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THE INSTRUCTION SYSTOLIC ARRAY (ISA) 

AND SIMULATION OF PARALLEL ALGORITHMS 

ABSTRACT 

Systolic arrays have proved to be well suited for Very Large 

Scale Integrated technology (VLSI) since they: 

Consist of a regular network of simple processing cells, 

Use local communication between the processing cells only, 

Exploit a maximal degree of parallelism. 

However, systolic arrays have one main disadvantage compared with 

other parallel computer architectures: they are special purpose 

architectures only capable of executing one algorithm, e.g., a 

systolic array designed for sorting cannot be used to form matrix 

multiplication. 

Several approaches have been made to make systolic arrays more 

flexible, in order to be able to handle different problems on a 

single systolic array. 

In this thesis an alternative concept to a VLSI-architecture 

the Soft-Systolic Simulation System (SSSS), is introduced and 

developed as a working model of virtual machine with the power to 

simulate hard systolic arrays and more general forms of concurrency 

such as the SIMD and MIMD models of computation. 

ii 

The virtual machine includes a processing element consisting of 

a soft-systolic processor implemented in the virtual.machine language. 

The processing element considered here was a very general element 



which allows the choice of a wide range of arithmetic and logical 

operators and allows the simulation of a wide class of algorithms 

but in principle extra processing cells can be added making a library 

and this library be tailored to ,individual needs. 

iii 

The virtual machine chosen for this implementation is the 

Instruction Systolic Array (ISA). The ISA'has a number of interesting 

features, firstly it has been used to simulate all SIMD algorithms 

and many MIMD algorithms by a simple program transformation technique, 

further, the ISA can also simulate the so-called wavefront processor 

algorithms, as well as many hard systolic algorithms. The ISA removes 

the need for the broadcasting of data which is a feature of SIMD 

algorithms (limiting the size of the machine and its cycle time) and 

also presents a fairly simple communication structure for MIMD 

algorithms. 

The model of systolic computation developed from the VLSI 

approach to systolic arrays is such that the processing surface is 

fixed, as are the processing elements or cells by virtue of their 

being embedded in the processing surface. 

The VLSI approach therefore freezes instructions and hardware 

relative to the movement of data ,with the virtual machine and soft­

systolic programming retaining the constructions of VLSI for array 

design features such as regularity, simplicity and local communication, 

allowing the movement of instructions with respect to data. Data can 

be frozen into the structure with instructions moving systolically. 

Alternatively both the data and instructions can move systolically 

around the virtual processors, (which are deemed fixed relative to 

the underlying architecture). 



The ISA is implemented in OCCAM programs whose execution and 

output implicitly confirm the correctness of the design. 

iv 

The soft-systolic preparation comprises of the usual operating 

system facilities for the creation and modification of files during 

the development of new programs and ISA processor elements. We allow 

any concurrent high level language to be used to model the soft­

systolic program. Consequently the Replicating Instruction Systolic 

Array Language (RI SAL) was devised to provide a very primitive program 

environment to the ISA but adequate for testing. RI SAL accepts 

instructions in an assembler-like form, but is fairly permissive 

about.the format of statements, subject of course to syntax. 

The RISAL compiler is adopted to transform the soft-systolic 

program descript~on (RI SAL) into a form suitable for the virtual 

machine (simulating the algorithm) to run. 

Finally we conclude .that the principles mentioned here can form 

the basis for a soft-systolic simulator using an orthogonally 

connected mesh of processors. The wide range of algorithms which the 

ISA can simulate make it suitable for a virtual simulating grid. 
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CHAPTER 1 

FUNDAMENTALS OF PARALLEL COMPUTER 

ARCH ITECTURE 
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1.1 INTRODUCTION 

The information revolution, has had the most tremendous impact on 

both technology and our society. This fast developing revolution has 

just recently started to migrate towards a new era - the knowledge 

revolution, by giving birth to the Fifth Generation of Super Computers 

(FGSC). These have in fact changed our lifestyles, our educational 

programs and most of all many professional careers. 

Amongst the huge numbers of computer applications which range 

from the simple personal computer games to the weather forecasting 

calculation and satellite transmission programs, there are many that 

require the use of large amounts of computational time. In an attempt 

to meet the challenging problem of providing fast and economical 

computation, Large-Scale Parallel Computers were developed. ·In fact, 

until recently computational speed was derived only from the development 

of faster electronic devices. 

In the late 1960s, Integrated Circuits (ICS) were used in computer 

design and were followed by Large Scale' Integrated (LSI) techniques. 

The Very Large-Scale Integrated Circuits (VLSI), developed seven years 

ago, are currently being used in the design of very high speed special 

and general purpose computer systems. 

Until seven years ago, the current state of electronic technology 

was such that all factors affecting computational speed were almost 

minimised and any further computational speed increase could only be 

achieved through both increased switching speeds and increased circuit 

density. 

Due to the physical laws, the intended breakthrough seemed 

unlikely to be achieved mainly because we are fast approaching the 



limits of optical resolution. Hence, even if switching times are 

almost instantaneous, distances between any two points may not be 

small enough to minimise the propagation delays and thus improve 

computational speed. Therefore, the achievement of even faster 

computers is conditional by the use of new approaches that do not 

depend on breakthrough in device technology but rather on imaginative 

applications,of the skills of computer architecture. 

2 

Obviously one approach to increasing speed is through parallelism. 

The ideal objective is to create a system containing P processors, 

connected in some cooperating fashion, so that it is P t'imes faster 

than a computer with a single processor. These parallel computer 

systems or multiprocessors as they are commonly known, not only 

increase the potential processing speed, but they also increase the 

overall throughput, flexibilit~ reliability and provide for the 

tolerance of processor failures. 

'Hockney and Jesshope [Hockney 1981) summarised the principle ways 

of introducing parallelism at the hardware level of the computer 

architectures as: 

1. The application,of pipe lining - assembly line - techniques 

in order to improve the performance of the arithmetic or 

control units. A processor is decomposed into a certain 

number of elementary subprocesses each of which being capable 

of executing on dedicated autonomous units. 

2.. The provision of several independent units, operating in 

parallel, to perform some basic fundamental functions such as 

logic, addition or multiplications. 



3. The provision of an array of processing elements performing 

simultaneously the same instruction on a set of different 

data where the data is stored in the processing elements (PE) 

private memory. 

3 

4. The provision of several independent processors, working in a 

co-operative manner towards the solution of a single task by 

communicating via a shared or common memory, each one of them 

being a complete computer, obeying its own stored instructions. 

The following sections will cover a wide selection of the 

principle significant parallel computer architectures, which differ 

sufficiently from each other, the pipeline, SIMD, MIMD, data-flow and 

VLSI systems, to illustrate alternative hardware and software 

approaches. 
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1.2 MAIN MOTIVATIONS 

During the last decade the multiple processor approach has 

tailored a set of long sought after motivating goals in order to 

satisfactorily meet many of the. challenging system design requirements. 

In reviewing some aspects of parallel processing systems, one finds that 

while the hardware is improving at a fast rate, the software tools to 

take advantage of the'provided benefits are only slowly forthcoming; 

a fact that affects the design motivations mentioned below. 

Since the early developed multiple processing systems, the system 

characteristics that have motivated the continued development in this 

field have not changed much. The most significant of these are 

increased throughput, improved flexibility and reliability. Since 

none of these goals is numerically specified (i.e. they are all 

qualitative goals), it is not surprising that the design of the future 

"supercomputers" will also be motivated by the same objectives as 

today's parallel computers. However, the improvements of some or all 

of these specifications must ultimately result in an improved overall 

system performance, usually measured on the basis of cost effectiveness. 

The system throughput can be used to mean several different 

.characteristics such as the potential number of bits processed per 

. time-unit, the number of memory transfers per time unit or the 

maximal number of programs that can be handled at the same time. 

However, .it is usually used nowadays to describe the long-turnaround 

of a program in a multiprocessing environment. The multiple processor' 

approach is a cost-effective solution to the achievement of most of 

these goals. The use of several cooperating processing units can 

considerably increase the system throughput which could not be matched 



by a uniprocessor system with enhanced logic circuitry. 

Literally, flexibility means the ease in,changing the system 

configuration to suit new conditions and the use of more than one 

processor has greatly increased the system potential flexibility 

since it offers the ability to expand the memory space, the number 

of processing units and even the software facilities in order to meet 

the new demands. This flexibility may also be used to justify the 

increased reliability of the system. 

Broadly speaking, the reliability is related to ,two different 

system aspects required by different applications. The first one is 

the system availability which is defined by the requirement that the 

system should remain available even in the case of a malfunctioning 

unit.- An example of this is the computer controlled telephone -

switching board. The system integrity is the second one and it is 

, defined by the requirement that the information contained within 

should be "protected" against any 'defection or corruption (e.g. in a 

banking system). 

Concluding, since all the system characteristics that have 

motivated the development of the parallel processor computers are not 

described quantitively, any new major system concept has been_claimed 

by its proponents as the ultimate solution to achieving these 

motivating goals. In fact, the same motives were behind the follow-up 

to the parallel processing systems, the VLSI architectures. 

5 
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1.3 DESIGN CLASSIFICATIONS 

As a result of the introduction of various forms of parallelism 

which has proved to be an effective approach for increasing 

computational speed, several competitive computer architectures were 

constructed but there was little evidence as to which design was 

superior, nor was there sufficient knowledge on which to make a careful 

evaluation. Researchers helped the study .of high-speed parallel 

computers by attempting to classify all the proposed computer 

.architectures, or at least those which have been already well 

established. A brief presentation of. the concepts of the architectural 

taxonomy given by different researchers, especially by the two 

pioneers, Flynn [Flynn 1966] and Shore [Shore 1973], follows below. 

~ Howev~r -Flynn' s Cl~~-sification s~heme is t~o b~oad;- since it lumps 

all parallel computers except the multiprocessor into the SIMD class 

I and draws no distinction between the pipelined computer and the 

~ processor array which have entirely different computer architectures. 

: These classifications have been widely referenced and their 
I 

I corresponding terminology has greatly contributed to the formation 

i of the Computer Science vocabulary. 

1.3.1· Flynn's High-Speed Parallel Computer Classification 

Based on the dependent relation between instructions that are 

propagated by the computer and the data being processed, Flynn explored 

theoretically some. of the organisational possibilites for large scientific 

computing machinery before attempting to classify them into four broad 

classes. We shall. briefly review his theoretical concepts leading to 

the actual grouping of the high-speed.parallel computers. 
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For convenience, he defined the instruction stream as a sequence 

of instructions to be processed by the computer and the data stream as, 

a set of operands, including input and partial or temporary results. 

Also, two additional useful concepts were adopted, bandwidth and 

latency. By bandwidth he expressed the time-rate of occurrences, and 

latency is used to express the total time between execution of response 

of a computing process on a particular data unit. Particularly, for 

the former'notion, computational or execution bandwidth is the number 

of instructions processed per second and storage bandwidth is the 

retrieval rate of the data and instruction from the store (i.e. memory 

words per second) • 

By using the two former definitions, Flynn categorized the almost 

theoretically 'defined computer organisations depending on the 

multiplicity of the hardware provided to service the instruction and 

data streams. The word "multiplicity", which was intentionally used 

to avoid the ubiquitous and ambiguous term "Parallelism", refers to the 

maximum number of simultaneous instructions or data in the same phase 

of execution at the most constrained component of the organisation. 

Flynn observed that as a consequence of the above definitions 

four classes emerged naturally, being characterized from the multiplicity 

or not of the instruction and data streams: 

i) Single Instruction Stream - Single Data Stream (SISO) 

ii) Single Instruction Stream - Multiple Data Stream (SIMD) 

iii) Multiple Instruction Stream - Single'Data Stream (MISD) 

iv) Multiple Instruction Stream - Multiple Data Stream (MIMD) 

The SISD computer [e.g. most of the general purpose machines such as 



IBM STRETCH, DEC PDP-ll (Serial or unpipelined) and CDC 6600 series, 

IBM 360/90 series pipe lined] , is nothing more than the ordinary serial 

computer (the von-Neumann type computer). Even though, the CDC 6600 

and IBM 360/90 series achieve their power by overlapping various 

sequential decision processes which make up· the execution of the 

instruction (confluent SISD) , there still remains an essential 

constraint of this type of organisation, namely the decoding of one 

instruction per unit time. In Figures 1.1 and 1.2 we see a SISD 

organisation, 'and the concurrency and instruction processing 

respectively. 

The SIMD type structure, proposed by IUnger 1958], Slotnick 

[Slotnick 1962] is created by replicating the data stream on which 

the single instruction stream acts simultaneously thus theoretically 

increasing the throughput by a factor almost equal to the number of 

data streams. Several factors, such as data conflict and data 

communication problems tend to degrade the expected performance. 

Solomon and ILLIAC IV are two examples of such a computer. 

8 

The third, MISD type class of parallel computers, the organisation 

of which is outlined in Figure 1.3, is by all means the least 

realistic one compared to the others since no examples of any well 

established organisation have yet been proposed. In this class, a 

forwarding procedure of data flowing through the Execution Units was 

forced. Thus, the data stream presented to Execution Unit 2 is the 

resultant of Execution Unit 1 operating its instruction on the source 

data stream. The instruction performed on any Execution Unit can be 

one of the three following types: fixed, semi-fixed or variable. It 

may be fixed such that the interconnection of units must be flexible 
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semi-fixed such that the function of any unit is fixed for one pass of 

the data or variable meaning that the execution of a stream of 

instructions can take place at any point on the single data stream. 

Consequently this arrangement suggests that only the first processing 

component faces the source data stream whereas the remaining Units. are 

processing derivations of the data from previous components. By 

combining parallelism in both the instruction and data streams a MIMD 

type of structure is thus obtained. This computer possesses N 

independent executing units (processors), each of which is a complete 

computer on its own (has arithmetic and logic capabilities and local 

data storage), with processors connected together to provide means for 

cooperation during a computation phase. 

11 

Most serial main frames could be classified as MIMD computers 

since they include many data channels, such as Direct Memory Access 

(DMA) which are, in a sense, independent processors. Thus, a computer 

with one or two data channels is indeed a MIMD parallel computer, but 

the MIMD is commonly accepted to refer to large computers with possibly 

several identical processors such as Cmmp [Wulf 1972], Cm* [Swan 1977]. 

Of particular interest, the Balance 8000 parallel computer system which 

is in the Department of Computer Studies at Loughborough University of 

Technology is an example of this.class, this machine is described in 

detail in Chapter 2. 

Resuming, Flynn classified computer systems into four broad 

classes (Figure 1.4) depending on the multiplicity or not of the 

instruction stream and data stream. Due to the fact that the actual 

architectural details of the machines were not taken into account, 

his taxonomy was somehow obscure since one finds that there is ~o 
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apparent distinctive differences between classes (MIMD class exempted) • 

Consequently, pipelined and· array processor computers are considered 

similar, although they are two completely different architectures. 

Also, the meaning of the data streams, as used by Flynn, has 

caused many ambiguities due to the fact it does not make a distinctive 

difference between a single stream of vectorised data .and a multiple 

scalar stream. 

Consequently, in the sections, the SIMD and pipelined computers 

are considered to be two distinct classes along with the multiprocessor 

category. 

1.3.2 Shore's Classification 

Classification of parallel computer systems based on their 

constituent hardware components was observed by Shore [Shore 1973] . 

Accordingly, all current existing computer architectures were 

categorised into six different classes which are schematic ally shown 

in Figure 1.5. 

The first machine (I), [e.g. CDC 7600 a pipelined scalar computer, 

CRAY 1, a pipelined vector computer] which is the conventional serial 

Von-Neuman-type organisation, consists of an Instruction Memory (IM) , 

a single Control Unit (CU) , a Processing Unit (PU) and a Data Memory 

(OM). The main source of power increase Comes from the processing unit 

which may consist of several functional units, pipe lined or not and all 

bits of a single word are read in order to be processed simultaneously 

(Horizontal PU). 

A second alternative machine (II) is obtained from the first one 
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by simply changing the way data is read from the data memory. Instead 

of reading all bits of a single word as (I) does, machine (II) reads 
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a bit from every word in the memory, i.e. bit serially, but word 

processing is parallel. In other words, if the memory area is 

considered as a two dimensional array of bits, with each word occupying 

an individual row, then machine (I) reads horizontal.slices whereas 

machine (II) reads vertical slices. 

A combination of the two above machines yields machine (Ill). 

This means that machine (Ill) has two processing units, a horizontal 

and a vertical one and is capable of processing data in either of the 

two directions. The ICL DAP could have been a favourable candidate 

for this class if only it had separate processing.units to offer this 

capability. An example. of this organisation is the Sanders Associates 

OMEN 60 Series of computer [Higbie 19721. 

Machine (IV) consists of a single control unit and many independent 

processing elements, each of which has a processing unit and a data 

memory. Communication between these components is restricted to take 

place only through the control unit. A good example of this machine is 

the PEPE system. 

If however, additional limited communication is allowed to take 

place among the processor elements in a nearest-neighbour fashion, 

then machine (V) is conceived. Thus, communication paths between the 

linearly connected·processors offer for any processor in the array the 

possibility to access data from its immediate neighbour's memories, as 

well as -its own. An example of this-machine type is the ILLIAC IV, 

which provides a short cut communication to every eight surrounding 
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processing elements. 

The Logic-In-Memory-Array (LIMA) is Shore's last class of computer 

organisation. The main difference in machine (VI) and the previous 

one is that the processing unit and the data memory are no longer two 

individual hardware components, but instead they are constructed on the 

same IC board. Examples range from simple associative memories to 

complex associative processors. 

It is observed that, generally speaking, Shore's classification, 

compared with Flynn' s, . does not offer anything new, but only a sub­

categorisation of the obscure SIMD class given by Flynn, except for 

machine (I) which is an SISD-type computer. Again, as with Flynn's 

categorisation, pipe lined computers do not belong to a well specified 

class, that represents their hardware characteristics, but on the 

contrary they are mixed up with unpipelined scalar computers. 

1.3.3 Other Classification Approaches 

This paragraph gives a brief note on some other classification 

approaches of less significant importance compared to the former two 

and which are based mainly on the concept of parallelism. 

One of the taxonomies, based on the amount of parallelism 

involved in the control unit, data streams and instruction units was 

suggested by Hobbs et al [Hobbs 1970] in 1970. They distinguished 

parallel computers into multiprocessors, associative processors, array 

processors and functional processors. 

Another classification, due to Murtha and Beadles [Murtha 1964] 

was based upon the parallelism properties. An attempt to underline 
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the main significant differences between the multiprocessors and 

highly parallel organisations was appreciated. Three main classes for 

parallel processor systems were identified and they are general-purpose 

network computers, special-purpose network computers characterised by 

global parallelism and finally non-global, semi-independent network 

computers with local parallelism. Furthermore, all these classes, 

but the last one, were further subcategorised into two subclasses each. 

Whereas, the first class, the general-purpose one, was subdivided into 

the general-purpose network computers subclass with centralised common 

control and the general-purpose network computers subclass, with many 

identical processors, each being capable of, independent from.the others, 

executing instructions from its own local storage, the second class 

identified the pattern processors and associative processors subclasses: 

Hackney and Jesshope [Hackney 1981] formulated a taxonomy scheme 

for both serial and parallel computers. The main subdivisions are 

shown in Figures 1.6 and 1.7 together with a well-known example in each 

class .. Their taxonomy was more detailed than that of Flynn or Shore 

and took implicit account of pipelined structures. Therefore, the 

Multiple Instruction class was not considered for further categorisation 

as with the pipelined and array processor computers. Nevertheless, 

this scheme if coupled with that of Flynn could well be suited for a 

general classification of parallel computers. 
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1.4 PIPELINED COMPUTERS 

The pipeline or vector notion, generally included in the 

parallelism notion, has been widely exploited since the 1960's when 

the need for faster and more cost-effective computer systems became 

critical. Pipelining, a novel architectural design approach, is one 

form or technique of embedding parallelism or con currency in a computer 

system. Although,. essentially sequential, this type of computer helps 

to match the speeds of various subsystems without duplicating the cost 

of the entire system involved. It also improves system availability 

and reliability by providing several copies of dedicated subsystems. 

In principle, the pipeline is closely related to an industrial 

assembly line. As in the assembly line, procedure is automatically 

observed, but it takes time to fill the pipeline before full efficiency 

'per cycle is reached and time to drain the pipeline completely as the 

last trailing results are collected. 

Figure 1.7 depicts the sequential and vector processing taxonomy 

derived from pipeline computers together with examples of some well 

known and commercially available computer systems. Although the 

pipelined computer architectures present somewhat different 

organisational characteristics when compared to SIMD and MIMD computer 

architectures, they are of significant interest because of the close 

connection between algorithms best suited for SIMD arid those which 

achieve great performance on a pipelined computer system. 

Pipelined computers achieve an increase in computational speed by 

decomposing every process into several sub-processes which can be 

executed by special autonomous and concurrently operating hardware 

unit. Furthermore pipelining can be introduced at more than one level 
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in the design of computers. Ramamoorthy· [Ramarnoorthy 1977] 

distinguished two pipeline levels, the system level for the pipelining 

of the processing unit and the subsystem level for the arithmetic 

pipelining. Particularly Handler [Handler 1982] introduced a third 

level and distinguished them under the names: macro-pipelining for 

the program level, instruction pipelining for the instruction level 
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and the arithmetic pipe lining for the word level. Others distinguished 

the instruction pipelining, depending on the control structure in the 

system, to strict and relax pipelining. A pipe can be further 

distinguished by its design configurations and ·control strategies 

into two forms; it can be either a static or dynamic pipe. Sometimes 

a pipelined structure is dedicated to a single function, e.g. a pipelined 

adder or multiplier. In this case it is termed a unifunctional pipe 

with static configuration. On the other hand, a pipelined module can 

serve several different functions. Such a pipe is called a multi­

functional pipe which can be static or dynamic depending on the number 

of active configurations (interconnections). If only one configuration 

is active at anyone time, then the pipe is said to be static. Thus 

any overlapping of operations has to involve the same configuration. 

However, in a dynamic multifunctional pipe, more than one configuration 

can be active at anyone time, thus permitting a synchronous overlapping 

on different interconnections. 

The simplified model of a general pipelined computer ·is shown in 

Figure 1.8 where the processor unit is segmented into M modules, each 

of which performs its part of the processing and the result appears 

at the end of the Mth segment. 
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The pipelined concurrency, a main characteristic of the simplest 

pipeling, is exemplified by the process of executing instructions. In 

Figure 1.9, we considered four modules: Instruction Fetch IIF), 

Instruction Decode (ID), Operand Fetch (OF) and Execution lE), obtained 

when segmenting the process of processing instructions. Consequently, 

if the process is decomposed into four subprocesses and executed on 

the four-module pipelined system as defined above, then four successive 

instructions may execute in parallel and independently of each other 

but at different execution stages: the first instruction is in the 

execution phase, the second one is in the operand fetching stage, the 

third is in the instruction decoding phase and lastly, the fourth 

instruction is in the fetching stage. The overlapping procedure among 

these individual modules is depicted in Figure 1.10. 

However the expected full-potential computation speed increase is 

not always achieved mainly due to some design and operational problems. 

These are buffering, busing structure, branching and interrupt handling. 

A brief discussion of these major design constituents along with the 

pipelining of the arithmetic functions is included. Their importance 

and effects which can actually decide the efficiency and performance of 

the resulting design are also outlined. 

Buffering, an essential process to ensure a continuous smooth 

flow of data through the pipeline segments in the case where variable 

speed occurs, is virtually a process of storing the results of a 

segment temporarily before sending them to the next segment. Similar 

to an industrial assembly line, a segment may occasionally· be slowed 

down for one of many reasons which could prevent the continuous input 

to the next station. To remedy this problem, a sufficient storage 
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space or buffer is included between this segment and its processor, 

the latter can continue its operation on other results and transfer 

them to the provided buffer until it is full. 
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When the slowing down segment resumes normal service, it clears 

out its buffer. Perhaps at a faster speed. Consequently buffering 

may be needed before and after a segment with variable processing time. 

The inclusion of buffering between segments in a pipelined structure 

makes the system perform at a relatively constant rate rather than at 

the speed of slowest component. However full-speed is not always 

expected to be achieved since buffers have to be stabilised prior to 

any transfer activity. 

In addition to the architectural features of the pipelined 

processor, the busing structure is equally important in deciding the 

efficiency of an algorithm to be executed on such a system. Pipelining 

in essence, refers to the concurrent·processing of independent 

instructions though they may be in different stages of execution due 

to overlapping. In real life, often, pipelined computers have to deal 

with dependent or intermixed instructions. With dependent tasks, 

their input and traversal through the pipe have to be paused before 

the dependency is tackled. The internal busing structure serves this 

purpose by routing the results to the requesting segment efficiently, 

thus reducing the adverse effect of instruction dependency, but still 

leaving a great burden on the programmer. However, in the case of 

intermixed instructions, more concurrent processing can take place 

since the resulting dependency is hidden behind the processing of 

independent tasks. 
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Another damaging factor:.to the pipeline performance, even more 

than the instruction dependency is branching. The encounter of a 

conditional branch not only delays further executions but affects the 

performance of the entire pipe since the exact sequence of instructions 

to be followed is hard to foretell until the deciding results becomes 

available at the output. To alleviate the effects of branching, 

several techniques have been employed to provide mechanisms through 

which processing can resume safely even if an incorrect branch occurs 

which may create a discontinuous supply of instructions. 

A similar degrading effect to the conditional branching is caused 

by interrupts which disrupt the continuity of the instruction stream 

through the pipeline. Interrupts must be serviced before any action 

·can be applied to the next instruction. In the case that the cost of 

a recovery mechanism for processing to proceed after an unpredictable 

interrupt occurs (while instruction i is the next one to enter the 

pipe), is not exceedingly substantial, sufficient information is saved 

for the eventual recovery. Otherwise these two instructions, the 

interrupt instruction and instruction i, have to be executed 

sequentially which is in fact, not aimed at by the pipelining 

principle. 

Finally, one of the most beneficial applications of overlapped 

processing in order to increase the total throughput has been the 

execution of arithmetic functions. Specially, the advantages of 

pipelining are greatly·enhanced when floating point operations are 

being considered since they represent quite a lengthy process. Again, 

until all modules in the pipe are excessively used, full speed is not 

obtained. For example, the TI ASC arithmetic pipelined processor is 

made up of eight modules, as shown in Figure 1.11. 



1.5 DATA-FLOW COMPUTERS 

A common feature for all the high-speed parallel computer 

architectures is that, due to the basic linearity of the program, the 

use of implicit sequencing of the instructions is possible. This is 

a von-Neumann characteristic which means that the order of execution 

of the instructions is determined by the order in which they are 
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stored in the memory with branches used to break this implicit 

sequencing at selective points. An alternative form of instruction 

controlling is the explicit sequencing which is basically the principal 

concept exploited by the data-flow machines to provide the maximum 

possibilities for concurrency and speed-up. However, this concept has 

a significant impact on the architecture of such machines, the program 

representation, and the synchronisation overheads. 

In a data-flow architecture the algorithm is represented by a 

graph where the nodes correspond to the computations and the arcs 

describe the flow of data or operands, from the node producing the data 

(as a result) to the node using it as an operand [Dennis 1980]. In 

addition to the nodes describing the basic operations, there are nodes 

which are used to control the routing of data. Thus, the execution of 

any instruction is determined by the availability of all its operands 

resulting in a more complex control due to the high overheads 

involved in routing the data. With the use of the above graph 

representation, the data-flow concept encounters some problems when 

the algorithm contains loops ·or subroutine calls, in which case the 

same instruction is executed several times. Basically, the 

implementation of the data-flow computers can be grouped into two 

main classes, the static and dynamic structures, depending on how 
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this problem is tackled. In the first class, the static one, the loops 

and subroutine calls are unfolded at compile time so that each 

instruction is executed only once. Consequently, the implementation 

of the sequencing control is made simple since it directly follows that 

of the graph. On the other hand, in the dynamic case, the operands 

are labelled so that a single copy of the same instruction can be used 

several times for different instances of the loop (or subroutine). 

For this type of architecture, it is necessary to match all the 

operands with the same label before issuing the single copy of the 

instruction, the implementation of the control is significantly more 

complex in comparison with that of the previous class. However, the 

dynamic approach which allows a compact representation of large 

programs, can effectively exploit the concurrency that appears during 

execution (for example, recursive calls or data-dependent loops) . 

An example of the static approach is the MIT Data-Flow machine 

(Figure 1.12) which consists of the following main components; a store 

that contains the instruction cells or packets having space for the 

operation, operands and for pointers to the successors, and a set of 

operating units to perform the operations. These two components are 

connected by the two interconnection networks, one to send ready-to­

execute instruction packets to the operating units and 'another to send 

results back from the operating units to the 'instructions that use 

them as operands. The system has to be carefully designed so as to 

prevent any bottleneck from occurring and to provide means for the full 

exploitation of all the concurrency. 

In such a system, the maximum throughput is determined by the 

speed and number of the operating units, the memory bandwidth and by 
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the interconnection system. As in the other organisations, several 

degradation factors reduce the effective throughput. The most 

significant are the degree of concurrency·available in the program, 
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the memory access and the interconnection network conflicts, and the 

broadcasting of results, all of which except the last one are similar 

to the other systems. Sometimes an instruction has several successors, 

so that the result has to be sent, or broadcast, to all of them and 

this introduces significant overheads in the case when the number of 

destination pointers present in an instruction cell is limited. 

Examples of the dynamic approach include the U-Interpreter Machine 

[Arvind 1982] and the Manchester Dataflow Machine [Gurd 1985]. The main 

components of the latter (see Figure 1.13) are the token queue that 

stores computed results, the token matching unit that combines the 

corresponding tokens into instruction arguments, the instruction store 

that holds the read~to-execute instructions, ·the operating units, and 

the I/O switch for communication with the host. The degradation factors 

are similar to those of the static case except the additional overhead 

in token label matching. Due to the above mentioned degradation factors, 

data flow machines are only attractive for cases in which the con currency 

exhibited is of several·hundred instructions. 

Another problem in the use of the dataflow approach is the lack 

of any data structure definition, in fact only ·scalar operations were 

first utilised in the attempt to·maximise the amount of concurrency 

and this had significant limitations in terms of the modularity of the 

programs. The inclusion of data structures in the graph representation 

requires that the dataflow concept be extended and operations on them 



be defined [Davis 1982]. From the operational point of view, the most 

straightforward solution is to treat the data structure as an atcmic 
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. operand, requiring the structure tc be sent as a whole to the operating 

units even though only few elements are operated on. This can be 

performed by sending to the operating unit a pointer to the data 

structure instead of its value. However the disadvantage with this is 

that the whole data structure has to be copied when any of its elements 

is modified resulting in a heavy transfer rate between the memory and 

the operating units. To avoid this copying overhead, Dennis [Dennis 

1974] has proposed a tree structure to store arrays and operations such 

as select and append tc modify parts of the array. However, Dennis' 

proposal does not solve the limitation that the elements of the array 

have to be modified in a sequential manner, which increases the overhead 

for the select and append operations. To reduce this overhead Gandiot 

and Evcegovac [Gandiot 1982] proposed the introduction of macro-actors 

to perform more complex updating. To eliminate the sequential nature 

of the modifications, Arvind and Thomas [Arvind 1980] introduced I­

structures that allow concurrent writes and reads by adding to each 

element a tag indicating if the element has already been written and 

a list of pending reads to the reads queue to arrive before the 

element has been written. 

One of the most significant advantages of the data-flow machines, 

as claimed by its proponents, is the exploitation of the concurrency 

at a low level of the execution hierarchy since it allows the maximum 

utilisation of all the available concurrency. However, some researchers 

argued that the overhead with this unstructured low-level concurrency 



is too high and have proposed the use of a hierarchical approach in 

which different types of concurrency can be exploited at different 

levels. 

Finally, the dataflow'organisation which is still in an 

experimental stage, has recently received considerable researchers' 

attention. Several prototype systems have been built or simulated and 

are being evaluated. 
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1.6 ARRAY PROCESSORS 

The early interest in the parallel processor area initially 

appeared in the investigation of machin~s that were arrays of 

processors connected in a four-nearest-neighbour manner "N,E,S,W" such 

as the Von Neumann's Cellular Automate [Von Neumann 1968] and the 

Holland machine [Holland 1959]. Eventually, as a result of the growing 

interest in this form of a computer, parallel processors with a central 

control mechanism that controlled the entire array and operating in a 

SIMD manner began to emerge. 

All the systems in the array processor class can be identified by 

their major components, structured in a number of various and different 

ways: 

A number of identical Processor Elements (PE's) synchronously 

operating on different data streams proliferating from a number of 

memory banks not necessarily equal to the number of the PE's through a 

communication network with some form of local control and finally some 

form of global control. A.simple array computer is shown in Figure 1.14. 
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The control unit which is usually a computer itself with its own 

arithmetic and logic unit, memory and registers, differs from the 
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other processors in that it can execute scalar and control instructions 

(including conditional branch instructions). The processor elements 

which lack this ability since they must all be kept in synchronisation, 

do not generate their own instructions, but they all receive the same 

sequence of vector instruction from the control unit. A local on-off 

control unit is used to permit processors to either execute or ignore 

certain broadcast vector instructions. 

One of the most currently active research areas in computer 

architecture is the interconnection networks since they represent the 

accumulation of a large number of design decisions made before the 

implementation of the actual architecture. 

The interconnection networks can be generally distinguished into 

two types, the bus and the alignment networks with basic differences 

between them: while the former allows only a single one-to-one 

communication to take place at any given time, the latter allows several 

one-to-one (parallel data and control transfer) or one-to-many 

(allowing one unit to broadcast to many units in parallel) communication. 

It follows that the bus network is less expensive but a slower network 

than the other. 

Furthermore, the alignment networks can be topographically sub­

categorised into static and dynamic networks. A static network is 

characterised by the required dimensions for layout. Examples range 

from one-dimensional structures to hypercube networks. In Figure 1.15, 

we 'can see examples of one, two and three-dimensional networks. on 
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the other hand, the .dynamic networks are distinguished into the 

single-stage, multiple-stage and crossbar types of networks. The 

single-stage network consists of a single stage of switches. The 

nearest neighbour network and the perfect shuffle networks are examples 

of this type of network (see Figure 1.16). A more generalised 

connection network, where every input is connected to every output 

channel through a crosspoint is the crossbar switch. Figure 1.17 shows 

two representations of the crossbar switch from four inputs to four 

outputs. Finally, the multi-stage networks which can provide a cheaper 

alternative to the complete connection as offered by the crossbar 

switches are based upon a number of interconnected 2x2 crossbar 

networks organised into several stages. In Figure 1.18 we can see 

two multi-stage networks, the binary Bene's and the indirect binary 

n-cube networks. An example of the parallel or array processors is 

ILLIAC IV [Barnes 1968]. 

FIGURE 1.16(a): The Nearest-Neighbour Network 

FIGURE 1.16(b): Perfect-Shuffle Network 
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CHAPTER 2 

PARALLEL ARCHITECTURES - A VLSI APPROACH 



2.1 INTRODUCTION TO THE VLSI TECHNOLOGY PARADIGM 

There has been a rapid growth of computing technology that has 

followed the invention of transistors in the late 1940's. (The first 

transistor was invented in 1948 at the Bell Telephone Laboratories) 
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and integrated circuits in the late 1960's. Through developments in 

transistors, new families of small computers (i.e. minicomputers) began 

to emerge on the market. As a result, thousands of transistor elements 

were assembled on minute chips of silicon. The race for smaller and 

faster computing machines has developed ever since. A mainframe 

computer built using the original thermionic values had weighed more 

than thirty tons and required a room of 60x25 square feet to hold it; 

a computer of superior capability could, by 1971, be accommodated on 

a sliver of silicon. 

The migration of IC to large scale Lntegration (LSI) technology 

allowed tens of thousands of electronic components to fit on to a single 

chip. Following the rapid advances in LSI technology, the Very Large 

Scale Integration (VLSI) circuits have been developed with which 

enormously complex digital electronic systems can be fabricated on a 

single chip of silicon, one-tenth the size of a postage stamp. In 

fact, it is foreseen that the number of components that a VLSI chip 

could accommodate would be increased by a multiplier factor of ten to 

one hundred in the next two decades [Mead 1980]. Devices which once 

required many complex components .can now be built with just a few VLSI 

chips, reducing the difficulties in reliability, performance and heat 

dissipation that arise from standard SSI and MSI components [Kung 1979]. 

As computer applications still require faster and more powerful 
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computer architectures than these which are currently available and as 

we are migrating from the information processing era towards "knowledge" 

based systems which characterise the projected fifth generation of 

computers, the research in computer technology has been widened more 

than ever before. H.T. Kung was the first to realise that the rapidly 

developing chip industry together with automata theory could be the key 

success to constructing fast, highly parallel computer structures at 

low cost. Until the advent of VLSI, the development of parallel 

computers with a large number of processors had been limited by the 

unaffordable high costs of manufacture. Existing machines had been 

improved by tinkering with the traditional Von Neumann architecture, 

for instance cycle stealing, direct memory access (DMA) and pipelining 

of fetch and execute operations. As such, parallel machines were 

confined only to research purposes or military operations. 

The development of new manufacturing techniques for fabrication 

of small, dense and inexpensive semi-conductor chips created a unique 

circumstance in the computer industry. With ·the use of VLSI in circuits, 

size and cost of processing elements and memory was considerably 

reduced and it became feasible to combine the prinCiples of automation 

theory with the pipeline concepts. The combination was especially 

attractive since device manufacture costs remained constant relative 

to circuit complexity, with most time and money invested in design 

and testing. 

In relation with what was said above, approaches to device 

designs have progressed so significantly to the point that hardware 

design now relies heavily on software techniques, i.e. special rules 



for circuit layout and high level design languages (e.g. geometry 

languages, stick languages, register transfer languages, etc.) [Mead 

1981]. In fact, some of these languages offer the powerful chip 

fabrication capability directly from a design they express. 

Illustrative of this trend is the term silicon compiler utilised 

by the hardware designers to refer to computer-aided design systems 

currently under development. Analogous to a conventional software 

compiler, the silicon compiler will convert linguistic representations 

of hardware components into machine code, which can be stored and 

subsequently utilised in computer-assisted fabrication. 
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However, VLSI presents some problems, as the size of wires and 

transistors approach the limits of photolithographic resolution for it 

becomes literally impossible to achieve further miniaturisation and 

actual circuit area becomes a key issue. In addition, the chip area is 

also limited in order to maintain high chip yield and the number of 

pins (through which the chip communicates with the outside world) is 

limited by the finite size of.the chip perimeter. These restrictions 

form the basis of the VLSI paradigm. 

For a newly developed technology or product to survive in a highly 

competitive industry there must be sufficient demand for it. The 

emergence and subsequent success of VLSI oriented computing systems is 

not due only to H.T. Kung's foresight but also to the timeliness. At 

the same time Kung revealed the systolic concept, the idea of using 

VLSI for signal processing was the major focus of attention in 

governmental, industrial and university research establishments. 



2.2 FUNDAMENTAL ARCHITECTURAL CONCEPTS IN DESIGNING SPECIAL PURPOSE 

VLSI COMPUTING STRUcrURES 

High-performance special-purpose VLSI oriented computer systems 
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are typically used to meet specific applications, or to off-load 

computations that are especially taxing to general-purpose computers. 

However since most of these systems are built on an adhoc basis for 

specific tasks, methodological work in this area is rare. In an attempt 

to assist in correcting this adhoc approach, some general design concepts 

will be discussed, while in the 'following paragraph the particular 

concept of systolic and wavefront array architectures, two general 

methodologies for mapping high-level computation problems into 

hardware cellular structures, will be introduced. 

The problem of embedding a network of processors and memories 

into a set of VLSI chips is similar to that of embedding graphs ,whose 

nodes are computers, or gates, onto grids so as to minimise area. Most 

of the researchers exploring this problem usually make certain 

assumptions; for example, they assume that wires run and devices are 

orient,ed in only horizontal and ver,tical directions, everything is 

embedded on a square grid, all device nodes are at the same layer. 

The computational power of a chip is often measured by the number 

of transistors it contains. However, this is quite a misleading 

approach for the organisation of a chip's circuitry has a very strong 

effect. In general, regular chip designs make more efficient 

. utilisation of silicon area, which is a more natural measurement 

factor for the circuit size than the number of transistors. Such 

designs utilise less area for the 'wiring amongst transistors, leaving 



more space for transistors themselves. 

From the memory capacity point of view, the number of bits has 

been quadrupling every few years; in the mid-1970's technology passed 

through the era of lK, 4K and l6K bits memory chips. In 1981 the 

memory size was expanded to 32K .bits and a 64K bit is predicted. 
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Particularly for the design of special-purpose VLSI oriented 

computer machines, cost effectiveness has always been a major concerni 

their fabrication must be low enough to justify their specialised, and 

consequently, limited applicability. Cost can be distinguished in 

non-recurring design and recurring parts costs. Any fall of the 

latter's .cost is equally applied for the merit of both special­

purpose and general-purpose computer systems. Furthermore this cost 

is even less significant than the design cost, since the production of 

special-purpose computer systems in large quantities is quite a rare 

phenomenon. Hence, the design of such a system should be relatively 

small for it to become more attractive compared to a general-purpose 

computer and this can be achieved by the utilisation of appropriate 

architectures. More specifically, if the decomposition of a structure 

into a few types of simple substructures which are repetitively 

utilised with simple and regular interfaces is feasible, then 

significant savings are most likely to be achieved. 

In addition; special-purpose computer systems based on simple and 

regular designs are likely to be modular and consequently adjustable 

to various. performance goals, i.e. system costs may be made analogous 

to the performance required. This fact reveals that achieving the 

architectural challenge for simple and· regular design, yields cost-



effective special-purpose computer systems. 

Since such VLSI computing structures can function as peripheral 

devices, attached to conventional host computer, receiving data and 

control signals and outputting results, at a computation rate, which 

will balance the available I/O bandwidth with the host, is the 

ultimate performance goal of a special-purpose computer system. 

Therefore the likely modular attribute of such a concept is highly 

necessary, since it allows the flexibility of the structure to match 

a variety of I/O bandwidths; and since an accurate a priori estimate 

of available I/O bandwidths in complex systems is often possible. 
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However this problem becomes especially severe when a very large 

computation is performed on a relatively small special-purpose computer 

system. In this case the computation must be decomposed. 

In fact one of the major challenging research items becomes the 

development of algorithms that could be mapped into and executed 

efficiently by a special-purpose computer system. This implies that 

algorithms should decompose into modules, that map compactly into one 

VLSI chip (or a module of chips), and modules should be interconnected 

in an efficient manner. These algorithms must support high degrees of 

concurrency and employ a simple, regular data and control flow to 

enable an efficient implementation [Dew, 1984]. 

To conclude we mention that special-purpose .VLSI oriented 

computing structures can be either a single chip, built from a 

replication' of simple cells, or a system built from.identical chips, 

or even a combination of these two approaches. Figure 2.1 summarises 

the principle stages and tasks interdependencies involved in the 

design of a VLSI chip (see Foster and Kungs' paper, [Foster 1980]). 

I 
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In fact in the environment of VLSI systems design, the boundary between 

software and hardware has become increasingly vague. 

2.2.1 Systolic Arrays 

The concept of systolic architectures, pioneered by H.T. Kung, 

which has been successfully shown to be suitable for VLSI implementation 

is basically a general methodology of directly mapping algorithms onto 

an array of processor elements. It is especially amenable to a special 

class of algorithms, taking advantage of their regular, localised 

data flow. 

The word 'systole' was borrowed from physiologists who used it to 

describe the rhythmically recurrent contraction of the heart and arteries 

which pulse blood through the body. By analogy, the function of a cell 

in a systolic computing system is to ensure that data and control are 

pumped in and out at a regular pulse, while performing some short 

computation [Kung 1978], [Dew, 1986]. 

Thus, a systolic array is a network of processing elements, 

usually arranged in a regular pattern and locally linked by 

communication channels. Operands are pumped through the array at a 

regular pulse. Everything is planned in advance so that all inputs 

to a cell arrive at just the right time before they are consumed. 

Intermediate results are passed on immediately to become the inputs 

for further cells. A steady stream flows at one end of the array 

which is said to consume data and produce results 'on the fly'. For 

instance, by locally connecting a few basic cells, known as Inner 

Product steps 'IPS' - each performing the operation C=C+A*B - leads 

to a fundamental network capable of performing computation - intensive 
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algorithms, such as digital filtering, matrix multiplication, and 

other related problems (see Table 2.1 for a more comprehensive list 

of potential systolic applications). 

The systolic array systems feature the important properties of 

modulari ty regularity local interconnection, a high degree of pipe-

lining and highly synchronised multiprocessing. Such features are. 

particularly more interesting in the implementation of compute-bound 

algorithms, rather than input/output - 'I/O' - bound computations. 

In a compute-bound algorithm, the number of computing operations is 

larger than the total number of I/O elements, otherwise the problem 

is termed I/O-bound. Illustrative of these concepts are the following 

matrix-matrix multiplication and addition examples. An ordinary 

algorithm, for the former, represents a compute-bound task, since 

every entry in the matrix is multiplied by all the entries in some row 

th .. (3 1 b or column of the 0 er matr~x - ~.e. 0 n ) mu tiply-add steps, ut 

2 
only O(n } I/O elements. The addition of two matrices, on the other 

hand ,is an I/O bound task. Since the total number of adds is not 

larger than the total number of I/O operations, i.e. o(n
2

} add steps 

2 
and O(n } I/O elements. 

It is apparent that any attempt to speed-up an I/O-bound 

computation must rely on an increase in memory bandwidth (the so-

called 'Von Neumann' bottlenecks). Memory bandwidths can be increased 

by the utilisation of either fast components, which may be quite 

expensive, or interleaved memories, which may create complex memory 

management problems. However, the speed~up of a compute-bound 

computation may. often be achieved in a relatively simple and 

inexpensive manner,that is by the systolic architectural approach. 



'SYSTOLIC' PROCESSOR 
ARRAY STRUCTURE 

I-D linear arrays 

2-D square arrays 

2-D hexagonal arrays 

Trees 

Triangular arrays 

PROBLEM CASES 

FIR-filter, convolution, 'Discrete 

Fourier Transform' - DFT, matrix­

vector multiplication, recurrence 

evaluation, solution of triangular 

linear systems, carry pipelining, 

cartesian product, odd-even 

transposition sort, real-time 

priority queue, pipeline 

arithmetic units. 

Dynamic programming for optimal 

parenthesization-, image processing I 

pattern matching, numerical 

relaxation, graph algorithms 

involving adjacency matrices. 

Matrix problems (matrix multi­

plication), LU decomposition by 

Gaussian elimination without 

pivoting, QR-factorization, 

transitive closure, relational 

database operations, DFT. 

Searching algorithms (queries on 

nearest neighbour, rank, etc., 

systolic search (tr·ee), recurrence 

evaluation. 

Inversion of triangula! matrix, 

formal language recognition. 
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TABLE 2.1: The potential Utilization of 'Systolic' Array Configurations 



The fundamental principle of a systolic architecture, asystolic 

array in particular is illustrated in Figure 2.2. By replacing a 

single processing element with an array of PEs, a higher computation 

throughput can be achieved without increasing memory bandwidth. This 

is apparent if we assume that the clock period of each PE is lOOns; 

then the conventional memory~processor organisation (al has at most 

5 MOPS performance,while with the same clock rate, the systolic 

array (bl will result in a possible 35 MOPS performance. 
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Finally, this approach of utilising each input data item a number 

of times, thus achieving a high computation throughput with only a 

modest memory bandwidth, is just one of the advantages.of the systolic 

concept. Other equally significant criteria and advantages include 

modular expansibility, utilisation of simple, uniform cells, extensive 

concurrency and fast response time. 

However, one problem associated with systolic arrays is that the 

data and control movements are controlled by global timing-reference 

beats. In order to synchronise the cells, extra delays are often used 

to ensure correct timing. More critically, the burden of having to 

synchronise the entire network will eventually become intolerable for 

very large or ultra large scale arrays [Dew, 1984]. 
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FIGURE 2.2: Systolic Design Principle 

2.2.2 Wavefront Arrays 

A solution to the above mentioned problems, as suggested by 

S.Y. Kung [Kung 1985], is to take advantage of the data and control 

flow locality, inherently possessed by most algorithms. This permits 

a data-driven, self-timed approach to array processing. Conceptually 

such an approach substitutes the requirement of correct 'timing' by 

correct 'sequencing',this concept is used extensively in data flow 

computers and wavefront arrays; 

Basically the derivation of a wave front process consists of the 

three following steps: 
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a) the algorithms are expressed in terms of a sequence of 

recursions; 

b) each of the above recursions is mapped to a corresponding 

computation wavefront; and 

c) the wavefronts are successively pipelined through the 

processor array. 

Based on this approach, S.Y. Kung introduced the Wavefront Array 

Processor (WAP) which consists of an NXN processing element with a 

regular connection structure, a program store and memory buffering 

modules.as illustrated in Figure 2.3. The processor grid acts as a 

wave propagating medium using handshaking protocols. 
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Each processor performs a limited number of computations and is 

controlled by a program loaded in the program store. Data is stored in 

memory modules around the boundary and extra time must be allowed to 

set up a computation. An algorithm is executed by a series of wave­

fronts moving across the grid with processors computing whenever its 

data and instructions are available. Processors are assumed to support 

pipelining of waves and the spacing of waves (T) is determined by the 

availability of data and the execution of the basic operation. The 

speed of wavefront A is equivalent to the data transfer time. 

Summarising, the wavefront approach combines the advantages of 

data flow machines with both the localities of data flow and control 

flow.inherent in a certain class of algorithms. Since the burden of 

synchronising the entire array is avoided, a wavefront array is 

architecturally'scalable'. 
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2.3 VLSI-ORIENTEO ARCHITECTURES 

For large applications it may not be feasible to design a single 

chip implementation of an array, especially when balance between 

flexibility, efficiency, performance and implementation cost is 

essential. An alternative approach is to implement basic cells at the 

board level using a set of 'off-the-shelf' components which are widely 

available as chip packages from various manufacturers. 
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Systolic arrays achieve high performance and efficiency by 

considering only restricted problem classes, at the expense of flexibility 

and implementation cost. For a more economical solution, arrays must 

be constructed with many incorporated features so as to handle a large 

number of systolic algorithms. In this section, we shall briefly 

review the main contenders of VLSI-Oriented computing systems which 

have received attention to date. 

2.3.1 The WARP Architecture 

The WARP architecture, one of.the most advanced VLSI-oriented 

systems, was developed at Carnegie Mellon University (CMU) by H.T. Kung 

and his associates for purely.systolic algorithms. Initially, the 

design began with a preliminary study of different architectures based 

on general purpose microprocessors which could implement a variety of 

systolic algorithms efficiently. The study resulted in the Programmable 

Systolic Chip (PSC) discussed in [Fisher 1984] and prompted research 

into cell structures for high performance systolic arrays in a 

particular area .(signal processing) • 

The WARP architecture is a 1-0 linear systolic array with data 

and control flowing in one direction (with input at one end of the 



array and output at the other). From the preceeding discussion we 

observe that the design allows easy implementation, synchronisation by 

a simple global clock mechanism, minimum input/output requirements and 

the use of efficient fault tolerance techniques for malfunction. 

The basic WARP cell is constructed from a collection of chips as 

is illustrated in Figure 2 .. 4", its main characteristics being the 

pipelining of data and control. Weitek 32-bit floating point 
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multiplier (MPY) and ALU's perform operations and can be used in a 

pipeline mode to improve throughput by two level pipelining. The MPY 

and ALU register files use Weitek register file chips and can compute 

approximate functions like inverse square roots using look-up facilities. 

The X,Y and address-files are also register files but this time they 

are used to implement delays for synchronising data paths, and can be 

used as extra registers for book-keeping operations, while the data 

memory is used to reduce the input/output bandwidth by implementing 

tables of data and storing intermediate results. It can also be used 

to implement multiple cells on the same processor and hence 2-D arrays. 

The crossbar and input multiplexors (muxes) provide communication 

between the individual elements and can be reconfigured by control 

signals. The muxes permit two-directional data flow and ring set-ups. 

A ten-cell prototype has been built at CMU and tested on a number of 

example arrays discussed in H.T. Kung [Kung 1984l. 

