LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY
LIBRARY
AUTHOR/FILING TITLE

.................. Q3382602

" VOL. NO. CLASS MARK)
LoAN Cch
= 5 JUL 1991
1 2hoy g
: ;
-5 BT |

003 3526 02

LR

THE INSTRUCTION SYSTOLIC ARRAY (ISA)

AND SIMULATION OF PARALLEL ALGORITHMS

BY

0ssAaMA KaDoM MusLIH, B.Sc..,M.PH,

A Doctoral Thésis
submitted in par£ial fulfilment of the requirements
for the award of Doctor of Philosophy
of the Loughborough University of Techhology

September, 1989,

Supervisor: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.,

Department of Computer Studies.

© oSsSAMA KADOM MUSLIH, 1989.

LS

Loughborough University
of Technology Library

Date Sep a

Class

R 0 a3s26or

RN

To

the memory of my

father and mother,
my wife, INTIHA,

and my children, OMAR and OLLA.

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to
Professor D.J. Evans for his guidance, suggestions and advice
throughout the course of the research and preparation of this

thesis.

The author also acknowledges the Iraqi Government
(Ministry of Higher Education and Scientific Research) for

their financial support.

Thanks also to my dearest wife, Intiha, for her constant

support during the course of this work.

Finally, thanks to Dr. G.M. Megson, for his help at the

beginning of the research.

ii

THE INSTRUCTION SystoLIC ARRAY (ISA)

AND SIMULATION OF PARALLEL ALGORITHMS

ABSTRACT

Systolic arrays have proved to be well suited for Very Large
Scale Integrated technology (VLSI) since they:

— Consist of a regular network of simple processing cells,

- Use local communication between the processing cells only,

- Exploit a maximal degree of parallelism.

However, systolic arrays have one main disadvantage compared with
other parallel computer architectures: they are special purpose
architectures only capable of executing one algorithm, e.g., a
systolic array designed for sorting cannot be used to form matrix
multiplication.

Several approaches have been made to make systolic arrays more
flexible, in order to be able to handle different problems on a
single systolic array.

In this thesis an alternative concept to a VLSI-architecture
the Soft-Systolic Simulation System (SSSS), is introduced and
developed as a working model of virtual machine with the power to
simulate hard systolic arrays and more general férms of concurrency
such as the SIMD and MIMD models of computation.

The virtual machine includes a processing element consisting of
a soft-systolic processor implemented in the virtual machine language.

The processing element considered here was a very general element

iii

which allows the choice of a wide range of arithmetic and logical
operato&s and allows the simulation of a wide class of algorithms

but in principle extra processing cells can be added making a library
and this library be tailored to .individual needs.

The virtual machine chosen for this implementation is the
Instruction Systolic¢ Array (ISA). The ISA has a number of interesting
features, firstlf it has been used to simulate all SIMD algorithms
and many MIMD algorithms by a simple program transformation techaique,
further, the ISA can also simulate the so-called wavefront processor
algorithms, as well as many hard systolic algorithms. The ISA removes
the need for the broadcasting of data which .is a feature of SIMD
algorithms (limiting the size of the machine and its cycle time) and
also presents a fairly simple communication structure for MIMD
algorithms.

The model of systolic computation developed from the VLSI
approach to systolic arrays is such that the processing surface is
fi#ed, as are the processing elements or cells by virtue of their
being embedded in the processing surface.

The VLSI approach therefore freezes instructions and hardware
relative to the movement of data, with the virtual machine and soft-
systolic programming retaining the constructions of VLSI for array
design features such as regularity, simplicity and lecal communication,
allowing the movement of instructions with respect to data. Data can
be frozen into the structure with instructions moving systolically,
Alternatively both the data and instructions can move systolically
around the virtual processors, (which are deemed fixed relative to

the underlying architecture).

iv

The ISA is implemented in OCCAM programs whose execution and
output implicitly confirm the correctness of the design.

The soft-systolic preparation comprises of the usual operating
system facilities for the creation and modification of files during
the development of new programs and ISA processor elements. We allow
any concurrent high level language to be used to model the soft-
systolic program. Consequently the Replicating Instruction Systolic
Array Language (RISAL) was devised to provide a very primitive program
environment to the ISA but adequate for testing. RISAL accepts
instructions in an assembler-like form, but is fairly permissive
about .the format of statements, subject of course to syntax.

The RISAL compiler is adopted to transform the soft-systolic
program description (RISAL) into a form suitable for the virtual
machine ({simulating the algorithm} to run.

Finally we conclude .that the principles mentioned here can form
the basis for a soft-systolic simulator using an orthogonally
connected mesh of processors. The wide range of algorithms which the

ISA can simulate make it suitable for a virtual simulating grid.

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1:

CHAPTER 2:

CONTENTS

FUNDAMENTALS OF PARALLEL COMPUTER ARCHITECTURE

1.1 Introduction

1.2 Main Motivations

1.3 Design Classifications

1.3.1

Flynn's High-~Speed Parallel Computers
Classification

Shore's Classification

Cther Classification Approaches

1.4 Pipelined Computers

1.5 Data-Flow Computers

1.6 Array Processors

PARALLEL ARCHITECTURES -~ A VLSI APPROACH

2.1 Introduction to the VLSI Technolegy Paradigm

2.2 Fundamental Architectural Concepts in
Designing Special Purpose VLSI Computing
Structures

2.2.1

2.2.2

Systolic Arrays

Wavefront Arrays

2.3 VLSI-Oriented Architectures

2.3.1

2.3.2

2.3.3

2.3.4

The WARP Architecture
The CHIP Architecture
INMOS Transputers and OCCaM

Simulation of Systolic Arrays

PAGE

ii

13
16
20
27

33

41

45
49
52
52
53
58

61

CHAPTER 3:

2.4 MIMD Architecture Design - The Sequent 67
Balance System
2.4.1 MIMD Hardware Organisation 67
2.4.2 The Sequent Balance 8000 System 75
THE INSTRUCTION SYSTOLIC ARRAY (ISA) - A
PARALLEL ARCHITECTURE FOR VLSI
3.1 The Instruction Systolic Array (ISA) 80
3.2 The Instruction Systolic Array and Its
Relation to Other Models of Parallel
Computers 85
3.2.1 Basic Definitions 85
3.2.2 A Simple Example Program 91
3.2.3 Relationshigs Between ISA, IBA, and
BPA 97
3.2.4 Relationship of ISA to Standard
" Models of Parallel Computers 104
3.3 A Comparison-Based Instruction Systelic Array 107
3.3.1 1IsA Construction 107
3.3.2 Example Programs on the ISA 110
3.4 To Sort by the Instruction Systolic Array 115
3.4.1 Introduction 115
3.4.2 One Dimensional Sorting Methods 116
3.4.3 The Two Dimensional Sorting Algorithm 121
3.4.4 The Algorithm on the ISA 122
3.5 Aadditional Algorithms Solution by Using the
Instruction Systolic Array (I5A) 127
3.5.1 Finding the Generalized Matrix C 127
Inversion
3.5.2 Top-Down Designs of Instruction Systolic
Arrays for Peolynomial Interpolation and 128

PAGE

Evaluation

CHAPTER 4:

CHAPTER 5:

CHAPTER 6:

3.6

3.5.3 Finding Transitive Closure

3.5.4 Finding all Cut-Points

The Singe Instruction Systolic Array (SIsSa)

- variants of the ISA Model

THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS)

Basic Definitions of the System
System and Machine Preparation
The Virtual Machine

4.3.1 The Instruction Systolic Array (ISA)
Network

4.3.2 The Processing Element (PE)

THE IMPLEMENTATION OF THE REPLICATING INSTRUCTION
SYSTOLIC ARRAY LANGUAGE (RISAL) AND SYSTEM

TESTING
5.1 Introduction
5.2 Language Design Principles

The RISAL Compilexr

Soft-Systolic Simulation Architecture and
Testing

THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS) FOR
VARIOUS ALGORITHMS

6.1

6,2

Basic Mathematics

Matrix Aﬁplications Using (SS88)
6.2.1 4*4 Matrix Transpose

6.2.2 4*4 LU Decomposition

6.2.3 Matrix-vVector Multiplication

6.2.4 Matrix-Matrix Multiplication

PAGE

131

131

133

136
139

146

147

159

168
171

181

193

207
217
217
221
225

228

6.5

The Soluticon of Linear Systems Using SSSS

Finding the Generalized Inverse of a
Rectangular Matrix Using SSSS

Some Applications to the Generalized
Inverse of a Rectangular Matrix Using SSSS

6.5.1 The Sclution of a Homogeneous System
of Equations

6.5.2 The Most General Solution of a
System of Equations

Deletion from a Heap Sort Using SSSS

Hermite Polynomial Interpolating and
Evaluation Using SSSS '

CHAPTER 7: SUMMARY AND CONCLUSIONS

REFERENCES

APPENDICES:

APPENDIX I:

APPENDIX II:

APPENDIX III:

LOUGHBOROQUGH OCCAM COMPILER VERSION 5.0
DOCUMENTATTION

THE SOFT-SYSTOLIC. SIMULATION SYSTEM (SSSS)
PROGRAM LISTINGS)

RISAL PROGRAM LISTINGS

PAGE

235

243

248

249

252

257

264

280

289

298

317

332

CHAPTER 1

FUNDAMENTALS OF PARALLEL COMPUTER

ARCHITECTURE

1.1 INTRODUCTION

The information revolution, has had the most tremendous impact on
both technology and our society. This fast developing revolution has
just recently started to migrate towards a new era - the knowledge
revolution, by giving birth to the Fifth Generation of Super Computers
(FGSC) . These have in fact changed our lifestyles, our educational
programs aﬁd most of all many professional careers.

Amongst the hﬁge numbers of computer applications which range
from the simple personal computer games to the.weéther forecasting
calculation and satellite transmission programs, there a;e many that
require theAuse of large amounts of computational timé. In an attempt
to meet the challenging problem of providing fast and economical
computation, Large-Scale Parallel Computers were developed. 'In fact,
until recently computational speed was derived only from the development
of faster electronic devices.

In the late 1960s, Integrated Circuits (ICS) were used in computer
design and were followed by Large Scale Integrated (LSI) techniques.
The Very Large-Scale Integrated Circﬁits (VLSI), developed seven years
ago, are curréntly béing used in the design of very high speed speéial
and general purpose computer systéms.

Until seven years ago, the current state of electronic technology
was such that all factors affecting computational speed were almost
minimised and any further computational speed increase could only be
achieved through both increased switching speeds and increased circuit
density.

Due to £he physical laws, the intended breakthrough séemed

unlikely to be achieved mainly because we are fast approaching the

limits of optical resolution. Hence, even if switching times are
almost instantaneous, distances between any two points may not be
small enough to minimise the propégation delays and thus improve
computational speed. lTherefore, the achievement of even faster
éomputers is conditional by the use of new approaches that do not
depend on breakthrough in device technology but rather on imaginative
applications. of the skills of computer architecture.

Obviously one approach to increasing speed is through parallelism.
The ideal objective is to create a system contaiﬁing P_processors,

. connected in some cooperating fashion, so that itvis P times faster
than a computer with a single processor. These parallel computex
systems or multiprobessérs as they are commonly known, not onlﬁ
increase the potential processing speed, but they also increase the
overall throughput, flexibility reliability and provide for the
tolerance of processor‘failures.

'Hockney and Jesshope [Hockney 1981) summarised the principle ways
of introducing parallelism at the hardware level of the computer
architectures as:

1. The application.of pipelining - assembly_iine - techniques

in order to improve the performance of the arithmetic ox
control units. A processor is decomposed into a certain
number of elementary subprocesses each of which being capable
of executing on dedicated autonomous units.

2. The provision of sev;ral independent units, operating in

parallel, to perform some basic fundamental functions such as

logic, addition or multiplications.

3. The provision of aﬁ array of processing elements performing
simultanecusly the same instruction on a set of different
data where the data is stored in the processing elements (PE)
private memory.

4. The provision of several independent processors, working in a
co-operative manner towards the solution of a single task by
communicating via a shared or common memory, each one of them

being a complete computer, obeying its own stored instructions.

- The following sections will cover a wide selection of the
principle significant parallel computer architectures, which differ
sufficiently from each other, the pipeline, SIMD, MIMD, data-flow and

VLSI.systems, to illustrate alternative hardware and software

approaches.

1.2 MAIN MOTIVATIONS

During the last decade tﬁe multiple processor approach has
tailored a set of long sought after motivating goals in order to
satisfactorily meet many of the.challéngihg system design requirements.
In reviewing some aspects of parallel processing systems, one finds that
while the hardware is improving at a fast rate, the scftware tools to
take advantage of the provided benefits are only slowly forthcoming;

a faét that affects éhe design motivations mentioned below.

Since the early developed multiple processing systems, the system
characteristics that have motivated the continued development in this
field have not changed much. . The most significant of these are
increased throughput, improved flexibility and reliability. Since
none of thése goals is numerically specified (i.e. they are all
quélitative goals), if is not sﬁrprising that the design of the future
- "supercomputers" will also be motivated by the same objectives as
today's parallel computers. However, the improvements of some or all
of these specifications must ultimately result in an improved overall
sygtem performancé, usually measured on the basis of cost effectiveness.

The system throughput can be used to mean several different
_characteristics such as the pétential number of bits p?ocessed per
- time-unit, the number of memory transfers per timé unit or the
maximal number of programs that can be handled at the same time.
However, .it is usually used nowadays to describe thé long-turnaround
éf a program in a multiprocessing environment. The multiple processor '
" approach is a cost-effective soiution to the achievement of most of
these goals. The use of several cocperating processing units can

considerably increase the systém throughput which could not be matched

by a uniprocessor system with enhanced logic circuitry,

Literally, flexibility means the ease in changing the system
configuration to suit new conditiohs and the use of more than one
processor has greatly increased the system potential flexibility
since it offers the ;bility to expand the memory space, the number
of processing units and even the software facilities in order to meet
the new demands. This flexibility may also b? used to justify the
increased reliability of the system.

Bfoadly speaking, the reliabi;ity is related to two different
system aspects required by different applications. The first cne is
the system availability which is defined by the requirement that the
system should remain available even in the case of a malfunctioning
unit.:.An exaﬁple of this is the computer controlled telephone"
switching board. The system integrity is the second one and it is
"defined by the requirement that the information contained within
should be “protecﬁed" against any'defection'or corruption {(e.g. in a
banking system).

Concluding, since all the system characteristics that have
motivated the developmént of the parailel processor computers are not
described quantitively, any new major‘system concept has.been-claimed
by its proponents as the ultimate solution to achieving these
motivating goals. In fact, the same motives were behind the follow-up

to the parallel processing systems, the VLSI architectures.

1.3 DESIGN CLASSIFICATIONS

As a result of the introduction of various forms of parallelism
which has proved to be an effective approach for increasing
computational speed,.severallcompetitive computer architectures were
constructed but there was litt%e evidence as to which design was
superior, nor was there sufficient knowledge on which to make a careful
evaluation. Researchers helped the study of high—séeed parallel
computers by attempting to classify all the proposed computer

.architectures, or at least those which have been aiready well
established. A brief presentation of the concepts of the architectﬁral
taxonomy given by different researchers, especially'by the two

pioneers, Flynn [Flynn 1966] and Shore [Shore 1973], follows below. =~ -

[However Flynn's cla551f1catlon scheme is too broad- since lt lumps

all parallel computers except the multiprocessor into the SIMD class
1

and draws no distinction between the pipelined computer and the

preocesscor array which have entirely different computer architectures,

These classifications have been widely referenced and their

corresponding terminology has greatly contributed to the formation

of the Computer Science vocabulary.

1.3.1 Flynn's High-Speed Parallel Computer Classification

Based on the dependent relation between instructions that are
propagated by the coﬁputér and the data being .processed, Flynn egplored
theoretically some,of the organisational ?ossibiliteé for large scientific
computing mabhineryfbefore attempting te classify them into four breoad
classés. We'shall'briefly review his theoretical concepts leading to

the actual grouping of the high-speed.parallel compufers.

For convenience, he defined the instruction stream as a sequence
of instructions to be processed by the computer and the data stream as,
a set of operands, including input and partial or temporary results.
Also, two additional useful concepts were adopted, bandwidth and
latency. By bandwidth he gxpressed the time-réte of occurrences, and
latency is used to express the total time between execution of response
of a computing process on a particular data unit. Particularly, for
the former notion, computational or execution bandwidth is the number
-of instructions processed per second and stérage bandwidth is the
retrieval rate of the data and instruction from the store (i.e. memory
words.per second) .

By using the two former definitions, Flynn categorized the almost
theoretically -defined computer organisations depending on the
multiplicity of the hardware provided to service the instruction and
data streams. The word "multiplicity", which was intentionally used
to avoid the ubiquitous and ambiguous term "Parallelism", refers to the
maximum number of simultaneous instructions or data in the same phase
of execution at the most constrained component of the organisation.

Flynn observed that as a coﬁsequence of the above definitions
four classes emerged naturally, being characterized from the multiplicity
or not of the instruction and data streams:

i) Single Instruction Stream - Single Data Stream (SISD)

ii) 8Single Instruction Stream - Multiple Data Stream (SIMD)
iii) Multiple Instruction Stream - $ingle Data Stream (MISD)—

iv) Multiple Instruction Stream - Multiple Data Stream (MIMD)

The SISD computer [e.g. most of the general purpose machines such as

IBM STRETCH, DEC PDP-11 (Serial or unpipelined) and CDC 6600 series,
IBM 360/90 series pipelined], is nothing more than the ordinary serial
computer (the von-Neumann type computer}. Even though, the CDC 6600
and IBM 360/90 series achieve their power by overlapping various
sequential decision processes which make up the execution of the
instruction (confluent SISD), there still remains an essential
constraint of this type of organisation, namely the decoding of one
instruction per unit time. 1In Figures‘l.l and 1.2 we see a SISD
organisation, and the concurrency and instruction processing
respectively. |

The SIMD type structure, proposed by [Unger 1958], Slotnick
[Slotnick 1962) is created by replicating the data ;tream on which
ghe single instruction stream acts simultaneouély thus theoretically
increasing the throughput by a factor almost equal to the number of
data streams. Several factors, such as data conflict and data
communication problems tend to degrade the expected performance.
Solomon and ILLIAC IV are two examples of such a computer.

The third, MISD type class of parallel computers, the organisation
of which is outlined in Figure 1.3, is by all means the least
realistic one compared to the others since no examples of any well
established organisation have yet been proposed. In this claés, al
forwarding procedure of data flowing through the Execution Units was
forced. Thus, the daﬁa stream presented to Execution Unit 2 is the
resultant of Execution Unit 1 operating its instruction on the source
data'stream. The instruction performed on any Execution Unit can be
one of the three following types: fixed, semi—fixed or variable. It

may be fixed such that the interconnection of units must be flexible

EXECUTION
BANDWIDTH +
STORAGE : . .
UNIT 1 . -
N
. — INSTRUCTIONI STRUCTION
STREAM x . .
. HANDLING
UNIT DATA
- STREAM
STORAGE 3 . .
UNIT STORAGE
BANDWIDTH

FIGURE 1l.1: Flynn's SISD Computer Organisation

___GENERATION ADDRESS OF INSTRUCTION
— FETCH INSTRUCTION
DECODE INSTRUCTION ‘
GENERATE ADDRESS OF OPERAND
FETCH OPERAND

EXECUTE
INSTRUCTION
A 4
M v
INST 1 - aee ..
~ ’
' SR % SR %
SR: STORAGE REGENERATION
INST 2 .
A
INST 3 R
1 INSTRUCTION 1 STARTS

INSTRUCTION 2 STARTS
- INSTRUCTION 3 STARTS

FIGURE 1.2: Concurrency and Instruction Processing

INSTRUCTION
STORAGE 1

INSTRUCTICN
UNIT 1

INSTRUCTION
STORAGE 2

DATA
STORAGE

INSTRUCTION
UNIT 2

EXECUTION

UNIT 1

EXECUTION
UNIT 2

-~ -

10

INSTRUCTION
STORAGE N

INSTRUCTION
UNIT N

EXECUTICN
UNIT N

SOURCE DATA

STREAM

RESULTANT DATA

FIGURE 1.3: A MISD Organisation

11

semi-fixed such that the function of any unit is fixed for one pass of
the data or variable meaning that the execution of a stream of
instructions can take place at any point on the single data stream.
Conéequently this arrangement suggests that only the first processing
component faces the source data stream whereas the remaining Units are
prqcessing deriQations of the data ffom previous components., By
combining parallelism in both the instruction and data streams a MIMD
type of structure is thus oﬁtained. This computer possesses N
independent executing units (processors), each of which is a complete
computer on its own (haé arithmetic and logic capébilities and local
data storage), with processors connectéd together to providé means for
cooperation during a computation phase.

Most serial main frames could be classified as MIMD computers
since they include many data chénnels, such as Direct Memory Access
{(DMA) which are, in a sense, independent.processors. Thus, a computer
with one or two data channels is indeed a MIMD parallel computer, but
the MIMD is commonly accepted to refer to large computers with possibly
sevéral identical processors such as Cmmp {Wulf 1972], Cm* {Swan 1977].
Of particular interest, the Balance BOOO parallel computer system which
is in the Department of Computer Studiés at Loughborough University of
Technology is an example of this class, this machine is described in
detail in Chapter 2.

