be compensated by the superior PSD characteristics achieved
when using these encoders.

As with the recursive spectral line suppressive (RSLS) binary to M-ary convolutional encoders

introduced in Chapter 5, the RSLF encoders with primitive feedback polynomials offer better PSD
characteristics than the RSLF encoders with b(D)=1+ D" polynomials (see Section 6.6).

Therefore the rate 1/4 convolutional encoders in Table 6-4 have been used as parent codes for the
search of rate 1/x<1/4 RSLS convolutional encoders. The results of this code search are
presented in Tables 6-5 to 6-9 for rates ranging from 1/6 to 1/32 and total encoder memory ranging
from v=5 to v=9. These tables are interpreted as follows: the first column gives the code rate
1/k ; the second column gives the two additional generators needed to form the 1/x encoder from

the 1/(k —2) encoder; the third column gives the code’s binary free distance, d, . and the last two

free ®
columns the first 15 components of the information weight (IWS) and distance spectrums. Note the
additional generators are given in pairs as the goal is to find spectral line-free convolutional
encoders for both BPSK (one code bit per signal) and Q-BOPPM (two code bits per signal) IR-

based UWB systems. All the encoders in Tables 6-5 to 6-9 have maximum free distance.
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Table 6-5. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v=135 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with feedback
polynomial 67; and feedforward polynomials (47, 65, 73, 57)s reported in Table 6-4 was used as
parent code. The additional feedforward polynomials are given in octal form. The first 15 elements
of the IWS and distance spectrum are reported in the last two columns.

Rute Additional Feedforward d Information weight spectrum (IWS) Distance spectrum
poiynomlals iy . {M»- x,...,Bm+|5l ; {Mﬁ],.“,/{m.\‘s_}_ -

1/6 (53,75) 27 [8. 10,0, 0,10, 14, 0, 14,26, 10, 24, 60, 32, 40, 95) {2,2,0,0,2,2,0,2,4,2,4,9,4,6, 13}
1/8 (57,71) 36 [9.0,14,0,0,0,5,0,6,0,37,0,590,13] {2,0,3,0,0,0,1,0,1,0,5,0,9,0,3}
1/10 (55,75) 45 [5,10,3,0,0,0, 10,0,0,0, 16,220, 6, 5] {1,2,1,0,0,0,2,0,0,0,2,3,0, 1, 1}
1/12 (57,73) 54 [4.8.6,0,0,5,0,0,0,5,0,0,8, 16, 14] {1.2,1,0,0,1,0,0,0,1,0,0, 1,2, 2}
1/14 (55,75) 64 [18,0,0,0,0,0,0,0, 10,0,0,0,32,0,0] {4,0,0,0,0,0,0,0,2,0,0,0,4, 0,0}
1/16 (57,71) 72 [4,5.6,3,0,0,0,5,0,0,0,5,0,0,8] {1,1,1,1,0,0,0,1,0,0,0,1,0,0, 1}
1/18 (65,73) 82 [12,0,6,0,0,0,0,0,0,0, 10,0,0,0,0] {3.0,1,0,0,0,0,0,0,0,2,0,0,0,0}
1/20 (57,65) 91 [8.10,0,0,0,0,0,0,0,0,0,0,10,0,0] {2,2,0,0,0,0,0,0,0,0,0,0,2,0, 0}
122 (47,57) 100 | [9.0,9.0,0,0,0,0,0,0,5,0,0,0,5] {2,0,2,0,0,0,0,0,0,0,1,0,0,0, 1}
124 (55,75) 109 | [5.10,3,0,0,0,0,0,0,0,0,0,0,0, 10] {1,2,1,0,0,0,0,0,0,0,0,0,0,0,2}
1/26 (57,73) 118 | [4,8,6,0,0,0,0,0,0,0,0,0,0,50] {1,2,1,0,0,0,0,0,0,0,0,0,0, 1,0}
1/28 (55,75) 128 | [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0] {4,0,0,0,0,0,0,0,0,0,0,0,0,0, 0}
1/30 (57,71) 136 | [4.5,6,3,0,0,0,0,0,0,0,0,0,0,0] {1,1,1,1,0,0,0,0,0,0,0,0,0,0, 0}
1/32 (65,73) 146 | [12,0,6,0,0,0,0,0,0,0,0,0,0,0,0] {3,0,1,0,0,0,0,0,0,0,0,0,0,0, 0}

Table 6-6. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v =6 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with feedback
polynomial 103; and feedforward polynomials (123, 171, 175, 133)s reported in Table 6-4 was used
as parent code. The additional feedforward polynomials are given in octal form. The first 15
elements of the IWS and distance spectrum are reported in the last column.

Rate Additional Feegiforward J Information weight spectrum (IWS) Distance spectrum
polynomials i 1Bt B 1522, B+ 15 {Adter At 10-- Adies + 15}
1/6 (135, 157) 30 [4,8,6,0,6,30, 12, 0, 30, 33, 40, 59, 68, 80, 98] {1,2,1,0,1,4,2,0,4,5,5,7,9, 10, 12}
1/8 (113, 165) 40 [3,0,15,0,0,0,20,0, 21, 0,290, 26,0, 45] {1,0,3,0,0,0,3,0,3,0,4,0,4,0,6}
1/10 (137,153) 51 [8,10,0,0,0,0,7,12,0,8 21,0, 14, 14, 16] {2,2,0,0,0,0,1,2,0,1,3,0,2,2,2}
1/12 (117, 165) 61 [3,10,5,0,0,0,0,0, 14,6, 0, 14, 7, 0, 28] {1,2,1,0,0,0,0,0,2,1,0,2,1,0,4}
1/14 (137, 155) 72 [18,0,0,0,0,0,0,0,0,0,26,0,0,0,22] {4,0,0,0,0,0,0,0,0,0,4,0,0,0,3}
1/16 (153, 171) 82 [12,0,6,0,0,0,0,0,0,0,6,0, 20,0, 0] {3,0,1,0,0,0,0,0,0,0,1,0,3,0,0}
1/18 (137, 151) 92 [7,0,11,0,0,0,0,0,0,0,0,0, 12,0, 14] {2,0,2,0,0,0,0,0,0,0,0,0,2, 0,2}
120 (135,173) 102 [4,8,6,0,0,0,0,0,0,0,0,0,0,0, 6] {1,2,1,0,0,0,0,0,0,0,0,0,0,0, 1}
1/22 (127, 151) 112 [3.0,15,0,0,0,0,0,0,0,0,0,0,0,0] {1,0,3,0,0,0,0,0,0,0,0,0,0,0,0}
1/24 (153, 175) 123 [8,10,0,0,0,0,0,0,0,0,0,0,0,0, 0] {2,2,0,0,0,0,0,0,0,0,0,0,0,0,0}
126 (127, 171) 133 [3,10,5,0,0,0,0,0,0,0,0,0,0,0,0] {1,2,1,0,0,0,0,0,0,0,0,0,0,0,0}
1/28 (133,175) 144 [18,0,0,0,0,0,0,0,0,0,0,0,0,0,0] {4,0,0,0,0,0,0,0,0,0,0,0,0,0,0}
1/30 (123, 157) 154 [12,0,6,0,0,0,0,0,0,0,0,0,0,0, 0] {3,0,1,0,0,0,0,0,0,0,0,0,0,0,0}
1/32 (113, 175) 164 [7,0,11,0,0,0,0,0,0,0,0,0,0,0,0] {2,0,2,0,0,0,0,0,0,0,0,0,0,0,0}

Table 6-7. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v =7 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with feedback
polynomial 2033 and feedforward polynomials (273, 327, 375, 23 1), reported in Table 6-4 was used
as parent code. The additional feedforward polynomials are given in octal form. The first 15
elements of the IWS and distance spectrum are reported in the last column.

Rite Additional Feedforward Information weight spectrum (IWS) Distance spectrum
: : e

polynomials [Beitwes Biee + 13- -5 Bt +15] {Adtve: Aot 13- Adpo+ 15}
1/6 (265, 317) 34 [12, 0, 12,0, 20, 0, 39, 0, 66, 0, 172, 0, 144, 0, 210] {3.0,2,0,3,0,5,0,8,0,20,0, 16, 0, 24}
1/8 (251, 357) 45 [3, 10, 5,0, 14, 6,0, 6, 0, 0, 39, 30, 41, 62, 34] {1,2,1,0,2,1,0,1,0,0,5,4,5, 7,4}
1/10 (233,275) 56 | [3.0.15,0,0,0,20,0,6,0,7,0,25,0,37] {1.0,3,0,0,0,3,0,1,0,1,0,3,0, 5}
1/12 (313,375) 68 [7,0,11,0,0,0, 12, 0, 14, 0,0, 0, 22, 0, 7] {2.0,2,0,0,0,2,0,2,0,0,0,3,0, 1}
1/14 (265, 367) 30 [18.0,0,0.0,0,0,0, 26,0, 0, 0, 0, 0, 22] {4.0,0,0,0,0,0,0,4,0,0,0,0,0,3}
1/16 (257,331) 91 8,10, 0,0,0,0,0,0, 7, 12, 0,0, 7,0, 0] {2,2.0,0,0,0,0,0,1,2,0,0, 1,0, 0}
1/18 (235, 337) 102 | [4.8.6.0,0,0,0,0,0,0,6, 14, 6,0, 0] {1.2,1,0,0,0,0,0,0,0, 1,2, 1, 0,0}
1720 (255, 363) 114 | [12.0,6,0,0,0,0,0,0,0,6,0,20,0,0] {3.0,1,0,0,0,0,0,0,0, 1,0, 3, 0,0}
1/22 (257, 351) 125 | [3.10.5.0,0.0,0,0,0,0,0,0, 14, 6,0] {1.2,1,0,0,0,0,0,0,0,0,0,2 1,0}
1/24 (233,275) 136 | [3.0,15,0,0,0,0,0,0,0,0,0,0,0,20] {1,0,3,0,0,0,0,0,0,0,0,0,0,0, 3}
1/26 (263, 375) 148 | [7.0.11,0,0.0,0,0,0,0,0,0,0,0, 12] {2.0,2,0,0,0,0,0,0,0,0,0,0,0, 2}
1728 (265, 367) 160 | [18.0,0,0,0.0,0,0,0,0,0,0,0,0,0] {4.0,0,0,0,0,0,0,0,0,0,0,0, 0,0}
1730 (257,331) 171 | [8,10,0,0,0,0,0,0,0,0,0,0,0,0,0] {2,2,0,0,0,0,0,0,0,0,0,0,0,0, 0}
1/32 (337,351) 182 | [4.8.6,0.0,0,0,0,0,0,0,0,0,0,0] {1.2,1,0,0,0,0,0,0,0,0,0,0, 0,0}

It is important to highlight that although changing the generators order of a particular encoder

does not affect its distance properties (d ,,, , IWS, etc. — see Section 2.7.3) such a change can affect

the PSD characteristics of the transmitted signal (see Section 3.5.3 for an example). Therefore care

should be taken when interchanging columns of the encoders reported in Tables 6-1 to 6-9. This is
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particularly important for Q-BOPPM systems where the outputs of two consecutive generators
correspond to one Q-BOPPM symbol. This is the reason why the generators in Tables 6-1 to 6-9

are not necessarily numerically ordered.

Table 6-8. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory
v = 8 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with feedback
polynomial 607; and feedforward polynomials (467, 635, 533, 771) reported in Table 6-4 was used
as parent code. The additional feedforward polynomials are given in octal form. The first 15
elements of the IWS and distance spectrum are reported in the last column.

S Additional Feedforward i Information weight spectrum (IWS) Distance spectrum
polynomials [Bipees Bitree +150-+5 Bitpen s 15] {Adirees Adp t 15015 Adpwe 15}
1/6 (457, 725) 37 [5,12,19,6,0, 16, 11, 26, 86, 62, 66, 42, 41, 110, 210] {1,2,3,1,0,2,1,3,10,8,8,6,5, 12, 22)
1/8 (575, 663) 50 [14,0,14,0,24,0, 8, 0,26, 0, 84, 0, 29, 0, 99] {3,0,2,0,3,0,1,0,3,0,10,0,4,0, 12}
1/10 (551, 767) 62 [4,10,8,0,10, 14,6,0,0,0,8,0, 16, 52, 32] {1,2,1,0,1,2,1,0,0,0,1,0,2, 6,4}
1/12 (513, 657) 75 [10, 12,0,0,7,16,0,0,7,0,0,0, 16, 16, 0] {2,2,0,0,1,2,0,0,1,0,0,0,2,2,0}
1/14 (515, 737) 88 [22,0,0,0,0,0,30,0,0,0,0,0, 7,0, 25] {4,0,0,0,0,0,4,0,0,0,0,0,1,0,3}
1/16 (711, 753) 100 [9,0,13,0,0,0, 14,0, 16, 0,0,0, 0,0, 0] {2,0,2,0,0,0,2,0,2,0,0,0,0,0,0}
1/18 (531, 677) 112 [4,5,8,5.0,00,7160,0,70,0,0] {1,1,1,1,0,0,0,1,2,0,0, 1,0,0, 0}
1/20 (473, 725) 125 [5,12,5,0,0,0,0,0, 14, 6,0, 10, 0,0, 0] {1,2,1,0,0,0,0,0,2,1,0,1,0,0,0}
1/22 (555, 637) 138 [14,0,8,0,0,0,0,0,6 0,24,0,0,0,0] {3,0,1,0,0,0,0,0,1,0,3,0,0,0,0}
1/24 (575, 671) 150 [4,10,8,0,0,0,0,0,0,0, 10, 14, 6,0, 0] {1,2,1,0,0,0,0,0,0,0,1,2,1,0,0}
1/26 (515, 753) 163 [10, 12,0,0,0,0,0,0,0,0,716,0,0, 7] {2,2,0,0,0,0,0,0,0,0,1,2,0,0,1}
1/28 (453, 767) 176 [22,0,0,0,0,0,0,0,0,0,0,0,30,0,0] {4,0,0,0,0,0,0,0,0,0,0,0,4,0,0}
1/30 (571, 647) 188 [9,0,13,0,0,0,0,0,0,0,0,0, 14,0, 16] {2,0,2,0,0,0,0,0,0,0,0,0,2,0,2}
1/32 (465, 773) 200 [4,5,8,5,0,0,0,0,0,0,0,0,0,7,16] {1,1,1,1,0,0,0,0,0,0,0,0,0, 1,2}

Table 6-9. MFD rate 1/6 to 1/32 RSLF binary convolutional encoders with total encoder memory

v =9 and primitive feedback polynomial. The rate 1/4 RSLF convolutional encoder with feedback

polynomial 13335 and feedforward polynomials (1137, 1255, 1571, 1663)g reported in Table 6-4 was

used as parent code. The additional feedforward polynomials are given in octal form. The first 15
elements of the IWS and distance spectrum are reported in the last column.

