
Closure Properties of Pattern Languages

Joel D. Day1, Daniel Reidenbach?1, and Markus L. Schmid2

1 Department of Computer Science, Loughborough University,
Loughborough, Leicestershire, LE11 3TU, UK

J.Day@lboro.ac.uk

D.Reidenbach@lboro.ac.uk
2 Universität Trier, FB IV–Abteilung Informatikwissenschaften,

D-54286 Trier, Germany
MSchmid@uni-trier.de

Abstract. Pattern languages are a well-established class of languages
that is particularly popular in algorithmic learning theory, but very lit-
tle is known about their closure properties. In the present paper we
establish a large number of closure properties of the terminal-free pat-
tern languages, and we characterise when the union of two terminal-free
pattern languages is again a terminal-free pattern language. We demon-
strate that the equivalent question for general pattern languages is char-
acterised differently, and that it is linked to some of the most prominent
open problems for pattern languages. We also provide fundamental in-
sights into a well-known construction of E-pattern languages as unions
of NE-pattern languages, and vice versa.

Keywords: Pattern languages; Closure properties

1 Introduction

Pattern languages were introduced by Dana Angluin [1] in order to model the
algorithmic inferrability of patterns that are common to a set of words. In this
context, a pattern is a sequence of variables and terminal symbols, and its lan-
guage is the set of all words that can be generated from the pattern by a substi-
tution that replaces all variables in the pattern by words of terminal symbols.
Hence, more formally, a substitution is a terminal-preserving morphism, i. e., a
morphism that maps every terminal symbol to itself. For example, the pattern
language of the pattern α := x1x1ax2b, where x1, x2 are variables and a, b are
terminal symbols, is the set of all words that have a square as a prefix, followed
by an arbitrary suffix that begins with the letter a and ends with the letter b.
Thus, e.g., abbabbaab is contained in the language of α, whereas bbbaa is not.
It is a direct consequence of these definitions that a pattern language is either
a singleton or infinite. Furthermore, it is worth noting that two basic types of
pattern languages are considered in the literature, depending on whether the

? Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288377872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J.D. Day, D. Reidenbach, and M.L. Schmid

variables must stand for nonempty words (referred to as non erasing or NE-
pattern languages) or whether they may represent the empty word (so-called
extended, erasing or simply E-pattern languages).

While the definition of pattern languages is simple, many of their proper-
ties are known to be related to complex phenomena in combinatorics on words,
such as pattern avoidability (see Jiang et al. [7]) and ambiguity of morphisms
(see Reidenbach [12]). Hence, the knowledge on pattern languages is still patchy,
despite recent progress mainly regarding decision problems (see, e. g., Freyden-
berger, Reidenbach [5], Fernau, Schmid [3], Fernau et al. [4] and Reidenbach,
Schmid [13]) and the relation to the Chomsky hierarchy (see Jain et al. [6] and
Reidenbach, Schmid [14]).

Establishing the closure properties of a class of formal languages is one of the
most classical and fundamental research tasks in formal language theory and any
respective progress normally leads to insights and techniques that yield a better
understanding of the class. In the case of pattern languages, it is known since
Angluin’s initial work that they are not closed under most of the usual opera-
tions, including union, intersection and complement. However, these non-closure
properties can be shown by using very basic example patterns and exploiting pe-
culiarities of the definition of pattern languages. For example, if a pattern does
not contain a variable, then its language is a singleton; hence the union of any
two distinct singleton pattern languages contains two elements, and therefore
it cannot be a pattern language. Furthermore, the intersection of two pattern
languages given by patterns that start with different terminal symbols is empty
and the empty set, although a trivial language, is not a pattern language as well.
Since, apart from a strong result by Shinohara [15] on the union of NE-pattern
languages, hardly anything is known beyond such immediate facts, we can ob-
serve that in the case of pattern languages the existing closure properties fail to
contribute to our understanding of their intrinsic properties.

It is the main purpose of this paper to investigate the closure properties of
pattern languages more thoroughly. To this end, in Section 3, we consider the
closure properties of two important subclasses of pattern languages, namely the
classes of terminal-free NE- and E-pattern languages, i. e., pattern languages that
are generated by patterns that do not contain any terminal symbols. This choice
is motivated by the fact that terminal-free patterns have been a recent focus
of interest in the research on pattern languages and, furthermore, most existing
examples for non-closure of pattern languages (including the two examples for
union and intersection given in the previous paragraph) do not translate to the
terminal-free case. In Section 3.1, we completely characterise when the union
of two terminal-free pattern languages is again a terminal-free pattern language
and, in Section 3.2, we prove their non-closure under intersection, for which the
situation is much more complicated compared to the operation of union.