Resuming, Flynn classified computér systems into four breoad
classes (Figure 1.4) depending on the multiplicity or not of the
instruction stream and data stream. Due to the fact that tﬁe actual
architectural details of the machines were not taken into account,

his taxonomy was somehow obscure since one finds that there is no

12

(a) sisD, (b} SIMD, (c¢) MISD, and {(d) MIMD

(a) Ccu PU MU
PUL l(——— MUL
PU2 MU2
{b) cu
PUN MUN
cul > PUL
cuz 4 PU2
(c)
MU
CUN > PUN
cul > PUL MUl
cu2 > PU2 l«———— MU2
(d)
CUN ? PUN MUN
FIGURE 1.4: Flynn's Computer Organisation Classes:

where CU, PU, and MU refer to control, processing and

memory unit respectively

i3

apparent distinctive differences between classes (MIMD class exempted).
Consequently, pipelined and array processor computers are considered
similar, although they are two completely different architectures.

Also, the meaning of the data streams, as used by Flynn, has
caused many ambiguities due to the fact it does not make a distinctive
difference between a single stream of vectorised data.and'a multiple
scalar stream.

Consequently, in the sections, the SIMD and pipelined computers
are considered to be two distinct classes along with the multiprocessor

category.

1.3.2 Shore's Classification

Classification of parallel computer systems based on their
constituent hardware components was observed by Shore [Shore 1973].
Accordingly, all current existing computer architectures were
categorised into six different classes which are schematically shown
in Figure 1.5.

The first machine (I), [e.g. CDC 7600 a pipelined scalar computer,
CRAY 1, a pipelined vector computer] which is the conventional serial
Von—Neumaﬁ—type organisation, consists of an Instruction Memory (IM),

a single Control Unit (CU), a Processing Unit (PU) and a Data Memory
(bM) . The ﬁain source of power increase comes.fram the processing unit
which may consist of several functional units, pipelined or not and all
bits of a single word are read in order to be processed simultaneously
(Horizontal PU)}.

A second alternative machine (II) is obtained from the first one

IM CU iM
WI N
Horiz-
ontal . Ccu
PU
4
Word Vertical B%t
slice PU slice
DM DM
(11)
(I)
IM cu
L ¥
Horiz-
cu > ontal FU PU PU
PU
V [| 1
Vertical
PU DM DM DM DM
(II1) (V)
cu cu
\
PU —PS— PU PU PU
+
DM
DM DM DM
(v) (VD)

FIGURE 1.5: The Configuration of the Six Machine Classes

14

15

by simply changing the way data is read from the data memory. Instead
of reading all bits of a single word as (I) does, machine (II) reads

a bit from every word in the memory, i.e. bit serially, but word
pProcessing is parallel. In other words, if the memory area is
considered as a two dimensional array of bits, with each word occupying
an individqal row, then machine (I) reads horizontal .slices whereas
machine (II) reads vertical slices.

A combination of the two above machines yields machine (III).

This means that machine (III) has two processing units, a horizontal
and a vertical one and is capable of processing data in either of the
two directions. The ICL DAP could have been a favourable candidate
for this elass if only it had ;eparate processing .units to offer this
capability. An example of this organisation is the Sanders Associates
OMEN 60 Series of computer [Higbie 1972].

Machine (IV}) consists of a single contreol unit and many independent
processing elements, each of which has a processing unit and a data
memory. Communication between these components is restricted to take
place only through the control unit. A good example of this machine is
the PEPE system.

If however, additional limited communication is allowed to take
place among the processor elements in a nearest-neighbour fashion,
then machine (V) is conceived. Thus, cow_nunication paths between the
linearly connected'procegsoré offer for any processor in the array the
possibility to access data from its immediate neighbour's memcries, as
well as its own. An exaﬁple of this-machine type is the ILLIAC IV,

which provides a short cut communication to every eight surrounding

16

processing elements.

The Logic-In-Memory-Array (LIMA) is Shore's last class of computer
organisation. The main difference in machine (Vi) and the previous
one is that the processing unit and the data memory are no longer two
individual hardware components, but instead they are constfuéted on the
same IC board. Examples range from simple associative memories to
complex associative processors.

It is observed that, generally speaking, Shore's classification,
compared with Flynn's, does not offer anything new, but only a sub-
categorisation of the cbscure SIMD class given by Flynn, except for
machine (I} which is an SIéD-type computer. Again, as with Flynn's
categorisation, pipelined computers do not belong to a well specified
class, that represents their hardware characteristics, but on the

contrary they are mixed up with unpipelined scalar computers.

1.3.3 Other Classification approaches

This paragraph gives a brief note on some other classification
approaches of less significant importance compared to the former two
and which are based mainly ﬁn the concept of parallelism.

One of the taxonomies, based on the amount of parallelism
involved in the contrcl unit, data streams and instruction units was
suggested by Hobbs et al [Hobbs 1970] in 1970. They distinguished
parallel computers into muitipfocessors, associative processors, array
processors and functional processors.

Another classification, due to Muftha and Beadles [Murtha 1964]

was based upon the parallelism properties. An attempt to underline

17

the main significant differences between the multiprocessors and
hiéhly parallel organisations was appreciated. Three main classes for
parallel processor systems were identified and they are general-purpose
network computers, sPecial-pufpose network computers characterised by
global parallelism and finally non-global, semi-independent network
computers with local parallelism. Furthermore, all these classes,
but the last one, were further subcategorised into two subclasses each.
Whereas, the first class, the general-purpose one, was subdivided into
the general-purpose network computers subclass with centralised common
control and the general;purpose network compute?s subclass, with many
identical processors, each being capable of, independent from.the others,
executing instructions from its own local storage, the second class
identified the pattern processors and associative processors subclasses.
Hockney and Jesshope tHockney L981] formulated a taxonomy scheme
for both serial and parallel'cémputers. The main subdivisicns are
shown in Figures 1.6.and 1.7 together with a well-known example in each
class. . Their taxcnomy was more detailed than that of Flynn or Shore
~and took implicit account of pipelined structures. Therefore, the
Multiple Instruction class was not considered for further categorisation
as with the pipelined and array processor computers. Nevertheless,
this scheme if coupled with that of Flynn could well be suited for a

general classification of parallel computers,

COMPUTERS
SINGLE MULTIPLE
INSTRUCTION INSTRUCTION
UNIT UNIT
M
SINGLE PIPELINED ULTIPLE
UNPIPELINED OR MULTIPLE COMPQTERS
EXECUTION EXECUTION (MUL?IPROCESSORS)
UNITS UNITS
BALANCE B000
SERIAL PARALLEL
UNICOMPUTERS UNICCMPUTERS

FIGURE 1.6: Structural Classification of Computers

18

19

UNPIPELINED PIPELINED
ONLY VECTOR
SCALAR INSTRUCTIONS
NSTRUCTIONS B
MULTIPLE : 'SPECIAL - GENERAL
EXBCUTION HORIZONTAL ISSUE-WHEN PURPOSE PURPOSE
CONTRO [PIPES
UNTT 7 L READY PIPES PI
MULTI-UNIT PIPELINED PIPELINED SPECIAL GENERAL
SCALAR HORIZONTAL SCALAR PURPOSE PURPOSE
COMPUTER SCALAR COMPUTER PIPELINED PIPELINED
COMPUTER VECTOR VECTOR
COMPUTER COMPUTER
CDC 6600 FPS cDC 7600 CRAY-1 cpC
AP-120B CYBER 205

FIGURE 1.7: Parallel Computer

Parallelism

Systems Based on Functional

1.4 PIPELINED COMPUTERS

The pipeline or vector notion, generally included in the
parallelism notion, has been widely exploited since the 1960's when
the need for faster and more cost-effective computer systems became
critical. Pipelining, a novel a?chitéctural design approach, is one
form or technique of embedding parallelism or concurrency in a computer
system. Although, essentially sequehtial, this type of computer helps
to match the speeds of varioﬁs'subsystems without duplicating the cost
of the entire‘system involved. It also improves system availability
and reliability by providing ;everal copies of dedicated subsystems.

In principle, the pipeline is clqsely related to an industrial
assembly line, As in the assembly line, procedure is automatically
ocbserved, but it takes time to f£ill the pipeline before full efficiency
‘per cycle is reached and time to drain the pipeline completely as the
last trailing results are collected.

Figure 1.7 depicts the sequential and vector processing taxonomy
derived from pipeline computers together with examples of some weil
known ana commercially available computer systems. Although the
pipelined computer architectures present somewhat different
organisational characteristics when compared to SiMD and MIMD computer
architectures, they are of significant.interest because of the close
connection between algorithms best suited for SIMD and those which
achieve great pegformance on a pipelined computef system.

Pipelined computers achieve an increase in computational speed. by
depomposing every process iﬁto several sub-processes which can be
eﬁecutedrby special autonomous and concurrently operating hardware

unit. Furthermore pipelining can be introduced at more than one level

21

in the design of computers. Ramamoorthy - [Ramamoorthy 1977}
distinguished twe pipeline levels, the system level fo; the pipelining
of the processing unit and the subsystem level for the arithmetic
pipelining. Particularly Handler [Handler 1982] introduced a third
level and distinguished them under the names: macro-pipelining for

the program level, instruction pipelining for the instruction level

and the arithmetic pipelining for the word level. Others distinguished
fhe instruction pipelining, depending oﬁ the control structure in the
system, to strict and relax pipelining. A pipe can be further
distinguished by its design configurations and control strategies

into two forms; it can be either a static or dynamic pipe. Sometimes
a pipelined structure is dedicated to a single function, e.g. é pipelined
adder or multiplier. In this case it is termed a unifunctional pipe
-with static configuration. ©On the other hand, a pipelined module can
serve several different functions. ‘Such a pipe is called a multi-
functional pipe which can be static or dynamic depending on the number
of éétive configu;ations (interconnections). If only one configuration
is active at any one time, then the pipe is said to be static. Thus
any overlapping of operations has to involve the same configuration.
However, in a dynamic multifuncticnal pipe, more than one configuraticn
can be active at any one time, thus permitting a synchronous overlapping
on different interconnections.

The simplified godel of a general pipelined computer is shown in

Figure 1.8 where the proqegsor unit is segmented into M modules, each
of which performs its part of the processing and'the result appéars

at the end of the Mth segment.

22
CONTROL FLOW
DATA FLOW

PIPELINED PROCESSOR

_—
CONTROL
— ==
1 UNIT
|
| UNIT
1
{
{
]
I
| |
:— --3| SEGMENT 1
[}
|
}
' .
| GENERAL
: REGISTERS
[}
I A
I
1
“— -3 SEGMENT M

ALIGNMENT NETWORK

MEMORY MEMI?RY

!

1/0
DEVICE

SECOND:
MEMORY

FIGURE 1.8: A Parallel Processor System

23

The pipelined concurrency, a main characteristic of the simplest
pipeling, is exemplified by the process of executing instructions. 1In
Figure 1.9, we considered four modules: ;nstruction Fetch (IF),
Instruction Decode (ID), Operand Fetch {(OF) and Execution (E), obtained
when segmenting the process of processing insgructions. Consequently,
if the process is decomposed into four subprocesses and executed on
the four-module pipelined system as defined above, then four successive
instructions may execute in parallel and independently of each other
but at different execution stages: the first instruction is in the
execution phase, the second cone is in the operand fetching stage, the
third is in the instruction decoding phase and lastly, the fourth
instruction is in the fetching stage. The bverlapping proceﬁure among
these individual modules is depicted in Figure 1.10.

However the expected full-potential computation speed increase is
not always achieved mainly dug to some design and operatiocnal problems.
These are buffering, busing structure, branching and interrup; handling.
A brief discussion of these major design constituents along with the
pipelining of the arithmetic funections is included. Their importance
and effects which can actually decide the efficiency and performance of
the resulting design are also outlined.

Buffering, an essential process to ensure a continuous smecoth
flow of data through the pipeline segments in the case where variable
speed occurs, is wvirtually a process of storing the results of a
segment temporarily before sending them to the next segment. Similar
to an industrial assembly line, a segment may occasionally be slowed
down for one of many reésons which could prevent the continuous input

to the next station. To remedy this problem, a sufficient storage

24

— IF ID OF E
FIGURE 1.9: The Modules of a Pipelined Processor
IF. |ID, PF E IF_|ID,_ |OF E IF. |Ib_ PF E IF
L[P PFL | B [P2l P2 [%F2) Ba | T3 |PP3 P3| B3 |1Fy| 04 OF4|Ey
NO PIPELINE
F
I 4 ID4 OF4 E4
1D CF
TF3 103 | 9F3|%3
F OF E
I 2 ID2 2
IF IDl OF‘l El
IF, ID, OF, E PIPELINING
FIGURE 1.10: Space~Time Diagram
Exponent
Ali 1i add ltipl
Input Subtract ign| |Normalise d Multiply|| Accumulate| |JOutput

FIGURE 1.11: Modules of an Arithmetic Pipelined Processor

25

space or buffer is included between this segment and its processor,
the latter can continue its operation on other results and transfer
them to the provided buffer until it is full.

When the slowing down segment resumes normal service, it clears
out its buffer. Perhaps at a faster speed. Consequently buffering
may be needed before and after a segment with variable processing time.
The inclusion of buffering between segments in a pipelined structure
makes the system perform at a felatively constant xate rather than at
the speed of slowest component. However full-speed is not always
expected to be achieved since buffers have to be stabilised prior to
any transfer activity.

In addition to the architectural features of the pipelined
processor, the busing structuré is equally important in deciding the
efficiency of an algorithm to be executed on such a system. Pipelining
in essence, refers to the concurrent processing 6f independent
instructions though they may be in different stages of execution due
tc overlapping. 1In real life, often, pipelined computers have to deal
with dependent or intermixed instructions. With dependent tasks,
their input and traversal through the pipe have to be paused before
the dependency is tackled. The internal busing structure serves this
purpose by routing the results to the requesting segment efficiently,
thus reducing the adverse effect of instruction dependency, but still
leaving a great burden on the programmer. However, in the case of
intermixgd instructions, more concurrent processiﬁg can take place
since the resuiting dependency ié hidden behind the processing of

independent tasks.

26

Another damaging factor:.to the pipeline performance, even more
than the instruction dependency is branching. The encounter of a
conditional branch not only delays further executions but affects the
performance of the entire pipe since the exact sequence of instructions
to be followed is hard to foretell until the deciding results becomes
available at the output. To alleviate the effects of branching,
several technigques have been employed to provide mechanisms through
which processing can resume safely even if aﬁ incorrect branch occurs
which may create a discontinuous supply of instructions.

A similar degrading effect to the conditional branching is caused
by interrupts which disrupt the continuity of the instruction stream
through the pipeline. Interrupts must be serviced before any action
-can be applied to the next instruction. In the case that the cost of
a recovery mechanism for processing to proceed after an unpredictable
interrupt occurs (while instruction i is the next one to enter the
pipe), is not exceedingly substantial, sufficient information is saved
for the eventual recovery. Otherwise these two instructions, the
interrupt instruction and instruction i, have to be executed
sequentially which is in fact, not aimed at by the pipelining
principle. '

Finally, one of the most beneficial applications of overlapped
Processing in order to increase the total throughput has been the
execution of arithmetic functions. Specially, the advantages of
pipelining are greatly enhanced when floating point operations are
being considered since they represent quite a lengthy process. BAgain,
until.all modules in the pipe are excessively used, full speed is not
obtained. For example, the TI ASC arithmetic pipelined processor is

made up of eight modules, as shown in Figure 1.,11.

27

1.5 DATA-FLOW COMPUTERS

A common feature for all the high-speed parallel computer
architectures is that, due to the basic linearity of the program, the
use of implicit sequencing of the instructions is possible. This is
a von-Neumann characteristic which means that the order of execution
of the instructions is determined by the order in which they are
stored in the memory with branches used to break this implicit
sequencing at selective points. An alternative form of instruction
controlling is the explicit sequencing which is basically the principal
concept exploited by the data-flow machines to provide the maximum
possibilities for concurrency and speed-up. However, this concept has
a significant impact on the architecture of such machines, the program
representation, and the synchronisation overheads.

In a data-flow architecture the algorithm is represented by a
graph where the nodes correspond to the computations and the arcs
describe the flow of data or coperands, from the node producing the data
(as a result) to the node_using it as an operand [Dennis 1980)]. 1In.
addition to the nodes describing the basic operations, there are nodes
which are used to control the routing of data. Thus, the execution of
any inst;uction is determined by the availability of all its operands
resulting in a more complex control due to the high overheads
involved in routing the data. With the use of the above graph
representation, the data-flow concept encounters scme problems when
the algorithm contains lcops or subroutine calls, in which case the
same instruction is executed several times. 'Basically, the
iﬁplementation of the data-flow computers can be grouped into two

main classes, the static and dynamic structures, depending on how

28

this problem is tackled. In the first class, the static one, the lcops
and éubroutine calls are unfolded at compile time so that each
instruction is executed only oﬁce. Consequently, the implementation
of the sequencing control is made simple since it éirectly follows that
of the graph. On the other hand, in the dynamic case, the operands

are labelled so that a single copy of the same instruction can be used
several times for different instances of the loop (or subroutine).

For this type of architecture, it is necessary to match all the
operands with the same label before issuing the single copy of the
instruction, the implementation of the control is significantly more
complex in comparison with that of the previous ¢lass. However, the
dynamic approach which allows a compact representation of large
programs, can effectively exploit the concurrency that apéears during
exécution (for example, recursive calls or data-dependent loops).

An example of the static approach is the MIT Data-Flow machine
(Figure 1.12) which consists of the following main components: a store
that contains the instruction cells or packets having space for the
operation, operands and for pointers to the successors, and a set of
coperating units to perform the operations. These two components are
connected by the two interconnection networks, one to send ready-to-
execute instruction packets to the operating units and another to send
results back from the operating units to the instructions that use
them as operands. The system has to be carefully designed so as to
prevent any bottleneck from occurring and to provide means for the full
exploitation of all the concurrency.

In such a system, the maximum throughput is determined by the

speed and numbexr of the operating units, the memory bandwidth and by

OPERATING

UNITS

INST CELL 4
=
8 :
S - 5 ¥
i} & O
2 2 ' ZE
g ' 5 8
2 :

INST CELL ——

FIGURE 1.12: The Static Data-Flow Machine

TOKEN QUEUE

To host
I/0 MATCHING N OVERFLOW
SWITCH UNIT UNIT
()
From host A
INSTRUCTION
STORE
PROCESSING
UNITS

FIGURE 1.13: The Dynamic Data~Flow Machine

30

the interconnection system. As in the other organisations, several
degradation factors reduce the effective throughput. The most
significant are the degree of concurrency available in the program,

the memory access and the interconnection network conflicts, and the
broadcasting of results, all of which except the last one are similar
to the other systems. Sometimes an instruction has several successors,
so that the result has to be sent, or broadcast, to all of them and
this introduces significant overheads in the case when the number of
destination pointers present in an instruction cell is limited.

Examples of the dynamic. approach include the U-Interpreter Machine
[Axrvind 1%82] and the Manchester Dataflow Machine [Gurd 1985]. The main
components of the latter (see Figure 1.13) are the token queue that
stores computed results, the token matching unit that combines the
corresponding tokens into instruction arguments, the instruction store
that holds the readsto—execute instructions, the operating units, and
the I/0 switch for communication with the host. The degradation factors
are similar to those of the static case except the additional overhead
in token label matching. Due to the above menticoned degradation factors,
data flow machines are only attractive for cases in which the concurrency
exhibited is of several hundred instructions.

Another problem in the use of the dataflow approach is the lack
of any data structure definition, in fact only ‘scalar operations were
first utilised in the attempt to maximise the amount of concurrency
and this had significant limitations in terms of the modularity of the
programs. The inclusion of data stfuctures in the graph representation

requires that the dataflow concept be extended and operations on them

31

be defined [Davis 1982]. From the operational point of view, the most
straightforward.solution is to treat the data stru?ture as an atomic
- operand, requiring the structure to be sent as a whole to the operating
units even though only few elements are operated on. This can be
performed by sending to the operating unit a pointer to the data
structure instead of its value. However the disadvaqtage with this is
that the whole data structure has to be. copied when any of its elements
is modified resulting in a heavy transfer rate between tﬁe memory and
the operating units. To avoid this copying overhead, Dennis [Dennis
1974] has proposed a tree structure to store arrays and operaticons such
as select and append to modify parts cof the array. However, Dennis'
proposal does not solve the limitation that the elements of the array
have tovbe modified in a sequential manner, which increases the overheaé
for the select and append operations. To reduce this overhead Gandiot
and Evcegovac [Gandiot 1982] proposed the introduction of macro-actors
to perform more complex updating.' To eliminate the sequential nature
of the modifications, Arvind and Thomas [Arvind 1980Q)] introduced I-
structures that allow concurrent writes and reads by adding to each
element a tag indicating if the element has already been written and

2 list of pending reads to the reads queue to arrive before the

element has been written.

One of the most significant advantages of the data~flow machines,

as claimed by its proponents, is the exploitation of the concurrency

at a low level of the execution hierarchy since it allows the maximum
utilisation sf all the available concurrency. However, some researchers

argued that the overhead with this unstructured low-level concurrency

32

is too high and have proposed the use of a hierarchical approach in
which different types of concurrency can be exploited at different
levels,

Finally, the dataflow organisation which is still in an
experimental stage, has-recently received considerable researchers'
attention. Several prototype systems have been built or simulated and

are being evaluated.