R Additional Feedforward Information weight spectrum (IWS) Distance spectrum
polynomials [Bitiees Bitiee + 13-+ 5 B+ 15] {Adees Adpe t 1510 Adpre+ 15}
1/6 (1135, 1517) 40 [7,0,41,0,17,0, 58,0, 136,0, 117, 0, 273, 0, 344] {1,0,6,0,2,0,6,0,14,0,13,0,28, 0,34}
1/8 (1375, 1663) 54 [8, 10,12, 18,8, 0,0, 9, 22, 63, 40, 14, 80, 63, 46] (1,2,2,2,1,0,0,1,3,7.4,2.8,7,4)
1/10 (1237, 1531) 68 [15,0,23,0,18,0,0,0,0,0,68, 0,52, 0, 62] {2,0,4,0,2,0,0,0,0,0,8,0,5,0,7}
1/12 (1365, 1633) 82 [18,0,16,0,22,0,0,0,0,0,0,0, 48, 0, 40] {3,0,2,0,3,0,0,0,0,0,0,0,6,0,4}
1/14 (1267, 1751) 96 [26,0,0,0,30,0,0,0,0,0,0,0, 0,0, 57] {4,0,0,0,4,0,0,0,0,0,0,0,0,0,7}
1/16 (1145,1727) 109 | [7.16,3,0,18,8,0,4,0,0,0,0,0,0,0] {1,2,1,0,2,1,0,1,0,0,0,0,0,0,0}
1/18 (1337, 1545) 123 | [10,16,0,0,7,12,0,0,11,0,0,0,0,0, 0] {2,2,0,0,1,2,0,0,1,0,0,0,0,0,0}
1/20 (1117, 1655) 136 | [7,0,19,0,0,0,22,0,8,0,0,0,0,0,0] {1,0,3,0,0,0,3,0,1,0,0,0,0,0,0}
1/22 (1355, 1763) 150 [ [8,10.8,0,0,0,4,18,8,0,0,0,0,0,0] {1,2,1,0,0,0,1,2,1,0,0,0,0,0,0}
1/24 (1237, 1531) 164 [ [15,0,11,0,0,0,12,0,18,0,0,0,0,0,0] {2,0,2,0,0,0,2,0,2,0,0,0,0,0,0}
126 (1365, 1473) 178 | [18,0,8,0,0,0,8,0,22,0,0,0,0,0,0] {3,0,1,0,0,0,1,0,3,0,0,0,0,0,0}
1/28 (1127, 1575) 192 | [26,0,0,0,0,0,0,0,30,0,0,0,0,0, 0] {4,0,0,0,0,0,0,0,4,0,0,0,0,0,0}
1/30 (1365, 1623) 205 | [7,16,3,0,0,0,0,0,18,8,0,4,0,0,0] {1,2,1,0,0,0,0,0,2,1,0,1,0,0,0}
1/32 (1337, 1545) 219 | [10,16,0,0,0,0,0,0,7,12,0,0, 11,0, 0] {2,2,0,0,0,0,0,0,1,2,0,0,1,0,0}

6.6 PSD Comparisons of RSLF Binary Convolutional
Encoders with the Best Binary Convolutional
Encoders Known and the Non-Coded Scheme with

Pulse Repetition

Remember that the examples presented in Chapter 3 — Section 3.5 showed that for Q-BOPPM
IR-based UWB systems the non-coded pulse repetition scheme, the scheme using a systematic
recursive convolutional encoder and the scheme employing a feedforward convolutional encoder
do not have a spectral line-free PSD when the binary input stream is generated by an unbalanced

BMS. In this section, further PSD examples for Q-BOPPM (natural mapping) IR-based UWB
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systems are introduced in order to compare the PSD characteristics of the RSLF binary
convolutional encoders introduced in Section 6.5.3. As well examples of the peak to average ratio

achieved when using the encoders reported in Tables 6-1 to 6-4 are provided in Section 6.6.2.

6.6.1 PSD Comparisons of the Rate 1/4, v =4, RSLF Binary
Convolutional Encoders; the Best Rate 1/4, v =4, Feedforward

Binary Convolutional Encoder Known and a Rate Equivalent

Non-Coded Pulse Repetition Scheme for Q-BOPPM IR Based UWB

In this section PSD examples obtained when using the rate 1/4, v=4, RSLF binary
convolutional encoders from Tables 6-3 and 6-4, the best rate 1/4, v=4, binary convolutional
encoder known reported in [83, 111] and a rate equivalent non-coded pulse repetition scheme are
presented. The modulation scheme has been chosen to be Q-BOPPM with natural mapping and

therefore two consecutive pulses are used to transmit an encoder output vector

g =2, =[2",5",2? 2] (see Section 6.3.1).

The binary data stream at the system input is assumed to be generated by an unbalanced first

order BMS for three different combinations of p ,, and p ,:
). p,o=4/5and p,,=3/5thus z,,=3/7 and z,, =4/7
2). pyo=1/2 and p, ,=1/2 thus 7,,=1/2 and 7z, =1/2
3). p,o=1/5and p,,=3/5thus 7, ,=3/4 and x,,=1/4

Therefore the source’s steady state statistics are unbalanced for the first and third cases. Note that
the second case corresponds to a perfectly random (uniform distributed) i.i.d. binary data stream.
All the convolutionally coded schemes considered in this section transmit two information bits
per four pulses. Therefore, in order to provide a meaningful comparison with the convolutionally
coded case, four pulses must be used to transmit two information bits for the non-coded pulse
repetition scheme. Hence, it will be assumed that each quaternary signal is repeated in four
consecutive frames for this case. As in Section 3.5.2, this scheme can be interpreted as a repetition

code where every couple of information bits, y, =[»”, »{"], is transmitted four times, that is,

L0 () @) () _(4) ()
24 24

- s 0) () ,(0) (1) ,(0) (1)
y=2,=[z

’4] ,zl(b),zl(”]:[y/ Vi Y sV Y s ’y/(O)’y/(l)] (635)

s4T »*

Note the SE pair Markov model for this scheme is equivalent to the one introduced in Section 3.5.2
with the output mapping accordingly changed to consider the repetition of four pulses instead of two.
The PSD plots obtained when the non-coded pulse repetition scheme is used in a Q-BOPPM IR-
based UWB system are shown Figure 6-5. For these plots no TH or DS has been considered and
therefore A =1. Note the large amount of spectral lines appearing in Figures 6-5a and 6-5b. This is
due to the unbalance in the one step and steady state probabilities of the BMS. It is worth

mentioning that although spectral lines are expected at 1/(A7,)=25MHz intervals, they actually
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appear at 100 MHz intervals. This is due to nulls present in the absolute value of Equation (6.19)
(discrete PSD) for these cases. Finally observe that even though no spectral lines appear for

P, =1/2 and p, ,=1/2 in Figure 6-5c, large ripples can be seen in this continuous PSD as

shown in the magnification of Figure 6-5c¢ presented in Figure 6-5d.
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Figure 6-5. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB system with
four pulses repetition and no convolutional coding. The signal parameters are 7, =40 ns, 7, = 10 ns and
T3=0.5ns. The 4™ derivative Gaussian pulse is used with duration 7, ~ 0.4 ns. No TH or DS is considered.

Now consider the PSD plots shown in Figure 6-6. This plots were obtained by using the best

rate 1/4, v=4, binary convolutional encoder known. This encoder has generator matrix ([83, 111])

G(D)=[1+D*+D* 1+D*+D*+D* 1+D+D*+D* 1+D+D*+ D’ +D*]=(25,27,33,37), (6.36)
and thus is feedforward. As previously mentioned, all the best rate 1/2 and 1/4 binary convolutional
encoders known reported in [107, 109, 111] are feedforward and thus do not fulfil the spectral line-

free condition but for few specific cases (commonly p ,, = p,, =1/2). This can seen in Figures

6-6a and 6-6b which have a significant amount of spectral lines spaced at 50 MHz intervals.
Even though the number of spectral lines increases in Figure 6-6 compared with Figure 6-5 the
overall PSD shape improves upon the introduction of the convolutional encoding operation. This

can be seen in Figures 6-6a and 6-6¢ as the maximum PSD height in these plots is less than in
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Figures 6-5a and 6-5c¢ (remember however that in Figures 6-5a and 6-6a the maximum height

corresponds to a spectral line whereas in Figures 6-5¢ and 6-5c¢ corresponds to continuous PSD).
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Figure 6-6. Analytical and simulated PSDs obtained when using the optimum distance spectrum feedforward
(25, 27, 33, 37)s binary convolutional encoder in a Q-BOPPM IR-based UWB system. The signal parameters
are 7,=20ns, 7,= 10ns and 7= 0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7,, ~ 0.4 ns.
No TH or DS is considered.

Note the significant improvement achieved in the PSD characteristics when using the MFD rate
1/4, v =4, RSLF binary convolutional encoders reported in Tables 6-3 and 6-4 as shown in Figures
6-7 and 6-8 respectively. It can be seen in Figure 6-7 that when using the RSLF encoder with
feedback polynomial of the form A(D)=1+ D" (given in Table 6-3) a spectral line-free PSD is
obtained for all three cases. Therefore this system outperforms the non-coded pulse repetition
scheme and the system employing the best rate 1/4, v = 4, binary convolutional encoder known in
terms of PSD characteristics. However, from Figure 6-8 it can be seen that the RSLF encoder with
primitive feedback polynomial A(D)=1+ D’ + D" (given in Table 6-4) outperforms all other

schemes. Furthermore, even the PSD with the most biased BMS (p,,, =1/5 and p,,=3/5) in

Figure 6-8b is smoother than the PSDs in Figures 6-5c, 6-6¢ and 6-7c which were obtained

considering a balanced BMS generating uniform distributed i.i.d. binary streams.
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Figure 6-7. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the MFD rate 1/4,
v =4, RSLF binary convolutional encoder from Table 6-3 with feedback polynomial 5(D) =1 + D* = 21;. The
signal parameters are 7,=20ns, 7,= 10 ns and 73= 0.5 ns. The 4™ derivative Gaussian pulse is used with
duration 7,, ~ 0.4 ns. No TH or DS is considered.

Let us now consider what happens when a short PR-DS sequence is used for pulse polarity
randomisation purposes. In this case the Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1}
with period g, =11 used in the IEEE 802.11 standard, [151], will be considered. Figure 6-9 shows

the PSD plots obtained when using the non-coded pulse repetition scheme in a Q-BOPPM DS-IR-
based UWB system with an unbalanced BMS with p , =1/5 and p,,=3/5 (x,,=3/4 and

7, =1/4). 1t can be seen that although the maximum spectral line height has been reduced in Figure

6-9 compared to Figure 6-5¢, the number of spectral lines has increased upon the introduction of the
PR-DS as they are now spaced at 9.09 MHz intervals. Moreover, note that even though the use of
the Barker sequence helps to improve the PSD characteristics for the non-coded scheme, the PSD
in Figure 6-9 is still far from the spectral line-free PSDs shown in Figures 6-7b and 6-8b which
were obtained using the RSLF convolutional encoders reported in Tables 6-3 and 6-4.

In comparison Figure 6-10 shows the PSD plot obtained when using the MFD rate 1/4, v = 4,
RSLF binary convolutional encoder reported in Table 6-4 in a Q-BOPPM DS-IR-based UWB
system with an unbalanced BMS with p , =1/5 and p, ,=3/5. Comparing Figure 6-8b (where
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no DS is used) and Figure 6-10 (where the Barker PR-DS is used) it can be seen that the use of the

Barker sequence helps to further smooth the PSD.
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Figure 6-8. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the MFD rate 1/4,

v =4, RSLF binary convolutional encoder from Table 6-4 with feedback polynomial h(D) =1+ D’ + D* = 23,.

The signal parameters are 7,=20ns, 7,= 10 ns and 73= 0.5 ns. The 4™ derivative Gaussian pulse is used with
duration 7, ~ 0.4 ns. No TH or DS is considered.
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Figure 6-9. Analytical and simulated PSDs for a BMS coupled to a Q-BOPPM IR-based UWB system with
four pulses repetition and no convolutional coding. The BMS probabilities are p, o, = 1/5 and p,, = 3/5 =
7,0=13/4 and 7, = 1/4. The signal parameters are 7,=40ns, 7, = 10 ns and 73= 0.5 ns. The 4™ derivative

Gaussian pulse is used with duration 7,, ~ 0.4 ns. The periodic Barker sequence {+1, -1, +1, +1, -1, +1,
+1,+1,-1,-1,-1} is used for DS pulse polarity randomisation purposes. No TH is considered.
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Figure 6-10. Analytical and simulated PSDs for a Q-BOPPM IR-based UWB system using the MFD rate 1/4,
v=4, RSLF binary convolutional encoder from Table 6-4 with feedback polynomial 5(D) =1+ D* + D* = 23,
The BMS probabilities are p, o, = 1/5 and p, o, = 3/5 = =, = 3/4 and =, ; = 1/4. The signal parameters are
Ty=20ns, 7,=10ns and 73= 0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7,, ~ 0.4 ns.
The periodic Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is used for DS pulse polarity
randomisation purposes. No TH is considered.

Finally note how there is good agreement between the analytical and simulated results for both
the PSD’s continuous part (Sim. U.E.) and the PSD’s discrete part (Sim. | X, (0)[’=1) in all the

figures presented in this section.

6.6.2 Peak to Average Ratio for Some of the RSLF Binary Convolutional
Encoders from Tables 6-1 to 6-4

Comparing Figures 6-7 and 6-8 it can inferred that better PSD characteristics can be obtained
when using the RSLF binary convolutional encoders with primitive feedback polynomials reported
in Tables 6-2 and 6-4. In order further to see this, the peak to average ratio in dB calculated by
using Equations (6.14) to (6.19) is reported in Tables 6-10 and 6-11 for the first five RSLF

convolutional encoders introduced in Tables 6-1 to 6-4.