2.3.2 The CHIP Architecture 

In order.to derive a more flexible VLSI-oriented computing system 

than the special-purpose computers, where the .same hardware would be 
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used to solve several different problems, L. Snyder suggested the 

design of the configurable, highly parallel architecture 'CHIP' 

[Snyder 1982] based on the configurability principle. Conceptually, 

the chip represents a family of systems, each built out of three major 

components: a set of processing ·elements (PE's), a switch lattice and 

a controller. The lattice, the most important component of a chip, 
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is a 2-D structure of programmable switches connected by data paths. 

The PEs are placed at regular intervals. Figure 2.5 shows two examples 

where squares represent PEs, circles represent switches and lines 

represent data paths. Note that the PEs are not directly connected to 

each other, but rather are connected to switches. 

The processing elements are microprocessors each coupled with 

several kilo-bytes of RAM used as local storage. Data can be read or 

written through any of the eight data paths or ports connected to the 

PE. Generally, the data transfer unit is a word, though the physical 

data path may be narrower. The PE~S operate synchronously and 

systolically. 

Each programmable switch contains a small amount (around 16 words) 

of local RAM which is used to store instructions (one instruction per 

word) called configuration.settings. Each configuration setting 

specifies pairs of data paths to be connected. When.executed, each 

pair which is also known as a crossover level, establishes a direct, 

static connection across the switch that is independent of the others. 

The data paths are bidirectional and fully duplex, i.e. data movements 

can take place in either direction simultaneously. NOW, executing a 

.configuration settings program causes the specified connections to be 



(a) (b) 

FIGURE 2.5:- Two Lattice Structures 

established and to persist over time, e.g. over the execution of an 

entire algorithm. 

The processing elements can be connected together to form a 

particular structure by directly configuring the lattice. That is, 

the programmer sets each switch such that collectively they implement 

the desired processor interconnection graph. Figure 2.6 illustrates 

three examples of how the lattice of Figure 2.5(a) might be con figured 

to implement some commonly used 'interconnection schemes. 

In addition to the lattice, a controller is also provided, and 

is responsible for loading programs and configuration settings into 

PE and switch memories respectively. This task is performed through 

an additional data path network, called 'skeleton'. 
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From the functional point of view, CHIP processing starts with 

the controller broadcasting a command to all switches to invoke a 

particular configuration setting; for example to implement a mesh 

pattern. The established configuration remains during the execution 

of a particular phase of an algorithm. When a new phase of processing, 

requiring different configuration settings is to begin, the controller 

broadcasts a command to all switches so that they invoke the new 

configuration setting; for example, a structure implementing a tree. 

With the lattice thus restructured, the PE's resume processing, having 

taken only a single logical step in reconfiguring the structure. 

In conclusion, the chip computer which is a highly parallel 

computing system, providing a programmable interconnection structure 

integrated with the processor elements, is well suited for VLSI 

implementation. Its main objective is to provide the flexibility needed 

in order to solve general problems while retaining the benefits of 

regularity and locality. 

2.3.3 INMOS Transputers and OCCAM 

A third possibility is the INMOS transputer, a single chip micro­

processor containing a memory, processor and communication links for 

connection to other transputers, which provides direct hardware support 

for the parallel language OCCAM. The structure of a transputer is given 

in Figure 2.7. 

The transputer and OCCAM were designed in conjunction and all 

transputers include special instructions and hardware which provide 

optimal implementations of the OCCAM· model of concurrency and 
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communication. Different types of transputers can have different 

instruction sets depending on the required balance between cost, 

performance, internal concurrency and hardware, without altering the 

users view of OCCAM. Hence the transputer is a Reduced Instruction Set 

Computer (RISC). 

The processor contains a scheduler which enables any number of 

process.s to run on a single transputer sharing processing time, while 

each link provides two unidirectional channels for point to point 

communication synchronised by a handshaking protocol. Communication. on 

any link can occur concurrently with communication on other links and 

with program execution. 

OCCAM itself is based on communicating sequential processors 

[Hoare 1978] where parallel activities are viewed as black boxes with 

internal states, called processes, and which communicate with each 

other using a one-way channel. Communication is achieved by sending 

a message down a channel between two processes; one process sends a 

message and another reads it from the channel. 

As every transputer implements OCCAM, an OCCAM program can be 

executed on a single transputer or a network of transputers. In the 

former case, parallel processes share ·the processor time and channel 

communication is simulated by moving data in memory. For a transputer 

network processes are distributed among transputers and channels 

allocated to links. 

The main characteristic of the OCCAM language is its simplicity 

which makes it an appealing prospect for proving the correctness of 

the processes. It has fewer than thirty keyworks, and only a small 
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number of constructors. Although each process used destructive 

assignments, the use of -channels for interprocess communication 

makes it entirely consistent with data flow and graph reduction 

computer architectures. OCCAM was designed with computer architectures 

of this nature in mind, and with a view towards fifth generation 

applications. Together with the Inmos transputers, it provides a 

modular hardware/software component of the type which is essential in 

the construction of highly.parallel computer systems. 

However, its lack of a powerful data structure and its closeness 

to the hardware, means that OCCAM is likely to be the low-level 

language of fifth generation systems with applications possibly written 

in a more abstract language. 

2.3.4 Simulation of Systolic Arrays 

We use the fact that OCCAM programs.can be divorced from transputer 

configurations by using the language as a simulation tool throughout 

the development of our simulation system in this research. A brief 

summary of the OCCAM language is given in Chapter 4. The general 

structure of OCCAM programs which represent the simulation of systolic 

arrays is shown in Figure 2.8, where branching indicates parallel 

execution. The construction of programs follows ideas developed by 

G.M. Megson. [Megson 1984]. Consequently OCCAM programs simulate the 

formal proofs by replacing I/O descriptions by actual results. 

Although the simulation does not guarantee correctness it is nevertheless 

a less time consuming approach which does not result in unsolvable 

equations. Furthermore, a working OCCAM program retains the possibility 
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of actual transputer implementation and so solves two problems in one 

attempt. 

The g.etdata and putdata sections of Fig.ure 2.8 which represent 
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the host machine interface, are. responsible for receiving. and sending. 

data and control to and from the prog.ram. Each routine contains enough 

memory to store the initial array input data and the final output data 

corresponding to the global input and output sequences of the model. 

In principle, the two routines can be run in parallel with each other 

and the array, but generally they are sequential, in order to emphasise 

the parallel operation of the array. The actual host can be predefined 

I/O files or simply the terminal. The former method is useful for 

buffering and throughput testing, while the latter helps with debugging 

and interactive array performance. The routines can be augmented with 

user friendly features directing the program .use, the collection of data 

necessary for the array construction and formatting of results. 

The setup routine is a key section of the algorithm which computes 

array dependent quantities. More specially, it performs many necessary 

calculations whose values are useful in defining the structure of the 

array. These structural values are more important as the array becomes 

more complex. 

sources, sinks and cells are OCCAM procedures that define the 

network model. A source is located initially with a vector from getdata 

representing its associated bounded data sequence, together with 

additional values from the set-up routine. Sinks are analogous to 

sources except they work in inverse by placing real values into data 

vectors which are then passed to putdata for output. The cell 
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procedures implement the.n-ary sequence operators. Generally there 

is one procedure for each type of cell, and the programming task is 

simplified for homogeneous networks. The I/O sequences are represented 

by OCCAM channels appearing as actual parameters in the procedure 

headings. Where cell definitions are only marginally.different, extra 

switches and flags can.be added to a procedure heading so it can set 

up the correct cell type. This collapses a number of definitions onto 

a single generic one. Extra parameters can also be used for preloading 

array values. 

A cell definition is divided into three sections, initialization, 

communication and computation. Initialization is performed only once 

and allows cells to be cleared before use or predetermined values to be 

set up. In particular, initialization defines neutral element quantities 

which can be used in communication before real data reaches the cell 

and is essential to maintain dataflow in OCCAM programs. The 

communication and computation sections of the cell are performed many 

times and are enclosed in a loop for iteration, and are performed 

sequentially one after the other. All communication is performed in 

parallel and computation is mainly sequential. The allocator routine 

is called after setup and is supplied with parameters about the array 

dimensions, synchronisation details of the total number of cycles in 

the algorithm, if a loop scheme. is used, and data sequence sizes. The 

allocator is simply a set of .parallel loops which specify and start-up 

the computational graph by connecting corresponding procedures using 

OCCAM channels as arcs and allocating channels accordingly. To achieve 

setup, the graph is mapped onto a grid of points whose points and 



hence arcs can be recovered from a simple address type calculation. 

The simpler the array the easier are the mapping functions, and the 

result is an allocation similar to the VLSI grid model. Once started 

the sources and sinks control the computation, and the allocator only 

terminates when all the graph cell procedures have terminated. 

Termination of procedures is assumed to be globally synchronised if a 

for-loop is used in cells and asynchronous if while-loops are 

incorporated. As OCCAM is.an asynchronous communication language, 

for-loops tend to be messy requiring some additional computation after 

the loop to clear all the channels - hence avoiding deadlock. While­

loops are better suited to the model of concurrency and when augmented 

with systolic control sequences can be used to selectively close down 

cells, input and output.channels. Consequently array cells can be 

switched off or de-allocated by a wavefront progression or pipelined 

approach from sources to sinks. 
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An additional procedure for debugging purposes can be added which 

runs in parallel with graph networks, and is mainly a screen/file mixer 

routine. The allocator sets up the procedure and network cells are 

augmented with an additional channel each, which the debug routine uses 

to analyse cells. Debug channels are allocated from a pool of channels 

and require an ordering of network cells for correct indexing. When 

the indexing function is simple, debug can be used to output snapshots 

in a sequential cell-ordering and the additional debug channel 

communication must be placed carefully in cell definitions. 

Finally, the techniques described above have been used successfully 

to implement designs in OCCAM by G.M. Megson [Megson 1987), but can in 



principle be extended to any parallel language provided channels 

and cells can be modelled. 

In fact Brent, Kung and Luk [Brent 1983] used an extended version 

of Pascal, ;.ADA also seems a likely candidate as ADA vendezvous is 

very similar to channel communication both being based.on CSP. The 

adoption of OCCAM offers more direct hardware support for special 

purpose designs as well as common architectures. 
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2.4 MIMD ARCHITECTURE DESIGN - THE SEQUENT BALANCE SYSTEM 

2.4.1 MIMD Hardware Organisation 
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One of the motivations of the MUID computer design is the increase 

in computational speed-up by the concurrent execution of instructions, 

organised in several sequential streams with infrequent dependencies 

among them, by a large pool of processors with approximately similar 

capabili ties. Of . importance to this type of structure is th·e mechanism 

to synchronise and communicate between·processors. Specifically the 

used mechanisms can be classified into two classes, those that use a 

shared memory, and those.that use passing messages (see [Baer 1976], 

[Enslow 1977] and [Stone 1980]). The use of the shared memory which 

might be a multiported main memory, cache memory or a multiported disk, 

results in a faster mechanism but requires all the proc~ssors to access 

the shared memory. Consequently, this limits the total number of 

processors that the system can effectively handle. On the other hand, 

the mechanism based on messages has a large overhead so that it is only 

useful when synchronisation and communication are very infrequent 

[Gehrig 1982]. 

The general class of MIMD computers was distinguished into two 

main classes, the tightly-coupled and the loosely-coupled systems 

depending on the amount of interactions between the processing elements 

(see [Hayes 1978]). In the case of tightly coupled processors, as 

shown·in Figure 2.9, (i.e. a large number of processors sharing a 

common parallel memory via a high-speed multiplexed bus), the processors 

operate under the strict control of the bus assignment·scheme which is 

implemented in hardware at the bus/processor interface. On the other 

hand, in a system with loosely-coupled processors the communication and 
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interaction takes place on the basis of information exchange. Figure 

2.10 shows a general architecture of a loosely coupled system where 

each processor has its own local memory. Comparing the above two 

classes of multiprocessor systems, the main difference lies in the 

organisation of the memory and the bandwidth of the interconnection 

network. 

Several interconnection.networks with different characteristics 

such as bandwidth, delay and cost, ranging from the shared common bus 

to the crossbar switch have been proposed. 

However. Enslow identified three fundamentally. different organis­

ations, namely the time-shared common bus, the multiport memory and 

the crossbar switch. 

69 

The time-shared common bus interconnection scheme, as illustrated 

in Figure 2.11, represents the simplest form of connecting all the 

functional units using a single bus which incorporates some arbitration 

logic associated with every bus/unit interface to resolve the bus 

request contention since only one transfer can take place at any given 

time. Thus, the unit wishing to initiate a transfer, a processor or 

an I/O unit, must first determine the availability state of the bus, 

then address the receiving unit as well as determining its availability 

and capability to receive the transfer. 

By its nature, such a system is quite reliable and its cost is 

relatively low, however several limitations are introduced that can 

have serious damaging effects·on both the system, since. a malfunction 

of any unit interface causes a system fa·ilure, and the total overall 

transfer rate. 
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MEMORY I M~" I 
I/O UNIT 

1 1 

FIGURE 2.11: The Time-Shared Common Bus Interconnection System 

several interconnection systems such as the use of two one-way 

paths and multiple two-way buses have been provided in an attempt to 

solve this problem of a single transfer. The former example which 

does not increase system complexity or diminish reliability has a 

comparable performance with its predecessor since a single transfer 

requires· the use of both paths. On the other hand with the latter 

technique multiple simultaneous transfers are possible but at 

additional system complexity. 

The most extensive and expensive interconnection network providing 

a separate path for every· processor, memory module and I/O unit is 

the crossbar switch (see Figure 2.12). 
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FIGURE 2.12: The Crossbar Switch System 

In the case that the multiprocessor system contains p processors 

and m memories, the crossbar requires pxm switches, each of which is 

capable of switching parallel transfers and arbitrating conflicting 

requests. In this system, the bus-interface logic required by the 

functional units is kept at the lowest level since some of the 

functions, i.e. transfer recognition and conflicts resolution, which 

are performed at every bus-unit interface, are assumed by the switch 



matrix. Consequently, such an interconnection is very complex 

(exponential growth for large p and m), expensive and physically 

large. However the important characteristics of this system which 

is shown in Figure 2.12,are the extreme simplicity of the switch­

functional unit interfaces and the ability to support concurrent 

transfers for all memory modules. 

The interconnection of· the control, switching and priority 

arbitration logic, which are distributed throughout the crossbar 

switch matrix, at the interface to the memory modules leads to the 

multiport memory organisation, as shown in Figure 2.13, where every 

processor has a private bus to every passive unit, i.e. memory and 

I/O units. The multiple ports of every passive unit, one for each 

connection to a processor, are assigned fixed priorities through 

which arising conflicts are resolved. 

This organisation offers a high potential transfer rate within 

the system at a comparable hardware complexity with that of the 

crossbar switch except for ·the localised logic, but with a severe 

constraint on the number of processors imposed by the number and type 

of the memory ports. 
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Besides these three presented interconnection networks, there 

are many others which can be valuable for the multiprocessor 

organisation such·as the Omega network [Lawrie 1975] and the Delta 

network [Patel 1981] ·and the Augmented Data Manipulator [Siegel 1979]. 

The interference or ·conflict, produced in the accessing of a 

shared memory in a multiprocessor system, which is one of the factors 

that degrade the overall performance of the system has been 
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FIGURE 2.13: The Multi-port Memory Interconnection System 
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investigated extensively, resulting in some exact and approximate 

modules under various assumptions [Chang 1977], [Janek 1981], 

[Janek 1982], [Lillevik 1984] and [Basket 1976]. These interferences 

can be generally classified into two types: software and hardware 

types. 

The first memory conflict is caused by a processor attempting to 

use a data set while it is currently being accessed by another 

processor which has eventually activated a software 'lock' mechanism 

to prevent any other processor from accessing the same data set. 

Thus, although this action forces serial manipulation of some 

sensitive data sets through a software mechanism, called critical 

region it-ensures data integrity in a multiple processor environment. 

On the other hand, the second type of memory conflict is caused 

when two or more processors attempt to access the same memory module 

simultaneously, i.e. more than one request is made to .the same module 

during a single memory cycle by different processors. Therefore, all 

but one request must wait to be served sequentially since only one 

access can be made per memory cycle. Thus, programs with a large 

number of these conflicts have greater degradation in their overall 

performance. 

A way to reduce the processor interconnection network and the 

interference in the memory is to have a cache memory associated to 

each processor. The main difficulty· with this approach is the 

coherence problem that appeared when shared data is present 

simultaneously in several caches. _Another solution to this problem 

is to partition the physical memory into local memories while keeping 

the uniform access at the virtual level. To reduce·even further the 
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cost of the interconnection network, it is useful to divide the 

processors into clusters and have a slower interconnection between 

clusters. This approach is implemented in the Cm* [Gehrig 1982] . 

2.4.2 The Sequent Balance 8000 System 
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The Balance 8000 which·was.developed by Sequent Computer System 

Inc., Oregon, using a new processor pool architecture"was installed in 

Loughborough University, Computer Studies Department in 1986. This 

system dynamically shares its load among twelve architecturally similar 

processing units and operates under a single copy of a Unix-based 

operating system, known as DYNIX, capable of delivering up to 5 MIPS. 

The pool processing organisation requires dynamic balancing of the 

system workload among the processors with an effective use·of all 

resources in general. Consequently.the system. automatically and 

continuously assigns tasks to run on any processor that is currently 

idle or busy with a lower priority task, meaning that a process does 

not necessarily run to completion on the same processor but on the 

contrary it may involve several processors. This balancing process is 

carried out transparently; neither the user nor the programmer need 

to be aware that the system supports multi-tasking operations. 

From the hardware point of· view .. the· Balance 8000 consists of a 

pool of two· to twelve processors, a bandwidth bus, up.to ·28 Mbytes of 

main memory,· a diagnostic pr6cessor·up to four high-performance I/O 

channels and up to four IEEE-796 (multibusr·bus couplers.·· .Figure 2.14 

shows the main functional blocks of the Balance 8000 system. 

Each processor is a subsystem· containing three VLSI components: 
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a 32-bit processing unit, a hardware floating-point unit and a paged 

virtual memory management unit. Two such subsystems are on one circuit 

board (see Figure 2.15 which shows the major units of a dual processor 

board). Also each processor contains a cache memory that almost 

reduces to zero all the processor waiting periods and minimises the 

bus traffic. The two-way set-associative cache consists of 8 Kbytes 

of very high speed memory and stores recently accesses instructions 

and data, so subsequent requests for the same data are satisfied from 

the cache, rather than from the main memory. 

However, with the use of these cache memories two coherence 

problems arise, mainly the coherence of the data between the main 

memory and L~e caches on each processor and the coherence of the data 

between the caChes themselves. For the former problem, a write­

through mechanism is utilised in order to keep the main memory up-to­

date with all the eventual changes made in every processor's cache. 

In addition to the update of the appropriate cache, this mechanism 

would allow· the same write cycle to pass to the bus and memory. In the 

latter case, the answer is provided by the bus watching logic 

implemented in every cache. Consequently, all the write cycles on the 

bus are monitored and the addresses are compared with those in the 

cache, so whenever the contents of the cache are altered, the cache 

invalidates the entry·in question. 

Significant processing time is saved by including a write-buffer 

in each processor which can proceed immediately after issuing a write 

cycle letting the buffer wait for the memory cycle to complete. 

Finally, to complete the description of the components found in 
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the processor subsystem we need to refer to the system "System Link 

Interrupt Controller" (SLIC) which is a chip, one for each processor 

and for every other bo~rd, attached to the SB 8000 bus. This SLIC 

chip manages interprocessor communication, synchronised access to 

shared data structures, distribution of interrupts among the 

processors, and diagnostics and configuration control. The SLIC 

bus which is a part of the SB 8000 system bus provides an inter­

connection for communication among the SLIC chips. 

The SB 8000 system .. bus is a 32-bit wide, pipelined, packet bus 

supporting multiple overlapped memory and I/O transactions and 

capable of achieving a throughput rate of 26 Mbyte/sec. It also 

supports several packet lengths and checks· parity to aid in error 

detection. 
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This system provides up to 28 Mbytes of principal memory, a 4 

Mbytes I/O address space that can be shared by all the processors and 

a 16 Mbyte virtual memory address space for each process. The Balance 

8000 supports up to four memory controllers, each with an optional 

expansion board, reducing memory contention among processors. It also 

supports standard I/O throughout the system, and permits several 

instances of each interface to increase the I/O bandwidth. More 

specifically this system supports a SCSI interface for disc and tape 

I/O, a Multibus interface for serial communications, large disc and 

tape support, and user-added devices, and finally an Ethernet local 

area network for communication amongst systems. 



CHAPTER 3 

THE INSTRUCTION SYSTOLIC ARRAY (ISA) -

A PARALLEL ARCHITECTURE·FOR VLSI 
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3.1 THE INSTRUCTION SYSTOLIC ARRAY (ISA) 

Systolic arrays have proved to be well sulted for VLSI technology 

since they: 

consist of a regular network of simple processing cells, 

use local communication between the processing cells only, 

exploit a maximal degree of parallelism. 

However, systolic arrays have one main disadvantage compared with 

parallel computer architectures: They are special purpose architectures 

only capable of executing one algorithm, (or a collection of related 

problems in a generic array) i.e., a systolic array designed for 

sorting cannot multiply matrices, whereas a systolic array for matrix 

multiplication cannot solve pattern matching problems and so on. 

Several approaches have been made to make systolic arrays more 

flexible, in order to be able to handle different problems on a 

single systolic array. In Hans-Werner Lang [Lang 1985] the instruction 

systolic array (ISA) has been suggested as a new architecture for 

parallel computation which meets the requirements of VLSI and be 

capable of efficiently executing a large variety of parallel 

algorithms. 

The basic idea of this concept is illustrated in Figure 3.1. 

Instead of pumping data through the array of processing cells which 

can execute only one fixed instruction (as in a systolic array), the 

ISA moves the instructions through the array of processing cells. In 

addition to the vertical stream of instructions, a horizontal stream 

of selector bits is introduced (Figure 3.2). An instruction is 



executed if it meets a selector bit '1', whereas execution of an 

instruction is suppressed if the selector bit is '0'. So the 

instructions may be executed only in certain rows of the processor 

array. 

DATA 

PROCESSOR 
ARRAY 

(a) 

FIGURE 3.1: (a) 
(b) 

INSTRUCTIONS 
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j PROCESSOR 
ARRAY 
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Data is Shifted Through the Systolic Array 
Instructions are Shifted Through the ISA 

SELECTORS 

INSTRUCTIONS 

PROCESSOR 
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FIGURE 3.2: The Vertical Instruction Stream is Combined with a 
Horizontal Stream of Selector Bits 
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Our basic model of a parallel computer is a mesh-connected nxn-

2 
array of N=n identical processors (Figure 3.3). The processors can 

execute instructions from a small instruction set. The processor 

array is synchronized by a global clock and the execution of every 

instruction is assumed to take the same time. 

I I I I ) 
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I L I I 

- f- f- r- - -

1 I I J 

- - I- - - I-
n 
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I I I 
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FIGURE 3.3: A Mesh-Connected Processor Array 

Each processor has some data registers including a designated 

communication register (CR). Communication between two processors P 

and Q is done in the following way: 

If a data item is to be sent from P to Q, P writes the data item 



into its communication register. In the next instruction cycle Q 

reads the contents of p's communication register. 

Each processor can write only into its own communication 

register, but it can read from the communication registers of its 

four direct neighbours. It is allowed that two or more processors 

read from the same communication register simultaneously. In order 

to avoid read/write conflicts we assume that reading from a register 

is done during the first half of the execution of an. instruction and 

writing into a register during the second half (Figure 3.4), or any 

equivalent mechanism: it must be guaranteed that reading from a 

register always yields its 'old' contents (of a previous instruction 

cycle) • 

FETCH EXECUTE INSTRUCTION 
INSTRUCTION ~----------------~--.---------------

~-----------~-----------~-----------r-----------I 
READ DATA COMPUTE WRITE 

DATA 

FIGURE 3.4: Instruction Cycle 

The processors do not have their own control units but are 

supplied with instructions from outside. Each processor has an 

instruction register. At the beginning of each instruction cycle 

each processor fetches the instruction from the instruction register 

of its top neighbour. This is done synchronously, ·so that, by this 

mechanism, rows of instructions are· shifted through the processor 

array from the top to the bottom. The processors in the top row of 

the array are supplied with instructions from a memory outside. In 

an analog way columns of selector bits are simultaneously shifted 
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through the array from left to right. A processor executes its 

instruction if and only if its selector bit is '1' otherwise it 

performs 'no operation I (no-op). More formally we define: 

(1) (r) 
A program on an ISA consists of a sequence p , ..• ,p of n 

(1) (r) 
-tuples over the instruction set I and a sequence s , •.. ,s of 

n-tuples over {O,l}. For every i,j~n and t~r,p(t) is the row of 

instructions which enters the ith row of the ISA at time t+i-l, and 

sIt) is the column of selector information which enters the jth 

column of the ISA at time t+j-l. That means, the instruction 

executed by processor (i,j) is: 

(t+i-l) .ff (t-j+l) 1 
Pj ~ si ; 

p(i,j) ; 
no-op otherwise 

Input and output of data to the processor array is done via the open-

ended processor links at the boundary of the array. The ISA is 

assumed to be embedded in an environment that is capable of: 

supplying the ISA with instructions and selectors, 
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supplying the ISA with input data and sorting its output data, 

both at the speed determined by the clock of the ISA chip. 

The length of a program on an instruction systolic array does not 

affect its area requirements, whereas the complexity of many systolic 

algorithms is proportional to their time complexity [Ullman 1984] . 

The reduced area requirements imply that on the fixed area (of a chip) 

larger problem sizes can be treated than on comparable standard 

systolic architectures. 
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3.2 THE INSTRUCTION SYSTOLIC ARRAY AND ITS RELATION TO OTHER MODELS 

OF PARALLEL COMPUTERS 

3.2.1 Basic Definitions 

In this section we study the feasability of the ISA concept by 

comparing it to other parallel computer concepts based on mesh-

connected arrays (Figure 3.3). 

Now, in the MIMD concept of parallelism, all the processors of 

a given array (denoted PAl can execute different instructions. That 

2 
means the array consists of n independent processors having their 

own control store. Similar to the ISA the PA uses local communication 

only, which makes it suitable for VLSI but the processors have to be 

much larger than the ISA. Therefore, on the same area the ISA concept 

can realise a larger degree of parallelism than the PA. Furthermore, 

2 
a PA program (see later) may consist of up to n different programs 

for the individual processors which have to be distributed over the 

array before the PA program can be executed as it filters through the 

array, whereas in the ISA the program is executed while it is moved 

through the array. Consequently it is easier to execute a pipelined 

sequence of different programs on the ISA than on the"PA. 

As mentioned in Section 3.1, the basic model parallel computer 

2 
is a mesh-connected nXn array of n identical processors (Figure 3.3), 

which is synchronized by a global clock. The processors can execute 

instructions from some instruction set, where the execution time of 

all instructions is the same. Each processor has some local memory 

including a designated Communication Register (CR). The communication 

between processors is done in the following way: 
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If a processor needs data from one of its four direct neighbours, 

it reads that neighbour's .communication register. This means that 

at most five processors can read from a communication register 

simultaneously (including the processor itself). Reading and writing 

is done in the same manner as described in Figure 3.4. This timing 

assures a mutual exclusion of reading and writing in the communication 

register. The open-ended data links of the processors at the 

boundaries of the array are used for external input and the output of 

data. 

Now, in the SIMD concept of parallelism, at every time unit, 

all active processors of the array execute the same instruction. 

The instructions are broadcast by a central control unit to all the 

processors. Since this involves signal propagation on long wires this 

concept is not suitable for implementation in VLSI technology. 

A control structure in between the ISA and the SIMD array is the 

Instruction Broadcasting Array (IBA). Here, as in the ISA, new 

instructions are fed into the array at every step, but these 

instructions are broadcast to all the processors of a column and not 

pumped through the array. Because of the broadcasting, this model is 

less suitable for VLSI than the ISA. But since it is conceptually 

simpler than the ISA we include it in our comparative investigation. 

The three architectures we consider in the following differ in 

how the control information is supplied to the processors [Kunde, 

Lang, Schimmler, Schmeck,. Schroder 19861: 

(i) The Processor Array (PA) 

Where each processor has its own control store, Figure 3.3. 



(ii) The Instruction Broadcast Array (IBA): 

This computer's structure is depicted in Figure 3.5. The 

processors need only a very simple control unit without a control 

store. Instructions are broadcast to all the processors of a column. 

In addition, selector information ('0' or '1') is broadcast to all 

the processors of a row. A '0' means that all the processors of this 

row are inactive, i.e. they execute a "no-operationlT-instruction. A 

'1' means that all the processors of this row are active and execute 

If I
j 

is the instruction 

of column j, and s. is the selector of row i processor p .. performs 
1 1J 

the instructions that have been broadcast. 

operations according to: 

1 
I. iff s.=l 

J 1 

Pij 
= 

no-op iff s.=o 
1 

(iii) The Instruction Systolic Array (ISA): 

This computer's structure is depicted in Figure 3.6. It is 

identical to the IBA except that the instructions and the selectors 

information are not broadcast but pumped systolically through the 

array of processors. The instructions move row-wise north-south, and 

the selectors move column-wise west-east; 

Corresponding to the informal description given above·we now 

define the notion of a program on a PA , IBA , or ISA (whenever the 
. n n n 

side length n of the underlying array is relevant we write it as a 

subscript) : 

Let I be the set of instructions the processors can execute, 

where no-op is an operation contained in the instruction set which 
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does not modify the processors memory contents. 

(1) (2) (r) 
A program on a PA : is a sequence p ,p , ... ,p of nXn matrices 

n 

over I, such that for all i,j~n and t~r the instruction executed by 

processor ( ") , ,(t) 
1,) at t1me t 1S Pij . 

A program on an IBA 
n 

(vectors) over I and 

(1) (2) (r) 
is a sequence p ,p , ... ,p of n-tuples 

(1) ,(r) 
a sequence s , ... ,s of n-tuples (vectors) 

(t) 
over {O,l} such that for all i,j~n and t~r/P, is the instruction 

) 

(t) 
broadcast to all the processors of column j and si is the selector 

information broadcast to all the processors of row i at time t. 

Alternatively processor p(i,j) executes according to: 

p(i,j) 
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A program on an ISA : 
, n 

(1) (r) 
,is a sequence P , •.. ,p of n-tuples over I 

(1) (r) 
and a sequence s , ... ,s of n-tuples over {O,l}. For every i,j~n 

(t) 
and t~r/P is the row of instructions which enters the ith row of 

the ISA 
n 

(t) 
at time t+i-l and s is the column of selector information 

which enters the jth column of the ISA at time t+j-l. This means 

that the instruction executed by processor (i,j) at time t is: 

p(i,j) = 
( 

(t+i-l) 'ff (t-j+l) - 1 
Pj 1 Si -

No-op otherwise. 

Finally, the execution of an ISA program terminates after the last 

row of instructions per) has entered the first row of processors. 

Therefore, if the last instruction row is supposed to be moved down 

to the last row of the array, it has to be followed by n-l rows of 

no-ops. 
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REMARK: 

The definitions are easily extended to rectangular grids 

denoted PA ,IBA and ISA with simple mcdifications to the 
m,n m,n m,n 

i,j indices, where m~n. If P is a program on a PA , IBA or ISA , 
n n n 

then T(p) denotes ·the execution time of p, which is equal to the 

length of the program. Let c= (C .. ) be an nxn-matrix, where C .. are 
~J ~J 

the contents of the communication register of processor (i,j) of a 

PA , IBA, or ISA before the execution of program p. Then c. denotes 
n n n p 

the ·corresponding contents of the communication registers after the 

execution of p (i.e. at time T(p)+l). 

The input of a program p occurs every time a processor on the 

boundary reads from the communication register of a non-existent 

neighbour, i.e. every time a processor uses one of the open-ended data 

links. From now on these "non-existent" communication registers 

are called Input Registers. The input of a program is specified by 

defining E (P), the Environment of p, to be a 4n-tuple of strings of 

values that are read from the input registers during the execution of 

p. The contents of the communication registers of processors on the 

boundary of the array are viewed as "Potential Output". Therefore, 

these communication registers are called Output Registers of the array. 

The output of a program F then is a subsequence of the sequence of 

values of some output registers during the execution of p . 

Finally, we define the equivalence of programs. Among the 

various conceivable notions we choose the following: Programsp and 

q on a PA , IBA or ISA are called equivalent, if for all identical 
n n n 

environments E(p) and E(q), for every initial contents C, and for 



every interpretation of the instructions occurring in p or q we have 

c =c. This type of equivalence could also be called Internal in p q 

constrast to an External Equivalence which could be defined with 

respect to output sequences instead of the final contents of the 

communication registers. 

3.2.2 A Simple Example Program 

To illustrate some of the basic definitions mentioned above, a 

simple parallel algorithm for merging two sorted data sets is 

implemented on each of the three models. 

Algorithm Merge 

Input: 
n 

Two Zxn arrays of data, the upper one sorted in right-to-

left row-major order, the lower one sorted in left~to-

right row-major order (Figure 3.7a). 

output: One nxn array sorted in left-to-right row-major order. 

Step 1: Sort all columns of nxn array by odd-even-transposition 

sort (Figure 3.7b). 

Step 2: Sort all rows of the nxn array by odd-even transposition 

sort (Figure 3.7c). 

The validity of this algorithm is easily seen using the 0-1 

principle [Knuth 1973]: If a sorting network sorts all sequences of 

o's and l's then it will also sort any· sequence of elements chosen 

from an arbitrary ordered set. 

n 
Thus, we may assume the sorted Zxn-arrays to consist of O's and 

l's only (Figure 3.8a). After step 1 at most one row of the array 

consists of both O's and l's (Figure 3.8b). Therefore, step 2 yields 

the completely sorted nxn array (Figure 3.8c). 
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The Merge Programs on PA4 , IBA4 and ISA4 

A PA4 program for the merge algorithm is illustrated in 

(Figure 3.9al. Each square symbol of these matrices represents an 

instruction. The meaning of the instruction symbols is given in 

Figure 3.9b. By a simultaneous execution of a max and a min 
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instruction of this kind a comparison-exchange of the two communication 
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register contents is achieved. Matrices 1 through 4 correspond to 

step 1 of the algorithm and matrices 5 through B to step 2. Thus, 

the time of the program is B steps. 

Figure 3.10a shows the IBA4 version of the merge algorithm. 

Instruction rows 1 through 12 (together with the corresponding 

selector column 1 through 12) from step 1 of the algorithm, rows 13 

through 16 step 2. Due to the broadcasting of instructions along the 

columns, in the IBA model the simultaneous execution of different 

instructions in one column is not possible. Therefore, modified 

instructions for the vertical comparisons are used [(Figure 3.10b, 

for details, see paragraph 3.2.3(b)]. This causes a delay factor of 

3 in the execution time of step 1, leading to a time of 16 steps for 

the execution of the entire program. 

The ISA
4 

program for the merge algorithm is given in Figure 3.11. 

Now the meaning of the instruction symbols is again the same as in 

the FA program (Figure 3 .Bb). Both the instruction and the selector 

part of an ISA program can be viewed as diamond shaped, consisting of 

diagonals of instructions and selector bits, respectively. The ith 

selector bit in a selector diagonal tells whether the corresponding 

diagonal of instructions is to be executed in row i of the ISA or 

not. Diagonals 1 through 6 now correspond to step 1 of the merge 

algorithm and diagonals "I through 12 to step 2. Note that this ISA 

program is not simply the skewed version of the IBA program from 

above, because on the ISA it is possible (and generally the case) 

that different instructions are executed simultaneously in one column. 

The time of the program is 16 steps. 
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FIGURE 3.l0a: IBA4 Version of the Merge Algorithm 
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FIGURE 3.10b: Vertical Comparison Symbols and its Meaning 
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FIGURE 3.11: ISA Version .of the Merge Algorithm 
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3.2.3 Relationships Between ISA, IBA AND PA 

In this paragraph we study the relationship between our three 

different mesh-connected processor arrays, the PA, the IBA, and the 

ISA. For every pair of these different models we determine tight 

bounds on the worst-case delay introduced by a transformation of a 

program on one parallel computer model into a program on the other: 

(a) ISA, IBA + PA 

Obviously, for every programp on an ISA or an IBA there is an 

equivalent program q on a PA such that T(p)=T(q). Although there are 

programs that can be simulated by much faster programs on the PA, 

these are simple worst cases where.no speed-up is possible. Therefore 

we get 

Proposition 1: 

Every program p on an ISA or an IBA can be :simulated by an 
n n 

equivalent program q on the PA such that 
n 

T(q) = T(p) 

In general, it is not possible to achieve a speed-up. 

(b) PA + IBA 

A simple way of simulating a program p on a PA by a program on an 

(t) 
IBA would be to simulate every step p of p by n steps on an IBA: In 

the ith of these n steps the ith row of p(t) is broadcast and only the 

ith row of the array is selected. However this may lead to problems, 

(t) 
whenever an instruction of row i of p reads from the communication 

register of a processor of row i-l, because in the suggested simulation 

• 
it would read the possibly new contents of the communication register 



ft th t ' f th ' tru t' of row l.'-l of pet) a er e execu l.on 0 e l.ns c l.ons Therefore, 

to produce an equivalent program on the IBA it is necessary to save 

the old contents of the communication register of a processor at least 

until all its four neighbours have read this information. This is 

achieved as follows: 

Every processor in the IBA is augmented with a new internal 

register R and a flag F. Every instruction b on the PA is replaced 

with an instruction b' on the IBA which is identical to b, but instead 

of writing into the communication register it writes it into R, sets 

F, and leaves the contents of the communication register unchanged. 

In addition, a special copy instruction C is introduced which copies 

the contents of R into the communication register, if the flag F is 

set, and resets F. All other instructions do not change the value of 

F. Obviously, the effect of the sequence of instructions b' and C is 

the same as the effect of b. In all further statements on the 

equivalence of programs it is assumed that the instructions, their 

primed versions, and the special instructions C and no-op are always 

interpreted exactly as defined above. 

(t) 
Now p can be simulated correctly by n+l steps on the IBA 

(Figure 3.12). 

In the ith of the first n steps the "primed" version of the ith 

row of pet) is broadcast and only the ith row of the IBA is selected. 

In the (n+l)st step an n-tuple of C'sis broadcast and all the rows of 

the IBA are selected. 

Hence we get, 
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(t) 
p 

1 1 

1 

1 o 
1 

1 
o 
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c c c c 

p' (t) 

1 
IBA 

FIGURE 3.12: Program Simulation on IBA 

Proposition 2: 

For every program p on a PA there exists an equivalent program 
n 

q on an IBA such that T(q)~(n+l)T(p), for a lower bound on the worst­
n 

case delay that can occur, if a program on a PA is simulated by an 

equivalent program on an IBA. 

Proposition 3: 

For every r>O there exists a program p on a PA with T(p)=r such 
n 

that for any equivalent program q on an IBA we have T(q)~(n+l)T(p). 
n 

An outline of the proof can be illustrated by the program p of 

length 1 which is shown in Figure 3.13. 
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a _______ a b 

a ______ a b a 

--- ---b----

a b a----- a 

b a- -- ----a 

FIGURE 3.13: p Program 

p consists of n "linearly independent" rows of instructions which 

cannot be simulated by fewer than n steps on an IBA. Assuming that a 
n 

or b cause a processor to read from its neighbours communication 

registers, the simulation has to use the primed versions. of a and b. 

Therefore, one additional step is needed to broadcast the copy 

instruction c. 

(c) IBA'" ISA 

Let p be a program on an IBA with selector sequence sand T(p)=r. 

Obviously, it is not possible to obtain an equivalent program on an ISA 

by simply moving the rows of instructions of p and column of selector 

information of s through the array simultaneously, since this would 

lead to incorrect combinations of selectors and instructions. The 

correct combinations could be achieved in a program q on the ISA with 

1 t ' . f f 1 f . < p (t) and s (t) se ec or sequence 5 ~, or examp e, or every 1,n i i 

appeared in the (t+i-l)th row of q and (t+i-l)th column of s', 

respectively. This skewed input of p and s would lead to the same 

problem as in part (b): Instructions that are executed in neighbouring 
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processors of the IBA simultaneously would be executed at different 

times on the ISA. Therefore, the same construction as in part (b) has 

to be used. Every processor is augmented with a new internal register 

R and flag F, every instruction b on the IBA is replaced with its 

primed version b' on the ISA, and an additional copy instruction C is 

introduced. The transformation of p and s into an equivalent program 

q with selector sequence s' on the ISA can now be done in the following 

way (Figure 3.14): 

p and s are transformed into sequences p' and s" of length 3r by 

replacing every n-tuple of p with its primed version followed by an 

n-tuple of C' s and an n-tuple of no-opland by inserting after every n-

tuple of s two n-tuples of l's. q and s' are defined to be the skewed 

versions of p' and .i", respectively, (of length 3r+n-l) followed by n-l 

(t) 
n-tuples of M'''pS,More formally, for every t~3r+2n-2 and i~n, qi and 

, (t) , (t-i+l) d" (t-Hl) 
sl.' are p, an s, , respectively if 1~t-i+l~3r and 

1. 1. 

no-op otherwise. The final n-l rows of no-operation instructions in q 

are necessary because it takes that many steps to move the instruction 

(r) from the first to the last row of the ISA. Pn We thus obtain, 

Proposition 4: 

For every programp on an IBA there exists an equivalent program 
n 

q on an ISA such that: 
n 

T(q) ~ 3T(p)+2n-2 

Hence, the asymptotic time complexity of p and q is the same, if T(p) 

is in n(n), It can easily be shown that it is not possible to do much 

better. 
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FIGURE 3.14: Tran5formation Program from IBA to ISA 



Proposition 5: 

-
For every r>O there exists a program p on an IBA with T(p)=r 

n 

such that for any equivalent program q on an ISA T(q) is in Q(T(p». 
n 

(d) PA + ISA 

To simulate a program p on a PA by a program q on an ISA, 

similar constructions as in (b) and (c) can be used resulting in the 

following propositions. 

Proposition 6: 

For every program p ona PA there exists an equivalent program q 
n 

on an ISA such that T(q)~(n+2)T(p)+2n-2. 
n 

Proposition 7: 

For every r>O there exists a program p on a PA with T(p)=r such 
n 

that T(q)~(n+2)T(p) for any equivalent program q on an ISA . 
n 

(e) ISA + IBA 

The results of parts (a) and (b) immediately provide an upper 

bound on the worst case effect of simulating a program on an ISA by 

a program on an IBA. The initial n steps of the execution of a program 

on an ISA can be simulated somewhat faster. In step t (t~n) there 
n 

are at most t active rows in the array of processors, thus t+l steps 

on the IBA suffice to simulate step t. The analog holds for the last 

n steps. Therefore, to simulate the first and the last n steps of an 

ISA program of length r~2n on the IBA, n(n+3) steps are needed. 
n 

Proposition 8: 

For every program p on an ISA there exists an equivalent program 
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q on an IBA such that T(q)~(n+l)T(p)-n2+n, if T(p)~2n. 
n 

The example of a program shown in Figure 3.13 can be used to 

produce programs of arbitrary length on an ISA such that their 

simulation on an IBA causes a delay of Q(n) . 

Proposition 9: 

For every r~ there exists a program p on the ISA with T(p)=r 
n 

such that for any equivalent program q on an IBA we have T(q)=Q(n)T(p) . 
n 

3.2.4 Relationship of ISA to Standard Models of Parallel Computers 

If we consider the taxonomy of parallel computers as introduced 

by Flynn [Flynn 1972], all three different types of processor arrays 

under consideration have to be characterized as MIMD-machines, since 

several different instructions can be executed simultaneously on 

different rows and columns hence data streams of the mesh. Obviously 

the processor array of type PA is closest to the commonly assumed 

structure of an MIMD-machine. Since the processors in an IBA or an 

ISA do not have their own control store, the processor arrays of type 

IBA or ISA are more similar to the array-type SIMD-machines which 

consist of a mesh-connected nxn-array of processors receiving their 

instructions via broadcasting from a central control unit. 

Since there exists a large variety of programs based on array-

type SIMD-machines [Flynn 1972], [Rodrigue 1982], it is of interest 

to know how these programs can be simulated on our types of processor 

arrays. We consider programs for SIMD-machines as special cases of 

programs for the PA. A full SIMD-program on a PA is a sequence of 

instructions matrices, each consisting of only identical instructions. 
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Of course, these programs can be simulated on the IBA and ISA in a 

much simpler and faster way than ordinary programs. 

Proposition 1: [Knude, Lang, Schimmler, Schmeck, Schroder (1985») 

For every full SIMD-program on a PA there is an equivalent program 

on an IBA having the same time complexity. 

(t) 
The proof is simple: Each program vector p in the IBA program 

is simply a repetition of the instruction occurring in step t, all 

selectors are 1. We also refer to the kind of programs on the IBA as 

full SIMD-programs. 

If SIMD-programs on a PA or an IBA have to be simulated on an ISA, 

we have to deal with the same problem as in the case of aribtrary 

programs, because instructions executed simultaneously by neighbouring 

processors of the PA or the IBA will be executed in consecutive steps 

on the ISA. Therefore we get, 

Proposition 2: [Knude, Lang, Schimmler, Schmeck, Schroder (1985») 

For each full SIMD-program p on a PA or an IBA there is an 
n n 

equivalent program q on the ISA with T(q)~3T(p)+2n-2. 

To capture the situation where instructions of SIMD-machines may 

be executed by only some of the processors, we define a partial SIMD-

program on a PA or an IBA to be a program such that all the instructions 

executed simultaneously by active processors (i.e. all instructions 

that are not no-operation instructions O's) are identical. 

An example of a partial SIMD-program on a PA is: 

a 000 

a a 0 0 

o a a 0 

o 0 a a 



It is a slightly changed version of the example used in the proof of 

Proposition 3 in the previous paragraph. 

proposition 3: 

For every r there is a partial SIMD-program p on a PA with T(p)=r 
n 
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such that for any equivalent program q on an IBAn we have T(q)~(n+l)T(p). 

Although we just saw that, in general, partial SIMD-programs on 

a PA cannot be simulated on an IBA faster than arbitrary programs, 

there is a large sub-class of partial SIMD-programs which can be 

simultaed as fast as full SIMD-programs: A partial SIMD-program on a 

PA is termed vector oriented, if in every instruction matrix pIt) the 

no-operation instruction 0 occurs only in complete rows or columns of 

no-op's. As an example, the SIMD program for a PA is vector oriented: 

o bOb 

o 000 

o bOb 

o bOb 

prOpoSition 4: [Kunde, Lang, Schimmler, Schmeck, Schroder (1985)] 

For every vector-oriented SIMD-program on a PA there is an 

equivalent partial SIMD-program on an IBA having the same time complexity. 

In order to transform a PA program step pIt) with an instruction 

b occurring in it into an equivalent step on the IBA, we set, 

(t) 
= { Pj 

(t) 
b, if column j in p is not a complete no-op column 

no-op, otherwise 

and put, 

(t) { s. = 
.1 

1, if row i is not a complete no-op row 

0, otherwise. 
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3.3 A COMPARISON-BASED INSTRUCTION SYSTOLIC ARRAY 

3.3.1 ISA Construction 

In Section 3.1 a realisation of an instruction systolic array was 

described. Now we consider an ISA, the processors of which are capable 

of executing a small set of one and two operand instructions for comparing 

and exchanging data items of adjacent processors. Examples of simple 

programs on the ISA for determining the maximum value or for performing 

a perfect shuffle are given. 

In order to construct an instruction systolic array (ISA) capable 

of executing algorithms using comparison and exchange operations, the 

following set of instructions have been developed by Hartmut Schmeck 

[Schmeck 1986]. In the following K' denotes the communication register 

of one of the adjacent processors in the north, east, south, or west. 

In the case of a processor on the boundary of the array, K' may denote 

an I/O-pad. 

read (K' ) : 

min(K,K'): 

max(K,K') : 

neg: 

K gets the value of K' 

pictorial representation EJG~GJ 
K gets the minimum of its own value and that of K'. 

pictorial representation ~ ~ ~ ~ 

K gets the maximum of its own value and that of K'. 

pictorial representation c:::J G W EJ . 
K is negated, i.e. it gets the one-complement of 

its own value. 

pictorial representation. 



no-op: 

Appropriate 

The value of K is not changed, the register is only 

refreshed. 

pictorial representation D 
combinations of read instructions ( rE, I + I ) can 

be used to execute an exchange operation between adjacent processors. 

In the same way, a combination of min and max instructions can be used 

to execute a comparison-exchange. Although the effect of a comparison­

exchange will always be the same while it is being moved through the 

array, a preceding use of the neg instruction in some rows of the array 

can lead to comparison-exchanges in the opposite direction. This is 

desirable, if e.g. the rows of the array are to be sorted in alternating 

order (ascending and descending). 

All the instructions are executed bit-serially. Otherwise the 
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number of wires and I/O pads and therefore the area of the ISA would be 

too large. Because of the bit-serial mode of operation, the communication 

registers are implemented as shift-registers. 

The block structure of an ISA-processor realizing the 14 different 

instructions is shown in (Figure 3.15). The functional unit essentially 

consists of a bit-level comparison-exchange unit. Depending on the 

control signals received, it provides K, Kt, -Kt min(K,K t
) or 

max(K,K') as output. To allow for a very simple decoding the 

instructions are encoded using 5 instead of 4 bits. The input of 

instructions into the array is done bit-serially, to save I/O pads. 

However, they are passed from row to row in a bit-parallel way. The 

execution of an instruction takes k+l clock cycles where K is the 
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FIGURE 3.15: Block Structure of a Comparison Based ISA-Processor 



length of the data items. If instructions were passed bit-serially, 

either the execution time would be longer or an extra register for 

sorting the instruction would be necessary. 

3.3.2 Example Programs on the ISA 

(i) Input and Output of Data Items 

To initialize the communication registers of the Instruction 

Systolic Array, the program depicted in Figure 3.1~may be used which 

2 
moves n data items from the left into the array. The execution of 

this program could be overlapped with the execution of the program of 

'Figure 3.1Gbwhich moves the contents of the communication registers to 

110 

the right and out of the array. Since the instructions of both programs 

have to be executed in every processor the selector sequence consists 

of ones only_ 

(~ 

FIGURE 3.16: (a) Input into and (b) 'Output from an Bx8-ISA 
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(ii) To Determine the Maximum 

One way of determining the maximum of the n
2 

items stored in the 

ISA is to move the maximal data item to a fixed location, e.g. to the 

processor at the lower right corner. In the worst case this requires 

at least 2n-2 local exchanges. Two simple ISA-programs for achieving 

this are given in Figure 3.17a and 3.17b. Both programs have only two 

diagonals of instructions. After "execution of the program shown 

in Figure "3.17b, we do not only have the maximum of all the data items 

in the lower right corner, but for every i~n we have the maximum of 

the first i rows (columns) in the i-th processor of the rightmost 

column (bottom row). 

~ 
? 

r--

~ ~ 
~ ~ .~ 

~ . ~ 
.~ 

~ ~ ~ 

~ ~ 1+ 
~ ~ + 

~ ~ 

+ 
0 1 1 0 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

(a) (b) 

FIGURE 3.17: Programs for Determining the Maximum on an 8x8-ISA 

If it were not acceptable to change the set of data items stored 

in the array, one could extend the programs by two diagonals using 

comparison-exchanges instead of the simple max instructions. Obviously 
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the minimum may be determined completely analogously, unless it has 

to be moved to the upper left corner of the array. It is easy to 

notice that it is much harder to move a data item from the right to 

the left or from the bottom to the top than in the opposite direction. 

A program for moving the bottom row of data items to the top row is 

shown in Figure 3.18. It has 2n-n diagonals of instructions and 

selectors. The corresponding program for moving the top row to the 

bottom would consist of two diagonals only. 
-

T 
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IT I 
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10000000 0000 00 

0 1 1 000 000 0000 0 
00 o 1 1 o 0 0 0 0 0 000 

000 001 10 0 0 0 0 00 
00000001 1 0 0 0 0 0 

0000000001 1 00 0 
00000000000 110 

000000000000 o 1 
8x8 ISA 

FIGURE 3.18: Program for Moving the Bottom Row to the Top Row of an 
8x8-ISA 



Ilff!4t 
000000 1 1 1 111 

1 0 0 0 0 0 111111 
o 1 1 000 111 1 1 1 

001 1 1 0 111 1 1 1 
000 1 1 1 111 1 1 1 

00001 1 111111 
000001 1 1 1 111 

000000 1 1 1 111 
(a) (b) 

FIGURE 3.19: Perfect Shuffle on (a) the Rows and (b) the Columns of an 8x8-ISA. 