33

1.6 ARRAY PROCESSORS

The early interest in the parallel processor area initially
appeared in the investigation of machines that were arrays of
processors connected in a four—-nearest-neighbour ﬁanner "N,E;5,W" such
as the vVon Neumann's Cellular Automate [Von Neumann 1968] and the
Holland machine [Holland 1959]. Eventually, as a result of the growing
interest in this form of a computer, parallel processors with a central
control mechanism that controlled the entire array and operating in a
SIMD manner began to emerge.

All the systems in the array processor class can be identified by
their major components, structured in a number of various and different
ways:

A number of identical Processor Elements (PE's) synchronously
operating on different data streams proliferating from a number of
memory banks not necessarily equal to the number of the PE's through a
communication network with some form of local control and finally s;me

form of global control. A .simple array computer is shown in Figure 1.14.

R T |
L™ N V. N/
CONTROL
UNIT
¢ PROCESSOR 1 MEMORY
BANK 1
g MEMORY
E PRCCESSOR 2 —3 BANK 2
=
% .
& .
£
PROCESSOR P MEMORY
BANK P

FIGURE 1.14: A General SIMD Architecture

34

The control unit which is usually a computer itself with its own
arithmetic and logic unit, memory and registers, differs from the
other processors in that it can execute scalar and control instructions
(including conditional branch instructions). The processor elements
which lack this ability since they must all be kept in synchronisation,
do not generate their own instructions, but they all receive the same
sequence of vector instruction from the control unit. A local on-off
control unit is used to permit processors to either execute or ignore
certain broadcast vector instructions.

Oone of the most currently active research areas in conmputer
architecture is the interconnection networks since they represent the
accumulation of a large number of design decisions made before the
implementation of the actual architecture.

The interconnection networks can be generally distinguished into
two types, the bus and the aligmnment networks with basic differences
between them: while the former allows only a single one—to-one
commupication to take place at any given time, the latter allows several
one-to-one (parallel data and control transfer) or one-to-many
(allowing one unit to broadcast to many units in parallel) communication.
It follows that the bus network is less expensive but a slower network
than the other.

Furthermore, the alignment networks can be topographically sub-
categorised into static and dynamic networks. A static network is
characterised by the required dimensions for layout. Examples range
from one-dimensional structures to hypercube networks. In Figure 1.15,

we can see examples of one, two.and three-dimensional networks. On

(a) Linear array network

(c} Four—-neighbour network

N

e — — —

{e) 3Db-cube

35

{(b) Ring network

i

(d) Tree

L

J FJ“'

Ay

N

(£)

L
TN

ZAN

Systolic array

FIGURE 1.15: Example of 1,2 and 3-Dimensiocnal Interconnection System

36

the other hand, the dynamic networks are distinguished into the
single-stage, multiple-stage and crossbar types of networks. The
single-stage network consists of a single stage of switches. The
nearest neighbour network and the perfect shuffle networks are examples
of this type of network (see Figure 1.16)., A more generalised
connection network, where every input is connected to every output
channel through a crosspoint is the crossbar switch. Figure 1.17 shows
two representations of the crossbar switch from four inputs to four
outputs. Finally, the multi-stage networks which can provide a cheaper
alternative to the complete connection as offered by the crossbar
switches are based upon a number of interconnected 2x2 crossbar
networks organised inte several stages. 1In Figure l1.18 we can see

two multi-stage networks, the binary Bene's and the indirect binary
n-cube networks. B&An example of the parallel or array processors is

ILLIAC IV [Barnes 1968].

FIGURE 1,16(a): The Nearest-Neighbour Network

71 1

FIGURE 1.16(b): Perfect-Shuffle Network

‘ ‘ ‘ 37
INPUTS OUTPUTS
1 1

i

FIGURE 1.17: Two Representations of the Crossbar Switch from Four Inputs
to Four Qutputs

2x2

|

N

LT

e — - — b
L} ,

FIGURE 1l.l18(a): The Binary Benes Network Using 2x2 Crossbar Switches

2x2

\/

\

FIGURE 1.18(b): The Indirect Binary n-Cube Network

CHAPTER 2

PARALLEL ARCHITECTURES - A VLSI APPROACH

38

2.1 INTRODUCTION TO THE VLSI TECHNOLOGY PARADIGM

There has been a rapid growth of computing fechnolcgy that has
followed the invention of transistors in the late 1940's. (The first
transistor was invented in 1948 at the Bgll Telephcne Laboratories)
and integrated circuits in the late 1960's. Through developments in
transistors, new families of sma;l computers {i.e. minicomputers) began
to emerge on the market. As a result, thousands of transistor elements
were assembled on minute chips of silicon. The race for smaller and
faster computing machines has developed ever since. A mainframe
computer built using the original thermionic values had weighed more
than thirty tons and required a room of 60x25 square feet to hold it;

a computer of superior capability could, by 1971, be accommodated on
a sliver of silicon.

The migration of IC to large scale integration (LSI) technology
allowed tens of thousands of electronic components to fit on to a single
chip. Following the rapid advances in LSI technology, the Very Large
Scale Integration (VLSI) circuits have been developed with which
enormously complex digital electronic systems can be fabricated on a
single chip of silicon, one-tenth the size of a postage stamp. In
fact, it is foreseen that the number of components that a VLSI chip
could accommodate would be increased by a multiplier factor of ten to
one hundred in the next two decades [Mead 1920}. Devices which once
required many complex components.can now be built with just a few VLSI
chips, reducing the difficulties in reliability, performance and heat
dissipation that arise from standard SSI and MSI components [Kung 1979].

As computer applications still require faster and more powerful

39

computer architectures than these which are currently avajilable and as
we are migrating from the information processing era towards "knowledge"
based systems which characterise the projected fifth generation of
computers, the research in computer technology has been widened more
than ever before. H.T. Kung was the first to realise that the rapidly
developing chip industry together with automata theory could be the key
success to constructing fast, highly parallel computer structures at
low cost. Until the advent of VLSI, the development of parallel
computers with a large number of processors had been limited by the
unaffordable high costs of manufacture. Existing machines had been
improved by tinkering with the traditional von Neumann architecture,
for instance cycle stealing, direct memory access (DMA) and pipelining
of fetch and execute operations. As such, parallel machines were
confined only to research purposes or military operations.

The development of new manufacturing techniques for fabrication
of small, dense and inexpensive semi-conductor chips created a unique
circumstance in the computer industry. With the use of VLSI in circuits,
size and cost of processing elements and memory was considerably
reduced and it became feasible to combine the principles of automation
thecry with the pipeline concepts. The combination was especially
attractive since device manufacture costs remained constant relative
to circuit complexity, with most time and mconey invested in design
and testing.

In relation with what was said above, approaches to device
designs have progressed so significantly to the point that hardware

design now relies heavily on software techniques, i.e. special rules

40

for circuit layout and high level design languages (e.g. geometry
languages, stick languages, register transfer languages, etc.) [Mgad
,1981]. 1In fact, some of these languages offer the powerful chip
fabrication capability directly from a design they express.

Illustrative of this trend is the term silicon compiler utilised
by the hardware designers to refer to computer-aided design systems
currently under development. Analogous to a conveptional software
compiler, the silicon compiler will convert linguistic representations
of hardware components into machine code, which can be stored and
subsequently utilised in computer-assisted fabrication.

However, VLSI presents some problems, as the size of wires and
transistors approach the limits of photolithographic resolution for it
becomes literally impossible to achieve further miniaturisation and -
actual circuit area becomes a key issue. In addition, the chip area is
also limited in order to maintain high chip yield and the number of
pins {through which the chip communicates with the outside world)} is
limited by the finite size of the chip perimeter, These restrictions
form the basis of the VLSI paradigm.

For a newly developed technology or product to survive in a highly
competitive industry there must be sufficient demand for it. The
emergence and subsequent success of VLSI oriented computing systems is
not due only to H.T. Kung's foresight but also to the timeliness. At
the same time Xung revealed the systolic concept, the idea of using
VLSI for signal processing was the major focus of attention in

governmental, industrial and university research estabiishments.

41

2.2 FUNDAMENTAL ARCHITECTURAL CONCEPTS IN DESIGNING SPECIAL PURPOSE

VLSI COMPUTING STRUCTURES

High-performance special-purpose VLSI oriented computer systems
are typically used to meet specific applications, or to off-load
computations that are especially taxing to general-purpose computers.
However since most of these systems are built on an adhoc basis for
specific tasks, methodological work in this area is rare. 1In an attempt
to assist in correcting this adhoc approach, some general design concepts
will be discussed, while in the following paragraph the particular
concept of systolic and wavefront array architectures, two general
methodologies for mapping high-level computation problems into
hardware cellular structures, will be introduced.

The problem of embedding a network of processors and memories
into a set of VLSI chips is similar to that of embedding graphs .whose
nodes are computers, or gates; onto grids so as to minimise area. Most
of the researchers exploring this problem usually make certain
assumptions; for example, they assume that wires run and devices are
oriented in only horizontal and vertical directions, everything is
embedded on a square grid, all device nodes are at the same layer.

The computational power of a chip is often measured by the number
of transistors it contains. However, this is quite a misleading
approach for the organisation of a chip's circuitry has a very strong
effect. 1In general, regular chip designs make more efficient
‘utilisation of silicon area, which is a more natural measurement
factor for the circuit size than the number of transistors. Such

3

designs utilise less area for the wiring amongst transistors, leaving

more space for transistors themselves.

From the memory capacity point of view, the number of bits has
been quadrupling every few years; in the mid-1970's technology passed
through the era of 1X, 4K and 16K bits memory chips. In 1981 the
memory size was expanded to 32K bits and a 64K bit is predicted.

Particularly for the design of special-purpose VLSI oriented
computer machines, cost effectiveness has always been a major concern;
their fabrication must be low enough to justify their specialised, and
consequently, limited applicability. Cost can be distinguished in
non-recurring design and recurring parts costs. Any fall of the
latter's cost is equally applied for the merit of both special-
purpose and general-purpose computer systems. Furthermore this cost
is even less significant than the design cost, since the production of
special—-purpose computer systems in large quantities is quite a rare
phenomenon. Hence, the design ¢f such a system should be relatively
small for it to becomé more attractive compared to a general-purpose
computer and this can be achieved by the utilisation of appropriate
architectures. More specifically, if the decomposition of a structure
into a few types of simple substructures which are repetitively
utilised with simple and regular interfaces is feasible, then
significant savings are most likely to be achieved.

In addition, special-purpose computer systems based on simple and
regular designs are likely to be modular and consequently adjustable
to various performance goals, i.e. system costs may be made analogous
to the performance required. This fact reveals that achieving the

architectural challenge for simple and regular design, yields cost-

42

43

effective special-purpose computer systems.

Since such VLSI computing structures can function as peripheral
devices, attached to conventional host computer, receiving data and
control signals and outputting results, at a computation rate, which
will balance the available I/0 bandwidth with the host, is the
ultimate performance goal of a special-purpose computer system.
Therefore the likely modular attribute of such a concept is highly
necessary, since it allows the flexibility of the structure to match
a variety of I/O bandwidths; and since an accurate a priori estimate
of available I/0 bandwidths in complex systems is often possible.

However this problem becomes especially severe when a very large
computation is performed on a relatively small special-purpose computer
system. In this case the computation must be decomposed.

In fact one of the major challenging research items becomes the
development of algorithms that could be mapped into and executed
efficiently by a special-purpose computer system. This implies that
algorithms should decomposé into modules, that map compactly into cone
VLSI chip (or a module of chips), and modules should be interconnected
in an efficient manner. These algorithms must support high degrees of
concurrency and employ a simple, regular data and contreol flow to
enable an efficient implementation [Dew, 1984].

To conclude we mention that special-purpose VLSI orjiented
computing structures can be either a single chip, built from a
replication of simple cells, or a system built from identical chips,
or even a combination of these two approaches. Figure 2.1 summarises
the principle stages and tasks interdependencies invelwved in the

design of a VLSI chip (see Foster and Kungs' paper, [Foster 1980]).

44

LEVEL

GATES LEVEL |

PROBLEM
ALGORITHM DESIGN
T T = P T T
y FUNCTIONS oF | | DATA FLOW |
|
lcELL TyPES | AND GEOMETRY :
—— o —— I — 1-——
I CELL
¥ | coBINATIONS v
AND PLACEMENTS
e b oy e
i CELL LOGIC y , DATA FLOW |
t < —i
| CIRCUIT : | CONTROL CIRCUTH
S gt

1

i CELL TIMING :

|

! SIGNALS |
1

|l — o _ _ .
\ STICKS LEVEL

f
1

I B

:COMMUNICATION}

)
: CELL STICKS f
]

: STICKS '

SPECIFICATION LEVELS

LAYOUTS LEVEL

— o — e o ——

'
|
(CELL LAYOUTS

1
| CELL BOUNDARY !

)

|
| i
- J

\ LAYOUTS

.ﬁ___[___J

\\\\\\\“‘~\3; MASK AND CHIP

FOR FABRICATION

FIGURE 2.1: The Design Stages of a Special-Purpose VLSI Chip

45

In fact in the environment of VLSI systems design, the boundary between

software and hardware has become increasingly vague.

2.2.1 8Systolic Arrays

The concept of systolic architectures, pioneered by H.T. Kung,
which has been successfully shown to be suitable for VLSI implementation
is basically a general methodology of directly mapping algorithms onto
an array of processor elements. It is especially amenable to a special
class of algorithms, taking advantage of their regular, localised
data flow.

The word 'systole' was borrowed from physiologists who used it to
describe the rhythmically recurrent contraction of the heart and arteries
which pulse blood through the body. By analogy, the function of a cell
in a systolic computing system is to ensure that data and control are
pumped in and out at a regular pulse, while performing some short
computation [Kung 1978] , [Dew, 1986}.

Thus, a systolic array is a network of processing elements,
usually arranged in a regular pattern and locally linked by
communication channels. Operands are pumped through the array at a
regular pulse. Everything is planned in advance so that all inputs
to a cell arrive at just the right time before they are consumed.
Intermediate results are passed on immediately to become the inputs
for further cells. A steady stream flows at one end of the array
which is said to consume data and produce results 'on the fly'. For
instance, by locally connecting a few basic cells, known as Inner
Product Steps 'IPS' - each performing the operaticn C=C+A*BE - leads

to a fundamental network capable of performing computation - intensive

46

algorithms, such as digital filtering, matrix multiplication, and
other related problems {see Table 2.1 for a more comprehensive list
of potential systolic applications).

The systolic array systems feature the important properties of
modularity regularity local interconnection, a high degree of pipe-
lining and highly synchronised multiprocessing. Such features are.
particularly more interesting in the implementation of compute-bound
algorithms, rather than input/output - 'I/0' - bound computations.

In a compute-bound algorithm, the number of computing operations is
larger than the total number of I/0 elements, otherwise the problem

is termed I/0-bound. Illustrative of these concepts are the following
matrix-matrix multiplication and addition examples. An ordinary
algorithm, for the former, represents a compute-bound task, since ~
every entry in the matrix is multiplied by all the entries in some row
or column of the other matrix - i.e. 0(n3) multiply-add steps, but
only O(n2) I/0 elements. The addition of two matrices, on the other
hand, is an I/0 bound task. Since the total number of adds is not
larger than the total number of I/0 operations, i.e. O(nz) add steps
and O(n2) I/0 elements.

It is apparent that any attempt to speed-up an I/0-bound
computation must rely on an increase in memory bandwidth (the so-
called 'Von Neumann' bottlenecks). Memory bandwidths can be increased
by the utilisation of either fast components, which may be quite
expensive, or interleaved memories, which may create complex memory
management problems. However, the speed-up of a compute-bound
computation may often be achieved in a relatively simple and

inexpensive manner, that is by the systolic architectural approach.

47

'SYSTOLIC' PROCESSOR
ARRAY STRUCTURE

PROBLEM CASES

1-D linear arrays

2-D square arrays

2-D hexagonal arrays

Trees

Triangular arrays

FIR-filter, convolution, 'Discrete
Fourier Transform' - DFT, matrix-
vector multiplication, recurrence
evaluation, sqlution of triangular
linear systems, carry pipelining,
cartesian product, odd-even
transposition sort, real-time
priority queue, pipeline

arithmetic units.

Dynamic programming for optimal
parenthesization, image processing,
pattern matching, numerical
relaxétion, graph algorithms.

involving adjacency matrices.

Matrix problems (matrix multi-
plication), LU decomposition by
Gaussian elimination without
pivoting, QR-factorizatiocn,
transitive closure, relational

database operations, DFT.

Searching algorithms (queries on
nearest neighbour, rank, etc.,
systolic search (tree), recurrence

evaluation.

Inversion of triangular matrix,

formal language recognition.

TABLE 2,1: The Potential Utilization of 'Systolic' Array Configurations

48

The fundamental principle of a systolic architecture, a systolic
array in particular is illustrated in Figure 2.2. By replacing a
single processing element with an array of PEs, a higher computation
throughput can be achieved without increasing memory bandwidth. This
is apparent if we assume that the clock period of each PE is 1l0Ons;
then the conventional memory-processor organisation (a) has at most
5 MOPS performance, while with the same clock rate, the systolic
array {b) will result in a possible 35 MOPS performance.

Finally, this approach of utilising each input data item a number
of times, thus achieving a high computation throughput with only a
ﬁodest memoxy bandwidth, is just one of the advantages of the systolic
concept. Other equally significant criteria and advantages include
modular expansibility, utilisation of simple, uniform cells, extensive
concurrency and fast response time.

However, one problem associated with systolic arrays is that the
data and control movements are controlled by global timing-reference
beats. In order to synchronise the cells, extra delays are often used
to ensure correct timing. More critically, the burden of having to
synchronise the entire network will eventually become intolerable for

very large or ultra large scale arrays [Dew, 1984].

— MEMORY

10Cns

PE

(a) The Conventional Organisation

MEMORY r

100 ns

pE |pE | PE | PE |PE | PE | PE

{b) A Systolic Processor Array

FIGURE 2.2: Systolic Design Principle

2.2.2 wavefront Arrays

A solution to the above mentioned problems, as suggested by
5.Y. Kung [Kung 1985], is to take advantage of the data and_control
flow locality, inherently possessed by most algorithms. This permits
a data-driven, self-timed approach to array processing. Conceptually
such an approaéh substitutes the requirement of correct 'timing' by
correct 'sequencing', this concept is used extensively in data flow
computers and wavefropt arrays.

Basically the derivation of a wavefront process cqnsists of the

three following steps:

49

50

a)} the algorithms are expressed in terms of a sequence of
recursions;

b) each of the above recursions is mapped to a corresponding
computation wavefront; and

c) the wavefronts are successively pipelined through the

pProcessor array.

Based on this approach, S.Y. Kung intrcduced the Wavefront Array
Processor {WAP) which consists of an NxN processing element with a
regular connection structure, a program store and memory buffering
modules as illustrated in Figure 2.3. The processor grid acts as a
wave propagating medium using handshaking érotocols.

Each processor performs a limited number of computations and is
controlled by a program leoaded in the program store. Data is stored in
memory modules around the boundary and extra time must be allowed to
set up a computation. An algorithm.is execﬁted by a series of wave-
fronts moving across the grid with processors computing whenever its
data and instructions are available. Processors are assumed to support
pipelining of waves and the spacing of waves (T) is determined by the
avajlability of data and the execution of the basic operation. The
speed of wavefront A is equivalent to the data transfer time.

Summarising, the wavefront approach combines the advantages of
data flow machines with both the localities of data flow and control
flow . inherent in a certain class of algorithms. Since the burden of
synchronising the entire array is avoided, a wavefront array is

architecturally 'scalable'.

MEMORY MODULES

51

MEMORY MODULES

PROGRAM .
CODE

MEMORY i ‘
) S
b"&' ﬁ’bx 'bbxﬁr b"ﬁ'
///m o & A
b P - &
; amwvay 17) %
E s A7 A_ 7
/ .

: - ’ // bt
// // J //
_ // 7 // // // &
A/// s/ y4 y ;é;
nd -/ / e
/ yad 7 / &

7 I\
% éf N s ,z‘f
O y s A7
/ rd

/c—,// /fo g / (\/

& & §°
<§p & ¢

———————— ~ FIRST WAVE

SECOND WAVE
A UNIT TIME OF DATA TRANSFER
T UNIT TIME OF ARITHMETIC OPERATION

FIGURE 2.3: The Wavefront Array Processor

52

2.3 VLSI-ORIENTED ARCHITECTURES

For large applications it may not be feasible to design a single
chip implementation of an array, especially when balance between
flexibility, efficiency, performance and implementation cost is
essential. BAn alternative approach is to implement basic cells at the
board level using a set of 'off-the-shelf' components which are widely
available as chip packages from various manufacturers.

Systolic arrays achieve high performance and efficiency by
considering only restricted problem classes, at the expense of flexibility
and implementation cost. For a more economical solution, arrays must
be constructed with many incorporated features so as to handle a large
number of systolic élgorithms. In this section, we shall briefly
review the main contenders of VLSI~Oriented computing systems which

have received attention to date.

2.3.1 The WARP Architecture

The WARP architecture, one of.the most advanced VLSI-oriented
systems, was developed at Carnegie Mellon University {CMU) by H.T. Kung
and his associates for purely systolic algorithms. Initially, the
design begén with a preliminary study of different architectures based
on general purpose microprocessors which could implement a variety of
systolic algorithms efficiently. The study resulted in the Programmable
Systolic Chip (PSC) discussed in [Fisher 1984] and prompted research
into cell structures for high performance systolic arrays in a
particular area (signal processing).