The peak to average ratio was calculated for the case of an unbalanced BMS with p , =1/5
and p,,,=3/5 corresponding to 7,,=3/4 and 7,, =1/4. For generality no specific UWB pulse

shape, w(#), has been considered. Instead a flat shape for |W(f)|* has been assumed (e.g. w(?) is
an impulse function A40(¢)) such that the PSD’s average level is normalised to unity. For Table
6-10 the modulation format used was BPSK while for Table 6-11 the modulation format used was
Q-BOPPM. The general signal parameters are 7, = 10 ns, 75 = 0.5 ns, no TH and no DS. The peak

to average ratio was calculated by using

Peak to Average Ratio (dB) =10log,, (%) (6.37)

where §(f) is the analytical PSD defined by Equations (6.14) to (6.19). In practical terms the peak

to average ratio was obtained by calculating the analytical PSD, §( f), in the range of 4 GHz to 8

GHz with a resolution of 200 kHz.
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The peak to average ratios calculated for the first 5 rate 1/2 RSLF binary convolutional encoders
reported in Tables 6-1 and 6-2 are presented in Table 6-10 for BPSK signalling. It can be seen that
the RSLF convolutional encoders with primitive feedback polynomials (Table 6-2) have lower

peak to average ratio than the encoders with b(D)=1+ D" feedback polynomials (Table 6-1).

Furthermore, note how in general by increasing the total encoder memory, v, the peak to average
ratio is reduced. As a reference, the last column of Table 6-10 reports the maximum spectral line
eight of PSDs obtained when using the best rate 1/2 binary convolutional encoders known reported
in [111] under the same operation conditions.

Table 6-10. Peak to average ratios (dB) for the first 5 rate 1/2 RSLF binary convolutional encoders

reported in Tables 6-1 and 6-2. It is assumed that BPSK is used and that the data stream is
generated by an unbalanced BMS with p, o, = 1/5 and p, o, = 3/5.

% B v v
Peak to average ratio (dB) of the Peak to average ratio(dB) of the Ma()grél)u g;. tslf:(:;zi :::: }I’gght
v encoders reported in Table 6-1 encoders reported in Table 6-2 encoders known tenorted in
BD)=1+D" (primitive feedback polynomial) (1] P
3 2.404 1.977 65.933
4 2.113 0.535 64.690
5 1.129 1.003 60.688
6 0.915 0.044 59.129
7 0.661 0.000 56.752

The peak to average ratios calculated for the first 5 rate 1/4 RSLF binary convolutional encoders
reported in Tables 6-3 and 6-4 are presented in Table 6-11 for Q-BOPPM signalling with natural

mapping. As in the previous case the RSLF convolutional encoders with primitive feedback
polynomials (Table 6-4) have lower peak to average ratio than ones with b(D)=1+ D" feedback

polynomials (Table 6-3). This is the reason why the encoders from Table 6-4 were used as the
parent codes for the nested code search of rate 1/6 to 1/32 RSLF convolutional encoders (Tables 6-
5 to 6-9). Note from Table 6-11 how the peak to average ratio is reduced as the total encoder
memory, v, increases.

Table 6-11. Peak to average ratios (dB) for the first 5 rate 1/4 RSLF binary convolutional encoders

reported in Tables 6-3 and 6-4. It is assumed that Q-BOPPM is used and that the data stream is
generated by an unbalanced BMS with p,,, = 1/5 and p, , = 3/5.

Peak to average ratio (dB) of the Peak to average ratio(dB) of the Peak to average ratio(dB) of the

S encoders reported in Table 6-3 encoders reported in Table 6-4 encoders reported in Table 6-4
(b(D)=1+ D" polynomial) with | (primitive feedback polynomial) | (primitive feedback polynomial)

natural mapping with natural mapping with Gray mapping

3 6.397 4.760 4.312

4 7.678 2.055 1.754

5 7.550 1.576 1.356

6 3.021 0.592 0.405

0/ 1.745 0.177 0.190

8 1.962 0.000 0.053

The last column in Table 6-11 reports the peak to average ratios obtained when using Gray
mapping based Q-BOPPM and the RSLF convolutional encoders from Table 6-4. This column was
included due to the fact that binary convolutional codes are often used with Gray mapping based

quaternary phase shift keying (QPSK), [83, 85], which is geometrically equivalent to Q-BOPPM
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with Gray mapping as explained in Section 2.3.1. Note from the last two columns in Table 6-11
that the change from natural to Gray mapping has little or no significant effects on peak to average

ratio achieved with the RSLF encoders reported in Table 6-4.

6.7 BER Performance Comparisons of RSLF Binary
Convolutional Encoders with the Best Binary
Convolutional Encoders Known and the Non-Coded

Pulse Repetition Scheme

In this section comparisons in terms of bit error rate (BER) performance are provided for soft
Viterbi decoding (SVD) when using the rate 1/4, v=4 RSLF binary convolutional encoder from
Table 6-4, the best rate 1/4, v=4 binary convolutional encoder known reported in [83, 111]
(defined by Equation (6.36)) and a rate equivalent non-coded scheme. Bit error rate (BER) results
are presented for additive white Gaussian noise (AWGN) channel and multipath channel. The base
system used in this section for BER comparison purposes is described by the block diagram shown

in Figure 6-11.

First Order y Binary z | Q-BOPPM (Gray) X, (1)
Binary Markov Convolutional »  DS-IR based >
Source Encoder UWB Modulator

'—T Channel

| Barker Direct Sequence | (A\:/rGN

¢—' Multipath)

z'|y'|  Soft r| QBOPPM DS-IR | x, (1)
<«—| Viterbi |« based UWB Receiver -
Decoder (AWGN or Multipath)

Receiver
Front End

T

Figure 6-11. Block diagram of a binary convolutionally coded Q-BOPPM (Gray) IR-based UWB system.

Note the system shown in Figure 6-11 uses Q-BOPPM with Gray mapping. This kind of
signalling was chosen due to Q-BOPPM with Gray mapping is geometrically equivalent to QPSK
with Gray mapping, [83, 87], and the BER performances of convolutionally coded BPSK and
convolutionally coded QPSK with Gray mapping in AWGN channel are similar, [83, 85].
Therefore the results presented in this section for AWGN channel are representative of the BER
performance achievable with both convolutionally coded BPSK and convolutionally coded
Q-BOPPM (Gray) IR-based UWB systems.

Using the same notation as in Section 2.7.5 the data source produces a binary sequence
Y={Vos Vs ¥yt Of length N which defines a path generating the code sequence

0 3 0 3 o
Z={Zg,Zsees Ty} = {28 s0es 28 seesZosees 2y} Where 2z €{0,1}, i=0,1,2,3 and [=0,..,N-1.

Next every couple of code bits [z**,z***"] (where k =0,1) is transmitted using a Q-BOPPM IR-
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based UWB system with Gray mapping. Thus the transmitted signal of this system has the

following general form
N-1 Nyl
X, (1) = Ay, k%o W= By, 4Ty —IT, —kT,) (6.38)
1=0 k=0
where all the variables have been defined in Section 6.3.1 and w(#) has energy E, . Due to Gray
mapping based Q-BOPPM is assumed, «,, €{-11} and B, €{0,1} are defined according to
Equation (6.13). Note that no PR-TH sequence has been considered and { a,, ., } is set to be Barker

PR-DS {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} with period x, = 11. The general signal

parameters are as follows: 7, =20 ns, 7,=10 ns and T, =0.5 ns. The 4th derivative Gaussian

pulse is used with approximate duration 7, ~ 0.4 ns as in the previous section.

The equations describing x, (t) for AWGN and multipath channels are introduced in Sections
6.7.1 and 6.7.2 respectively. The BER performance results presented in these sections were
obtained through simulation assuming coherent detection and perfect DS synchronisation between
transmitter and receiver.

For each particular channel the receiver should be able to fed the decoder with a received
sequence = {ry, L. Fy } = {75ty sy sy} Which consists of the soft metrics to be

used by the soft Viterbi decoder (SVD), [83]. Using the received sequence, r, the SVD produces an

estimate, z'={z"",...2""",..,2"0,,....,z"""}, of the transmitted sequence z and an estimate,

y'={y', ... 'y}, of the information sequence, y, which is then used to compute the BER

performance of the system.

6.7.1 BER Comparisons of the Rate 1/4, v =4, RSLF Binary
Convolutional Encoder with the Best Rate 1/4, v = 4, Binary

Convolutional Encoder Known and Non-Coded Signals in

AWGN Channel

In the AWGN channel the transmitted signal is only affected by the additive noise an therefore

the received signal can be described by
N-1 N,-1
X =) Z Ay, gy W= B, Ty —IT, kT, +7)+ n(t) (6.39)
1=0 k=0
where 7 is the delay and n(7) is AWGN with zero mean and two sided power spectral density Ny/2.
As previously mentioned, it will be assumed that 7 is known at the receiver (coherent reception)
and that perfect DS synchronisation has been achieved between transmitter and receiver.
Under the previous assumptions the results and analysis presented in the literature ([83, 101,

103]) for BER performance of binary convolutional codes with BPSK and QPSK (Gray) signalling

in AWGN channels are straightforwardly applicable to the analysis of the convolutionally coded
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Q-BOPPM (Gray) IR-based UWB system under study. An upper bound on the bit error probability
achieved with convolutionally coded BPSK/QPSK (Gray) in AWGN channels with coherent
detection and soft Viterbi decoding (SVD) is given by [83]:

ne Y BA@= Y Bo(f5Ea) (6.40)

d=d f, d=d e

where E, is the information bit energy, R =1/x is the code rate and {B,} is the encoder’s IWS.
Thus the upper bound defined by Equation (6.40) applies for convolutionally coded Q-BOPPM
(Gray) IR-based UWB systems as previously explained. Note that for a rate 1/4 encoder with

Q-BOPPM signalling E, =2E, as two Q-BOPPM signals are needed to transmit the four code bits

generated by the encoder per each information bit.

Simulated BER plots for the system described by Figure 6-11 in AWGN channel are shown in
Figure 6-12 altogether with the corresponding upper bounds calculated by using Equation (6.40).
The plots labelled as “RSLF PP” were obtained by using the rate 1/4, v=4, RSLF binary
convolutional encoder with primitive feedback polynomial from Table 6-4. The BER plots
corresponding to the best rate 1/4, v=4, binary convolutional encoder known (defined by
Equation (6.36)) are labelled as “Ffwd OIWS” (as this encoder has optimum IWS). The upper
bounds were calculated considering the first 20 elements of the IWS which give a good estimate for
BER values below 10~ as seen in Figure 6-12 (as reference consider that the upper bounds reported

in [135], [110] and [111] were calculated using the first 8, 13 and 15 elements of the IWS

respectively).
10" N e — = — % % — T s ——
{ N ! 10° WS I RSLF PP Upper Bound | |
[ 5 1 I NNy Ffwd OIWS Upper Bound | |
| NN “ Ffwd OIWS Upper Bound |
N SN | Ffwd OIWS Simulation
107 | S s on;
| ] 1
2 | &
w w
Q Q
2 2
S 10°) - |
e ! 0\6: 10}
g | B
w w
g & N
10°} Q-BOPPM (Gray) Theory
L) = RSLF PP Upper Bound
| RSLF PP Simulation
== Ffwd OIWS Upper Bound
* Ffwd OIWS Simulation . ‘
0 05 1 15 2 25 3 35 4 45 5 265 3 335 37 405 24 47 5
Bit Energy to Noise Ratio - E,IN, (dB) Bit Energy to Noise Ratio - Eb/NO (dB)
a) Normal view b) Magnification

Figure 6-12. BER performance in AWGN channel for SVD of Q-BOPPM DS-IR-based UWB systems using
the rate 1/4, v=4, RSLF convolutional encoder with primitive feedback polynomial (RSLF PP) and the best
rate 1/4, v =4, convolutional encoder known with optimum IWS (Ffwd OIWS). The theoretical BER plot for
non-coded Q-BOPPM DS-IR-based UWB systems is provided as a reference. All the plots were
obtained assuming coherent reception and perfect DS synchronisation.

Remember from Section 2.3.1 that the theoretical bit error probability for non-coded Q-BOPPM
IR-based UWB systems with Gray code mapping can be found to be ([83, 87, 88])
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Thus Equation (6.41) was used to obtain the plot labelled as “Q-BOPPM (Gray) Theory” in
Figure 6-12a.

It can be seen in Figure 6-12b that the performance loss when using the RSLF convolutional
encoder instead of the best convolutional encoder known is less than 0.35 dB for bit error rates
below 107. This performance loss is expected as the encoder defined by Equation (6.36) has
optimum IWS which is superior to the IWS of the RSLF encoder. However, in systems with
unbalanced BMS this slight performance loss is compensated by the improved PSD characteristics
obtained with the RSLF encoders, as shown in Section 6.6.

Note how both convolutionally coded schemes outperform the non-coded scheme by
approximately 2.5 dB at BERs below 107, Obviously this increase in BER performance is achieved
at a cost of increased system complexity for the convolutionally coded schemes. However note
how the complexity of both convolutionally coded systems is the same as both encoders have the
same total encoder memory, v = 4, and hence have the same decoding complexity (the Viterbi
decoder has 16 states for both encoders). Furthermore, this increase in the system complexity can
be regarded to be acceptable as the de facto industry standard convolutional encoder with generator
matrix (133, 171)g, [104], has total encoder memory v = 6 and therefore the Viterbi decoder for this
encoder has 64 states.

Finally it is worth mentioning that through the use of the upper bound defined by Equation (6.40),
it was verified that the BER performance loss of the RSLF binary convolutional encoders reported in
Tables 6-2 and 6-4 compared to the best rate 1/2 and rate 1/4 binary convolutional encoders known
reported in [111] should be less than 0.4 dB for BER values between 10~ and 107 (the upper bounds

were calculated by considering the first 15 elements of the IWS of each code as in [111]).

6.7.2 BER Comparisons of the Rate 1/4, v = 4, RSLF Binary
Convolutional Encoder with the Best Rate 1/4, v =4, Binary
Convolutional Encoder Known and Non-Coded Signals in

Multipath Channel

A channel commonly used in the literature (e.g. [13, 15, 17, 19]) as an example of a typical
UWB multipath channel model is the IEEE 802.15.3a UWB channel model, [152] [153]. Thus this
model will be used in this section to provide a BER performance comparison in a multipath
affected channel between the RSLF binary convolutional encoders and the best binary
convolutional encoders known.