We consider general pattern languages in Section 4, and we provide complex
examples demonstrating that it is probably a very hard task to obtain full char-
acterisations of those pairs of pattern languages whose unions or intersections
are again a pattern language. In Section 4.3, we also study the question whether

Closure Properties of Pattern Languages 3

an E-pattern language can be expressed by the union of nonerasing pattern lan-
guages and, likewise, whether an NE-pattern language can be expressed by the
union of erasing pattern languages. This question is slightly at odds with the
classical investigation of closure properties, since we apply a language operation
to members of one class and ask whether the resulting language is a member
of another class. However, in the case of pattern languages, this makes sense,
since every NE-pattern language is a finite union of E-pattern languages and
every E-pattern language is a finite union of NE-pattern languages (see Jiang et
al. [7]), a phenomenon that has been widely utilised in the context of inductive
inference of pattern languages (see, e.g., Wright [17], Shinohara, Arimura [16]).

Due to space constraints, all proofs have been omitted from this paper.

2 Definitions and Preliminary Results

The symbols ∪, ∩ and \ denote the set operations of union, intersection and
set difference, respectively. For sets U and B with B ⊆ U , B := U \ B is the
complement of B.

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A,
a word (over A) is a finite sequence of symbols from A, and ε stands for the
empty word. The notation A+ denotes the set of all nonempty words over A, and
A∗ := A+ ∪ {ε}. For the concatenation of two words w1, w2 we write w1 · w2 or
simply w1w2, and wn stands for the n-fold concatenation of the word w. We say
that a word v ∈ A∗ is a factor of a word w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 ·v ·u2. If u1 (or u2) is the empty word, then v is a prefix (or a suffix,
respectively) of w. The notation |K| stands for the size of a set K or the length
of a word K. A word w is primitive if, for any u such that w = uk, k = 1. The
primitive root of a word w is the primitive word u such that w = uk, k ∈ N.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if, for every
a ∈ A, h(a) 6= ε. A morphism h is ambiguous (with respect to a word w) if there
exists a morphism g satisfying g(w) = h(w) and, for a letter a in w, g(a) 6= h(a).
If such a morphism g does not exist, then h is called unambiguous (with respect
to w). A morphism σ : A∗ → B∗ is periodic if for some (primitive) word w ∈ B∗,
σ(x) ∈ {w}∗ for every x ∈ A. The word w will be referred to as the primitive
root of σ. If |σ(x)| = 1 for every x ∈ A, then σ is 1-uniform.

Let Σ be a finite alphabet of so-called terminal symbols and X a countably in-
finite set of variables with Σ∩X = ∅. We normally assume X := {x1, x2, x3, . . .}.
A pattern is a nonempty word over Σ∪X, a terminal-free pattern is a nonempty
word over X; if a word contains symbols from Σ only, then we occasionally
call it a terminal word. For any pattern α, we refer to the set of variables in
α as var(α). If the variables in a pattern α are labelled in the natural way,
then it is said to be in canonical form, i. e., α is in canonical form if, for some
n ∈ N, var(α) = {x1, x2, . . . , xn} and, for any xi, xj ∈ var(α) with i < j, there
is a prefix β of α such that xi ∈ var(β) and xj /∈ var(β). A pattern α is a
one-variable pattern if | var(α)| = 1. A morphism h : (Σ ∪X)

∗ → (Σ ∪X)
∗

is

4 J.D. Day, D. Reidenbach, and M.L. Schmid

terminal-preserving if h(a) = a for every a ∈ Σ. The residual of a pattern α is
the word hε(α), where hε : (Σ ∪X)

∗ → (Σ ∪X)
∗

is a terminal preserving mor-
phism with hε(x) := ε for every x ∈ var(α). A terminal-preserving morphism
h : (Σ ∪X)

∗ → Σ∗ is called a substitution.

Definition 1. Let Σ be an alphabet, and let α ∈ (Σ ∪ X)∗ be a pattern. The
E-pattern language of α is defined by LE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ →
Σ∗ is a substitution}. The NE-pattern language of α is defined by LNE,Σ(α) :=
{h(α) | h : (Σ ∪X)

∗ → Σ∗ is a nonerasing substitution}.

Note that we call a pattern language terminal-free if there exists a terminal-free
pattern that generates it.