The WARP architecture is a l1-D linear systolic array with data

and control flowing in one direction {with input at one end of the

53

array and output at the other). From the preceeding discussion we
observe that the design allows easy implementation, synchronisation by
a simple global ¢lock mechanism, minimum input/output regquirements and
the use of efficient fault tolerance techniques for malfunction.

The basic WARP cell is constructed from a collection of chips as
is illustrated in Figure 2.4, its main characteristics being the
pipelining of data and control. Weitek 32-bit floating point
multiplier (MPY) and ALU's perform operations and can be used in a
pipeline mode to improve throughput by two level pipelining. The MPY
and ALU register files use Weitek register file chips and can compute
approximate functions like inverse square rﬁots using look-up facilities.
The X,Y and address-files are also register files but this time they
are used to implemeht delays for synchronising data paths, and can be
used as extra registers for book-keeping operations, while the data
memory is used to reduce the input/output bandwidth by implementing
tables of data and storing intermediate results. It can also be used
to implement multiple cells on the same processor and hence 2-D arrays.
The crossbar and input multiplexors (muxes) provide communication
between the individual elements and can be reconfigured by control
signals. The muxes permit two-directiocnal dataflow and ring set-ups.
A ten-cell prototype has been built at CMU and tested on a number of

example arrays discussed in H.T. Kung [Kung 1984]).

2.3.2 The CHIP Architecture

In order .to derive a more flexible VLSI-coriented computing system

than the special-~purpose computers, where the same hardware would be

M code

Y-FILE

i-1
A 3:1
mux
2:1
mux
add
Ti-1

~F

X-FILE

ADDR-FILE

T

DATA

MEMORY

n wm O W 0O

e

—

MPY
REG FILE MPY
ALU ALU
REG FILE

w

addr

- FIGURE 2.4: Data Paths for the WARP Cell

pS

55

used to solve several different problems, L. Snyder suggested the
design of the configurable, highly parallel architecture 'CHIP'
[Snyder 1982] based on the configurability principle. Conceptually,
the chip represents a family of systems, each built out of three major
components: a set of processing elements (PE's), a switch lattice and
a controller. The lattice, the most important component of a chip,

is a 2-D structufé Qf programmable switches connected by data paths.
The PEs are placed at regular intervals. Figure 2.5 sﬁows two examples
where sgquares represent PEs, circles represent switches and lines
represent data paths., Note that the PEs are not directly connected to
each other, but rather are connected to switches.

The processing elements are microprocessors each coupled with
several kilo-bytes of RAM used as local stofage. Data can be read or
written through any of the eight data paths or ports connected to the
PE. Generally, the data transfer unit is a word, though the physical
data path may be narrower. The PE’s operéte synchronously and
systolically.

Each programmable switch contains a small amount (around 16 words)
of local RA& which is used to store instructions (one instruction per
word) called configuration.settings. Each configuration setting
specifies pairs of data paths to be connected. When .executed, each
pair which is also known as a crossover level, establishes a direct,
static connection across the switch that is independent of the others.
The data pgths are bidirectional and fully duplex, i.e. data movements
can take place in either direction simultaneously. Now, executing a

.configuration settings program causes the specified connections to be

FIGURE 2.5: Two Lattice Structures

56

\
G

N

D‘.
X
(D
2

K
0
3

i
A
XX
s
0’
.
X
K

38
u’Q
..’%0
0
X
X
3

”
L
D

I
™
o
&C
LY.
%:
Sy,
X

4

<
X
)
>
%

(3
75
X
%
=
:'a
¢
o
.b
ol

c"“%‘o"

(b)

established and to persist over time, e.g. over the execution of an

entire algorithm.

The processing elements can be connected together to form a

particular structure by directly configuring the lattice. That is,

the programmer sets each switch such that collectively they impleﬁent

the desired processor interconnection graph. Figure 2.6 illustrates

three examplés of how the lattice of Figure 2.5{a) might be configured

to implement some commonly used ‘interconnection schemes.

In addition to the lattice, a controller is also provided, and

is responsible for loading programs and configuration settings into

PE and switch memories respectively. This task is performed through

an additional data path network, called 'skeleton'.

57

+
. OC C O o0 g0

b6 b

(a) Binary tree

—

(b} Systolic array

ZJT»
O
>

3
{J}
{7
<

Q@ 0e 00O OO

{c) Four—-neighbour network

FIGURE 2.6: Embedding Graphs into the Lattice of Figure 2.5

58

From the functicenal point of view, CHIP processing starts with
the controller broadcasting a command to all switches to invoke a
particular configuration setting; for example to implement a mesh
pattern. The established configuration remains during the execution
of a particular phase of an algorithm. When a new phase of processing,
requiring different configquration settings is to begin, the controller
broadcasts a command to all switches so that they invoke the new
configuration setting; for example, a structure implementing a tree.
With the lattice thus restructured, the PE's resume processing, having
taken only a single logical step in reconfiguring the structure.

In conclusion, the chip computer which is a highly parallel
computing system, providing a programmable interconnection structure
integrated with the processor elements, is well suited for VLSI
implementation. Its main cbjective is to provide the flexibility needed
in order to solve general problems while retaining the benefits of

regularity and locality.

2.3.3 INMOS Transputers and OCCAM

A third possibility is the INMOS transputer, a single chip micro-
processor containing a memory, processor and communication links for
connection to other transputers, which provides direct hardware support
for the parallel language OCCAM. The structure of a transputer is given
in Figure 2.7.

The transputer and OCCAM were designed in conjunction and all
transputers include special instructions and hardware which provide

optimal implementations of the OCCAM model of concurrency and

59

sz —
ANALYSE —)
RROR BOOT FROM «— PROC
A il GEED I T erasten
CLX | SERVICES -
vee _—
GND —
@ LINK L——— INO
INTERFACE | ouTo
ON-CHIP @
RAM @ LINK L——— IN1
(2K bytes) INTERFACE }—— oyTl
INTERFACE oUT2
T MEM(S.Bits)e— @ LINK fe—1n3
T MEM WR(4) —— : INTERFACE |———>0UT3
r MEM RO € @
T MEM RF «——{APPLICATION
AND :
SPECIFICATION EVENT ¢——— EVENT REG
INTERFACE " |———3 EVENT ACK
3 MEM REG
MEM WAIT —— —* MEM GRAN
MEM CONF, — < MEMORY 32 >

FIGURE 2.7: Transputer Architecture

60

communication. Different types of transputers can have different
instruction sets depending on the required balance between cost,
performance, internal concurrency and hardware, without altering the
users view of OCCAM. Hence the transputer is a Reduced Instruction Set
Computer (RISC).

The processor contains a scheduler which enables any number of
process®4 to run on a single transputer sharing processing time, while
each link provides two unidirectional channels for point to point
communjcation synchronised by a handshaking protocel. Communication on
any link can occur concurrently with communication on other links and
with program execution.

OCCAM itself is based on communicating sequential processors
[Hoare 1978] where parallel activities are viewed as black boxes with
internal states, called processes, and which communicate with each
other using a one-way channel. Communication is achieved by sending
a message down a channel between two processes; one process sends a
message and another reads it from the channel.

As every transputer implements OCCAM, an OCCAM preogram can be
executed on a single transputer or a network of transputers. In the
former case, parallel processes share the processor time and cﬁannel
communication is simulated by moving data in memory. For a transputer
network processes are distributed among transputers and channels
allocated to links.

The main characteristic of the OCCAM language is its simplicity
which maﬁes it an appealing prospect for proving the correctness of

the processes. It has fewer than thirty keyworks, and only a small

61

number of constructors. Although each process used destructive
assignments, the use of:channels for interprocess communication
makes it entirely consistent with data flow and graph reduction
computer architectures. OCCAM was designed with computer architectures
of this nature in mind, and with a view towards fifth generation
applications. Together with the Inmos transputers, it provides a
modular hardware/software component of the type which is essential in
the construction of highly .parallel computer systems.

However, its lack of a powerful data structure and its closeness
to the hardware, means that OCCAM is likely to be the low-level
language of fifth generation systems with applications possibly written

in a more abstract language.

2.3.4 5simulation of Systolic Arrays

We use the fact that OCCAM programs .can be divorced from transputer
configurations by using the language as a simulation tool throughout
the development of our simulation system in this research. A brief
summary of the OCCAM language is given in Chapter 4. The general
structure of OCCAM programs which represent the simulation of systolic
arrays is shown in Figure 2.8, where branching indicates parallel
execution, The construction of programs follows ideas developed by
G.M. Megson. [Megson 1984]. Consequently OCCAM programs simulate the
formal proofs by replacing I/0 descriptions by actual results.
Although the simulation does not guaran;ee correctness it 1s nevertheless
a less time consuming épproach which does not result in unsolvable

equations. Furthermore, a working OCCAM program retains the possibility

SOURCES

GETDATA

SETUP

L

ALLOCATOR

[—

FIGURE 2.8:

CELLS SINKS

Structure of OCCAM Program for Simulating

DE-ALLOCATOR

PUTDATA

Systolic Arrays

62

. 63

of actual transputer implementation and so solves two problems in one
attempt.

The getdata and putdata sections of Figure 2.8 which represent
the host machine interface, are. responsible for receiving and sending
data and control to and from the program. Each routine contains enough
memory to store the initial array input data and the final output data
corresponding to the global input and output sequences of the model.

In principle, the two routines can be run in parallel with each other
and the array, but generally they are sequential, in order toc emphasise
the parallel operation of the array. The actual hest can be predefined
I1/0 files or simply the terminal. The former method is useful for
buffering and throughput testing, while the lattef helps with debugging
and interactive array performance. The routines can be augmented ﬁith
user friendly features directing the program use, the collection of data
necessary for the array construction and formatting of results.

The setup routine is a key section of the algorithm which computes
array dependent quantities. More specially, it performs many necessary
calculations whose values are useful in defining the structure of the
array. These structural values are more important as the array bhecomes
more complex.

Sources, sinks and cells are OCCAM procedures that define the
network model. A source is located initially with a vector from getdata
representing its associated bounded data sequence, together with
additional values from the set-up routine. Sinks are analogous to
sourceslexcept they work in inverse by placing-real values into data

vectors which are then passed to putdata for output. The cell

64

procedures implement the n-ary sequence operators. Generally there

is one procedure for each type of cell, and the programming task is
simplified for homogeneous networks. The I/Q sequences are represented
by OCCAM channels appearing as actual-parameters in the procedure
headings. Where cell definitions are only marginally.different, extra
switches and flags can be added to a procedure heading so it c¢an set
up the correct cell type. This collapses a number of definitions onto
a single generic one. Extra parameters can also be used for preloading
array values.

A cell definition is divided into three sections, initialization,
communication and computation. Initialization is performed only once
and allows cells to be cleared before use or predetermined values to be
set up. In particular, initialization defines neutral element quantities
which can be used in communication before real data reaches the cell
and is essential to maintain dataflow in OCCAM programs. The
communication and computation sections of the cell are performed many
times and are enclosed in a loop for iteration, and are performed
sequentially one after the other. All communication .is performed in
parallel and computation is mainly sequential. The allocator routine
is called after setup and is supplied with parameters about the array
dimensions, synchronisation details of the total number of cycles in
the algorithm, if a loop scheme. is used, and data sequence sizes. The
allocator is simply a set of parallel loops which specify and start—up
the computational graph by connecting corresponding procedures using
OCcCaM channels as arcs and allocating channels accordingly. To achieve

setup, the graph is mapped onto a grid of points whose points and

65

hence arcs can be recovered from a simple address type calculation.
The simpler the array the easier are the mapping functions, and the
result is an allocation similar to the VLSI grid model. Once started
the sources and sinks control the computation, and the allocator only
terminates when all the graph cell procedures have terminated.
Termination of procedures is assumed to be globally synchronised if a
for-loop is used in cells and asynchronous if while-loops are
incorporated. As OCCAM is.an asynchronous communication language,
for-loops tend to be messy requiring some additional computaticn after
the loop to clear all the channels - hence avoiding deadlock. While-
loops are better suited to the model of concurrency and when augmented
with.systolic control sequences can be used to selectively close down
cells, input and output .channels. Consequently array cells can be
switched'off or de-allocated by a wavefront progression or pipelined
approach from sources to sinks.

An additional procedure for debugging purposes can be added which
runs in parallel with graph networks, and is mainly a screen/file mixer
routine. The allocator sets up the procedure and network cells are
augmented with an additional channel each, which the debug routine uses
to analyse cells. Debug channels are allocated from a pocl of channels
and require an ordering of network cells for correct indexing. When
the indexing function is simple, debug can be used to output snapshots
in a sequential cell-ordering and the additional debug channel
communication must be placed carefully in cell definitions.

Finally, the techniques described above have been used successfully

to implement designs in OCCAM by G.M. Megson [Megson 1587], but can in

66

Principle be extended to any parallel language provided channels
and cells can be modelled.

In fact Brent, Kung and Luk [Brent 1983] used an extended version
of Pascal., ;. ADA also seems a likely candidate as ADA vendezvous is
very similar to channel communication both being based.on CSP. The
adoption of OCCAM offers more direct hardware support for special

purpose designs as well as common architectures.

67

2.4 MIMD ARCHITECTURE DESIGN - THE SEQUENT BALANCE SYSTEM

2.4.1 MIMD Bardware QOrganisation

One of the motivations of the MIMD computer design is the increase
in computational speed-up by the concurrent execution of instructions,
organised in several sequential streams with infrequent dependencies
among them, by a large pool of processors with approximately similarx
capabilities. Of importance to this type of structure is the mechanism
to synchronise and communicate between processors. Specifically the
used mechanisms can be classified iﬁto two classes, those that use a
shared memor&, and those .that use passing messages (see [Baer 1976],
[Enslow 19%7] and [Stone 1980j). The use of the shared memory which
might be a multiported main memory, cache memory or a multiported disk,
results in a fastér mechanism but requires all the processors to access
the shared memory. Consequently, this limits the total number of
processors that the system can effectively handle. On the other hand,
the mechanism based on messages has a large overhead so that it is only
useful when synchronisation and communication are very infrequent
[Gehrig 1982].

The general class of MIMD computers was distinguished into two
main classes, the tightly-coupled and the loosely-coupled systems
depending on the amount of interactions between the processing elements
{see [Hayes 1978]). 1In the case of tightly coupled processors, as
shown in Figure 2.9, (i.e. a large number of processors sharing a
common parallel memory via a high-speed multiplexed bus), the processors
operate under the strict control of the bus assignment-scheme which is
implemented in hardware at the bus/processor interface. On the other

hand, in a system with loosely-coupled processors the communication and

SHARED MEMORY

68

PROCESSOR
1

FIGURE 2.9: Tightly-Coupled Multiprocessor System

MEMORY

PROCESSOR
1

PROCESSOR PROCESSOR
2 3
MEMORY MEMORY
2 3
PROCESSOR PROCESSOR
2 3

FIGURE 2.10: Loosely-Coupled Multiprocessor System

69

interaction takes place on the basis of information exchange. Figure
2.10 shows a general architecture of a loosely coupled system where
each processor has its own local memory. Comparing the above two
classes of multiprocessor systems, the main difference lies in the
organisation of the memory and the bandwidth of the interconnection
network.

Several interconnection .networks with different characteristics
such as bandwidth, delay and cost, ranging from the shared common bus
to the crossbar switch have been proposed.

However. Enslow identified three fundamentally different organis-
ations, namely the time-shared common bus, the multiport memofy and
the crossbar switch.

The time-shared common bus interconnection scheme, as illustrated
in Figure 2.1, represents the simplest form of connecting all the
functional units using a single bus which incorporates scme arbitration
logic associated with every bus/unit interface to resolve the bus
request contention since only one transfer can take place at any given
time. Thus, the unit wishing to initiate a transfer, a processor or
an I/0 unit, must first determine the availability state of the bus,
then address the receiving unip as well as determining its availability
and capability to receive the transfer,

By its nature, such a system is quite reliable and its cost is
.relatively low, however several limitations are introduced that caﬁ
have serious damaging effects on both the system, since a malfunction
of any unit interface causes a system failure, and the total overall

transfer rate.

70

PROCESSOR PROCESSOR PROCESSOR
1 2 3
T & &— T— O
MEMORY MEMORY I/0 UNIT
1 2 1

FIGURE 2.11: The Time-~Shared Common Bus Interconnection System

Several interconnection systems such as the use of two one-way
paths and multiple two-way buées have been provided in an attempt to
solve this problem of a single transfer. The former example which
does not increase system complexity or diminish reliability has a
comparable performance with its predecessor since a single transfer
requires the use of both paths. On the other hand with the latter
technique multiple simultaneous transfers are possible but at
additional system complexity.

The most exténsive and expensive interconnection network providing
a separate path for every processor, memory module and I/0 unit is

the crossbar switch (see Figuré 2.12).

71

i/ol

1/02

FIGURE 2.12: The Crossbar Switch System

MEMORY MEMORY MEMORY
1 2 3
PROCESSOR 4
1
PROCESSOR 4 l
2
PROCESSOR
3

i/03

In the case that the multiprocessor system contains p processors

and m memories, the crossbar requires pxm switches, each of which is
capable of switching parallel transfers and arbitrating conflicting
requests. In this system, the bus-interface logic required by the

functional units is kept at the lowest level since some of the

functions, i.e. transfer recognition and conflicts resolution, which

are performed at every bus-unit interface, are assumed by the switch

72

matrix. Consequently, such an interconnection is very complex
{(exponential growth for large p and m), expensive and physically
large. However the important characteristics of this system which
is shown in Figure 2.12, are the extreme simplicity of the switch-
functional unit interfaces and the ability to support concurrent
transfers for all memory modules.

The interconnection of the control, switching and priority
arbitration legic, which are distributed throughout the crossbar
switch matrix, at the interface'to the memory modules leads to the
multiport memory organisation, as shown in Figure 2.13, where every
processor has a private bus to every passive unit, i.e. memory and
I/0 units. The multiple ports of every passive unit, one for each
connection to a processor, are assigned fixed priorities through
which arising conflicts arxe resolved.

This organisation offers a high potential transfer rate within
the system at a comparable hardware complexity with that of the
crossbar switch except for -the localised logic, but with a severe
constraint on the number of processors imposed by the number and type
of the memory ports.

Besides these three presented interconnection networks, there
are many others which can be valuable for the multiprocessor
organisation such as the Omega network [Lawrie 1975] and the Delta
network [Patel 1981] and the Augmented Data Manipulator ([Siegel 1979].

The interference or conflict, produced in the accessing of a
shared memory in a multiprocessor system, which is one of the factors

that degrade the overall performance of the system has been

PRCCESSOR
1

PROCESSOR
2

PROCESSOR
3

PROCESSOR
4

MEMORY

MEMORY

I/01

MEMORY

1/02

FIGURE 2.13:

The Multi-port Memory Interconnection System

I/03

€L

74

investigated extensively, resulting in some exact and approximate
modules under various assumptions [Chang 1977], [Janek 1981],

[Janek 1982]1, (Lillevik 1984] and [Baéket 1976} . These interferences
can be generally classified into two types: software and hardware
types.

The first memory conflict is caused by a processor attempting to
use a data set while it is currently being accessed by another
processor which has eventually activated a software 'lock' mechanism
to prevent any other processor from accessing the same data set.
Thus, although this action forces serial manipulation of some
sensitive data sets through a software mechanism, called critical
region it ensures data integrity in a multiple processor environment.

On the other hand, the second type of memory conflict is caused
when two or more processors attempt to access the same memory module
simultaneously, i.e. more than one reguest is made to .the same module
during a single memory cycle by different processors. Therefore, all
but one regquest must wait to be served sequentially since only one
access can be made per memory cycle. Thus, programs with a large
number of these conflicts have greater degradation in their overall
performance.

A way to reduce the processor interconnection network and the
interference in the memory is to have a cache memory associated to
each processor. The main difficulty with this approach is the
coherence problem that appeared when shared data is present
simultaneously in several caches. Another solution to this problem
is to partition the physical memory into local memories while keeping

the uniform access at the virtual level. To reduce even further the

75

cost of the interconnection network, it is useful to divide the
processors into clusters and have a slower interconnection between

clusters. This approach is implemented in the Cm* [Gehrig 1582].

2.4.2 The Sequent Balance 8000 System .

The Balance B80C0O which was developed by Sequent Computer System
Inc., QOregon, using a new processor pool architecture was installed in
Loughborough University, Computer Studies Department in 1986. This
system dynamically shares its load among twelve architecturally similar
processing units and operates under a single copy of a Unix-based
operating system, known as DYNIX, capable of delivering up to 5 MIPS.
The pool processing organisatjon requires dynamic balancing of the
system workload among the processors with an effective use-of all
resources in general. Consequently the system. automatically and
continucusly assigns tasks to run on any processor that is currently
idle or busy with a lower priority task, meaning that a process does
not necessarily run te completion con the same processor but on the
contrary it may involve several processors. This balancing process is
carried out transparently; neither the user nor the programmer need
to be aware that the system supports multi-tasking operatioﬁs.

From the hardware point of view, the Balance 8000 consists of a
pool of two to twelve processors, a bandwidth bus, up.to ‘28 Mbytes of
main memory, a diagnostic processor ‘up to four high-performance I/0
channels and up to four IEEE-796 (multibus) 'bus couplers. .Figure 2.14
shows the main functional blocks of the Balapce 8000 system.