I-' 
I-' 
cv 
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(iii) To Perform the Perfect Shuffle 

The perfect shuffle is an operation that is used in many different 

algorithms [Stone 19711. It transforms the sequence al""'~' 

the perfect shuffle on all the rows or all the columns of the ISA 

are depicted in Figure 3.19. Both programs have n-2 diagonals of 

instructions. The" program for the perfect shuffle on the rows is 

somewhat simpler, since only n/2-l of its rows contains instructions 

that are different from no-op. 

(iv) Sort Program 

Figure 3.20 shows two simple-ISA programs for sorting a 2 x2-array. 

r--

I 
i 

I 
t 

- I-> 

~ I-

100 1 1 0 101 100 
o 1 1 1 1 1 o 1 001 1 

FIGURE 3.20: Two Simple ISA-Programs for Sorting a 2x2-Array 
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3.4 TO SORT BY THE INSTRUCTION SYSTOLIC ARRAY 

3.4.1 Introduction 

2 
In this section an algorithm for sorting n items on a nxn mesh-

connected processor array (Figure 3.3) in time O(n) is presented. It 

is very simple in its structure and can be implemented easily on a 

systolic array. In particular, it can be written as a simple program 

for the ISA. 

There is a lot of previous work done in closely related fields. 

In [Thompson, Kung 1977], [Nassimi, Shani 1979], sorting algorithms with 

time complexity O(n) are presented. This time performance is 

asymptotically optional for mesh-connected architectures. Another 

algorithm with the asymptotic time complexity can be found in [Lang, 

Schimmler, Schmeck, Schroder 1983] together with asystolic array:to 

2 
sort n items in 8n steps. (The constants are very interesting in this 

context since there is no difference in the asymptotic behaviour) . 

Naturally, the power of the ISA depends on the power of the 

individual processors. The restriction to a rather simple instruction 

set seems desirable to keep the processors small enough, in order to 

allow integration of many processors on a single chip. 

Formally, the operation executed by processor (i,j) at time t is 

defined in the following way: 

For every i, j~n and t~r p(t) is the row of instructions which 

enters the i-th row of the ISA at time t+i-l, and s(t) is the column 

of selector information which enters the j-th column of the ISA at 

time t+j-l. This means, that the instruction executed by processor 

(i,j) at time t is: 



p(i,j) = 

1 
(t+i-l) . ff (t-j+l) = 1 

Pj 1 Si 

no-op otherwise 
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Hence we assume each processor to have only one register (communication 

register) and to be able to execute the following instructions chosen 

by Manfred Schimmler [Schimmler 1986]: 

SYMBOL 

EJ 

G 
c:J 
EJ 
G 
w 
QJ 

D 

MEANING 

(Read the contents of the left neighbour's 

register, compare it with its own register, 

and store the maximum in.~its own register) • 

C:= max(Cright'C) 

C:= max(C ,C) 
upper 

C:= min(Cleft,C) 

C:= min(C . ht'C) r1g 

C:= min(C
l 

,C) 
ower 

C:= C 

(Invert all bits of the contents of C) 

NO-OP (no-operation) 

3.4.2 One Dimensional Sorting Methods 

Here we introduce two parallel sorting methods for one dimensional 

sequences which we use as part of the algorithm (for two dimensional 

arrays). For a better understanding we represent them as sorting nets 
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in the manner shown by [Knuth 1973]. For example, the odd-even-

transposition sort for n=6 items is illustrated in (Figure 3.21). 

Comparator models are represented by vertical arrows between two lines. 

The number enters at the left and each comparator causes an inter-

change of its inputs, if necessary, so that the larger number appears 

on the line of the arrow head after passing the comparator. At the 

right of the diagram all numbers are in order from top to bottom. 

(i) The K-Triangle Merger: 

K 
The K-triangle merge net (Figure 3.22) consists of 2 parallel 

comparison steps, where the i-th comparison step consists of the 

comparisons [i+j-l : i+j], j=0,2,4, ••• ,k-2i ([l:m] denotes a comparison-

exchange between the elements on line 1 and line m). 

It turns out to be a sorting net if the input consists of two 

K 
sorted sequences (of length 2) that have been concatenated and perfectly 

shuffled afterwards: 

Lemma 1: 

Given an even number K and a sequence a ,al,·.·,a 1 of items to o k-

be sorted, where a
O

,a
2

, .•• ,a
k

_
2 

and a
l

,a
3

, .•• ,a
k

_
l 

are already sorted 

in non-decreasing order, the K-triangle merger sorts the whole 

sequence into non-decreasing. order. 

Proof: 

Using the O-l-principle for sorting nets [Knuth 1973] we can 

assume the input elements a. to be O's or l's only. We will prove the 
l. 

Lemma by induction on K: K=2:A 2-triangle merger consists of exactly 

one comparator between line 0 and line 1, so obviously every sequence 

of length two will be sorted by a 2-triangle merger. K>2: Assume 
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FIGURE 3.21: Odd-Even-Transposition Sorting Net for n;6 ltems 
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FIGURE 3.23 : The 6-Diamond Merger 



Lemma 1 to be true for the K-triangle merger. We consider the 

sequence aO,al, ••. ,a
k

_
l 

as input into the K-triangle merger. We have 

to distinguish four cases: 

(1) a =0 a =0 
0'1 

The sequence a
2

,a
3

, ••• ,a
k

_
l 

is sorted by the K-2-triangle merger 

obtained by removing the first comparator of each step of the k-

triangle merger. Thus, the whole sequence aO,al, ••• ,a
k

_
l 

is sorted 

by the K-triangle merger, since the inputs into .the additional 

comparators are already sorted. 

(2 ) a =0 a =1 
0'1 
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al=l implies a
2i

+
l

=1 for i=O,l, ••• ,I-l Thus the inputs into all 

the comparators of the first step of the. K-triangle merger are alr·eady 

sorted. The remaining comparators from exactly a K-2 triangle merger 

that sorts the sequence a
l

, ••• ,a
k

_
2

• Since ao=O and ak_l=l the whole 

sequence is sorted after passing the k-triangle merger. 

(3) a =1 a =0 
0'1 

ao=l implies a
2i

=1 for i=O,l, .•• ,~-l Thus, initially we have 

a2i~a2i+l for every i. After passing the first step of the K-triangle 

merger the sequence is transformed to al,aO,a3,a2, .•• ,ak_l,ak_2. As 

in Case 2 the whole sequence is sorted by the remaining K-2~triangular 

merger. 

(4) a =1 a =1 
0'1 

This implies that the whole sequence consists of ones only and 

it is obviously sorted before and after passing the merger. 
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(ii) The K-Diamond Merger 

The K-diamond merge net (Figure 3.23) consists of k-l parallel 

comparison steps, where for i;1,2, .•• ,~ the ith comparison step 

, f h t [k, 2' k '2' 1] '1 ' 1 consLsts 0 t e compara ors 2 -L+ ) : 2 - L+)+ ,);0, , •.• ,L- , 

kk k 
for i=Z +1, 2 +2, •.• ,k-l it consists of the comparators [i- 2+2j 

i- ~ +2j+l], j;O,l, ••. ,k-i-l. 

Lemma 2: 

and 

Given an even number K and a sequence aO,al, ••. ,a
k

_
l 

of items to 

be sorted, where aO,al,··.,ak/2_1 and a k / 2 , ak/2+1, ••• ,ak_l are each 

sorted in non-decreasing order, the K-dimensional merger sorts the 

whole sequence into non-decreasing order. 

Proof: 

The O-I-principle again allows us to restrict the inputs to O's 

and l's only. We prove Lemma 2 by induction on K: K;2: A 2-diamond 

merger consists of one comparator that obviously sorts any sequence of 

length two. K>2: Assume Lemma 1 to be true for the K-2-diamond merger. 

Let aO,al, .•• ,a
k

_
l 

be the input sequence. The K-diamond merger 

consists of a K-2-diamond merger followed by the comparators [j-l j] 

and [k-j-l : k-j], j;1,2, ••• ,~. The K-2-diamond merger sorts the 

sequence a
l

,a
2

, ••. ,a
k

_
2 

by the induction hypothesis, leaving only a
O 

and a
k

_
l 

to be inserted. If a
O 

is 0, it is already in its final 

position. If a
O 

is 1 its final position is somewhere between line 0 

and line k
2

, since a ;1 implies a,;l for i;0,1""'~2 -1. Thus the 
. 0 L 

remaining comparator diagonal [j-l : j], j;1,2, .•. ,~, will insert a
O 

into its correct position. The dual argument shows that a
k

_
l 

finds its 

• 
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position by the comparator diagonal [k-j-l k-j], j=1, ••. ,2, ••. ,~. 

3.4.3 The Two Dimensional Sorting Algorithm 

We consider a simple model of an MIMD computer: a mesh-connected 

nXn array of identical processors (Figure 3.3). Every processor has 

some local memory including a designated communication register. It 

can execute a small number of instructions and is capable of generating 

its own instruction sequence. The processor array is synchronized by 

a global clock, and the execution of every instruction is assumed to 

take the same time. During the sorting process every processor contains 

one data item in its communication register. Observe that there are 

situations, where two elements initially loaded at the opposite corner 

processors have to be transposed during the sorting. It is easy to 

argue that even for this simple transposition at least 2n-n local 

interchange steps are needed. This implies that no algorithm on such 

2 
a mesh-connected processor array can sort n elements in less than O(n) 

steps. 

The following algorithm is to be executed on the processor array: 

Algorithm Merge: 

Input: 
n n 

Four 2 x 2 arrays, the upper sorted in left to right row 

major order, the lower ones in right to left row major order. 

Output: One nXn array sorted in row major order. 

1. Merge all columns of the nXn array by the n-l steps of an n-

diamond merger. 

2. Sort all rows by n-steps of the odd-even-transposition sort, 

the odd rows in left-to-right direction, the even rows in right-

to-left direction. 
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3. Merge all columns by the ~ steps of an n-triangle merger. 

4. Sort the rows by n-steps of the odd-even-transposition sort. 

The validity of the algorithm may be seen again by the use of the 0-1-

principle: the initial configuration is that of (Figure 3.24a), four 

n n 
sorted 2 x 2 subarrays, where the white regions denote O's and black 

regions l's. After step 1 of the algorithm the array consists of two 

n 
n x 2 arrays and in both halves there is only one row still unsorted 

(Figure 3.24b). This is called the critical row. Step 2 sorts all 

rows in alternating directions and can so produce two different 

situations:-

a. the critical rows are still in different halves (Figure 3.24c) 

or b. the critical rows are in the same half (e.g. the left as in 

Figure 3.24d). In both cases step 3 results in a situation 

where there is only one single unsorted row in the whole nXn 

array (Figure 3.24e). Obviously step 4 suffices to complete 

the sort (Figure 3.24f). 

For the complexity analysis we assume one elementary comparison-

exchange step to require the time t. Step 1 needs (n-l)t. For 
c c 

n 
Step 2 we need ntc and Step 3 requires ~c. Step 4 again needs nt 

c 
n n 

and so the time TM(C) for the merge stage of four 2 x 2 arrays is: 

= (3!n-l)t 
c 

3.4.4 The Algorithm on the ISA 

In this paragraph we give a program for the ISA that realizes the 

algorithm MERGE. We assume that the items to be sorted are loaded in 

the nXn array before starting the sorting process, each one in the 
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(a) (b) 

(c) (d) 

(e) (f) 

FIGURE 3.24: Sorting an Array of 0'5 and 1'5; 
White Regions are 0'5, Black Regions are 1'5. 



communication register of one processor. We give the program as an 

instruction stripe and a selector stripe, where the i-th row of the 

instruction stripe is the i-th instruction n-tuple (counted from the 

bottom to the top) and the i-th column of the selector stripe is the 

i-th selector n-tuple (counted from the right to the left). The 
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meaning of the instruction symbols has been explained in paragraph 3.4.1. 

As an example (Figure 3.25) shows the program for a 6-triangle merger 

for the columns of a 6 x6 ISA. The complete program of the last merge 

stage of an 8x8 sorter is depicted in (Figure 3.26). 

The length of the sorting program is the number of instruction 

n-tuples of the ISA program. The program is composed of diagonals of 

either identical instructions or no-ops and instructions of the same 

type. So it is easy to count the number of instruction diagonals (ND) 

for the logical blocks of the algorithm and sum these up to compute 

the length of the whole sorting program [Lang 1987). The merging of 

two half-columns of an KXK array with K-diamond merger requires K 

instruction diagonals. One diagonal is used to invert every bit of the 

elements of the even rows of the array. Now we can sort all rows (in 

K-2 diagonals) of the array and again invert the elements of every 

even row. The effect is that the even rows are sorted in right-to­

left order by this. Sorting the columns with a K-triangle merger 

again needs K diagonals and sorting the rows afterwards needs 2+K-2 

diagonals. Since the sorting direction on this .last step alternates 

(according to the position of the KXK subarray in the whole nXn array) 

we need two more diagonals of invert operations, one before and after 

the final sorting of the rows. 
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FIGURE 3.25: ISA Program for the 6-Triangle Merger 

(Enpty instruction boxes denote no-op, 
empty selector boxes denote O's) 
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FIGURE 3.26: ISA Program for the Last Merge Stage ofax8 Sorter 
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If we sum up the number of instruction diagonals for the (log K)th 

merge step of the sorting program on the ISA we get: 

.and for the whole sorting algorithm 

Since NDS(l)=O, we get, 

12 * n - 12 . 

To complete the ISA program we have to add a number of no-ops 

instructions to fill up the empty spaces under the first and on top 

of·the last instruction diagonals, and we must add n instruction rows 

containing no-ops only at the end of the program to ensure that the 

last significant instruction is executed by the processor (n,n) when 

the program is terminated. So the length of the sorting program on 

.an nxn ISA is: 

L (n) = 14 * n - 13 . 
S 



127 

3 • 5 ADDITIONAL ALGORITHMS SOLUTION BY USING THE INSTRUcrION SYSTOLIC 

ARRAY (ISA) 

3.5.1 Finding the Generalized Matrix Inversion 

Matrix inversion is a very important operation in scientific 

computation and for this reason there is a large and growing body of 

literature concerned with the design of parallel processor networks 

for this purpose. H. Schroder and E.V. Krishnamurthy [Schroder, 

Krishnamurthy 1988] used two different implementations for Greville's 

algorithm [Gregory, Krishnamurthy 1984] on the new concept of parallel 

computation is the Instruction Systolic Array. A matrix of instruction 

codes (called left program (LP)) is pumped through the array of 

processors in a systolic fashion, in addition a boolean matrix TP (top 

program) is also pumped through the array of processors. If a (zero) 

o meets an instruction in a processor then it prevents the instruction 

to be executed, while a (one) 1 enables its execution. Thus, an ISA-

program consists of a pair (LP,TP). 

The first implementation of the g-inversion presented uses an 

nx(m+l) matrix of mesh connected processors p .. with i~l to n, j~O to 
1.] 

ID; and an extra processor to carry out the division operations. 

+ 
Let A be an mxn matrix, A is generated iteratively in n cycles 

n 

(counting the basis as one cycle). 
+ 

Ai is generated in cycle i. The 

ISA-program represents the systolic execution of cycle i. In the 

execution of cycle i only the upper i rows of the ISA grid are engaged. 

The second implementation uses for the execution of cycle i only a 

linear array of Pl, •.. ,Pi (column for each step), and a device to 

execute the division. 
+ 

The matrices Ai and Ai can either be stored 

outside the chip or in cyclic shift registers on the chip and be 



supplied to the processors on demand. 

The two different implementations of Greville's algorithm 

mentioned above permit a free choice of algorithmic mode, also they 

require a smaller set of instructions and a smaller capacity local 

memory for the processors, thereby facilitating massive parallelism 

in a smaller area of the VLSI chip. 

3.5.2 Top-Down Designs of Instruction Systolic Arrays for Polynomial 

Interpolation and Evaluation 

In [McKeown 1986) a parallel version of Aitken's method of 

iterated linear interpolation is presented. Its execution time is 2n 

and its period is n using n processing elements. An elementary step 

in their implementation consists of two additions (subtractions), 

two multiplications and one division (which has to be executed after 

the multiplications are finished). 

In [Schroder 1988) a generalized version of a design method for 

systolic arrays due to S.Y. Kung [Kung 1987) was presented. As in 

[Kung 1987) Schroder starts with a locally recursive·algorithm and 

generates the Dependence Graph. A geometric layout of the dependence 

graph is then projected onto an array of processors. Now in the 

design process of systolic arrays this projection can only be done 

along an axis of shift-invariance, designing instruction systolic 

arrays allows projections of the dependence graph in different 

directions, which allows optimisation of the implementation under 
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other aspects than the execution time. This method results in a design 

which is optimal in execution time and period. This can easily be 
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seen using standard network planning techniques. The parallel 

interpolation algorithm presented has the advantage over the algorithm 

in [McKeown 1986] that a single step consists of either two multi­

plications or one division only. Another advantage of the implement~ 

ations in this method of using the concept of instruction systolic 

arrays leads to a significant flexibility. Here the evaluation program 

can be started right after the interpolation program. 

The Dependence Graph for a set of recursive equations contains the 

information which evaluations of variables (tasks) have to precede 

with. Its geometrical layout is not unique and has a major impact on 

the quality of the resulting implementation. 

There are different techniques to generate valid and optimal 

schedules from dependence graphs [Moldovan 1983], [Mongenet, Perrin 

1987]. Mongenet and Perrin show how transformations in the 'time­

space' can be used to ensure that coefficients are not used before 

they are produced. Those techniques would have to be modified to 

ensure that the coefficients are read before they are overwritten. 

The next step in the top-down design is projecting the geometric 

layout of the dependence graphs on to a I-dimensional array of 

processing elements. Designing systolic arrays would have to project 

along directions of Shift Invariance [Kung·1987] (i.e. all tasks 

following this specific direction are the same). Since each processing 

element is capable of executing one operation only. 

Designing Instruction Systolic.Array programs have several 

choices for the projection direction. The implementations are based 

on vertical projection which in the case of the interpolation algorithm 

is not along the direction of Shift Invariance (i.e. along the diagonal 
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from the north-west to the south-east). Vertical projection for the 

evaluation algorithm has been used here in order to achieve a short 

period. Horizontal projection of the evaluation algorithm would enable 

the evaluation with just one or two processors, with a period 

proportional to n. 

The hardware requirement here is a nXn connected processor array, 

each processor having nine registers. The ISA program terminates when 

the last instruction row has entered the first processor row. A lxn 

instruction systolic array is used, selectors are not needed and are 

thus omitted. Let a polynomial of degree 3 be given by xO,rO and xl,r
l 

and x
2
,r

2 
and x

3
,r

3
. Figures 3,27a,b represent an ISA-program for 

interpolation and evaluation. 

(a) 

(b) 

DATA 

r - T - ,- - T - I - -; 
I 0 0 I·x r Ix

2
r

2
1x rIP< r , 

1 ,3 3, ,I, 0 0, ______ .1.-. ___ 1 

r 

r 

DATA 

r 

+ 

,---I , 
r--- L ---. 
I L I __ 1 ___ .L ___ .1 , , 

\ I I ... -,--1---, 
'I ' 1 I, INSTRUCTION 
1---1- --r---
1 1 1 
1"""--1----
1 1 : 
r--..j---~ 

1 
1-- - -I 
1 1 
1- __ , + 

r--
r 

INSTRUCTION 

ISA 

FIGURE 3.27: (a) 
(b) 

The ISA-Program for Interpolation, n=3 
The ISA-Program for Evaluation, n=3 



3.5.3 Finding Transitive Closure 

+ 
Finding the transitive R of a binary relation R over a finite 

set M is fundamental in computing. The well-known Warshall Algorithm 

3 
[Warshall 1962] solves this problem on a sequential machine in O(n ) 

steps, where n=IMI. Several algorithms for parallel computers and 

especially for systolic arrays, which solve the transitive closure 

problem or related problems in time O(n), are known. In [Guibas, 

Kung 1979] a systolic algorithm for computing the transitive closure 

is given. In [Kung, Le, Lewis 1987] systolic solutions for the 

transitive closure and the shortest path problem are presented. The 

problem of finding the connected components of a graph is solved by 

S.E. Hambrusch [Hambrusch 1983] on a mesh-connected processor array. 

Y. Robert and D. Trystram [Robert, Trystram 1986] and G. Rote [Rote 

1985] give systolic arrays for the algebraic path problem, which is a 

generalisation of the transitive closure problem. 

Hans-Werner Lang [Lang 1987] presents a parallel implementation 

of the Warshall algorithm on an instruction systolic array. The 

transitive closure problem may be generalised to the algebraic path 

problem. So the ISA program given is ·to implement a generalized 

closure algorithm for solving the algebraic path problem. A 

decomposition technique is also given in order to map arbitrary large 

problem instances onto a processor array of fixed size. 

3.5.4 Finding All Cut-Points 

A cut-point (articulation point, cut vertex, cut node) of a 

graph is a vertex whose omission increases the number of connected 
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components. Finding all cut-points in a connected graph is an 

important problem with numerous applications as e.g. in network flow 

theory. M. Schimmler and H. Schroder [Schimmler, Schroder 1987] 

present a method to find all cut-points of an undirected connected 

graph in time o<iviloglvl) on an ISA. It is based on an ISA suitable 

version [Lang 1987] of Warshall's transitive closure algorithm 

[warshall 1962] which is used to check for every vertex whether its 

removal produces more than one connected component. This algorithm 

does not meet the lower bound O(n) on the time complexity as it is 

achieved by M.J. Atallah and S.R. Kosaraju [Atallah, Kosarju 1984] . 

Its main advantage compared to the algorithm presented in [Atallah, 

Kosaraju 1984] is its simplicity. 
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3.6 THE SINGLE INSTRUCTION SYSTOLIC ARRAY (SISA) VARIANTS OF THE 

ISA MODEL 
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The asymmetry of the flow of control information in the rSA-m-bit 

instruction codes from the top, I-bit selectors from the left could be 

resolved by: 

i) breaking the control code into two equal sized parts. 

Instruction Prefixes that are shifted through the processor 

array from the top and Instruction Suffixes that are shifted 

through from the left. Inside the array prefixes and suffixes 

recombine to form instructions (including no-op) . 

ii) using column selectors in addition to the row selectors and 

shifting single instructions in diagonal wavefronts through 

the array, starting at the upper left corner (Figure 3.28). 

Now the instructions are executed only if both row and column 

selector bits are '1'. 

The advantage of this variant which will be referred to as SISA (for 

Single Instruction Systolic Array) is the reduction of the overall 

amount of code by a factor of approximately m/2, m being the length 

of an instruction code. 

Hans-werner Lang [Lang 1987] sketched the relationships between 

SISA and other models of mesh-connected processor arrays (rSA and SIMD) . 

The results are summarized here as: 

i) SISA ++ ISA 

A SISA program can directly be transformed into an rSA program 

by replacing each '1' in a column selector diagonal by the corresponding 

instruction, each '0' by 'no-op'. 
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FIGURE 3.28: single Instruction Systolic Array (SISA) 
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In the converse direction, only such ISA programs can directly be 

transformed into SISA programs, where in each instruction diagonal 

there occur only identical instructions other than no-op. This is quite 

frequently the case in practical applications. 

ii) SISA ++ SIMD 

One observes a strong similarity between .the control structures 

of the SISA and the SIMD-type mesh-connected processor array. In fact, 

a SIMD array whose masking mechanism is not more· powerful than the SISA 

masking mechanism, can be simulated by the SISA within a delay factor 

of 3. The corresponding program transformation consists of replacing 

each SIMD instruction by a sequence of at most three modified 



instructions and "skewing" the masking information appropriately. 

However, simply "unskewing" a SISA program to get an equivalent SIMD 

program is in general not possible. It is an open question whether 

the SISA is more powerful than the SIMD processor array or not! 

On the other hand, there are operations like "broadcasting" a 

,data item from the left or from the top across the whole array, or 

like ring shifting a row or a column of data, that can be realized 
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on the SISA with constant period. On the SIMD array these operations 

take time [l(n) , but n of these operations still take"only time O(n). 

Thus, if all these n operations are meaningful, a constant period is 

achieved also. But it is not clear if, when trying to transform a SISA 

program to an SIMD program, these meaningful operations can be found. 

On the other hand, the similarity of control structures of the two· 

models suggests that they are equally powerful. 



CHAPTER 4 

THE SOFT-SYSTOLIC SIMULATION 

SYSTEM (SSSS) 
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4.1 BASIC DEFINITIONS OF THE SYSTEM 

The basic design problem for a general systolic array simulator is 

to provide a fixed architecture which is capable of simulating the 

arbitrary graph structure of an array, while also mapping parallel 

processors to achieve parallelism. In Chapter 2 we have envisaged 

systolic arrays as a systolic program written in OCCAM language with 

the implicit understanding that OCCAM can be executed effectively on 

transputer networks to provide parallelism. The problem with this 

scheme is that it may be better to write a dedicated transputer based 

version of a method rather than simulate a systolic array version of 

the algorithm. Thus, as we accept the idea of programmable arrays the 

effectiveness of the special purpose systolic approach to specific 

algorithms is not so imPortant. The essential problem is the emphasis 

placed on dataflow which demands a different OCCAM program structure 

for each design. The ISA on the other hand as we mentioned in Chapter 

3 places emphasis on the systolic movement of instructions fixing the 

data communication and processor structure, and the chances of producing 

a fast and an economic systolic simulator, with an alternative perspective 

on the meaning of a "SYSTOLIC COMPUTER". 

In this chapter we consider a soft-systolic simulation system implemented 

on the Balance 8000 Sequent Computer System running under DYNIX 

operating system, at Loughborough University of Technology, Computer 

Studies Department, and solve a number of common problems to demonstrate 

its flexibility. The system can be used to develop special purpose 

algorithms with a regular form and opens up the possibility of a 

systolic design works tat ion for development of simple systolic 

processing systems. 
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An overview of the system is shown in Figure 4.1, and the main 

sections of our soft-systolic simulation system are: 

* 

* 

System and Machine preparation: 

comprises the operating system facilities, programming language, 

and the compiler. . 

Replication Instruction Systolic Array Language (RI SAl) and 

RISAL compiler: 

which comprises the virtual machine language and the adopted 

RISAL compiler. 

* Virtual Machine: 

* 

which consists of an Instruction Systolic Array (ISA) network, 

a set of virtual spoolers, and a collection of processing 

elements. 

Virtual to Real Mapping: 

Here we define a library of processor plugs which allow a 

number of virtual processors to be essentially plugged into a 

single real processing element of the underlying architecture. 

Thus, allowing a large virtual grid to be mapped onto a smaller 

real grid. 

* The Real Architecture: 

For simplicity we assume that this is a square orthogonally 

connected grid of processors such as a transputer network, 

capable of executing any of the virtual PE's and mapping plugs. 

To demonstrate the feasibility of the system we concentrate in 

this chapter on the system and machine preparation, and the virtual 
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machine. In the following chapter we will describe the Replication 

Instruction Systolic Array Language (RISAL) and its RI SAL compiler. 

However, the virtual machine and RISAL and the compiler will form the 

core of the design. 

INSTRUCTION, ( 

DATA, 

1 
SELECTOR, 

FILE 
GENERATION 

ISA + PROCESSING{ 
ELEMENT LIBRARY 
(OCCAM PROGRAMS) 

TRANSPUTER 

NETWORK { 

, 
\ 

\ 

SOFT-SYSTOLIC SYSTEM PREPARATION 

RISAL AND RISAL COMPILER 

, 

VIRTUAL SPOOLERS 

VIRTUAL MACHINE 

\ 
\ 

\ 

I 
I 

MAPPING 
(VIRTUAL TO REAL) 

, 
I 

I 

\ 
\ 

\ 

PARALLEL: .ARCHITECTURE 

HARDWARE 

1 VIRTUAL MACHINE 
I 

J 
PROGRAM 

DEVELOPMENT 

, 
I 

) 
VIRTUAL MACHINE 

+ 

INTERFACE 

) 
1-1 PROCESSOR 
CORRESPONDENCE 

MANY-l PROCESSOR 
. CORRESPONDENCE 

) 
STATIC 
COMMUNICATION 
CONFIGURED 
ARCHITECTURE 

FIGURE 4.1: Organisation of Soft-Systolic Simulation System 
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4.2 SYSTEM AND MACHINE PREPARATION 

The soft-systolic system preparation section comprises of the 

usual operation system facilities for the creation and modification of 

files during the development of new programs and ISA processor 

elements. We allow here any concurrent high level language to be used 

to model the.soft-systolic system. 

We develop our soft-systolic system on the Balance 8000 Sequent 

system, the system operates under the powerful DYNIX operating system 

which is based on the UNIX uniprocessor operating system with several 

significant enhanced features to support multitasking. The DYNIX 

kernel or executive has.been made shareable, so that all the processors 

can execute the same system calls and other kernel code simultaneously. 

The DYNIX system schedules the processes to execute on the processor 

such that the workload is well balanced. This means that any user or 

system-defined process can run on any processor at any time and may 

involve several processors to complete. The DYNIX determines the 

minimum and maximum amount of physical memory that a given process can 

consume, then adjusts the memory allocation for each process between 

these two bounds to maintain each processor's paging rate and tune the 

virtual memory performance for the entire system. 

The Balance 8000 system provides an excellent environment for 

software development. Program support tools include.the standard UNIX 

utilities for creation and manipulation, program development, 

performance analysis, text editing, and document preparation. 

The system implemented in OCCAM (Loughborough University 

Implementation) was implemented by R.P. STALLARD in the Computer Studies 



Department. The main features of the OCCAM language are briefly 

reviewed as: an OCCAM program is written in terms of concurrent 

processes, communicating via channels. Individual processes operate 

mostlyi~independence of each other. Hence, a design problem can be 

expressed as a hierarchical structure. Groups of processes connected 

by communication channels can be conceived of as individual processes 

in their own right, with inter-process connections of the group 
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ignored (a process known as hiding), as a result complex systems can 

be built with only a few processes under consideration at anyone time. 

In an OCCAM program, each channel provides a one-way connection 

between two concurrent processes; one of the processes may output to 

the channel, and the other may input from it. The two concurrent 

processes must communicate by using input and output primitives. 

Input and output are synchronised, and an input will not complete 

execution until an output on the same channel is also executed, and 

so on. For example, we have two concurrent processes, initially both 

will start executing in parallel; after some time one of them will 

reach its input process. Now, this process has to wait until it 

receives a value down the channel it is waiting on. There are two 

possibilities, either the second process is at the output process 

already (for the same channel) or the second process has not reached 

its output. In the first case, the process waiting for input 

immediately receives the value and so does not wait any further. 

In the second case the input waits and eventually the second process 

outputs a value, thus completing the input wait of the other process. 

The key thing is that eventually the communication is made and the 
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processes continue executing in parallel. 

The basic data type in OCCAM is the WORD. The word can be used 

to represent CHARACTERS, NUMBERS, and BOOLEAN values, as well as BIT 

PATTERNS. These basic types can be manipulated using a wide variety 

of arithmetic, logical and bitwise operations (e.g. shift left, 

shift right, exclusive or) • 

Values can also be declared as VECTORS, with appropriate sub-

scripting available. VALUES can be declared (i.e. created) by 

definitions. Definitions are introduced by the keywords CHAN, VAR, 

DEF. The keyword CHAN, VAR, DEF, and PROG (for named process 

substi tution) is followed by a ":" on the last line of the declaration. 

The process code must follow on the next line after the declaration at 

the same level of indentation. 

e.g. 

represent 

VAR declaration 

VAR x: 

SEQ 

Input ? x 

Output ! x*x 

SEQ PROCESS 

INPUT ---->11 ,~:, 2 
x 

I----~) OUTPUT 

This declares the identifier x to hold a value within the SEQ process. 

The keyword CHAN is used to declare a channel used for 

communication; it is declared in the same way as a VAR except the word 

CHAN is used. 



OCCAM programs are built from a small number of primitive 

processes. These are: 

(i) ASSIGNMENT (denoted by symbol :=) 

(ii) INPUT (denoted ?) 

(iii) OUTPUT (denoted !) 

(iv) WAIT (denoted WAIT) 

Complex programs are built by constructing complex processes by 

connecting these primitive processes together using constructors. 

There are five types of constructors: 

(i) SEQUence (SEQ) 

(ii) PARallel (PAR) 

(iii) Conditional (IF) 

(iv) ALTernative (ALT) 

(v) Repetition (WHILE) 
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The first four constructors can be accompanied by a replicater, which 

replicates the component processes to which it is attached a specified 

number of times, e.g. Creation of n processes performing infinite 

while-loop with variable x 

CHAN c [n+lJ : 

PAR i=[O FOR nl 

WHILE TRUE 

VAR x: 

SEQ 

c [iJ ? x 

c [i+ll x 

represent 



e.g. selecting first available input from n~channels and route to 

output channel simulates a mux or merger. 

WHILE TRUE 
c[l] 

VAR X: 
C [2] 

ALT i;[l FOR n] c 

c [i] ? x 
c[n] 

c ! x 
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Each primitive process (input, output, ... etc.) is a single line of 

code, and generally constructs have their component process indented 

by two spaces from the first letter 'of the constructor. All processors 

at the same level of indentation are assumed to be components of the 

same constructor. Declarations are at the same level of indentation 

as the constructs they are attached to (note that procedures are 

declarations). The number of channels declared is fixed in the 

program text (i.e. constant bounds on vectors)' this limits the amount 

of parallelism in a program definition. 

The OCCAM compiler has an improved method of calling routines 

from the library routines, and provide commonly used routines to read 

and write to the keyboard and screen channels e.g. 

EXTERNAL PROC num.from.keyboard (VARn): 

This means read a number from the keyboard and assign to variable ~n'. 

EXTERNAL PROC num.from.chan (CHAN c, VAR n) : 

Read a number from a channel 'c'. If 'c' is the keyboard this is 

equivalent to calling 'num.from.keyboard'. The routines are written 

in C language and OCCAM. Also provided are general routines for use 

for pause or to abort a program as well as to use the 'c' random 



number routines. These routines are available by default to all 

programs unless the -s compiler flag is used to override their 

inclusion. Also provided are routines to perform floating point 

input/output operations. They are available by giving the compiler 

flag '-F' when linking an OCCAM program, which we commonly used in 
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our implementation, floating point value can be assigned and transmitted 

via channels just like normal integer values, e.g. 

EXTERNAL PROC fn.num.from.keyboard (VAR FLOAT f): 

means to read in a floating point number. The number is expected to 

begin with a digit or '.' (indicating 0.), leading spaces are ignored. 

The number ends with a non-digit and this character will not be 

available to subsequent reads from the keyboard channel, e.g.: 

EXTERNAL PROC fp.num.from.chan (CHAN c, VAR FLOAT f): 

This means to read a floating point number from a channel 'c'. If 

the channel is a keyboard this is equivalent to 'fp.num.from.keyboard' 

external procedure. 

one of the most important features of the OCCAM compiler (5.0 

version implemented by R.P. STALLARD) is the Execution Trace. When an 

OCCAM program is compiled and run with the '-e' flag, it produces a 

trace history of all the synchronization events of all the processes. 

When compiled the object code includes updates of a timing variable 

to model the execution of an actual parallel computer. The operation 

times can be given with the '-T' flag, by default they resemble those 

of the transputer. The trace history file can later be inspected with 

the 'tracer' utility, specific time periods can be analysed. discovering 

where idle time is incurred or tracing the behaviour up to the time of 



a fault. The run time system keeps the processes running as if in 

parallel and not in a round-robin priority fashion so that the program 

may well behave differently depending on the setting of the '-e' flag. 

A 'timerbuild' utility is available to construct the user's own timing 

profile for a target parallel system. The system currently has a 

number of limitations, it assumes all 'PAR I processes are executing on 

separate parallel computers and that all channel intercommunication is 

on direct identical 'links'. 

The OCCAM compiler implements the OCCAM language as defined in 
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the OCCAM programming manual published by INMOS Limited subject to a 

few restrictions and extensions that are described in Appendix I (which 

comprises a listing of the online documentation for the Loughborough 

OCCAM 5.0 compiler). These differences are intended to make the 

transform of OCCAM programs from different implementations feasible. 
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4.3 THE VIRTUAL MACHINE 

A part of the virtual machine chosen for this implementation is 

the Instruction Systolic Array (ISA). As we have mentioned in Chapter 

3, the ISA has a number of interesting features. Firstly it has 

been used to simulate all SIMD algorithms and many MIMD algorithms by a 

simple program transformation technique. Further, the ISA can also 

simulate the so-called wavefront processor algorithms, as well as many 

hard systolic algorithms, hence allowing the gap between systolic and 

other needs of computation to be bridged. The ISA removes the need 

for the broadcasting of data which is a feature of SIMD algorithms 

(limiting the size of the machine and its cycle time) and also 

presents a fairly simple communication structure for MIMD algorithms. 

The model of systolic computation developed from the VLSI approach to 

systolic arrays is such that the processing surface is fixed, as are 

the processing elements or cells by virtue of their being embedded in 

the processing surface. 

The VLSI approach therefore freezes instructions and hardware 

relative to the movement of data, with the virtual machine and soft­

systolic system retaining the constraints of VLSI for array design of 

regularity, simplicity and local communication, allowing the movement 

of instructions with respect to data. Data can be frozen in the 

structure with instructions moving systolically or both the data and 

instructions can move systolically around the virtual processor (which 

are deemed fixed relative to the underlying architecture). our 

virtual machine can thus implement time-static and time-dynamic 

systolic algorithms, allowing the virtual machine to be fixed (static) 



during the time of computing as for hard systolic algorithms or 

dynamically changing from one systolic configuration to another on the 

virtual processing surface with time. 

The virtual machine consists of an ISA network of data and 

control paths, and a set of virtual spoolers for driving the ISA 

computation and opening up the communication bandwidth of the array, 

and a collection of processing elements (PE) descriptions for creating 

specific ISA grids. In the following two paragraphs we will describe 

the basic sections of the virtual machine. 

4.3.1 The Instruction Systolic.Array (ISA) Network 
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The Instruction Systolic Array is an orthogonal grid of processing 

elements. 'Each processing element executes a number of simple 

operations, and includes memory for intermediate results and registers 

for communication with other processing cells and a save register 

holding results until the neighbouring PE's have had a chance to read 

the communicationS. Each PE is activated by a combination of an 

instruction and selector. If the selector entering the cell is high 

(1) it executes the instruction which also entered the cell. Otherwise 

the cell remains inactive if the selector is low (0). The selectors 

move through the ISA column by column, while the instructions move row 

by row as shown in Figure 4.2. 

The systolic movement of instructions and selectors is reminiscient 

of the wavefront processor and obviates the need of control store in 

the PE as is required for designs like the 'PSC WARP' device. 

Additional data inputs on the boundary make it easy to simulate a 

wavefront processor. 
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FIGURE 4.2: ISA Processors (Grid 4x4) 
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To retain the possibility of a straightforward mapping of virtual 

machine to real processor architecture we implement the ISA in OCCAM, 

using the powerful system features of DYNIX coupled with Loughborough 

OCCAM, the ISA was easily specified as a two part design consisting of: 

1. PE library files 

2. Grid architecture and virtual spoolers. 

The virtual spoolers played the role of buffers for the ISA array 

interface with higher levels of the system," allowing the bandwidth of 

the input to meet that of the ISA. The grid architecture was a simple 

specification of network connections between processors, the PE 

libraries simply containing cell descriptions which responded to ISA 

instructions with different characteristics. Loughborough OCCAM allows 

the precomputation of library PE's"and the grid connection network, 

which could be simply linked when the virtual machine was required to 

run effectively plugging in the correct PE's. Thus, a user of the 



system can develop programs and new PE's with only an abstract working 

knowledge of the ISA grid. The virtual grid architecture is shown in 

Figure 4.4 based on the cell structure for a 4>4 case as shown in 

Figure 4.3. 

WDATA {_-I 

NDATA 
I IN _________ 

1 1 1 
PROCESSING 

ELEMENT 

SOUT 

} EDATA 

NDATA ; NORTH INPUT/OUTPUT DATA 

EDATA ; EAST INPUT/OUTPUT DATA 

SDATA ; SOUTH INPUT/OUTPUT DATA 

WDATA ; WEST INPUT/OUTPUT DATA 

SIN'SOUT ; SELECTOR INPUT/OUTPUT 

IIN,I
OUT 

= INSTRUCTION INPUT/OUTPUT 

FIGURE 4.3: The Cell Structure 

Included with the ISA grid specification is the data and 

instruction spool er code. The spoolers are concurrent processes 

representing buffers for data and instruction input to the boundary 

cells of the grid. The spoolers also include data output and 

instruction/selector garbage collection for values falling off the 

grid. The interface between the virtual machine and the program/PE 
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development section is assumed to be of narrow bandwidth. In fact all 

data and instructions are assumed to be placed in three files denoted 

DATAIN, SELECTOR, INSTRUCT, and the output is dumped in DATAOUT to 

represent virtual spool files. The virtual spoolers (shown in Figure 

4.5) read these sequentially and convert the input into a parallel form 

for the ISA. Likewise for the ISA output the spooler converts the 

output back into a single stream output sequentially to DATAOUT. The 

reading of input and writing of output data is performed in parallel 

with the ISA execution. Clearly this is the place where any bottlenecks 

are likely to occur especially for large n. The spoolers can also be 

used to pad out unused cells with dummy values, when the ISA program 

running is smaller than the total number of virtual processors. Hence 

the system with a bounded number of processors can simulate smaller 

networks without difficulty, [Muslih and Evans, 1987]. 

To allocate the channel to the virtual grid architecture, the 

correct channels can be hooked up by a simple computation using the 

grid PE position of the form, 

PROC LOC (VALUE i,j, VAR V)= 

SEQ 

r:=«((i-l)*(n+l»+j)-l: 

The PE to fit.the locations is called as a library routine, 

EXTERNAL PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)= 

and the library PE section uses the PE definitions: 

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)= 

code for the cell. 

The external environment communicates with the grid (processing 

elements network) by passing the data, instruction and selector to be 
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sent to sources. Sources communicate the signals directly to the grid 

interfaces through the virtual spoolers, by pumping the signals into 

the grid, this serves the purpose of each source modelling itself as a 

process. 

Information sent down the source interface channels can be 

classified into two categories: 

a) control - (instruction, and selector) for directing the 

computation. 

b) data - for use in computation. 

For simplicity, we can consider separate sources for the data and 

control (instruction and selector). The merging of sources for data 

can be performed, likewise merging of the control (instruction, and 

selector) sources can be performed. 

To implement this concept in OCCAM, the generic source for the 

instruction and selector files, which is sequential to parallel 

program bus expander is: 

PROC SOURCE (CRAN OUT Cl, Link, value t)= 

VAR k,i,j, buffer [nl: 

CRAN ptr 

SEQ 

IF 

t=O 

open.file ("selector","rll,ptr) 

TRUE 

open. file: (11 instruct 11 I urn I ptr) 

open the selector input file if t=O, otherwise open the instruct input 

file. 

To read the next input line from the selector or instruct input 
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file and pump in parallel into the grid, we write: 

num.fromchan(ptr,k) 

link ! k 

SEQ i=[l FOR k] 

SEQ 

IF 

i>k 

PAR j=[l FOR n] 

VAR tl: 

SEQ 

loc (j ,l,tl) 

OUT [tl] ! 0 

TRUE 

SEQ 

close.file(ptr) 

SEQ j=[l FOR n] 

num.from.chan (ptr,buffer[j-l]) 

PAR j= [1 FOR n] 

VAR tl: 

SEQ 

loc (j,l,tl) 

OUT [tl] ! buffer [j-l] 

str.to.screen ("*n source closed lt
) 

link ! 0 

The opposite of a source process is the sink process and the sink 

cannot perform any output to the grid. Data and control (instruction 

and selector) leaving the grid through the virtual spoolers directly 

enters the sink, where it is routed to relevant areas of surrounding 

outer environment. In this light the sink corresponds to the output, 

it also collects all the data and control (instruction, and selector) 

pumped into the grid by the source. 
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As for sources we allow multiple sinks processes, corresponding 

to different stages of output. So the purpose of the garbage collector 

(sink process) is to collect the instructions and selectors and output 

them from the grid, i.e., 

PROC SINK (CHAN in[],link]= 

VAR i,j,k 

SEQ 

link ? k 

SEQ i=[l FOR k] 

PAR j=[l FOR n] 

VAR tl: 

SEQ 

loc (j,n,tl) 

in [tl+l] ? any 

str.to.screen (lI*n sink closed") 

link ? any : 

The generic source for the DATA file (data bus expander), to open the 

data input file "datain" and decide the number of lines in the file for 

each input line is: 

PROC data.source (CHAN ans[ ], bns[ ], awe [ ], bwe[ ],link)= 

DEF n~=2*n, n!=3*n: 

VAR k,i,j,t: 

VAR FLOAT buffer [4*n]: 

CHAN ptr 

SEQ 

open.file (lIdatainll,"r",ptr) 

num.from.chan (ptr,k) 

link! k 

str.to.screen ("*nk=l1) 

num.to.screen (k) 

To read the north, east, south and west boundaries of the grid is: 



SEQ i=[l FOR k] 

SEQ 

str.to .. screen ("*ni=") 

num.to.screen (i) 

SEQ j= [0 for 4] 

IF 

i<=k 

SEQ 

num.from.chan (ptr,t) 

IF 

t<O 

SEQ zerO for n] 

buffer [(j*n)+z] :=0.0 

TRUE 

SEQ zerO FOR n] 

fp.num.from.chan (ptr,buffer [j*n)*z]) 

To pump all the data elements around the boundaries into the ISA grid 

in parallel is: 

TRUE 

SEQ zerO for n] 

buffer [(j*n)+z] :=0.0 

. PAR j= [1 FOR n] 

VAR tl,t2: 

SEQ 

loc (j,l,tl) 

loc (j ,n, t2) 

t2:= t2+1 

PAR 

bns[tl] buffer 

bwe[t2] buffer 

awe [tl] buffer 

ans[t2] buffer 

. [j-l] 

[n+(j.,.l) ] 

[n3+(j-l)] 

[n2+(j-l) ] 

To close the input file "DATAIN" is: 
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close.file (ptr) 

str.to.screen (u*n DATA source closed") 

link ! 0: 
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TO open the output file "DATAOUT" and read all the boundaries in parallel 

(parallel to sequential bus condenser) is: 

PROC data.sink (CHAN ans[ ],bns[ ],awe[ ],bwe[ ],link)= 

DEF n~=2*n, n~=3*n 

VAR k,i,j: 

VAR FLOAT buffff[4*n]: 

CHAN ptr: 

SEQ 

open .. file ("dataoutll ,IIWIt ,ptr) 

num.from.chan(ptr,k) 

link? k 

SEQ i= [1 FOR k] 

SEQ 

PAR j= [1 FOR n] 

VAR tl,t2 

SEQ 

loc (j,l,tl) 

loc (j,n,t2) 

t2 :=t2+1 

PAR 

ans[tl] ? 

awe [t2] ? 

bns[t2] ? 

bwe[tl] ? 

buffer 

buffer 

buffer 

buffer 

[j-l] 

[n+(j-l)] 

[ni+(j-l) ] 

[n~+(j-l)] 

The output is sequential to the dataout, i.e., 

SEQ 

SEQ j= [0 for 4] 

SEQ 

str.to.chan (ptr, lI*n1l ) 

SEQ z=[O FOR n] 

SEQ 
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fp.num.to.chan (ptr,buffer [j*n+z) 

str.to.chan (ptr, 11 ") 

str.to.chan (ptr, "*nll) 

To close the output file is: 

close.file (ptr) 

str.to.screen ("*n data sink closed") 

link? any 

abort.program: 

To define the ISA grid (network), which is the main procedure comprising 

the setups and to start the ISA grid is: 

DEF size=n* (n+l) 

CHAN ans[size),bns[size) ,awe [size) ,bwe[size) ,sel[size),ins[ size): 

CHAN link [ 3) 

VAR i,j: 

PAR 

PAR i= [1 FOR n) 

PAR j=[l FOR n) 

VAR tl,t2,t3,t4: 

SEQ 

loc (i , j , tl) 

loc (j ,i,t2) 

t3: =tl+l 

t4:=t2+l 

plug (ans [t2) ,awe [t3) ,bns [t4) ,bwe [tU ,bns [t2) ,bwe [t3) , 
ans [t4) ,awe [tl) ,ins [t2) ,ins [t4) ,sel [tl) ,sel [t3) ) 

The interface program which will connect the selector file (source and 

the selector file (sink) is: 

source (sel,link[O) ,Ol. 

sink (sel,link[O) 

The interface program which will connect the instruction file (source) 

with the instruction file (sink) is: 



source (ins,link[l] ,1) 

sink (ins,link[l]) 

The interface program will connect the data file (source) with the 

data file (sink) is: 

data.source (ans,bns,awe,bwe,link[2]) 

data.sink (ans,bns,awe,bwe,link[2]) 

The dimension of the array in the case of a 4x4 grid: DEF n=4, and if 

the user wishes to change the dimension of the array we only need to 

change the value of n. 

To run the ISA grid program described above we need to use the 

interface routines which are called from the library routines. The 

interface routines used here are shown in the complete code of the ISA 

grid .. in Appendix II. 

4.3.2 The processing Element (PE) 
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The processing element (PE) considered here in our implementation 

is a very general element which allows the choice of a wide range of 

arithmetic and logical operators, and allows the simulation of a wide 

class of algorithms without the need to develop more special purpose 

PE's immediately. As the design unfolds it becomes apparent that highly 

specialized processors can be developed by reducing the number of 

instructions implemented by the PE's, [Muslih and Evans, 1987]. 

The PE design indicates the type of program required to deal with 

the movement of instructions and selectors through the array which will 

in the main be a generic form for all library PE's. 

The PE to be developed is fairly complex and is shown in Figure 

4.6. It consists of a central processing element which is enabled by 
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a selector high signal and any instruction except the NO.OP. A simple 

bus connects the port input buffers to the memory (Figure 4.7), which 

contain the port value storage registers. (RND, RED, RSD, RWD) as well 

A R R R R AUXILIARY MEMORY 

R C C N E S W FOR TEMPORARY 

C D D D D VARIABLES + DATA 

R: RESULT REGISTER 

C: COMMUNICATION REGISTER 

ACC: SECONDARY ACCUMULATOR 

RND: REGISTER NORTH DATA 

RED: REGISTER EAST DATA 

RSD: REGISTER SOUTH DATA 

RWD: REGISTER WEST DATA 

FIGURE 4.7: The Memory Organization 

as working memory for data and temporary results and variables, and R 

which acts as an accumulator and holds the results of the computation 

until C has been read and ACC which is a secondary accumulator for 

complex computation, and C which is the communication register (the 

current output of the cell) • 

This processing element embodies all the principles of the ISA 

cell. Communication can be achieved by first loading the output buffers 

with C, and then taking the input and output in parallel. The. 

input buffers are then read sequentially to memory to complete the 

communication phase and various masks can be made on the 

input buffers so as to prevent the overwriting of RND, RED, RSD or 



RWD and so avoid unnecessary movement of data in the memory, when a 

previous input is to be retained. The port mask is defined as part 

of the processor instruction which is a four field instruction. For 

simplicity there is the need to keep the bandwidth narrow. The 

instruction is represented as an 8 digit integer (Figure 4.8) with 

each field 2-digits wide to allow the possible implementation of 100 

FD3 FD2 FDl FDO 

OP PORT OPDl OPD2 

• 
TWO DECIMAL DIGITS 

FIGURE 4.8: The Instruction Format 
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instructions and an internal memory address space of lOO instructions. 

The port specification allows 100 combinations of Input/OUtput but only 

the first 16 have been used here. One possible extension is to utilise 

the extra slots to allow multiple communication registers in each cell. 

REMARK: These operations can be implemented more effectively by 

using bit logic and slices, but the Loughborough OCCAM is 

restricted in this respect. Furthermore, a 2-digit field 

also allows a wide range of library PE's to be developed. 

The processor operation codes (Figure 4.9) and the port controllers 

(Figure 4.10) indicate the instruction to be implemented. The 

definitions of the read masks using the port instruction field are· 

a high bit indicates that the value of what input port will be copied 

to memory, while a low bit indicates that the value is not transferred. 
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OP CODE COMMENT 

00 NULL NO OPERATION 

01 COpy MOV R TO C 

02 ADD R:=A+B 

03 SUB R: =A-B 

04 MULT R:=A*B 

05 DIV R:=A/B 

06 MIN R:=MIN(A,B} 

07 MAX R:=MAX(A,B} 

08 DATA C:=A 

09 MOV MEM [FDO] : =A 

A=MEM[FD1], B=MEM[FDO] 

FIGURE 4.9: The Processor Operation Code 

The instruction format allo;1s two address fields OPDl and OPD2 which 

can be used for memory referencing, including RND, RED, RSD, RSW, R,C, 

and ACC hence quite general data manipulation can be formed. 