Some parts of our reasoning in the subsequent sections is based on word
equations, which are defined as follows. For a set of unknowns Y , a terminal
alphabet Σ, and two words α, β ∈ (Y ∪Σ)+, the expression α = β is called a word
equation. The solutions are terminal-preserving morphisms σ : (Y ∪ Σ)∗ → Σ∗

such that σ(α) = σ(β). The words σ(α) (= σ(β)) will be referred to as solution-
words. It is often convenient to interpret variables from patterns as unknowns,
and so word equations will often be formulated from two patterns.

This concludes the basic definitions of this paper. We now begin our investi-
gation of the closure properties of the class of pattern languages. As a starting
point, we refer to the corresponding result in the initial paper on pattern lan-
guages:

Theorem 1 (Angluin [1]). NE-pattern languages are not closed under union,
intersection, complement, Kleene plus, homomorphism and inverse homomor-
phism. NE-pattern languages are closed under concatenation and reversal.

3 Terminal-free Patterns

As briefly explained in Section 1, the proof of Theorem 1 heavily relies on the fact
that patterns can contain terminal symbols. In the present section, we therefore
wish to study whether the situation changes if we consider the classes of terminal-
free E-pattern languages and terminal-free NE-pattern languages.

3.1 Union

Simple examples show that neither the terminal-free NE-pattern languages nor
the terminal-free E-pattern languages are closed under union:

Proposition 1. Let Σ be an alphabet with {a, b} ⊆ Σ. For every Z,Z ′ ∈
{E,NE}, there does not exist a pattern γ, such that LZ,Σ(γ) = LZ′,Σ(x1x1) ∪
LZ′,Σ(x1x1x1).

It is worth noting that the above statement also provides a first minor insight
into the topic of expressing E-pattern languages as unions of NE-pattern lan-
guages and vice versa. We shall study this subject in Section 4.3 for patterns with

Closure Properties of Pattern Languages 5

terminal symbols in much more detail. In the present section, we merely want
to point out that the union of two terminal-free E-pattern languages is indeed
never a terminal-free NE-pattern language, and the union of two terminal-free
NE-pattern languages cannot be a terminal-free E-pattern language:

Proposition 2. Let Σ be an arbitrary alphabet, and let α and β be terminal-
free patterns. Then there does not exist a terminal-free pattern γ with LE,Σ(α)∪
LE,Σ(β) = LNE,Σ(γ) or LNE,Σ(α) ∪ LNE,Σ(β) = LE,Σ(γ).

In the remainder of this section we wish to prove a similarly strong result
for the actual closure of the class of terminal-free E- or NE-pattern languages.
Hence, we wish to characterise those pairs of terminal-free (NE-/E-)pattern lan-
guages where the union again is a terminal-free (NE-/E-)pattern language. Our
results shall demonstrate that the union of two terminal-free E-pattern lan-
guages can only be a terminal-free E-pattern language if there is an inclusion
relation between the two languages, and that the same holds for the NE-pattern
languages.

Our reasoning on the E case is based on a result on the inclusion problem for
E-pattern languages. In [8], Jiang et al. provide a construction for a morphism τk
such that, for two patterns α and β, the word τ|β|(α) is contained in LE,Σ(β) if
and only if there exists a morphism ϕ from β to α. This in turn implies that the
erasing languages of two terminal free patterns satisfy a subset relation if and
only if there exists a morphism from one pattern to the other. It is not difficult
to see that this construction can be further used to satisfy, for patterns α, β,
γ, and k = max(|α|, |β|), that τk(γ) ∈ LE,Σ(α) ∪ LE,Σ(β) if and only if γ is a
morphic image of α or β. Thus if the relation LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ) is
satisfied, then LE,Σ(γ) is a subset of (and therefore also equal to) LE,Σ(α) or
LE,Σ(β) and we have the following situation.

Lemma 1. Let Σ be an alphabet, |Σ| ≥ 2, and let α and β be terminal-free pat-
terns. There exists a terminal-free pattern γ with LE,Σ(α)∪LE,Σ(β) = LE,Σ(γ)
if and only if LE,Σ(α) ⊆ LE,Σ(β) or LE,Σ(β) ⊆ LE,Σ(α).

It can be observed from simple examples that, in the nonerasing case, in-
clusion cannot be characterised by the existence of a morphism between the
generating patterns. Thus, no equivalent argument can be derived for the non-
erasing case. However, a corresponding result can be obtained by looking at the
shortest words in the nonerasing languages of α, β and γ. To this end, we define,
for a pattern α, the set Mα to be {σ(α) | σ : var(α)∗ → Σ∗ is 1-uniform}.