Each processor is a subsystem containing three VLSI components:

16 LINE

USER

DEVICES .

}in.TAPE

396 Mbyte
DISK

FIGURE 2.14 The Balance BOOO System Configuration

S5CSI BUS

—

)

DUAY,

MULTIBUS
ADAPTER
BOARD

MULTIBUS
INTERFACE
‘ BOARD

I

CFU
BOARD

MC

BOARD

SDP8OOO BUS (12 SLOT)

A Legend:

EI:

MC: Memory controller
ME: Memory expansion
' SCSIC: SCSI controller
Ethernet interface
DP: Diagnostics processor

3in. TAPE -

MULTIBUS (9 SLOT)

N

72 Mbyte
DISK

9L

77

a 32-bit processing unit, a hardware floating-point unit and a paged
virtual memory management unit. Two such subsystems are on one circuit
board (see Figure 2.15 which shows the major units of a dual processor
board). Also each processor contains a cache memory that almost
reduces to zero all the processor waiting periods and minimises the
bus traffic. The two-way set-associative cache consists of 8 Kbytes
of very high speed memory and stores recently accesses’instructions
and data, so subsequent requests for the same data are satisfied from
the cache, rather than from the main memory.

However, with the use of these cache memories two coherence
problems arise, mainly the coherence of the data between the main
memory and the caches on each processor and the coherence of the data
between the caches themselves. For the former problem, a write-
through mechanism is utilised in order to keep the main memory up-to-
date with all the eventual changes made in every processor's cache.

In addition to the update of the appropriate cache, this mechanism
would allow the same write cycle to pass to the bus and memory. In the
latter case, the answer is provided by the bus watching logic
implemented in every cache. Consequently, all the write cycles on the
bus are monitored and the addresses are compared with those in the
cache, so whenever thg contents of the cache are altered, the cache
invalidates the entry in question.

Significant processing time is saved by including a write-buffer
in each processor which can proceed immediately after issuing a write
cycle letting the buffer wait for the memory cycle to complete.

Finally, to complete the description of the components found in

MEMORY

BUS
INTER-
FACE

. MAKAGEMENT
UNIT ~ CACHE
SYSTEM LINK WRITE
Y
AND INTERR- PROCESSOR BUFFER
UPT 1
CONTROLLER
FLOATING
POINT
UNIT
MEMORY
MANAGEMENT
IT
o WRITE
BUFFER
e
SYSTEM'
LINK AND PROSESSOR CACHE
INTERRUPT
CoNTRbLE
FLOATING
POINT

Configuration of a CPU Board with 3 VLSI
Components Attached to Each Processor

79

the processor subsystem we need to refer to the system "System Link
Interrupt Controller" (SLIC) which is a chip, one for each processor
and for every other board, attached to the SB 8000 bus. This SLIC
chip manages interprocessor communication, synchronised access to
shared data structures, distribution of interrupts among the
processors, and diagnostics and configuration control. The SLIC

bus which is a part of the SB BOOO system bus provides an inter-
connection for communication among the SLIC chips.

The SB 8000 system .bus is a 32-bit wide, pipelined, packet bus
supporting multiple overlapped memory and I/0 transactions and
capable of achieving a throughput rate of 26 Mbyte/sec. It also
supports several packet lengths and checks parity to aid in error
detection.

This system provides up to 28 Mbytes of principal memory, a 4
Mbytes I/0 address space that can be shared by all the processors and
a 16 Mbyte virtual memory address séace for each process. The Balance
8000 suppofts up to four memory contreollers, each with an optional
expansion board, reducing memory contention among processors. It also
supports standard I/0 throughout the system, and permits several
instances of each interface to increase the I/0 bandwidth. More
specifically this system supports a SCSI interface for disc and tape
I/0, a Multibus interface for serial communications, large disc and |
tape support, and user-added devices, and finally an Ethernet local

area network for communication amongst systems.

CHAPTER 3

THE INSTRUCTION SYSTOLIC ARRAY (ISA) -

A PARALLEL ARCHITECTURE FOR VLSI

80

3.1 THE INSTRUCTION SYSTOLIC ARRAY (ISA)

Systolic arrays have proved to be well suited for VLSI technology
since they:

- consist of a regular network of simple processing cells,

- use local communication between the processing cells only,

- expleoit a maximal degree of parallelism.

However, systolic arrays have one main disadvantage compared with
parallel computer architecturest: They are special purpose architectures
only capable of executing one algorithm, {(or a collection of related
problems in a generig array) i.e., a systolic array designed for
sorting cannot multiply matrices, whereas a systolic array for matrix
multiplication cannot solve pattern matching problems and so on.

Several approaches have been made to make systolic arrays more
flexible, in order to be able to handle different problems on a
single systolic-array. In Hans-Werner Lang [Lang 1985] the instruction
systolic array (ISA) has been suggested as a new architecture for
parallel computation which meets the requirements of VLSI and be
capable of efficiently executing a large variety of parallel
algorithms.

The basic idea of this concept is illustratgd in Figure 3.1.
Instead of pumping data through the array of processing cells which
can execute only one fixed instruction {(as in a systolic array)}, the
ISA moves the instructions through the array of processing cells. 1In
addition to the verfical stream of instructions, a horizontal stream

of selector bits is introduced (Figure 3.2). An instruction is

81

executed if it meets a selector bit 'l', whereas execution of an

instruction is suppressed if the selector bit is '0'. So the

instructions may be executed only in certain rows of the processor

array.

DATA

\%

PROCESSCR
ARRAY

(a)

INSTRUCTIONS

\/

PROCESSOR
ARRAY

(b}

FIGURE 3.1: (a) Data is Shifted Through the Systolic Array
(b} 1Instructions are Shifted Through the ISA

SELECTORS

_%

INSTRUCTIONS

\/

PROCESSOR
ARRAY

FIGURE 3.2: The Vertical Instruction Stream is Combined with a
Horizontal Stream of Selector Bits

Our basic model of a parallel computer is a mesh-connected nxn-
array of N=n2 identical processoré {(Figure 3.3). The processors can
execute instructions from a small instruction set. The processor
array is synchronized by a global clock and the execution of every

instruction is assumed to take the same time.

I | {_- \

] [| | T B L

e et me w e = —

FIGURE 3.3: A Mesh-Connected Processor Array

Each processor has some data registers including a designated
communication register (CR). Communication between two processors P
and Q is done in the following way:

If a data item is to be sent from P to Q, P writes the data item

82

83

into its communication register. In the next instruction cycle Q
reads the contents of P's communication register.

Each processor can write only into its own communication
register, but it can read from the communication registers of its
four direct neighbours. It is allowed that two or more processors
read from the same communication register simultaneously. In order
to avoid read/write conflicts we assume that reading from % register
is done during the first half of the execution of an. instruction and
writing into a register during the second half (Figure 3.4}, or any
equivalent mechanism: it must be guaranteed that reading from a
register always yields its 'old' contents (of a previous instruction

cycle) .,

FETCH EXECUTE INSTRUCTION
INSTRUCTION ~ =

pommmmm e bommmm e p-mmemmmeees prmmmemeeee !

READ DATA CCMPUTE WRITE

FIGURE 3.4: Instruction Cycle

The processors do not have their own cont?ol units but are
supplied with instructions from outside. Each proceséor has an
instruction register. At the béginning of each instruction cycle
each processor fetches the instruction from the instruction register
of its top neighbour. This is done synchronously, so that, by this
mechanism, rows of instructidns are shifted through the processor
array from the top to the bottom. The processors in the top row of
the array are supplied with instructions from ; memory outside. 1In

an analog way columns of selector bits are simultaneously shifted

84

through the array from left to right. A processor executes its
instruction if and only if its selector bit is 'l' otherwise it

performs 'no operation' (no-op). More formally we define:

1
A program on an ISA consists of a sequence p(),...,p(r) of n
. . ' (1) ()
-tuples over the instruction set I and a sequence s feeesS of
(t)

n-tuples over {0,1}. For every i,Jj$n and tgr,p is the row of

instructions which enters the ith row of the ISA at time t+i-1, and
t

s() is the column of selector information which enters the jth

column of the ISA at time t+j-1. That means, the instruction

executed by processor (i,j) is:

(t+i-1)
3

iff s 0TI

p{i,3) =
no-op otherwise
Input and output of data to the processor array is done via the copen-
ended processcor links at the boundary of the array. The ISA is
assumed to be embedded in an environment that is capable of:

- supplying the ISA with instructions and selectors,

- supplying the ISA with input data and sorting its output data,
both at the speed determined by the clock of the ISA chip.

The length of a program on an instruction systolic array does not
affect its area requirements, whereas the complexity of many systolic
algorithms is proportional to their time complexity [Ullman 1984].

The reduced area requirements imply that on the fixed area (of a chip)
larger problem sizes can be treated than on comparable standard

systolic architectures.

B85

3.2 THE INSTRUCTION $YSTOLIC ARRAY AND ITS RELATION TQ QTHER MODELS

OF PARALLEL COMPUTERS

3.2.1 Basic Definitions

In this section we study the feasability of the IS5A concept by
comparing it to other parallel computer concepts based on mesh-
connected arrays (Figure 3.3).

Now, in the MIMD concept of parallelism, all the processors of
a given array (denoted PA} can execute different instructions. That
means the array consists of n2 independent processors having their
own control store., Similar to the ISA the PA uses local communication
only, which makes it suitable for VLSI but the processors have to be
much larger than the ISA. Therefore, on the same area the ISA concept
can realise a larger degree of parallelism thén the PA. Furthermore,
a PA program (see later) may consist of up to n2 different programs
for the individual processcrs which have to be distributed over the
array before the PA program can be executed as it filters through the
array, whereas in the ISA the program is executed while it is moved
through the array. Consequently it is easier to execute a pipelined
sequence of differenf programs on the iSA than on the PA.

As mentioned in Section 3.1, the basic ﬁodel parallel computer
is a mesh-connected nxn array of nz‘identical processors (Figure 3.3},
which is synchronized by a global clock.' The processors can execute
instructions from some instruction set, where the execution time of
all instructions is the same. Each processcr has some local-memory
including a designated Communication Register (CR). The communication

between processors is done in the following way:

86

If a processor needs data from one of its four direct neighbours,
it reads that neighbour's communication register. This means that
at most five processors can read from a communication registe;
simultaneously (including the processor itself). Reading and writing
is done in the same manner as described in Figure 3.4, This timing
assures a mutual exclusicn of reading and writing in the communication
register. The open-ended data links of the processors at the
boundaries of the array are used for external input and the output of
data.

Now, in the SIMD concept of parallelism, at every time unit,
all active processors of the array execute the same instruction.

The instructions are broadcast by a central control unit to ali the
processors. Sinee this involves signal propagation on long wires this
concept is not suitable for implementation in VLSI technology.

A contreol structure in between the ISA and the SIMD array is the
Instruction Broadcasting Array (IBA). Here, as in the ISA, new
instructions are fed into the.array at every step, but these
instructions are broadcast to all the processors of a column and not
pumped through the array. Because of the broadcasting, this meodel is
less suitable for VLSI thén the ISA. But since it is conceptually
simpler than the ISA we include it in our comparative investigation.

The three architectures we consider in the following differ in
how the control information is supplied to the processors [Kunde,

Lang, Schimmler, Schmeck, Schroder 1986]:

{i) The Processor Array {PA)

Where each processor has its own control store, Figure 3.3.

87

{(ii) The Instruction Broadcast Array (IBA):

This computer's structure is depicted in Figure 3.5. The
processors need only a very simple control unit without a control
store. Instructions are brocadcast to all the processors of a column.
In additicn, seléctor information ('0' or 'l') is brocadcast to all
the processors of a row. A '0O' means that all the processors of this
row are inactive, i.e. they execute a "no-operation"-instruction. A
'1' means that all the processors of this row are active and execute
the instructions that have been broadcast. If Ij is the instruction

of column j, and s; is the selector of row i processor pij performs

operations according to:

I, iff s5,=1
j i

+J no-op iff si=0

(iii) The Instruction Systolic Array (ISA):

This computer's structure is depicted in Figure 3.6. It is
identical to the IBA except that the instructions and the selectors
information are not broadcast but pumped systolically through the
array of processors. The instructions move row-wise north-south, and
the selectors move colﬁmn-wise west-east.

Correéponding to the informal desc?iption given above -we now
define the notion of a program on a ?An, IBAn, or ISAn {whenever the
side length n of the underlying array is relevant we write it as a
subscript) :

Let I be the set of instructions the processors can execute,

where no-op is an operation contained in the instruction set which

INSTRUCTIONS
| |]
I ~ T I +—1
1:]] pr— - — jro—
] q | i . |
2 [! L — E
g —1—1 - b am pre—
o T] 1] [B
A] 1 i
W
» L}
hd L]
| | | |,
13 1] 17 —]

FIGURE 3.5: Instruction Broadcast Array (IBA)

INSTRUCTIONS

J4 \’ ~ri|_ﬁ

SELECTORS

¢l NTEE N

FIGURE 3.6: Instruction Systolic Array (ISA)

88

89

does not modify the processors memory contents.

(1) _(2) (r)

A program on a PAn: is a sequence p D PR o of nXn matrices

over I, such that for all i,j<n and t<r the instruction executed by

.. . . t
processor (i,j) at time t is pi.}.

]

A program on an IBAn: is a sequence p(l),p(Z),...,p(r) of n-tuples

1) (x)

{(vectors) over I and a segquence s(PR - of n-tuples (vectors)

(t)

t
over {0,1} such that for all i,jg¢n and tsr)pj is the instruction

t
broadcast to all the processors of column j and si) is the selector
information broadcast to all the processors of row i1 at time t.
Alternatively processor p(i,j) executes according to:

Pft) iff SFt)=l
J i

P(lr)) = R)
No-op otherwise

. 1
A program on an ISAn: .is a sequence P(),...,P(r) of n—-tuples over 1

(1) (r)

and a sequence g yevetsS of n-tuples over {0,1}. For every i,j<n

and tsr,p(t) is the row of instructions which enters the ith row of
the ;SAn at time t+i-1 and s(t) is the column of selector information
which enters the jth column of the ISA at time t+3j-1. This means
that the instruction executed by processcr (i,3j) at time t is:

{(t+i-1)

S'(t--j+1)
b i

iff
pli,j) =
No~op otherwise.
Finally, the execution of an ISA program terminates after the last
\ , r .
row of instructions p() has entered the first row of processors.
Therefore, if the last instruction row is supposed to be moved down

to the last row of the array, it has to be followed by n-1 rows of

no—-ops -

90

REMARK :
The definitions are easily extended to rectangular grids

denoted PA
m

o’ IBAm and ISAm n with simple modifications to the

r L r

i,j indices, where m#n. If p is a program on a PAn, IBAn or ISAn,
then T(p) denotes the execution time of p, which is equal to the
length of the program. Let C=(Cij) be én nxn;matrix, where Cij are
the contents of the communication register of processor (i,j) of a
PAn, IBAn; or ISAn before the execution of program ». Then ?p denctes
the corresponding contents of the communication registers after the
execution of p (i.e. at time ?(p)+l).

The input of a program p occurs every time a processor on the
boundary reads from the communication register of a non-existent
neighbour, i.e. everytime a processor uses oﬁe of the open-ended data
links. From now on these "non-existent" commupication registers
are called Input Registers. The input of a program is specified by
defining E{p), the Environment of p, to be a 4n-tuple of strings of
values that are read from the input registers during the execution of
p. The contents of the communication registers of processors on the
boundary of the array are viewed as "Potential Output”. Therefore,
these communication registers are called Output Registers of the array.
The output of a programp then is a subsequence of the sequence of
values of some output registers during the execution of p .

Finally, we define the equivalence of programs. Among the
various conceivable notions we choose the following: Programsp and
qona PAn, IBAn or ISAn are called equivalent, if for all identical

environmenfs E(p) and E(qg), for every initial contents ¢, and for

91

every interpretation of the instructions occurring in p or g we have
Cp=cq' This type of equivalence could also be called Internal in
constrast to an External Equivalence which could be defiﬁed with
réspect to output sequences instead of the final contents of the

communication registers.

3.2.2 1 Simple Example Program

To illustrate some of the basic definitions mentioned above, a
simple parallel algorithm for merging two sorted data sets is

implemented on each of the three models.

Algorithm Merge

Input: Two gxn arrays of data, Fhe upper one sorted in right-to-
left row-major order, the lowexr one sorted in left-to-
right row-major order {(Figure 3.7a).

Ouﬁput: One nxn array sorted in left-~to-right row-major order,

Step 1: Sort all columns of nxn array by odd-even-transposition
sort {Figure 3.7b).

Step 2: Sort all rows of the nxn array by odd-even transposition
sort (Figure 3.7c).

The validity of this algorithm is easily seen using the 0-1

pfinciple [Knuth 1973]: If a sorting network sorts all sequences of

O's and 1's then it will alsc sort any sequence of elements chosen

from an arbitrary ordered set.

Thus, we may assume the sorted %xn-arrays to consist of O0's and

1l's only (Figure 3.8a). After step 1l at most one row of the array

consists of both 0's and l1l's (Figure 3.8b). Therefore, step 2 yields

the completely sorted nxn array (Figure 3.8c).

92

€
b
Y -
P :
Ny
3
- -
: L
o~
(a)
J/ ’/J/\I' #/\/
(b)
N
<
r'4
(4
”
>
>
(c) (c}
FIGURE 3.7: Merge Algorithm FIGURE 3.8: Merging Two Arrays of
O's and 1's
The Merge Programs on PA4, IBA4 and ISA4
A PA4 program for the merge algorithm is illustrated in

(Figure 3.%9a). Each square symbol of these matrices represents an

instruction. The meaning of the instruction symbols is given in

Figure 3.9b. By a simultaneous execution of a max and a min

instruction of this kind a comparison-exchange of the two communication

93

Fu
&~

Pum

|

ity AERN
Yiv|v|v AERERE MMAMM
AAREEN viv|viv HEERRN
v w|v|v viv|v|v
| ¥ — —1P| -
-+ -1 S - b
y D -+ [
T 1P T mid g

SRR

FIGURE 3.9a: PA4 Program for Merge Algorithm

] K:=min({K,K)

lower
v K:=max({K,K)
upper
— © K:=min(K,K_,
min rlght)
Y e
K: max(K,Kleft)
K Communication Register

FIGURE 3.9b: Instruction Symbols and its Meaning

94

register contents is achieved. Matrices 1 through 4 correspond to
step 1 of the algorithm and matrices 5 through 8 to step 2. Thus,
the time of the program is 8 steps.

Figure 3.10a shows the IBA, version of the merge algorithm.

4
Instruction rows 1l through 12 (together with the corresponding
selector column 1 through 12) from step 1 of the algorithm, rows 13
through 16 step 2. Due to the broadcasting of instructions along the
columns, in the IBA model the simultaneous execution of different
instructions in one column is not possible. Therefore, modified
instructions for the vertical comparisons are used [(Figure 3.10b,
for details, see paragraph 3.2.3(b)]. This causes a delay factor of
3 in the execution time of step 1, leading to a time of 16 steps for
the execution of the entire program. i

The ISA4 program for the merge algorithm is given in Figure 3.11,
Now the meaning of the instruction symbols is again the same as in
the PA program (Figure 3.8b). Both the instruction and the selector
part of an ISA program can be viewed as diamond shaped, consisting of
diagonals of instructions and selector bits, respectively. The ith
selector bit in a selector diagonal tells whether the corresponding
diagonal of instructions is to be executed in row i of the ISA or
not. Diagonals 1 through 6 now correspend to step 1 cof the merge
algorithm and diagonals 7 through 12 to step 2. Note that this ISA
program is not simply the skewed version of the IBA program from
above, because on the ISA it is possible (and generally the case)

that different instructions are executed simultaneocusly in one column.

The time of the program is 16 steps.

111 1 111 1 1 1 171
1yi g1 141 1 1 111 1l 1
1111 111 1)1 1 1 111
1]11]1 1|1 1 1 1 1

FIGURE 3.l10a: IBA, Version of the Merge Algorithm

4

C

R:=min(K,K
(K, 1ower)

R:=max{K,K)
upper

K:=R

14
13
12

11

10

FIGURE 3.10b: Vertical Comparison Symbols and its Meaning

85

IBA

1 J1}]11}1 11111 1

R S S O A A T A A O I R B A I

1 1]1 11111t 1|11 |1

1]1 1{1711}1 1 1
FIGURE 3.11: ISA Version of the Merge Algorithm

96

16
15
W
13 1
1z P T
11 —1»
ol | ¥
|
1w
_+L
A |
6J+I*
5;1*1
a NEs
3#| v
2|;
NE 4
J

ISA

3.2.3 Relationships Between ISA, IBA AND PA

In this paragraph we study the relationship between our three
different mesh-connected processor arrays, the PA, the IBA, and the
ISA. For every pair of these different models we determine tight
bounds on the worst-case delay introduced by a transformation of a

program on one parallel computer model into a program con the cother:

(a) ISA, IBA + PA

Obviously, for every program p on an ISA or an IBA there is an
equivalent program ¢ on a PA such that T(p)=T(qg}. Although there are
programs that can be simulated by much faster programs on the PA,
these are simple worst cases where .no speed—-up is possible. Therefore
we get

Proposition 1:

Every program p oh an ISAn or an IBAn can be :simulated by an

equivalent program g on the PAn such that

T{q) = T(p) .