Originally an extra result field was intended but would not fit into a 

single integer sized data item. 

The resulting instructions are easily decoded by the following 

OCCAM code: 

SEQ j=[O FOR 4] 

SEQ 

fd[j] :=i'.lOO 

i :=i'J.OO i=Instruction Integer 



W ·5 E N INPUT VALID 

0 0 0 0 NO VALID DATA 

0 0 0 1 N VALID 

0 0 1 0 E VALID 

0 0 1 1 N,E VALID 

0 1 0 0 5 VALID 

0 1 0 1 5,N VALID 

0 1 1 0 5,E VALID 

0 1 1 1 S,E,N VALID 

1 0 0 0 W VALID 

1 0 0 1 W,N VALID 

1 0 1 0 W,E VALID 

1 0 1 1 W,E,N VALID 

1 1 0 0 W,5 VALID 

1 1 0 1 W,S,N VALID 

1 1 1 0 W,S,E VALID 

1 1 1 1 W,S,E,N VALID 

FIGURE 4.10: The port Controllers 

and the port mask with port:=fd[2] 

5EQ i=[O FOR 4] 

5EQ 

p[i] :=port\2 

port:=port/2 
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To define the size of the processing element and the external interface 

in OCCAM: 



LIBRARY PRoe PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)= 

DEF msize= 10: 

VAR FLOAT a,b, mem[msize] ,c,i.o.buf[4] : 

VAR i,j ,s,port,p[4] ,fd[4] ,op,old.i,old.s: 

VAR running 

where mem[msize] is the internal memory cell, i.o.buf[ ] is what was 

input from adjacent cells, and c contains the value which the cell is 

outputting. Finally old.i and old.s is last instruction and last 

selector signal. 

To initialise the cell memory and switch on the cell to make it 

ready to start and fetch instruction is: 

SEQ 

running: =true 

mem[l] :=0.0 

mem[O] :=0.0 

old.i:=O 

old.s:=O 

WHILE running 

SEQ 

c:=mem[l] 

To read instruction, selector and data, and send the old instruction, 

old selector and the value of c through the channels is: 

PAR 
in ? i 

is old.i 

sw ? s 

se old.s 

wn c 

we c 

ws ! c 

ww l c 

rn Lo.buf [0] 
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re Lo. buf[l] 

rs Lo. buf[2] 

rw Lo. buf[3] 

old.s:;s 

old.i:;i 

The next stage is the decoding of the instruction and the ports as 

described above, and then copying the valid data is: 

SEQ i;[O FOR 4] 

IF 

p[i];l 

mem[i+3] :;i.o.buf[i] 
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To execute the instruction considering the processor operation code is: 

a:;mem[fd[l]] 

b:;mem[fd[O]] 

IF 

(s<>O) AND (op<>O) 

IF 

op;l 

mem [1] : ;mem [0] 

op;2 

mem [0] :;a+b 

op;3 

mem[O] :;a-b 

op;4 

mem [0] : ;a*b 

op;5 

mem [0] : ;a/b 

op;6 

SEQ 

IF 

a>b 

mem [0] :;a 

TRUE 

mem[O] :;b 

(null operation) 

(add operation) 

(sub operation) 

(mult operation) 

(div operation) 

(get min operation) 



op=7 

SEQ 

IF 

op=8 

a>b 

mem [0] : =a 

TRUE 

mem [0] :=b 

mem[l] :=mem[fd[l]] 

op=9 

mem[fd[o]] :=a 

(get max operation) 

(get data operation) 

(moving data operation) 

The full processing element (PE) OCCAM coding is given in Appendix II. 

167 



• 

CHAPTER 5 

THE IMPLEMENTATION OF THE REPLICATING 

INSTRUCTION SYSTOLIC ARRAY LANGUAGE 

(RISAL) AND SYSTEM TESTING 
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5.1 INTRODUCTION 

While a great deal of programming language design has progressed, 

much of it has been at cross purposes. On the one hand the designer 

has been trying to facilitate the messy process of human understanding; 

on the other hand he has had to insure efficient use of modern 

computers. These difficulties constitute the impedance match between 

grossly different representations. In some sense the designer has 

been limited to the top of a tower of languages that starts at bits 

in a computer memory and builds up through the stages to his higher 

level language. Between each stage there must be an automatic 

translation program. As might be expected, there is only a limited 

amount of variation possible under these constraints. The major 

concepts that have arisen are the variables and structures composed 

of variables which are, in fact, ways of using computer memory; finite 

functions over data structures; and sequence control. The fact that 

programming costs now exceed computer costs has forced the language 

designer to concentrate more on structuring the programming process 

than the program itself. There is as much to save by reducing the pre­

inspiration flailings of a programmer as there is in eliminating a 

redundant STORE in the inner loop. 

Two additional levels of language appear to be forming on top of 

the more traditional programming structures (Figure 5.1). One is 

characterized by a top-down analysis of the program structure. The 

other is characterized by predicates over various abstract data 

structures. At the highest level we now see we have statements of 

things that must be true, perhaps at specific points in the computation. 



Region of human 
translation 

Region of automatic 
translation 

In the brain of 
the problem solver 

predicates that describe 
certain. relationships that must 
be satisfied by the program 

TOp down, hierarchical 
decomposition of the program 

Programming language 

Intermediate languages in 
the compilation process 

Loadable program modules 

Bits in computer memory 

FIGURE 5.1: Levels in the Program Solving Language Tower 

Once we have established these restrictions, we fragment the program 

hierarchically into the most natural units possible. Only then do we 

map the program onto machine-related constructs. These topmost 

mappings are probably not done automatically; it is easier to do them 
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by hand than to formalize the mapping process. Again, since it is the 

programming process that is being facilitated, we observe that progress 

down the tower of abstraction may well run into problems, causing 

lower level obstacles to be solved by changing higher level 

descriptions. It is an iterative process involving all levels of 

abstraction. 

The substantive questions are what structures are useful at each 

of the various levels of abstraction. The new viewpoint is that it is 
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not necessary to mix all the levels into one notation. To put it 

• differently, it was a mistake to assume we could think effectively 

in a (single) programming language. 
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5.2 LANGUAGE DESIGN PRINCIPLES 

There are many motives for the design of computer languages, but 

the point of view expressed here is that there is a special application 

area and a special machine which needs a special language. The first 

question, is how to do it? The first rule, is to keep it simple. 

The problem then reduces to achieving the necessary features in a 

consistent manner. The simplest way to proceed is to write some 

programs. A small program will generally exercise a large part of 

the language. Then attempt to use the grammars to specify the 

language concisely. The restrictive form of definition will surely 

suggest changes in the language, then, in turn, changes in the sample 

programs. We iterate the process until both the programs and the 

language description "are elegant and understandable. 

One might suspect that the language would not improve by having 

to conform to a restrictive defining tool. But experience shows that 

it does. In some sense there is no art unless there is a restriction 

of the medium. In some perverse way, the human mind, in copin~ with 

the restrictions, produces its best results, and grammars, the very 

formalization of nested definition, are a rich medium. 

Orthogonality is a desirable property to the language. The 

facilities that are there should be highly independent, e.g. if there 

are features for sequence control, then there should not be an 

additional set of sequence controlling features down inside the 

instructions. 

Adequacy is also a desirable property. It should be able to 

express the solutions to all the algorithms to be solved in it, but 



that is not the same as generality, or completeness. There is no 

reason to be able to compute an arbitrary function if we know ahead 

of time that only certain simple classes of functions are going to be 

used. Translatability. is a desirable property for the language. 

There is not much point in designing a neat language that cannot be 

translated, eventually, to a form acceptable by the machine. 

Given the ISA grid and the processing element .(PE) to plug into 

the grid points, we require a suitable medium in which to prepare and 

debug the ISA control programs, and a method for generating the 

necessary form of instructions for .the ISA. Early test programs 

were developed in a format akin to a machine code and were difficult 
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to modify and relate to the abstract algorithms. The RISAL compiler 

(see later) was developed and introduced to allow a simple but adequate 

design environment. RI SAL accepts instructions in an assembler like 

form, but is fairly permissive about the format within the constraints 

of syntax. The syntax of RISAL is: 

1. RISAL FILE 

---0 P --l 

D SETUP -;.-? RLINE '----1 END 

---i S I---:l 

: 
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2. SETUP 

)0' 1----lIJ-M I LINES 

3. RLINE 

REPL VALUE LINE 

4. LINE 

I NSTRUCTI 00 
LINE 

DATA LINE 

SELECTOR 
LINE 

5. INSTRUCTION LINE 

REP VALUE ILINE 
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6. ILINE 

, , 
----; OPERATION PORTS , 

. 

~ OPD1 --' OPD1 , 

7. DATALINE 

N 

E 

S DLINE 

W 

NONE 

; 
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8. DLINE 

REP VALUE DATA ITEM 

9. SELECTOR LINE 

REP VALUE 

10. VALUE ~ INTEGER < GRIDSIZE 

11. GRIDSIZE ~ MAXIMUM NUMBER OF COLUMNS OR ROWS OF PROCESSORS 

12. DATA ITEM ~ REAL (BUT CAN BE EXTENDED TO OTHER MORE COMPLEX TYPES) 

13. OPERATION ~ RESERVED (MNEMONIC) KEYWORD FOR OPERATION 



14. PORTS 

15. 

, 

OPDl 

OPD2 } 

N 

E 

S 

W 

~ , , 

• • 
~ 

INTEGERS IN RANGE O ... MSIZE-l 

(MSIZE = SIZE OF PE PRIVATE MEMORY) 

RISAL contains a proportion of semantic rules not indicated in the 

syntax and allows programs (instruction, data and selector files) to 

be produced using the same syntax and compiler. Instruction, data, 

or selector files can be prefixed with a replicating command which 

will generate the following instruction by a specified number (e.g. 

REP(4», also can be prefixed with a replicating command which will 

generate the following lines of instruction by a specified number 
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(e.g. REPL(20», checks are made to ensure that enough data, instructions 

or selectors are given to control the selected gridsize. The start of 

a file (instruction, data, or selector) must identify three things: 

1. Instruction (p), data (d), and selector (s). 

2. The size of the grid, the instruction and selectors can be 

different giving rectangular grids. 

3. The number of rows in the file. This provides the OCCAM ISA with 

a primitive shut-down capacity and could be removed on a real 

machine where a reset is available. The choice of p, d or s 

directs the RISAL compiler to fix·the syntax for a particular type 

of file, preventing the mixing of instructions, data, and selectors 

in one file, and giving useful error messages as to malformed 

constructions in a file (see later) • 

THE DATA FILE 

The data file is more complex than the rest, as it requires the 

specification of input for the possible four boundaries of the ISA grid. 

The current implementation does not expose all the inherent parallelism 

in collecting the boundary data, as we can define four files one for 

each boundary, and then use the buffers in parallel, however, there is 

a considerable expense in checking that enough boundary data is 

available which requires the specification of four separate files. 

Here we define only one file and sequentially buffer the boundary input 

and output, this makes the checks easier and the setting up of a data 

input sequence is more easily related to the algorithms being simulated. 

For large grids however this method will become impractical and adding 

a pre-processor to the ISA, to separate out the data into temporary files 



seems the best alternative. RISAL contains a certain amount of 

semantics to check that data boundaries are not confused, and 

replicators do not generate too much data so a special command NONE 

is also available which allows a complete boundary to be masked out. 

The data must always be input in order N,E,S,W (Figure 5.2), and the 

RISAL compiler will check this. 

... 4.0 

... 3.0 

t 
... 2.0 

... 1.0 

1.0 2.0 3.0 4.0 

4.0 
t 

n 

e 

s 

w 

3.0 2.0 
t t 

-<-

1.0, 2.0, 

1.0, 2.0, 

4.0, 3.0, 

4.0, 3.0, 

1.0 
t 

3.0 ; 

3.0, 

2.0, 

2.0, 

.0 -<-

2 .0 -<-

3 .0 -<-

4 .0 -<-

4.0; 

4.0; 

1.0; 

1.0: 

FIGURE 5.2: The Input to the ISA Boundaries 

Example for Data statement: 

n 1.0, 1.0, 2.0, 3.0; 

e 3.0, rep(3) 0.0; 

s rep(4) 0.0; 

none: 

no data 
masked out 

+ + 
1.0 1.0 

0.0 
t 

0.0 
t 

+ + 
2.0 3.0 

0.0 0.0 
t t 

3.0 -<-

0.0 -<-

0.0 -<-

0.0 -<-
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The north boundary of the 4x4 ISA grid receives 1.0, 1.0, 2.0, 3.0 

as data, while the east boundary receives 3.0 and zeros for the 

remaining inputs, with the south boundary inputting 4 zeros and finally 

the west boundary is.masked out (no data). 

THE SELECTOR FILE 

Selectors are Boolean values and can be specified similarly, e.g. 

to select all the cells in column one of a 4x4 ISA grid, we would send 

1, 1, 1, 1: or equivalently to rep(4)1: into the first column. 

1 

1 

1 

+ 1 

On the next step, if we sent 1, 1, 0, 0: or equivalently to rep(2)1; 

rep(2)0: into the first column the picture will be: 

1 1 

1 1 

° 1 

+ ° 1 



THE INSTRUCTION FILE 

The instructions enter the ISA grid from the north moving across 

to the south row by row, and each PE in the grid is activated by a 

combination of an instruction and a selector. The selectors enter 

the grid from the west moving across to the east column by column. 

Below is a list of operation codes which represent all the operations 

occurred in the PE if the selector entered is a high signal: 

null 

data 

copy 

mov 

add 

sub 

mult 

div 

min 

max 

An example of an instruction: DATA n, 03, 00 means read the north data 

port and move the value into the communication register for the PE 

defined previously in Chapter 4. 

DATA n, 03, 00; DATA n, 03, 00; DATA n, 03,00; DATA n, 03, 00: 

issues the same command to 4 columns of a 4 x4 grid simultaneously and 

is equivalent to the replicated form 

REP(4) DATA n, 03, 00: 
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5.3 THE RISAL COMPILER 

The compiler is a program written in the implementation language, 

accepting text in a source language and producing text in a target 

language. Language description languages are used to define all these 

languages and themselves as well. The source language is an algorithmic 

language to b~ used by programmers. The target language is suitable 

for execution by some particular computer. If the source and target 

are reasonably simple, and well matched to each other, the compiler can 

be short and easy to implement. The more complex the requirements 

become, the more elaborate the compiler must be and, the more elaborate 

·the compiler, the higher the payoff in applying the techniques of 

structured programming. 

Compilers can and have been written in almost every programming 

language, but the use of structured programming techniques is dependent 

upon the implementation language being able to express structure. 

Today there are some existing languages which were explicitly designed 

for·the task of compiler writing. The criterion for choosing an 

implementation language is quite straight forward, it should minimize 

the implementation effort and maximize the performance of the compiler 

being written [Alfred, Jeffrey, 1977]. 

Each compiler is developed in a particular environment in response 

to certain needs, and that the environment will shape not only the form 

of the completed compiler, but also the process by which it is developed. 

This brings into discussion the nature of the target machine, which in 

our case is the specially designed virtual machine. The PASCAL 

language was used to develop and test the compiler whose job was to 

read the Replicated Instruction systolic Array Language elements (RI SAL) 



and transform it into a form suitable for the virtual machine to run. 

The general phases of the RISAL compiler are shown in Figure 5.3. 
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Explicit goals should be formulated at the outset of any compiler 

development, although they may change with time, they provide guide­

lines for the major decisions and-are the basis for evaluation. The 

typical compiler goals: 

correctness, it should give the correct outputs for each 

possible input. This is what we mean by a program 'works'. 

If a program does not work, measures of efficiency, of 

adaptability, or production costs have no meaning. One goal 

of every compiler is to correctly translate all correct input 

programs and correctly diagnose all incorrect ones. However, 

compilers are seldom absolutely correct: perhaps "reliability" 

is· a more feasible goal, iwe; keeping the number of errorS 

encountered acceptably small. 

availability, even a correct compiler that cannot be run is 

of little use. Thus, a very important aspect of any compiler 

development is its schedule and it must run on the right 

machine in the right configuration with the right operating 

system. 

generality and adaptability, although some special-purpose 

compilers are produced to compile single programs, most 

compilers must be planned to handle a large number of programs. 

During the life-time of a compiler, requirements and 

specifications may change many times (often, even before it is 

completed). Unless special care is taken -during its 
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RISAL FILE 
(SOURCE PROGRAM) 

1 
LEXICAL 
ANALYSIS 

1 
SYNTAX ERROR 
ANALYSIS HANDLING 

1 
CODE 
GENERATION 

1 
RISAL OBJECT 
(TARGET PROGRAM) .. 

i 

FIGURE 5.3: Phases of RISAL Compiler 



construction to ensure adaptability, responding to these 

changes may be both traumatic and expensive. 

184 

helpfulness, the kind and amount of help that is most 

appropriate will depend on the intended users: beginners need 

careful explanations ·of simple errors in small programs, while 

system programmers are more concerned with the detection of 

subtle errors in large programs, or the location of efficiency 

"bottlenecks" . 

efficiency, there are several dimensions of efficiency to be 

taken into account:efficiency·of compiler development process, 

efficiency of program development using the compiler (including 

efficiency of compilation), efficiency of target programs 

produced by the compiler.· 

To develop the RISAL compiler, it is not intended here, nor appropriate, 

to demonstrate state-of-the-art techniques in compiler writing for 

parallel processing, but rather to provide a practical way of how 

the virtual machine would handle a -subset of possible operations to 

solve various algorithms. The construction of the RISAL compiler 

involves several conceptually distinct processes. 

SPECIFICATION 

With our design aims chosen then to solve the problem of 

generating the three object files (INSTRUCT, DATA, and SELECTOR) which 

are used to control the performance·of the virtual machine (ISA grid), 

the RISAL compiler specification document includes: 

a precise specification of the source language (section 5.2) . 

design target for the compiler size. 



DESIGN 

a choice of the language in which the RISAL compiler is to 

be written (PASCAL language). 
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The design of the RISAL compiler was started before the 

specification and continued well into the implementation phase. The 

RISAL compiler was structured into major components (procedures, 

modules), and we allocated functions and responsibilities amongst them, 

and the definition of their interfaces. 

IMPLEMENTATION 

Regardless of the design technique used, at some point the RISAL 

compiler must be written in an already implemented language translated 

into machine code and executed. As we mentioned above the PASCAL 

language was chosen to write the RI SAL compiler, because it is easily 

readable and understandable, with appropriate data objects, in 

addition it has a simple yet powerful control and data·structure, 

with enough redundancy for substantial compile-time checking. 

The.RISAL compilation process is partitioned into a series of 

subprocesses called procedures as shown in Figure 5.4. 

In the initialisation procedure the process of setting up the 

current keywords are assigned and initialise the values. The size 

of the keywords file is 20 and contains the following keywords: 

Keyword 

add 

copy 

d (data file) 

data 

Code representation. 

2 

1 

105 

8 



KEYWORDS 
FILE 

GET C 
PROCEDURE 

SELECTOR 
LINE 

PROCEDURE 

OUTPUT 
PROCEDURE 

INITIALISE 
PROCEDURE 

PROG 
PROCEDURE 

LEXICAL 
ANALYSIS 

GENERAL 
LINE 

PROCEDURE 

INSTRUCTION 
LINE 

PROCEDURE 

SETUP 
PROCEDURE 

ERROR 
HANDLING 

ROUTINE 

DATA LINE 
PROCEDURE 

REPR 
PROCEDURE 

FIGURE 5.4: The RISAL Compilation Process 
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Keyword Code representation 

div 5 

e ( east) 2 

end 101 

max 7 

min 6 

mov 9 

mult 4 

n (north) 1 

none 102 

null 0 

p (program) 104 

rep 103 

repl 106 

s ( south) 4 

sub 3 

w (west) 8 

The prog procedure is to decide the input file type, whether 

Instruction, Data, or Selector file, and to process this input file. 

The checking of the dimension of the ISA grid will occur in this 

procedure. The input file must start with header T (valuel,value2). 

This means, 

T type of input file 

T=p for instruction 

T=d for data 

T=S for selector 
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valuel the dimension of the ISA grid (e.g. value 1=4 in the 

case of 4x4 ISA grid 

value2 the number of lines ended by (:) in the input file 
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The setup procedure is to decipher the input file header. The lexical 

analyzer is the interface between the RrSAL source program and the 

RrSAL compiler. The lexical analyzer reads the source program one 

character at a time, carving the source program into a sequence of 

atomic units called tokens. 

A classical lexical analysis was used to develop the scanning 

and screening functionality for reading the RrSAL statements. Early 

in the compilation process the source file (RrSAL statements) appear 

as a stream of characters. By scanning them finds substrings of 

characters that constitute the textual elements (words, punctuation, 

operators, comments, spaces, etc.) -and classifies each as to which 

sort of textual element it is. The screening process discards some 

of the textual elements (spaces,- comments, etc.) while recognizing 

reserved symbols and generating the token stream for parsing. Below 

we summarize the scanning taken by the lexical analyzer of the RrSAL 

compiler when processing a RrSAL statement: 

make sure there is a token--and it can be recognized. 

skipping leading blanks. 

skipping comments - all comments starting with { . 

skipping trailing blanks 

find token 

_collect identifier 

searching for keywords and locate them 

convert to token value 

convert to a number 

convert-all the integers to a numeric value, and the reals 

remain as strings. 



The purpose of the getc procedure is to maintain a buffer of 

characters, keep the buffer filled and to skip the blank spaces. 

In addition, book keeping will occur in this procedure. 

The line procedure is to process a general line, checking will 
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be made first to decide whether the line is from the instruction, data 

or selector. There are three separate procedures to implement the 

instruction, data and selector line. 

The output procedure is to construct the instruct, datain, 

or selector object files. 

Finally, the error handling routine is to print out error 

messages in output file called ERROR file in case of any fault in 

the RIsAL program. The RIsAL compiler attempts to detect and report 

as many errors as possible. Below are the following error messages 

provided by the RI SAL compiler: 

program must start with p,d or s 

expected 

expected 

but found 

but found 

expected : I ." ; I end, 

too many data elements 

: incorrect da ta boundary spec 

expected integer arguments 

errors detected ; 

no errors detected 

expected integer operands in instruction 

should be real value in data expression 

require integer in rep count parameter 

attempt to read past end of file 



alphabetic string found require keyword 

invalid character 

selector should be ° or 1 

malformed expression 

OBJECT FILES 

We now turn to the code generation routine, the final phase of 

the compilation process. Good code generation is difficult, and it 

depends on the construction of the virtual machine we are using. 

We initially developed a straightforward algorithm to.generate code 

from a sequence of statements. The algorithm was used successfully 

to produce an ISA form placed in three files (INSTRUCT, DATAIN, and 

SELECTOR). TO show the picture of generating the ISA form, below is 

an example of three input RISAL files to calculate the value of 

X=(A+B)*(C-D}/E, and the picture of the ISA form after we compile 

them by the RISAL compiler (INSTRUCTION, DATAIN, SELECTOR). 

INSTRUCTION FILE 

p(4,16} 

data n,3,0; rep(3} null n,O,O: 

mov ,0,7; data n,3,0; rep(2} null n,O,O: 

data n,3,O; mav ,0,7; data n,3,O; null n,C,O: 

mov ,0,8; data n,3,O; mav ,0,7; null n,D,O: 

add ,7,8; mov ,0,8 ; rep(2} null ,0,0: 

copy ,0,0; sub ,7,8; rep (2) null ,0,0: 

null ,0,0; mov ,0,7; rep (2) null ,0,0: 

null ,0,0; data w/6,O; rep (2) null ,0,0: 

null ,0,0; mov ,0,8 ; rep (2) null ,0,0: 

null ,0,0; mult ,7,8; rep(2} null ,0,0: 

null ,0,0; copy ,0,0; rep(2) null ,0,0: 

rep(2} null ,0,0; data w,6,0; null ,0,0: 

rep(2} null ,0,0; mov ,0,8; null ,0,0: 
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rep(2) null ,0,0; div ,8,7; null ,0,0: 

rep(2) null ,0,0; copy ,0,9; null ,0,0: 

rep(4) null ,0,0 

end 

SELECTOR FILE 

5(4,16) 

repl (16) [1, rep (3) 0] 

end 

DATA FILE 

d(4,16) 

n 4.0, 0.0, 0.0, 0.0; nonei 

n 0.0, 5.0, 0.0, 0.0; none; 

n 6.0, 0.0, 0.0, 0.0; none; 

n 0.0, 3.0, 0.0, 0.0; none; 

repl(12) [rep(4) none] 

end 

INSTRUCT 

16 

08010300 10000 

09000007 08010300 

08010300 09000007 

09000008 08010300 

02000708 09000008 

01000000 03000708 

° 09000007 

° 08080600 

° 09000008 

° 04000708 

° 01000000 

° ° 
° ° 
° ° 
° ° 
° ° 

nonei none: 

none; none: 

nonei none: 

none; none: 

10000 

° 
08010300 

09000007 

° 
° 
° 
° 
° 
° 
° 

08080600 

09000008 

05000807 

01000000 

° 

10000 

° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
° 
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SELECTOR 

16 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 o· 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

-1 0 0 0 0 

1 0 0 0 0 

DATA1N 

16 

0 4.0 0.0 0.0 0.0 

-1 

-1 

-1 

0 0.0 5.0 0.0 0.0 

-1 

-1 

-1 

0 6.0 0.0 10.0 0.0 

-1 

-1 

-1 

0 0.0 3.0 0.0 0.0 

-1 

-1 

to the end of 16 lines 

The complete actual code for the R1SAL compiler is given in Appendix 11 . 



5.4 SOFT-SYSTOLIC SIMULATION ARCHITECTURE AND TESTING 

From the previous sections in Chapter 4 and this chapter a 

number of components are readily identified which need connecting: 

the RISAL source files, the RISAL compiler, the compiled object 

files, the virtual machine (the ISA grid, processing element, and 

the virtual spoolers), and the resulting dataout file. 

The components mentioned above are serially linked together as 

shown in Figure 5.5. The virtual spooling section of the ISA grid, 

expects to find instructions in a file called 'INSTRUCT', with 

selector information in a .file called "SELECTOR" and data from file 

"DATAIN". The RISAL compiler allows the output of generated ISA 

items to be directed to any of these files or temporary files as 

requested by the user using the DYNIX file in direction commands. 

It is up to the user to ensure that the spoolers have the correct 

data and program = (instruction, selector). 

A typical program specification is as follows: 

i) Develop three files--

11 = instructions 

Dl = data 

Sl = selectors 

ii) Check syntax with RISAL compiler, generating the files 

INSTRUCT, SELECTOR, DATAIN. 

iii) All bugs are now semantic errors in the ISA program 

Compile ISA.OCC (virtual) grid if not compiled 

Compile PE.OCC processing element 

Link the two above programs (plugs in PE) 

iv) Execute the virtual machine in (iii), the results 

will be placed in the "DATAOUT" file. 
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RISAL 
SOURCE FILES COMPILER OBJECT FILES 

INSTRUCTION INSTRUCT 
FILE FILE 

DATA RI SAL ~ DATAIN I -r. I ~ FILE COMPILER FILE 

SELECTOR SELECTOR 
FILE FILE 

FIGURE 5.5: Soft-Systolic Simu11tion Architecture 

VIRTUAL MACHINE 

I -~I 

RESULT 

DATAOUT 
FILE 

.... 
lO ... 
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This is how the ISA.oce virtual ISA can be used as a simulation 

architecture to solve soft systolic algorithms, the process is quite 

simple and requires only the RI SAL source files. 

SAMPLE PROGRAMS 

To examine the performance of the solution architecture, we 

will illustrate first the use of each operation code mentioned 

previously in the instruction file. 

1. NULL operation code 

e.g. null ,0,0; 

means that there is no operation, even if there is a selector 

high signal. 

2. DATA operation code 

e.g. data n,3,Oj 

operand 2 

.operand 1 

port (north) 

meaning read the north data port and move the value into the 

communication register e, for. the PE defined previously. 

data n,3,O; data n,3,O; data n,3,O; data n,3,O: 

this would issue the same instruction for 4 cells of the 4*4 grid 

and is equivalent to the replicated form: 

rep(4) data n,3,0: 

Example 1 

To write a RISAL program to read the data 10,20,30,40 from the 

north data port and move the value into the communication register 

(C) for the 4 cells in the first row of the 4*4 grid, and let the data 



move across the grid row by row 

p(4,7) 

rep(4) null ,0,0: 

rep(4) null ,0,0: 

rep(4) null ,0,0: 

rep(4) data n,3,0: 

rep (4) null ,0,0: 

rep(4) null ,0,0: 

rep(4) null ,0,0 

end 

this is equivalent to: 

p(4,7) 
repl(3)[rep(4) null ,0,0): 
rep(4) data n,3,0: 
repl(3) [rep(4) null ,0,0) 
end 

s(4,7) 
1,rep(3) ,0: INSTRUCTIONS 
rep(2)1,rep(2)0: 
rep(3)1,0: 
rep(4) 1: 
0,rep(3) 1: 
rep(2)0,rep(2)1: 
rep(3)0,1 
end 

d(4,7) 
repl (3) [rep(4) none] : 
n 10.0, 20.0, 30.0, 40.0; 
none; none; none: 
repl(3) [rep(4) none] 
end 

SELECTORS 

0 0 0 1 1 

0 0 1 1 1 

0 1 1 1 1 

1 1 1 1 0 

null null null null 

null null null null 

null null null null 

datan datan datan datan 

null null null null 

null null null null 

null null null null 

+ 

1 1 

1 0 

0 0 

0 0 

4*4 ISA grid 
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.Example 2 

2*2 matrix transpose (see the definitions in Section 6.1) . 

Transpose the following matrix, 

:] ... 

SELECTORS 
-. 

° 1 1 1 1 ° 1 1 ° 1 1 1 1 

° ° ° ° 1 ° ° 1 ° ° ° 1 ° 

p(4,13) 
{load matrix} 
data n,3,0; rep(3) null n,O,O: 
rep(2) data n,3,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null ,0,0: 
{Transpose} 
data e,4,0; data w,6,0; rep(2) null ,0,0: 

null 

null 

null 

null 

null 

datas 

<-
datae 

It datas 

I ~ datan 

data';-

null 

datan 

datan 

null 

null 

null 

null 

null 

datas 

~ataw 

null 

null 

-+dataw 

datan 

datan 

null 

\ 
J 

READOUT 

TRANSPOSE 

LOAD THE 

MATRIX 

INTO THE 

ISA GRID 

4*4 ISA grid 



data n,3,0; rep(3) null ,0,0: 
data s,5,0; rep(3) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
{readout} 
rep(2) data s,5,0; rep(2) null ,0,6: 
repl(5) [rep(4) null ,0,0] 
end 

d(4,13) 
n 6.0, 0.0, 0.0, O.Oj 

n 8.0, 2.0, 0.0, 0.0; 
n 0.0, 5.0, 0.0, 0.0; 
repl(lO) [rep(4) none] 
end 

s(4,13) 
1, rep(3)0: 
rep(2)1, rep(2)0: 
1 ,rep(3) 0: 
1,rep(3)0: 
rep(4)0: 
rep(2) 1,rep(2)0: 

"1, rep(3)0: 
rep(4)0: 
rep (2) 1 ,rep( 2) 0: 
repl(3) [1,rep(3)0]: 
rep(4)0 
end 

none; 
none; 
none; 

3. COpy operation code 

e.g. copy ,0,Oj 

none; none: 
none; none: 
none; none: 

means copying the vaLue from the result register (R) after:the 

computation has been made to the communication register (C). 

When the store is in the communication register, this means that 

the value is ready to be read by the neighbouring cell. 

4. MIN operation code 

e.g. min e,4,1; 

The minimum operation code above means read data from the east 
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port data and compare it with the value in the register east data 
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addressed by operand 1 and put the minimum value in the 

communication register (C) addressed by operand 2. 

5. MAX operation code 

e.g.max w, 6,!; 

The maximum operation code above means read data from the west 

port data and compare it with the value in the register west data 

addressed by operand 1, and put the maximum value in the 

communication register (C) addressed by operand 2. 

The operation codes minimum and maximum could form the basis for 

a comparison based cell in their own right, possibly augmented with 

EQ (equals) and so provide a simpler PE for sorting, and searching ISA 

algorithms. 

Example 3: sorting a list of 4 numbers using 4*4 ISA grid 

p(4,13) 
repl(3) [rep(4) null n,O,O]: 
rep(4) data n,3,0: 
min e,4,1; max w ,6,!; min e,4,1; max w/6,l: 
rep(4) copy ,0,0: 
null ,0,0; min e,4,1; max w/6,l; null ,0,0: 
null ,0,0;rep(2) copy ,0,0; null ,0·,0: 
min e,4,l; max w, 6,1; min e,4,1; max w/ 6,l: 
rep(4) copy ,0,0: 
null ,0,0; min e,4,1·; max w,G,l; null ,0,0: 
null ,0,0; rep(2) copy ,0,0; null ,0,0: 
rep(4) null ,0,0 
end 

s(4,13) 
rep(13) [1,rep(3)0] 
end 

d(4,13) 
rep(3) [rep(4) none]: 
n 4.0,3.0,2.0,1.0; none; none; nine: 
repl(9) [rep(4) none] 
end 



1 
null 

null 

1 null 

copy 

3 
mine 

INSTRUCTIONS 
null 

3 
null 

copy 

4 
mine 

datan 

null 

null 

null 

SELECTORS 

1 1 1 1 1 1 1 1 1 1 1 1 1 

0 o 0 0 0 0 00 0 o 0 0 0 

0 o 0 0 0 0 o 0 0 0 00 0 

0 0 0 0 0 0 0 0 0 0 o 0 0 

2 
null 

3 
null 

copy copy 

3 2 
mine maxw 

copy copy 

1 4 
maxw mine 

copy copy 

4 1 
mine maxw 

copy copy 

3 2 
maxw mine 

datan datan 

null null 

null null 

null null 

4*4 ISA grid 

4 
null 

null 

4 
null 

copy 

2 
maxw 

null 

2 
null 

copy 

1 
maxw 

datan 

null 

null 

null 
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6. MOV operation code 

e.g. mov ,0,7; 

The mov operation code above means move the data in the result 

register addressed by operand 1 and put it in the auxiliary memory 

of the PE which is addressed by operand 2. 

We can use the mov operation code to move the data from any 

register or auxiliary memory to any register in the memory 

organization of the PE defined previously by giving the right 

addresses in operand 1 and operand 2. 

Example 4: Data array movement 

To write a RISAL program to read data from the north port data 

for the first row in the 4*4 ISA grid and move the data to the 

auxiliary memory of these cells, and re-read them again to the north. 

p(4,9} 
repl(3} [rep(4} null n,O,O]: 
rep(4} data n,3,0: 
rep(4} mov ,1,7: 
rep(4} mov ,7,0: 
rep(4} copy ,0,0: 
rep(4} data s,5,0: 
rep(4} null ,0,0 
end 

s(4,9} 
repl(9} [1,rep(3}O] 
end 

d(4,9} 
repl(3} [rep(4} none]: 
n 2.0,4.0,6.0,8.0; none; none; none: 
repl(5} [rep(4} none] 
end 

7. ADD operation code 

e.g. add ,7,0; 

The operation code add above means add the value in the auxiliary 
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memory addressed by operand 1 to the value in the result register 

addressed by operand 2, and the result will be held in the result 

register (R). 

We can use this operation code to add the value in any two 

registers in the memory organization of the PE, and the result 

will be held in the result register (R). 

Example 5: Summation calculation 

TO write a RISAL program to add data from the north port data 

and the west port data and add them with another set of data from the 

same ports for the first cell of the first row of 4*4 ISA grid. 

P (4,6) 
add n w ,3,6; rep(3) null ,0,0: 
mov ,0,7; rep(3) null ,0,0: 
add n w ,3,6; rep(3) null ,0,0: 
add ,0,7; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0 
end 

s(4,6) 
repl(6) [1,rep(3)0] 
end 

d(4,6) 

.. '--. 

n 10.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0: 
rep(4) none: 
n 20.0,0.0,0.0,0.0; none; none; w 7.0,0.0,0.0,0.0: 
repl(3) [rep(4) none] 
end 

The result is 41 which is placed in dataout file after reading it 

from the result register. 

8 • SUB opera ticin code 

e.g. sub ,7,0; 

The operation code sub above means subtract the value in the 



result register addressed by operand 2 from the value in the 

auxiliary memory addressed by operand 1, and keep the result in 

the result register. We can use this operation code to subtract 

the ·value in any register in the memory organization from any 

value in another register and the result of the subtraction will 

be held in the result register (R). 

Example 6: 

To write a RISAL program to add data from the north port data 

and the west port data and subtract them from the addition of another 

set of data which reads from the same ports of the first cell of the 

first row of the 4*4 ISA grid. 

p{4,6) 
add n w ,3 .. 6; rep(3) null ,0,0: 
mov ,0,7; rep(3) null ,0,0: 
add n w ,3,6; rep(3) null ,0,0: 
sub ,0,7; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0 
end 

s{4,6) 
repl (6) [1, rep(3) 0] 
end 

d{4,6) 
n 10,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0: 
rep(4) none: 
n 20.0,0.0,0.0,0.0; none; none: w 7.0,0.0,0.0,0.0: 
repl(3) [rep(4) none] 
end 

The result is 13 which is placed in dataout file after reading it 

from the result register. 

9. MULT operation code 

e.g. mult ,0,7; 

The operation code (mult) above means multiply the value in the 
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result register addressed by operand 1, by the value in the 

auxiliary memory of the PE addressed by operand 2, and the 

result will be held in the result register. 

We can use the operation code (mult) to multiply the value in any 

register in the memory organization by the value in another 

register and the result will be held in the result register (R). 

The mult operation is used also to read the data from two 

different ports, multiply them and hold the result in the result 

register (R). 

Example 7: Multiplication of data 

To write a RISAL program to read two sets of data from the north 

port data and multiply them, and read the result 

p(4,9) 
relp(3) [rep(4) null n,O,O]: 
rep(4) data n,3,0: 
rep(4) mov ,0,7: 
rep(4) data n,3,O: 
rep(4) mult ,0,7: 
rep(4) copy ,0,0: 
rep(4) null ,0,0 
end 

s(4,9) 
repl(9) [1,rep(3)0] 
end 

d(4,9) 
repl(3) [rep(4) none]: 
n 2.0,4.0,6.0,8.0; none; none; none: 
rep(4) none: 
n 3.0,5.0,7.0,9.0; none; none; none: 
repl (3) [rep (4) none] 
end 

The result is 6.0, 20.0, 42.0, 72.0 which is placed in the dataout 

file after reading all these values from the result register. 

1:"11 
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Example 8: Inner product calculation 

To write a RISAL program to read from the north port data and 

the west port data for the first cell in the first row of 4*4 ISA 

grid, multiply them and store the result in the auxiliary memory, 

repeat this process and add the results of the multiplication and read 

the result. 

p(4,6) 
mult n w ,3,6; rep(3) null ,0,0: 
mOv ,0,7; rep(3) null ,0,0: 
mult nw, 3,6; rep (3) null ,0,0: 
add ,0,7; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0 
end 

s(4,6) 
repl(6) [l,rep(3)0] 
end 

d(4,6) 
n 2.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0: 
rep(4) none: 
n 3.0,0.0,0.0,0.0; none; none; w 5.0,0.0,0.0,0.0: 
repl (3) [rep(4) none] 
end 

The result is 23 which is placed in the dataout file. 

10. DIV operation code 

e.g. div ,7,3; 

The operation code div above means divide the value in the 

auxiliary memory of the PE addressed by operand 1 by the value 

in the register north data.addressed by operand 2, and the result 

to be held in the result register (R). Also we can use the 

operation code (div) , to divide the value of any register in the 

memory organization of the PE by the value in another register, 

and the result will be held in the result register (R). 



Example 9: Division of two numbers 

TO write a RISAL program to add two numbers read fron the north 

and west port data, store the result into the auxiliary memory and 

add another two numbers which is read from the same ports and divide 

them by the data stored in the memory and read the result. 

p{4,6) 
add n w ,3,6; rep(3) null ,0,0: 
mov ,0,7; rep(3) null ,0,0: 
add n w ,3,6; rep(3) null ,0,0: 
div ,0,7; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0 
end 

s{4,6) 
repl(6) [1,rep(3)Ol 
end 

d(4,6) 
n 5.0,0.0,0.0,0.0; none; none; w 2.0,0.0,0.0,0.0: 
rep(4) none: 
n 10.0,0.0,0.0,0.0; none; none; w 11.0,0.0,0.0,0.0: 
repl (3) [rep(4) nonel 
end 

The result is 3 which is placed in··the dataout file. 
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6.1 BASIC MATHEMATICS 

In this section some basic mathematical definitions and concepts 

are given. The material presented is necessary for the description of 

algorithms used later in this chapter. First of all, vectors and 

matrices are defined together with some relevant properties and 

relations. These are then used to discuss methods for solving linear 

systems, matrix-vector multiplication, matrix-matrix multiplication, 

matrix transpose and LU decomposition. The generalized matrix 

inversion is defined next, and then the Soft-Systolic Simulation 

(SSSS) is used to solve all these problems. 

Matrices and Vectors: 

Matrices are important to numerical algorithms because they 

provide a concise method for specifying manipulating large numbers of 

linear equations. A system of m linear equations in n unknown has 

the general form, 

(6.1.1) 

amlx
l 

+ a x + .•• + a x = b 
m2 2 mn n m 

The coefficients of the (6.1.1) above form a matrix, which we denote 

A or (a.,) of order mxn, where (i=l, •.• ,m; j=l, ... ,n), and b, (i=l, ..• ,m) 
~J ~ 

are given numbers. If A is an nXn matrix, that means A is a square 

matrix of order n. If the matrix has only one column or only one row, 

the matrix is called column vector, or row vector, 
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~l 
b

2 

r:,l 
x

2 

b 

~l 
x3 

(6.1.2) = x = 

x 
n 

We say that b is an m-vector, and x is an n-vector. If A={a .. ) and 
1) 

B= (b .. ) are both matrices, then we say that A equals B, or A=B, 
l.J 

provided A and B have the same order and a .. =b .. , all i and j. In the 
l.J l.J 

terminology so far introduced, (6.l.l) states that the matrix A combined 

in a certain way with the one-column matriX, or vector, x should equal 

the one-column matrix, or vector, b. 

The process of combining matrices involved here is called matrix 

multiplication and is defined in general, as follows: 

Let A={a .. ) be an mXn matrix, B={b .. ) an nxp matrix; then matrix 
l.J l.) 

c= (c .. ) is the (matrix) product of A with B (in that order), or C=AB, 
l.J 

provided C is of order mxp and, 

n 
L aikb

kj 
, for i::;;l, ... ,ro; j=l, ... ,p 

k=l 
(6.1. 3) 

In other words, the (i,j) entry of the product C=AB of A with B is 

calculated by taking the n entries of row i of A and the n entries of 

column j of B, multiplying corresponding entries, and summing the 

resulting n products. 

With this definition of matrix product and·definitions in (6.l.l) 

and (6.l.2), we can write our system of equations (6.l.l) simply as: 

Ax = b • (6.1.4) 

Matrix multiplication does not behave like multiplication of numbers, 

for example, it is possible to form the product of the matrix A with 
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the matrix B only when the number of columns of A equals the number 

of rows of B. Hence, even when the product AB is defined, the product 

of B with A need not be defined. Further, even when both AB and BA 

are defined, they need not be equal. 

If A=(a .. ) is a square matrix of order n, then we call its entries 
~J 

all,a22, ... ,ann the diagonal entries of A, and call all other entries 

off-diagonal. All entries a .. of A with i<j are called superdiagonal, 
~J 

all entries a .. with i>j are called subdiagonal. If all off-diagonal 
~J 

entries of the square matrix A are zero, we call A a diagonal matrix. 

If all subdiagonal entries of the square matrix A are zero, we call A 

an upper (or right) triangular matrix, while if all superdiagonal 

entries of A are zero, then A is called lower (or left) triangular. 

Clearly, a matrix is diagonal if and only if it is both upper and lower 

triangular. 

If a diagonal matrix of order n has all its diagonal entries equal 

to 1, then we call it the Identity Matrix of order n and denote it by I 

or I if the order is important. The name identity matrix was chosen 
n 

for this matrix because: 

I A = A for all nxp matrices A 
n 

B I = B for all mXn matrices B 
n 

i.e., the matrix I acts just like the number 1 in ordinary multiplication. 

Inversion and Generalized. Inversion of Matrices: 

Division of matrices is, in general, not defined. However, for 

square matrices, we define a related concept, matrix inversion. We say 

that the square matrix A of order n is invertible provided there is a 

square matrix B of order n such that: 
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(6.1.5) 

The matrix A , for instance, is invertible since, 

C 
On the 

B were 

11 r -J r J lJ 

= = 

~ ~ 

other hand, the matrix A = G 
a matrix such that 

rll +2b12 

t21 +2b 22 

BA=I, then it 

2bll+4bl~ 

2b 21 +4b 2..:.1 

11 -~ r 11 

L2 ~ l.Q lJ 

~ is not invertible. 

would follow that: 

= BA = 

° L 

For if 

Hence we should have b
ll

+2b
12

=1 and, at the same time, 2(b
ll

+2b
12

)= 

2b
ll

+4b
12

=O, which is impossible. We note that (6.1.5) can hold for 

at most one matrix B. For if, 

AB = I, and CA = I , 

where Band C are square matrices of the same order as A, then, 

C = Cl = C(AB) = (CA)B = IB = B 

showing that B and C must then be equal. Hence, if A is invertible, 

then there exists exactly one matrix satisfying (6.1.5). This matrix 

-1 
is called the inverse of A and is" denoted by A 

It follows at once from (6.1.5) that if A is invertible, then so 

-1 
is A and its inverse is A; that is 

-1 -1 
(A) = A (6.1.6) 

Further, if both A and B are invertible square matrices of the same 

order, then their product is invertible and 

-1 -1 -1 
(AB) = B A (6.1.7) 
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It is well known that every non-singular real or complex (square) 

matrix A has a unique inverse which has the property that, 

-1 -1 
AA = A A = I . (6.1.8) 

This guarantees that the system of linear equations Ax=b has the unique 

solution, 
-1 

x = Ab. (6.1.9) 

A matrix has an inverse only if it is square, and a square matrix A 

has an inverse if and only if it is nonsingular, that is, if and only 

if, 

(i) det Aio, or 

(ii) the columns of A are linearly independent, or 

(iii) the rows of A are linearly independent, 

where each of these three properties implies the other two. 

If a matrix, rectangular or square is singular, it does not have 

an inverse. However it does have a generalized inverse, called a g-

inverse, which has the following properties: 

(i) a g-inverse exists for a class of matrices larger than 

the class of nonsingular matrices, 

(ii) a g-inverse has some of the properties of the ordinary 

matrix inverse, and 

(iii) a g-inverse reduces to the ordinary matrix inverse, if A 

is square .and nonsingular. 

If A is an mxn matrix and G is a g-inverse of A, then G is an nXm 

matrix defined as follows: 

DEFINITION: Consider the matrix equations: 

(a) AGA = A 



(b) 

(c) 

GAG = G 

H 
(AG) = AG 

(d) (GA)H = GA 

where the subscript H denotes the complex conjugate'transpose. The 

matrix G is called: 

(i) 
-1 

a g-inverse of A, denoted by A if (a) holds, 

(ii) a reflexive g-inverse of A, denoted by AR' if both (a) 

and (b) hold, 

21:l 

(iii) a least-squares g-inverse of A, denoted by AL' if both (a) 

and (c) hold, 

-
(iv) a minimum-norm g-inverse of A, denoted by AM' if both 

(a) and (d) hold, and 

+ 
(v) the Moore-Penrose g-inverse of A, denoted by A , if (a), 

(b) and (d) all hold. 

Matrix Transpose: 

There is an operation on matrices which has no parallel in 

ordinary arithmetic, the formation of the transposed matrix. If A=(a
ij

) 

and B=(b,.) are matrices, we say that B is the transpose of A, or 
l.J 

T . 
B=A , provl.ded B has as many rows as A has columns and 

b
ij 

= a
ji 

all i and j 

In other words, one forms the transpose AT of A by 

"reflecting A across the diagonal ll 

If 

then A is said to be symmetric. 

One easily verifies the following rules regarding transposition: 



(i) If A and B are matrices such that AB is defined, then BTAT 

T TT 
is defined and (AB) =B A . 

« <) Ft' A (AT)T ~~ or any ma r:LX, =A. 
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( H <) f .. ibl th . T ( T -~ -l)T ~~~ I the matr:LX A ~s invert e, en so ~s A , and A) ,A • 

solution of Linear System: 

consider the linear system, 

Ax = b , 

where A is a square (nXn) matrix, b is a given right hand side vector, 

and x is an unknown vector. It will be assumed that A is non-singular, 

-1 
hence A exists and there is a unique solution x. The choice of 

solution method depends on a number of factors including the structure 

and size of the' matrix A, the number of arithmetic operations required, 

and the control of the rounding error growth (or stability). There are 

two general classes of methods, direct and iterative methods. As 

regards the matrix size and structure, direct methods, are used mainly 

when the matrix A is small, dense or banded. Direct methods cannot, 

in general, be used for large sparse matrices because of the problem 

of fill-ins which occurs during the elimination process. For large 

sparse matrices we normally use the iterative methods since these will 

not alter the structure of the original matrix and therefore preserve 

sparsity. However, there are special cases where pivoting techniques 

can alleviate the fill-in problem of direct methods. 

Herein a brief introduction on the direct method is presented 

which is used later on by our simulation system (SSSS) and to calculate 

the generalized inverse of a matrix. 



214 

The direct method concerned factoring a matrix A in terms of a 

lower triangular matrix L and an upper triangular matrix U. In Burden, 

Faires and Reynolds [1981) it was shown that this factorization 

existed whenever the linear system Ax=b could be solved uniquely by 

Gaussian elimination (this method is generally used to solve a system 

of linear equations) without row or column interchanges. The system 

-1 
LUx=Ax=b could be transformed into the system Ux=L b and, since U is 

upper triangular, backward substitution could be applied. Although 

the specific form of Land U can be obtained from the Gaussian 

elimination process, it is desirable to find a more direct method for 

their determination, so that, if many systems are to be solved using 

A, only a forward and backward substitution need to be performed. To 

illustrate a procedure for the calculation of the entires of these 

matrices, we consider that a general matrix (nxn) A can be factored in 

the form, 

all a
12 - - --

a
21 

a
22 

- - --
I 

A = I 
I 

anI a 
n2 

where, 

L = 

a
ln 

a 
2n 

I 
I 

I 

a 
nn 

and U = 

LU 

u 12 - - - - -- ul~ 

u
22 

u
2n 

I 
, 

, 

o 

, , 
, 

u 
nn 

For a (4 x4), the 16 known entries can be used to partially determine 
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the ten unknown entries in L and the same number in U. If a procedure 

leading to a unique solution is desired, however, four additional 

conditions on the entries of Land U are needed. The method to be 

this is known as Doolittle's method. The multiplication of L by U, 

:l~ 
24 

; 

a 34 / 

a4~ 

o o 

o 

Ul~ 
u 24 ' u) 
u4J 

o o 
A ; 

~:: o 
L 

o 

To calculate all the unknown entries in Land U in the case of a matrix 

A (nxn) , we can use the following algorithm: 

Step 2: Generate the entries in the first column of L by the condition: 

, for each j=2,3, ... ,n. 

Step 3: Generate the entries in the first row of U by the condition: 

, for each j=2,3, ... ,n. 

Step 4: Set i;2. 

Step 5: Select ~ii and u
ii 

satisfying, 

~ .. U., ; a,. 
1.1. 11. 1.1 

Step 6: If i<n, goto step 7. 

If i;n, goto step 10. 

Step 7: Generate the entries in the ith column of L by the condition: 

i-l 
; _1_ [a" - I ~'kuk,l 

U ii JL k;l J L 
, for each j=i+l,i+2, ... ,n. 
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Step 8: Generate the entries in the ith row of U by the condition, 

, for j=i+l,i+2, ... ,n. 

step 9: Add 1 to i and goto step 5. 