The set Mα has been used to positive effect in existing literature (see,
e.g., [9]). It is particularly useful when considering nonerasing pattern languages
because it encodes exactly the original pattern α (up to a renaming of variables).
Moreover, it has a number of convenient properties when considering the union
of two NE-pattern languages. One such example is that if α is strictly shorter
than β, then the set of shortest words in LNE,Σ(α) ∪ LNE,Σ(β) will be exactly
Mα. Thus, if the union is itself the nonerasing language of some pattern γ, we
have that γ = α up to a renaming of variables. A similar result can be obtained
for the case that |α| = |β| by considering |Mα ∪Mβ |.

6 J.D. Day, D. Reidenbach, and M.L. Schmid

Lemma 2. Let Σ be an alphabet, |Σ| ≥ 2, and let α, β be terminal free patterns
in canonical form with |α| = |β|. Suppose that γ is a terminal free pattern (again
in canonical form) with Mα ∪Mβ = Mγ . Then γ ∈ {α, β}.
Consequently, we can verify the same statement for nonerasing languages as we
have for erasing languages.

Lemma 3. Let Σ be an alphabet, |Σ| ≥ 2, and let α and β be terminal-free
patterns. There exists a terminal-free pattern γ with LNE,Σ(α) ∪ LNE,Σ(β) =
LNE,Σ(γ) if and only if LNE,Σ(α) ⊆ LNE,Σ(β) or LNE,Σ(β) ⊆ LNE,Σ(α).

Note that Lemma 3 extends an equivalent result by Shinohara [15] that holds
for alphabets with at least 3 letters.

Thus, in general, the languages of two terminal-free patterns only union to-
gether to produce a third in the trivial case.

Theorem 2. Let Z, Z ′ ∈ {E,NE}. Let Σ be an alphabet, |Σ| ≥ 2, and let α,
β, γ be terminal-free patterns. Then LZ,Σ(α) ∪ LZ,Σ(β) = LZ′,Σ(γ) if and only
if LZ,Σ(α) = LZ′,Σ(γ) and LZ,Σ(β) ⊆ LZ,Σ(α) or LZ,Σ(β) = LZ′,Σ(γ) and
LZ,Σ(α) ⊆ LZ,Σ(β).

It is worth noting that, for terminal-free patterns, the inclusion problem –
and therefore the question of closure under union – is decidable in the E case
(see Jiang et al. [8], as explained above), but still open in the NE case.

3.2 Intersection

In the present section, we wish to investigate if the terminal-free NE- or E-pattern
languages are closed under intersection. For the NE case, simple counterexamples
such as α := xyx and β := xxy can be used to prove the following observation:

Proposition 3. The terminal-free NE-pattern languages are not closed under
intersection.

We can obtain an equivalent result for the terminal-free E-pattern languages,
but our reasoning is significantly more complex and requires the analysis of
certain word equations. Moreover, we are able to provide a characterisation for
a restricted class of pairs of patterns, and show that, for this class, the situation
is non-trivial (i.e., there exist both positive and negative examples). We proceed
by considering the link between word equations and intersections of pattern-
languages.

If, for a word equation α = β, the words α and β are over disjoint alphabets,
then the set of solutions σ : (var(α) ∪ var(β))∗ → Σ∗ corresponds exactly to
the set of pairs of morphisms τ1 : var(α)∗ → Σ∗, τ2 : var(β)∗ → Σ∗ such that
τ1(α) = τ2(β). Thus, it also exactly describes the intersection LE,Σ(α)∩LE,Σ(β).
Furthermore, such an intersection is invariant under renamings of α and of β, so
any intersection of E-pattern languages can be described in this way. The next
proposition gives a characterisation of when the intersection of two terminal-free
E-pattern languages is again a terminal-free E-pattern language in the restricted
case that the corresponding word equation permits only periodic solutions. Note
that, for α and β over disjoint alphabets, such solutions always exist.

Closure Properties of Pattern Languages 7

Proposition 4. Let Σ be an arbitrary alphabet. Let α, β be terminal-free pat-
terns over disjoint alphabets and suppose that the word equation α = β permits
only periodic solutions. Let w be the shortest non-empty solution-word. Let

µ := lcm(gcd{|α|xi | xi ∈ var(α)}, gcd{|β|yj | yj ∈ var(β)}).

Then LE,Σ(α) ∩ LE,Σ(β) is a terminal-free E-pattern language if and only if
µ = |w|.

Despite Proposition 4, it is still a non-trivial task to find two terminal-free E-
pattern languages whose intersection is not a terminal-free E-pattern language.
In particular, it remains to find appropriate patterns α and β such that the word
equation α = β has only periodic solutions. The following proposition provides
such an example, and hence we have the analogous result to Proposition 3.