The impulse response of the IEEE 802.15.3a channel model is described by ([13, 17, 152, 153]):

LK Nytpath
h,(r>=x,; @0 =T -7,) = Z ot -1,) (6.42)

where the subscript i stands for the channel realisation; X; represents log-normal shadowing; L' is

the number of clusters; K, is the number of multipath components received in the ™ cluster;
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N, pa 1s the total number of multipath components; ¢, , are the multipath coefficients of the K"

multipath component of the /™ cluster; 7, is the /" cluster arrival time and 7}, is the delay of the A"

multipath component within the /" cluster. The channel model considers four different indoor
scenarios and thus defines four different sets of statistics for each one of them. This work considers
channel model 1 (CM1) corresponding to a line of sight (LOS) scenario within 0-4 m, [13, 152,
153]. The reader is referred to [13, 15, 17, 19, 152, 153] for a detailed explanation of this channel
model and its implementation in a discrete simulation. A summary of the model’s main parameters
provided in [153] is reproduced in Appendix B.

In the simulations a quasi-static scenario was considered, [13, 29, 154], meaning that the
channel’s multipath statistics remain unchanged during the transmission of an information block
consisting of N =1024 information bits or equivalently 4096 code bits. Thus if the transmitted

th

signal is described by Equation (6.38) then for the i channel realisation the received signal can be

expressed as:

Nupah N-1 Ny—1
X (1) = Z am,w”am_kh,’,w(t—ﬁm‘kTﬂ ~IT. KT ~2)4-nl}) (6.43)

n=l =0 k=

o

where w(f) has energy E, and n(f) is AWGN with zero mean and two sided power spectral
density Ny/2. Note that the transmitted bit energy is E, =2E, as in the previous case.

Note from Equation (6.43) that for this kind of channels the transmitted pulse energy, £, is

distributed over N, multipath arrivals, [13, 15, 17, 19, 152, 153]. Thus in order to collect as
much energy as possible a RAKE receiver must be used, [13, 15, 17, 19, 152, 153]. An ideal

RAKE receiver would combine the energy from all N, , multipath components through a set of

N

wran correlators (usually referred as “fingers™), one per multipath arrival [13, 15, 17, 152, 153].
However this ideal all-RAKE (ARAKE) receiver may be too complicated to implement in practice
due to the large number of multipath components. Thus simplified structures collecting energy

from a fixed number, N , of multipath components must be considered, [13, 15, 17 153]. A
practical RAKE implementation which only collects energy from the N strongest paths is called
a selective RAKE (SRAKE) whereas a RAKE implementation that collects energy from the first
arriving N, paths is called a partial RAKE (PRAKE). For the simulation results presented in this
section the SRAKE approach has been adopted as in general it provides better performance than
PRAKE implementations, [13, 15]. As well it has been assumed that the receiver has perfect
knowledge of the channel’s impulse response (perfect channel side information - CSI), A7),
during the transmission of an information block. Finally the strategy adopted for the combination
of the energy captured by the SRAKE fingers has been chosen to be maximal ratio combining
(MRC), which is optimal when the noise is AWGN and the inter-symbol interference (ISI) is
negligible, [13, 15, 17, 83]. Briefly, MRC applies a weight to every received multipath component

before combining, such that the stronger signals have larger weight than the weak signals, [13, 83].
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In our simulations 1000 different realisations of the IEEE 802.15.3a UWB line of sight (LOS)
channel model 1 (CM1) were generated with a sampling time of 0.2 ns. The average characteristics
of these realisations are: mean excess delay = 5.12 ns; rms delay spread = 5.56 ns; number of paths
within 10 dB of the strongest path = 11.87 and number of paths that capture 85% of channel
energy = 15.73. At least one information block is transmitted per channel realisation for BER
values above 107. For BER values below 10~ more than one information block was transmitted per
channel realization (the same amount of information blocks were transmitter for every channel
realisation) such that a minimum of 500 bit errors were counted per BER point. Finally note that

due to 7, =10 ns, 7, =0.5 ns and 7, ~ 0.4 there may exist inter-pulse interference (IPI) and ISI,

[17, 154].
Simulated BER plots for the system described by Figure 6-11 in the IEEE 802.15.3a UWB line
of sight (LOS) channel model 1 are shown in Figure 6-12 for different SRAKE configurations. The

plots are presented in terms of the originally transmitted bit energy E, =2E, to noise ratio
(E,/N,). The plots labelled as “RSLF PP” where obtained by using the rate 1/4, v=4, RSLF

binary convolutional encoder with primitive feedback polynomial from Table 6-4. The plots
corresponding to the best rate 1/4, v=4, binary convolutional encoder known (defined by
Equation (6.36)) with optimum IWS are labelled as “Ffwd OIWS”. The plots labelled as “Non-
Coded” correspond to a non-coded rate equivalent Q-BOPPM DS-IR-based UWB system. The
number of SRAKE fingers used for every BER plot is indicated in the legend.
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Figure 6-13. BER performance in IEEE 802.15.3a UWB channel model 1 (CM1) for SVD of Q-BOPPM DS-IR-
based UWB systems using the rate 1/4. v=4, RSLF convolutional encoder with primitive feedback polynomial
(RSLF PP), the best rate 1/4, v = 4, convolutional encoder known with optimum IWS (Ffwd OIWS) and a rate
equivalent non-coded Q-BOPPM DS-IR-based UWB system. Results are presented for several SRAKE
receivers with different numbers of fingers (Ng,,). Perfect channel side information and DS
synchronisation was assumed.

It can be seen in Figure 6-13a that the RSLF convolutional encoder outperforms the non-coded
system by about 2 dB at BERs below 10 and by more than 3 dB at a BERs below 10™. Again the
price for this BER improvement over the non-coded scheme is the increased complexity of the

convolutionally coded system. As well from Figure 6-13b it can be verified that the performance
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loss when using the RSLF convolutional encoder instead of the best convolutional encoder known

is less than 0.5 dB for BER values below 107

6.8 Conclusions for Chapter 6

In this chapter recursive spectral line-free (RSLF) binary convolutional encoders for unbalanced
(non-uniform distributed) binary Markov sources (BMS) have been introduced.

First it was proved that traditional feedforward structures do not provide a good framework for
the design of spectral line-free (SLF) encoders when the binary input stream is generated by an
unbalanced first order BMS. Particularly, it has been demonstrated analytically that binary
convolutional encoders with feedforward structures do not fulfil the spectral line-free condition for

all combinations of BMS’ one step transition probabilities, 0< p,, <1.

In contrast, it was shown that recursive structures are better suited for the design of SLF
encoders as the steady state probabilities of the source encoder (SE) pair Markov model have a
quite regular distribution which only depends on the BMS’s steady state probabilities. In fact these
structures enable the fulfilment of the spectral line-free condition for all combinations of

0<p,, <1 aslong as the output mapping function, (), is properly designed.

Based on the analysis a code search procedure to seek RSLF binary convolutional encoders with
the best possible information weight spectrum (IWS) was introduced. The code search procedure
verifies that the spectral line-free condition is satisfied when the binary data stream is generated by
an unbalanced first order BMS and the modulation format used is BPSK, Q-BOPPM with natural
mapping or Q-BOPPM with Gray mapping. Using this code search procedure novel maximum free
distance RSLF binary convolutional encoders were found. Tables of the best RSLF encoders found

were provided for recursive structures with b(D)=1+ D" feedback polynomials and recursive

structures with primitive feedback polynomials for encoders with data rates equal to 1/2 and 1/4.
For encoders with data rates 1/x <1/4 a nested code search approach was adopted where the
parent codes used were the rate 1/4 encoders with primitive feedback polynomials. All these
encoders provide a spectral line-free PSD when used in BPSK or Q-BOPPM (natural and Gray
mappings) IR-based UWB systems even when the input consists of a binary data stream generated
by an unbalanced first order BMS.

Power spectral density examples of Q-BOPPM IR-based UWB signals using rate 1/4, v = 4,
RSLF convolutional encoders, the best rate 1/4, v = 4, convolutional encoders known and a rate
equivalent non-coded system were provided. These examples showed that the RSLF encoders
produce spectral line-free PSD even when the binary data stream is generated by an unbalanced
BMS. In contrast, the other two schemes generate signals with a significant amount of spectral

lines in the PSD under the same operating conditions (the exception was for p , =1/2 and

P,.0 =1/2 as expected). Furthermore, it was shown that for a biased BMS with p, , =1/5 and
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Pyio =3/5 (thus 7

10 =3/4 and 7, =1/4) the use of the Barker DS with period 11 for polarity
randomisation purposes does not eliminate the spectral lines for the non-coded pulse repetition
scheme (although it does help to decrease the maximum spectral line height whilst increasing the
number of spectral lines). In contrast the use of the same sequence combined with the rate 1/4,
v =4, RSLF encoder with primitive feedback polynomial helps to further smooth the signal’s PSD.

From the PSD examples and the peak to average ratio introduced in Section 6.6.2, it can be

concluded that the RSLF convolutional encoders with primitive feedback polynomials should be
preferred over the RSLF convolutional encoders with 5(D)=1+ D" feedback polynomials if the

design priority is to obtain a PSD as smooth as possible.

Lastly comparisons of the bit error rate (BER) performance achieved with RSLF binary
convolutional encoders in AWGN channel and in a typical UWB multipath channel have been
provided for soft Viterbi decoding. These BER plots showed that the performance loss of the rate
1/4, v = 4, RSLF binary convolutional encoder compared to the best rate 1/4, v = 4, binary
convolutional encoder known, is less than 0.5 dB for both channels at bit error rates below 107, It
was also verified that in a typical UWB multipath channel both convolutionally coded schemes
outperform the non-coded pulse repetition scheme by more than 2 dB at BERs below 107 and by
more than 3 dB at BERs below 10, For AWGN channel the BER performance gain is larger for
both convolutionally coded schemes.

It is worth noting that the maximum transmit power of a system employing RSLF binary
convolutional encoders will be limited in terms of a continuous PSD even when the data input is
generated by an unbalanced BMS. In contrast the maximum transmit power of a non-coded system
or a system employing the best binary convolutional encoders known will be limited in terms of the
maximum spectral line height when the data input is generated by an unbalanced BMS. Thus the
later systems would need to decrease their transmit power or use an additional mechanism to
reduce or eliminate the spectral lines. The consequence of implementing such solutions would be a
loss in the BER performance for the first option or an increase in the system complexity for the
second option. Thus it can be concluded that the use of RSLF binary convolutional encoders offer
significant advantages in terms of both PSD characteristics and BER performance.

It is evident that the introduction of convolutional coding (RSLF or non-RSLF) in any UWB
communication system will increase the system’s complexity compared with the non-coded case.
Nevertheless, the inclusion of error correction mechanisms has become standard in actual
communication systems. For example both the IEEE 802.15.4a standard draft and the IEEE
802.15.3a study group (now disbanded), which use UWB systems in its physical layer, consider the
use of convolutional codes, [40, 19]. Note how the use of the RSLF convolutional encoders
introduced in this chapter does not increase the system’s complexity compared with the use of
equivalent traditional feedforward convolutional encoders with optimum IWS (OIWS — the best
binary convolutional encoders known). Furthermore, when using the RSLF convolutional encoders

the overall system design can be simplified as even the use of a relatively short PR-DS helps to
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have a smoother spectrum when the BMS is highly biased. Finally it is worth mentioning that the

complexity of the RSLF convolutional codes reported here can be classified to be low to medium

as the total encoder memory ranges (a measure of decoding complexity, [100, 101, 104]) from 3 to

10 and good convolutional encoders have been reported with total encoder memory above 20,

[103] (the industry de facto standard has total encoder memory equal to 6, [104]).
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Figure 6-14. Side by side BER performance and PSD shape (analytical) comparisons between Q-BOPPM IR-
based UWB systems employing: the rate 1/4, v=4, RSLF convolutional encoder with primitive feedback
polynomial (RSLF PP), the best rate 1/4, v =4, convolutional encoder known with optimum IWS (Ffwd OIWS)
and a rate equivalent non-coded Q-BOPPM IR-based UWB system. The input binary data stream is assumed
to be generated by an unbalanced BMS with p,, o, = 4/5 and p,,,, = 3/5. The signal parameters are 7, = 20 ns,
T,=10nsand 73=0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7,, ~ 0.4 ns.

No TH or DS is considered.
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Chapter 7

Conclusions

This chapter concludes this research by summarising the contributions and findings presented
throughout this thesis. In addition, areas of possible future research are presented at the end of this

chapter.

7.1 Summary of Main Results

This thesis has studied the effects on the transmitted signal’s power spectral density (PSD)
caused by the introduction of convolutional coding in impulse radio (IR) based ultra wideband
(UWB) systems. It has been shown that properly designed convolutional encoders can achieve both
improved PSD characteristics and improved bit error rates (BER) when used on IR-based UWB
systems.

The literature review of previous work relevant for this thesis was provided in Chapter 1. In this
chapter it was determined that the spectral analysis of general convolutionally coded IR-based
UWRB signals had not been previously addressed. As well, it was noted that only pseudo-chaotic
time hopping (PCTH) and related schemes addressed the issue of simultaneous BER improvement
and spectral line suppression for the particular case of pulse position modulated (PPM) time
hopping (TH) IR-based UWB signals. In these schemes all the TH is driven by the encoder.

In Chapter 2 some useful concepts, terminology and definitions extensively used throughout this
thesis were introduced. Two main areas were dealt with in this chapter. The first area described the
UWB model used and further reviewed previous work on the spectral analysis and spectral shaping
of IR-based UWB signals. The second area provided a brief review of the application of
convolutional coding in IR-based UWB systems and introduced several important concepts related
to convolutional coding in general.