In general, it is not possible to achieve a speed-up.

{k} PA - IBA

A simple way of simulating a program p on a PA by a program on an
IBA would be to simulate every step p(t) of p by n steps on an IBA: In
the ith of these n steps the ith row of p(t) is broadcast and only the
ith row of the array is selected. However this may lead to problems,
whenever an instruction of row i of p(t) reads from the communication

register of a processor of row i-l, because in the suggested simulation

it would read the possibly new contents of the communication register

97

(t)

after the execution of the instructions of row i-1 of p . Therefore,
to produce an equivalent program on the IBA it is necessary to save
the old contents of the communication register of a processor at least
until all its four neighbours have read this information. This is
achieved as follows:

Every processor in the IBA is augmented with a new internal
register R and a flag F. Every instruction b on the PA is replaced
with an instruction b' on the IBA which is identical to b, but instead
of writing into the communication register it writes it into R, sets
F, and leaves the contents of the communication register unchanged.

In addition, a special copy instruction C is introduced which copies
the contents of R into the communication register, if the flag F is
set, and resets F. All other instructions do not change the value of
F. Obviously, the effect of the sequence of instructions b' and C is
the same as the effect of b. 1In all further statements on the
equivalence of programs it is assumed that the instructions, their
primed versions, and the special instructions C and no-op are always
interpreted exactly as defined above.

Now p(t) can be simulated correctly by n+l steps on the IBA
(Figure 3.12).

In the ith of the first n steps the "primed" version of the ith
row of p(t) is broadcast and only the ith row of the IBA is selected.
In the (n+l)st step an n-tuple of C’s is broadcast and all the rows of

the IBA are selected.

Hence we get,

99

P(t)

g p.(t)

- —_- - - IBA

FIGURE 3.12: Program Simulation on IBA

Proposition 2:

For every program P on a PAn there exists an egquivalent program
q on an IBAn such that T{qg) g(n+l)T(p), for a lower bound on the worst-
case delay that can occur, if a program on a PA is simulated by an

equivalent program on an IBA.

Proposition 3:

For every r>0Q there exists a program p on a PAn with T{p)=r such
that for any equivalent program g on an IBAn we have T(qg) =z (n+l)T(p).
An outline of the proof can be illustrated by the program p of

length 1 which is shown in Figure 3.13.

oo

8 o — - - a b
A — - e - a b a
- e e m-b ===
a b a-—---a
b a-—--=---a

FIGURE 3.13: p Program

p consists of n "linearly independent" rows of instructions which
cannot be simulated by fewer than n steps on an IBAn. Assuming that a
or b cause a processor to read from its neighbours communication
registers, the simulation has to use the primed versions. of a and b.
Therefore, one additional step is needed to broadcast the copy

instruction C.

(c) 1IBA + ISA

Let p be a program on an IBA with selector sequence s and T(p)=r.
Obviously, it is not possible to obtain an equivalent program on an ISA
by simply moving the rows of instructions of p and column of selector
information of g through the array simultaneously, since this would
lead to incorrect combinations of selectors and instructions. The
correct combinations could be achieved in a program g on the ISA with
selector sequence g' if, for example, for every ign Pit) and Sit)
appeared in the (t+i-l)th row of g and (t+i—l)th.column of s',

respectively. 'This skewed input of p and s would lead to the same

problem as in part (b): Instructions that are executed in neighbouring

101

processors of the IBA simultaneously would be executed at different
times on the ISA. Therefore, the same construction as in part (b) has
to be used. Every processor is augmented with a new internal register
R and flag F, every instruction b on the IBA is replaced with its
primed version b' on the ISA, and an additiocnal copy instruction C is
introduced. The transformation of p and s into an equivalent program
g with selector sequence s' on the ISA can now be done in the following
way (Figure 3.14): |
p and s are transformed into sequences p' and s" of length 3r by

replacing every n-tuple of p with its primed version followed by an
n-tuple of C's and an n-tuple of ne-spand by inserting after every n-
tuple of 5 two n~tuples of 1's. g and s' are defined to be the skewed
versions of p' and s", respectively, (of length 3r+n-1) followed by n-1

t
o9

n—tUPleS'tho-ép&Mbre formally, for every t<3r+2n-2 and i<n, and

(t) (t-i+l)
P;

si are and , respectively if lst-i+ls3r and

-1+
sT(t i+l)
i
no-op otherwise. The final n-1 rows of no-operation instructions in g
are necessary because it takes that many steps to move the instruction

pér) from the first to the last row of the ISA. We thus obtain,

Proposition 4:

For every program p on an IBAn there exists an equivalent program

q on an ISAn such that:
T(g) € 3T(p)+2n-2

Hence, the asymptotic time complexity of p and gq is the same, if T(p)
is in Q(n). It can easily be shown that it is not possible to do much

better.

(2) (2) (2) (2)
Pl P2 P3 P4
1 (1) 1 (L}
P{) P2 P; ’ P4
S(2) s(l)
1l 1
(2} (1)
52 52
s(2) S(l)
3 3
(2)| (1)
S5 |54
v -
op
no
C
op
no (2)
op ¢ Py
no {(2) | no
op c P3 op
C p2(2) 2; C
(2) | no (1)
Py op ¢ Py
no (1)
op ¢ P3
1
C p;)
(1)
Py
(2) (1)
0 1 Sl 0o . |1 Sl
(2) (1)
e} 1 52 Q 1 52
{2) (1) —»
1 53, Q 1 s3
(2) (1)
s4 0 1 54

FIGURE 3.14: Transformation Program from IBA to ISA

IBA

ISA

102

103

Proposition 5:

For éﬁery r>Q there exists a program p on an IBAn with T(p)=r

such that for any equivalent program g on an ISAn T{g) is in Q(T(p)).

(d) Ppa -+ ISA
To simulate a program p on a PA by a program g on an ISA,
similar constructicons as in {(b) and (c)} can be used resulting in the

following propositions.

Proposition 6:

For every program p on.a PAn there exists an eguivalent program g

on an ISAn such that T(g)<(n+2)})T(p)+2n-2.

Proposition 7:

For every r>Q there exists a program p on a PAn with T(p)=r such

that T(g)2{n+2)T(p) for any equivalent program q on an ISAn.

(e) ISa -+ IBA

The results of parts {a) and (b) immediately provide an upper
bound on the worst case effect of simulating a program on an ISA by
a program on an IBA., The initial n steps of the execution of a program
on an ISAn can be simulated somewhat faster. 1In step t (t<n) there
are at most t+ active rows in the array of processors, thus t+l steps
on the IBA suffice to simulate step t. The analog helds for the last
n steps. Therefore, to simulate the first énd the last n steps of an

ISAn program of length r:2n on the IBA, n{n+3) steps are needed.

Proposition B:

For every program p on an ISA there exists an equivalent program

104

2
g on an IBAn such that T(q}<(n+l)T{p)-n +n, if T(p)=2n.
The example of a program shown in Figure 3.13 can be used to
produce programs of arbitrary length on an ISA such that their

simulation on an IBA causes a delay of {(n).

Proposition 9:

For every r=n there exists a program p on the ISAn with T{p)=r

such that for any equivalent program g on an IBAn we have T(g)=R(n)T(p).

3.2.4 Relationship of ISA to Standard Models of Parallel Computers

1f we consider the taxonomy of parallel computers as introduced
by Flynn [Flynn 1972], all three different types of processor arrays
under consideration have to be characterized as MIMD-machines, since
several different instructions can be executed simultaneously on
different rows and columns hence data streams of the mesh. C(bviocusly
the processor array of type PA is closest to the commonly assumed
structure of an MIMD-machine. Since the processors in an IBA Or an
ISA do not have their own control store, the preocessor arrays of type
IBA or ISA are more similar to the array-type SIMD-machines which
consist of a mesh-connected nxn-array of processors receiving their
instructions via breoadcasting from a central control unit.

Since there exists a large variety of programs based on array-
type SIMD-machines [Flynn 197271, [Rodrjgue 1982], it is of interest
to know how these programs can be simulated on our types of processor
arrays. We consider programs for SIMD-machines as special cases of
programs for the PA. A full SIMD-program on a PA is a sequence of

instructions matrices, each consisting of only identical instructions.

105

Of course, these programs can be simulated on the IBA and ISA in a

much simpler and faster way than ordinary programs.

Proposition 1l: [Knude, Lang, Schimmler, Schmeck, Schroder (1985)]

For every full SIMD-program on a PA there is an equivalent program
on an IBA having the same time complexity.

The proof is simple: Each program vector p(t) in the IBA program
is simply a repetition cof the instruction occurring in step t, all
selectors are 1. We also refer to the kind of programs on the IBA as
full SIMpP-programs.

1f SIMD-programs on a PA or an IBA have to be simulated on an ISa,
we have to deal with the same problem as in the case of aribtrary
programs, because instructions executed simultaneously by neighbouring

processors of the PA or the IBA will be executed in consecutive steps

on the ISA. Therefore we get,

Proposition 2: [Knude, Lang, Schimmler, Schmeck, Schroder (1985)]

For each full SIMD-preogram p on a PAn or an IBAn there is an
equivalent program g on the ISA with T(q)<3T(p)+2n-2.

To capture the situation where inst?uctions of SIMP-machines may
be executed by only some of the processors, we define a partial SIMD-
program on a PA or an IBA to be a program such that all the instructions
executed simultaneously by active processors (i.e. all instructions
that are not no-operation instructions Q's) are identical.

An example of a partial SIMD-program on & PA is:

a 0

)
o O O

106

It is a slightly changed version of the example used in the proof of

Proposition 3 in the previous paragraph.

Proposition 3:

For every r there is a partial SIMD-procgram p on a PAn with T{(p}=r
such that for any equivalent program g on an IBAn we have T{q)>(n+l)T(p}.
Although we just saw that, in general, partial SIMD-programs on

a PA cannct be simulated on an IBA faster than arbitrary programs,
there is a large sub-class of partial SIMD-programs which c¢an be
simultaed as fast as full SIMD-programs: A-partial SIMD-program on a
PA is termed vector oriented, if in every instruction matrix p(t) the

no-operation instruction O occurs only in complete rows or coclumns of

no-op's. As an example, the SIMD program for a PA is vector oriented:

C O O ©
v o o v
© O O ¢
g o o o

Proposition 4: [Kunde, Lang, Schimmler, Schmeck, Schroder (1985)]

For every vector-oriented SIMD-program on a PA there is an

equivalent partial SIMD-program on an IBA having the same time complexity.
(t)

In order to transform a PA program step p with an instruction

b occurring in it into an equivalent step on the IBA, we set,

(t) _ b, if column j in p(t) is not a complete no-op column
Pj) no-op, otherwise
and put,
S(t) _ l, if row i is not a complete no-cp row
i 7

O, otherwise.

107

3.3 A COMPARISON-BASED INSTRUCTION SYSTOLIC ARRAY

3.3.1 1ISA Construction

In Section 3.1 a realisation of an instruction systolic array was
described . HNow we consider an ISA, the processors of which are capable
of executing a small set of one and two operand instructions for cqmparing
and exchanging data items of adjacent processors. Examples of simple
pfograms on the ISA for determining the maximum value or for performing
a perfect shuffle are given.

In order to construct an instruction systolic array (ISA)} capable
of executing algorithms using comparison and exchange operations, the
following set of instructions have been developed by Hartmut Schmeck
[Schmeck 1986). In the feollowing K' denotes the communication register
of one of the adjacent processors in theé north, east, south, or west,

In the case of a processor on the boundary of the array, K' may denocte

an I/0-pad.

read(K') : K gets the value of K'
pictorial representation & [T

min(K,K"): K gets the minimum of its own value and that of K',
pictorial representation | — |

max (X,K') : X gets the maximum of its own value and that of K'.
pictorial representation L - >

T
neg: K is negated, i.e. it gets the one-complement of

its own value.

pictorial representation. -

108

no-op: The value of K is not changed, the register is only

refreshed.

pictorial representation

1

Appropriate combinations of read instructions(L ;| *—to|) can

be used to execute an exchange operation betyeen adjacent processors.

In the same way, a combination of min and max instructions can be used
to execute a comparison-exchange. Although the effect of a comparison-
exchange will always be the same while it is being moved through the
array, a preceding use of the neg instruction in some rows of the array
can lead to comparison-exchanges in the opposite direction. This is
desirable, if e.g. the rows of the array are to be sorted in alternating
order (ascending and descending).

All the instructions are executedAbit—serially. Otherwise the
number of wires and I/O pads and therefore the area of the ISA would be
too large. Because of the bit-serial mode of operation, the communication
registers are implemented as shift-registers.

The block structure of an ISA-processor realizing the 14 different
instructions is shown in (Figure 3.15). The functional unit essentially
consists of a bit-level comparison-exchange unit. Depending on the
control signals received, it provides K, K', -K, min(K,K") or
max (K,K') as output. To allow for a very simple decoding the
instructions are encoded using 5 instead of 4 bits. The input of
instructions into the array is done bit-serially, to save I/O pads.
However, they are passed from row to row in a bit-parallel way. The

execution of an instruction takes k+l clock cycles where K is the

109

F—— =—-===== = R A
i |
! |
! min LBPQN |
K), ! & i
! COMPARATOR I
K N | .
| max N I
| |
! i
D '
I -
| {
’ !
| |
e — — e
COMMUNICATION REGISTER
v

FIGURE 3.15: Block Structure of a Comparison Based ISA-Processor

110

length of the data items. If instructions were passed bit-serially,
either the execution time would be longer or an extra register for

sorting the instruction would be necessary.

3.3.2 Example Programs on the ISA

(i) Input and Output of Data Items

To initialize the communication registers of the Instruction
Systolic Array, the program depicted in Figure 3.165may be used which
moves n2 data items from the left into the array. The execution of
this program could be overlapped with the execution of the program of
"Figure 3.l6bwhich moves the contents of the communication registers to
the right and out.of the array. Since the instructions of both programs
have to be executed in éﬁery processor the selector sequence consists

of ones only.

—a —o (—o |—& o o [~ e

—& —% |—e |[—o |—o¢ |—¢ |—e L&
- —e |—e¢ —o |— ’—0 —e —o
—o —¢ |—e¢ (e |—o —o —° o
—e [[[- —0¢ (o (—w
—a —o0 —— — —b I—O —> —&
L o |—e o e — e o |
— — —¢ —0 e |[—© 1o |-

(a) (b)

FIGURE 3.16: (a) 1Input into and (b} 'Output from an 8x8-ISAa

111

(ii) To Determine the Maximum

One way of determining the maximum of the n2 items stored in the
ISA is to move the maximal data item to a fixed location, e.g. to the
processor at the lower right corner. In the worst case this regquires
at least 2n-2 local exchanges. Two simple ISA-programs for achieving
this are given in Figure 3.17a and 3.17b. Both programs have only two
diagonals of insﬁructions. aAfter .execution of the program shown
in Figure'3.17b, we do not only have the maximum of all the data items
in the lower riéht corner, but for every i<n we have the maximum of
the first i rows (columns) in the i-th processor of the rightmost

column (bottom row).

7]

v

R=Rd

Pl I

T

= e
e

-
P

-
= e

o
= =

o

i

o

{a) (b)

FIGURE 3.17: Programs for Determining the Maximum on an 8x8~ISA

If it were not acceptable to change the set of data items stored
in the array, one could extend the programs by two diagonals using

comparison-exchanges instead of the simple max instructions. Obviously

112

the minimum may be determined completely analogously, unless it has

to be moved to the upper left corner of the array. It is easy to
notice fhat it is much harder to move a data item from the right to
the left or from the bottom to the to§ than in the opposite direction.
A program for moving thé bottom row cof data items to the top row is
shown in Figure 3.18. It has 2n-n diagonals of instructions and
selectors. The corresponding program for moving the top row to the

bottom would consist of tweo diagonals only.

]
'
1 5 1
1
H
i i f
3 ! 3 : 2 3
e ’ 1 : 7 b 1
1 : 1 ! 9 5 4 b
: | 4 > 1 ! y
jlthl?l
i } d . L I J3 .
1 ! P . !
: ! : 9 ! i b
ARURUAL
1 e 7
H 4 e > ? -
4 ¢ ¥ J
e il)2
4 1
1
'tl
3
l0000QCOQOQOOOQOQOQOOC
011000000 0CQ0O0O0
0001100000QQ000
O00001 10000000
COoOO00C000110000C
O00O0OD0Q0CO00OO0O011000O0
Q0000000000110
O000O0OO0O0CO0COO0OO0O1 J

8x8 1s5A

FIGURE 3.18: Program for Moving the Bottom Row to the Top Row of an
8x8-15A

—

L e pd

ot

a1-0 | o=t—0

—
- ~
o
o
- -
L B B B M B
L o i e T B
e e e
—A A A
— -
— e~
N~
-
”
o
L
-y
-
o
O 0
000
O 000
OO0 O0OH -
QO A~ -
At A A
OO0O0O0OC0CC
O0CO0COo
OO0 OO0
000
o O

(k)

{a)

FIGURE 3.19: Perfect Shuffle on (a) the Rows and (b) the Columns of an 8xB-ISA.

113

114

(iii) To Perform the Perfect Shuffle
The perfect shuffle is an operation that is used in many different
algorithms [Stone 1971). It transforms the sequence al,...,ak,

b ,...,bk into a sequence al,b

1 1-++44 ,b

1 k"k’

the perfect shuffle on all the rows or all the columns of the ISA

Programs for performing

are depicted in Figure 3,19, Both programs have n-2 diagonals of
instructions. The program for the perfect shuffle on the rows is
somewhat simpler, since only n/2-1 of its rows contains instructions

that are different from no-op.

{iv) Sort Program

Figure 3.20 shows two simple-ISA programs for sorting a 2xX2-array.

-t

= 0O
O
o

00

o~
o

FIGURE 3.20: Two Simple ISA-Programs for Sorting a 2x2-Array

115

3.4 TO SORT BY THE INSTRUCTION SYSTOLIC ARRAY

3.4.1 Introduction

In this section an algorithm for sorting n2 items on a nxn mesh-
connected processor array (Figure 3.3) in time O(n) is presented. It
is very simple in its structure and can be implemented éasily on a
systolic array. In particular, it can be written as a simple program
for the ISA.

There is a lot of previous work done in closely related fields.
In [Thompson, Kung 1977], [Nassimi, Shani 19791, sorting algorithms with
time complexity 0O(n} are presented. This time performance is
asymptotically optional for mesh-connected architectures. Another
algorithm with the asymptotic time complexity can be found in [Lang,
Schimmler, Schmeck, Schroder 1983] together with a systolic array to
sort n2 items in Bn steps. (The constants are very interesting in this
context since there is no difference in the asymptotic behaviour).

Naturally, the power of the ISA depends on the power of the
individual processors. The restriction to a rather simple instruction
set seems desirable to keep the processors small enough, in order to
allow integration of many processors on a single chip.

Formally, the operation executed by processor (i,j) at time t is
defined in the following way:

For every i, jsn and tsr p(t) is the row of instructions which
enters the i-th row of the ISA at time t+i-1, and s(t} is the ceolumn
of selector information which enters the j-th column of the ISA at

time t+j-1. This means, that the instruction executed by processor

{i,3) at time t is:

116

(t+i-1)
3

iff sit"ﬁl)

p(i,j) =
no-op otherwise

Hence we assume each processor to have only one register (communication
register) and to be able to execute the following instructions chosen
by Manfred Schimmler [Schimmler 1986]:

SYMBOL MEANING

> C:= max(Cy g r®)

{(Read the contents of the left neighbour's
register, compare it with its own register,

and store the maximum in. its own register).

— C:= max(Cright,C)
! C:= max(CupPer,C)

| C:= min(Cleft,C)
1 C:= min(cright,C)
‘ C:= min(Clower,C)
i ' C:= E

{Invert all bits of the contents of C)

NO-OP {(no-operation)

3.4.2 One Dimensional Sorting Methods

Here we introduce two parallel soiting methods for one dimensional
seguences which we use as part of the algdrithm (for two dimensicnal

arrays). For a better understanding we represent them as sorting nets

117

in the manner shown by {Knuth 1973]. For example, the odd-even-
transposition sort for n=6 items is illustrated in (Figure 3.21)}.
Comparator models are represented by vertical arrows between two lines.
The number enters at the left and each comparator causes an inter-
change of its inputs, if necessary, so that the larger number appears
on the line of the arrow head after passing the comparator. At the

right of the diagram all numbers are in order from top to bottom.

(i) The K-Triangle Merger:

The K-triangle merge net (Figure 3.22) consists of %-parallel
comparison steps, where the i-th compérison step consists of the
comparisons [i+j-l1 : i+j], j=0,2,4,...,k-2i ([l:m] denotes a comparison-
exchange between the elements on line 1 and line m).

It turns ocut to be a sorting net if the input consists of two

sorted sequences (of length %) that have been concatenated and perfectly

shuffled afterwards:

Lemma 1l:

Given an even number X and a sequence a_,a of items to

O3 R

be sorted, where ao,az,...,a and al,a3,...,a are already sorted

k-2 k-1

in non-~decreasing order, the K-triangle merger sorts the whole
sequence into non—decreésing.order.