Step 10: The procedure is complete when all entries of Land U have 

been determined. 

A difficulty which can arise when using the algorithm above to 

obtain the factorization of the coefficient matrix of a linear system 

of equations is caused by the fact that no pivoting is used to reduce 

the effect of round-off error. The round-off error can be quite 

significant when finite digit arithmetic is used and any efficient 

algorithm must take this effect into consideration. The material of 

this section is obtained from [Burden, Faires and Reynolds, 1981), 

[Deboor, 1972]. 
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6.2 MATRIX APPLICATIONS USING SSSS 

In the following paragraphs of this section the solution of some 

matrix applications by using the soft-systolic simulation system is 

presented. 

6.2.1 4*4 Matrix Transpose 

This is a slightly more complex transposition problem incorporating 

the use of the 2x2 problem which was defined earlier. Consider the 

matrix, 

~u 
a

12 
a

13 al~ 
a

21 
a

22 
a

23 

::~ A = 

~" 
a

32 
a

33 

a
41 

a
42 

a
43 44 

Problem: Trace a RI SAL program to ensure that: 

all a
21 

a
31 a4~ 

I 

AT 

a
12 

a
22 

a
32 

a
42 

= 
a
l3 

a
23 

a
33 

a
43 

a
14 

a
24 

a
34 

a
44 

To write a RISAL program to transpose the matrix above we implement the 

following steps: 

REMARK: null=null ,0,0, datan=data n,3,0, datas~data s,5,0, dataw=data w, 

6,0, and datae=data e,4,0. 

Step 1: By reading the matrix elements from the north into the ISA 

grid, each matrix element will be stored in a processor, as 

shown in Figure 6.1. 



<114 

datan 
a

13 
a

24 
datan datan 

a
12 

a
23 

a
34 

datan datan datan 
INSTRUCTIONS all a

22 
a

33 
a

44 
datan datan datan datan 

a
21 

a
32 

a
43 

datan datan datan 
a

31 
a

42 
datan datan 

a41 
datan 

+ 

0 0 0 0 1 1 1 1 

0 0 0 0 1 1 1 0 

... 
0 0 0 0 1 1 0 0 

0 0 0 0 1 0 0 0 

SELECTOR 4*4 ISA GRID 

FIGURE 6.1: Reading the 4x4 Matrix Elements from the North 
into the 4*4 ISA Grid. 
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Step 2: Start to transpose the matrix elements as shown in Figure 6.2. 
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null datae dataw 

null datae dataw null 

datae dataw datae dataw 

null datae dataw null 

datae dataw null null 

null datas null null 

datas datan null null 

datan datas null null 

datas datan datae dataw 
INSTRUCTION 

datan datae dataw null 

datae dataw datae dataw 

null datae data,. null 

datae dataw datae dataw 

null null datas null 

datae dataw datan null 

datas null datae dataw 

datan null null null 

datae dataw null null 

null null null null 

SELECTOR 

0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1 
all a

12 
a

13 
a

14 

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 
+ 

a
2l 

a
22 

a
23 

a
24 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 a 3l 
a

32 
a

33 
a

34 

0 0 0 0 1 0 1 0 0 c 0 00 1 0 0 0 0 0 a
4l 

a
42 

a
43 

a
44 

4*4 ISA GRID 
FIGURE 6.2: Transpose RISAL Program for 4*4 Matrix 



Step 3: Read the matrix elements from the south to the north of the 

ISA grid as shown in Figure 6.3. 

null null null datas 

null null datas datas 

null datas datas datas 

INTRODUcrIONS datas datas datas datas 

datas datas datas datas 

datas datas datas null 

datas datas null null 

datas null 

SELECTOR 

0 0 0 I I I 0 0 all a
21 

a
31 

a
41 

0 0 0 0 I I 0 0 a
l2 

a
22 

a
32 

a
42 

0 0 0 0 0 I 0 0 a
l3 

a
23 

a
33 

a
43 

0 0 0 0 0 0 0 0 a
l4 

a
24 

a
34 

a
44 

4*4 ISA GRID 

FIGURE 6.3: Reading the Matrix Elements 4x4 from the South to 
the North of the 4*4 ISA Grid. 

220 



221 

EXAMPLE: Given the matrix, 

r: 2 3 "4f 11 5 9 131 

14 i 6 7 81 2 6 10 
~ 

9 10 11 12 3 7 11 15 

~3 14 15 16 t 8 12 16
1 

J J 

6.2.2 4x4 LU Decomposition 

Given a 4*4 matrix, 

f11 
a

12 
a
l3 a~~ 

a
21 

a
22 

a
23 

a
24 

A ~ 

~31 
a

32 
a

33 
a

34 

a
41 

a
42 

a
43 a 44J 

To factorize this matrix into a lower triangular matrix L and an 

upper triangular matrix U as defined previously in section 6.1, we obtain, 

~" l r11 
u

12 ul) ulJ 
0 

1 u
22 

u
23 

u
24 L ~ U ~ 

9.
31 

9.
32 

1 u
33 U 34 ! 

j 0 
9.
41 

9.
42 

9.
43 L u441 

L :J 
To determine the unknown entries of Land U we obtain by comparing 

terms: 

U entries 

ull 
~ all 

u
12 

~ a
12 

u
l3 

~ a
l3 

u
14 

~ a
14 
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u
22 

~ a 22-1,2lu12 

u
23 

~ a 23-1,2lu13 

u
24 

~ a 24 -1,21 u 14 

u
33 

~ a 33-(1,3lu13+1,32u 23) 

u
34 

~ a 34-(1,3lu14+1,32u 24) 

u
44 

~ a44-(1,4lu14+1,42u24+1,43u34) 

L entries 

1,21 

a
2l 

~ 

ull 
a

31 
1,31 

~ 

u
l1 

1,41 

a
41 

~ 

u
1l 

a -1, u 

1,32 
32 31 12 

~ 

u
22 

1,42 
a42-1,4l u12 

~ 

u 22 

1,43 
a43-(i4lu13+1,42u23) 

u
33 

To write a RISAL program to determine the matrix entries of Land U 

above we have to implement the following steps: 

Step 1: Read the matrix elements A into the 4x4 ISA grid. See 6.2.1, 

Step 1. 

Step 2: Start to factorize the matrix A into Land U by tracing the 

RISAL program shown in Figure 6.4. As a result, the elements 

of L will be held in the processing elements P21,P3l,P32,P4l' 

P
42

,P
43 

and the elements of U will be held in the processing 

elements Pll,P12,P13,P14,P22,P23,P24,P33,P34 and P44 . 
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Step 3: Read the L and U elements from the south to the north of the 

ISA grid. See 6.2.1, step 3. 

EXAMPLE: 

Given a 4*4 matrix 

r 3 3 2 

4 1 2 3 
A = 

2 2 5 1 

~ 4 1 2J 

By tracing the matrix through the RI SAL program in Figure 6.4, we 

obtain: 

11 l r 3 3 2 

0 2 1 -5 -4 -1 
L = U 

1 0.2 1 2.8 -0.8 

I 
~ 

0 
1.5 0.1 -1.107143 L -1. 7857141 

L J 



REMARK: 

null = null ,0,0 

datan data n,3,o 

datas = data 5,5,0 

dataw = data w,6,O 

datae = data e,4,O 

copy = copy ,0,0 

INSTRUCTIONS 

FIGURE 6.4: 4 X 4 LU Decomposition RISAL 
Program. 

Ul Ul 
to to Ul 
>: >: to 
H H >: ... ... H ... ... ... 
i'5 '" to 

" :> 
H H H 
to to ... 
" " " to ., to 

~ 
... ... 
I:i I:i 

0. 0. 0. 
to ., to 
0: 0: 0: 

+ + + 

0 0 0 0 0 

0 0 1 1 1 

0 1 1 1 0 

1 1 1 0 0 

SELECTOR 

0 

0 

0 

0 
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null null null copy 

null null null sub 
,7,6 

null null null mult 
,3,6 

null null null dataw 

null null copy null 

null null div datan 
,7,3 

null null datan mov 
1,7, 

null null mov copy 
,1,7 

null null copy sub 
,7,0 

null null sub mult 
,7,0 ,3,6 

null null mult dataw 
,3,6 

null null dataw null 

null copy null datan 

null div datan mov 
,3,7 ,1,7 

null datan mov copy 
,1,7 

null mov copy sub 
,1,7 ,7,0 

null copy sub mult 
,7,0 ,3,6 

null sub mult dataw 
,7,0 ,3,6 

null mult dataw null 
1 3 ,6 

null data. null datan 

copy null datan mov 
,1,7 

div datan mov 
,3,7 ,1,7 

datan mov 
,1,7 

mOv 
,1,7 

all a
12 

a
l3 

a
14 

a
2l 

a
22 

a
23 

a
24 

a
3l 

a
32 

a
33 

a
34 

a
4l 

a
42 

a
43 

a
44 

4 X 4 ISA GRID 
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6.2.3 Matrix-Vector Multiplication 

Consider the matrix multiplication by vector, i.e. y=Ax, as 

defined in Section 6.1, where A is a (nxn) matrix and x,y are (nxl) 

vectors. Each component of y is produced by adding the multiplication 

of a row of A by x. More formally, the recurrence re la tion can take 

the form, 

o 

(n+l) 
Y

i 
; Y

i 
' i,k=1,2, ... ,n. 

For n=4, Figures 6.5 and 6.6 show the implementation of this 

algorithm by using the ISA grid. It is based on the engagement of the 

processing elements in the first row of the ISA grid. Each processing 

element in this row will implement just multiply and addition 

instructions and then move the result of the addition into a storage 

register in the auxiliary memory of the processing element. The data 

sequences from the north consist of the rows of the matrix A, while 

the data from the west are the components of the vector x. Finally, 

each element of the resulting vector is accumulated into P
ll

,P12'P
13

, 

P
14 

simultaneously. 



In 

a
44 

a
34 

a
43 

a
24 

a
33 

a
42 

a
14 

a
23 

a
32 

a
4l 

a
l3 

a
22 

a
3l 

"" 
a

12 
a

2l 

"" 
all 

"" ~ 

x
4 x3 x

2 xl ->- PH P
12 

P
13 

P
14 

4x4 ISA GRID 

FIGURE 6.5: Data Moving From the North and the West into 
the ISA Grid. 
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Figure 6.6, each Y instruction represents the following instructions: 

mult n w,3,6; 

add ,7,0; 

mov ,0,7; 

mov ,6,1; 

and datas means data s,5,0; 



INSTRUCTIONS 

SELECTOR 

REPEATED 31 TIMES 
1 

datas 

copy 
,0,0 

datas mov 
,7,0 

copy 
,0,0 

y 

datas mov 
,7,0 

copy 
,0,0 

y y 

mov 
,7,0 

Y Y Y 

Y Y Y 

Y Y 

Y 

Pll P
12 P13 

4><4 ISA GRID 

datas 

copy 
,0,0 

mov 
,7,0 

y 

y 

y 

Y 

P
14 

FIGURE 6.6: RISAL Program for the 4*4 Matrix Multiplication by Vector 
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EXAMPLE: 

Given y = Ax, 

where the matrix, 

2.8 3 2 :., 
3.6 4.8 6 

A = 
4 3 2.2 6.1 

4.2 1 0 9 J 

and the vector 

r:·
1 

x = 
5 

L6.6_ 

By using the RISAL program mentioned previously we obtain the vector, 

58.540001 

104.759995 

y 
68.659996 

L 71.219994 

6.2.4 Matrix-Matrix Multiplication 

Another problem to be discussed is the multiplication of two (nxn) 

matrices, C=AB, as defined in Section 6.1, again each component of 

matrix C is produced by adding the multiplication of each row of matrix 

A and each column of matrix B. More formally, the recurrence, 

(1) 
c.. = 0 
~J 

(k+l) 
c
ij 

(n+l) 
c
ij 

= c
ij 

, i,j,k=1,2, ... ,n. 



229 

The formula can be seen as a set of n matrix by vector multiplications 

as defined in the previous paragraph. To solve this problem for n=4 

and by using the ISA grid, it is again seen as based on the engagement 

of the processing elements in the first row of the ISA grid. The data 

sequences from the north represents the matrix B elements, while the 

data from the west represents the matrix A elements. By repeating the 

same process as in the previous paragraph, the processing element 

(Pll,P12,P13,P14l will implement the multiply and addition instructions 

and then move the result of the addition into a storage register in the 

auxiliary memory of the processing element for every column of the 

matrix C. Finally, the elements of the resulting C are accumulated as 

follows: 

·The first column in P
ll 

registers 7,8,9 and 10 

n second n n P n n n n n n 

12 
n third n n P

l3 
n n n n n n 

n fourth n n P
14 

n n n n n n 

So, given C=A*B, we have, 

!all a
12 

a
l3 al~ b

ll 
b

12 b13 blJ 
I 

b 24 1 
la2l 

a
22 

a
23 

a
24 

b
2l 

b
22 

b
23 

C = x I 
a

3l 
a

32 
a

33 
a b

3l 
b

32 
b

33 
b

34 a 34
1 a

4l 
a

42 
a

43 ~4l b
42 

b
43 

b
44 L 4~1 ~ 
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b
44 

b
43 

b
34 

b
42 

b
33 

b
24 

b
41 

b
32 

b
23 

b
14 

b
31 

b
22 b13 b

44 

b
21 

b
12 

b
43 

b
34 

b
U 

b
42 

b
33 

b 
. 24 

b
31 

b
22 b13 b

44 

b
21 

b
12 

b
43 

b
34 

(ELEMENTS OF MATRIX B) b
U 

b
42 

b
33 

b
24 

b
41 

b
32 

b
23 

b
14 

b
31 

b
22 b13 b

44 

b
21 

b
12 

b
43 

b
34 

b
U 

b
42 

b
33 

b
24 

b
41 

b
32 

b
23 

b
14 

b
31 

b
22 b13 

b
21 

b
12 

b
U 

(ELEMENTS OF MATRIX A) 

Pu P
12 P13 P

14 

ISA GRID 

FIGURE 6.7: Data of Matrices A and B Moving from the North and the West 
into the ISA Grid. 



SELECTOR 

REPEATED 68 TIMES 

1 

o 

o 

o 

C 

Y
4 

Y
4 

Y
4 

Y
4 

Y
3 

Y
3 

Y
3 

. Y3 

Y
2 

Y
2 

Y
2 

Y
2 

Y
l 

Y
l 

Y
l 

Y
1 

PH 

C 

C Y4 

Y
4 

Y
4 

Y
4 

Y
4 

Y
4 

Y
4 

Y
4 

Y
3 

Y
3 

Y
3 

Y
3 

Y
3 

Y
3 

Y
3 

Y
3 

Y
2 

Y
2 

Y
2 

Y
2 

Y
2 

Y
2 

Y
2 

Y
2 

Y
1 

Y
1 

Y
1 

Y
1 

Y
1 

Y
1 \ 

Y
l 

, 
: , 

, + , , 
+ 

P
12 P13 

ISA GRID 

FIGURE 6.8: RISAL Program for 4x4 Matrix Multiplication 
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C 

Y
4 

Y
4 

Y
4 

Y
4 

Y
3 

Y
3 

Y
3 

Y
3 

Y
2 

Y
2 

Y
2 

Y
2 

Y
1 

Y
1 

Y
1 

Y
l 

, , 
: 
+ 

P
14 
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Figure 6.7 shows the elements of matrix B moving from the north, and 

the elements of matrix A moving from the west into the ISA grid. 

Figure 6.8 shows the RISAL program for the matrix-matrix 

multiplication process. The symbols Y
l

'Y
2

'Y
3

'Y
4 

and C represents the 

following instruction, 

mult n w,3,6; 

1 add ,7,0; 
Y

l 
= 

mov ,0,7; 

J mov ,6,1; 

mult n w,3,6; 

add ,8,0 ; 
Y

2 
= 

mov ,0,8 ; 

mov ,6,1; 

mult n w,3,6i 

add ,9,Oj 
Y

3 
= 

mov ,0,9 ; 

mov ,6,1; 

mult n w,3,6i 

add ,10,0; 
Y

4 
= 

mov ,0,10; 

mov ,6,1; 

and 
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mov ,7,0; 

copy ,O,Qj 

data 5,5,0; 

mov ,8,0; 

copy ,D,Q; 

data 5,5,0; 

C = 
mav ,9,0; 

copy ,0,0.; 

data 5,5,0; 

mov ,10,0; 

copy ,0,0; 

data s,5,0; 

EXAMPLE: 

Obtain C=AB, where, 

~.8 3 2 :·1 3.6 4.8 6 
A = 

6.11 4· 3 2.2 

L4.2 1 0 9 J 
and 

f2 .1 
-

0 2.3 1.8 

3 1 5 6.1 
B = 

~.6 
1.2 2 

3.3J 

2.2 0 3.6 

By using the multiplication process shown in Figures 6.7 and 6.8 we 

obtain, 
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58.540001 16.620001 25.439999 48.299999\ 

104.759995 29.600000 44.279999 84.360001 
C = 

68.659996 19.060001 28.600000 54.720001 

Ln.219994 20.800001 14.659999 46.059998 
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6.3 THE SOLUTION OF LINEAR SYSTEMS USING SSSS 

Given the linear system, 

(6.3.1) 

as defined earlier in section 6.1, where A is a given square matrix of 

order n, b a given n-vector. We wish to solve the linear system above 

for the unknown n-vector x. 

To obtain the vector x we have, 

-1 
x = A b (6.3.2) 

-1 
However A is difficult to· obtain, so we need .to factorize the matrix 

A into LU factors because Land U are easily inverted systems. So we 

have, 
LUx = b • 

Let 

so the system breaks down into 2 triangular systems, 

Ly = b (6.3.3) 

and Ux = y (6.3.4) 

For n=4, the matrix, 

fll a
12 

a
l3 :l~ a

21 
a

22 
a

23 24 
A = 

a
31 

a
32 

a
33 

a
34 

a
41 

a
42 

a
43 

a
44 :J 

11 

i" 
u

12 
u

l3 
U

IJ 
1.21 1 

0 
u

22 
u

23 
u

24 
= 

u 3J 1.31 1.32 1 u
33 

l 0 I 
1.41 1.42 1.

43 
1 u4~1 L 

To obtain y from (6.3.3) we have, 



1 o 
1 

l 
1 

J 

From (6.3.5) above, we obtain, 

Yl = b l 

Y2 = b 2-R.2lYl 

Y3 = b3-R.3lYl+R.32Y2 

* 

Y4 b4-R.4lYl+R.42Y2+R.43Y3 

To obtain x from (6.3.4), we have, 

* 
o 

x 
L 4 

From (6.3.6) above we obtain, 

x = 
1 

Y4 
u44 

Y3-Y34x4 

u
33 

Y2-(u23x3+u24x4) 

u 22 

Yl-(ul2x2+u13x3+ul4x4) 

u
ll 

-

= 

To write a RISAL program to solve this problem we implement the 

following steps: 
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(6.3.5) 

(6.3.6) 

Step 1: Read the matrix A into the ISA grid, and factorize it by 



using the same concepts used in step 1 and step 2 in 

paragraph 6.2.2. The elements of Land U will be held in 

the ISA grid, each element in a processing element. 

Step 2: As shown in Figure 6.9. 

move the elements of L into register 7 of the processing 

elements P2l,P3l,P32,P4l,P42' and P43 . 

move the elements of U into register 8 of the processing 

elements Pll,P12,PI3,PI4,P22,P23,P24,P33,P34 and P44 • 

read one's (I) from the north into register 7 of the 

processing elements Pll,P22,P33 and P44 . 
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Step 3: As shown in Figure 6.10, by reading the value of the vector b 

(b
l

,b
2

,b
3 

and b
4

) respectively from the north into the columns 

of the ISA grid, we obtain the values of YI'Y2'Y3 and y4 ,as 

follows: 

in P
Il 

we obtain the value of Y
I 

(yl=b
l
). 

read the value of Y
l 

from P
ll 

throughout P
2l

, P
3l 

and P
4l 

and multiply Y
l 

by the value in register 7 of these 

processing elements, and move the result of the multiplication 

into the communication registers, and read them to the west 

neighbouring processing eleme~ts P
22

,P
32 

and P
42 

(register 6). 

in P
12 

no operation. 

in P
22

, we obtain the value of Y
2 

by the subtraction of 

the value in register 6 from the value of b
2 

and move the 

value of Y
2 

into the communication register. 

read the value of Y
2 

throughout the processing elements 

P
32

,P
42 

and multiply Y
2 

by the value in register 7 of these 

processing elements, and add the result to the value in 
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FIGURE 6.9: Storage of the Elements of L and U in Registers 
7 and 8 of the ISA Grid 

b
3 

b
4 

+ 
b

2 
+ 

b 
+1 

+ 

yl=bl 

b
2 

b
3 

b
4 

I I I I 

t ~ J, l 
Yl 

R.21 *y 1 R6 
Y =b -R6 R6=y ~3 b

4 I 221 2 

J. ~ J. 1 
Yl Y2 

R.3/Yl 
R6 

R.32 *y 2 +R6 - f?y =b -R6 b
4 3 3 

I I T 
~ ) ~ 

Yl Y3 2 
R. 4 /Y3+RG - f->R6 

R.41*Y
l 

R6 
b -R6=y 

R.42 *y 2 +R6- f-.R6 4 4 

FIGURE 6.10: Determination of the Values of y by Using the 
ISA Grid 
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register 6. Move the result into the communication 

registers and read them to the west neighbouring processing 

elements P33 and P43 · 

in P
13 

and P
23 

no operation. 

in P 33' we obtain the value of y 3 by the subtraction of the 

value in register 6 from the value of b
3

, and move the 

result (which is Y3) into the communication register. 

read Y3 into P
43

, and multiply Y3 by the value in register 

·7,. add the result to the value in register 6, and move the 

result into the communication register, then read it to the 

west neighbouring processing element P
44

. 

in P
14

, P
24 

and P
34 

no operation. 

in P
44

, we obtain the value of Y
4 

by subtracting the value 

in register 6 from the value of b
4

. 

Step 4: From Step 3 above we have obtained the values of Y
l

'Y
2

'Y
3 

and 

Y
4 

stored in the processing elements Pll,P22,P33 and P
44

. 

To determine the values of x
l

,x
2

,x
3 

and x
4

' we implement the 

procedure as shown in Figure 6.11. 

in P
44

, we divide the value of Y
4 

by the value in register 

8 to obtain x
4

. 

read the value of x
4 

to the north throughout the processing 

elements P
34

,P
24

, and P
14 

and multiply x
4 

by the values in 

register 8 of these processing elements, move the results 

into the communication registers, and finally read them to 

the east neighbouring processing elements P33,P
23 

and P
13 

(register 4) . 
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Y -R4 
1 

R4~ x *u +R4 x =---
1 u

ll 
3 13 

R4<- -x
2 
*u

12 
+R4 R4<- -x

4
*u

14 
x

2 
l' {3 1 

x
4 

1 1 I 
R4t- x *u +R4 

Y -R4 
3 23 R4<- '- x

4 
*u

24 
2 x =-- x3 x 

2 u
22 't t 4 

1 1 
y -R4 

3 x =--
3 u 

33R4 <-
~x4*u34 

,/4 

1 

Y4 
x =-

4 u
44 

FIGURE 6.11: Determination of the Values of x by Using 
the ISA Grid 

in P33' we subtract the value in register 4 from the value 

of Y3' and divide the result by the value in register 8 to 

obtain x
3

' 

read the value of x3 to the north throughout the processing 

element P
23

,P
13

, and multiply the value of x3 by the value 

in register 8 of these processing elements; add the result 

to the value in register 4, and move the result into the 

communication registers. Finally, read them to the east 

neighbouring P
22 

and P
12 

(register 4) . 

in P
22

, we subtract the value in register 4 from the value 

of Y2' and divide the result by the value in register 8 to 

obtain x
2

' 
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read the value of x
2 

to the north into the processing 

element P
12 

and multiply it by the value in register 8; 

add the result to the value in register 4, and move the 

result into the communication register. Finally, read it 

to the east neighbouring P
ll 

(register 4) • 

in P
ll

, we subtract the value in register 4 from the value 

of Yl' and divide the result by the value in register 8 of 

this processing element to obtain the value of xl. 

Step 5: read the values' of xi,x
2

,x
3 

and x
4 

from the south of the 

first row of the ISA grid. 

EXAMPLE: 

Given the linear system, 

Ax = b , 

where, 
3 3 2 

1 2 3 
A = 

3 6 1 

3 3 3 

and the vector, 

b = 

By using the steps mentioned above we factorize the matrix A, to obtain, 

L = 

fi 
2 

1 

~ 

1 

o 
o 

l 
o 
1 

and U = 

o ~ 

f2 3 

-5 

LO 

3 

-4 

3 

j 
-~I 
~ 
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To obtain the value of y from (6.3.5), we have, 

1 

= o 1 12 

o o IJ 
4 Lll 

= 

To obtain the value of x from (6.3.6) we have, 

3 3 

-5 -4 

o 3 

L 

1 

1 

= 
1 

1 
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6.4 FINDING THE GENERALIZED INVERSE OF A RECTANGULAR MATRIX USING SS SS 

OUr aim in this section is to find the optimal solution x to an 

inconsistent linear system, 

where A any coefficient matrix and b any right side. 

First, we have to find a rule that specifies x. Suppose we know 

the value of Ai, for every x, Ax is necessarily in the column space of 

A; it is a combination of the columns, weighted by the components of 

x. Therefore the optional choice AX is the point p in this column 

space closest to the given b. This choice minimizes the error 

E=I IAx-bl I. In other words, we project b onto the column space, 

Ax = P = pb (6.4.1) 

The equation above is enough to determine x itsexf. It is another form 

of the normal equation, 

T _ 
AAx (6.4.2) 

Certainly x is determined when there is only one combination of the 

columns of A that will produce P; the weights in this combination will 

be the components of x. 

we know several equivalent conditions for the equation Ax=p to 

have only one solution: 

(i) The columns of A are linearly independent. 

(ii) The null space of A contains only the zero vector. 

(iii) The rank of A is n. 

(iv) The 
. T 

is invertible. square matr~x A A 

In such a case, the only solution to (6.4.1) is, 

T -1 T 
x = [(A A) A)b (6.4.3) 
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This formula, which is comparatively simple, includes the simplest 

case of all when A is actually invertible. Then x coincides with the 

_ -1 T -1 T -1 
one and only solution of the original system Ax~b: x~A (A) A b~A b. 

This suggests another way of describing our aim: we are trying to define 

+ 
the pseudo inverse A of a matrix which may not be invertible. 

+ 
REMARK: A is also called the Moore-Penrose inverse, after its 

discoverers, or more commonly known as a generalized inverse of A, as 

defined earlier in Section 6.1. But a great many other matrices, 

. + 
sharing some but not all of the properties we ~ntend for A , have also 

been described as a generalized inverse. 

+ -1 
When the matrix is invertible, that means A ~A When the 

matrix satisfies the condition (i)-(iv) listed above, the pseudoinverse 

is the left inverse which appears in the formula (6.4.3), 

+ T -1 T 
A ~ (A A) A . (6.4.4) 

But when the conditions (i)-(iv) do not hold, and x is uniquely 

determined by AX~P, the pseudo inverse remains to be defined. We have 

to choose one of the many vectors that satisfy AX~p and that choice 

- + will be, by definition the optimal solution x~A b to the inconsistent 

linear system Ax~b. To solve the problem above and calculate the 

generalized inverse, we have the rectangular linear system 

Ax ~ b , 

T 
which after multiplying by A , we obtain 

-Ax 

Then, by factorizing A into Land U elements, we have, 

T 
LUx ~ A b 

(6.4.5) 

(6.4.6) 

(6.4.7) 



Let 

we obtain, 

Ux = y , 

T 
Ly = Ab, 
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(6.4.8) 

(6.4.9) 

From (6.4.9) we determine the value of y, and by substituting the value 

of y in (6.4.8) we obtain the final value of x. 

To write a RISAL program to solve this problem and calculate the 

value of x in the case of an (nxm) matrix A when n=3 and m=4, we 

implement the following steps: 

step 1: Read the matrix A elements from the north into the ISA 

grid. 

Transpose the matrix A by using the same concept in 

paragraph 6.2.1. 

T 
multiply the matrix A by A by using the concept used in 

paragraph 6.2.4. The result will be A and it will be held 

in the ISA grid, each element in a processor. 

step 2: Factorize the matrix A into Land U compoments by using the 

same concept mentioned in paragraph 6.2.2 Step 2. 

Move the Land U elements into a different register as has 

been done earlier in Step 2 in Section 6.3. 

step 3: To calculate the values of y and then x's which is the 

generalized inverse, we have to implement Step 3 and Step 4 

in Section 6.3, by reading the elements of AT (right hand side) 

from the north into the ISA grid, instead of the vector b 

mentioned in that section. By repeating this process four 

times, we will obtain the values of x. 

Step 4: Read the values of x from the south to the north of the ISA 

grid. 
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EXAMPLE: 

Given the rectangular linear system in (6.4.5), where, 

1 4 3 

2 0 1 
A = 

3 2 2 

4 1 J 
To determine the value of x, we have to implement the RISAL program 

mentioned earlier in Step 1, Step 2, Step 3 and Step 4. First by 

applying equation (6.4.6) we have, 

fl 2 3 4 1 4 ~ r 2 3 41 
14 0 2 1 2 0 

11 
* x = 14 0 2 1 * b 

~ 3 2 11 1J 1 2 1 :J 1 2 

4 1 

~o 
14 15 fl 2 3 

4l 
1 

14 21 17 * x = 
14 

0 2 1 

l.!5 1"1 15 11 1 2 1 

~ 

TO factorize Ain equation (6.4.7) we obtain, 

1 14 15 

0.466667 1 14.466667 10 * x ;. 

0.5 0.691244 0.587558 

1 2 3 4 

4 0 2 1 

3 1 2 1 

To calculate the values of y, we have (4.6.9) , 

1 Yll Y12 Y13 

::l 
1 2 3 41 

~ 0.466667 1 Y21 Y22 Y23 
4 0 2 

0.5 0.691244 1 Y31 Y32 Y33 Y34 
3 1 2 
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Yll Y12 Y13 

::~ 
[l 2 3 4 -I 

I I 
Y21 Y22 Y23 ~.mm -0.933333 0.600002 -0.866664/ 

Y31 Y32 Y33 Y34 
0.057608 -0.645159 0.085253 0.4oo92~/ 

To calculate x's from equation (6.4.8), we have, 

130 14 15 -I \xll x
12 x13 x

14 

10 I 14.466667 x
21 

x
22 

x
23 

x
24 

0.58755~ IX31 x
32 x33 X34 ! 

L J 

1 2 3 4 l 
3.533333 0.933333 0.600002 -0.866664\ 

0.057608 -0.645159 0.085353 0.4oo925J 

From the above we obtain, 

fll x
12 xl3 x141 

-0.098039 -0.098039 0.054902 0.02823531 

I /x12 
x

22 
x

23 x 24 \ = 0.176471 -0.823529 -0.058824 0.411764 

-0.682353J t31 
x

32 x33 x3~ 0.098039 1.098039 0.145098 

which is the generalized inverse of the rectangular matrix A in (6.4.5). 
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6.5 SOME APPLICATION TO THE GENERALIZED INVERSE OF A RECTANGULAR 

MATRIX USING SSSS 

Consider the system of m linear algebraic equations in n unknowns, 

allx l + a 12x 2 + 

a
21

x
l 

+ a
22

x
2 

+ 

which we write in the form, 

Ax ; b • 

+ a x 
ln n 

+ a x 
2n n 

; b 
m 

Here A is an mXn matrix, x is an n-vector, and b is an m-vector. 

(6.5.1) 

We shall solve this system of equations again in terms of the generalised 

inverse of A. 

THEOREM: 

Let A be any generalized inverse of the coefficient matrix A in 

(6.5.1). Then (6.5.1) is consistent if and only if, 

AA-lb ; b • 

In which case the most general solution is, 

-x ; Ab + (I-A A)z , 

where Z is an arbitrary n-vector, and I the identity, [Gregory, 

Krishnamurthy, 19841. 

(6.5.2) 

REMARK: If the system of equations is homogeneous, that means if b;O, 

the x becomes, 

x ; (I-A A)z (6.5.3) 

- -1 
If A is a square matrix and nonsingular, A;A and, in this special 

case x;O is the only solution. 



6.5.1 The solution of a Homogeneous System of Equations 

First we will solve the equation in (6.5.3) in the case of the 

system of equation being homogeneous, and n=3 and m=4. To write a 

RISAL program for calculating the value of x, we implemented the 

following steps: 
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Step 1: Calculate the generalized inverse of the matrix A by using the 

same steps used in the previous Section 6.4. 

Step 2: Multiply the generalized inverse 'A by the matrix A by using 

the same concepts used previously in paragraph 6.2.4. The 

result will be a matrix. Move each element of this matrix to 

register 8 of the processing elements of the ISA grid. 

Step 3: Read the identity matrix I from the north into the ISA grid, 

and move the elements of the identity into register 7 of the 

processing elements of the ISA grid, as shown in Figure 6.12. 

Step 4: Subtract the value in register 8 from the value in register 7, 

and move the result into register 9. 

Step 5: As shown in Figure 6.13, read zl from the north throughout the 

first column of the ISA grid, multiply the value of zl by the 

value in register 9, and move the result into the communication 

register. Then read them by the second column of the ISA grid, 

so that they will be held in register 6 (west data input 

register) . 

Read z2 from the north throughout the second column of the 

ISA grid, and multiply the value of z2 by the value in 

register 9 of this column, and add the result of multiplication 

to the value in register 6. Move the result to the 

communication register to read them by the third column of 

the ISA grid (register 6) . 



4x4 ISA GRID 

FIGURE 6.12: The Identity Elements and the Matrix A Elements Stored 
in Register 7 and 8 of the ISA Grid. 

z3 
z2 .j. 

Z *R9 - ~R6 1 
z2*R9+R6 - f)-R6 

z3*R9+R6 

~ Z \ ~2 I~ z3 ,1 ---

Z *R9 ~ R6 
-l- ~ 

1 
z2*R9+R6 - ~R6 

z3*R9+R6 

!~ zl ~ ~2 I~ ~3 

ISA GRID 

.J, .J, ~ 
z *R9 f'R6 -

1 
z2*R9+R6 - ~R6 

z3*R9+R6 

~ I~ ~ 

FIGURE 6.13: Determination of the Values of x's (Step 4) 

250 



251 

Read z3 again from the north throughout the third column, 

and multiply the value of z3 by the values held in register 

9. Add the result to the values held in register 6, and move 

the result into the communication register. 

Step 6: Read the values in the communication register of the processing 

elements P
13

,P
23 

and P
33 

from the south to the north of the ISA 

grid. The values of x
l

,x
2 

and x3 which is the solution of a 

homogeneous system of equations. 

EXAMPLE: 

Given the linear system of equation in (6.5.1) where, 

1 4 

2 o 
A = 

3 2 

1 

By implementing Step 1 of the RISAL program, the generalized inverse 

of the matrix A is, 

-0.098039 -0.098039 

A = 0.176471 -0.823529 

0.098039 1.098039 

0.054902 

-0.058824 

0.145098 

0.028235~ 

0.411764 J 
-0.682353 

By implementing Step 2 in the RISAL program (A A), we obtain 

1.000024 0.000036 

0.000027 1.000008 

0.000011 0.000002 

0.0000361 

I 
0.000017

1 

1.OOOOO~ 

By implementing Step 3 and Step 4 of the RISAL program (I-A A), we obtain, 
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-0.000024 -0.000036 -o.00003~ 

-0.000027 -0.000008 -0.000017 1 

-0.000011 -0.000002 -O.ooooo~ 

NOw, if b;O, and vector z , by substituting in equation (6.5.3) 

and implementing Step 5 and Step 6 of the RISAL program, we obtain 

6.5.2 The Most General Solution of a System of Equations 

Now we turn to the most general solution of a system of equations 

mentioned earlier in (6.5.2). To write a RISAL program to determine 

the value of x in (6.5.2) we implemented the following steps: 

Step 1: Implement Step I-Step 5 in the previous paragraph 6.5.1, and 

that means we have calculated the generalized inverse of the 

matrix A, and the value of x's in case of b~O (homogeneous 

system of equations), at the end of Step 5 mentioned above, 

the value of x's are stored in the communication register of 

the processing elements, P13,P23' and P33· 

Move the value of x's to register 10 of .P
13

,P23 and P
33

• 
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step 2: Read the generalized inverse of A into the ISA grid, and mOVe 

its elements to register 7 of the processing elements. 

Step 3: As shown in Figure 6.14, and by implementing the same concept 

in Step 5, in 6.5.1 by reading the values of the vector b 

from the north, instead of the vector z. At the end of the 

multiplication process of (A b), add the result of this 

multiplication to register 10 in P12,P23,P33 and move the result 

into the communication registers of P
14

,P
24 

and P
34

. 

Step 4: Read the value of x's from the communication register of P
14

, 

7 

P
24 

and P
34 

from .the south to the north of the ISA grid. 

These values are the most general solution of a system of 

equations in terms of the generalized inverse. 
b

4 

b *R7 
1 

7 

R6 
b

2
*R7+R6 

',).0 , , 

b '10 
3 ' , 

b *R7+R6 
3 +R10 

-I-

*R7+R6 

R6 
4*R7+R6 

7 

3 

FIGURE 6.14: Determination of the value of x's (Step 3) 
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. EXAMPLE: 

Given the system of equations in (6.5.1), where, 

T 0 11 
0 1 1 

1 1 

:J ~ 0 

By implementing Step 1 of the RISAL program, and by applying (6.4.6) , 

we obtain, 

1 0 1 0 fl 0 1 1 0 1 0 

0 1 1 0 10 1 1 * x 0 1 1 0 

1 1 1 1 ~ 1 1 1 1 1 1 

0 1 

From (6.4.7) 

i2 1 21 
~ 

0 1 01 
1 2 

;j 
* x = 1 1 0 

~ 2 ~ 1 1 IJ 
By factorizing, we obtain, 

1 l [2 1 2 l ~ 
0 1 0 

I 0.5 1 

IJ 
1.5 1 * x = 1 1 0 

L I ~ 1 0.666667 1.33333~ 1 1 1 

By applying equation (6.4.9), we obtain, 

~.5 
Yll Y12 Y13 Y14 1 0 1 

~ 1 Y21 Y22 Y23 Y24 = 0 .1 1 

~ j 0.666667 1 Y31 Y32 Y33 Y34 
1 1 1 
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Y11 Y12 Y13 :l 
1 0 1 Cl 

01 Y2l Y22 Y23 
-0.5 1 0.5 

J Y31 Y32 Y33 Y34 
0.333333 0.333333 -0.333333 

By applying equation (6.4.8), we obtain, 

f 1 2 l Ix 11 x
l2 xl3 xl~1 1 0 1 

1.5 x
2l 

x
22 

x
23 

x
24 -0.5 1 0.5 

l :m"~ x
3l 

x
32 x33 x

34 
0.333333 0.333333 -0.333333 

-0.5 0.5 -0.5-1 

0.5 0.5 -0.5 I 
0.25 -0.25 0.7~ 

which is the generalized inverse of the matrix A. To verify this 

result by multiplying A A, we obtain, 

0.5 -0.5 0.5 o 1 

-0.5 0.5 0.5 1 1 = 

0.25 0.25 -0.25 1 1 

o J 
To calculate the value of x in case of b=O, and z = 

1 o 

o 1 

o o 
j - o 

o 

o 

1 o 

o 1 

o o 

Multiplying by the vector z, we obtain, 

o o 1 

o o * 1 = 

o o 1 

o 01 
I 

1 0 

o 1 

J 

obtain, 

~ 
J 
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The value of x, where b ~ 

.

2:2

j
-1 

, 11] 
and z ~ l~ , is obtained by 

implementing Step 2, Step 3 and Step 4 of the RISAL program. Finally 

we obtain, 

C· 5 -0.5 0.5 -o·~l r:1 
~ol 

-0.5 0.5 0.5 -0.5 ~ d LO.25 0.7J 0.25 -0.25 21 

l2J 

101 fol 10-/ 

/0 

l:J 
+ ~ 

l:J loJ 

which is the most general solution of a system of equations. 



6.6 DELETION FROM A HEAP SORT USING SSSS 

The heap sort algorithm uses a data structure called a heap, 

which is a binary tree with some special properties. The definition 

of a heap includes a description of the structure and a condition on 

the data in the nodes. Informally, a heap structure is a complete 

binary tree with some of the rightmost leaves removed. (See Figure 

6.15 for illustrations) . 

DEFINITION: 

Let S be a set of keys with a linear ordering and T be a binary 

tree with depth d whose nodes contain the elements of S. T is a heap 

if and only if it satisfies the following conditions: 

1. All internal nodes (with one possible exception) have degree 2, 

and at level d-l the leaves are all to the right of the internal 

nodes. The rightmost internal node at level d-l may have degree 

1 (with no right child) . 

2. The key at any node is greater than or equal to the keys at each 

of its children (if it has any). 
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We will use the term heap structure to describe a binary tree that 

satisfies condition (1). Observe that a complete binary tree is a 

heap structure. When new nodes are added to a heap they must be added 

left to right at the bottom level, and if a node is removed, it must 

be the rightmost·node at the bottom level if the resulting structure 

is still to be a heap. Note that the root must contain the largest 

key in the heap. 

Deletion from the heap means removing the key at the root, the 

largest key in the heap, and rearranging the nodes so that the heap 
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o 
AB-tree 

o 
A Complete Binary Tree 

50 

Heap 1 Heap 2 

FIGURE 6.15: B-Tree, Complete Binary Tree, and Heaps 



properties are still satisfied. Structurally, the node to be removed 

is the rightmost leaf at the bottom level. The key, say, K, from 
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that leaf must be placed elsewhere. The only vacant node is the root, 

so we begin there and let the key K filter down to its correct position. 

At its final position, K must be greater than or equal to each of its 

children, so at each step K is compared to the larger of the children 

of the currently vacant node. If K is larger (or equal) it can be 

inserted, otherwise the larger child is moved up to the vacant node 

and the process is repeated, [Baase, 19781. 

The deletion algorithm assumes that there are at least two nodes 

in the heap. The algorithm is illustrated in Figure 6.16, by taking 

the heap 2 in Figure 6.15 as an example. 

To implement the algorithm above using our simulation system, 

we need first of all to find a way to embed the heap structure onto 

the ISA grid, and rearranging the nodes so that the heap properties 

still satisfy the conditions mentioned above. 

The binary trees are generally implemented as linked structures; 

so that the heap can be stored efficiently in an array in such a way 

that accessing a child of a node is quite easy, e.g. the heap 1 in 

Figure 6.15 can rearrange its nodes into an H-shape, and then we can 

embed it into the ISA grid as shown in Figure 6.17. 

To write a RISAL program to solve this problem, we implemented 

the following steps: 

Step 1: Read the H-shape structure from the north into the ISA grid. 

The root will be held in the processing element P
22

, and its 

children in P21 and P23 , and their leaves in P13,P33,Pll and 

P
31 

respectively. 



The Heap 

/ 

The larger child of P, 30, is / 
greater than K so it moves up 
and P moves down. 

~ 
24 

FIGURE 6.16: Deletions from a Heap. 
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vacant Node, 
P 

The key at the root is removed; the 
rightmost leaf at the bottom level is 
removed. K=6 must~ be reinserted. 

Q / 
24 

The larger child of P, 18, is 
greater than K so it moves up 
and P moves down. 

18 

Finally, since P is a leaf, 
K=6 is inserted. 
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) 

H-shape 

Heap 
(Binary Tree) 

FIGURE 6.17: The H-Shape Embedded into the ISA Grid. 

4*4 ISA GRID 

Step 2: Read the value in P22 to the north of the ISA grid, which 

represents the key in the root. 

Step 3: Move the value in P
23 

into P
22

. 

Step 4: Compare the value in P
21 

with the value in P
22

, and store 

the largest in P
22

. 

Step 5: Move the value in P
33 

into P
23

. 

Step 6: Compare the value in P
22 

with the value in P
23

, and store 

the largest in P
22

, and then implement steps 2,3 and 4. 

Step 7: Move the value in P
13 

into P
23

, and implement Step 6 and Step 

2. 



Step 8: Move the value in P
21 

into P
22

, and implement Step 6. 

Step 9: Move the value in P
31 

into P 21' and implement Steps 4,2,9, 

and 6 respectively. 

Step 10: Move the value in P
ll 

into P
21

, and implements Steps 4,2,3,4, 

2,9 I and 2 respectively. 

By using the RISAL program above, the deletion process from heap 1 

shown in Figure 6.17, is illustrated below: 

P 

/ 
• 

1 
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1 
p 

p 

8 
1 

) 

( 

p 

p 

1 
p 
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6.7 HERMITE POLYNOMIAL INTERPOLATION AND EVALUATION USING SSSS 

Interpolation is the process of "reading between the lines" of 

a table or the fitting of a smooth curve to a limited set of data. 

We take it up first for a number of reasons, the most obvious of which 

is that interpolation is frequently used for estimating quantities 

from tabulated data. A more important reason is that many numerical 

differentiation and integration procedures are derived by using 

interpolation to find a smooth approximation and then differentiating 

or integrating the result. 

There are two kinds of interpolation, depending on the type of 

data provided and the kind of result wanted. In the standard type of 

interpolation we are given a set of data pOints and require a curve 

that passes smoothly through them. In least squares interpolation 

generally the data has some uncertainty associated with them and we 

want to find a smooth curve that passes sufficiently near the data 

points. In standard interpolation the equation of the approximation 

curve must have as many parameters as there are data points; in least 

squares fitting the number of parameters typically is much smaller than 

the number of data points. 

The basic problem of interpolation may be stated as follows. 

Given a set of data (x, ,y,l, i=l,2, ... ,n, find a smooth curve f(xl that 
l. l. 

passes through the data. We require the following criteria of the 

interpolating curve.· 

1. From the problem statement, we must have, 

f(x,l = y, , i=l,2, ••• ,n , 
l. l. 

2. The function should be easy to evaluate. 

3. It should also be easy to integrate and differentiate. 
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4. It should be linear in the adjustable parameters (to simplify 

the problem of finding them). 

The choice of the interpolating function depends on what one means 

by smoothness and on the function to be approximated. Many functions 

have been used, the most common of which are polynomials of various 

kinds because they satisfy criteria (2) and (3) above better than any 

other type of function. Even among polynomial interpolations there 

are a number of classes, i.e. Lagrange interpolation, Taylor inter-

polation, Hermite interpolation and others. 

OUr aim in this section is to solve Hermite interpolation problem, 

but first we will begin with the simplest class, the Lagrange form 

which leads us to calculate the Hermite interpolation form. 

In Lagrange we consider the problem of determining a polynomial 

of degree 1 which passes through the distinct pOints (xo'Yo) and (xl'Yl) 

This problem is the same as approximating a function f, for which 

f(XO)=YO and f(xl)=Yl by means of a first-degree polynomial inter-

polating, or agreeing with, the values of f at the given points. See 

Figure 6.18. 

If 
(6.7.1) 

is the polynomial, then a
o 

and a
l 

must satisfy, 

Y = p(x ) = a + a x o 0 0 1 0 

Solving these equations for a
O 

and a
l

, ~e obtain: 

= 



Y 

f 

p 

L------------r------------~------------------~X 

and 

substituting 

p(x} 

the values of a
O 

and a
l 

into equation (6.7.1) 

= 

= 

Yo - Y Yo - Y 
Y - (x l}x + ( l}x 

1 - x 1 Xo - xl 0 1 

Yl (xo - xl) - xl (YO - Yl ) + x(Yo - Y
l

} 

Xo - xl 

we obtain, 
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Yl (xO - xl) - x (y -
1 0 Yl) + x (y - y ) o 1 

; 

Xo - x 
1 

Y
l 

(x
O - xl + xl - x) 

+ 
Y (-x o 1 

+ x) 

x -
0 xl Xo - x 

1 

(x - xl) (x - xO) 
= Yo 

+ Yl 
. 

(x
O 

- xl) (x - x ) 
1 0 

To generalize the concept of linear interpolation, consider finding a 

polynomial of degree at most n which passes through (n+l) given points. 

This can be viewed as an approximation technique in that, given a 

function f, we find a polynomial P which agrees with the values of 

the function at certain specified points, and the polynomial P is then 

-used to approximate f at other points. 

THEOREM: 

If x ,xl""'x are (n+l) distinct points and f is a function o n 

whose degree is at most n, with the property that, 

this polynomial is given by, 

where, 

p(x) = f(x)L (x) o n,O 
+ ••. +f(x)L (x) 

n n,n 

L k(x) ; n, 

(x-x) (x-xl) .•• (x-x 1) (x-x ) ... (x-x) o k- k+l n 

n 

TT 
i;O 
ilk 

(x-x. ) 
. ~ 

I for each k=O,l, ... ,n 

(6.7.2) 

(6.7.3) 

(6.7.4) 
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We will write Ln,k(X) simply as Lk(X) when there can be no 

confusion as to its degree. Proof of this theorem is given in [Burden, 

Faires, Reynolds, 1978). 

There are occasions when we want smoothness beyond that provided 

by the Lagrange interpolation. such smoothness can be obtained in a 

number of ways. One of the simplest is to provide not only the value 

of the function at each point, but also the value of its derivative. 

We then have Hermite polynomial interpolation. 

THEOREM: 

If fEe' [a ,b) and x , ... ,x E [a,b) are distinct, the unique o n 

polynomial of least degree agreeing with f and f' at x , ... ,x is o n 

given by, 

H2n+l (x) 

where, 

H . (x) 
n, J 

and, 
" H . (x) 
n,J 

n 

~ 
j=O 

f(x .)H . (x) + 
J n, J 

n 
~f'(X.)H .(x) 

j=O J n,J 

2 
= [1-2 (x-x.) L' . (x .) ) L . (x) 

.J n,J J n,J 

2 
= (x-x .)L . (x) 

J n,J 

(6.7.5) 

(6.7.6) 

(6.7.7) 

In this context, L . denotes the jth Lagrange coefficient polynomial 
n, J 

of degree n defined by (6.7.3). Moreover, 

if fEe (2n+2) [a ,b) then, 

f(x) - H
2n

+
l 

(x) = 
2 2 

(x-x) • •• (x-x ) o n 
(2n+2) ! 

for some point ~, with a<~>b. The proof of this theorem is given in 

[Burden, Faires, Reynolds, 1978). 



269 

TO solve the Hermite polynomial interpolation by using our 

simulation system, we consider the polynomial of least degree which 

agrees with the data listed in the table below for the Bessel function 

of the first kind of order zero, to find an approximation of f(x) . 

k ~ f(x
k

) f' (x
k

) 

0 Xo f(x ) 
0 

f' (x ) 
0 

1 xl f(x
l

) f' (xl) 

2 x
2 

f (x
2

) f' (x
2

) 

By substituting in equation (6.7.3) we obtain, 

L2 ,O(X) 
(x-xl) (x-x

2
) 

= 
(x

o 
-xl) (x

O
-x

2
) 

L2,O(X) 
(x-x 2) + (x-xl) 

= 
(xo xl) (xo -x2) 

L2 ,1 (x) 
(x-x

o
) (x-x

2
) 

= 
(xl-x

O
) (x

l
-x

2
) 

L2,1(X) 
(x-x

o
) + (x-x

2
) 

(xl-x
O

) (x
l
-x

2
) 

L2 ,2(x) 
(x-x

o
) (x-xl) 

= (x
2
-x

O
) (x

2
-x

l
) 

(x-x ) + (x-x ) 
L2,2(x) 

o 1 
= 

(x2 Xo) (X2 Xl) 

By substituting in equation (6.7.6) we obtain, 

H2 ,O(X) 
2 

= [1-2 (x-x) L2 (x») L2 (x) o ,0 ,0 

H2 ,1 (x) 
2 

= [1-2(x-Xl )L2 ,1 (X»)L2 ,1 (x) 

H2 ,2(X) 
2 

= [1-2(x-X2 )L2 ,2(x»)L2 ,2(X) 



Further by substituting in equation (6.7.7), we obtain, 

-, 2 
H2 ,0 (x) (x-x ) L2 (x) ° ,0 
A 2 
H2 ,1(X) = (X-X

l
)L

2
,1(X) 

" 2 
H2 ,2(X) = (x-x

2
) L

2
, 2 (x) 

Finally by substituting in equation (6.7.5), we obtain, 

The value of HS(x) is accurate to the places listed above. 