The spectral analysis of convolutionally coded/Markov-driven IR-based UWB signals was
carried out in Chapter 3. The analysis started by deriving a source-encoder (SE) pair Markov model
(of Moore type) which describes the statistics of the convolutional encoder when driven by a binary
Markov source. Particularly, a first order binary Markov source (BMS) was used as it enables the
modelling of unbalanced (that is non-uniform distributed) independent identically distributed
(i.i.d.) memoryless binary data streams as well as binary data streams with memory often found in
practical systems. Once the SE pair model was introduced, a signal model that covers a wide
variety of IR-based modulation schemes such as PPM, pulse amplitude modulation (PAM), binary

phase shift keying (BPSK), biorthogonal PPM (BOPPM), PAM/PPM and pulse shape modulation
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(PSM), combined with periodic or random TH and/or direct sequence (DS) multiplication was
introduced. In addition the signal model accounts for the inclusion of attenuation and/or timing
jitter. By performing the spectral analysis of the signal model through a non-cyclostationary based
approach, novel closed form expressions for the power spectral density (PSD) of convolutionally
coded/Markov-driven IR-based UWB signals were obtained. Application examples of the derived
formulas were presented for several cases of interest. With these examples it was proved that the
introduction of convolutional coding may have positive effects on the PSD shape of IR-based
UWRB signals. Nevertheless, it was shown as well that in order to achieve such positive effects care
should be taken when using a convolutional encoder for spectral shaping purposes. This is due to
even a simple change in the generators order may have a significant impact in the PSD shape of IR-
based UWB signals.

Once it was determined that the introduction of convolutional coding may have positive effects
over the PSD’s shape, the search for convolutional encoders that can achieve both improved PSD
characteristics and improved bit error rates (BER) when used in IR-based UWB systems started in
Chapter 4. First the PCTH scheme was classified as a binary to M-ary convolutionally coded
system using orthogonal M-ary PPM signalling. Then the condition needed for a binary to M-ary
convolutional encoder to eliminate as many spectral lines as the PCTH scheme was identified
through analysis. Making use of this condition (referenced as the spectral line suppression
condition) new M-ary maximum free distance (MFD) feedforward spectral line suppressive (FSLS)
binary to M-ary convolutional encoders were found through a computer based code search
procedure. The new encoders were designed to eliminate as many spectral lines as the PCTH
scheme under the same operation conditions, that is, independent identically distributed (i.i.d.)
binary data streams with uniform distribution are assumed at the encoder’s input. The spectral line
suppression capabilities of the new encoders were further demonstrated through several examples
of PSD plots. Moreover, it was shown that the new FSLS binary to M-ary convolutionally coded
scheme can outperform the PCTH and non-coded schemes in terms of BER performance for both
hard and soft Viterbi decoding.

As discussed in the introduction of Chapter 5, not all the data sources or compression
algorithms found in practical systems generate uniform distributed i.i.d. binary streams. Thus the
goal in this chapter was to find binary to M-ary convolutional encoders that satisfy the spectral line
suppressive condition even when the binary data stream at the encoder input does not consist on
uniformly distributed i.i.d. binary symbols. In particular it was assumed that the data stream was
generated by an unbalanced BMS. This source enables the modelling of unbalanced i.i.d.
memoryless binary data streams as well as binary data streams with memory often found in
practical systems. First it was proved that for an unbalanced BMS the spectral line suppression
condition may not be satisfied when using encoders with traditional feedforward structures such as
those used by the PCTH and the FSLS binary to M-ary convolutional encoders introduced in
Chapter 4. Afterwards it was demonstrated that properly designed binary to M-ary convolutional
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encoders with recursive structures enable the fulfilment of the spectral line suppression condition
even when the data stream is generated by an unbalanced first order BMS. Using a modified
version of the code search procedure introduced in Chapter 4, novel M-ary MFD recursive spectral
line suppressive (RSLS) binary to M-ary convolutional encoders for unbalanced BMS’s were
found. These encoders are able to eliminate as many spectral lines as PCTH and the FSLS binary to
M-ary convolutional encoders introduced in Chapter 4 even when the data stream at the encoder
input consists of binary symbols generated by an unbalanced BMS. Through PSD plots examples it
was further shown that the RSLS binary to M-ary convolutional encoders offer superior PSD
characteristics when the data stream is generated by an unbalanced BMS compared to the PCTH
scheme, the FSLS binary to M-ary convolutional encoders and binary PPM with ideal perfectly
random TH. Lastly it was shown that there may exist a minimal BER performance loss when using
the RSLS binary to M-ary convolutional encoders instead of the FSLS binary to M-ary
convolutional encoders. Nevertheless it is important to highlight that this possible BER
performance loss is compensated by the superior PSD characteristics achieved with the RSLS
binary to M-ary convolutional encoders. As well it is important to note that both convolutionally
coded systems outperform the non-coded binary PPM system in terms BER performance by a
significant amount.

In Chapter 6 the novel idea of using binary convolutional encoders for spectral line elimination
purposes in BPSK and quaternary BOPPM (Q-BOPPM) IR-based UWB systems was proposed.
The goal in this chapter was to design and find binary convolutional encoders that generate signals
whose PSD is spectral line-free even when the binary data stream at the encoder input is generated
by an unbalanced first order BMS. The condition needed for a binary convolutional encoder to
generate such a spectral line-free signal was obtained through analysis. In a similar way to
Chapter 5, it was proven that the traditional feedforward structures which are used by the best
binary convolutional encoders known may not produce a spectral line-free PSD when the data input
is generated by an unbalanced BMS. In contrast it was shown that for this kind of sources recursive
structures are best suited for the design of spectral line-free binary convolutional encoders. Thus
novel MFD recursive spectral line-free (RSLF) binary convolutional encoders were found by using
a new code search procedure. These encoders provide a spectral line-free PSD when used in
BPSK/Q-BOPPM (natural and Gray) IR-based UWB systems even when the input consists on a
binary data stream generated by an unbalanced BMS. Through several PSD plots examples it was
demonstrated that for unbalanced BMS’s the RSLF binary convolutional encoders generate
Q-BOPPM IR-based UWB signals with a spectral line-free PSD. In contrast, it was shown that for
Q-BOPPM IR-based UWB systems using the best binary convolutional encoders known or a rate
equivalent non-coded pulse repetition scheme (with/without pseudo-random pulse polarity
randomisation), the signal’s PSD shows a significant amount of spectral lines when the data stream
is generated by an unbalanced BMS. Lastly it was shown that there may exist some sligth BER

performance loss when using the RSLF binary convolutional encoders instead of the best binary
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convolutional encoders known. However, when the data stream does not consist of uniformly
distributed i.i.d. binary symbols, the possible BER performance loss is compensated by the spectral
line-free characteristic offered by the RSLF binary convolutional encoders. Note as well that both
convolutionally coded systems outperform the rate equivalent non-coded pulse repetition scheme in
terms of BER performance by a significant amount. It is worth highlighting that the maximum
transmit power of a system employing RSLF binary convolutional encoders will be limited in terms
of a continuous PSD even when the data input is generated by an unbalanced BMS. In contrast the
maximum transmit power of a non-coded pulse repetition based system or a system employing the
best binary convolutional encoders known will be limited in terms of the maximum spectral line
height when the data input is generated by such a source. Therefore the later systems would need to
decrease their transmit power or use an additional mechanism to reduce or eliminate the spectral
lines. The consequence of implementing such solutions would be a loss on BER performance for
the first case or an increase in the system complexity for the second case. Thus it can be concluded
that the use of RSLF binary convolutional encoders offer significant advantages in terms of both
PSD characteristics and BER performance. This is particularly important for UWB
communications as they are PSD limited

Based on the previous discussion it can be asserted that the use of FSLS binary to M-ary
convolutional encoders, RSLS binary to M-ary convolutional encoders and RSLF binary
convolutional encoders in IR-based UWB systems offer significant advantages in terms of both
PSD characteristics and BER performance compared to IR-based UWB systems employing no
coding or standard convolutional coding. Thus it can be concluded that the objectives of this thesis

introduced in Chapter | have been reached.

7.2 Conclusions

In this thesis it has been demonstrated that the introduction of convolutional coding in impulse
radio (IR) based ultra wideband (UWB) systems can have significant effects over the power
spectral density (PSD) shape of the transmitted UWB signal. Therefore by properly designing the
convolutional encoder two key issues arising in IR-based UWB communications can be addressed
simultaneously, namely, bit error rate (BER) performance improvement and PSD shaping. In
particular this thesis dealt with the design of convolutional coding schemes for spectral line
elimination (suppression) in IR-based UWB systems, which is a topic of major importance in the
design of compliant UWB systems.

Traditionally, feedforward structures have been preferred over recursive structures when
designing stand alone convolutional encoders, [83, 100-103]. This is due to in general feedforward
implementations offer better BER performance. Nevertheless, the feedforward structures are not
best suited for the design of convolutional encoders with good spectral shaping capabilities. This is
especially true when the data stream at the input of the system is generated by an unbalanced

binary Markov source (BMS). Instead, in this thesis it has been proved that by using recursive
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structures the design of convolutional encoders that eliminate significant numbers of spectral lines
in pulse position modulated (PPM) time hopping (TH) IR-based UWB systems is feasible.
Furthermore, for IR-based UWB systems employing binary phase shift keying (BPSK) or
biorthogonal PPM (BOPPM) the design of recursive convolutional encoders that generate a
spectral line-free PSD is feasible.

Here new recursive non-systematic convolutional encoders with convenient PSD characteristics
for IR-based UWB systems have been introduced. These encoders effectively shape the signal’s
PSD when the data stream at the input of the encoder is generated by a balanced/unbalanced BMS.
Therefore, these encoders offer significant advantages in terms of PSD characteristics compared
with traditional feedforward convolutional encoders. However, it is worth noting that a BER
performance degradation of up to 0.5 dB can be observed when using the new spectral shaping
convolutional encoders introduced in this work instead of the best convolutional encoders known.
Nevertheless, as UWB emissions are currently limited in terms of spectral masks instead of
bandwidth occupancy, the possible performance degradation is compensated by the superior PSD
characteristics offered by the new spectral shaping convolutional encoders.

As previously mentioned, the introduction of convolutional coding will increase the system’s
complexity compared to the non-coded case. However, the inclusion of error correction
mechanisms has become standard in actual communication systems. The advantage offered by the
spectral shaping encoders introduced in this thesis is that they conveniently shape the spectrum and
provide significant coding gains over non-coded systems. Furthermore, note that a system using
traditional convolutional encoders or no convolutional coding will need extra mechanisms to
effectively shape the PSD and achieve compliance with the current regulations. Therefore, in terms
of implementation, an IR-based UWB system employing the spectral shaping encoders reported in
this thesis may be less complex than a system employing traditional convolutional encoders. On the
other side, a non-coded system may be simpler to implement but it will show a significant BER
performance degradation compared to the convolutionally coded system (for the all examples
presented in this thesis that performance degradation is of more than 2 dB at BERs below 10~ and
more than 3 dB at BERs below 10™).

It is worth mentioning that for the convolutional encoders reported in this thesis the BER
performance and PSD characteristics are improved upon using encoders with larger memory.
However, the number of states in the decoder increases as the encoder memory grows and therefore
the overall system’s complexity is increased as well. Nevertheless, as the industry de facto standard
has total encoder memory equal to 6, it can be said that a good compromise between complexity,
BER performance and PSD characteristics is obtained by using the spectral shaping convolutional
encoders introduced in Chapters 5 and 6 with total encoder memories equal to 6 and 7.
Furthermore, from all the encoders introduced in these two chapters the ones using primitive
feedback polynomials must be preferred as they provide better PSD characteristics. Therefore, it

can be concluded that the convolutional encoders reported in Tables 5-2, 6-2 and 6-4 with total
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encoder memory, v, equal to 6 and 7 offer a good compromise between complexity, BER
performance and PSD characteristics.

Finally, it is worth commenting that the main limitation in the use of the spectral shaping
convolutional encoders introduced in this thesis resides in the kind of data source feeding the
system. For instance, the feedforward spectral line suppressive (FSLS) convolutional encoders
introduced in Chapter 4 require the data stream to strictly consist on independent identically
distributed (i.i.d.) binary symbols with uniform distribution. Note this assumption limits the
applicability range of these encoders. On the other side, the recursive spectral line suppressive
(RSLS) and recursive spectral line-free (RSLF) convolutional encoders introduced in Chapters 5
and 6 were designed by assuming that the data stream is generated by an unbalanced/balanced
BMS. Although this assumption covers a wide variety of data sources, there still may exist data
sources with a completely different set of statistics. For these cases the encoders reported on
Chapters 5 and 6 may not show the expected PSD characteristics, in which case different

convolutional encoders designs may be needed to be explored.

7.3 Original Contributions of the Thesis

The contributions of the thesis can be outlined as follows:

= Derivation of a source-encoder (SE) pair model that enables one to describe the interaction
of the BMS and the convolutional encoder with a single Markov model which can be
classified as being of the Moore type (within the definition adopted for finite state
sequential machines).

=  An original spectral analysis for convolutionally coded IR-based UWB systems. The model
used for the analysis and the closed form PSD expressions obtained from it cover different
modulation schemes such as pulse amplitude modulation (PAM), binary phase shift keying
(BPSK), pulse position modulation (PPM), biorthogonal PPM (BOPPM), PAM/PPM, and
pulse shape modulation (PSM), combined with pseudo-random (periodic)/random time
hopping (TH) and/or pseudo-random/random direct sequence (DS). In addition the signal
model and PSD expressions account for the inclusion of attenuation and/or timing jitter.

= The identification of convolutional encoder’s characteristics that have a positive or
negative effect in the transmitted signal’s PSD.

= The classification of pseudo-chaotic time hopping (PCTH) and related schemes as
feedforward binary to M-ary convolutionally coded PPM IR-based UWB systems.

= The identification of the variables that enable the design of feedforward binary to M-ary
convolutional encoders with similar PSD characteristics to those achieved with the PCTH
scheme under the same operation constraints (that is i.i.d. binary data streams with uniform
distribution are assumed at the encoder input).

= A code search procedure to seek feedforward binary to M-binary convolutional encoders

with PSD characteristics similar to those achieved with PCTH and improved BER

172




Chapter 7 Conclusions

performance.

= A set of new M-ary maximum free distance (MFD) feedforward binary to AM-ary
convolutional encoders that have the same spectral line suppressive characteristics as the
PCTH scheme (under similar operation conditions) and provide improved BER
performance over the PCTH scheme.

= The identification of the variables and conditions that enable the design of binary to M-ary
convolutional encoders with similar PSD characteristics to those achieved with the PCTH
scheme even when the encoder input does not consist of an i.i.d. binary data stream with
uniform distribution. In particular the data stream is assumed to be generated by a generic
first order BMS.

= The modification of the code search procedure such that spectral line suppressive binary to
M-ary convolutional encoders for unbalanced (that is, non-uniform distributed) BMS’s can
be found.