Using the O0-l-principle for sorting nets [Knuth 1973] we can
assume the input elements a, to be O's or 1's only. We will prove the
Lemma by induction on K: K=2:A 2-triangle merger consists of exactly
one comparator between line O and line 1, so obviously every sequence

of length two will be sorted by a 2-triangle merger. KX>2: Assume

6 3 3 3
3 Ls 4 4
4 4 6 1
5 5 1 6
L 1 5 2
2 2 2 ls

2 1 1 1
1 | 2 2 2
6 3 3 3
3 L 6 4 L4
7 4 3 5
4 7 5 6
8 5 7 7
5 J,a 8 8

FIGURE 3.22: The 8-Triangle Merger

4 4 4 1
5 5 1 4
6 1 5 2
1 6 2 >
2 2 6 3
3 3 3 _®

FIGURE 3.23: The 6-Diamond Merge

r

118

119

Lemma 1 to be true for the K-triangle merger. We consider the

Sequence a_,a_,;...,a

o'? k-1 as input into the K-triangle merger. We have

to distinguish four cases:

(1) a0=0, al=0

The sequence a is sorted by the K-2-triangle merger

273377 1%k

obtained by removing the first comparator of each step of the k-

posesd is sorted

triangle merger. Thus, the whole sequence a k=1

0’1

by the K-triangle merger, since the inputs into the additicnal

comparators are already sorted,

(2) ao=0, al=l

a,=l implies a =1 for i=0,l,...,]§{--l . Thus the inputs into all

1 2i+l

the comparators of the first step of the K-triangle merger are already
sorted. The remaining comparators from exactly a K-2 triangle merger

k-2" Since a0=0 and ak_l=l the whole

Y

that sorts the seguence al

sequence is sorted after passing the k-triangle merger.

(3) a0=l, al=0

a0=l implies a i=l for i=0,l,...,§"d.. Thus, initially we have

2

a212a2i+1 for every i. After passing the first step of the K-triangle

merger the sequence is transformed to al,ao,a3,a2,...,a As

k-1"%%-2"

in Case 2 the whole sequence is sorted by the remaining K-2-triangular

merger.

(4} a0=1, al:l

This implies that the whole sequence consists of ones only and

it is obviously sorted before and after passing the merger.

120

(ii) The K-Diamond Merger

The K-diamond merge net (Figure 3.23) consists of k-1 parallel

k
comparison steps, where for i=l,2,...,§-the ith comparison step

(] oy

k
consists of the comparators EE -i+2j :

=3 k
for 1—2 +1, >

~ i+23+11, j=0,1,...,i-1, and
+2,...,k-1 it consists of the comparators [i- %+2j :

S .
i- o +2j+1], j=0,1,...,k-i-1.

Lemma 2:
Given an even number K and a sequence ao,al,...,ak_l of items to
be sorted, where aO'al""'ak/Z—l and ak/2' ak/2+l""'ak-l are each

sorted in non-decreasing order, the K-dimensional merger sorts the
whole sequence into non-decreasing order.‘
Proof:

The O-l-principle again allows us to restrict the inputs to O's
and 1's only. We prove Lemma 2 by induction on K: K=2: A 2-diamond
merger consists of one comparator that obvidusly sorts any sequence of
length two. K>2: Assume ﬁemma 1l to be true for the K-Z2-diamond merger.

Let a PR 1 be the input sequence. The K-diamond merger

0’%1 k-1
consists of a K-2-diamond merger followed by the comparators [j-1 @ j]
. . _ .

and [k-j-1 : k-j], j=l,2,...,§; The K-2~diamond merger sorts the

sequence a by the induction hypothesis, leaving only a

o

raeagd

1'% k-2

and a__, to be inserted. If a, 1s 0, it is already in its final

position. If ao is 1 its final position is somewhere between line O

and].ine‘E

> since a0=l implies ai=l for i=0,l,...,§-~l. Thus the

remaining comparator diagonal [j-1 : 3}, j=l,2,...,§q will insert a,

into its correct position. The dual argument shows that a1 finds its

121

position by the comparator diagonal [k-j-1 : k-3j], j=l,...,2,..-,§u

3.4.3 The Two Dimensional Sorting Algorithm

We consider a simple model of an MIMD computer: a mesh-connected
nxn array of identical processors (Figure 3.3). Every processor has
some local memory including a designated communication register, It
can execute a small number of instructions and is capable of generating
its own instruction sequence. The processor array is synchronized by
a gl&bal clock, and the execution of every instruction is assumed to
take the same time. During the sorting process every processor contains
one data item in its communication registexr. Observe that there are
situations, where two elements initially loaded at the opposite corner
proceséors have to be transposed during the sorting. It is easy to
argue that even for this simple transposition at least 2n-n local
interchange steps are needed. This implies that no algorithm on such
a mesh-connected processor array can sort n2 elements in less than O(n)
steps.

The following algerithm is to be executed on the processor array:

Algorithm Merge:

Input: Four %-x g-arrays, the upper sorted in left to right row
major order, the lower ones in right to left row major order,.
Cutput: One nxn array sorted in row major order.
1. Merge all columns of the nxn array by the n-1 steps of an n-
diamond merger.
2, Sort ;ll rows by n-steps of the odd-even-transposition sort,

the 0dd rows in left-to-right direction, the even rows in right-

to-left direction.

122

3. Merge all columns by the %-steps of an n-triangle merger.

4. Sort the rows by n-steps of the odd-even-transposition sort.

The validity of the algorithm may be seen again by the use of the 0-1-
principle: the initial configuration is that of (Figure 3.24a), four

n_n
- % = subarrays, where the white regions dencte 0's and black

sorted > 5

regions 1's. After step 1 of the algorithm the array consists of two
n x %-arrays and in both halves there is only one row still unsorted
(Figure 3.24b). This is called the critical row. Step 2 sorts all
rows in alternating diréctions and can so préduce two different
situations:-
a. the critical rows are still in different halves (Figure 3.24c)
or b, the critical rows are in the same half (e.g. the left as in
Figure 3.24d). 1In both éases step 3 results in a situation
where there is only oné single unsorted row in the whole nxn
array (Figure 3.,24e). Obviously step 4 suffices to complete
the sort (Figure 3.24f).
For the complexity analysis we assume one elementary comparison-
exchange step to require the time tc. Step 1 needs (n—l)tc. For
Step 2 we need ntc and Step 3 requires gtc. Step 4 again needs ntc
and so the time TM(c) for the merge stage of four 2 x E-arrays is:

2 2

TM(C) = (3§n—l)tC .

3.4.4 The Algorithm on the ISA

In this péragraph we give a program for the ISA that realizes the
algorithm MERGE. We assume that the items to be sorted are loaded in

the nxn array before starting the sorting process, each one in the

. 123

(a) - - (b)

FIGURE 3.24: Sorting an Array of O's and 1's;
White Regions are 0's, Black Regions are 1's.

124

comﬁunication register of one processor. We give the program as an
instruction stripe and a selector stripe, where the i-th row of the
instruction stripe is the i-th instruction n-tuple (counted from the
bottom to the top) and the i-th column of the selector stripe is the
i-th selector n-~tuple (counted from the right to the left}. The
meaning of the instruction symbols has been explained in paragraph 3.4.1.
As an example (Figure 3.25) shows the program for a 6-triangle merger
for the columns of a 6%x6 ISA. The complete program of the last merge
stage of an 8%8 sorter is depicted in {(Figure 3.26). |

The length of the sorting program is the number of instruction
n-tuples of the ISA program. The pregram is composed of diagenals of
either identical instructions or no-ops and instructions of the same
type. So it is easy to count the number of instruction diagonals (ND)
for the logical blocks of the algorithm and sum these up to compute
the length of the whole sorting program [Lang 1987]. The merging of
two half~columns of an KXK array with K-diamond merger requires X
instruction diagonals. One diagonal is used to invert every bit of the
elements of the even rows of the array. Now we can sort all rows (in
K-2 diagonals) of the array and again invert the elements of every
even row. The effect is that the even rows are sorted in right-to-
left order by this. Sorting the columns with a K-triangle merger
again needs K diagonals and sorting the rows afterwards needs 2+K-2
diagonals. Since the sorting direction on this .last step alternates
{according to the position of the KxK subarray in the whole nXn array)
we need two more diagonals of invert operations, one before and after

the final sorting of the rows.

125

ey

INSTRUCTIONS

ISA

—ge
-1

=~

—-
==
-
-
4+

—3
—+

—+
4
—+

—
e
—t

riifl

1
1ih 1)1

1y It
1y frjip

1
1

1.1t

1

1T

11|11
111
1111F [0
1

1]k:

1
1

1
11l

1
11 p
1 21 p

1h f1pl

ISA
1
1

1
1

1
1
111
1a

3

D lajaf1ja |1
Ulppaajrfajajrpfajrfrip|:

111 ikl
11111 ilia
Af1fajl it

MMRNIfThh
LIy Ll1jan

ll 111

1
1hiile

1
1
3

1
1

1

1
1
1

INSTRUCTIONS

1

1

1

1

SELECTORS

1

ISA Program for the 6¥Triangle Merger

ISA Program for the Last Merge Stage of 8x8 Sorter

1

11141
1 1}1

1
1

iUl
1jilalxfifl
TR L[yl

1
1

1fapg fajafajajijLityl

1hh
tfta
1rh
1

rithft iy

1
1
1

empty selector boxes denote 0's)

1
1{1
1[1

1
1

(Empty instruction boxes denote no-op,

FIGURE 3.25

il p

1|1

SELECTORS

1
1
1
1

1134101 |1

FIGURE 3.26

1
1

111111

1

126

If we sum up the number of instruction diagonals for the {log K)th

merge step of the sorting program on the ISA we get:
N K) =6 *K
DM()

.and for the whole sorting algorithm

K
ND_{K) = ND_ (3} + ND(K)

Since NDs(l)=0, we get,

NDS(n) =12 *n - 12 .

To complete the ISA program we have to add a number of no-ops
instructions to fill up the empty spaces under the first and on top
of -.the last instruction diagonals, and we must add n instruction rows
containing no-ops only at the end of the program to ensure that the
last significant instruction is executed by the processor (n,n) when
the program is terminated. So the léngth of the sorting program on

.an nxn ISA is:

LS(n) NDS(n) + 2n -1

14 * n - 13 .

]

LS (n)

127

3.5 ADDITIONAL ALGORITHMS SOLUTION BY USING THE INSTRUCTION SYSTOLIC

ARRAY (ISA)

3.5.1 Finding the Generalized Matrix Inversion

Matrix inversion is a very important operation in scientific
computation and for this reason there is a large and growing body of
literature concerned with the design of parallel processor networks
for this purpose. H. Schroder and E.V. Krishnamurthy [Schroder,
Krishnamurthy 1988} used two different implementations for Greville's
algorithm [Gregory, Krishnamurthy 1984] on the new concept of parallel
computation is the Instruction Systolic Array. A matrix of instruction
codes {(called left program (LP}) is pumped through the array of
processors in a systolic fashion, in addition a boolean matrix TP (top
program) is also pumped through the array of processors. If a (zero)
0 meets an instruction in a processor then it prevents the instruction
to be executed, while a (cone) 1 enables its execution. Thus, an ISA-
program consists of a pair (LP,TP).

The first implementation of the g-inversion presented uses an
nx(m+l) matrix of mesh connected processors Pij with i=1l to n, j=0 to
m; and an extra processor to carry ou£ the division operationé.

Let A be an mxn matrix, A; is generated iteratively in n cycles
{counting the basis as one cycle}. AI is generated in cycle i. The
ISA~-program represents the systolic execution of cycle i. 1In the
execution of cycle i only the upper.i rows of the ISA grid are engaged.
The second implementation uses for the execution of cycle i only a
linear array of pl,...,pi (column for each step), and a device to
execute the division. The matrices Ai and AI can either be stored

outside the chip or in cyclic shift registers on the chip and be

128

supplied to the processors on demand.

The two different implementations of Greville's algorithm
mentioned above permit a free choice of algorithmic mode, alsc they
require a smaller set of instructicns and a smaller capacity local
memory for the processors, thereby facilitating massive parallelism

in a smaller area of the VLSI chip.

3.5.2 Top-Down Designs of Instruction Systolic Arrays for Polynomial

Interpolation and Evaluation

In [McKeown 1986] a parallel version of Aitken's method of
iterated linear interpolation is presented. Its execution time is 2n
and its period is n using n processing elements. An elementary step
in their-implementation consists of two additions (subtractions),
two multiplications and one division (which haé to be executed after
the multiplications are finished).

In [Schroder 1988] a generalized version of a design method for
systolic arrays due to S.Y. Kung {Kung 1987] was presented. As in
[Kung 1987] Schroder starts with a locally recursive ‘algorithm and
generates the Dependence Graph. A geometric layout of the dependence
graph is then projected onto an array of processors. Now in the
design process of systolic arrays this projection can only be done
along an axis of shift-invariance, designing instruction systolic
arrays allows projections of the dependence graph in different
directions, which allows optimisation of the implementation under
other aspects than the execution time. This method results in a design

which is optimal in execution time and period. This can easily be

129

seen using standard network planning techniques. The parallel
interpolation algorithm presented has the advantage over the algorithm
in [McKeown 1986}Athat a single step consists of either two multi-
plications or one division only. Aanother aavantage of the implement-
ations in this method of using the concept of instruction systolic
arrays leads to a significant flexibility. Here the evaluation program
can be started right after thé interpolation program.

The Dependence Graph for a set of recursive equations contains the
information which evaluations of variables (tasks) have to precede
with. Its geometrical layout is not unique and has a major impact on
the quality of the ?esulting implementation.

There are different techniques to generate valid and optimal
schedules from dependence graphs [Moldovan 19831, [Mongenet, Perrin
1987). Mongenet and Perrin show how transformations in the 'time-
space' can be used to ensure that cocefficients are not used before
they are produced. Those techniques would have to be modified to
ensure that the coefficients are read before they are overwritten.

The next step in the top-down design is projecting the geometric
layout of the dependence graphs on to a l-dimensional array of
processing elements. Designing systolic arrays would have to project
along directions of Shift Invariance [Kung 1987] (i.e. all tasks
following this specific direction are the same). Since each processing
element is capable of executing one cperation only.

Designing Instruction Systolic. Array programs have several
choices for the projection direction. The implementations are based
on vertical projection which in the case of the interpolation algorithm

is not along the direction of Shift Invariance (i.e. along the diagonal

130

from the north-west to the south-east). Vertical projection for the .
evaluation algorithm has been used here in order to achieve a short
pericd. Horizontal projection of the evaluation algorithm would enable
the evaluation with just one or two processors, with a périod
proportional to n.

The hardware regquirement here is a nxn connected processor array,
each processor having nine registers. The ISA program terminates when
the last instruction r;w has entered the firét processor row. A 1xn
instruction systolic array is used, selectors are not needed and are
thus omitted. Let a polynomial of degree 3 be given by xo,rO and x_,r

1" 1

and x2,r2 and x3,r3. Figures 3,27a,b represent an ISA-program for

interpolation and evaluation. -
!
t

r---J'-—--+
2 1
- — ._I..., _——- =1
f |)
1 | |
- —T——F--
R S INSTRUCTION
Co T
ot -
r) i
-——!—-—--l
r
| |
f_—_l
__! 4
DATA
@ T e T e . R
. X >
% 1x3rix2r2sxlrlF0FOa Po 1Py |Py | Pj3 IS
L 234 400
r
r
r INSTRUCTION
4
r
DATA
(b) X - Py | P v, | Py

FIGURE 3.27: {a) The ISA-Program for Interpolation, n=3
(b} The ISA-Program for Evaluation, n=3

131

3.5.3 Finding Transitive Closure

Finding the transitive R+ of a binary relation R over a finite
set M is fundamental in computing. The well-known Warshall Algorithm
[Warshall 1962] solves this problem on a sequential machine in 0(n3)
steps, where n=|M|. Several algorithms for parallel computers and
especially for systolic arrays, which solve the transitive closure
problem or related problems in time C(n), are known. In {Guibas,
Kung 1979] a systdlic algorithm for computing the transitive closure
is given. In [Kung, Lo, Lewis 1987] systolic solutions for the
transitive closure and the shortest path problem are presented. The
problem of finding the connected components of a graph is sclved by
S.E. Hambrusch [Hambrusch 1983] on a mesh-connected processor array.
Y. Robert and D. Trystram [Robert, Trystram 1986] and G. Rote [Rote
1985] give systolic arrays for the algebraic path problem, which is a
generalisation of the transitive closure problem.

Hans-Werner Lang [Lang 1987) presents a parallel implementation
of the Warshall algorithm on an instruction systolic array. The
transitive closure problem may be generalised to the algebraic path
problem. So the ISA program given is ‘to implement a generalized
closure algorithm for solving the algebraic path problem. 2a
decomposition technique is alsc given in order to map arbitrary large

problem instances onto a processor array of fixed size.

3.5.4 Pinding All Cut-Points

A cut-point {articulation point, cut vertex, cut node) of a

graph is a vertex whose omission increases the number of connected

components. Finding all cut-points in a connected graph is an
important problem with numerous applications as e.g. in network flow
theory. M. Schimmler and H. Schroder [Schimmler, Schroder 1987]
present a method te find all cut-points of an undirected connected
graph in time 0(|V|loglvl) on an ISA. It is based on an ISA suitable
version [Lang 1987] of Warshall's transitive closure algorithm
iWwarshall 1962] which is used to check for every vertex whether its
removal produces more than one connected component., This algorithm
does not meet the lower bound O(n) on the time complexity as it is
achieved by M.J. Atallah and S.R. Kosaraju [Atallah, Kosarju 1984].
Its main advantage compared to the algorithm presented in [Atallah,

Kosaraju 1984] is its simplicity.

132

133

3.6 THE SINGLE INSTRUCTION SYSTOLIC ARRAY (SISA) VARIANTS OF THE

ISA MODEL

The asymmetry of the flow of control information in the ISA-m-bit
instruction codes from the top, l-bit selectors from the left could be
resolved by:

i) breaking the control code into two equal sized parts.
Instruction Prefixes that are shifted through the processor
array from the top and Instruction Suffixes that are shifted
through from the left. Inside the array prefixes and suffixes
recombine to form instructions (including no-op).

ii) wusing column selectors in addition to the row selectors and
shifting single instructions in diagonal wavefronts through
the array, starting at the upper left corner {(Figure 3.28).
Now the instructions are executed only if both row and column
selector bits are '1’'.
The advantage of this variant which will be referred to as SISA (for
Single Instruction Systolic Array} is the reduction of the overall
amount of code by a factor of approximately m/2, m being the length
of an instruction code.
Hans-Werner Lang [Lang 1987) sketched the relationships between
SISA and other models of mesh-connected processor arrays (ISA and SIMD).
The results are summarized here as:
i) SISA+—ISA
A SISA program can directly be transformed into an ISA program
by replacing each 'l' in a column selector diagonal by the corresponding

instruction, each '0O' by 'no-op'.

134

5

S¥YOLOITIS

VA A
3
4 ’

7,
CTO -—% Y s
SELECTORS ,” ,/PROCESSOR
7 ARRRY
A

hY

N
A

~

~
~

FIGURE 3.28: Single Instruction Systoliec Array (SIsa)

In the converse direction, only such ISA programs can directly be
transformed into SISA programs, where in each instruction diagonal
there occcur only identical instructions other than no-op. This is quite

frequently the case in practical applications.

ii} SISA++SIMD

One observes a strong similarity between the control structures
of the SISA and the SIMD-type mesh-connected processcor array. In fact,
a SIMD array wﬁose masking mechanism is not more powerful than the SISA
masking mechanism, can be simulated by the SISA within a delay factor
of 3. The corresponding progfam transformation consists of replacing

each SIMD instruction by a sequence of at most three modified

135

instructions and "skewing" the masking information appropriately.
However, simply "unskewing" a SISA program to get an egquivalent SIMD
program is in general not possible. It is an open question whether
the $ISA is more powerful than the SIMD processor array or not!

Oon the other hand, there are operations like "broadcasting” a
data item from the left or from the top across the whole array, or
like ring shifting a row or a column of data, that can be realized
on the SISA with constant period. ©n the SIMD array these operationg
take time £(n), but n of these operations still take only time O(n).
Thus, if all these n operations are meaningful, a constant period is
aéhieved also. But it is not clear if, when trying to transform a SISA
program to an SIMD program, these meaningful operations can be found.
On the other hand, the similarity of control structures of the two -

models suggests that they are equally powerful.

CHAPTER 4

THE SOFT-SYSTOLIC SIMULATION

SYSTEM (SSSS)

136

4.1 BASIC DEFINITIONS OF THE SYSTEM

The basic design problem for a general systolic array simulator is
to provide a fixed architecture which is capable of simulating the
arbitrary graph structure of an array, while also mapping parallel
processors to achieve parallelism. In Chapter 2 we have envisaged
systolic arrays as a systolic program written in OCCAM language with
the implicit understanding that OCCAM can be executed effectively on
transputer networks to provide parallelism. The problem with this
scheme is that it may be better to write a dedicated transputer based
version of a method rather than simulate a systolic array version of
the algorithm. Thus, as we accept the idea of programmable arrays the
effectiveness of the special purpose systolic approach to specific
algorithms is not so important. The essential problem is the emphasis
placed on dataflow which demands a different OCCAM program structure
for each design. The ISA on the other hand as we mentioned in Chapter
3 places emphasis on the systolic movement of instructions fixing the
data communication and processor structure, and the chances of producing
a fast and an economic systolic simulator, with an alternative persbective
on the meaning of a "SYSTOLIC COMPUTER".