Proposition 5. Let Σ be an arbitrary alphabet, and let α := x1x2x
2
1x2x

3
1x

2
2 and

β := x3x
2
4x

2
3x

6
4x

3
3. Then LE,Σ(α)∩LE,Σ(β) cannot be expressed as a terminal-free

E-pattern language.

It is even possible to give a much stronger statement, showing the extent to
which the ‘pattern-language mechanism’ is incapable of handling this seemingly
uncomplicated set of solutions.

Corollary 1. For any alphabet Σ, LE,Σ(x1x2x
2
1x2x

3
1x

2
2) ∩ LE,Σ(x3x

2
4x

2
3x

6
4x

3
3)

cannot be expressed as a finite union of terminal-free E-pattern languages.

It is worth noting that the approach above can be used to show that for
α′ := x1x2x

2
1x

2
2x

3
1x

3
2 and β′ := x3x

2
4x

2
3x

7
4x

3
3, one has that LE,Σ(α′) ∩LE,Σ(β′) =

LE,Σ(x61). This demonstrates that the intersection of two E-pattern languages
can in some cases be expressed as an E-pattern language, and therefore that
the problem of whether the intersection of two E-pattern languages form an
E-pattern language is nontrivial. However it is worth pointing out that a char-
acterisation of this situation is probably very difficult to acquire due to the
challenging nature of finding solution-sets of word equations.

3.3 Other closure properties

In this Section, we show that regarding the closure under the operations of
complementation, morphisms, inverse morphisms, Kleene plus and Kleene star,
terminal-free pattern languages behave similarly to the full class of pattern lan-
guages.

Proposition 6. For every terminal-free pattern α, LE,Σ(α) is not a terminal-

free E-pattern language and LNE,Σ(α) is not a terminal-free NE-pattern lan-
guage.

Proposition 6 does not only prove the non-closure of terminal-free E- and
NE-pattern languages under complementation, but also characterises in a trivial
way the terminal-free pattern languages whose complement is also a terminal-
free pattern language.

8 J.D. Day, D. Reidenbach, and M.L. Schmid

Proposition 7. Let Σ be a terminal alphabet with |Σ| ≥ 2. The terminal-free
NE- and E-pattern languages, with respect to Σ, are not closed under morphisms,
inverse morphisms, Kleene plus and Kleene star.

4 General Patterns

As explained in Section 1 and formally stated in Theorem 1, the closure prop-
erties of the full classes of NE-pattern languages and of E-pattern languages are
understood. In the present section, we therefore wish to expand the more spe-
cific insights into the terminal-free pattern languages gained in Section 3 to the
full classes. More precisely, with respect to the operations of complementation,
intersection and union, we investigate those patterns that exhibit the property
that their complement, intersection or union is again a pattern language and we
try to characterise these patterns. Our strongest results are with respect to the
operation of union.

4.1 Complement

With respect to the full class of E- and NE-pattern language, an analogue of
Proposition 6 exists:

Proposition 8 (Bayer [2]). Let Σ be a terminal alphabet with Σ ≥ 2. For
every pattern α, LE,Σ(α) is not an E-pattern language and LNE,Σ(α) is not an
NE-pattern language.

In the same way as Proposition 6 does for terminal-free patterns, this propo-
sition yields a trivial characterisation of pattern languages with a complement
that again is a pattern language.

4.2 Intersection

It is straightforward to construct patterns α and β such that LE,Σ(α)∩LE,Σ(β)
is not an E-pattern language or LNE,Σ(α) ∩ LNE,Σ(β) is not an NE-pattern
language. Furthermore, any two terminal-free patterns α and β are an example
for the situation that LE,Σ(α)∩LE,Σ(β) is not an NE-pattern language and, as
long as there are at least two symbols in Σ, also for the situation that LNE,Σ(α)∩
LNE,Σ(β) is not an E-pattern language. Moreover, there are non-trivial examples
of patterns α, β and γ, such that LNE,Σ(α) ∩ LNE,Σ(β) = LE,Σ(γ):

– LNE,Σ(ax) ∩ LNE,Σ(xx) = LE,Σ(axax).
– LNE,Σ(xay) ∩ LNE,Σ(xxx) = LE,Σ(xayxayxay).
– LNE,Σ(axa) ∩ LNE,Σ(xx) = LE,Σ(axaaxa).
– LNE,Σ(axax) ∩ LNE,Σ(xbxb) = LE,Σ(axbaxb).
– LNE,Σ(axy) ∩ LNE,Σ(xxx) = LE,Σ(axaxax).

However, it is not known whether or not there are patterns α and β, such that
LE,Σ(α) ∩ LE,Σ(β) is an NE-pattern language. Moreover, we do not have any
characterisations for the situation that the intersection of two pattern languages
is again a pattern language.