To write a RISAL program to calculate the value of HS (x), we 
,0 

implemented the following steps: 

Step 1: First we determine the values of L
2

,0(X), L
2

,1 (x) and L
2

,2(x) 

in the processing element P
ll

, and LZ,O(X), LZ,l (x), and 

L
Z

,2(x) in the processing element P
12

, as follows: 
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Read the values of x, x
o

' xl' and x
2 

from the north into 

the P
ll 

and P
12 

of the ISA grid, and store them in register 

7,8,9, and 10 respectively. We obtain, 

9 and 10 from the value in register 8, and store the results 

in registers 11 and 12. 

and 12, and store the result in register 13. 

8 and 10 from the value in register 9, and store the result 

in registers 14 and 15. 



and 15, and store the result in register 16. 

8 and 9 from the value in register 10, and store the 

results in registers 17 and 18. 

(X
2

-Xo) (x
2
-x

l
) by multiplying the values in registers 17 

and 18 and store the result in register 19. 

step 2: In P
ll

, we obtain: 

(X-Xl) and (x-x
2

) by subtracting the values in registers 9 

and 10 from the value in register 7 and store the results 

in registers 11 and 12. 
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(X-Xl) (x-x
2

) by multiplying the values in registers 11 and 

12, and store the result in 14. 

(X-Xc) by subtracting the value in register 8 from the value 

in register 7, and store the result in register 15. 

(X-Xc) (x-x
2

) by multiplying the values in registers 15 and 

12, and store the result in register 17. 

(X-Xc) (x-xl) by multiplying the values in register 15 and 

11, and store the result in register 18. 

L
2

,O{X) - by dividing the value in register 14 by the value 

in register 13, and store the result in 13. 

L
2

,1 (x) by dividing the value in register 17 by the value 

in register 16,·and store the result in 14. 

L
2

,2{X) by dividing the value in register 18 by the value 

in register 19, and store the result in 16. 

L22 (x) by multiplying the value in register 13 by itself, 
,0 

and store the result in 13. 



L~,l (x) by multiplying the value in register 14 by itself, 

and store the result in 14. 

L~'2(X) by multiplying the value in register 16 by itself, 

and store the result in 16. 

Step 3: In P12' we obtain: 

(x
O
-x

2
) and (xO-x

l
) by the subtraction of the values in 

registers 10 and 9 from the value in register 8 and store 

the results in registers 11 and 12. 

11 and 12, and store the result in register 14. 

register 10 and a from the value in register 9, and store 
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the results in registers 15 and 17. 

(x
l
-x

2
)+(x

1
-x

O
) by the addition of the values in registers 

15 and 17, and store the result in register la. 

registers 9 and a from the value in register 10, and store 

the results in registers 11 and 12. 

11 and 12, and store the result in register 17. 

L
2
' (x) by the division of the value in register 14 by the 
,0 

value in register 13. 

L2,1 (x) by the division of the value in register.la by the 

value in register 16. 

L2,2(X) by the division of the value in register 17 by the 

value in register 19. 
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2 2 
At this stage of the RISAL program, the values of L

2
,0(X), L

2
,1 (x), 

2 
and L

2
,2(X) are held in the processing element P

ll
, and the values of 

L;,O(X) , L;,l (x) and L;,2(x) are held in the processing element P12 · 

A 

Step 4: To determine the values of H2 ,0(X), H2 ,1 (x), H2 ,2(X), H2,0(X)' 

A A 

H2 ,1 (x) and H2 ,2(X): 

the values in registers 13, 14 and 16 of P
12 

were moved 

to registers 17, 18 and 19 respectively of P
ll

. 

read 1 and 2 from the north into register 7 and 8 of P
ll

. 

Step 5: In P
ll

, we obtain: 

2(x-x
o

) by the multiplication of the value in register 8 

by the value in register 15, and store the result in 

register 9. 

2(x-x )L
2
' (x) by the multiplication of the value in ° ,0 

register 9 by the value in register 17, and store the result 

in register 9. 

2(x-x
l

) by the multiplication of the value in register 8 

by the value in register 11, and store the result in register 

10. 

2(x-x )L' l(x) by multiplying the value in register 10 by ° 2, 

the value in register 18, and store the result in register 10. 

2(x-x
2

) by the multiplication of the value in register 8 by 

the value in register 12, and store the result in register 

17. 

2(X-X
2
)L;,2(X) by the multiplication of the value in 

register 17 by the value in register 19, and store the 

result in register 17. 
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[1-2(x-x )L
2
' (x)] by the subtraction of the value in o ,0 0 

register 9 from the value in register 7, and store the 

result in register 9. 

[1-2(x-X
l

)L2,1 (xl)] by the subtraction of the value in 

register 10 from the value in register 7, and store the 

result in register 10. 

[1-2(X-X
2

)L2,2(x2)] by the subtraction of the value in 

register 17 from the value in register 7, and store the 

result in register 17. 

2 
[1-2(x-x )L

2
' (x )]L

2 
(x) by the multiplication of the o ,0 0 ,9 

value in register 9 by the value in register 13, and store 

the result in register 7, which is equal to H2 (x). 
,0 

2 
[1-2(x-X

l
)L2,1 (X

l
)]L

2
,1 (x) by the multiplication of the 

value in register 10 by the value in register 14, and store 

the result in register 8, which is equal to H
2

,1(X). 

2 
[1-2(x-X

2
)L2,2(Xl )]L

2
,1 (x) by the multiplication of the 

value in register 17 by the value in register 16, and store 

the result in register 9, which is equal to H
2

,2(x). 

(x-x )L
2
2 

(x) by the multiplication of the value in register o ,0 

15 by the value in register 13, and store the result in 

" register 10, which is equal to H2 (x). 
,0 

(X-Xl)L~,l (x) by the multiplication of the value in register 

11 by the value in register 14, and store the result in 

1\ 
register 11, which is equal to H

2
,1(X). 

(X-X2)L~,2(X) by the multiplication of the value in register 

12 by the value in register 16 and store the result in 

/\ 
register 12, which is the value of H

2
,2(X). 



At this stage of the RISAL program the values of H2 ,0 (xl, H2 ,1 (xl, 

~ h A 
H2,2(xl, H2,0(Xl, H2 ,1 (xl and H2 ,2(xl are held in the processing 

element P
ll 

in registers 7,8,9,10,11,12 and 13 respectively. 

By reading the values of f(xo" f(xl', f(x2" f'(xo" f' (xl' and 

f' (x
2

) from the north of the ISA grid and store them in Pu in 

registers 13,14,15,16,17 and 18 respectively, we obtain; 

275 

f(x )H
2 

(xl by the multiplication of the value in register ° ,0 

13 by the value in register 7, and store the result in 

register 7. 

f(x l 'H
2

,1 (xl by the multiplication of the value in register 

14 by the value in register 8, and store the result in 

register 8. 

f(X2'H2,2(X' by the multiplication of the value in register 

15 by the value in register 9, and store the result in 

register 9. 

" f' (x )H
2 

(xl by the multiplication of the value in register ° ,0 

16 by the value in register 10, and store the result in 

register 10. 

h 

f' (Xl'H2,1 (xl by the multiplication of the value in register 

17 by the value in register 11, and store the result in 

register 11. 

" f' (x2'H2,2(X' by the multiplication of the value in register 

18 by the value in register 12, and store the result in 

register 12. 

Finally, to obtain the value of H
5

(xl ,'we added the values in registers 

7,8,9,10,11 and 12. 



EXAMPLE: 

Consider the problem described above to find an approximation of 

f(1.5). The data is: 

k 

o 1.3 0.620086 -0.522023 

1 1.6 0.455402 -0.569895 

2 1.9 0.281818 -0.581157 

By implementing Step 1, Step 2, and Step 3 of the RISAL program 

mentioned above, we obtain: 

L2 ,1 (x) 

Li,l (x) 

L2 ,2(X) 

Li,2(X) 

By implementing 

H = 
2,0 

H2 ,1 = 

H2 ,2 = 

" H = 
2,0 

A 

H2 ,1 = 

" 
H2 ,2 = 

= 
2 
9 

= -5 

= 

= 

= 

8 
9 

0 

5 

Step 

4 
27 

64 
81 

5 
81 

4 
405 

32 

1 
9 

4, 

- --
405 

2 
405 

we obtain: 
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By implementing Step 5, we obtain: 

H
5

(1.5) ; 0.620086(2~) + 0.455402(~~) + 0.281818(8~) -

4 32 2 
0.522023(405) - 0.569895(- 405) - 0.581157(- 405) 

; 0.511827. 

The result above is accurate to the places listed above. 

Parallel Polynomial Evaluation: 

To locate approximate roots of a polynomial P, it is necessary 

to evaluate P and its derivative at specified values. If the nth-

2 n 
degree polynomial p(x) ; PO+Pl

x+P 2
x + ... +Pnx , therefore, to 

evaluate p(x), it requires (2n-l) multiplications and n additions. 

To write a RISAL program to solve the problem mentioned above, 

we consider the polynomial, 

By rearranging we obtain, 

Figure 6.19 illustrates the polynomial above in terms of a balanced 

tree. 

2 2 4 6 
First of all, we have to evaluate the powers of x (l,x ,x ,x ) 

and place it in each processor, and evaluate P.+P. IX in each processor. 
~ ~+ 

To achieve this concept we implemented the following steps: 

step 1: Read the value of x from the north into the first row of the 

ISA grid, and store it in register 7. 

In P
12

,P
13 

and P
14

, multiply the value in the result 

register by the value in register 7. 
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+ 

+ 
1 

x 
x 

x x 

FIGURE 6.19: Balanced Tree Representation of Polynomial Evaluation 
Equation 

In P
12

, move the value in the result register into register 8. 

In P13 and P
14 

multiply the value in the result register by 

the value in register 7. 

In P
13

, move the value in the result register into register 8. 

In P
14

, multiply the value in the result register by the value 

in register 7, and move the result into register 8. 
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Step 2: Read the value of P
l

,P
3

,P
s 

and P
7 

from the north (register 3) 

multiply the value in register 3 by the value in register 

7, and store the result in register 9. 

read the value of P
O

,P
2

,P
4 

and P
6 

from the north (register 3). 

Add the value in register 3 to the value in r~ister 9. 

In P
12

,P13 and P
14 

move the value in the result register 

into register 10, and multiply the value in register 10 by 

the value in register 8. Finally, store the result in 

register 10. 

Step 3: Add the value in result register of P
ll

, to the r~ister 10 

of P
12

,P
13 

and P
14 

to obtain the final result. 

EXAMPLE: 

Given the polynomial, 

where Po = 3, P
l 

= 4, P
2 

= 5, P
3 

= 6, P
4 

= 7, Ps = 8, PG = 9, P
7 

= 10, 

and x = 2. 

By implementing Step 1, Step 2, and Step 3 of the RISAL program, 

we obtain that, 

p(x) = 2303. 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 
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In this thesis an alternative concept to a VLSI-architecture, 

the Soft-Systolic Simulation System (SSSS) is introduced and developed 

as a working model of a virtual machine with the power to simulate 

hard systolic arrays and more general forms of con currency such as the 

SIMD and MIMD models of computation. An overall system structure was 

defined and the virtual machine discussed in detail. A primitive 

assembler/compiler for a special language the Replicating Instruction 

Systolic Array Language (RISAL) was devised for experimentation with 

the machine. 

In the first three introductory chapters, a brief and disciplined 

state-of-the-art survey was compiled with up-to-date information on 

the present parallel computing environment. 

More analytically, in Chapter 1, we have discussed the main 

motivations that led to the "parallel way of thinking" and presented 

several different forms of exploiting this novel idea. Although 

several attempts (at least three of them were presented in this thesis) 

have been made to classify these various architectural designs, none 

of them seem to succeed in providing a clear distinction between the 

classes since sometimes the intersection of two classes is not empty. 

Of the architectures designed for highly parallel processing we 

presented the pipeline, data-flow computer, and array processors. In 

the pipeline computer the sequential, vector processing taxonomy, 

some well known and commercially available computers were discussed. 

The data-flow computers are grouped into two classes (static and 

dynamic), i.e. for the static approach is the MIT data-flow, and for 

the dynamic approach, the U-interpreter machine and Manchester 'data-
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flow machine are presented. The general SIMD architecture is also 

presented as an example of the array processor. Also, the inter­

connection networks are discussed as a most currently active research 

area in computer architecture. 

In Chapter 2, we presented the VLSI technology as a substantial 

contender to the achievement of very high-performance, cost effective 

computing systems for the future decade. We also presented its 

fundamental concepts such as regularity, planarity, use of pipelining 

and concurrency, in designing special-purpose and general-purpose 

computing structures. For the special-purpose class of VLSI-oriented 

systems we established two main contenders which are the systolic 

arrays as suggested by H.T. Kung and the wavefront arrays resulting 

from the work of S.Y. Kung. Although these systems are cost-effective 

they are however specially designed for one particular class of 

problems. In order to increase flexibility, the general-purpose 

computing structures such as the Warp, built by H.T. Kung and the chip 

of L. Snyder can be used to solve a predefined set of algorithms. 

Also, a possibility is the Inmos Transputer which is a single chip 

processor. The Transputer and Occam language were designed in 

conjunction and all transputers include special instructions and 

hardware which provides optimal implementations of the Occam model of 

concurrency and communication. Following these substantial benefits, 

a research program was carried out in the Department of Computer 

Studies, at Loughborough University to investigate the simulation of 

systolic arrays, by using the fact that OCcam programs can be divorced 

from transputer configurations and using the language as a simulation 



tool. The general structure of Occam programs which represent the 

simulation of systolic arrays is introduced, and the techniques 

described have been used successfully to implement designs in Occam. 
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The adoption of Occam offers more direct hardware support for 

special purpose designs as well as common architectures. We concluded 

this chapter by introducing the MIMD architecture design, and described 

the Sequent Balance system installed in the Computer Studies Department, 

Loughborough University in 1986. This system was used to develop and 

implement the simulation system presented in this thesis. 

In Chapter 3, the Instruction Systolic Array (ISA) was introduced 

as a highly parallel computer architecture that combines the advantages 

of systolic arrays with the idea of a universal machine, which is 

capable of solving a large variety of problems. 

The analysis of the relationship between the MIMD type mesh­

connected parallel computer or Processor Array (PA) , and the Instruction 

Systolic Array (HI\),(1l!t\)shows that programs on a PA can be simulated by 

equivalent programs on either of the two other models such that the 

delay is at most proportional to the square root of the number of 

processors. Asymptotically, the same delay occurs in the simulation 

of programs on an ISA by equivalent programs on an IBA whereas in the 

opposite direction we have only constant factor delays. Therefore, 

with respect to this worst case analysis the ISA is superior to the 

IBA. Since no instructions have to be broadcast, there is only local 

information transfer in the ISA. This property is especially 

advantageous with respect to its realization using VLSI technology. 

The only main advantage of the IBA over .the other two models is its 

conceptual simplicity: it is much easier to design and understand 



283 

programs on an IBA than on an ISA. 

Although the PA is the most powerful of the three types of 

parallel architectures, its main disadvantage is that each of its 

processors needs its own program store and has to be individually 

programmable. Because of this increased complexity of the processors 

the area of a PA is much larger than the area of an IBA or ISA which 

makes it less suitable for VLSI. The comparison with MIMD- and SIMD­

machines shows that the instruction systolic arrays are at least as 

powerful as array type SIMD-machines. Thus, the large variety of 

programs on SIMD-machines is easily simulated on ISA. While in many 

applications the high degree of independence of the individual 

processors of MIMD-machines is not exploited, the SIMD concept seems 

to be too restrictive. 

In the remainder of this chapter there are many algorithms solved 

by using the ISA which shows that the ISA is a flexible and powerful 

parallel architecture well suited for VLSI. 

In Chapters 4 and 5, using the flexible architecture (ISA) as a 

virtual machine programmed in Occam, we developed and implemented a 

soft-systolic simulation system (SSSS) where the emphasis was on 

executing programs systolically rather than systolic movement of data 

An overall system structure was defined. We demonstrate the feasibility 

of the system by concentrating on the System and Machine Preparation, 

Virtual Machine, and Replicating Instruction Systolic Array Language 

(RISAL), and its RI SAL compiler. 

More analytically, in Chapter 4, the system and machine 

preparation used to develop the system was discussed. We reported 



that the Balance 8000 Sequent computer system running under the Oynix 

operating system at Loughborough provides an excellent environment 

for software development parallel program using support tools for 

i.e., creation and manipulation and parallel program development. 

The main features of Loughborough Occam were introduced and used to 

develop the system. 

The virtual machine introduced has three basic sections: 

a) An ISA network of data and control paths. 

b) A set of virtual spoolers for driving the ISA computation and 

opening up the communication bandwidth of the array. 

c) A collection of processing elements (PE) descriptions for 

creating specific ISA grids. 

The Instruction Systolic Array was introduced as an orthogonal 

grid of processing elements. Each processing element executes a 

number of simple operations, and includes memory for intermediate 

results and registers for communication with other processing cells. 

Each PE is activated by a combination of an instruction and selector. 

We introduced the virtual spoolers which played the role of 

buffers for the ISA array interface with higher levels of the system, 

allowing the bandwidth of the input to meet that of the ISA. The 
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grid architecture was a simple specification of network connections 

between processors, the PE libraries simply containing cell descriptions 

which responded to ISA instructions with different characteristics. 

Using Loughborough Occam, we described the implementation of the 

virtual machine in detail. We concluded this chapter by describing 

the processing element (PE) considered in our simulation system which 
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was a very general element which allows the choice of a wide range 

of arithmetic and logical operators, and allows the simulation of a 

wide class of algorithms without the need to develop more special 

purpose PE'S immediately. The structure of the processing element is 

described in detail, and the implementation process using Loughborough 

occam is also presented in detail. 

Chapter 5 constitutes a complement to the implementation of the 

simulation system introduced in Chapter 4. The Replicating Instruction 

Systolic Array Language (RISAL) is presented here as a suitable medium 

in which to prepare and debug the ISA control programs, and a method 

for generating the necessary form of instructions for the ISA. Also, 

the RISAL compiler was introduced to allow a simple but adequate 

design environment. "RISAL accepts instructions in an assembler-like 

form, but is fairly permissive about format within the constraints 

of the syntax. The syntax of RISAL is described in detail. RISAL 

contains a proportion of semantic rules not indicated in the syntax 

and allows programs (instruction, selector and data files) to be 

produced using the same syntax and compiler. The instruction, selector, 

and data files are described in detail, and can be prefixed with a 

replicating command which will generate the following instruction by 

a specified number, and also prefixed with another command to 

replicate the following lines by a specified number. We used these 

replicating commands extensively to achieve a reduction of RISAL 

program coding. 

The Pascal language was used to develop and test the RISAL 

compiler whose task was to read the replicating instruction systolic 



array language elements and transform them into a form suitable for 

the virtual machine to run. The specification and implementation 

process of the RISAL compiler is described in detail. By then, a 

number of components are identified and connected serially to form 
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the Soft-Systolic Simulation System (SSSS). This chapter was concluded 

by testing the simulation system to examine the performance of the 

solution architecture. 

In Chapter 6, the Soft-Systolic Simulation System (SSSS) was used 

to solve a wide range of algorithms. We have shown the simplicity of 

this implementation which emphasises the practical significance of 

the ISA as a flexible array processor architecture. These implementations 

required a small set of instructions and smaller capacity local memory 

for the processor, thereby facilitating massive parallelism in a 

smaller area. While preserving the advantages of the systolic array, 

namely local communication, regularity and identical simple cell, the 

ISA concept used in our simulation system overcomes the main disadvantages 

of the systolic arrays, namely their lack of flexibility. Another 

important aspect of the ISA is their fault tolerance. If defective 

processors can be bypassed, a large part of the remaining array may 

still be used by adjusting the programs to an array of smaller size. 

Naturally the power of our simulation system depends on the size 

of the instruction set. We feel that the restriction to such a simple 

instruction set is necessary to keep the processors small enough, in 

order to allow integration of many processors on a single chip. 

Although RISAL is very primitive it has been useful in 

illustrating the ISA's capabilities and has suggested some improvements 



287 

to the design of the PE, the interfacing arrangements such as spooling 

for the virtual grid and a number of additional features to produce 

a more robust, version of RISAL itself. 

To allow a wide flexibility in PE development it was observed 

that reading operation definitions from a file (in alphabetical order) 

including operation codes allowed new commands to be enlisted easily 

inside RISAL and permitted the same code for different operations in 

alternative PE's. we remark here that care must be taken in using 

duplicate codes but no real problems were encountered. 

For RISAL, two main constructs suggest themselves as follows: 

i) Replicated line section (REPS): For example, data n,03,OO; 

data n,03,00; REPS (count) [null ,0,0;data n,03,OO] ;null ,0,0: 

which would repeat the section of the line in brackets count times. 

The main difficulty in implementing this statement is keeping 

track of REP nesting and checking that the correct number of 

instructions are generated. 

ii) Replicated line shift (REPLS): of the form, 

REPLS(count,shift) [line]: 

Here a specified line is replicated count times and on each 

replication is shifted right or left. 'Shift' places according 

to the sign of the shift. Instructions falling off the end of a 

line must be neglected and spare places filled with a default 

operation like null. 

Many variations to these basic constructions such as cyclic line 

shifting, shifting of line sections, 'and conditional line shifting are 

also apparent - but amount only to improving the readability of the 

ISA program. 
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In the ISA design which is introduced in this thesis, the ISA instruction 

is represented as an 8 digit integer with each field being 2-digits wide 

to allow for the possible implementation of 100 instructions and an 

internal memory address space of.loo instructions. The port specifications 

also allows 100 combinations of input/output but only the first 16 have 

been used. 

To improve the communication between the registers it is necessary 

to utilise the extra slots to allow for multiple communication registers 

in each cell. These operations can be implemented more effectively by 

using bit logic and slices, but Loughborough OCCAM is restricted in 

this respect. Furthermore, a 2-digit field also allows a wide range of 

library PE's to·be developed. 

The data file introduced here is more complex than the instruct and 

selector. file, as it "requires the specification of inpu_~ for the' four 

possible boundaries of the ISA grid. The current implementation does 

not expose all the inherent parallelism in collecting. the boundary data, 

as we can define four files one for each boundary,'and then use the 

buffers in parallel. However, there is a considerable overhead in 

checking that sufficient boundary data is available. This requires the 

specification of four separate files. In our implementation, one file 

is defined and the boundary input and output is sequentially buffered. 

This makes the checking and the setting up of the data input sequence 

easier and more related to the algorithms being simulated. For large 

grids however this method 'will become impractical and" addin"g a pre-

processor to the ISA to separate out the data into temporary files seems 

the. best alternative. 0. 

In general, the reading of input and writing of output data is 
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performed in the ISA in parallel with the ISA execution. Clearly this 

is the place where any bottlenecks are likely to occur especially. for 

large n (large grid size). It is clear that the matrix size and 

structure of the ISA is useful mainly when the matrix is small, dense 

or banded. However, the ISA operation will become slow for the case of 

large sparse matrices, hence the present system design with a bounded 

number of processors can simulate smaller networks without difficulty. 

There are a number of issues concerning the problem of transforming 

programs that were originally designed for different models 'of parallel 

computers into ISA programs. Among these different models are the MIMD 

and SIMD type mesh-connected processor arrays and some variants of the 

ISA. The main result is that an arbitrary program that runs on an (nxn) 

mesh-connected parallel computer in k steps can be transformed into an 

ISA program having O(nk) steps. In many cases, however, especially when 

the original machine is of SIMD-type, this transformation introduces 

only a delay of 0(1). Often it is possible, e.g. in the case of two­

dimensional systolic algorithms, to re-design an existing algorithm. 

Sometimes it will be necessary to develop a new algorithm in order to 

meet the requirements of the ISA. 

Naturally, the power of the ISA depends on the size and complexity 

of the instruction set ,,', leadSto the use of complex processors which 

will inevitably slow down the whole system. Besides, the integration 

of many different types of processors is not easy, especially if other 

types of problems are to be considered i.e. graph theoretic problems. 

Thus, our Instruction Systolic Array having a different and more powerful 

set of instructions would Y\td to be much more complex again. 



288b 

Finally, the ISA design can be considered analogous to the 

choreography of the ballet which consist in fitting a story to both 

music and scenario. In the ISA, the problem corresponds to the story, 

the algorithm to the ballet, the timing steps to the dance movements 

and the VLSI layout to the scenario. Thus, the instruction stream 

from the top of the ISA and the selector stream from the left of the 

ISA are analogous and should be planned in advance so that each 

instruction when executed meets a required selector bit. In view of 

these considerations, the ISA seems to be a candidate for the 

realization of a highly parallel VLSI computer design. 
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Help for running the occam compiler 

A source 'occam' file COCCAM and INMOS are trademarks of the INMOS group of 

companies) must be of the form '*.occ', to compile it to form an 'a.out' command file 

use the default options. For example to compile 'my_frrstocc' :-

occam my_first.occ 

An executable object 'a.out' is produced. As a shortcut you can omit the '.occ' affix and just 

say 'occam my_first', the compiler will add on the affix for you. If a program is split into 

several files these can be separately compiled and linked together using the occam compiler 

and built in linker. Each previously compiled occam program is specified in the command 

line in the form '*.0' e.g. ;-

occam main.occ numericlib.o screenlib.o 

This will compile the source of 'main' and link it in with the pre compiled library occam 

files 'numericlib.occ' 'screenlib.occ'. The -1 option is used to generate new versions of 

library file objects. Various switch options are provided, mainly for compiler debugging. 

Flags can either be put separately ('-g -I') or together and in any order C-Ig', '-gl'). The 

following switches may be useful :-

-g : 

occam -g fast.occ 

Compile the occam program as before but run the resulting program immediately Ca 

compile,load and go option). If flag options are specified that apply to the run of the program 

these will be passed on as in 'occam -gqc fast'. 

-1 : 

occam -1 new_lib 

Compile the program and produce object but do not link the object files together to 

produce an object program. This option is used for bulding up libraries of routines or to cut 

down the compilation time for compiling one long program. 

-0 : 

occam keep_it -0 saverun 

Compile the program as normal but place the object program in the file 'saverun' rather 

than the default 'a.out'. Useful for saving several occam object files at the same time. 
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-x: 

occam -x oldjashioned.occ 

Compile according to the strict Inmos occam specification, LUT extensions (see file 

'occamversion') currently include :­

Multiple source file cross linking. 

Dynamic features. 

-c: 

Variable PAR replicator counts. 

Floating point arithmetic. 

a.out -c 

Run the object program with cursor addressable facilities enabled, the standard library 

procedures 'goto.x.y' and 'clear.screen' require these facilities. 

-G: 

occam -G errocprone 

Compiles the file as normal but generates a symbol file as well (in this case it would be 

'errocprone.sym'), this is used by the run-time system to inspect the values of variables. 

-q: 

a.out -q 

Run the object program without producing any characters to the screen other than those 

output by the program (unless CfRL c used). This enables occam programs to dump 

output that can be processed by other occam programs. 

-Fand -M: 

occam -F num.occ 

'-F Includes the floating point library routines to provide a simple real number arithmetic 

capability. '-M' includes both the floating point and mathematical library routines to provide 

mathematical library routines. 

-I : 

This provides the features oCthe Inmos proto-occam definition (see 'occarn_ version) such 

as STOP and TIME, it should be used where possible as it is closer to the occarn-2 defmition. 
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Full list of compiler option flags 

The full (often cryptic) range of switch options are as follows. Several switch flags can be 

given, in any order and either separately or together. The mnemonic character giving the 

switch is highlighted by a capitallener. They are divided into sections - user defined flags, 

and system defined options, which are selected by prefixing with '%'. 

User Flags 

-% The next flag(s) are system flags - switch flag mode. 

-c Run the program with Cursor addressable options enabled. The library routines 

'clear. screen' and 'goto.x.y' need this flag set. If used for the compiler must also give 

the -g option. 

-e Produce object/run object for Execution tracing. The resulting object fIle is then run 

with the '-e' option. This utility is described in 'tracerinfo'. 

-f Force full occam semantic check on use of variables. 

A variable (not vectors though) can not be set within a PAR construct if the 

declaration is outside the PAR. This applies equally to procedure calls that change 

global variables. 

-g Run the resulting object fIle if compilation succeeded. 

The program Goes immediately it is ready to. 

-h Print out this 'Help' information. 

-i Force an Interrupt immediately before start of execution - immediately displays the 

debug help menu. This enables break and trace points to be setup prior to anything 

being executed. 

-I Compile but do not link the occam source. Needed when using mUltiple occam 

source Library files. 

-m Check that every channel Match properly on execution, channels can have only one 

input and one output process during execution. 

-0 Produce an Object program with name given by the non-switch argument 

following this switch. Enables you to choose an object file name other than 

'a.out'. 

-q Run the program without outpuning some non occam program produced messages -

e.g. 'OCCAM Start Run'. Must give -g option as well 'q' stands for Quiet. 
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Useful when producing output to be piped or processed by other programs. 

-w Suppress the Warning messages from the compiler - when you have seen these 

warnings once you may find it less irritating to suppress them on subsequent 

compilations - does not affect error reporting or any other compiler action. 

-x Do not permit any local LUT eXtensions in the source text. See 'occinfo' for 

information about these - for example recursion and EXTERNAL procedure 

defmitions. Useful if moving an occam program for use on another occam compiler 

system. 

-F Include the standard Floating point library routines. Provides routines to read or 

write floating point routines to channels. 

-G Produce a symbol table file (with affix '.sym') for use with the 'm' option in the 

dynamic debugger for symbol value examination. 

-I Permit the use of INMOS proto-occarn version 2. These changes include the use of 

'TIME' instead of 'NOW', the 'STOP' primitve and the use of 'Stopping IF' - an 

alternative without any TRUE conditions will STOP. 

-L Use Long winded load, all the 'C' libraries are added at the last momment rather than 

using the pre-linked object, this may be useful if a user occam/C library calls a 'C' 

routine that is not used in the occam run time system. See 'libraryhelp' for more info. 

-M Include the Mathematical library and floating point routines. 

-0 Produce optimized object May improve run time by 20%. 

-R Use Randomized scheduling when ruilning the program - the same scheduler 

choices will not be made on separate executions. This gives non-deterministic 

execution and will be slighdy slower but may be useful occasionally. 

-S Do not include the Standard I/O routines with the object. This library is included 

by default, there is no reason not to want to include it unless you want to devise a 

totally new one. 

-T The next argument is a Timing defmition file built by the 'timebuild' utility to be used in 

-- conjuntion with the '-e' option, supplying '-T automatically selects '-e'. If this option 

is not selected the execution timings are taken from the source library file 'times'. Look 

at the 'timerinfo' help file for more details. 

-V The compiler will normally desist reporting errors and warnings after the first fifty or 
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anything -like '-n' in the UNIX 'make' command. Useful when options start getting 

complicated. A No operation facility. 

-Q Undocumented feature under test 

-S Do not apply some Simplifying transformations on the program. These currently 

remove constructs with no processes in them and redundant SEQ and PAR headers. 

These save a small amount of space and time at run and compile time and there is 

little point in turning off this option. 

-X Print out the procedures that have been defmed in the link files but has not been 

referenced - detects eXtra procedures defmed across files but not used. 

-Y Produce the linker assembler output in a permanent file rather than in a temporary 

file on '/tmp'. Enables the output from the linker to be debugged. 

-Z Get the linker to print out all the definitions it is told about 



Description of the library routines 

Standard Library 
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Provide commonly used routines to read and write to the keyboard and screen channels. 

The routines are written in 'C' and occarn and use standard C or 'curses' I/O routines. 

There are also general routines for use to pause or abort a program as well as to use the 

'C' random number routines. They are available by default to all programs unless the -S 

compiler flag is used to override their inclusion. 

EXTERNAL PROC Sir. to. screen CV ALUE s []) : 

Output the string s (a byte array with byte 0 as the length). The whole string is 

guaranteed to be printed in one sequence, two concurrent calls to Sir. to. screen will 

not interleave. Equivalent to the program fragment :-

PROC sir. to. screen CV ALUE s []) = 
SEQ n = [1 for s [BYTE 0]] 

screen! s [BYTE n] : 

EXTERNAL PROC num.to.screen (VALUE n) : 

Output a number to the screen. The number can be signed, and uses the minimum number 

of characters (no leading spaces). Equivalent to the 'C' language 'printf ("%d",n);' 

statement 

EXTERNAL PROC Slr.to.chan (CHAN c,V ALUE s []) : 

Output the string s to a channel 'c'. The call 'Slr.to.chan (screen,"fred")' is identical to 

'Slr.to.screen (fred)'. Useful for string output to files. 

EXTERNAL PROC num.to.chan (CHAN c, VALUE n) : 

Output ascii string for the number 'n' to channel 'c'. Like 'slr.to.chan' but for numbers 

not channels. 

EXTERNAL PROC num.to.screen.f (VALUE n,d) : 

Output a number to the screen in a field of width 'd'. If the number is too big for the 

field the number is written out in full regardless, the routine call num.to.screen.f (n, 1) is 

equivalent to num.to.screen (n). The routine uses the 'C' language printf format %nd 

where n is the field width. 
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EXTERNAL PROC goto.x.y CV ALUE x,y) : 

Use the 'curses' package to implement a cursor 'goto' facility. No error checking is 

made that the move is within the screen area. The x-axis is across the screen and y-axis 

down, co-ordinate (0,0) is in the top left hand corner of the screen. The first line is used 

by the run time system to print messages. 

EXTERNAL PROC clear. screen : 

Use curses to clear the screen,if cursor addressable option not used this will still try to 

clear the screen using the curses "CL" terrncap defined string. 

EXTERNAL PROC num.from.keyboard CV AR n) : 

Read a number from the keyboard and assign to variable 'n'. The routine is not very 

sophisticated. It will read negative numbers (start '-') and ignore any leading 'space' 

characters. The number must be followed by a non-digit, this character is read by the 

routine and not available on a subsequent 'Keyboard? ch' process. There is no check 

that the number is too big for the number range. It will expect at least one digit otherwiae it 

will give an error message. 

EXTERNAL PROC num.from.chan (CHAN c, V AR n) : 

Read a number from a channel 'c'. If 'c' is the keyboard this is equivalent to calling 

'num.from.keyboard'. 

EXTERNAL PROC abort.program : 

Force the program to abort execution. An explanatory message is printed so that the 

cause will be known. 

EXTERNAL PROC force. break : 

Perform the same action as if 'CfRL-C' was pressed at the terminal. The user interface 

routines can then be run under the menu selection facility provided. 

EXTERNAL PROC random CV ALUE d,VAR n) : 

Return a pseudo random number in the range ° to d-l by using the 'C' 'random 0' 
function in the variable n. The VALUE of d must not be zero. The sequence of random 

numbers will be modified if the '-R' run option is used. 
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EXTERNAL PROC init.random CV ALUE n) : 

Initialise the seed for the random number generator for subsequent calls to the procedure 

'random'. Uses the 'C' language routine 'srandom 0'. 

EXTERNAL PROC trace.value CV ALUE n) : 

Print out the integer value of 'n' on the screen with the preflx string Trace value: ' -

this makes debugging a little easier. 

EXTERNAL PROC open.rue (VALUE path.name D,access D,CHAN io.chan) : 

Connect the channel 'io.chan' to a UNIX rue. The procedure must be provided with the 

pathname of the rue as a string, and the access mode ("r" read access,"w" write 

access,"a" append access). Subsequent input or output on 'io.chan' will fetCh/put a 

single character from/to the rue. Attempts to input past the end of rue will receive the value 

-1. 

EXTERNAL PROC close.rue (CHAN io.chan) : 

Cease connection of the channel with its currently open rue. 

EXTERNAL PROC open. pipe (VALUE command. name [],access [],CHAN io.chan) : 

Connect the channel 'io.chan' to a UNIX pipe running command 'command.name'. The 

procedure must be provided with the UNIX command name and 'r' to read from it, or 'w' 

to write to it). Subsequent input or output on 'io.chan' will fetch/put a single character 

from/to the rue. Attempts to input past the end of rue will receive the value -1. 

EXTERNAL PROC close. pipe (CHAN io.chan) : 

Cease connection of the channel with its currently active command. 

EXTERNAL PROC system.call CV ALUE command D,VAR code) : 

Execute the UNIX command contained in the string 'command' and return the value in 

'code' TRUE if the command succeeded without error and FALSE otherwise. 

EXTERNAL PROC set.timers CV ALUE initvalue) : 

Set up the interval timers ITIMER_REAL,ITIMER_ VIRTUAL to the given start value. 

These are used for timing sections of code on the V AX. U~es 'setitimer' call. Note that 
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using W AlT' primitive will reset the timer so it can only be used for simple sections of 

code. It should also be noted that it times the whole program and not a single occam 

process. 

EXTERNAL PROC get.real.timer (V AR secs,micro.secs) : 

Get the current elapsed timer values in seconds and microseconds. Timers count 

downwards and are not especially accurate. Uses 'getitimer' call. 

EXTERNAL PROC get.cpu.timer (V AR secs,micro.secs) : 

Get the current executed CPU timer values in seconds and microseconds. Timers count 

downwards and are not especially accurate. 

Roating Point Library 

Routines to perform floating point input/output. They are available by giving the 

compiler flag '-F' when linking an occam program. Roating point value can be 

assigned and transmitted via channels just like normal integer values, see the file 

'occamversion' for details as to the language extensions introduced to suppon them. 

Input/Output Routines 

EXTERNAL PROC fp.num.to.screen (VALUE FLOAT f) : 

Print out the floating point number in 'C' language float format "%6.6f'. If the number is 

too small or too big the standard 'C' action will be taken. 

EXTERNAL PROC fp.num.to.screen.f (VALUE FLOAT f,V ALUE w,d) : 

Print out the floating point number in 'C' real format "%w.df". If the number is too small 

or too big problems will arise. 

EXTERNAL PROC fp.num.to.screen.g (VALUE FLOAT f) : 

Print out the floating point number in 'C' real format "%g". This will use the most 

appropriate format - exponent form if necessary. 

EXTERNAL PROC fp.num.to.chan (CHAN c,V ALUE FLOAT f) : 

Write a number to a channel. If channel is 'screen' this is equivalent to 

'fp.num.to.screen'. Useful for writing data to files. 
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EXTERNAL PRoe fp.num.from.keyboard (V AR FLOAT 1) : 

Read in a floating point number. The number is expected to begin with a digit or '.' 

(indicating 0.), leading spaces are ignored. The number ends on a non-digit and this 

character will not be available to subsequent reads from the keyboard channel. The 

following are valid input numbers followed by the interpreted value for the input 

45.35 (45.35) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0) 

EXTERNAL PROe fp.num.from.chan (eHAN c,VAR FLOAT 1) : 

Read a floating point number from a channel 'c'. If channel is keyboard this is equivalent 

to 'fp.num.from.keyboard'. 

Mathematical Routine Library 

Mathematical routines from the UNIX '-lm' library. These are included by specifying the 

'-M' flag. They are all in single precision even though double precision 'C' routines are 

called. 

EXTERNAL PROe fp.sine (VALUE FLOAT a, V AR FLOAT res) : 

Return the sine of 'a' in 'res'. Angles are in radians. 

EXTERNAL PROe fp.cosine (VALUE FLOAT a, V AR FLOAT res) : 

Return the cosine of 'a' in 'res'. Angles are in radians. 

EXTERNAL PROe fp.are.sine (VALUE FLOAT a, V AR FLOAT res) : 

Return the arc sine of 'a' in 'res'. Angles are in radians. 

EXTERNAL PROe fp.are.cosine (VALUE FLOAT a, V AR FLOAT res) : 

Return the arc cosine of 'a' in 'res'. Angles are in radians. 

EXTERNAL PROe fp.arc.tan (VALUE FLOAT a, VAR FLOAT res) : 

Return the arc tangent of 'a' in 'res'. Angles are in radians. 

EXTERNAL PROC fp.exp (VALUE FLOAT a, VAR FLOAT res) : 

Return e to the power 'a' in 'res'. 
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EXTERNAL PROC fp.log CV ALUE FLOAT a, V AR FLOAT res) : 

Natural logarithm of 'a' in 'res'. 

EXTERNAL PROe fp.sqrt CV ALUE FLOAT a, V AR FLOAT res) : 

Square root of 'a' in 'res'. Returns an occam error if 'a' is negative. 
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The run time system 

As you might hope when an occam program is executed it will follow the program execution 

until one of three things happen. 

1] The program tenninates 

2] CTRL-C is pressed on the keyboard 

3] An error is detected. 

In the case of (2) and (3) a debug option will be displayed, this allows you to abort the 

program, ignore the interrupt (continue), and to restart the program again. Other options 

control the '-e' trace output, provide a 'system' debug option (which is only really useful to 

someone who knows their way around the compiler), an option to specify which source me 

you want to debug and the 'screen animated debug'. This later option should be of most use 

and is described in detail in the next section. 

Errors come in two types 'Fatal Errors' and just 'Errors', it is not possible (or wise) to 

continue execution after the former, but the latter may be ignored if the symptom is expected. 

The run time display debugger 

This utility that runs under the run time system enables users to look at the status of the 

processes during execution of a program. 

The utility requires the use of a cursor addressable terminal. The system provides selective 

display of the source file(s) that were compiled to form the program together with a column 

showing the currently existing processes on those particular lines of the source file. 

When initially entered by pressing 'CTRL-C' the program execution will be halted, the 

execution can be restarted in 'stepped mode' so that the display will be updated every occam 

scheduler action. 

Breakpoints and trace points can be added at selected line numbers. Break points cause 

the debug display to be automatically entered when any of the process executes any of the 

source lines on which a break point is set. Trace points cause temporary entry into the 

debug display before resuming normal execution after five seconds pause. 

If a me has been compiled with the '-G' flag then the value of occam variables and the status 

of channels can be printed. Because an occam program can have several processes running 

with different values to the same identifiers (e.g. within PAR n = [0 FOR 7],'n' has a 

different value for each separate process) a single process must be selected as before this 
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facility can be used. When selected a second window within the debug display is opened and 

the values printed by the program are placed within it 

Straightforward use of the debug display will normally entail running a program and 

pressing CfRL-C when a dubious section of code is about to be executed and entering the 

debug display Cz' command). Thereafter the commands 'p' to find the next process, 'f 

and b' might be used to see whereabouts the process is executing. The program can then be 

single stepped through using the 'r' command to start execution and's' command to stop 

execution. Eventually exit of the debug displayer can be made with the 'x' command. 

There are two special markers that are used, '>' on a line indicates the currently selected line 

and '-' the currently selected process. 

The commands where practical have been made similar to those in UNIX 'vi'. (UNIX is a 

trademark of A.T. & T.). 

Available commands 

Moving about within the fIle 

"D- Move forward half a page of source text. 

"F- Move forward a page of source text. 

"V- Move backward half a page of source text. 

"B- Move backward a page of source text. 

:<number> - Move to given line <number> in file. 

k - (or "K) Move down one line. 

j - (or" J) Move up one line. 

/<string> - Find given <string> in file from current position. 

n - Find next string occurrence for match string selected by 'r command. 

p - Find the next process in the file. 

TracelBreakooints 

b - Add breakpoint at currently selected line. 

t - Add tracepoint at currently selected line. 

d - Delete the tracelbreak point at the selected line. 

c - Delete all the points in the current fIle. 

C - Delete all the points in all the fIles. 

P - Print process status of the currently selected process. 



D - Deselect the current debug occam process. 

S - Select the current debug occam process. 
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N - Select next process on the same line, if there are several processes that are shown as 

executing on the same line then'S' will make an arbitrary choice, 'N' can be used to override 

this and step through the processes until the one that is desired is selected. 

Symbol inspection 

m - Select a symbol to display, if no symbols have been selected before then the symbol 

window is opened and the value of the variable or the status of a channel. 

M - Repeat the previous 'm' command. To fmd the value of the same variable name again. 

Execution control 

a - Abort the run. 

r - Run debug display if a debug process is selected the debug display will be re-entered 

every time that process is run, otherwise the debug display will be run each time any process 

is run. 

> - Execute in single step mode. Only a single step is executed. 

s - Stop the debug display from running temporarily after a 'r' or 'x' command. 

u - Change display step interval (initial step interval is I), this permits the location of 

processes to be seen after 'n' steps rather than after each and every time it is executed. Not 

particularly useful. 

x - Exit display debugger, program will proceed normally until a tracelbreak point is found or 

'"C' is pressed. 

X - Exit to main 'IIC' menu so that program restart,abort,fIle selection or system debug can 

be done. Used when you wish to debug a different fIle or to set things going again after 

setting up breakpoints. 

Miscellaneous 

? - Print out this help information. 

"L- (or "R) Redraw the current displayed information. 

i-Buffer keyboard channel input text for the program. 

o -Print overall data about the processes currently executing - how many are in each 

process status, stack use and clock time. 

Y - Display the occam program's current screen output temporarily. 
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v - Invoke the 'view' command on the occam source file (this is just like 'vi' but with read 

only access to the fIle - This can be used to provide more powerful string search facilities 

when debugging. 

Display key 

The column between the line number and the text is used to display the number and status of 

processes executing on that line. Because of the compilation these may be out by a line or 

two in some circumstances. Most sequential code will be executed as a single block - so a 

process will not move through a SEQ block one step at a time necessarily. 

The special symbol 'P' does not represent a process, it indicates that a procedure has been 

called at that point. 'P' therefore represents the 'call point' of the procedure. 

The following symbols are used to represent the various process statii :­

* - An active process - may be chosen for execution at any time. 

a - Process waiting for one or more ALT guards to become TRUE. 

w - Process waiting for a clock time or for input/output. 

c - Process is waiting for one or more child PAR processes to terminate. 

In addition break and trace points are indicated in the column by giving a 'T for a trace 

point and 'B' for a break point. 

So a display of :-

316:3*w : occam.s? razor 

indicates that there are three active processes and one process waiting input on line 316. 

Keyboard and Screen input/output 

Because the debug display routine is fully interactive the screen and keyboard data from 

the program can not be handled in the same manner as normal. Input for the keyboard must be 

input using the 'i' command - a whole line can be input and will be buffered up for program 

input in this way. Screen output should be displayed as it is produced (but a copy of it will 

be sent to the screen image that will redisplayed on exit from the display debugger) or the 'V' 

command. Strings can have escapes in them '*n' means newline,'*r' carriage return and ,**, 

space. 
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Non standard occam features 

This compiler to the best of my knowledge (Mr.R.P. Stallard of the Department of 

Computer Studies, Loughborough University of Technology, U.K.) implements the 

occarn language as defined in the occam programming manual published by INMOS 

. limited subject to a few restrictions and extensions that are described in this file. These 

differences are intended to make transfer of occam programs from different 

implementations feasible. It is intended to be compatible to the INMOS booklet version 

and the Prentice Hall book definition. OCCAM,INMOS and Transputer are registered 

trademarks of the INMOS Group of Companies. 

INMOS proto-occam language revisions 

The following additional features introduced into INMOS occam products can now be 

selected by the compiler flag option '-I'. 

STOP primitive. 

TIME channel. 

IF on finding none of the conditions TRUE STOPs. 

Restrictions 

These restrictions are either optional features as described in the published language 

definition or compiler restrictions unlikely to limit ordinary use of occam. 

No configuration section rules. 

The operator '»' uses V AX. shift right operator. 

No prioritized PAR, all parallel processes have equal priority. 

Number of arguments to a procedure limited to 255 maximum. 

AFTER returns a time difference not a boolean value. 

Extensions 

PAR replicator count and base can be variables 

A variable number of processes can be created by replicated PAR. 

Recursive calls to procedures permitted 

A procedure can call itself. 

Screen channel can be used by more than one process 

The special screen channel can be accessed by any number of different 

occ·am processes. This facilitates debugging of occam programs and is not 

difficult to implement. 

Multiple source file compilation 

Procedures and Variables can be defined in one file and referenced in another. 

The definition is preceded by the new keyword 'LIBRARY' before 'PROC' and the 

definition must be at the outer level of program nesting. 

References to procedures in other files are defined by preceding 'PROC' by 
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'EXTERNAL' and replacing the '=' start of procedure definition by':' to indicate end 

of definition. 

e.g. 

File main.occ File sub.occ 

EXTERNAL PROC f (value n) : 

SEQ 

f(27) 

LlliRARY PROC f (value n) = 

SEQ 

The two fIles can be compiled by :-

num.to.screen (n*102) 

str.to.screen ("Enter next"): 

occam main.occ sub.occ to compile both together 

occam sub.occ -I to compile sub.occ separately 

occam main.occ sub.o to link in the pre-compiled sub.occ me 

In 5.0 this has been extended to variables and channels, in the case of vectors of 

variables and channels the size need not be specified but the type must be :-

Defming file :-

LlliRARY CHAN network,comrns [56] : 

LlliRARY VAR blot [BYTE 4],spot [42] : 

LlliRARY V AR FLOAT hyper,bolic [2],active [17] : 

Referring fIle :-

EXTERNAL CHAN network,comrns [] : 

EXTERNAL VAR blot [BYTE],spot D,bolic [FLOAT]: 

EXTERNAL VAR FLOAT hyper,active 0 : 

Floating point arithmetic 

The compiler permits the use of floating point numbers and arithmetic operators. 

The compiler uses 32 bit V AX floating point throughout 

Floating point numbers are declared by following V AR by the new keyword float:-

V AR FLOAT x,y,factor : -- Floating point number declaration 

V AR num,ply : -- Normal occam variables. 

Floating point number constants are supported these may be in two forms with 

decimal point or with decimal point and exponent :-

x:= 1.45 
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y:= 2.3e-23 + 3.4e+1 -- Note that the exponent must be given a sign 

The following operators may be used on floating point numbers (both operands 

must be floating point) 

+ - * / < > <= >= = <> - (monadic minus) 

x := 1.3 + (y * factor) 

IF 

x> 67.8 

y := -3.4 -- Note use of monadic minus. 

Parameters to procedures must also have type set to V AR FLOAT or VALUE 

FLOAT - the actual parameters must be of the same type. 

PROC sum (VALUE FLOAT a D,b [], V AR FLOAT res D, VALUE D) = 

PAR i = [0 FOR n] 

res [i] := a [i] + b [i] : 

VAR FLOAT t [23],s [45],w [32] : 

sum (t,s,w;12) 

Floating values may be transmitted along channels - but there are no checks that 

the sender and receiver both expect floating point values. Input of floating point 

numbers can be carned out by calling the library routine 'fp.num.from.keyboard' 

and output by the routine 'fp.num.to.screen'. 

Interconversion of floating point and integers is performed by the assignment 

operator :-

num :=x -- Convert floating 'x' to integer 'num' 

y:=num -- Convert integer 'Dum' to floating 'y' 

Attempts to use logical and shift operators on floating point numbers are flagged as 

errors. 



APPENDIX 11 

THE SOFT-SYSTOLIC SIMULATION SYSTEM 

(SSSS) PROGRAM LISTINGS 

1. ISA 

2. PROCESSING CELL 

3. PLUG 

4. RISAL COMPILER 



PROGRAM NO. 4.3.1.A. 

THE INSTRUCTION SYSTOLIC ARRAY (ISA). 

Notes: 
Implements an orthogonally connected grid of processors, 
each processor can be plugged into the system or a group 
of processors can be plugged into the same grid point. 
Programs and data are read from files and buffered into 
the array. Results are read from any of the four boun­
daries as dictated by the program. The grid cannot be 
closed down systolically, the program termination is 
performed by an abort at the end of the user program. 

Dimensions of array and interface routines. 

DEF n = 4 : 

EXTERNAL proc abort.program : 
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EXTERNAL proc open.file(value path.name[ ],access[],chan io.chan): 
EXTERNAL proc close.file(chan io.chan) : 
EXTERNAL proc str.to.chan(chan c, value s[]) : 
EXTERNAL proc fp.num.to.chan(chan c, value float f) 
EXTERNAL proc fp.num.from.chan(chan c, var float f) 
EXTERNAL proc num.to.chan(chan c, value n ) : 
EXTERNAL proc num.from.chan(chan c, var n) 
EXTERNAL proc str.to.screen(value s[]) : 
EXTERNAL proc fp.num.to.screen(value float f) 
EXTERNAL proc num.to.screen(value n ) : 
EXTERNAL proc fp.num.from.keyboard(var float f) 
EXTERNAL proc num.from.keyboard(var n) : 

-- Plug to expand system, each plug point can be an 
m*m ISA grid. 

EXTERNAL proc plug(chan wn,we,ws,ww,rn,re,rs,rw, 
in,is,sw,se ) : 

-- Plug/processor grid allocation function. 