= Two sets of novel M-ary MFD spectral line suppressive binary to M-ary convolutional
encoders which eliminate as many spectral lines as the PCTH scheme but keep its spectral
line suppressive characteristics even when the binary stream at the encoder input is
generated by an unbalanced BMS (that is, the data stream does not consists on uniform
distributed i.i.d. binary symbols).

= The novel proposal of using binary convolutional encoders for spectral line elimination
purposes in BPSK and quaternary BOPPM (Q-BOPPM) IR-based UWB systems.

» The identification of the variables and conditions that enable the design of binary
convolutional encoders which generate signals with spectral line-free PSDs when used in
BPSK/Q-BOPPM IR-based UWB systems with unbalanced BMS inputs.

= A code search procedure aimed to seek spectral line-free binary convolutional encoders
with good BER performance.

* The introduction of nine sets of novel MFD binary convolutional encoders which generate
a spectral line-free signal even when the binary stream at the encoder input is generated by
an unbalanced BMS (that is, the data stream does not consists on uniform distributed i.i.d.
binary symbols). Encoders with rates from 1/2 up to 1/32 and memory orders from 3 up to

9 are provided.

7.4 Areas of Future Research

This thesis has studied the use of convolutional coding in IR-based UWB systems to
simultaneously achieve both improved PSD characteristics and improved BER performance. In that
sense the following areas have been identified to continue the research carried out in this thesis

= Bit error rate performance in multiple user scenarios. The first extension of this work
would be to evaluate the BER performance achieved with the convolutional encoders

introduced in this dissertation when two or more IR-based UWB systems are transmitting
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simultaneously. Although it has been shown that the introduction of convolutional coding
helps to improve the BER performance and the number of supported users in multiple user
scenarios, [21, 24, 25, 32], some variations may be worth researching. In particular it would
be interesting to evaluate if the improved PSD characteristics of the convolutional encoders
reported in this thesis help to reduce the multiple access (MA) interference in multiuser IR-
based UWB systems. Variations include the presence of users with unbalanced data inputs
and the use of short PR-TH and/or PR-DS sequences for MA purposes.

= Generation of spectral notches in the PSD. Another area worth exploring would be the
generation of spectral notches in the PSD for narrowband interference suppression through
the convolutional coding operation. This issue has been previously addressed by means of
pulse shaping, [68, 69], and TH sequence design [72, 74, 75]. Thus further research can be
done in the feasibility of finding convolutional encoders that provide both spectral notches
in the PSD and improved bit error rates.

»  Analysis and design of turbo codes with convenient PSD characteristics. An important
feature of the convolutional encoders introduced Chapters 5 and 6 is that they were
constructed based on recursive structures. Commonly, turbo codes are constructed using
systematic recursive convolutional codes, [85], while little research has been done in the
use of non-systematic recursive structures in the construction of good turbo codes, [155].
Thus it would be interesting to design turbo codes based in non-recursive convolutional
encoders which provide convenient PSD characteristics.

= Performance in multipath channels. Although some results were presented in Chapter 6 —
Section 6.7.2 for the IEEE 802.15.3a UWB channel model 1 (CM1), more research is
needed about the performance of the convolutional encoders introduced in this thesis in
multipath channels. In particular it would be interesting to evaluate if the improved PSD
characteristics help to reduce the effects of interpulse and interframe interference.

= Encoders matched to specific antennas. It would be worth to explore the feasibility of
designing convolutional encoders whose signal’s PSD matches the antenna’s frequency
response.

* Impact of interleavers. When a system is expected to work in multipath and fading
channels the BER performance can be sometimes improved upon the introduction of
interleaving after channel coding (providing some time delay can be tolerated), [83].
Therefore, it is would be worth to analyse the PSD characteristics and BER performance of
the convolutional encoders introduced in this thesis when interleaving is introduced after
the convolutional coding operation.

= Analysis and design of low density parity check (LDPC) codes with convenient PSD

characteristics.
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Appendix A

The Use of Simulation-Periodogram-
DFT Methods for the Spectral Analysis
of IR-Based UWB Signals

A.1 Introduction

This appendix deals with the application of simulation-periodogram-discrete Fourier transform
(DFT) methods for the spectral analysis of ultra wideband (UWB) signals. The methodology used
throughout this thesis for the validation of analytical (theoretical) power spectral density (PSD)
expressions for impulse radio (IR) based UWB signals is explained here. Furthermore, comparisons
of simulation-periodogram-DFT based PSD estimates with the FCC’s (U.S. Federal
Communications Commission) spectral mask for indoor UWB systems, [2], are provided at the end
of the appendix.

Typically, the PSD properties of IR-based UWB signals have been studied by means of
theoretical analysis [13, 18, 41-50] and/or simulation [18, 42, 43, 45, 80, 81, 156]. Although [43,
45, 80, 81] presented simulation results based on simulation-periodogram-DFT methods, only [43]
directly compares the analytical PSD with the simulated PSD. Nevertheless, the authors in [43]
adjust the continuous part of the analytical PSD to enable the comparison with the simulated PSD.
Comparisons between analytical and simulated results have also been reported in [18, 42] where
the simulated results were obtained by simulating the stages of a swept spectrum analyzer.

The comparison of analytical and simulated results is important since a misinterpretation of
simulated results could lead to erroneous conclusions about the actual levels of a signal’s PSD.
Please note that the objective of this appendix is not to provide novel results regarding simulation-
periodogram-DFT based PSD estimation, but to define a methodology which enables the use
known digital spectral analysis results (presented in [157-160]) for the validation of the theoretical
PSD results presented in this thesis. Shortly, it will be shown that when using simulation-
periodogram-DFT based spectral analysis, the characteristics and effects of the data window used
in the simulation should be considered for an adequate comparison between simulated PSD
estimates and analytical PSD results for IR-based UWB signals. This is particularly true when both

the analytical and simulated results are plotted together for inspection.
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After introducing the simulation-periodogram-DFT based procedure, comparisons of simulated
PSD estimates with the FCC’s spectral mask for indoor UWB systems, [2], are provided. The
objective of this comparison is to further show the spectral shaping capabilities of the convolutional
encoders introduced in Chapters 5 and 6. Before introducing the comparison plots, the expected
behaviour of actual power spectrum measurements of IR-based UWB signals as reported in [1, 2,
42] is reviewed. Based on this review the simulation-periodogram-FFT based procedure that

closest resembles the expected behaviour of actual power spectrum measurements is defined.

A.2 Signal Models and Corresponding Analytical Power
Spectral Densities of Typical Non-Coded IR-Based
UWRB Signals

Three kinds of signals models are used in next section’s introduction of the simulation-
periodogram-DFT based PSD estimation procedure. The first one is the non-modulated periodic

pulse train with period 7, defined in Section 2.4 as

Per
Xp ()= Y W(t—kT,,,) (A.1)
k=—w

where w(f) is the particular waveform used. Recall as well from Section 2.4 that this signal has

PSD given by

SN =77 2 WG 87 -5 (A2)

Per n=-w

where W(f) is the Fourier transform of w(7). Note how S, (f) consists exclusively on spectral

lines appearing at multiples of the pulse repetition frequency, PRF = 1/7,

Per *
The second signal used in Section A.3 is the non-coded (uncoded) PPM TH-IR-based UWB
signal introduced in Section 4.3.3 defined by

o Nyl

Xppy (1) = 2 z w(t =IT, kT, —y,T, — ey T.) (A.3)

I=—0 k=0

where y, €{0,1} is the /™ data bit; N, is the number of transmitted pulses per bit; 7, is the binary
PPM modulation index; {c, ,,} is a pseudo-random (PR) time hopping (TH) sequence taking
values on the set {0, 1, 2 ,..., (M/2)—1} with period y.; 7, is the nominal shift caused by the TH
sequence; 7, is the mean repetition time between pulses and 7, = N, T, is the bit time.

In this and the following section it will be assumed that y, is an independent identically

distributed (i.i.d.) binary random sequence with uniform distribution. As well it will be assumed

that the TH sequence is perfectly random (that is i.i.d. with uniform distribution) and thus ¢, ,, is

uniformly distributed over the set {0, 1, 2 ,..., (M /2)—1}. Under these assumptions the PSD of the
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signal defined by Equation (A.3) will show continuous (noise like) and discrete (spectral lines)

components and is given by (see Section 4.3.3)

Seomg V=8 ca N+, p(f) Wy =1

(A4)
S*‘l'/'\/ (f) = Sr/'m/ c l(f) +SX/’/'\/ <'2(f) +S“'I'l’.\l /’(f) N“ >1
9
f)\ l J275 /1, ) v 27lfT, kT,
" l"( 1 S J1y 1 — J27i j2 i
Sepmy 1N =W - 1Y 0 s D e (A.5)
¢=0 1=0
2
. (M/2)-1 - “N,-2 N,-l ——
_ 2w 1 —Jj2x, —J2xf(k'-k)T,
Sx/'/'\/ c2(f)= T, |(M12) € ‘ Z Z Refe } (A.6)
1=0 k=0  k'=k+]
2 2 2
UH/)\ S 1 I j2m(r/Ty)eT, 1 &R J2m(rl THIT, = j2m(r! T, kI,
- : y R s)ie J &~ s )KLy r
SumenUN=0EE D 11D e s D, €Y e S(f-5) (A7)
r=—w ¢=0 1=0 k=0

where S -(f) is the PSD’s continuous partand S, ,(f) is the PSD’s discrete part.

The third signal considered is the non-coded (uncoded) BPSK TH-IR-based UWB signal
defined by

w N,-l

L ()= Z aw(t—IT, —kT, —c,, ,,T.) (A.8)

where @, € {-1,1} is the BPSK data stream, i, i is a pseudo-random (PR) time hopping (TH)
sequence taking values on the set {0, 1, 2 ,..., (M /2)—1} with period ., and the other variables
are as in Equation (A.3). In this and the following section it will be assumed that e, is an uniform
distributed i.i.d. sequence, that is p,,, =Pr{a, =+1}=1/2 and p,  =Pr{a, =-1}=1/2. Thus

using the formulas introduced in Sections 2.4 and 3.4 the PSD of x,, (#) can be found to be

Ny=2 Ny=1 Asgpge ! — y
s 7W(/)\ —j2mf(k'=k)T, —J2Rfle(Cnn, 4k =CnN,, +k
Sy N =EIW(NF +ELE S S Refe ™4 40e s (A9)
k=0 k'=k+1 n=0

where A, =lem(g,,N,)/N, . Note how the PSD defined by Equation (A.9) does not have any

discrete (spectral line) component.

A.3 A Simulation-Periodogram-DFT Based Spectral
Estimation Methodology for the Validation of
Analytical PSD Expressions of IR-Based UWB
Signals

There exist several implementations of periodogram based spectral analysis such as the Bartlett,
the Welch and the Blackman-Tukey methods, [158, 160]. However, their common aim is to reduce
the variance of the periodogram based spectral estimate when only a single data record is available,

[158, 160]. This is not a problem with simulations in which several data records of the same length
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can be generated. Thus the variance reduction problem in this thesis is addressed by averaging non-
overlapping periodograms (Bartlett method), [157, 158, 160], and this topic will not be further

addressed in this appendix.

A.3.1 The Periodogram Based PSD Estimator

The periodogram is an estimator of a random process’ PSD from a finite segment of a single
realisation of such process, [157, 161]. In terms of a rectangular “data window” of length 7, the

periodogram is defined as

e 2
/

jxayﬁﬂm

T
-T/2

()

1
F(H=7 (A.10)

where x(7) is the random process whose PSD will be estimated. Similarly, in terms of a generic data

window the periodogram is given by

ELr)= (A.11)

wjx(z)xw (e ™ dt

where x, () is a real function such that x, (1)=0 for —o<¢<0 and 7 <r<w. It turns out that

x, (¢) is usually restricted to have unit energy, [157-161], that is

©

[x @at= [1x,(N)Pdr =1 (A.12)

- -

where X (f) is the Fourier transform of x (7).
Note that the time domain multiplication of the functions x(#) and x, (¢) implies convolution in
the frequency domain. Thus, it can be shown that the expected value of the estimator, E{P, ()}, is

related to the true spectrum, S_X( f), of the random process by ([157, 161])

E{R,(/)} = B.())=S,(N* X, (NF (A.13)
From Equation (A.13) can be seen that the periodogram is a biased estimator of the actual signal

spectrum, the bias being given by,

B.(N)=S.(N*| X, (NI -5.() (A.14)
Note how the bias is reduced as | X, (f)|" approaches an impulse function with unit energy, which

would require the use a data window with infinite length, [157, 159, 161].

A.3.2 Issues Arising in the Application of Periodogram Based PSD
Estimation Methods for Periodic and Noise Like Signals

Before introducing the simulation-periodogram-DFT based spectral estimation procedure used
in this thesis, the behaviour of the periodogram estimator will be assessed for two extreme cases
namely a noise like signal (whose PSD does not have any discrete component) and a periodic

signal (whose PSD consists exclusively on spectral lines).
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First assume x(7) is white noise with two sided power spectral density given by

Sx.xu'(;\' (f) =i NO /12 (A ] 5)

When a data window fulfilling Equation (A.12) is used the expected value of the periodogram

estimate is given by

]

PUS) =S, DX (NP= [ X,(f -V dh=N, /2 (A.16)

Thus it can be concluded that the periodogram estimator gives good results for signals with noise
like behaviour.

Now consider the periodic signal defined by Equation (A.1) with respective PSD given by
Equation (A.2). When using a data window fulfilling Equation (A.12) the expected value of the

periodogram estimator yields

B(N)=8,, (N*XNP=75 Y IFGF 8 -3 =71 D IWEIFI X -2F (A1)

n=—w n=—w

for this signal. Thus the spectral lines are replaced by shifted replicas of | X, (f)[° located at

frequencies multiples of 1/7),,, .

This means that a periodogram based PSD plot may not show the actual power contained in a

spectral line located at f =k/T,,, . Instead a periodogram plot will “display” the power given by

B GE) =L WGEIP| X, OF +-55 ¥ IFGEIX, G~ (A.18)
i

at f=k/T,, . Therefore for a spectral line located at f =k/T,, a periodogram based PSD plot

will display the actual power of the spectral line multiplied by |X,(0)|> plus an aliasing
component given by the rightmost sum in Equation (A.18). Thus inspecting such a plot may not be
a sensible way for the assessment of the spectral lines’ power unless the effects of the data window
are considered. This is particularly true for unit energy data windows (that is data windows
fulfilling Equation (A.12)) which are not necessarily constrained in terms of the value
acquired by | X, (0)*.