Closure Properties of Pattern Languages 9

4.3 Union

Examples of patterns α and β such that LZ,Σ(α) ∪ LZ,Σ(β) is not a Z ′-pattern
language, for all Z,Z ′ ∈ {E,NE}, are provided by Proposition 1.

Theorem 2 is our strongest result in Section 3, as it shows that the union of
terminal-free pattern languages can only be a terminal-free pattern language if
one of the languages is contained in the other. At first glance it seems a reasonable
hypothesis that a similar result might hold for the full class of pattern languages,
but in the present section we show that this is not true.

For all but the union of pairs of E-pattern languages and the question of
whether they can form an E-pattern language, suitable examples are not too
hard to find:

Proposition 9. Let Σ be a terminal alphabet.

– LE,{a,b}(aax) ∪ LE,{a,b}(abx) = LNE,{a,b}(ax).
– LNE,Σ(abc) ∪ LNE,Σ(axbxcx) = LE,Σ(axbxcx).
– LNE,{a,b}(ax1) ∪ LNE,{a,b}(bx1) = LNE,{a,b}(x1x2).

Regarding the question of whether LE,Σ(α)∪LE,Σ(β) = LE,Σ(γ) for patterns
α, β, γ implies that there is an inclusion relation between LE,Σ(α) and LE,Σ(β),
the following three propositions provide increasingly complex counterexamples
for alphabet sizes 2, 3, and 4.

Proposition 10. Let Σ = {a, b}, α := x1ax2bx2ax3, β := x1ax2bbx2ax3
and γ := x1ax2bx3ax4. Then LE,Σ(α) * LE,Σ(β), LE,Σ(β) * LE,Σ(α) and
LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ).

Proposition 11. Let Σ := {a, b, c},

α := x1ax2x
6
3x

3
4x

6
5x6bx7ax2x

12
8 x

6
4x

12
9 x6bx10,

β := x1ax2x
6
3x

2
4x

5
5x

6
6x7bx8ax2x

12
9 x

4
4x

10
5 x

12
10x7bx11 and

γ := x1ax2x
6
3x

2
4x

3
5x

6
6x7bx8ax2x

12
9 x

4
4x

6
5x

12
10x7bx11.

Then LE,Σ(α) 6⊆ LE,Σ(β), LE,Σ(β) 6⊆ LE,Σ(α) and LE,Σ(α)∪LE,Σ(β) = LE,Σ(γ).

Proposition 12. Let Σ := {a, b, c, d},

α := x1ax2x
2
3x

2
4x

2
5x6bx7ax2x

2
8x

2
4x

2
9x6b

x10cx11x
2
12x

2
13x

2
14x

2
15x16dx17cx11x

2
18x

2
13x

2
14x

2
19x16d

x20x
2
13x

2
14x

2
13x

2
14x

2
13x

2
14x21x

6
4,

β := x1ax2x
2
3x

2
4x

2
5x

2
6x7bx8ax2x

2
9x

2
4x

2
5x

2
10x7b

x11cx12x
2
13x

2
14x

2
15x16dx17cx12x

2
18x

2
14x

2
19x16d

x20x
6
14x21x

2
4x

2
5x

2
4x

2
5x

2
4x

2
5 and

γ := x1ax2x
2
3x

2
4x

2
5x

2
6x7bx8ax2x

2
9x

2
4x

2
5x

2
10x7b

x11cx12x
2
13x

2
14x

2
15x

2
16x17dx18cx12x

2
19x

2
14x

2
15x

2
20x17d

x21x
2
14x

2
15x

2
14x

2
15x

2
14x

2
15x22x

2
4x

2
5x

2
4x

2
5x

2
4x

2
5.

Then LE,Σ(α) 6⊆ LE,Σ(β), LE,Σ(β) 6⊆ LE,Σ(α) and LE,Σ(α)∪LE,Σ(β) = LE,Σ(γ).

10 J.D. Day, D. Reidenbach, and M.L. Schmid

We are not able to give equivalent examples for larger alphabets, and we ex-
pect the question of their existence to be a complex and important problem. This
is because the above examples depend on the ambiguity of terminal-preserving
morphisms, which is a phenomenon that underpins many properties of pattern
languages. Similar constructions to those in Propositions 10, 11, and 12 have
been used to disprove longstanding conjectures on inductive inference (see Rei-
denbach [10,12]) of and the equivalence problem (see Reidenbach [11]) for E-
pattern languages over alphabets of up to 4 letters and, similarly, it has so far
not been possible to expand those techniques to arbitrary alphabets. Our exam-
ples, thus, suggest a close link between the problem in the current section and
the two most important open problems for E-pattern languages over alphabets
with at least 5 letters, and we expect that substantial progress on any one of
them will require combinatorial insights that will allow the others to be solved
as well.