PROC loc(VALUE i,j, VAR r) = 
SEQ 

r := «(i-l)*(n+l»+j)-l 

-- Sequential to parallel program bus expander. 

PROC source(CHAN out[], link, VALUE t)= 
VAR k,i,j,buffer[n] 
CHAN ptr : 
SEQ 

IF 
t = 0 

open.file("selector","r",ptr) 
TRUE 

open.file("instruct","r",ptr) 
num.from.chan(ptr,k) 
link!k 
SEQ i=[l for k] 

SEQ 
str.to.screen("*n") 

IF 
i > k 



PAR j=[l for n) 
VAR tl : 
SEQ 

TRUE 
SEQ 

loc ( j , 1 , tl ) 
out[ tl) ! 0 

SEQ j=[l for n) 
SEQ 

num.from.chan(ptr,buffer[j-l) 
IF 

t = 0 
SEQ 

num.to.screen(buffer[j-l) ) 
str.to.screen(" ") 

PAR j=[ 1 for n) 
VAR tl : 
SEQ 

loc(j,l,tl) 
out[tl)!buffer[j-l) 

close.file(ptr) 
str.to.screen("*n Source closed") 
link!O : 

-- Garbage collector. 

PROC sink( CHAN in[), link) = 
VAR i,j, k : 
SEQ 

link?k 
SEQ i=[l for k) 

PAR j =[1 for n) 
VAR tl : 
SEQ 

loc(j,n,tl) 
in[ tl+l) ?any 

str.to.screen("*nSink closed") 
link?any : 

Data bus expander. 

PROC data.source( CHAN ans[ ),bns[ ),awe[ ),bwe[ ),link = 
DEF n2=2*n,n3=3*n : 
VAR k,i,j,t : 
VAR FLOAT buffer[4*n) 
CHAN ptr : 
SEQ 

open.file("datain","r",ptr) 
num.from.chan(ptr,k) 
link! k 
str.to.screen("*nk = ") 
num.to.screen(k) 
SEQ i=[l for k ] 

SEQ 
str.to.screen("*ni = ") 
nurn.to.screen(i) 
SEQ j=[ 0 for 4] 

IF 
i <= k 

SEQ 
num.frorn.chan(ptr,t) 

str.to.screen("*n") 
IF 

t < 0 
SEQ z =[0 for n] 
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buffer[(j*n)+ z] := 0.0 
TRUE 319 

SEQ z =[ 0 for n] 
SEQ 

TRUE 

fp.num.from.chan(ptr,buffer[ [j*n)+z]) 
fp.num.to.screen(buffer[(j*n)+z]) 

SEQ z=[O for n] 
buffer[(j*n)+z] := 0.0 

PAR j=[l for n] 
VAR tl,t2 : 
SEQ 

loc ( j , 1 , tl ) 
loc(j,n,t2) 
t2 : = t2 + 1 
PAR 

bns[tl]!buffer[j-l] 
bwe[t2]!buffer[n+(j-1)] 
awe[tl]!buffer[n3+(j-1)] 
ans[t2]!buffer[n2+(j-1)] 

c1ose.file(ptr) 
str.to.screen("*n Data Source closed") 
link!O.O : 

Parallel to sequential bus condenser. 

PROC data.sink( CHAN ans[ ],bns[ ],awe[],bwe[], link) 
DEF n2=2*n, n3=3*n : 
VAR k,i,j : 
VAR FLOAT buffer[4*n] 
CHAN ptr: 
SEQ . 

open.file("dataout","w",ptr) 
link?k 
SEQ i=[1 for k] 

SEQ 
PAR j=[1 for n] 

VAR tl, t2 
SEQ 

loc(j,1,tl) 
loc(j,n,t2) 
t2 : = t2 + 1 
PAR 

SEQ 

ans[t1]?buffer[j-l] 
awe[t2]?buffer[n+(j-1)] 
bns[t2]?buffer[n2+(j-l)] 
bwe[tl]?buffer[n3+(j-1)] 

SEQ j=[O for 4] 
SEQ 

str.to.chan(ptr,"*n") 
SEQ z=[O for n] 

SEQ 
fp.num.to.chan(ptr,buffer[(j*n)+z]) 
str.to.chan(ptr," ") 

str.to.chan(ptr,"*n") 
close.file(ptr) 
str.to.screen("*n Data sink closed") 
link? any 
abort.program : 

Main program. 
Setups and starts the isa grid. 

DEF size = n*(n+1) : 
CHAN ans[size],bns[size],awe[size],bwe[size],sel[size],ins[size]: 



CHAN link [3) 
VAR i, j : 
PAR 

-- The grid. 

PAR i=[l for n) 
PAR j=[l for n) 

VAR tl,t2,t3,t4 
SEQ 

loc(i,j,tll 
loc(j,i,t2l 
t3 :=tl+l 
t4 : = t2 + 1 
plug(ans[t2),awe[t3),bns[t4],bwe[tl],bns[t2],bwe[t3], 

ans[t4],awe[tl],ins[t2],ins[t4],sel[tl],sel[t3]l 

Program interface. 

source(sel,link[O],Ol 
sink(sel,link[O]l 

source(ins,link[l],ll 
sink(ins,link[l]l 

-- Data input/output. 

data.source(ans,bns,awe,bwe,link[2]l 
data.sink(ans,bns,awe,bwe,link[2)l 
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PROGRAM NO. 4.3.2. 

THE PROCESSING ELEMENT. 

Notes: 
General processor to illustrate the development of 

a PE for the ISA grid, it is placed in the grid by a 
plug procedure which allows the same defintion to 
implement a grid of processors and is control bya 
assembler program generated by the RISAL.P compiler. 

EXTERNAL proc num.to.screen(value n) : 
EXTERNAL proc fp.num.to.screen(value float f) 
EXTERNAL proc str.to.screen(value sIll : 

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw, 
in,is,sw,se )~ 

DEF msize ~ 20: 
VAR 
VAR 
VAR 
SEQ 

FLOAT a,b, mem[msize],c, i.o.buf[4] 
i,j,s,port,p[4],fd[4],op,old.i,old.s 
running : 

running :~ true 
mem [1] : ~ O. 0 
mem [ 0] : ~ O. 0 
old. i : ~ 0 
old.s :~ 0 
WHILE running 

SEQ 
-- Fetch instruction. 
c :~ mem[1] 
PAR 

in?i 
is!old.i 
sw?s 
se!old.s 
wn!c 
we!c 
ws! c 
ww! c 
rn?i.o.buf[O] 
re?i.o.buf[1] 
rs?i.o.buf[2] 
rw?i.o.buf[3] 

old.s :~ s 
old.i :~ i 

-- Decode intstruction. 

SEQ 
SEQ j ~[O for 4] 

SEQ 
fd[j] :~ i\100 
i :~ i/lOO 

port :~ fd[2] 
op :~ fd[3] 

-- Communication enable. 

SEQ 
SEQ i~[O for 4] 

SEQ 
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p[i] := port\.2 
po·rt := port/2 

SEQ i=[O for 4] 
IF 

p[i] = 1 
me m [ i+3] := i .o.buf[ i] 

Execute instruction. 

a := me m [ fd[ l]] 
b := mem[fd[O]] 
IF 

(5<>0) AND (op <> 0) 
IF 

op = 1 
mem[l] := mem[O] 

op = 2 
mem [ 0] : = a + b 

op = 3 
me m [ 0] • - a - b 

op = 4 
me m [ 0] • - a * b 

op = 5 
me m [ 0] : = a / b 

op = 6 
SEQ 

IF 
a < b 

mem[O] .-
TRUE 

mem[O] ::: 
op = 7 

SEQ 
IF 

a > b 
mem[O] .-

TRUE 
mem[O] := 

op = 8 

a 

b 

a 

b 

mem[l] .- me m [ fd[ l]] 
op = 9 

mem[fd[O]] := a 
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PROGRAM NO. 4.3.l.B. 

THE PLUG PROCEDURE. 

Notes: 
Single processor plug use to plug a processor 
into the grid. 

EXTERNAL proc PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se): 

LIBRARY PROC plug(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,5w,se)= 
SEQ 

PE(wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se) 
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(*. PROGRAM NO. 5. 3. *) 

(* THE RISAL COMPILER *) 

(* This compiler is used to compile the RISAL language *) 
(* and develop the ISA programs *) 

program lan(input,output,error,keywords); 
label 99 ; (* for abort *) 
const 

asig= 4; nSig=8; 
size = 20; bufsize = 80; 
com= 44; sem = 59; col = 58; 
rbk = 41; lbk = 40; aend = 101; rep =103; repl=106; p=104; 
d = 105; s = 4; none = 102; 
srbk = 93; slbk = 91; 

type 
words = array[l .. asig] of char; 

var 
tk,f,n,k,count,statcount,rpos,cpos,int,lim:integer; 
mwords,linecount,errs,sindx : integer; 
progm,data,selector,eflag,drepflg : boolean; 
number :array[l .. nsig] of char; 
saveline:array[1 .. 2000] of integer 
kword:array[l .. size] of words; 
tval:array[l .. size] of integer; 
buf:array[l .. bufsize] of char; 
error,keywords:text; 

procedure intialise; 
(* set up current keywords and intial values *) 
var i,j integer; 

ch char; 
begin 

(* get keywords *) 
reset(keywords); 
read(keywords,mwords); readln(keywords); 
if mwords > size then 

begin 
writeln('Too many words in vocabulary'); 
go to 99 

end; 
for i:= 1 to mwords do 

begin 
for j := 1 to asig do 

read(keywords,kword[i][j]); 
repeat read(keywords,ch) until ch = ' '; 
read(keywords,tva1[i]); readln(keywords); 

end; 

rpos := 0; cpos:= 0; linecount := 0; errs .- 0; 
eflag := false; drepflg := false; 

rewrite(error) ; 
(* keywords array now contains keywords *) 

end; 

procedure m( i,j:integer); 
(* error message routine *) 
var k :integer; 
begin 
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(* book keeping *) 
for k := 1 to 11 do write(error,' '); 
if eflag then 

begin 
for k :~ 1 to rpos do write(error,buflkl); 
writeln(error); 
eflag := false; 

end; 
(* format message *) 
if (i<>9) and (i<>lO) then 

begin 
errs := errs + 1; 
write(error,linecount,':'); 
for k := 1 to (cpos - 1) do write(error,'-'); 
write(error,'·' );writeln(error); 

end; 
case i of 
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l:writeln(error,'program must start with p,d, or s'); 
2:writeln(error,'expected"("but found'" ,buflcposl,""); 
3:writeln(error,'expected")"but found"',buflcposl,""); 
4:writeln(error,'expected":" ,"i" ,or"end"or"]"'); 
5:writeln(error,'too many data elements'); 
6:writeln(error,'incorrect data boundary spec'); 
7:writeln(error,'expected integer arguments'); 
8:writeln(error,'expected ":" ,";"'); 
9:writeln(error,'errors detected = , ,errs); 

10:writeln(error,'no errors detected'); 
II:writeln(error,'expected integer operands in instruction'); 
12:writeln(error,'should be real value in data expression'); 
13:writeln(error,'require integer in rep count parameter'); 
14:writeln(error,'more than required number of statements'); 
15:writeln(error,'attempt to read past end of file'); 
16:writeln(error,'alphabetic string found require keyword'); 
17:writeln(error,'invalid character'); 
18:writeln(error,'selector should be "0", or "1"'); 
19:writeln(error,'malformed expression'); 
20:writeln(error,'expected "1", or ,"I"'); 

end; 
(* fatal message abort *) 
if j = 1 then goto 99 

end; 

procedure getc(var ch:char); 
(* maintain buffer of characters *) 
begin 

if rpos=cpos then 
if eof then m(15,1) 
else 

begin 
(* fill buffer *) 
cpos := 0; rpos :=0; 
while not eoln do 

begin 
(* skip white space *) 

rpos := rpos + 1; 
repeat 

read(buf[rposl); 
until not (ord(buf[rposl) in [0 .. 9,14 .. 31]); 

end; 
(* book keeping *) 
eflag := true; linecount := linecount + 1; 
readln; 
rpos := rpos + 1; 
buf[rposl := , . , 

end; 
cpos := cpos + 1; 



ch := buf[cpos]; 
end; 

function token( var f: integer) : integer; 
(* lexical analyser *) 
var 

i,first,last,ptr,sign : integer; 
letter,digit,punc: set of char; 
flag : boolean; 
string: words; 
ch : char ; 

begin 
(* make sure there is a token and it 

can be recognized *) 
token := -1; 
punc:= [' ',')','{',',','i',':','[',']')i 
letter :=['a' .. 'z','A' .. 'Z']; 
digit := ['0' .. '9']; 
getc(ch); 
(* skip leading blanks *) 
while ch = , , do getc(ch); 
(* skip comment *) 
if ch = '(' then 

begin 
while ch <> 'I' do getc(ch); 
getc(ch); 

end; 
(* skip trailing blanks *) 
while ch = , , do getc(ch); 
(* find token *) 
if ch in letter then 

begin 

end 

first := 1; last := mwords; 
for i := 1 to asig do string[i] := ' '; 
i : = 0; 
(* collect identifier *) 
repeat 

i:=i+1; 
if i<= aSig then string[ i] := ch; 
getc(ch) ; 

until not((ch in letter) or (ch in digit)); 
f := 2; cpos := cpos - 1; 
(* search for keyword *) 
repeat 

flag := true; i:=O; 
ptr := (first + last) div 2; 
repeat 

i:=i+1; 
if ord(string[i]) < ord(kword[ptr][i]) then 

begin 
flag := false; last := ptr -1; 

end; 
if ord(string[i]) > ord(kword[ptr][i]) then 

begin 
flag := false; first := ptr + 1; 

end; 
until(not flag) or ( i = asig); 

until(first > last) or flag; 
(* convert to token value *) 
if flag then token := tval[ptr] 
else m(16,0); 

else if (ch in digit) or (ch = '+') or (ch = '-') then 
begin 

(* convert to number *) 
f:= 0; i:=l; int := 0; sign := 1; 
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end; 

if ch = '-' then sign .- -1; 
repeat 

if i <= nsig then 
begin 

end 

numbe r [ i) : = ch; 
int := int*10 +(ord(ch)-ord('O'»; 
getc(ch); 
i:=i+1; 

until not ( ch in digit); 
int := int * sign; 
if ch = '.' then 

begin 
f : = 1; 
repeat 

if i <= nsig then number[i) := ch; 
getc(ch) ; 
i:=i+1; 

until not(ch in digit); 
end; 

cpos := cpos - 1; 
token := i-1; 
(* integers are converted to numeric value 

reals remain as strings *) 
end 

else if ch in punc then 
(* punctutaion symbols *) 
begin 

f : = 3; 
token := ord(ch); 

end 
else m(17,O) 

procedure outpt(lim,com,typ :integer); 
(* construction of data,program or selector file *) 
var i~j : integer; 
begin 

(* decides on replicated construct and checks 
for more data than specified *) 

if (lim > n-count) and (not drepflg) then m(6,1) 
else if lim = ° then 

begin 

end 
else 

if typ = 1 then 
for i:= 1 to com do 

write(number[i) 
else 

count := count + 1; 

begin sindx := sindx + 1; 
saveline[ sindx) := cam; 
write( cam)'; 
end; 

if count < n then write(' ') 
else writeln; 

for i := 1 to lim do 
begin 

if typ=l then 
for j := 1 to cam do 

write(number[j]) 
else 

begin sindx := sindx + 1; 
saveline[ sindx) := cam; 
write(com); 
end; 
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end; 

count := count + 1; 
if count < n then write(' ') 
else writeln; 

end; 

procedure repr( var lim:integer); 
(* process replicator *) 
begin 

if token(f) <> lbk then m(2,O); tk := token(f); 
if f=O then lim := int else m(13,1); 
if token(f) <> rbk then m(3,O); tk := token(f); 

end; 

procedure sline; 
(* line of selector file *) 
begin 

repeat 
if (f=O) and «int = O)or(int=l» then outpt(O,int,O) 
else if tk = rep then 

begin 
repr (lim) ; 
if (f=O) and «int=O)or(int=l» then 

ou t p t ( li m, in t , ° ) 
else m(18,1); 

end 
else m(19,1); 
tk := token( f); 
if (tk<>col) and (tk<>com) and (tk <> aend) 

and (tk <> srbk) then rn(4,O); 
if (tk = corn) or (tk = srbk) then tk := token(f); 

until (tk = col) or (tk = aend) 
end; 

procedure dline; 
(* line of data *) 
var save integer; 
begin 

if tk = none then 
begin 

save := count; count .- n; 
outpt(O,-l,O); 
count := save; 
tk : = token ( f) ; 

end 
else 

begin 
if tk <> rep then 

outpt(O,O,O); count := count - 1; 
while (tk <> sem) and (tk <> col) and (tk<>aend) do 

begin 
if (tk = rep) then 

begin 

end 

repr( lirn); 
save := count; count := n; 
drepflg := true; 
outpt(lim,-l,O); 
drepflg := false; 
count := save; 

else begin tk := token(f); if f= 1 
then outpt(O,tk,l) else m(12,O); 

end; 
tk := token( f); 
if tk = srbk then tk := token(f) 

end; 
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end; 
end; 

function inst: integer; 
(* check instruction format *) 
var coma,port,j : integer; 
begin 

(* decipher communication ports *) 
port := 0; j:=l; coma := tk; 
repeat 

tk := token( f); 
if (tk in [1,2,4,8]) and (j<=4)then 

begin 
port := port + tk; j := j + 1; 

end 
else 

if (j > 4) and (tk in [1,2,4,8] ) then m( 5,1); 
until tk = corn; 
(* construct ISA assembler instruction *) 
coma := coma * 100 + port ;tk := token(f); 
if f=O then coma := coma*100 + int else m(ll,O); 
if token(f) <> corn then m(4,0); tk:= token(f); 
if f=O then coma := coma*IOO + int else m(II,O); 
inst := coma; 

end; 

procedure instruction; 
(* instruction line *) 
var lim : integer; 
begin 

Urn := 0; 
if tk <> rep then outpt(lim,inst,O) 
else 

end; 

begin 
repr(lim); outpt(lim,inst,O); 

end; 

procedure line ; 
(* process a general line *) 
var j,cl ,i,l: integer; 
begin 

j : = 9; 
if progm then 

(* line is in program *) 
repeat 

tk : = token ( f) ; 
if tk = repl then 

begin 
sindx := 0; 
repr(cl) ; 

if tk <> slbk then m(20,0); 
tk := token(f); instruction 
for i := I to (cl-I) 
do begin for 1 .- 1 to sindx do 

begin write(saveline[l]); 

end; 
writeln 

end; 
tk : = token ( f) ; 

if 1 < sindx then 
write(' ') 

if tk <> srbk then m(20,0); 
end 

else instruction; 
tk := token( f); 

329 



if (tk <> col) and (tk<>sem) and 
(tk <> aend) then m(4,0); 

until (tk - col) or- (tk-aend) 
else if data then 

(* line is from data *) 
repeat 

count : - 0; 
tk :- token( f); 
if j > B then j : - I; 
if (tk<>j) and (tk<>none) and (tk<>rep) 

and (tk <> repl) then m(B,O); 
if tk - repl then 
begin sindx :- 0; 

end 

repr(cl); 
if tk <> slbk then m(20,0); 
tk :- token(f);dline; 
for i :- I to cl-1 do 

begin 

end 

for I :- I to sindx do 
writeln(saveline[l); 

else dline; 
j:-j*2; 
if (tk<>col) and (tk<>sem) 

and (tk <> aend) then m(4,0); 
until (tk-col) or (tk - aend) 

else if selector then 
(* line is from selector *) 

begin 
tk :- token( f); 
if tk - repl then 

begin 
sindx :- 0; 
repr(cl); 
if tk <> slbk then m(20,0); 
tk :- token(f); sline; 
for i :- I to cl-l do 

begin for I :- 1 to sindx do 
begin write(saveline[l); 

if I < sindx then 
write(' ') 

end; 
writeln 

end; 
end 

else sline; 
end 

else m(l,l); 
end; 

procedure setup; 
(* decipher file header*) 
begin 

tk :- token( f); 
if f-O then n:- int else m(7,l); 
if token(f) <> corn then m(4,0); 
tk : - token ( f) ; 
if f-O then k :- int else m(7,1); 
write(k);writeln; 

end; 

procedure prog; 
(* process input file *) 
begin 

progm :- false; data:- false; selector :- false; 
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tk := token(f); 
(* decide file type *) 
if (tk<>p) and (tk<>s) and (tk<>d) then m(l,l) 
else 

case tk of 
p : progm := true; 
d : data := true; 
s : selector:=true; 

end; 
(* dimensions of ISA *) 
if token(f) <> lbk then m(2,0); 
setup; 
if token(f) <> rbk then m(3,0); 
statcount := 0; 
(* process lines of file *) 
repeat 

count := 0; 
line; 
if (tk<>aend) and (tk<>col) then m(4,0); 
statcount:= statcount + 1; 
if statcount>k then m(14,0); 

until tk = aend; 
(if errs = 0 then m(10,0) else m(9,0)} 

end; 

(* main program *) 

begin 
intialise; 
prog; 

99 :end. 
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APPEND I X I 11 

RISAL PROGRAM LISTINGS 



p(4,34) 
{ NO. 6.2.1 } 
{ Program for matrix transpose 4*4 } 
data n,3,0; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; nulll ,0,0: 
rep(4) data n,3,0 : 
null ,0,0; rep(3) data n,3,0: 
rep(2) null,O,O; rep(2) data n,3,0: 
rep(3) null ,0,0; data n,3,0: 
rep(4) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
data n,3,0; rep(3) null,O,O: 
data 5,5,0; null,O,O; data e,4,0; data w,6,0: 
data e,4,0; data w,6,0; data n,3,0; null ,0,0: 
rep(2) null,O,O; data 5,5,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0 : 
data n,3,0; data e,4,0;data w,6,0; null ,0,0: 
data 5,5,0; data n,3,0; data e,4,0; data w,6,0: 
data n,3,0; data 5,5,0; rep(2) null ,0,0: 
data 5,5,0; data n,3,0; rep(2) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data 5,5,0; null ,0,0; data e,4,0; data w,6,0: 
rep(2) data 5,5,0; rep(2) null ,0,0: 
rep(3) data s,5,0; null ,0,0: 
repl(2)[rep(4) data 5,5,0]: 
null ,0,0; rep(3) data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(4) null ,0,0 
end 

d(4,34) 
{ NO. 6.2.1 } 
{ Data file for matrix transpose 4*4 } 
n 13.0,0.0,0.0,0.0; 
none;none;none: 
n 9.0,14.0,0.0,0.0; 
none;none;none: 
n 5.0,10.0,15.0,0.0; 
none;none;none: 
n 1.0,6.0,11.0,16.0; 
none;none;none: 
n 0.0,2.0,7.0,12.0; 
none;none;none: 
n 0.0,0.0,3.0,8.0; 
none;none;none: 
n 0.0,0.0,0.0,4.0; 
none;none;none: 
repl(27)[rep(4) none] 
end 
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s(4,34) 
{ NO. 6.2.1 } 
{ Selector file for matrix transpose 4*4 } 
1,0,0,0: 
1,1,0,0: 
1,1,1,0: 
1,1,1,1: 
repl(3)[O,O,O,O): 
repl(2)[l, rep(3) 0): 
0,0,1,0: 
rep ( 3) 1, 0: 
1, rep ( 3) 0 : 
1,0,1,1: 
rep(3) 1, 0: 
repl(2)[l,l,O,O): 
0,1,0,0: 
1,1,0,0: 
0,1,1,0: 
rep(4)1: 
rep ( 3) 1,0: 
rep ( 4) 1 : 
repl ( 3) [ 1 ,1, 0 , 0 J : 
repl(2)[rep(4)0): 
rep ( 3) 1,0: 
1,1,0,0: 
1,0,0,0: 
repl(4)[rep(4) 0): 
end 
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p(4,38) 
{ NO. 6.2.2 } 
{ Program for LU decomposition 4*4 matrix} 
{ load matrix} 
data n,3,O, rep(3) null n,O,O : 
rep(2) data n,3,O, rep(2) null n,O,O: 
rep(3) data n,3,O, null n,O,O 
rep(4) data n,3,0: 
{ start factorisation} 
mov 5,1,7, rep(3) data n,3,0: 
data n,3,O, mov 5,1,7, rep(2) data n,3,0: 
div ,7,3, data n,3,O, mov 5,1,7, data n,3,0: 
copy ,0,0, null ',0,0, data n,3,O, mov 5,1,7: 
null ,0,0, data w,6,O, null ,0,0, data n,3,0 
null ,0,0, mult ,3,6, data w,6,O, null ,0,0: 
null ,0,0, sub ,7,0 , mult ,3,6, data w,6,0 
null ,0,0, copy ,0,0, sub ,7,0, mult ,3,6 : 
null ,0,0; mov 5,1,7; copy ,0,0; sub ,7,0 : 
null ,0,0; data n,3,O, mov 5,1,7; copy ,0,0 
null ,0,0, div ,7,3; data n,3,0; mov 5,1,7: 
null ,0,0; copy ,0,0; null ,0,0, data n,3,0: 
rep(2) null ,0,0, data w,6,O, null ,0,0: 
rep(2) null ,0,0; mult ,3,6; data w,6,0: 
rep(2) null ,0,0, sub ,7,0; mult ,3,6: 
rep(2) null ,0,0; copy ,0,0; sub ,7,0: 
rep(2) null ,0,0, mov 5,1,7, copy ,0,0: 
rep(2) null ,0,0; data n,3,O, mov 5,1,7: 
rep(2) null ,0,0, div ,7,3, data n,3,0 
rep(2) null ,0,0, copy ,0,0, null ,0,0 : 
rep(3) null ,0,0; data w,6,0: 
rep(3) null ,0,0; mult ,3,6: 
rep(3) null ,0,0; sub ,7,0: 
rep(3) null ,0,0, copy ,0,0: 
{ read result} 
data 5,5,0 , rep(3) null ,0,0: 
rep(2) data 5,5,0, rep(2) null,O,O: 
rep(3) data 5,5,0, nu1l,0,0: 
repl(3)[rep(4) data 5,5,OJ: 
null ,0,0, rep(3) data 5,5,0: 
rep(2) null ,0,0, rep(2) data 5,5,0: 
rep(3) null ,0,0, data 5,5,0: 
rep(4) null ,0,0 
end 

d(4,38) 
{ NO. 6.2.2 } 
{ Data file for LU decomposition 4*4 matrix} 
n 3.0,0.0,0.0,0.0, 
none, none, none: 
n 2.0,4.0,0.0,0.0, 
none, none, none: 
n 4.0,2.0,1.0,0.0; 
none, none; none : 
n 2.0,1.0,5.0,2.0, 
none, none, none: 
n 0.0,3.0,2.0,1.0, 
none; none, none: 
n 0.0,0.0,3.0,3.0, 
none; none, none: 
n 0.0,0.0,0.0,2.0; 
none, none, none: 
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repl(31)[rep(4) none) 
end 

5(4,38) 
{ NO. 6. 2 • 2 I 
{ Selector file for LU decomposition 4*4 matrix I 
1, rep ( 3 ) 0 : 
rep(2)1, rep(2)0: 
rep(3)1, 0: 
rep(4)1 : 
rep(4)0 : 
o ,1,rep(2)0: 
o ,1,1,0: 
repl(S)[O, rep(3)l): 
repl(8)[rep(2) 0, rep(2)l): 
repl(8)[rep(3) 0, 1): 
repl ( 3) [ rep ( 4) 0): 
rep ( 4) 1: 
rep ( 3) 1,0: 
rep(2) 1, rep(2) 0 
1, rep ( 3) 0: 
repl(3)[rep(4) 0) 
end 
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p(4,34) 
( NO. 6.2. 3 ) 
( Program for 4*4 matrix-vector multiplication) 
(calculation) 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,7, ° : 
rep(4) mov ,0,7: 
rep ( 4) mov ,6, 1 : 
rep(4) mu1t n w,3,6: 
rep(4) add ,7,0: 
rep ( 4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mu1t n w,3,6: 
rep ( 4) add ,7, ° : 
rep ( 4) mov ,0, 7 : 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep ( 4) mov ,0,7: 
rep( 4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add, 7 ,0: 
rep ( 4) mov ,0, 7 : 
rep( 4) mov ,6,1:. 
rep(4) mult n w,3,6: 
rep ( 4) add ,7, ° : 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep ( 4) mov ,7, ° : 
rep(4) copy ,0,0: 
repl(4)[rep(4) null ,O,OJ 
end 

d(4,34) 
( NO. 6.2.3 
( Data file for 4*4 matrix-vector multiplication ) 
n 2.8,0.0,0.0,0.0;none;none;w 2.1,0.0,0.0,0.0: 
repl( 3) [rep( 4) noneJ: 
n 3.0,3.6,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0: 
repl(3)[rep(4) noneJ: 
n 2.0,4.8,4.0,0.0;none;none;w 5.0,0.0,0.0,0.0: 
repl(3)[rep(4) noneJ: 
n 5.1,6.0,3.0,4.2;none;none;w 6.6,0.0,0.0,0.0: 
rep1(3)[rep(4) noneJ: 
n 0.0,8.0,2.2,1.0;none;none;w 0.0,0.0,0.0,0.0: 
repl ( 3)[ rep ( 4) none J : 
n 0.0,0.0,6.1,0.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) noneJ: 
n 0.0,0.0,0.0,9.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(9)[rep(4) noneJ 

·end 
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5(4,34) 
{ NO. 6.2.3 } 
{ Selector file for 4*4 matrix-vector multiplication} 
repl(34)[l,rep(3)O) 
end 
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p(4,85) 
{ NO. 6.2. 4 } 
{ Program for 4*4 matrix-matrix multiplication } 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov .,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep ( 4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,8,0;rep(3) add ,7,0: 
mov ,0,8;rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,0;rep(2) add ,7,0: 
rep(2) mov ,0,8;rep(2) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mov ,0,8;mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,8,0: 
rep(4) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mov ,0,9;rep(3) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mov ,0,9;rep(2) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mov ,0,9;mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,10,0;rep(3) add ,9,0: 
mov ,0,10;rep(3) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,10,0;rep(2) add ,9,0: 
rep(2) mov ,0,10;rep(2) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,10,0;add ,9,0: 
rep(3) mav ,0,10;mov ,0,9: 
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rep(4) mov ,6,1: 
rep(4) mu1t n w,3,6: 
rep(4) add ,10,0: 
rep(4) mov ,0,10: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,10,0: 
rep(4) mov ,0,10: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,10,0: 
rep(4) mov ,0,10: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,10,0: 
rep(4) mov ,0,10: 
rep ( 4) mov ,6, 1 : 
rep(4) mov ,7,0: 
rep(4) copy ,0,0: 
rep(4) mov ,8,0: 
rep(4) copy ,0,0: 
rep(4) mov ,9,0: 
rep(4) copy ,0,0: 
rep(4) mov ,10,0: 
rep(4) copy ,0,0: 
rep(4) null ,0,0 
end 

d(4,85) 
( NO. 6. 2 • 4 ) 
( Data file for the 4*4 matrix-matrjx multiplication 
n 2.1,0.0,0.0,0.0;none;none;w 2.8,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,0.0,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0: 
rep1(3)[rep(4) none]: 
n 5.0,1.0,2.3,0.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 6.6,1.2,5.0,1.8;none;none;w 5.1,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.1,2.2,2.0,6.1;none;none;w 3.6,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,0.0,0.0,3.3;none;none;w 4.8,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 5.0,1.0,2.3,3.6;none;none;w 6.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 6.6,1.2,5.0,1.8;none;none;w 8.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.1,2.2,2.0,6.1;none;none;w 4.0,0.0,0.0,0.0: 
repl(3) [rep( 4) none]: 
n 3.0.,0.0,0.0,3.3;none;none;w 3.0,0.0,0.0,0.0: 
rep1(3)[rep(4) none]: 
n 5.0,1.0,2.3,3.6;none;none;w 2.2,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 6.6,1.2,5.0,1.8;none;none;w 6.1,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.1,2.2,2.0,6.1;none;none;w 4.2,0.0,0~0,0.0: 
rep1 ( 3 ) [ rep ( 4) none]: 
n 3.0,0.0,0.0,3.3;none;none;w 1.0,0.0,0.0,0.0: 
rep1(3)[rep(4) none]: 
n 5.0,1.0,2.3,3.6;none;none;w 0.0,0.0,0.0,0.0: 
rep1(3)[rep(4) none]: 
n 6.6,1.2,5.0,1.8;none;none;w 9.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.0,2.2,2.0,6.1;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
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n 0.0,0.0,0.0,3.3;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.0,0.0,0.0,3.6;none;none;w 0.0,0.0,0.0,0.0: 
repl(l2)[rep(4)none] 
end 

5(4,85) 
{ NO. 6.2.4 ] 
{ Selector file for the 4*4 matrix-matrix multiplication} 
repl(85) [l, rep( 3)0] 
end 
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p(4,147) 
{ NO. 6.3 } 
(program for the solution of linear systems 
data n,3,0; rep(3) null n,O,O : 
rep(2) data n,3,0; rep(2) null n,O,O: 
rep(3) data n,3,0; null n,O,O : 
rep(4) data n,3,0: 
{ start factorisation} 
mov 5,1,7; rep(3) data n,3,0: 
data n,3,0; mov 5,1,7; rep(2) data n,3,0: 
div ,7,3; data n,3,0; mov 5,1,7; data n,3,0: 
copy ,0,0; null ,0,0; data n,3,0; mov 5,1,7: 
null ,0,0; data w,6,0; null ,0,0; data n,3,0 
null ,0,0; mult ,3,6; data w,6,0; null ,0,0: 
null ,0,0; sub ,7,0 ; mult ,3;6; data w,6,0 
null ,0,0; copy ,0,0; sub ,7,0; mult ,3,6 : 
null ,0,0; mov 5,1,7; copy ,0,0; sub ,7,0 : 
null ,0,0; data n,3,0; mov 5,1,7; copy ,0,0 
null ,0,0; div ,7,3; data n,3,0; mov 5,1,7: 
null ,0,0; copy ,0,0; null ,0,0; data n,3,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; mult ,3,6; data w,6,0: 
rep(2) null ,0,0; sub ,7,0; mult ,3,6: 
rep(2) null ,0,0;' copy ,0,0; sub ,7,0: 
rep(2) null ,0,0; mov 5,1,7; copy ,0,0: 
rep(2) null ,0,0; data n,3,0; mov 5,1,7: 
rep(2) null ,0,0; div ,7,3; data n,3,0 
rep(2) null ,0,0; copy ,0,0; null ,0,0 : 
rep(3) null ,0,0; data w,6,0: 
rep(3) null ,0,0; mult ,3,6: 
rep(3) null ,0,0; sub ,7,0: 
mov 5,1,8; rep(2) null ,0,0; copy ,0,0: 
rep(4) null ,0,0: 
null ,0,0; mov 5,1,8; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; mov 5,1,7; null ,0,0; mov 5,1,8: 
rep(4) null ,0,0: 
rep(2) null ,0,0; mov 5,1,7; null ,0,0: 
{ read result} 
data 5,5,0 ; rep(3) null ,0,0: 
rep(2) data 5,5,0; rep(2) null,O,O: 
rep(3) data 5,5,0; null,O,O: 
repl(3)[rep(4) data 5,5,01: 
null ,0,0; rep(3) data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(4) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data n,3,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; mov 5,1,7; null ,0,0; data n,3,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; mov 5,1,7; null ,0,0: 
rep(4) null ,0,0: 
data n,3,0; rep(2) null ,0,0; mov 5,1,7: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
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null n,O,O; data w,6,0; rep(2) null n,O,O: 342 
null n,O,Oi data n,3,0; rep(2) null n,O,O: 
rep(4) null n,O,O: 
null n,O,O; 5ub ,3 I 6 i rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
rep(4) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6, 0; rep(2) null n,O,O: 
null n,O,O; copy , ° , ° ; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,Oj data n,3,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; 5ub ,3 , 6 i null n,O,O: 
rep(2) null n,O,O; copy ,0 ,0 ; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; mult , 3 ,7; null n,O,O: 
rep(2) null n,O,O; add ,6,0 i null n,O,O: 
rep(2) null n,O,O; copy , ° , ° ; null n,O,O: 
rep(3) null n,O,O; data w,6,0: 
rep(3) null n,O,O; data n,3,0: 
rep(4) null n,O,O: 
rep(3) null n,O,O; 5ub , 3 ,6: 
rep(3) null n,O,O; copy , ° , ° : 
rep(3) null n,O,O; data 5,5,0: 
rep(3) null n,O,O; data 5,5,0: 
rep(3) null n,O,O; data 5,5,0: 
rep(2) null , 0 , 0 ; rep(2) data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
null n,O ,0; rep(3) data 5,5,0: 
rep(4) data 5,5,0: 
repl(4)[rep(4) null n,O,Oj: 
rep(3) null n,O,O; div , ° ,8 : 
rep(3) null n,O,O; copy , ° , ° : rep(4) null n,O,O: 
rep(3) null n,O,Oj data 5,5,0: 
rep(3) null n,O,O; mult ,5,8: 
rep(3) null n,O,O; copy , ° , ° : rep(2) null n,O,O; data e,4,0; null n,O,O: 
repl (2) [rep( 4) null n,O,Oj: 
rep(2) null n,O,O; 5ub ,0,4; null n,O,O: 
rep(2) null n,O,O; div I 0 , 8 i data 5,5,0: 
rep(2) null n,O,O; copy , ° , ° ; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; data 5,5,0: 
rep(2) null n,O,Oj copy ,0,0; mult ,5,8: 
rep(2) null n,O,O; mov 5,1,8; copy , ° , ° : rep(2) null n,O,O; data e,4,0; null , ° , 0: 
rep(2) null n,O,O; add ,4,8; null n,O,O: 
rep(2) null n,O,O; copy , ° , ° ; null n,O,O: 
null n,O,O; data e,4,O; rep(2) null n,O,O: 
rep(4) null n,O,O: 
rep(3) null n,O,O; data 5,5,0: 
null , ° , ° ; 5ub ,0,4; rep(2) null , ° , ° : null ,0,0; div ,0,8; data 5,5,0; null , ° , ° : null , ° , ° ; copy , ° , 0; rep(2) null , ° , 0 : 
rep(4) null ,0,0: 
null , ° , 0 ; data 5,5,0; rep(2) null ,0, ° : 
null , ° , ° ; mult ,5,8; data 5,5,0; null , 0 , ° : 
null , ° , ° ; copy , ° , 0 ; mult ,5,8; data 5,5,0: 
null , ° , ° ; mov 5,1,8; copy ,0,0; mult ,5,8: 
rep(2) null ,0,0; mov 5,1,8; copy ,0, ° : 
rep(2) null ,0,0; data e,4,0; null ,0, ° : 
rep(2) null ,0,0; add ,4,8; null ,0,0: 



rep(2) null ,0,0'; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
repl( 3)[ rep( 4) null, 0, 0]: 
rep(3) null ,0,0; data 5,5,0: 
rep(2) null ,0,0; rep(2) data s,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
null ,0,0; rep(3) data 5,5,0: 
null ,0,0; rep(3) data 5,5,0: 
rep(4) data 5,5,0 
end 

d(4,147) 
{ NO. 6. 3 } 
{ Data file for the solution of linear systems ) 
n 2.0,0.0,0.0,0.0; 
none; none; none: 
n 2.0,3.0,0.0,0.0; 
none; none; none: 
n 4.0,3.0,3.0,0.0; 
none; none; none : 
n 2.0,1.0,6.0,3.0; 
none; none; none: 
n 0.0,3.0,2.0,1.0; 
none; none; none: 
n 0.0,0.0,3.0,3.0; 
none; none; none: 
n 0.0,0.0,0.0,2.0; 
none; none; none: 
repl(39)[rep(4) none]: 
n 1.0,0.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,1.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,0.0,1.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,0.0,0.0,1.0; none;none;none: 
repl(3)[rep(4) none]: 
n 10.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,10.0,0.0,0.0; none;none;none: 
repl(9)[rep(4) none]: 
n 0.0,0.0,12.0,0.0; none;none;none: 
repl ( 9 ) [ rep ( 4) none]: 
n 0.0,0.0,0.0,11.0; none;none;none: 
repl(66)[rep(4) none] 
end 

5(4,147) 
{ NO. 6. 3 } 
{ Selector file for the solution of linear systems } 
1, rep(3)0 : 
rep(2)1, rep(2)0: 
rep(3)1, 0: 
rep(4)1 : 
rep(4)0 : ° ,1,rep(2)0: ° ,1,1,0: 
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repl(S)[O, rep(3)1): 
repl(8)[rep(2) 0, rep(2)1): 
repl(7)[rep(3) 0, 1): 
1,0,0,1: 
1,0,0,0: 
repl(2)[1,1,0,0): 
repl(2)[0,1,1,0): 
repl(2)[0,0,1,1): 
repl(2)[0,0,0,1): 
repl(2)[rep(4) 0): 
rep ( 4) 1: 
rep(3) 1,0: 
rep(2) 1, rep(2) ° 
1, rep ( 3) 0: 
repl(3)[rep(4) 0): 
repl(2)[1,0,0,0): 
repl(2)[1,1,0,0): 
1,1,1,0: 
0,0,1,0: 
0,1,0,1: 
0,0,0,0: 
0,0,1,0: 
0,0,0,0: 
1,0,0,1: 
1,1,0,0: 
1,1,1,0: 
repl(2)[rep(4)1): 
rep(3)0,1: 
repl(2)[0,1,rep(2)0): 
rep(4)0: 
0,1,1,0: 
rep(4)0: 
0,0,1,1: 
1,0,1,1: 
rep(4)1: 
0, rep(3)1: 
rep(4)0: 
repl(2)[0,0,1,0): 
rep(4)0: 
0,0,1,1: 
rep(4)0: 
1,0,0,1: 
1,1,0,1: 
0,rep(3)1: 
0,0,1,1: 
rep(4)0: 
repl(2)[rep(3)0,1): 
rep(4)1: 
repl(4)[rep(3)1,0): 
1,1,0,0: 
1,rep(3)0: 
repl(4)[rep(4)0): 
repl(2)[rep(3)O,1): 
0,0,1,1: 
0,0,1,0: 
0,1,1,0: 
1,0,1,0: 
rep( 3) 1, 0: 
0,1,1,0: 
rep(4)0: 
0,0,1,1: 
0,0,1,0: 
repl(2)[0,1,1,0): 
repl(7)[0,1,0,0): 
1,1,1,0: 
1,1,0,0: 
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rep(4)0: 
0,1,1,0: 
0,1,0,0: 
rep1(2)[1,1,0,0]: 
repl(16)[l,0,0,0]: 
repl(3)[rep(4)0]: 
rep(4)1: 
1,1,1,0: 
repl(2)[1,1,0,0]: 
repl(2)[1,rep(3)0] 
end 
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p(4,300) 
{ NO. 6.4 
{ Program for finding the g-inver5e of a rec-matrix } 
data n,3,0; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
rep(4) data n,3,0 : 
null ,0,0; rep(3) data n,3,0: 
rep(2) null,O,O; rep(2) data n,3,0: 
rep(3) null ,0,0; data n,3,0: 
rep(4) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
data n,3,0; rep(3) null,O,O: 
data 5,5,0; null,O,O; data e,4,0; data w,6,0: 
data e,4,0; data w,6,0; data n,3,0; null ,0,0: 
rep(2) null,O,O; data 5,5,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0 : 
data n,3,0; data e,4,0;data w,6,0; null ,0,0: 
data 5,5,0; data n,3,0; data e,4,0; data w,6,0: 
data n,3,0; data 5,5,0; rep(2) null ,0,0: 
data 5,5,0; data n,3,0; rep(2) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; "data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data 5,5,0; null ,0,0; data e,4,0; data w,6,0: 
rep(2) data 5,5,0; rep(2) null ,0,0: 
rep(3) data 5,5,0; null ,0,0: 
rep(4) data 5,5,0: 
rep(4) data 5,5,0: 
null ,0,0; rep(3) data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(4) null ,0,0: 
{matrix multiplication 4x4} 
repl(3)[rep(4) null n,O,O): 
{calculation} 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,8,0;rep(3) add ,7,0: 
mov ,0,~;rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,0;rep(2) add ,7,0: 
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rep(2) mov ,0,8;rep(2) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mu1t n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mov ,0,8;mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mu1t n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mov ,0,9;rep(3) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mov ,0,9;rep(2) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mov ,0,9;mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(3) copy ,0,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
mov 5,1,7; data n,3,0; rep(2) null ,0,0: 
mov ,8,0; mov 5,1,7; data n,3,0; null ,0,0: 
copy ,0,0; mov ,8,0; mov 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0: 
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0: 
mov ,7,0; mov 5,1,7; data n,3,0; null ,0,0: 
copy ,0,0; mov ,7,0; mov 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0: 
div ,7,3; data n,3,0; copy ,0,0; null ,0,0: 
copy ,0,0; null ,0,0; data n,3,0; null ,0,0: 
null ,0,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; mult ,3,6; data w,6,0; null ,0,0: 
null ,0,0; 5ub ,7,0 ; mult ,3,6; null ,0,0: 
null ,0,0; copy ,0,0; 5ub ,7,0; null ,0,0: 
null ,0,0; mov 5,1,7; copy ,0,0; null ,0,0: 
null ,0,0; data n,3,0; mov 5,1,7; null ,0,0: 
null ,0,0; div ,7,3; data n,3,0; null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; mult ,3,6; null ,0,0: 
rep(2) null ,0,0; 5ub ,7,0; null ,0,0: 
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; mov 5,1,8; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0: 
rep(4) null ,0,0: 
data n,3,0;mov 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data n,3,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0: 
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rep(4) null ,0,0: 
null ,0,0; mov 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
data n,3,0; null ,0,0; mov 5,1,7; null ,0,0: 
{ start factorisation} 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) riull n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data 5,5,0; null n,O,O: 
null ,0, 0; sub ,0,4; rep ( 2) null ,0, ° : 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0, 0; copy, 0, 0; rep( 2) null ,0, 0: 
data e,4,0; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
( start factorisation) 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

,0 , ° : 
, 0, ° : , ° , ° : 

null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
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rep(2) null n,O,O; data s,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data s,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data s,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data s,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data s,5,0; 
null ,0,0; rep(2) data s,5,0; 
null ,0,0; rep(2) data s,5,0; 
rep(3) data s,5,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
{ start factorisation} 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

,0,0: 
, 0 , 0 : 
,0,0: 

null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null _n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data s,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data s,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data s,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data s,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0: 
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null ,0,0; rep(2) data s,5,0; null ,0,0: 
null ,0,0; rep(2) data s,5,0; null ,0,0: 
rep(3) data s,5,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
{ start .factorisation} 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; ·data n,3,0; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data s,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0;· null ,0,0: 
null n,O,O; data e,4,0; data s,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 

'null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data s,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data s,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data s,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data s,5,0; 
rep(3) data s,5,0; null ,0,0 
end 

d(4,300) 
{ NO. 6.4 } 

null 
null 
null 

,0,0: 
,0,0: 
,0,0: 

{ Data file for finding the g-inverse of a rec-matrix 
n 4.0,0.0,0.0,0.0; 
none;none;none: 
n 3.0,1.0,0.0,0.0; 
noneioone;none: 
n 2.0,2.0,1.0,0.0; 
none;none;none: 
n 1.0,0.0,2.0,0.0; 
none;none;none: 
n 0.0,4.0,1.0,0.0; 
none;none;none: 
n 0.0,0.0,3.0,0.0; 
none;none;none: 
n 0.0,0.0,0.0,0.0; 
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noneinoneinone: 
repl(27)[rep(4) none]: 
repl(3)[rep(4) none]: 
n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.0,4.0,O.O,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 3.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.0,O.0;none;none;w 4.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,l.0,2.0,O.0;none;none;w 4.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.0,4.0,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,l.0,2.0,O.0;none;none;w 3.0,0.0,0,0,0.0: 
repl(3)[rep(4) none]: 
n 2.0,4.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
rep1(3)[rep(4) none]: 
n 0.O,l.0,2.0,O.0;none;none;w O.O,O.O,O.O,O.O~ 
repl(3)[rep(4) none]: 
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(30)[rep(4) none]: 
n_1.0,O.O,O.O,O.0; none;none;none: 
nonei none; none; none: 
n 0.0,1.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,0.0,1.0,0.0; none;none;none: 

- repl(3)[rep(4) none]: 
n 1.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,4.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,3.0,0.0; none;none;none: 
repl(30)[rep(4) none]: 
n 2.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none]: 
n 3.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,2.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,2.0,0.0; none;none;none: 
repl(30)[rep(4) none]: 
n 4.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,1.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none] 
end 
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5(4,300) 
{ NO. 6.4 } 
{ Selector file for finding the g-inver5e of a rec-m~trix } 
1,0,0,0: 
1,1,0,0: 
1,1,1,0: 
1,1,1,1: 
repl ( 3) [ rep ( 4 ) 0 ] : 
repl(2)[1,rep(3)0]: 
0,0,1,0: 
rep ( 3) 1, 0: 
1, rep ( 3) 0 : 
1,0,1,1: 
rep(3) 1, 0: 
repl(2)[1,1,0,0]: 
0,1,0,0: 
1,1,0,0: 
0,1,1,0: 
rep(4)1: 
rep(3) 1,0: 
rep(4) 1 : 
repl(3)[1,1,0,0]: 
repl(2)[rep(4)0]: 
rep(3) 1,0: 
1,1,0,0: 
1,0,0,0: 
repl(4)[rep(4) 0]: 
repl( 57) [1,rep( 3)0]: 
1,0,0,0: 
0,0,0,0: 
0,1,0,0: 
1,0,1,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
1,1,0,0: 
1,0,0,0: 
0,0,0,0: 
0,1,0,0: 
0,1,1,0: 
repl(4)[0, rep(2)1,0]: 
repl(7)[rep(2) 0, 1,0]: 
1,0,1,0: 
1,0,0,0: 
repl(2)[1,1,0,0]: 
repl(2)[0,1,l,0]: 
repl(2)[1,0,1,0]: 
1,1,0,0: 
0,1,0,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
0,0,0,0: 
1,0,1,0: 
1,1,0,0: 
repl(2)[l,I,I,0]: 
0,1,1,0: 
repl(2)[0,1,0,0]: 
rep(4)0: 
repl(2)[0,0,1,0]: 
1,0,1,0: 
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0,1,1,0: 
repl( 5) [0,0,1,0): 
0,1,1,0: 
repl(7)[O,1,0,0): 
1,1,0,0: 
repl(11)[1,0,0,0): 
0,0,0,0: 
0,1,0,0: 
repl(5)[1,0,0,0): 
1,1,0,0: 
repl(2)[1,1,1,0): 
0,1,1,0: 
repl(2)[O,1,0,0): 
rep(4)0: 
repl(2)[O,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl(5)[O,0,1,0]: 
0,1,1,0: 
repl(7)[O,1,0,0]: 
1 , 1 , ° , ° : 
repl(11)[1,0,0,0): 
0,0,0,0: 
0,1,0,0: 
repl(5)[1,0,0,0]: 
1,1,0,0: 
repl(2)[1,1,1,0]: 
0,1,1,0: 
repl( 2) [0,1,0, 0): 
rep(4)0: 
repl(2)[O,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl ( 5) [0, 0,1, 0) : 
0,1,1,0: 
repl (7) [0,1, 0, 0) : 
1,1,0,0: 
repl(11)[1,0,0,O): 
0,0,0,0: 
0,1,0,0: 
repl(5)[l,0,0,0] : 
1,1,0,0: 
repl(2)[1,1,1,0]: 
0,1,1,0: 
repl (2) [0,1, 0, 0] : 
rep(4)0: 
repl ( 2 ) [ ° , ° , 1 , 0) : 
1,0,1,0: 
0,1,1,0: 
repl ( 5) [ ° , ° , 1 , ° ] : 
0,1,1,0: 
repl(7)[O,1,0,0]: 
1,1,0,0: 
repl(11)[1,0,0,0]: 
0,0,0,0: 
0,1,0,0: 
repl(4)[1,0,0,0] 
end 
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p(4,300) 
(NO. 6.5.1 part-1 ) 
{ Program for solution of a homogenous system of eqs. } 
data n,3,O, rep(3) null ,0,0: 
rep(2) data n,3,O, rep(2) null ,0,0: 
rep(3) data n,3,O, null ,0,0: 
rep(4) data n,3,0 : 
null ,0,0, rep(3) data n,3,0: 
rep(2) null,O,O, rep(2) -data n,3,0: 
rep(3) null ,0,0, data n,3,0: 
rep(4) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
data n,3,0; rep(3) null,O,O: 
data 5,5,0, null,O,O, data e,4,0; data w,6,0: 
data e,4,O, data w,6,O, data n,3,0; null ,0,0: 
rep(2) null,O,O; data 5,5,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,O, data w,6,0: 
null ,0,0, data e,4,O, data w,6,0; null ,0,0: 
data e,4,O, data w,6,0; data e,4,0; data w,6,0 : 
data n,3,O, data e,4,0;data w,6,0; null ,0,0: 
data 5,5,0; data n,3,O, data e,4,0; data w,6,0: 
data n,3,0; data 5,5,0; rep(2) null ,0,0: 
data 5,5,0, data n,3,O, rep(2) null ,0,0: 
null ,0,0, data 5,5,0; rep(2) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0, data e,4,0; data w,6,0; null ,0,0: 
data e,4,O, data w,6,O, data e,4,0; data w,6,0: 
null ,0,0; data e,4,O, data w,6,0; null ,0,0: 
data 5,5,0; null ,0,0; data e,4,O, data w,6,0: 
rep(2) data 5,5,0; rep(2) null ,0,0: 
rep(3) data 5,5,0; null ,0,0: 
rep(4) data 5,5,0: 
rep(4) data 5,5,0: 
null ,0,0; rep(3) data 5,5,0: 
rep(2) null ,0,0, rep(2) data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(4) null ,0,0: 
{matrix multiplication 4x4} 
repl(3)[rep(4) null n,O,O): 
(calculation) 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,7, ° : 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add, 7 ,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep ( 4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,8,0;rep(3) add ,7,0: 
mov ,0,8,rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ',8,O,rep(2) add ,7,0: 
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rep(2) mav ,0,8;rep(2) mav ,0,7: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mav ,0,8;mav ,0,7: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mav ,0,9;rep(3) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mav ,0,9;rep(2) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mav ,0,9;mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mav ,0,9: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(3) copy ,0,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
mov 5,1,7; data n,3,0; rep(2) null ,0,0: 
mov ,8,0; mov 5,1,7; data n,3,0; nutl ,0-,0: 
copy ,0,0; mov ,8,0; mov 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0: 
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0: 
mov ,7,0; mov 5,1,7; data n,3,0; null ,0,0: 
copy ,0,0; mov ,7,0; mov 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0: 
div ,7,3; data n,3,0; copy ,0,0; null ,0,0: 
copy ,0,0; null ,0,0; data n,3,0; null ,0,0: 
null ,0,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; mult ,3,6; data w,6,0; null _,0,0: 
null ,0,0; sub ,7,0 ; mult ,3,6; null ,0,0: 
null ,0,0; copy ,0,0; sub ,7,0; null ,0,0: 
null ,0,0; mov 5,1,7; copy ,0,0; null ,0,0: 
null ,0,0; data n,3,0; mov 5,1,7; null ,0,0: 
null ,0,0; div ,7,3; data n,3,0; null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; mult ,3,6; null ,0,0: 
rep(2) null ,0,0; sub ,7,0; null ,0,0: 
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; mov 5,1,8; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0: 
rep(4) null ,0,0: 
data n,3,0;mov 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data n,3,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0: 
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rep(4) null ,0,0: 
null ,0,0; mov 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
data n,3,O; null ,0,0; mov 5,1,7; null ,0,0: 
mu1t ,3,7; rep(3) null n,O,O: 
copy iO,O; rep(3) null n,O,O: 
null n,O,O; data w,6,O; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,O; null n,O,O: 
rep(2) null n,O,O; data n,3,O; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,O; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,O; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,O; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0;. rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 
data n,3,O; rep(3) null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