As an example of this consider the unit energy rectangular data window defined by

5 (=T OSIST (A.19)
' 0 elsewhere
For this data window | X (f)|’ can be found to be
| X,,.. () =Tsine*(Tf) =T (“5572) (A.20)

where sinc is the cardinal sine function. Note how for this data window | X, ,.(0)[°=7" . Therefore

if T #1s a periodogram based PSD plot will not display the actual power of the spectral lines as

shown by Equation (A.18).
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An better method for periodogram based PSD estimation of periodic signals would be to ignore

the unit energy constraint and instead use a data windows that satisfy

| X, (0)}=1 (A21)
Thus if Equation (A.21) is fulfilled, a periodogram based PSD plot will show a closer
approximation to the actual power of discrete PSD components, being any difference caused by the

rightmost sum on Equation (A.18). As an example a “| X, (0)[’=1" rectangular data window can

be defined as
x\l' ”lle(t) :{I/T 0 St S T (A.22)
4 0 elsewhere
with
| Xy e (F) = sinc? (7f) (A.23)

Note how the data window defined by Equation (A.22) and the unit energy rectangular data
window defined by Equation (A.19) are equivalent for 7 =1s.

It is worth noting that although the use of a | X, (0)[’=1 data window allows us to obtain

periodogram based PSD plots that show a good approximation to the actual power of periodic PSD

components, a large error in the estimation of the continuous PSD level may be produced. As an
example, when using the | X, (0)]’=1 rectangular data window defined by Equation (A.22) the

expected value of the periodogram of white noise with PSD defined by Equation (A.15) becomes

P =S, (VX o (D= [Hsine’ (k=524 (A24)

-

which is a weighted version of the actual continuous PSD level.

A.3.3 Discrete Periodogram Formulas

Until this point the discussion has been presented in terms of continuous signals. However the
previous results and observations also apply when the estimation is based on a discrete record

x(nT

samp

) of the continuous signal x(z), where T

samp

is the sampling period. In fact the discrete

equivalent of the periodogram (as defined in Equation (A.11)) for a unit energy rectangular data

window (Equation (A.19)) is defined by ([157-159])

F\ k - Tsamp
wiue [ Nlgamp N

where N is number of samples taken from x(7)x,

N-1 :
Y x(nT,,, e ™" s k=0,1,..,N (A.25)

n=0

(t). Thus, Equation (A.25) gives the (possibly

W, ue

aliased) unit energy rectangular data window periodogram estimate, P, . (f), of the continuous

time signal, x(¢), at frequencies multiples of 1/ NT

samp *

Note the relationship between the sampling

period, 7, , the number of samples, N, and the data window length in continuous time, 7, is given
by
T=T,,N (A.26)
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By following [157] or [158] the discrete equivalent of the periodogram (as defined in Equation
(A.11)) fora | X, (0)[*=1 rectangular data window (Equation (A.22)) can be found to be

_— k
Pw,llll(’ m .

which gives the (possibly aliased) | X, (0)’=1 rectangular data window periodogram estimate,

N-1 2
LD x(nT,,, )N (A.27)

samp
n=0

P, (f),of the continuous time signal, x(7), at frequencies multiples of 1/ N7,

w. nue samp =

A.3.4 The Simulation-Periodogram-DFT Based Spectral Estimation
Procedure Used to Validate the Analytical PSD Results

The first issue arising when using simulation-periodogram-DFT based spectral analysis of IR-
based UWB signals is that the PSD may show both continuous (noise like) and discrete (periodic
like) components as evidenced by Equations (A.4) to (A.7). Thus, in order to simultaneously

validate the continuous and discrete parts of analytical PSD expressions with a single periodogram
based PSD estimate the data window used must satisfy both the unit energy and the | X, (0)[*=1

conditions.

However, from the previous discussion it can be inferred that for signals with continuous and
discrete PSD parts it may be advantageous to implement a double simulation-estimation procedure
when the PSD estimation is periodogram based. Therefore the following methodology was used to
validate the analytical PSD results presented in the previous chapters:

e For signals with discrete PSD and no continuous PSD the simulation-periodogram-DFT

based PSD estimate was calculated using a | X, (0)[°=1 rectangular data window. These
plots were correspondingly labelled as “Sim. | X, (0)[*=1" throughout the thesis.

e For signals with continuous PSD and no discrete PSD the simulation-periodogram-DFT
based PSD estimate was calculated using a unit energy rectangular data window. These
plots were correspondingly labelled as “Sim. U.E.”.

e For signals with both continuous and discrete PSD parts two simulation-periodogram-DFT

based PSD estimates were obtained, one using a | X, (0)[°=1 rectangular data window

(labelled as “Sim. | X, (0)[*=1") and the other using a unit energy rectangular data window

(labelled as “Sim. U.E.”). Usually both estimates and the analytical result were plotted
altogether in the same figure adequately labelled.

All the simulations were implemented in MATLAB®. Parameters such as the simulation’s
resolution and the data window length were adjusted in accordance with the computational
resources available. Although MATLAB® provides predefined spectral estimation functions such
as the periodogram, these were not used. Instead a different routine which uses MATLAB™’s basic
fast Fourier transform (FFT) function was programmed to calculate the discrete periodogram

estimates introduced in Section A.3.3.
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A.3.4.1 Examples of Simulation-Periodogram-DFT based PSD Estimates of Periodic Signals
In Figure A-1 the analytical PSD defined by Equation (A.2) is plotted with simulation-

periodogram-DFT based PSD estimates obtained by using a unit energy rectangular data window
(Figure A-1a) and a | X, (0)]’=1 rectangular data window (Figure A-1b). Note that the analytical

PSD defined by Equation (A.2) consists of discrete components exclusively.
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Figure A-1. Analytical and simulated power spectrum of a periodic pulse train. The signal pulse repetition
period is 7p,, = 10 ns. The 4™ derivative Gaussian pulse was used with duration 7,, ~ 0.4 ns..

It can be seen in Figure A-1 that for a PSD consisting of spectral lines exclusively, the use of

| X, (0)[’=1 rectangular data windows provides a better PSD estimate.

A.3.42 Examples of Simulation-Periodogram-DFT based PSD Estimates of Signals with
Continuous PSD and No Spectral Lines
In Figure A-2 the analytical PSD defined by Equation (A.9) is plotted with simulation-

periodogram-DFT based PSD estimates obtained by using a unit energy rectangular data window

(Figure A-2a) and a | X, (0)|’=1 rectangular data window (Figure A-2b).

= Sim. U.E. — Analytical Siin. L\'W(O)lz = Analytical

-20} -20

c% 40} g -40
z s
2z 2
(7] w
G 60 & 60
a | o
g | E
g g
o -80} o -80
w w
E E
o o
o -100 a -100

-120+ -120

0 1 0 1
Frequency in Hz x10° Frequency in Hz x10
a) Unit energy rectangular data window b) | X, (0) =1 rectangular data window

Figure A-2. Analytical and simulated PSDs of the BPSK TH-IR-based UWB signal defined by Equation (A.8).
The signal parameters are N,, =5, 7,=50ns, 7,= 10 ns, 7. =2 ns, T =1 ns and ¢, uniform distributed over
the set {0, 1, 2. 3, 4}. The 4" derivative Gaussian pulse is used with duration 7, ~ 0.4 ns.
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It can be seen in Figure A-2 that for a PSD consisting on a continuous (noise like) part without

any spectral line content the unit energy rectangular data window provides a better PSD estimate.

A.3.4.3 Examples of Simulation-Periodogram-DFT based PSD Estimates of Signals with
both Continuous and Discrete PSD Components

In Figure A-3 the analytical PSD defined by Equations (A.4) to (A.7) is plotted with simulation-

periodogram-DFT based PSD estimates obtained by using a unit energy rectangular data window

(Figure A-3a) and a | X, (0)[’=1 rectangular data window (Figure A-3b). Note that the analytical

PSD defined by these equations shows both continuous (noise like) and discrete (periodic like)

components.
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Figure A-3. Analytical and Simulated PSDs of the PPM TH-IR-based UWB signal defined by Equation (A.3).
The signal parameters are N,, =5, 7,=50ns, 7, = 10 ns, 7. =2 ns, 7= 1 ns and ¢y,x uniform distributed over
the set {0, 1, 2, 3, 4}. The 4" derivative Gaussian pulse was used with duration 7, ~ 0.4 ns.

It can be seen in Figure A-3 that for a PSD showing continuous and discrete components both

data windows must be used to validate the analytical result as expected.

A.4 Comparisons of Simulation-Periodogram-DFT
Based PSD Estimates of Convolutionally Coded
Signals with the FC(C’s Spectral Mask for Indoor
Applications

The simulation-periodogram-DFT based PSD plots presented in this section are intended to
further show the spectral shaping capabilities of the recursive spectral line suppressive (RSLS —
Chapter 5) and the recursive spectral line-free (RSLF — Chapter 6) convolutional encoders
introduced in Chapters 5 and 6.

The FCC defines its average emission limits in terms of effective isotropic radiated power
(EIRP) in dBm as measured with a 1 MHz resolution bandwidth (RBW), [2]. Thus, in order to

obtain a simulation-periodogram-DFT based PSD estimate that can be compared to the FCC’s
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spectral mask, the length of the data window used in the simulation must be such that the
simulation estimate has equivalent resolution bandwidth equal to 1 MHz. For rectangular data

windows such as those defined by Equations (A.19) and (A.22), the data window’s length should
be set to 7=1/RBW=1/10° =1 ps in order to obtain simulation estimates with equivalent RWB
equalto 1 MHz, [158, 159].

Once the rectangular data window length has been defined, it is necessary to decide which type
of window should be used for the estimation: a unit energy rectangular data window or a

| X,(0)[’=1 rectangular data window. In order to do this the next section reviews the expected

behaviour of actual power spectrum measurements of IR-based UWB signals as reported in [1, 2, 42].

A.4.1 Review of Results Reported in [1, 2, 42] Concerning the Behaviour
of PSD Measurements of UWB Signals

As explained in Section A.3.2 any periodogram based PSD estimate will show different

behaviour for the continuous and discrete PSD components depending on the type of data window
used (unit energy or | X, (0)[*=1). Thus defining which data window to use is an important issue if

simulation-periodogram-DFT based PSD estimates are to be compared with the FCC’s spectral
masks.

The first point to note in the FCC regulation ([2] page 72), is that it clarifies that for periodic
signals the measured spectral line power will be the same regardless of the RBW used for the
measurement as far as the RBW of the measurement device contains only one spectral line at a
time. As well, the FCC regulation clarifies that the measured power of noise like emissions will

vary as
10log,, (W) (dB) (A.28)

where RBW,,; is the reference resolution bandwidth and RBW,, is the new resolution bandwidth.
This means that for UWB signals with discrete and continuous PSD components, the measured power
of the spectral lines should remain unchanged when varying the RBW (as far as only one spectral line
is resolved within the specified RBW) while the measured power of the continuous PSD should vary
as described by Equation (A.28).

The U. S. Department of Commerce — National Telecommunications and Information
Administration (NTIA) has released two special publications [1, 42], which deal with the power
spectrum measurement and interference assessment of UWB signals. In particular [1] introduces
formulas that describe the behaviour of actual UWB power spectrum measurements as a function
of the RBW of the measurement instrument (see Section 3 on [1]). These formulas are given
referenced to the average power spectrum measured with a | MHz RBW.

If we assume a periodic IR-based UWB signal with 7, >1 ps (see Equation (A.1)), then the

results in [1] and [42] tell us that the measured average power spectrum of this signal will consist

of spectral lines whose height remains constant even when varying the RBW. This is so as far as
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the RBW is less than 1/7,, . In contrast, when the IR-based UWB signal shows noise like

behaviour the measured average power spectrum will change with any variation in the

measurement’s RBW as described by Equation (A.28).

A.4.2 Data Window Used in the Simulations

From the review presented in Section A.4.1, it can be concluded that in order to compare
simulation-periodogram-DFT based PSD estimates with the FCC’s spectral masks, the unit energy
rectangular data window may not be the best option. In order to see this note from Equation (A.16)
how for this window the periodogram based PSD estimate of noise like signals does not vary with a
change on the data window length 7' (equivalent to change on the RWB). Moreover, when varying
the data window length the estimated power of any spectral line will change as a function of 7.
Thus the behaviour of the simulation-periodogram-DFT based PSD estimate will not resemble the
expected behaviour of actual power spectrum measurements as reported in [1, 2, 42] (see the
previous section) when a unit energy data window is used.

Now consider the behaviour of simulation-periodogram-DFT based PSD estimates when the
| X,(0)]’=1 rectangular data window is used. It can be concluded from Equations (A.18), (A.21)

and (A.23) that for this window the estimated power of the spectral lines does not vary with a
change on the data window length 7' (equivalent to a change in the RBW). Nevertheless, from
Equation (A.24) it can be seen that when using this kind of data window the periodogram based
PSD estimate of noise-like signals will display the actual PSD level multiplied by 1/7 (which is
the equivalent RBW of the estimate). Thus, when changing the data window length from 7,./to 7.,
the periodogram based PSD estimated will vary following

IOlogm(W;'”“‘) (dB) (A.29)

which is equivalent to the behaviour described by [1, 2, 42] (see Equation (A.28)). Thus it can be
concluded that when comparing simulation-periodogram-DFT based PSD estimates with the FCC’s

spectral masks the better option would be to use | X, (0)[’=1 data windows.

A.4.3 Comparisons of Simulation-Periodogram-DFT Based PSD
Estimates of Binary to M-ary Convolutionally Coded Signals with
the FCC’s Spectral Mask for Indoor Applications

This section presents simulation-periodogram-DFT based PSD estimates for the same set of
signals used in Chapter 5 — Section 5.5.1. Thus simulated PSD estimates are obtained for PPM TH-
IR-based UWB signals using the 32-ary Bernoulli map pseudo-chaotic time hopping (PCTH)
scheme, the rate 1 feedforward spectral line suppressive (FSLS) binary to 32-ary convolutional
encoder with v=6 introduced in Chapter 4 — Table 4-1 (Section 4.4.4), and the rate 1 recursive
spectral line suppressive (RSLS) binary to 32-ary convolutional encoders with v =6 reported in

Chapter 5 — Tables 5-1 and 5-2. Furthermore, PSD examples of a non-coded binary PPM TH-IR-
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based UWB signal with periodic and perfectly random (ideal) 16-ary TH are provided as well for
comparison purposes.