For all Z,Z ′ ∈ {E,NE}, we have seen example patterns α and β such that
LZ,Σ(α)∪LZ,Σ(β) is a Z ′-pattern language. We shall now try to generalise these
examples in order to obtain characterisations of such pairs of patterns.

For the case Z = Z ′ = E, we are only able to state a necessary condition for
LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ) that, unfortunately, is not very strong:

Theorem 3. Let Σ be an alphabet, and let α, β and γ be patterns with LE,Σ(α)∪
LE,Σ(β) = LE,Σ(γ). Furthermore, let wα, wβ and wγ be the residuals of α, β
and γ, respectively. Then wγ = wα and wγ is a subsequence of wβ or wγ = wβ
and wγ is a subsequence of wα.

In view of the fact that the examples of Propositions 10, 11 and 12 are rather
complicated, we expect that a full characterisation for the case Z = Z ′ = E is
difficult to obtain.

For the case Z = Z ′ = NE, we can present a strong necessary condition that,
similarly to Lemma 3, strengthens a result by Shinohara [15]:

Theorem 4. Let Σ be an alphabet with {a, b} ⊆ Σ and let α, β and γ be
patterns. If LNE,Σ(α) ∪ LNE,Σ(β) = LNE,Σ(γ), then one of the following three
statements is true:

– LNE,Σ(α) ⊆ LNE,Σ(β) and β = γ.
– LNE,Σ(β) ⊆ LNE,Σ(α) and α = γ.
– |Σ| = 2 and

α = δ0 a δ1 a δ2 . . . δm−1 a δm ,

β = δ0 b δ1 b δ2 . . . δm−1 b δm ,

γ = δ0 x δ1 x δ2 . . . δm−1 x δm ,

where m ≥ 1, δi ∈ (X ∪Σ)∗, 0 ≤ i ≤ m.

It remains to consider the cases Z = NE, Z ′ = E and Z = E, Z ′ = NE, for
which we have full characterisations. Before we prove these characterisations, we
recall that Jiang et al. show in [7] that, for every pattern α, we can construct finite

Closure Properties of Pattern Languages 11

sets of patterns Γ and ∆ such that LE,Σ(α) =
⋃
β∈Γ LNE,Σ(β) and LNE,Σ(α) =⋃

β∈∆ LE,Σ(β). More precisely, Γ is the set of all patterns that can be obtained
from α by erasing some (possibly none) of the variables and ∆ contains all
pattern that can be obtained from α by substituting each x ∈ var(α) by bx,
for some b ∈ Σ. We note that the examples LNE,Σ(abc) ∪ LNE,Σ(axbxcx) =
LE,Σ(axbxcx) and LE,{a,b}(aax)∪LE,{a,b}(abx) = LNE,{a,b}(ax) of Proposition 9
are applications of exactly this construction.

The characterisation for the case Z = NE, Z ′ = E follows from the fact
that we can prove that if we restrict ourselves to unions of only two pattern
languages, then LE,Σ(α) =

⋃
β∈Γ LNE,Σ(β) is the only possible way to describe

an E-pattern language by NE-pattern languages.

Theorem 5. Let Σ be an alphabet with |Σ| ≥ 2 and let α, β and γ be patterns.
Then LNE,Σ(α) ∪ LNE,Σ(β) = LE,Σ(γ) if and only if α ∈ Σ+ and β = γ =
u1 x

j1 u2 x
j2 . . . xjm um+1, ji ∈ N0, 1 ≤ i ≤ m, such that u1 u2 . . . um+1 = α.

With respect to the case Z = E, Z ′ = NE, we can even present a charac-
terisation for the situation LNE,Σ(α) =

⋃k
i=1 LE,Σ(βi) with k ≤ |Σ|. It shall be

explained later on that this characterisation is a generalisation of the construc-
tion given by Jiang et al.