, 0 , 0 : 
,0,0: 
,0,0: 

null n,O,O; data w,6,O; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,O; null n,O,O: 
rep(2) null n,O,O; data n,3,O; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
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rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,O; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,O; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,O; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 
data n,3,O; rep(3) null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

, 0 , 0 : 
, 0 , 0 : 
,0,0: 

null n,O,O; data w,6,O; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,O; null n,O,O: 
rep(2) null n,O,O; data n,3,O; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,O; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,O; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,O; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 

null 
null 
null 

,0,0: 
, 0 , 0 : 
, 0 , 0 : 
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data n,3,O; rep(3) null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
null n,O,O; data w,6,O; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,O; null n,O,O: 
rep(2) null n,O,O; data n,3,O; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,O; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 

,rep(4) null ,0,0: 
'null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,O; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,O; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0 
end 

d(4,300) 
{ NO. 6.5.1 part-1 ) 

null 
null 
null 

,0,0: 
,0,0: 
,0,0: 

{ Data file for solution of a homogenous system of eqs. ) 
n 4.0,0.0,0.0,0.0; 
none;none;none: 
n 3.0,1.0,0.0,0.0; 
none;none;none: 
n 2.0,2.0,1.0,0.0; 
none;none;none: 
n 1.0,0.0,2.0,0.0; 
none;none;none: 
n 0.0,4.0,1.0,0.0; 
none;none;none: 
n 0.0,0.0,3.0,0.0; 
none;none;none: 
n 0.0,0.0,0.0,0.0; 
none;none;none: 
repl(27)[rep(4) none): 
repl(3)[rep(4) none): 
n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0: 
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repl(3)[rep(4) none]: 
n 2.0,4.0,O.O,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 3.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.0,O.0;none;none;w 4.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,l.0,2.0,O.'O;none;none;w 4.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.0,4.0,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.O,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,l.0,2.0,O.0;none;none;w 3.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 2.0,4.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.O,l.0,2.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(30)[rep(4) none]: 
n 1.0,0.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,1.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 1.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,4.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,3.0,0.0; none;none;none: 
repl(30)[rep(4) none]: 
n 2.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none]: 
n 3.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,2.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,2.0,0;0; none;none;none: 
repl(30)[rep(4) none]: 
n 4.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none]: 
n 0.0,1.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none]: 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none] 
end 

s(4,300) 
{ NO. 6.5.1 part-1 j 
{ Selecter file for solution of a homogenous system of eqs.j 
1,0,0,0: 
1 , 1 , 0 , 0 : 
1 , 1 , 1 , 0 : 
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1,1,1,1: 
repl (3) [rep( 4) 0) : 
repl(2)[1,rep(3)0): 
0,0,1,0: 
rep(3) 1, 0: 
1, rep ( 3) ° : 
1,0,1,1: 
rep(3) 1, 0: 
repl(2)[1,1,0,0): 
0,1,0,0: 
1,1,0,0: 
0,1,1,0: 
rep(4)1: 
rep(3) 1,0: 
rep(4) 1 : 
repl(3)[1,1,0,0): 
repl(2)[rep(4)0): 
rep(3) 1,0: 
1,1,0,0: 
1,0,0,0: 
repl(4)[rep(4) 0): 
repl(S7)[1,rep(3)0): 
1,0,0,0: 
0,0,0,0: 
0,1,0,0: 
1,0,1,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
1,1,0,0: 
1,0,0,0: 
0,0,0,0: 
0,1,0,0: 
0,1,1,0: 
repl(4)[0, rep(2)1,0): 
repl(7)[rep(2) 0, 1,0): 
1,0,1,0: 
1,0,0,0: 
repl(2)[1,1,0,0): 
repl(2)[0,1,1,0): 
repl(2)[1,0,1,0): 
1,1,0,0: 
0,1,0,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
0,0,0,0: 
1,0,1,0: 
1,1,0,0: 
repl(2)[1,1,1,0): 
0,1,1,0: 
repl(2)[0,1,0,0): 
rep(4)0: 
repl(2)[0,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl(S)[0,0,1,0): 
0,1,1,0: 
repl(7)[O,1,0,Oj: 
1,1,0,0: 
repl(11)[1,0,0,0): 
0,0,0,0: 
0,1,0,0: 
repl(S)[1,0,0,Oj: 
1,1,0,0: 
repl(2)[1,1,1,Oj: 

360 



0,1,1,0: 
rep1(2)[0,1,0,0): 
rep(4)0: 
repl(2)[0,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl ( 5) [ 0 , 0 , 1 , 0 ) : 
0,1,1,0: 
repl(7)[0,1,0,0): 
1,1,0,0: 
repl(ll)[l,O,O,O): 
0,0,0,0: 
o , 1 , 0 , 0 : 
repl(S)[l,O,O,O): 
1,1,0,0: 
repl(2)[1,1,1,0): 
0,1,1,0: 
repl(2)[0,1,0,0): 
rep(4)0: 
repl(2)[0,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl ( 5) [ 0,0,1,0) : 
0,1,1,0: 
repl(7)[0,1,0,0): 
1,1,0,0: 
repl(ll)[l,O,O,O): 
0,0,0,0: 
0,1,0,0: 
repl(S)[l,O,O,O): 
1,1,0,0: 
repl(2)[1,1,1,0): 
0,1,1,0: 
repl(2)[0,1,0,0): 
rep(4)0: 
rep1(2)[0,0,1,0): 
1,0,1,0: 
0,1,1,0: 
repl(S)[O,O,l,O): 
0,1,1,0: 
repl(7)[0,1,0,0]: 
1,1,0,0: 
repl(ll)[l,O,O,O): 
0,0,0,0: 
0,1,0,0: 
repl(4)[1,O,0,0) 
end 
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p(4,91) 
{ NO. 6.5.1 part-2 } 
{ Program for solution of a homogenous system of eqs: } 
repl(3)[rep(4) null n,O,O): 
{calculation} 
rep(4) mult n w,3,6: 
rep ( 4) add ,7, ° : 
rep(4) mov ,0,7: 
rep ( 4) mov ,6, 1 : 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep ( 4) mov ,0,7: 
rep ( 4) mov ,6, 1 : 
rep(4) mu1t n w,3,6: 
rep ( 4) add ,7, ° : 
rep(4) mov· ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,8,O,rep(3) add ,7,0: 
mov ,0,8,rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,O,rep(2) add ,7,0: 
rep(2) mov ,0,8;rep(2) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mov ,0,8;mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,9,O,rep(3) add ,8,0: 
mov ,0,9,rep(3) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,O,rep(2) add ,8,0: 
rep(2) mov ,0,9;rep(2) mov ,0,8: 
rep ( 4) mov ,6, 1 : 
rep(4) mult n w,3,6: 
rep(3) add ,9,O,add ,8,0: 
rep(3) mov ,0,9,mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep ( 4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mu1t n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mov ,7,0: 
rep(4) copy ,0,0: 
rep(4) mov ,8,0: 
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rep(4) copy ,0,0: 
rep(4) mov ,9,0: 
rep(4) copy ,0,0: 
rep(4) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
mov s,1,7; rep(2) data n,3,0; null ,0,0: 
data n,3,0; mov s,1,7; data n,3,0; null ,0,0: 
rep(2) data n,3,0; mov s,1,7; null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
mov s,1,8; rep(2) data n,3,0; null ,0,0: 
sub ,7,8; mov s,1,8; data n,3,0; null ,0,0: 
mov ,0,9; sub ,7,8; mov s,1,8; null ,0,0: 
data n,3,0; mov ,0,9; sub ,7,8; null ,0,0: 
mult ,3,9; data n,3,0; mov ,0,9; null ,0,0: 
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0: 
null ,0,0; mov ,0,10; mult ,3,9; null ,0,0: 
null ,0,0; data w,6,0; mov ,0,10; null ,0,0: 
null ,0,0; add ,6,10; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; add ,6,10; null ,0,0: 
rep(2) null ,0,0; copy ,0,0; null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0: 
rep(2) null ,0,0; data s,5,0; null ,0,0 
end 

d(4,91) 
( NO. 6.5.1 part-2 ) 
( Data file for solution of a homogenous system of eqs. 
repl(3)[rep(4) none): 
n 1.0,0.0,0.0,0.0;none;none;w -0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,0.0,0.0;none;none;w -0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,0.0,3.0,0.0;none;none;w 0.054902,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,1.0,0.0;none;none;w 0.282352,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,1.0,2.0,0.0;none;none;w 0.176471,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,1.0,0.0;none;none;w -0.823529,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,0.0,3.0,0.0;none;none;w -0.058824,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,1.0,0.0;none;none;w 0.411764,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,1.0,2.0,0.0;none;none;w 0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,1.0,0.0;none;none;w 1.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,0.0,3.0,0.0;none;none;w 0.145098,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,1.0,0.0;none;none;w -0.682353,0.0,0.0,0.0: 
repl(3)[rep(4) none}: 
n 0.0,1.0,2.0,0.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.0,0.0,1.0,0.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(10)[rep(4)none}: 
n 0.0, 0.0, 0.0, 0.0; 
none;none;none: 
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n 0.0, o .0, o . 0 , 0.0; 
none;none;none: 
n 1. 0, 1. 0, 1. 0, 0.0; 
none;none;none: 
n 0.0, o . 0 , o .0, 0.0; 
noneinoneinone: 
n 0.000011, o . 0 , 0.0, 0.0; 
none;none;none: 
n 0.000027, 0.000002, 0.0, 0.0; 
none;none;none: 
n 1.000024, 1.000008, 1.000002, 0.0; 
none;none;none: 
n 0.0, 0.000036, 0.000017, 0.0; 
none;none;none: 
n 0.0, 0.0, 0.000036, 0.0; 
none;none;none: 
none;none;none;none: 
n 1.0, 0.0, 0.0, 0.0; 
noneinoneinone: 
n 0.0, 0.0, 0.0, 0.0; 
none;none;none: 
n 0.0, 0.0, 1.0, 0.0; 
noneinoneinone: 
repl(12)[rep(4) none] 
end 

s(4,91) 
{ NO. 6.5.1 part-2 } 
{ Selector file for solution of a homogenous system of eqs. } 
repl(66)[l,rep(3)0]: 
l,rep(3)0: 
1,1,0,0: 
1,1,1,0: 
l,rep(3)0: 
1,1,0,0: 
rep(3)l,O: 
rep(3)l,O: 
l,rep(3)0: 
1,1,0,0: 
repl(9)[rep(3)l,O]: 
0,1,1,0: 
0,0,1,0: 
1,1,1,0: 
1,1,0,0: 
rep1(2)[l,O,O,O]: 
0,0,0,0 
end 
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p(4,91) 
{ NO. 6.5.1 part-2 } 
{ Program for solution of a homogenous system of eqs. 
repl(3)[rep(4) null n,O,O]: 
{calculation} 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep ( 4) mov ,6, 1 : 
rep(4) mult n w,3,6: 
rep ( 4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,G,l: 
rep(4) mult n w,3,G: 
rep ( 4) add ,7,0: 
rep ( 4) mov ,0, 7 : 
rep(4) mov ,G,l: 
rep(4) mult n w,3,G: 
add ,8,0;rep(3) add ,7,0: 
mov ,0,8;rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,0;rep(2) add ,7,0: 
rep(2) mov ,0,8;rep(2) mov ,0,7: 
rep ( 4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mov ,0,8;mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mov ,0,9;rep(3) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mov ,0,9;rep(2) mov ,0,8: 
rep ( 4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mov ,0,9;mov ,0,8: 
rep ( 4) mov ,6, 1 : 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep ( 4) mov ,0, 9 : 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep ( 4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mov ,7,0: 
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rep(4) copy ,0,0: 
rep(4) moY ,8,0: 
rep(4) copy ,0,0: 
rep(4) moY ,9,0: 
rep(4) copy ,0,0: 
rep(4) null ,0,0: 
data n,3,O; rep(3) null ,0,0: 
rep(2) data n,3,O; rep(2) null ,0,0: 
rep(3) data n,3,O; null ,0,0: 
moy 5,1,7; rep(2) data n,3,O; null ,0,0: 
data n,3,O; moy 5,1,7; data n,3,O; null ,0,0: 
rep(2) data n,3,O; mOY 5,1,7; null ,0,0: 
rep(3) data n,3,O; null ,0,0: 
moy 5,1,8; rep(2) data n,3,O; null ,0,0: 
sub ,7,8; moy 5,1,8; data n,3,O; null ,0,0: 
moy ,0,9; sub ,7,8; moy 5,1,8; null ,0,0: 
data n,3,O; moy ,0,9; sub ,7,8; null ,0,0: 
mult ,3,9; data n,3,O; mov ,0,9; null ,0,0: 
copy ,0,0; mult ,3,9; data n,3,O; null ,0,0: 
null ,0,0; moy ,0,10; mult ,3,9; null ,0,0: 
null ,0,0; data w,6,O; mov ,0,10; null ,0,0: 
null ,0,0; add ,6,10; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,O; null ,0,0: 
rep(2) null ,0,0; add ,6,10; null ,0,0: 
rep(2) null ,0,0; copy ,0,0; null ,0,0: 
rep(2) null ,0,0; data 5,5,0; null ,0,0: 
rep(2) null ,0,0; data 5,5,0; null ,0,0: 
rep(2) null ,0,0; data 5,5,0; null ,0,0: 
rep(2) null ,0,0; data 5,5,0; null ,0,0: 
rep(2) null ,0,0; data 5,5,0; null ,0,0 
end 

d(4,91) 
{ NO. 6.5.1 part-2 } 
{ Data file for solution of a homogenous system of eqs. } 
repl(3)[rep(4) none): 
n 1.0,O.O,O.O,O.0;none;none;w -0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,O.O,O.0;none;none;w -0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,O.O,3.0,O.0;none;none;w 0.054902,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,l.0,O.0;none;none;w 0.282352,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,l.0,2.0,O.0;none;none;w 0.176471,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,l.0,O.0;none;none;w -0.823529,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,O.O,3.0,O.0;none;none;w -0.058824,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,l.0,O.0;none;none;w 0.411764,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,l.0,2.0,O.0;none;none;w 0.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 2.0,4.0,l.0,O.0;none;none;w 1.098039,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 3.0,O.O,3.0,O.0;none;none;w 0.145098,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 4.0,2.0,l.0,O.0;none;none;w -0.682353,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,l.0,2.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(10)[rep(4)none): 
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n 0.0, 0.0, 0.0, 0.0; 
nonejnOneinone: 
n 0.0, o .0, 0.0, o . 0 ; 
none;none;none: 
n 1. 0, 1. 0, 1. 0, 0.0; 
none;none;none: 
n o .0, o .0, 0.0, 0.0; 
none;none;none: 
n 0.000011, 0.0, 0.0, 0.0; 
none;none;none: 
n 0.000027, 0.000002, 0.0, 0.0; 
none;none;none: 
n 1.000024, 1.000008, 1.000002, 0.0; 
none;none;none: 
n 0.0, 0.000036, 0.000017, 0.0; 
nonejnonejnone: 
n 0.0, 0.0, 0.000036, 0.0; 
none;none;none: 
none;none;none;none: 
n 1.0, 0.0, 0.0, 0.0; 
nonejnonejnone: 
n 0.0, 0.0, 0.0, 0.0; 
nonejnOneinone: 
n 0.0, 0.0, 1.0, 0.0; 
none;none;none: 
repl(12)[rep(4) none] 
end 

s(4,91) 
{ NO. 6.5.1 part-2 } 
{ Selector file for solution of a homogenous system of eqs. } 
repl(66)[l,rep(3)0]: 
l,rep(3)0: 
1,1,0,0: 
1,1,1,0: 
I, rep ( 3) 0 : 
1,1,0,0: 
rep(3)l,O: 
rep(3)l,O: 
l,rep(3)0: 
1,1,0,0: 
rep1(9)[rep(3)l,O]: 
0,1,1,0: 
0,0,1,0: 
1,1,1,0: 
1,1,0,0: 
repl(2)[l,O,O,O]: 
0,0,0,0 
end 
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p(4,300) 
{ NO. 6.5.2 part-1 } 
{ program for the most general solution of a system of eq5. } 
data n,3,0; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
rep(4) data n,3,0 : 
null ,0,0; rep(3) data n,3,0: 
rep(2) null,a,O; rep(2) data n,3,0: 
rep(3) null ,0,0; data n,3,0: 
rep(4) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
data n,3,0; rep(3) null,O,O: 
data 5,5,0; null,O,O; data e,4,0; data w,6,0: 
data e,4,0; data w~6,0; data n,3,0; null ,0,0: 
rep(2) null,O,O; data 5,5,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0 : 
data n,3,0; data e,4,0;data w,6,0; null ,0,0: 
data 5,5,0; data n,3,0; data e,4,0; data w,6,0: 
data n,3,0; data 5,5,0; rep(2) null ,0,0: 
data 5,5,0; data n,3,0; rep(2) null ,0,0: 
null ,o,oi data 5,5,0; rep(2) null ,0,0: 
data e,4,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data e,4,0; data w,6,0; data e,4,0; data w,6,0: 
null ,0,0; data e,4,0; data w,6,0; null ,0,0: 
data 5,5,0; null ,0,0; data e,4,0; data w,6,0: 
rep(2) data 5,5,0; rep(2) null ,0,0: 
rep(3) data 5,5,0; null ,0,0: 
rep(4) data 5,5,0: 
rep(4) data 5,5,0: 
null ,0,0; rep(3) data 5,5,0: 
rep(2) null ,0,0; rep(2) data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(4) null ,0,0: 
{matrix multiplication 4x4} 
repl(3)[rep(4) null n,O,O]: 
{calculation} 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) may ,0,7: 
rep(4) may ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) may ,0,7: 
rep(4) may ,6,1: 
rep(4) mult n w,~,6: 
rep(4) add ,7,0: 
rep(4) may ,0,7: 
rep(4) moy ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) may ,0,7: 
rep(4) moY ,6,1: 
rep(4) mult n w,3,6: 
add ,8,0;rep(3) add ,7,0: 
moY ,0,8;rep(3) may ,0,7: 
rep(4) moy ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,0;rep(2) add ,7,0: 
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rep(2) mav ,0,8;rep(2) mav ,0,7: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mav ,0,8;mav ,0,7: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mav ,0,9;rep(3) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mav ,0,9;rep(2) mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mav ,0,9;mav ,0,8: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mav ,0,9: 
rep(4) mav ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mav ,0,9: 
rep(4) may ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(3) copy ,0,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
may 5,1,7; data n,3,0; rep(2) null ,0,0: 
may ,8,0; may 5,1,7; data n,3,0; null ,0,0: 
copy ,0,0; may ,8,0; may 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0: 
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0: 
may ,7,0; mav 5,1,7; data n,3,0; null ,0,0: 
copy ,0,0; may ,7,0; may 5,1,7; null ,0,0: 
data n,3,0; copy ,0,0; may ,7,0; null ,0,0: 
div ,7,3; data n,3,0; copy ,0,0; null ,0,0: 
copy ,0,0; null ,0,0; data n,3,0; null ,0,0: 
null ,0,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; mult ,3,6; data w,6,0; null ,0,0: 
null ,0,0; 5ub ,7,0 ; mult ,3,6; null ,0,0: 
null ,0,0; copy ,0,0; 5ub ,7,0; null ,0,0: 
null ,0,0; mav 5,1,7; copy ,0,0; null ,0,0: 
null ,0,0; data n,3,0; mav 5,1,7; null ,0,0: 
null ,0,0; div ,7,3; data n,3,0; null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; mult ,3,6; null ,0,0: 
rep(2) null ,0,0; 5ub ,7,0; null ,0,0: 
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; may 5,1,8; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mav 5,1,7; null ,0,0; may 5,1,8; null ,0,0: 
rep(4) null ,0,0: 
data n,3,0;mav 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data n,3,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
mav 5,1,7; null ,0,0; data n,3,0; null ,0,0: 

369 



rep(4) null ,0,0: 
null ,0,0; mov 5,1,7; rep(2) null ,0,0: 
rep(4) null ,0,0: 
data n,3,0; null ,0,0; mov 5,1,7; null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null .,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
{ start factorisation} 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

,0,0: 
, 0 , 0 : 
, 0 , 0 : 

null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
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rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data 5,5,0; null n,O,O: 
null ,0,0; 5ub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
5ub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 

null 
null 
null 

, ° , ° : 
, 0, ° : 
,0 ,0: 

null n,O,O; data w,6,0; rep(2) null n,O,O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; 5ub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O;O: 
null n,O,O; data n,3,0; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,0; null n,O,O: 
rep(2) null n,O,O; data n,3,0; null n,O,O: 
rep(2) null n,O,O; 5ub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,0; data 5,5,0; null n,O,O: 
null ,0,0; 5ub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0, 0; copy ,0, 0; rep ( 2) null ,0, ° : 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,0; rep(3) null ,0,0: 
5ub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; 
null ,0, 0; rep( 2) 
null ,0,0; rep(2) 

data 
data 
data 

5,5,0; 
5,5,0; 
5,5,0; 

null 
null 
null 

, ° , ° : , ° , 0: 
, 0, ° : 
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rep(3) data 5,5,0; null ,0,0: 
data n,3,O; rep(3) null ,0,0: 
mult ,3,7; rep(3) null n,O,O: 
copy ,0,0; rep(3) null n,O,O: 
null n,O,O; data w,6,O; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; sub ,3,6; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
null n,O,O; data n,3,O; rep(2) null n,O,O: 
null n,O,O; mult ,3,7; rep(2) null n,O,O: 
null n,O,O; add ,6,0; rep(2) null n,O,O: 
null n,O,O; copy ,0,0; rep(2) null n,O,O: 
rep(2) null n,O,O; data w,6,O; null n,O,O: 
rep(2) null n,O,O; data n,3,O; null n,O,O: 
rep(2) null n,O,O; sub ,3,6; null n,O,O: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(2) null n,O,O; div ,0,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null n,O,O: 
rep(4) null n,O,O: 
rep(2) null n,O,O; data 5,5,0; null n,O,O: 
rep(2) null n,O,O; mult ,5,8; null ,0,0: 
rep(2) null n,O,O; copy ,0,0; null ,0,0: 
null n,O,O; data e,4,O; data 5,5,0; null n,O,O: 
null ,0,0; sub ,0,4; rep(2) null ,0,0: 
null ,0,0; div ,0,8; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0: 
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0: 
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0: 
null ,0,0; data e,4,O; rep(2) null ,0,0: 
null ,0,0; add ,4,9; rep(2) null ,0;0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
data e,4,O; rep(3) null ,0,0: 
sub ,0,4; rep(3) null ,0,0: 
div ,0,8; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(2) null ,0,0; data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
null ,0,0; rep(2) data 5,5,0; 
rep(3) data 5,5,0; null ,0,0 
end 

d(4,300) 
{ NO. 6.5.2 part-1 } 

null 
null 
null 

, 0 , 0 : 
, 0 , 0 : 
, 0 , 0 : 

{ Data file for the most general solution of a system of,eqs. } 
n 0.0,0.0,0.0,0.0; 
noneinoneinone: 
n 1.0,0.0,0.0,0.0; 
none;none;none: 
n 0.0,1.0,1.0,0.0; 
none;none;none: 
n 1.0,1.0,1.0,0.0; 
none;none;none: 
n 0.0,0.0,1.0,0.0; 
none;none;none: 
n 0.0,0.0,1.0,0.0; 
none;none;none: 
n 0.0,0.0,0.0,0.0; 
noneinoneioone: 
repl(27)[rep(4) none]: 
repl(3)[rep(4) none]: 
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n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n O.O,O.O,O.O,O.O;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,l.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n O.O,O.O,l.O,O.O;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl ( 3) [ rep ( 4) none): 
n 0.O,l.0,l.O,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 1.0,O.O,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,O.O,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl ( 3 ) [ rep ( 4) none): 
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,1.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0: 
repl(3) [rep(4) none): 
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) none): 
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0: 
repl ( 30) [ rep ( 4) none): 
(new data) 
n 1.0,0.0,0.0,0.0; none;none;none: 
none; none; none; none: 
n 0.0,1.0,0.0,0.0; non~;none;none: 
none; none; none; none: 
n 0.0,0.0,1.0,0.0; none;none;none: 
rep1(3)[rep(4) none): 
n 1.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none): 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none): 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none!: 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none): 
n 0.0,1.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none): 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none): 
n 1.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none): 
n 0.0,1.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none): 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl (30)[ rep( 4) none): 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(3)[rep(4) none): 
n 0.0,0.0,0.0,0.0; none;none;none: 
repl(7)[rep(4) none): 
n 0.0,0.0,1.0,0.0; none;none;none: 
repl(30)[rep(4) none] 
end 

5(4,300) 
( NO. 6.5.2 part-1 ) 
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1,0,0,0: 



1,1,0,0: 
1 , 1 , 1 , 0 : 
1,1,1,1: 
rep1(3)[rep(4)0]: 
rep1(2)[l,rep(3)0]: 
0,0,1,0: 
rep(3) I, 0: 
1, rep ( 3) 0 : 
1,0,1,1: 
rep(3) 1, 0: 
repl(2)[l,l,O,O]: 
0,1,0,0: 
1,1,0,0: 
0,1,1,0: 
rep(4)1: 
rep(3) 1,0: 
rep ( 4) 1 : 
repl (3) [1,1,0,0] : 
repl(2)[rep(4)0]: 
rep ( 3) 1,0: 
1,1,0,0: 
1,0,0,0: 
repl(4)[rep(4) 0]: 
repl(57)[l,rep(3)0]: 
1 , 0 , 0 , 0 : 
0,0,0,0: 
0,1,0,0: 
1,0,1,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
1,1,0,0: 
1 , 0 , 0 , 0 : 
0,0,0,0: 
0,1,0,0: 
0,1,1,0: 
repl(4)[O, rep(2)l,O]: 
repl(7)[rep(2) 0, 1,0]: 
1,0,1,0: 
1,0,0,0: 
repl(2)[l,l,O,O]: 
repl(2)[O,l,l,O]: 
repl(2)[l,O,l,O]: 
1,1,0,0: 
0,1,0,0: 
1,0,1,0: 
0,0,0,0: 
0,1,0,0: 
0,0,0,0: 
1,0,1,0: 
1 , 1 , 0 , 0 : 
repl(2)[l,l,l,O]: 
0,1,1,0: 
repl(2)[O,l,O,O]: 
rep(4)0: 
repl(2)[O,O,l,O]: 
1,0,1,0:. 
0,1,1,0: 
repl(5)[O,O,l,O]: 
0,1,1,0: 
repl(7)[O,l,O,O]: 
1,1,0,0: 
repl(ll)[l,O,O,O]: 
o , 0 , 0 , 0 : 
0,1,0,0: 
repl(5)[l,O,O,O]: 
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1,1,0,0: 
rep1(2)[l,1,1,0): 
0,1,1,0: 
rep1(2)[O,1,0,0): 
rep(4)0: 
rep1(2)[O,0,1,0): 
1,0,1,0: . 
0,1,1,0: 
repl(5)[O,0,1,0): 
0,1,1,0: 
repl(7)[O,1,0,0): 
1,1,0,0: 
repl(ll)[l,O,O,O): 
0,0,0,0: 
0,1,0,0: 
repl(5)[l,0,0,0): 
1,1,0,0: 
repl(2)[l,1,1,0): 
0,1,1,0: 
repl(2)[O,1,0,0): 
rep(4)0: 
repl(2)[O,O,l,0): 
1,0,1,0: 
0,1,1,0: 
repl(5)[O,0,l,O): 
0,1,1,0: 
rep1(7)[O,l,0,0): 
1,1,0,0: 
repl(ll)[l,O,O,O): 
0,0,0,0: 
0,1,0,0: 
repl(5)[l,O,0,0): 
1,1,0,0: 
rep 1 (2) [1,1,1,0) : 
0,1,1,0: 
repl(2)[O,l,O,O): 
rep(4)0: 
repl(2)[O,O,l,O): 
1,0,1,0: 
0,1,1,0: 
repl(5)[O,O,l,0): 
0,1,1,0: 
repl(7)[O,l,O,O): 
1,1,0,0: 
repl(ll)[l,O,O,O): 
o , 0 , 0 , 0 : 
0,1,0,0: 
repl(4)[1,0,0,0) 
end 
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p(4,108) 
{ NO. 6.5.2 part-2 } 
{ Program for the most general solution of a system of eqs. } 
repl(3)[rep(4) null n,O,OJ: 
{calculation} 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,7,0: 
rep(4) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,8,0;rep(3) add ,7,0: 
mov ,0,8;rep(3) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,8,0;rep(2) add ,7,0: 
rep(2) mov ,0,8;rep(2) mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,8,0;add ,7,0: 
rep(3) mov ,0,8;mov ,0,7: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,8,0: 
rep(4) mov ,0;8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
add ,9,0;rep(3) add ,8,0: 
mov ,0,9;rep(3) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(2) add ,9,0;rep(2) add ,8,0: 
rep(2) mov ,0,9;rep(2) mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(3) add ,9,0;add ,8,0: 
rep(3) mov ,0,9;mov ,0,8: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mult n w,3,6: 
rep(4) add ,9,0: 
rep(4) mov ,0,9: 
rep(4) mov ,6,1: 
rep(4) mov ,7,0: 
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rep(4) copy ,0,0: 
rep(4) mov ,8,0: 
rep(4) copy ,0,0: 
rep(4) mov ,9,0: 
rep(4) copy ,0,0: 
rep(4) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
mov 5,1,7; rep(2) data n,3,0; null ,0,0: 
data n,3,0; mov 5,1,7; data n,3,0; null ,0,0: 
rep(2) data n,3,0; mov 5,1,7; null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
mov 5,1,8; rep(2) data n,3,0; null ,0,0: 
5ub ,7,8; mov 5,1,8r data n,3,0; null ,0,0: 
mov ,0,9; 5ub ,7,8; mov 5,1,8; null ,0,0: 
data n,3,0; mov ,0,9; 5ub ,7,8; null ,0,0: 
mult ,3,9; data n,3,0; mav ,0,9; null ,0,0: 
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0: 
null ,0,0; mov ,0,10; mult ,3,9; null ,0,0: 
null ,0,0; data w,6,0; mov ,0,10; null ,0,0: 
null ,0, 0; add ,6,10; rep ( 2) null ,0, ° : 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; add ,6,10; null ,0,0: 
data n,3,0; null ,0,0; mov ,0,10; null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
mov 5,1,7; rep(3) data n,3,0: 
data n,3,0; mov 5,1,7; rep(2) data n,3,0: 
mult ,3,7; data n,3,0; mov 5,1,7; data n,3,0: 
copy ,0,0; mult ,3,7; data n,3,0; mov 5,1,7: 
null ,0,0; mov ,0,8; mult ,3,7; data n,3,0: 
null ,0,0; data w,6,0; mov ,0,8; mult ,3,7: 
null ,0,0; add ,6,8; null ,0,0; mov ,0,8: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; add ,6,8; null ,0,0: 
rep(2) null ,0,0; add ,0,10; null ,0,0: 
rep(2) null ,0,0; copy ,0,0; null ,0,0: 
rep(3) null ,0,0; data w,6,0: 
rep(3) null ,0,0; add ,6,8: 
rep(3) null ,0,0; copy ,0,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(3) null ,0,0; data 5,5,0: 
rep(3) null ,0,0; data 5,5,0 
end 

d(4,108) 
{ NO. 6.5.2 part-2 } 
{ Data file for the m05t general 50lution of a 5y5tem of eq5. } 
repl(3)[rep(4) none]: 
n 1.0,0.0,0.0,0.0;none;none;w 0.5,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n O.O,O.O,O.O,O.O;none;none;w -0.5,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,1.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.0,1.0,1.0,0.0;none;none;w -0.5,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 1.0,0.0,1.0,0.0;none;none;w -0.5,0.0,0.0,0.0: 
repl(3)[rep(4) none]: 
n 0.0,0.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0: 
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repl(3)[rep(4) nonel: 
n 1.0,1.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n O.O,l.O,l.O,O.O;none;none;w -0.5,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n 1.0,0.0,1.0,0.0;none;none;w 0.25,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n O.O,O.O,l.O,O.O;none;none;w 0.25,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n 1.0,1.0,1.0,0.0;none;none;w -0.25,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n O.O,l.O,l.O,O.O;none;none;w 0.75,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n O.O,O.O,l.O,O.O;none;none;w 0.0,0.0,0.0,0.0: 
repl(3)[rep(4) nonel: 
n O.O,O.O,l.O,O.O;none;none;w 0.0,0.0,0.0,0.0: 
repl(10)[rep(4)nonel: 
n 0.0, 0.0, 0.0, 0.0; 
noneinoneinone: 
n 0.0, ° . ° , 0. ° , 0.0; 
none;none;none: 
n 1. 0, 1. 0, 1. 0, 0. 0; 
none;none;none: 
n 0. ° , 0. ° , 0. ° , o . ° ; 
noneinonejnone: 
n 0.0, 0.0, 0.0, 0.0; 
noneinoneinone: 
n ° . ° , 0.0, 0.0, 0.0; 
none;none;none: 
n 1. 0, 1. 0, 1. ° , o . ° ; 
noneinoneinone: 
n ° . ° , 0.0, 0. ° , 0.0; 
none;none;none: 
n 0.0, 0. ° , 0.0, 0.0; 
none;none;none: 
noneinoneinoneinone: 
n 1.0, 0.0, 0.0, 0.0; 
noneinOnejnone: 
n 0.0, 1.0, 0.0, 0.0; 
nonejnonejnone: 
n 0.0, 0.0, 1.0, 0.0; 
nonejnonejnone: 
repl(6)[rep(4) nonel: 
n 0.25, 0.0, 0.0, 0.0; 
none;none;none: 
n -0.5, 0.25, 0.0, 0.0; 
none;none;none: 
n 0.5, 0.5, -0.25, 0.0; 
none inane inane: 
n 0.0, -0.5, 0.5, 0.75; 
none;none;none: 
n 2.0, 0.0, 0.5, -0.5; 
noneinoneinone: 
n 0.0, 2.0, 0.0, -0.5; 
none;none;none: 
n 0.0, 0.0, 2.0, 0.0; 
none;none;none: 
n 0.0, 0.0, 0.0, 2.0; 
none;none;none: 
repl(15)[rep(4) nonel 
end 
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s(4,108) 
{ NO. 6.5.2 part-2 } 
{ Selector file for the most general solution of a sy'stem of eqs.} 
repl(66)[1,rep(3)0]: 
1,rep(3)0: 
1,1,0,0: 
1 , 1 , 1 , 0 : 
1,rep(3)0: 
1,1,0,0: 
rep(3)1,0: 
rep(3)1,0: 
1,rep(3)0: 
1,1,0,0: 
repl(9)[rep(3)1,0]: 
0,1,1,0: 
1,0,1,0: 
1 , 1 , 0 , 0 : 
1,1,1,0: 
1,0,0,0: 
1,1,0,0: 
repl(10)[rep(3)1,0]: 
0,1,1,0: 
0,0,1,0: 
1 , 1 , 1 , 0 : 
1,1,0,0: 
repl(2)[1,0,0,0]: 
repl(2)[0,0,0,0] 
end 



p(4,39) 
{ NO. 6.6 } 
{ Program for the deletion from the heap sort } 
{loading data}· 
data n,3,0; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
rep(3) data n,3,0; null ,0,0: 
null ,0,0; rep(2) data n,3,0; null ,0,0: 
rep(2) null ,0,0; data n,3,0; null ,0,0: 
{calculation} 
rep(2) null ,0,0; data 5,5,0; null ,0,0: 
null ,0,0; data e,4,0; data 5,5,0; null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
min e,4,1; max w,6,1; rep(2) null ,0,0: 
null ,0,0; max e,4,1; min w,6,1; null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data n,3,0; null ,0,0: 
min e,4,1; max w,6,1; rep(2) null ,0,0: 
null ,0,0; max e,4,1; min w,6,1; null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
data 5,5,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; max e,4,1; min w,6,1; null ,0,0: 
rep(4) null ,0,0: 
min e,4,1; max w,6,1; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
null ,0,0; data w,6,0; rep(2) null ,0,0: 
data n,3,O; rep(3) null ,0,0: 
null ,0,0; max e,4,1; min w,6,l; null ,0,0: 
rep(4) null ,0,0: 
min e,4,1; max w,6,1; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data e,4,0; rep(2) null ,0,0: 
min e,4,1; max w,6,1; rep(2) null ,0,0: 
rep(4) null ,0,0: 
null ,0,0; data 5,5,0; 
null ,0,0; data w,6,0; 
null ,0,0; data 5,5,0; 
null ,0,0; data 5,5,0; 
rep(4) null ,0,0 
end 

d(4,39) 
{ NO. 6.6 } 

rep(2) 
rep(2) 
rep(2) 
rep(2) 

null 
null 
null 
null 

,0,0: 
,0,0: 
,0,0: 
,0,0: 

{ Data file for the deletion from the heap sort } 
n 4.0,0.0,0.0,0.0;rep(3) none: 
n 5.0,0.0,0.0,0.0;rep(3) none: 
n 1.0,9.0,6.0,0.0;rep(3) none: 
n 0.0,0.0,7.0,0.0;rep(3) none: 
n 0.0,0.0,3.0,0.0;rep(3) none: 
repl(34)[rep(4) none] 
end 

380 



5(4,39) 
( NO. 6.6 ) 
( Selector file for the deletion from the heap sort ) 
repl(3)[rep(3) 1, 0): 
repl(2)[rep(4) 0): 
0, rep ( 2) 1, 0: 
rep(2) 1, rep(2) 0: 
rep(4) 0: 
0,1, rep(2) 0: 
rep ( 2) 1, rep ( 2) 0: 
rep ( 4) 0: 
0,1, rep(2) 0: 
1, 1, rep ( 2) 0: 
rep(4) 0: 
0, 1, rep ( 2) 0: 
rep(2) 1, rep(2) 0: 
rep ( 4) 0: 
0, 1, rep(2) 0: 
0, rep(2) 1, 0: 
repl(2)[0, 1, rep(2) 0): 
rep(2) 1, rep(2) 0: 
rep(4) 0: 
repl ( 2 ) [ 0, 1, rep ( 2) 0): 
rep(2) 1, rep(2) 0: 
rep(4) 0: 
0, 1, rep(2) 0: 
rep(2) 1, rep(2) 0: 
rep(4) 0: 
repl ( 3) [ 0, 1, rep ( 2) 0): 
rep(2) 1, rep(2) 0: 
rep(4) 0: 
repl(3)[rep(2) 1, rep(2) 0): 
rep(3) 1, 0 
end 
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p(4,121) 
{ NO. 6.7 HPI } 
{ Program for Hermite polynomial Interpolation 
data n,3,0; rep(3) null ,0,0: 
mov 5,1,7; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(2) mov 5,1,8; rep(2) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(2) mov 5,1,9; rep(2) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
rep(2) mov 5,1,10; rep(2) null ,0,0: 
rep(2) sub ,8,9; rep(2) null ,0,0: 
rep(2) mov ,0,11; rep(2) null ,0,0: 
rep(2) sub ,8,10; rep(2) null ,0,0: 
rep(2) mov ,0,12; rep(2) null ,0,0: 
rep(2) mult ,11,12; rep(2) null ,0,0: 
rep(2) mov ,0,13; rep(2) null ,0,0: 
rep(2) sub ,9,8; rep(2) null ,0,0: 
rep(2) mov ,0,14; rep(2) null ,0,0: 
rep(2) sub ,9,10; rep(2) null ,0,0: 
rep(2) mov ,0,15; rep(2) null ,0,0: 
rep(2) mult ,14,15; rep(2) null ,0,0: 
rep(2) mav ,0,16; rep(2) null ,0,0: 
rep(2) sub ,10,8; rep(2) null ,0,0: 
rep(2) mov ,0,17; rep(2) null ,0,0: 
rep(2) sub ,10,9; rep(2) null ,0,0: 
rep(2) mav ,0,18; rep(2) null ,0,0: 
rep(2) mylt ,17,18; rep(2) null ,0,0: 
rep(2) mov ,0,19; rep(2) null ,0,0: 
sub ,7,9; sub ,8,10; rep(2) null ,0,0: 
rep(2) mav ,0,11; rep(2) null ,0,0: 
sub ,7,10; sub ,8,9; rep(2) null ,0,0: 
rep(2) mov ,0,12; rep(2) null ,0,0: 
mult ,11,12; add ,11,12; rep(2) null ,0,0: 
rep(2) mov ,0,14; rep(2) null ,0,0: 
sub ,7,8; sub ,9,10; rep(2) null ,0,0: 
rep(2) mov ,0,15; rep(2) null ,0,0: 
mult ,15,12; sub ,9,8; rep(2) null ,0,0: 
rep(2) mov ,0,17; rep(2) null ,0,0: 
mult ,15,11; add ,15,17; rep(2) null ,0,0: 
rep(2) mov ,0,18; rep(2) null ,0,0: 
div ,14,13; sub ,10,9; rep(2) null ,0,0: 
mov ,0,13; mov ,0,11; rep(2) null ,0,0: 
div ,17,16; sub ,10,8; rep(2) null ,0,0: 
mov ,0,14; mov ,0,12; rep(2) null ,0,0: 
div ,18,19; add ,11,12; rep(2) null ,0,0: 
mov ,0,16; mov ,0,17; rep(2) null ,0,0: 
mult ,13,13; div ,14,13; rep(2) null ,0,0: 
rep(2) mov ,0,13; rep(2) null ,0,0: 
mult ,14,14; div ,18,16; rep(2) null ,0,0: 
rep(2) mov ,0,14; rep(2) null ,0,0: 
mult ,16,16; div ,17,19; rep(2) null ,0,0: 
rep(2) .mov ,0,16; rep(2) null ,0,0: 
data n,3,0; mov ,13,0; rep(2) null ,0,0: 
mov 5,1,7; rep(3) null ,0,0: 
data n,3,0; copy ,0,0; rep(2) null ,0,0: 
mov 5,1,8; rep(3) null ,0,0: 
data e,4,0; mov ,14,0; rep(2) 
mov 5,1,17; copy ,0,0; rep(2) 
data e,4,0; mov ,16,0; rep(2) 
mov 5,1,18; copy ,0,0; rep(2) 
data e,4,0; rep(3) null ,0,0: 

null 
null 
null 
null 

, ° , ° : 
,0,0: , ° , ° : , ° , ° : 
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moy s,1,19; rep(3) null ,0,0: 
mult ,8,15; rep(3) null ,0,0: 
moy ,0,9; rep(3) null ,0,0: 
mult ,9,17; rep(3) null ,0,0: 
moy ,0,9; rep(3) null ,0,0: 
mult ,8,11; rep(3) null ,0,0: 
moy ,0,10; rep(3) null ,0,0: 
mult ,10,18; rep(3) null ,0,0: 
moy ,0,10; rep(3) null ,0,0: 
mult ,8,12; rep(3) null ,0,0: 
moy ,0,17; rep(3) null ,0,0: 
mult ,17,19; rep(3) null ,0,0: 
moy ,0,17; rep(3) null ,0,0: 
sub ,7,9; rep(3) null ,0,0: 
moy ,0,9; rep(3) null ,0,0: 
sub ,7,10; rep(3) null ,0,0: 
moy ,0,10; rep(3) null ,0,0: 
sub ,7,17; rep(3) null ,0,0: 
moy ,0,17; rep(3) null ,0,0: 
mult ,9,13; rep(3) null ,0,0: 
moy ,0,7; rep(3) null ,0,0: 
mult ,10,14; rep(3) null ,0,0: 
moy ,0,8; rep(3) null ,0,0: 
mult ,17,16; rep(3) null ,0,0: 
moy ,0,9; rep(3) null ,0,0: 
mult ,15,13; rep(3) null ,0,0: 
moy ,0,10; rep(3) null ,0,0: 
mult ,11,14; rep(3) null ,0,0: 
moy ,0,11; rep(3) null ,0,0: 
mult ,12,16; rep(3) null ,0,0: 
moy ,0,12; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moy s,1,13; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moy s,1,14; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moY s,1,15; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moy s,1,16; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moy s,1,17; rep(3) null ,0,0: 
data n,3,0; rep(3) null ,0,0: 
moy s,1,18; rep(3) null ,0,0: 
rep(2) data n,3,0; rep(2) null ,0,0: 
mult ,13,7; rep(3) null ,0,0: 
moy ,0,7; rep(3) null ,0,0: 
mult ,14,8; rep(3) null ,0,0: 
moy ,0,8; rep(3) null ,0,0: 
mult ,15,9; rep(3) null ,0,0: 
moy ,0,9; rep(3) null ,0,0: 
mult ,16,10; rep(3) null ,0,0: 
moY ,0,10; rep(3) null ,0,0: 
mult ,17,11; rep(3) null ,0,0: 
moy ,0,11; rep(3) null ,0,0: 
mult ,18,12; rep(3) null ,0,0: 
add ,0,11; rep(3) null ,0,0: 
add ,0,10; rep(3) null ,0,0: 
add ,0,9; rep(3) null ,0,0: 
add ,0,8; rep(3) null ,0,0: 
add ,0,7; rep(3) null ,0,0: 
copy ,0,0; rep(3) null ,0,0: 
rep(4) null ,0,0 
end 
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d(4,121) 
{ NO. 6.7 HPI } 
{ Data file for Hermite Polynomial Interpolation 
n 1.5, 0.0, 0.0, 0.0; none; none; none: 
rep(4) none: 
n 1.3, 1.3, 0.0, 0.0; none;none;none: 
rep(4) none: 
n 1.6, 1.6, 0.0, 0.0; none;none;none: 
rep(4) none: 
n 1.9, 1.9, 0.0, 0.0; none;none;none: 
repl(43)[rep(4) none]: 
n 1.0, 0.0, 0.0, 0.0; none; none; none: 
rep(4) none: 
n 2.0, 0.0, 0.0, 0.0; none; none; none: 
repl(37)[rep(4) none]: 
n 0.620086, 0.0, 0.0, 0.0; none; none; none: 
rep(4) none: 
n 0.455402, 0.0, 0.0, 
rep(4) none: 
n 0.281818, 0.0, 0.0, 
rep(4) none: 
n -0.522023, 0.0, 0.0, 
rep(4) none: 
n -0.569895, 0.0, 0.0, 
rep(4) none: 
n -0.581157, 0.0, 0.0, 
rep(4) none: _ 
n 0.0, 0.0, 0.0, 0.0; 
repl(18)[rep(4) none] 
end 

5(4,121) 
{ NO. 6.7 HPI } 

0.0; 

0.0; 

0.0; 

o . 0 ; 

o .0; 

none; 

none; none; none: 

none; none; none: 

none; none i none: 

none; none; none: 

none; none; none: 

none; none: 

{ Selector file for Hermite polynomial Interpolation} 
repl(121)[1,0,0,0] 
end 
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p(4,29) 
{ NO. 6.7 PE } 
{ Program for parallel evaluation } 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(4) null ,0,0: 
rep(4) data n,3,0: 
rep(4) mov ,3,7: 
null ,0,0; rep(3) mult ,3,7: 
null ,0,0; mov ,0,8; rep(2) mult ,0,7: 
rep(2) null ,0,0; rep(2) mult ,0,7: 
rep(2) null ,0,0; mov ,0,8; mult ,0,7: 
rep(3) null ,0,0; mult ,0,7: 
rep(3) null ,0,0; mov ,0,8: 
rep(4) data n,3,0: 
rep(4) mult ,3,7: 
rep(4) mov ,0,9: 
rep(4) data n,3,0: 
rep ( 4) add ,3,9: 
copy ,0,0; rep(3) mov ,0,10: 
null ,0,0;rep(3) mult ,8,10: 
null ,0,0; rep(3) mov ,0,10: 
null ,0,0; data w,6,0; rep(2) null ,0,0: 
null ,0,0; add ,6,10; rep(2) null ,0,0: 
null ,0,0; copy ,0,0; rep(2) null ,0,0: 
rep(2) null ,0,0; data w,6,0; null ,0,0: 
rep(2) null ,0,0; add ,6,10; null ,0,0: 
rep(2).null ,0,0; copy ,0,0; null ,0,0: 
rep(3) null ,0,0; data w,6,0: 
rep(3) null ,0,0; add ,6,10: 
rep(3) null ,0,0; copy ,0,0: 
rep(4) null ,0,0 
end 

d(4,29) 
{ NO. 6.7 PE } 
{ Data file for parallel evaluation} 
repl(3)[rep(4) none]: 
n 2.0,2.0,2.0,2.0;none;none;none: 
repl(7)[rep(4) none]: 
n 4.0,6.0,8.0,10.0;none;none;none: 
rep(4) none: 
rep(4) none: 
n 3.0,S.0,7.0,9.0;none;none;none: 
repl(14)[rep(4) none] 
end 

5(4,29) 
{ NO. 6.7 PE } 
( Selector file for parallel evaluation} 
repl(29)[1,0,0,0] 
end 
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