In order to further assess the spectral shaping capabilities of the RSLF binary to M-ary
convolutional encoders introduced in Chapter 5, a more biased (compared to the two used in
Section 5.5.1) binary Markov source (BMS) will be assumed. Particularly the BMS used to obtain
all the results presented in this section has one step transition probabilities given by

P, =9/10 and p,,=1/10 (A.30)
with corresponding steady state probabilities

7,,=1/10 and 7, =9/10 (A31)

Thus both, the steady state and one step transition probabilities are highly biased.

The comparisons of simulated PSDs with the FCC’s spectral mask for the non-coded PPM TH-
IR-based UWB signal are shown in Figure A-4. In Figure A-4a the periodic sequence {0, 14, 1, 5,
13,6,3,15,7, 11, 8, 12,9, 2, 10, 4} with y, =16 was used for TH while in Figure A-4b perfectly
random (ideal) TH uniformly distributed over the set {0, 1...., 15} was assumed. Note that none of
the of the PSDs plotted in Figure A-4 fits under the FCC’s spectral mask, specifically in the range
covering from 0.96 GHz to 1.610 GHz.
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a) PR-TH driven by the periodic sequence b) Ideal perfectly random TH with ¢, uniform
{0,14,1,5,13,6,3,15,7,11,8,12,9, 2, 10, 4} distributed over the set {0, 1, ..., 15}

Figure A-4. Simulated PSDs for a TH-IR-based UWB system using binary PPM with pseudo-random and
perfectly random 16-ary TH. The simulation used a |.X,,(0)]* = 1 rectangular data window with duration 7'=1 ps
(equivalent to a 1 MHz RBW). The signal parameters are N,,= 1, 7,=12.5ns, 7, = 12.5 ns, 7.= 0.78125 ns
and 7;=0.39 ns. The 3" derivative Gaussian pulse was used with duration 7}, ~ 0.35 ns.

In Figure A-5 the comparisons of simulated PSDs with the FCC’s spectral mask for the schemes
employing 32-ary PCTH and the rate 1, v=6, FSLS binary to 32-ary convolutional encoder
introduced in Table 4-1 (Section 4.4.4) are shown. Note that for the highly biased BMS with one step
transition probabilities given by Equation (A.30), the PSD of the signals generated by these encoders
does not fit under the FCC’s spectral mask in the range covering from 0.96 GHz to 1.610 GHz.

The comparisons of simulated PSDs with the FCC’s spectral mask for the schemes employing
the rate 1, v=6, RSLS binary to 32-ary convolutional encoders introduced in Tables 5-1 and 5-2

(Section 5.4.2) are shown in Figure A-6. It can be seen in Figure A-6 that the generated signal’s
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PSD fits under the FCC’s spectral mask when using the RSLS encoders. Thus, compliance with the

FCC’s spectral mask can be achieved even when the data stream at the encoder input is generated

by the highly biased BMS with one step transition probabilities defined by Equation (A.30).
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Figure A-5. Simulated PSDs for a TH-IR-based UWB system using 32-ary PCTH and the rate 1, v=6, FSLS
binary to 32-ary convolutional encoder from Table 4-1 (Section 4.4.4). The simulation used a |X,,(0)* =1
rectangular data window with duration 7= 1 us (equivalent to a | MHz RBW). The signal parameters are

N,=1,T,=125ns, 7,=12.5nsand 73=0.39 ns. The 3" derivative Gaussian pulse was used with
duration 7, ~ 0.35 ns.
-35 — — - -35 —
. Sim. [X (0)% =1 === FCC Spectral Mask " Sim. [x, (0)7 =1 ----- FCC Spectral Mask
o) b = |
I -45 H I 45 1
S P2 :
£ E £ H
R [N SO il g% I— |
2 o 2 =
9 .55 | 255
@ ‘ [ |
[a] | * 1k ‘i = ‘1 i tx '
® 60 ) 'wlje © -60 LA A ’
= | f ] (] 1 { = (h
g l‘;" ‘N*.P‘ Y L"‘w l‘ ‘Y‘ §, u"‘3 S' y ]‘ "1(‘
& 65 ,‘p#g [ L & 65 Ry TIORLL
g Uk“ { ‘I i g A’{F W )
R . * R { ™
i e N
! 75 i

<0 1 2 3 4 5 6 7 8 9

Frequency in Hz

a) 32-ary RSLS encoder with feedback
polynomial (D) =1 + D° = 101 (Table 5-1)

- Ly |

-80
0

Frequency in Hz x10

b) 32-ary RSLS encoder with primitive feedback
polynomial 5(D) =1+ D + D°= 1414 (Table 5-2)

Figure A-6. Simulated PSDs for a TH-IR-based UWB system using the rate 1, v=6, RSLS binary to 32-ary
convolutional encoders reported in Tables 5-1 and 5-2 (Section 5.4.2). The simulation used a |X,,(0)]* =
rectangular data window with duration 7= 1 us (equivalent to a 1 MHz RBW). The signal parameters are

N,=1,T,=125ns,T,=12.5nsand 73 =0.39 ns. The 3" derivative Gaussian pulse was used with
duration 7, ~ 0.35 ns.

A.4.4 Comparisons of Simulation-Periodogram-DFT Based PSD
Estimates of Binary Convolutionally Coded Signals with the
FCC’s Spectral Mask for Indoor Applications

This section presents simulation-periodogram-DFT based PSD estimates for the some of the
rate 1/4 binary convolutional encoders reported in Chapter 6 — Table 6-4 (Section 6.5) when used

in quaternary biorthogonal PPM (Q-BOPPM) IR-based UWB systems with natural mapping. As
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well, simulated PSD estimates are provided for some the best rate 1/4 binary convolutional
encoders known reported in [111] and the rate equivalent non-coded scheme introduced in Chapter
6 — Section 6.6 as a reference.

All the figures introduced in this chapter were obtained under the constraint that the binary data
stream at the encoder’s input is generated by the BMS with one step transition probabilities defined
by Equation (A.30) and corresponding steady state probabilities given in Equation (A.31).

The comparisons between the FCC’s spectral mask and simulated PSD estimates obtained when
using the rate equivalent non-coded pulse repetition scheme are shown in Figure A-7. In Figure A-
7b the Barker pseudo-random (PR) direct sequence (DS) {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1}
with period y, =11 (used in the IEEE 802.11 standard, [151]) was used for polarity randomisation

purposes (see Sections 2.5 and 6.6). It can be seen in Figure A-7 that none of the simulated PSD
estimates fits under the FCC’s spectral mask. Nevertheless note how the maximum PSD level is
reduced upon the introduction of PR-DS multiplication (Barker sequence).
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Figure A-7. Simulated PSDs for a non-coded Q-BOPPM IR-based UWB system with four pulses repetition.
The simulation used a |X,,(0)* = 1 rectangular data window with duration 7’=1 ps (equivalent to a 1 MHz RBW).
The signal parameters are 7, =40 ns, 7, = 10 ns and 7= 0.5 ns. The 4™ derivative Gaussian pulse is used with
duration 7,, ~ 0.4 ns. No TH is considered. The periodic Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1}
is used for DS pulse polarity randomisation purposes in Figure A-7b.

In Figure A-8 simulated PSD estimates obtained when using the rate 1/4, v = 4, RSLF binary
convolutional encoder reported in Table 6-4 (Section 6.5) are shown. Note how the maximum PSD
level of the plots shown in Figure A-8 is less than the maximum PSD level of the plots shown in
Figure A-7. Furthermore, it can be seen in Figure A-8b that compliance with the FCC’s spectral
mask is achieved upon the introduction of PR-DS multiplication by the Barker DS sequence {+1, -
1, +1,+1,-1,+1, +1, +1, -1, -1, -1}.

The comparisons of simulated PSDs with the FCC’s spectral mask obtained when using the rate
1/4 RSLF binary convolutional encoders with v=5 and v=6 reported in Table 6-4 (Section 6.5)
are shown in Figure A-9. It is important to highlight that neither TH nor DS multiplication was

assumed for these plots. It can be seen in Figure A-9 that for this highly biased BMS (defined by
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Equation (A.30)) compliance with the FCC’s spectral mask can be achieved by using these RSLF

binary convolutional encoders even without using any polarity randomisation.
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Figure A-8. Simulated PSDs for a Q-BOPPM IR-based UWB system using the rate 1/4, v=4, RSLF binary
convolutional encoder from Table 6-4 (Section 6.5). The simulation used a |X,(0)]* = 1 rectangular data
window with duration 7= 1 us (equivalent to a 1 MHz RBW). The signal parameters are 7, = 20 ns,
T,=10nsand 7= 0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7,, ~ 0.4 ns. No
TH is considered. The periodic Barker sequence {+1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1} is
used for DS pulse polarity randomisation purposes in Figure A-8b.
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Figure A-9. Simulated PSDs for a Q-BOPPM IR-based UWB system using the rate 1/4 RSLF binary
convolutional encoders from Table 6-4 (Section 6.5). The simulation used a |X,,(0)]* = 1 rectangular data
window with duration 7= 1 us (equivalent to a 1 MHz RBW). The signal parameters are 7, = 20 ns,
T,=10nsand 73= 0.5 ns. The 4™ derivative Gaussian pulse is used with duration 7, ~ 0.4 ns.

No TH or DS is considered.

Lastly, the comparisons of simulated PSDs with the FCC’s spectral mask obtained when using
the best rate 1/4 binary convolutional encoders known with v=5 and v=6 reported [111] are
shown in Figure A-10. Similar to Figure A-9 neither TH nor DS multiplication was assumed for
these plots. It can be seen in Figure A-10 that none of the simulated PSD estimates fits under the
FCC’s spectral mask.

As a concluding remark note that the comparison plots presented here further prove the spectral
shaping capabilities of the RSLS binary to M-ary convolutional encoders introduced in Chapter 5

and the RSLF binary convolutional encoders introduced in Chapter 6. In fact it can be seen that
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compliance with the FCC’s regulation can be achieved by using these encoders compared with rate
equivalent non-coded systems and convolutionally coded systems using the best binary
convolutional encoders known.
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Figure A-10. Simulated PSDs for a Q-BOPPM IR-based UWB system using the best rate 1/4 RSLF binary
convolutional encoders known reported [111]. The simulation used a |X,,(0)]* = 1 rectangular data window with
duration 7= 1 ps (equivalent to a 1 MHz RBW). The signal parameters are 7,=20ns, 7,=10nsand 7;= 0.5 ns.

The 4™ derivative Gaussian pulse is used with duration 7}, ~ 0.4 ns. No TH or DS is considered.
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Appendix B

IEEE 802.15.3a Multipath Channel
Model for UWB Communications
(from [153]))

The impulse response of the IEEE 802.15.3a multipath channel model for ultra wideband
(UWB) communications is described by ([13, 15, 17, 153]):

~

L I
hO=X> > @, 8t-T -1, (B.1)

=1 1

x~
Il

where the subscript 7 stands for the channel realization; X; represents log-normal shadowing; L' is

the number of received clusters; K, is the number of multipath components received in the "
cluster; ¢, , are the multipath coefficients of the k™ multipath component of the /" cluster; 7' is the

I" cluster arrival time and 7, , is the delay of the k™ multipath component within the /" cluster.

The proposed model uses the following definitions:
e 7, =the arrival time of the first path of the /" cluster
e A =cluster arrival rate
e A =ray arrival rate; that is, the arrival rate of path within each cluster.

By definition, we have 7,, =0. The distribution of cluster arrival time and the ray arrival time

are given by

P(T; | T,.,) = Aexp{~A(T, - T,_))}, [>0 B2)
Pty | T4oy) = Axp{-A(7,, — T4y}, k>0 ’
The channel coefficients are defined as follows:
Bt = Prid
k.l k.1 lgk.l ) ) (B})
201log10(¢,4y ;) o< Normal(, ,, 07 +05)
or
| iy [ 10M T (B.4)

where n, oc Normal(g, ,,07) and n, oc Normal(y, ,,02) are independent and correspond to the
fading on each cluster and ray, respectively,

E{| &S, |} = Qe Te ™' (B.5)
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—

where 7} is the excess delay of bin / and Q, is the mean energy of the first path of the first cluster,
and py, is equiprobable +1 to account for signal inversion due to reflections. I' and y are the

cluster decay factor and ray decay factor, respectively. The g, , are thus given by

_10In(Q) =107, /T=107,, /7 (5% +072)In(10)

In(10) 20 (B.6)

My

In the above equations, & reflects the fading associated with the " cluster, and [y

corresponds to the fading associated to the " ray of the /" cluster. Note that a complex tap model
was not adopted here. The complex baseband model is a natural fit for narrowband systems to
capture channel behaviour independent of carrier frequency, but this motivation breaks down for
UWRB systems where a real-valued simulation at RF may be more natural.

Since the log-normal shadowing of the total multipath energy is captured by the term X, the
total energy contained in the terms ¢, , is normalized to unity for each realization. This shadowing
term is characterized by the following

201log10(.X,) e« Normal(0,57 ) (B.7)

As mentioned in Chapter 6 the channel model considers four different indoor scenarios and thus

it defines four different sets of statistics for each one of them. The parameters for each channel

model are given in Table B-1.

Table B-1. IEEE 802.15.3a UWB multipath channel model parameters

Model Parameters cMm 1! CM 2° cM 3’ cM 4!
A [1/nsec] (cluster arrival rate) 0.0233 0.4 0.0667 0.0667
A [1/nsec] (ray arrival rate) 2.5 0.5 2.1 2.1
I' (cluster decay factor) 7.1 ) 2.1 2.1
¥ (ray decay factor) 4.3 6.7 7.9 12

o, [dB] (stand. dev. of cluster lognormal

fading term in dB) 3.4 34 3.4 3.4
o, [dB] (stand. dev. of cluster lognormal

fading term in dB) 34 34 34 34
oy [dB] (stand. dev. of lognormal fading 3 3 3 &

term for total multipath realizations in dB)

! This model is based on LOS (0-4 m) channel measurements

2 This model is based on NLOS (0-4 m) channel measurements

3 This model is based on NLOS (4-10 m) channel measurements

* This model was generated to fit a 25 ns RMS delay spread to represent an extreme NLOS multipath channel
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