Theorem 6. Let ` ≥ 2 and let Σ be an alphabet with {a1, a2, . . . , a`} ⊆ Σ.
Furthermore, let α1, α2, . . . , α` and γ be patterns with LE,Σ(αi) 6= LE,Σ(αj), 1 ≤
i < j ≤ `. Then

⋃`
i=1 LE,Σ(αi) = LNE,Σ(γ) if and only if, for some permutation

π of (1, 2, . . . , `),

– Σ = {a1, a2, . . . , a`},
– γ = u1 xu2 xu3 . . . uk xuk+1, k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1, and,
– for every i, 1 ≤ i ≤ `,

αi = u1 α
′
i aπ(i) α

′′
i u2 α

′
i aπ(i) α

′′
i u3 . . . uk α

′
i aπ(i) α

′′
i uk+1 ,

where α′i, α
′′
i ∈ X∗,

– for every i, 1 ≤ i ≤ `, there exists a yi ∈ var(αi) with |αi|yi = k and

• |α′i|yi = 1 for all i, 1 ≤ i ≤ `, or
• |α′′i |yi = 1 for all i, 1 ≤ i ≤ `.

If we apply the construction of Jiang et al. to a one-variable pattern γ, then
we obtain patterns αi, 1 ≤ i ≤ |Σ|, that satisfy the conditions of the patterns in
the statement of Theorem 6. More precisely, this corresponds to the special case
where α′iα

′′
i = yi, 1 ≤ i ≤ |Σ|. Moreover, it can be easily verified that if γ and

patterns αi, 1 ≤ i ≤ |Σ|, satisfy the conditions of the statement of Theorem 6,
then, depending on whether |α′i|yi = 1 for all i, 1 ≤ i ≤ |Σ|, or |α′′i |yi = 1 for
all i, 1 ≤ i ≤ |Σ|, we can obtain patterns βi from the patterns αi by replacing

α′iaiα
′′
i by yiai or by aiyi, respectively, and

⋃|Σ|
i=1 LE,Σ(βi) = LNE,Σ(γ) still holds.

Furthermore, the patterns βi are exactly the patterns that are obtained if we
apply the construction of Jiang et al.

12 J.D. Day, D. Reidenbach, and M.L. Schmid

Acknowledgments. The authors wish to thank the anonymous referees for
their helpful suggestions, which have yielded a stronger version of Proposition 7.

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

2. H. Bayer. Allgemeine Eigenschaften von Patternsprachen. Projektarbeit, Fachbe-
reich Informatik, Universität Kaiserslautern, 2007. In German.

3. H. Fernau and M. L. Schmid. Pattern matching with variables: A multivariate
complexity analysis. In Proc. 24th Annual Symposium on Combinatorial Pattern
Matching, CPM 2013, volume 7922 of LNCS, pages 83–94, 2013.

4. H. Fernau, M. L. Schmid, and Y. Villanger. On the parameterised complexity of
string morphism problems. In Proc. 33rd IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2013,
volume 24 of Leibniz International Proceedings in Informatics (LIPIcs), pages 55–
66, 2013.

5. D.D. Freydenberger and D. Reidenbach. Bad news on decision problems for pat-
terns. Information and Computation, 208:83–96, 2010.

6. S. Jain, Y.S. Ong, and F. Stephan. Regular patterns, regular languages and
context-free languages. Information Processing Letters, 110:1114–1119, 2010.

7. T. Jiang, E. Kinber, A. Salomaa, K. Salomaa, and S. Yu. Pattern languages with
and without erasing. International Journal of Computer Mathematics, 50:147–163,
1994.

8. T. Jiang, A. Salomaa, K. Salomaa, and S. Yu. Decision problems for patterns.
Journal of Computer and System Sciences, 50:53–63, 1995.

9. S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-
guages. New Generation Computing, 8:361–370, 1991.

10. D. Reidenbach. A non-learnable class of E-pattern languages. Theoretical Com-
puter Science, 350:91–102, 2006.

11. D. Reidenbach. An examination of Ohlebusch and Ukkonen’s conjecture on the
equivalence problem for E-pattern languages. Journal of Automata, Languages and
Combinatorics, 12:407–426, 2007.

12. D. Reidenbach. Discontinuities in pattern inference. Theoretical Computer Science,
397:166–193, 2008.

13. D. Reidenbach and M.L.Schmid. Patterns with bounded treewidth. Information
and Computation. To appear.

14. D. Reidenbach and M.L.Schmid. Regular and context-free pattern languages over
small alphabets. Theoretical Computer Science, 518:80–95, 2014.

15. T. Shinohara. Inferring unions of two pattern languages. Bulletin of Informatics
and Cybernetics, 20:83–88, 1983.

16. T. Shinohara and H. Arimura. Inductive inference of unbounded unions of pattern
languages from positive data. Theoretical Computer Science, 241:191–209, 2000.

17. K. Wright. Identification of unions of languages drawn from an identifiable class.
In Proc. 2nd Annual Workshop on Computational Learning Theory, COLT 1989,
pages 328–333, 1989.

	Closure Properties of Pattern Languages