In this chapter we consider a soft-systolic simulation system implemented
on the Balance 8000 Sequeﬁt Computer System running under DYNIX
operating system, at Loughborough University of Technology, Computer
Studies Department, and solve a number of common problems to demonstrate
its flexibility. The system can be used to develop special purpose
algorithms with a regular form and opens up the possibility of a
systolic design workstation for development of simple systolic

processing systems.

137

An overview of the system is shown in Figure 4.1, and the main

sections of our soft-systolic simulation system are:

*

System and Machine Preparation:

comprises the operating system facilities, programming language,
and the compiler. -

Replication Instruction Systolic Array Language (RISAL) and

RISAL compiler:

which comprises the virtuwal machine language and the adopted
RISAL compiler.

Virtual Machine:

which consists of an Instruction Systolic Array (ISA) network,

a set of virtual spoolers, and a collection of processiné

elements.

Virtual to Real Mapping:

Here we define a library of processor plugs which allow a
number of virtual processors to be essentially plugged into a
single real processing element of the underlying architecture.
Thus, allowing a large virtual grid to be mapped onto a smaller
real grid.

The Real Architecture:

For simplicity we assume that this is a square orthogonally
connected grid of processors such as a transputer network,

capable of executing any of the virtual PE's and mapping plugs.

Tc demonstrate the feasibility of the system we concentrate in

this chapter on the system and machine preparation, and the virtual

138

machine., 1In the following chapter we will describe the Replication
Instruction Systolic Array Language (RISAL) and its RISAL compiler.
However, the virtual machine and RISAL and the compiler will form the

core of the design.

INSTRUCTION, |] VIRTUAL MACHINE
DATA, SOPT-SYSTOLIC SYSTEM PREPARATION .
SELECTOR, PROGRAM
FILE RISAL AND RISAL COMPILER DEVELOPMENT
GENERATION
A Y N
\ Fi
\ ‘I
1
ISA + PROCESSING VIRTUAL SPOOLERS VIRTUAL MACHINE
ELEMENT LIBRARY
> +
(OCCAM PROGRAMS) VIRTUAL MACHINE
) INTERFACE
A]
\ ¢ 5\
\ / 1-1 PROCESSOR
CORRESPONDENCE
MAPPING
(VIRTUAL TO REAL) MANY-1 PROCESSOR
/ X CORRES PONDENCE
/ AY
’ hY
. STATIC
PARALLEL ARCHITECTUR
TRANSPUTER Z/ E \\\ . COMMUNICATION
CONFIGURED
NETWORK
// HARDWARE \\\ ARCHITECTURE

FIGURE 4.1: Organisation of Soft-Systolic Simulation System

139

4.2 SYSTEM AND MACHINE PREPARATION

The soft-systolic system preparation section comprises of the
usual operation system facilities for the creation and modification of
files during the development of new programs and ISA processor
elements. We allow here any concurrent high level language to be used
to model the soft-systelic system.

We develop our soft-systolic system on the Balance 8000 Sequent
system, the system operates under the powerful DYNIX operating system
which is based on the UNIX uniprocessor operating system with several
significant enhanced features to support multitasking. The DYNIX
kernel or executive has been made shareable, so that all the processors
can execute the same system calls and other kernel code simultaneocusly.
The DYNIX system schedules the processes to execute on the processor
such that the workload is well balanced. This means that any user or
system-defined process can run on any processor at any time and may
involve several processors to complete. The DYNIX determines the
minimum and maximum amount of physical memory that a given process can
consume, then adjusts the memory allocation for each process between
these two bounds to maintain each processor's paging rate and tune the
virtual memory performance for the entire system.

The Balance 8000 system provides an excellent environment for
software development. Program support tools include .the standard UNIX
utilities for creation and manipulation, program development,
performance analysis, text editing, and deocument preparation.

The system implemented in OCCAM (Loughborough University

Implementation) was implemented by R.P. STALLARD in the Computer Studies

140

Department. The main features of the OCCAM language are briefly
reviewed as: an OCCAM program is written in terms of concurrent
processes, communicating via channels. Individual processes operate
mostly in independence of each other. Hence, a design problem can be
expressed as a hierarchical structure. Groups of processes connected
by communication channels can be conceived of as individual processes
in their own right, with inter-process connections of the group
ignored (a process known as hiding), as a result complex systems can
be built with only a few processes under consideration at any one time.
In an QOCCAM program, each channel éfovides a one-way connection
between two concurrent processes; one of the processes may output to
the channel, and the other may input from it. The two concurrent
processes must communicate by using input and output primitives. -
Input and output are synchronised, and an input will not complete
execution until an ocutput on the same channel is alsc executed, and
so on. For example, we have two concurrent processes, initially both
will start executing in parallel; after some time one of them will
reach its input process. Now, this process has to wait until it
receives a value down the channel it is waiting on. There are two
possibilities, either the second process is at the ocutput process
already (for the same channel) or the second process has not reached
its output. 1In the first case, the process waiting for input
immediately receives the wvalue and so does not wait any further.
In the second case the input waits and eventually the second process
ocutputs a value, thus completing the input wait of the other process.

The key thing is that eventually the communication is made and the

141

processes continue executing in parallel.

The basic data type in OCCAM is the WORD. The word can be used
to represent CHARACTERS, NUMBERS, and BOOLEAN values, as well as BIT
PATTERNS. These basic types can be manipulated using a wide variety
of arithmetic, logical and bitwise operations {(e.g. shift left,
shift right, exclusive or).

Values can also be declared as VECTORS, with appropriate sub-
scripting available. VALUES can be declared (i.e. created)} by
definitions. Definitions are introduced by the keywords CHAN, VAR,
DEF. The keyword CHAN, VAR, DEF, and PROG (for named process
substitution) is followed by a ":" on the last line of the declaration.
The process code must follow on the next line after the declaration at
the same level of indentation.

e.d. VAR declaration

VAR x:
SEQ
Input ? X

Output ! x*x

represent
SEQ PROCESS
b4 .
INPUT —} 5 ——* QUTPUT
COMPUTE x

This declares the identifier x to hold a value within the SEQ process.
The keyword CHAN is used to declare a channel used for
- communication; it is declared in the same way as a VAR except the word

CHAN is used.

OCCAM programs are built from a small number of primitive

processes.
(i)
(ii)
{iii)

(iv)

Complex programs are built by constructing complex processes by

These are:

ASSIGNMENT (denoted by symbol :=)
INPUT (denoted ?)

QUTPUT (denoted !)

WAIT {denoted WAIT)

connecting these primitive processes together using constructors.

There are five types of constructors:

(i}
(ii)
(1ii)
(iv)

(v)

The first four constructors can be accompanied by a replicater, which

replicates the component processes to which it is attached a specified

SEQuence (SEQ)
PARallel (PAR)
Conditional (TF)

ALTernative (ALT)

Repetition (WHILE)

number of times, e.g. Creation of n processes performing infinite

while-loop with variable x

CHAN c[n+l1]:
PAR i=[0 FOR n]
WHILE TRUE

VAR X:
SEQ
cl[i) ? x
cli+l] ! x
represent
Eff’_l,.x cf1) | ¥ cl2]_ cln-1]1

c[n]

142

143

e.g. selecting first available input from n-channels and route to

output channel simulates a mux or merger.

WHILE TRUE
c[l}~—————4r___—d—___
AR X:
VAR x c(2] —
ALT i=[1 FOR n] . ———*¢
i1 - .
c[i] ? x cln]
c ! x
Each primitive process (input, output,... etc.) is a single line of

code, and generally constructs have their component process indented
by two spaces from the first letter of the constructocr. BAll processors
at the same level of indentation are assumed to be components of the
same constructor. Declarations are at the same level of indentation

as the constructs they are attached to (note that procedures are
declarations). The number ¢f channels declared is fixed in the

program text (i.e. constant bounds on vectors) this limits the amount
of parallelism in a program definition,

The OCCAM compiler has an improved method of calling routines
from the library routines, and provide commonly used routines to read
and write to the keyboard and screen channels e.q.

EXTERNAL PROC num.from.keyboard (VARnD}:

This means read a number from the keyboard'&nd assign to variable ‘'n'.

EXTERNAL PROC num.from.chan (CHAN ¢, VAR n):

Read a number from a channel 'c'. If 'c' is the keyboard this is
equivalent to calling 'num.from.keyboard'. The routines are written
in C language and OCCAM. Also provided are general routines for use

‘for pause or to abort a program as well as to use the 'e¢' random

144

number routines. These routines are available by default to all
programs unless the -s compiler flag is used to override their
inclusion. Also provided are routines to perform floating point
input/output operations. They are available by giving the compiler

flag '—-F' when linking an OCCAM program, which we commonly used in

our implementation, floating point value can be assigned and transmitted
via channels just like normal integer values, e.qg.

EXTERNAL PROC fn.num.from.keybcard (VAR FLOAT f):
means to read in a floating point number. The number is expected to
begin with a digit or '.' (indicating 0.), leading spaces are ignored.
The number ends with a non-digit and this character will not be
available to subsequent reads from the keyboard channel, e.g.:

EXTERNAL PROC fp.num.from.chan (CHAN c, VAR FLOAT f):

This means to read a floating point number from a channel 'c'. If
the channel is a keyboard this is equivalent to 'fp.num.from.keyboard'
external procedure.

One of the most important features of the OCCAM compiler (5.0
version implemented by R.P. STALLARD) is the Execution Trace. Wwhen an
OCCAM program is compiled and run with the '-e' flag, it produces a
trace history of all the synchronization events of all the processes.
When compiled the object code includes updates of a timing variable
to model the execution of an actual parallel computer. The operation
times can be given with the '-T' flag, by deféult they resemble those
of the transputer. The trace history file can later be inspected with
the 'tracer' utility, specific time periods can be analysed, discovering

where idle time is incurred or tracing the behaviour up to the time of

145

a fault. The run time system keeps the processes running as if in
paréllel and not in a round-robin priority fashion so that the program
may well behave differently depending on the setting of the '-e' flag.
A 'timerbuild' utility is available to construct the usexr's own timing
profile for a target parallel system. The system currently has a
number of limitations, it assumes all 'PAR' processes are executing on
separate parallel computers and that all channel intercommunication is
on direct identical 'links'.

The OCCAM compiler implements the OCCAM language as defined in
the OCCAM programming manual published by INMOS Limited subject to a
few restrictions and extensions that are described in Appendix I {which
comprises a listing of the online documentation for the Loughborough
OCCAM 5.0 ccompiler). These differences are intended to make the

transform of QOCCAM programs from different implementations feasible.

146

4.3 THE VIRTUAL MACHINE

A part of the virtual machine chosen for this implementation is
the Instruction Systolic Array (ISA). As we have mentioned in Chapter
3, the ISA has a number of interesting features. Firstly it has
been used to simulate all SIMD algorithms and many MIMD algorithms by a
simple program transformation technique. Further, the ISA can also
simulate the so-called wavefront processor algorithms, as well as many
hard systolic algorithms, hence allowing the gap between systolic and
other needs of computaticon to be bridged. The ISA removes the need
for the broadcasting of data which is a feature of SIMD algorithms
(limiting the size of the machine and its cycle time) and also
presents a fairly simple communication structure for MIMD algorithms.
The model of systolic computation developed from the VLSI approach to
systolic arrays is such that the processing surface is f£ixed, as are
the processing elements or cells by virtue of their being embedded in
the processing surface.

The VLSI approach therefore freezes instructions and hardware
relative to the movement of data, with the virtual machine and soft-
systolic system retaining the constraints of VLSI for array design of
regularity, simplicity and local communication, allowing the movement
of instructions with respect to data. Data can be frozen in the
structure with instructions moving systolically or both the data and
instructions can move systolically around the virtual processor (which
are deemed fixed relative to the underlying architecture). Our
virtual machine can thus implement time-static and time-dynamic

systolic algorithms, allowing the wvixrtual machine to be fixed (static)

147

during the time of computing as for hard systolic algorithms or
dynamically changing from one systolic configuration to another on the
virtual processing surface with time.

The virtual machine consists of an ISA network of data and
control paths, ana a set of virtual spoolers for driving the ISA
computation and opening up the communication bandwidth of the array,
and a collection of processing elements (PE) descriptions for creating
specific ISA grids. 1In the following two paragraphs we will describe

the basic sections of the virtual machine.

4.3.1 The Instruction Systolic. Array {ISA) Network

The Instruction Systolic Array is an orthogonal grid of processing
elements. 'Each processing element executes a number of simple
operations, and includes memory for intermediate results and registers
for communication with other processing cells and a save register
holding results until the neighbouring PE's have had a chance to read
the communication$. Each PE is activated by a combination of an
instruction and selector. If the selector entering the cell is high
(1) it executes the instruction which also entered the cell. QOtherwise
the cell remains inactive if the selector is low (0). The selectors
move through the ISA column by column, while the instructions move row
by row as shown in Figure 4.2.

The systolic movement of instructions and selectors is reminiscient
of the wavefront processor and obviates the need of control store in
the PE as is required for designs like the 'PSC WARP' device.
Additional data inputs on the boundary make it easy to simulate a

wavefront processor.

148

INSTRUCTIONS

|

PE

A 4

SELECTORS

FIGURE 4.2: ISA Processors (Grid 4x4)

To retain the possibility of a straightforward mapping of virtual
machine to real processor architecture we implement the ISA in OCCAM,
using the powerful system features of DYNIX coupled with Loughborough
OCCAM, the ISA was easily specified as a two part design consisting of:

1. PE library files

2. Grid architecture and virtual spoolers.

The virtual spooclers played the role of buffers for the ISA array
interface with higher levels of the system,. allowing the bandwidth of
the input to meet that of the ISA. The grid arghitecture was a simple
specification of network connections between processors, the PE
libraries simply containing cell descriptions which responded to ISA
instructions with different characteristics. Loughborough OCCAM allows
the precomputation of library PE's and the grid connection network,
which could be simply linked wheﬁ the virtual machine was required to

run effectively plugging in the correct PE's. Thus, a user of the

149

system can develop programs and new PE's with only an abstract working
knowledge of the ISA grid. The virtual grid architecture is shown in

Figure 4.4 based on the cell structure for a 4x4 case as shown in

Figure 4.3.
NDATA
I
S
IN —» - SOUT
PROCESSING
— —p
WDATA { ELEMENT } EDATA
‘———
I
oyt
SDATA
NDATA = NORTH INPUT/OQUTPUT DATA
EDATA = EAST INPUT/QUTPUT DATA
SDATA = SOUTH INPUT/OUTPUT DATA
WDATA = WEST INPUT/OUTPUT DATA
SIN'SOUT = SELECTOR INPUT/OUTPUT
= INSTRUCTION INPUT
1w Tour CT NPUT/OUTPUT

FIGURE 4.3: The Cell Structure

Included with the ISA grid specification is the data and
instruction spooler code. The spoolers are concurrent processes
representing buffers for data and instruction input to the boundary
cells of the grid. The spoolers also include data ocutput and
instruction/selector garbage collection for values falling off the

grid. The interface between the virtual machine and the program/PE

CHANNEL SPECIFICATIONS

OF THE ISA GRID:

INS - INSTRUCTION NORTH
SOUTH

ANS
BNS
SEL

AWE
BWE

'A' NORTH SOUTH
1g! " "

SELECTOR WEST
EAST

'A' WEST EAST
] B 1 n n

(9]

) . _
S}) _ = =
147] [93] W [Tp] — -
SEL{0] 515 51 o = 20 SLT L oy BT L sm
AWE{0] (1] (2] (31 J nWE [4]
I 1,1 1,2]_’3 3 1,4 WE[4
BHE [0] (1] 121 (3] BWE[4]
vy — ©
= = "‘ A ' =
[5] . (6] L [7] , (8] 9]
[51] (6] {7} 8] {9
22 2,2 2,3 2,4
(5] (6] {7] (8] lL9]
Z 2 o ’ dJ
[10] [11] [12} ¢ [13] , 3 [14]
— >
— 3,1 3,2 3,3 A 3,4 [P/
- ‘ e
~ — —_ ;
(3] o) = «
N } . = - [19]
A ; 16] 3 [17] y 2 (18]
[15] [
—— 4,1 4,2 4,3 4,4 o>
¢ ‘ R——
3' l '
pat

I

FIGURE 4.4: The Virtual Grid Architecture

[14]
 ——
|
P A—

oSt

151

development section is assumed to be of narrow bandwidth, In fact all
data and instructions are assumed to be placed in three files denoted
DATAIN, SELECTOR, INSTRUCT, and the output is dumped in DATAQOUT to
represent virtual spool files. The virtual spoolers (shown in Figqure
4.5) read these sequentially and convert the input into a parallel form
for the ISA. Likewise for the ISA output the spoocler converts the
output back into a single stream output sequentially to DATAOUT. The
reading of input and writing of output data is performed in parallel
with the ISA execution. Clearly this is the place where any bottlenecks
are likely to occur especially for large n. The spoolers can also be
used to pad out unused cells with dummy values, when the ISA program
running is smaller than the total number of virtual processors. Hence
the system with a bounded number of processors can simulate smaller
networks without difficulty, [Muslih and Evans, 1987).

To allocate the channel to the virtual grid architecture, the
correct channels can be hooked up by a simple computation using the
grid PE position of the form,

PROC LOC (VALUE i,j, VAR V)=
SEQ
re={ ({i-1)*(n+1))+j)-1:

The PE to fit .the locations is called as a library routine,
EXTERNAL PROC PE{(CHRAN wn,we,wWs,wWw,rn,re,rs,rw,in,is,sw,se)=
and the library PE section uses the PE definitions:
LIBRARY PROC PE(CHAN wn,we,ws,Ww,Yn,re,rs,rw,in,is,sw,se)=
... code for the cell.
The external environment communicates with the grid (processing

elements network) by passing the data, instruction and selector to be

152

aITd

100dS IN4LNo

(=N x03) saoT00dS TenlaATA :G°F FTUNADIJ

TO0dS LO4ANI

JITd

sent to sources. Sources communicate the signals directly to the grid
interfaces through the virtual spoolers, by pumping the signals into
the grid, this serves the purpose of each source modelling itself as a
process.

Information sent down the source interface channels can be
classified into two categories:

a) control -~ (instruction, and selector) for directing the

cemputation.

b) data - for use in computation.
For simplicity, we can consider separate sources for the data and
control {instruction and selector). The merging of sources for data
can be performed, likewise merging of the control (instructicon, and
selector) sources can be performed.

To implement this concept in OCCAM, the generic sourxce for the
instruction and selector files, which is sequential to parallel
program bus expander is:

PROC SOURCE (CHAN OQUT [], Link, value t)=
VAR k,i,j, buffer [n]:

CHAN ptr
SEQ
IF

t=0

open.file ("selector","r",ptr)
TRUE

open.file! ("instruct","r",ptr)
open the selector input file if t=0, otherwise open the instruct input
file.

To read the next input line from the selector or instruct input

153

file and pump in parallel into the grid, we write:

num. from. chan (ptr,k)
link ! k
SEQ i=[1l FOR k]
SEQ
IF
i>k
PAR j={1 FOR n]
VAR tl:
SEQ
loc (j,1,tl)
OUT [tl] ! ©
TRUE
SEQ
SEQ j=[1 FOR n]
num. from.chan (ptr,buffer([j-1])
PAR j=[1 FOR n]
VAR tl:
SEQ
loc {3,1,tl)
OUT [tl] ! buffer [j-1]
close.file(ptr)
str.to.screen {"*n source closed")

link ! ©O

The opposite of a source process is the sink process and the sink
cannot perform any output to the grid. Data and contrel {instruction
and selector) leaving the grid through the virtual spoolers directly
enters the sink, where it is routed to relevant areas of surrounding
outer environment. In this light the sink corresponds to the output,

it also collects all the data and control (instruction, and selector)

pumped into the grid by the source.

154

155

As for sources we allow multiple sinks processes, corresponding
to different stages of output. So the purpose of the garbage collector

(sink process) is to collect the instructions and selectors and output

them from the grid, i.e.,

PROC SINK {CHAN in{],link}=
VAR i,3,k
SEQ
link ? k
SEQ i=[1 FOR k]
PAR j=[1 FOR n]
VEAR tl:
SEQ
loc {(j,n,tl)
in [t1+1] ? any
str.to.screen ("*n sink closed")

link ? any :

The generic source for the DATA file {data bus expander), to open the
data input file "datain" and decide the number of lines in the file for
each input line is:

PROC data.source (CHAN ans[1, bns[J, awe[], bwe[1,link)=
DEF n1=2*n, n$=3*n:
VAR k,i,j,t:
VAR FLOAT buffer [4*n]:
CHAN ptr
SEQ
open.file ("datain","r",ptr)
num.from.chan (ptr,k)
link ! k
str.to.screen ("*nk=")

num.to.screen (k)

To read the north, east, south and west boundaries of the grid is:

SEQ i=[1 FOR k]
SEQ
str.to.screen ("*ni=")
num.to.screen (i)
SEQ j=[0 for 4)
Ir
i<=k
SEQ
num.from.chan (ptr,t)
IF
t<0
SEQ z=[0 for n]
buffer [{(j*n)+2]:=0.0
TRUE
SEQ z=[0 FOR n]

fp.num.from.chan (ptr,buffer [j*n)*z])

To pump all the data elements around the boundaries into the ISA grid

in parallel is:

TRUE
SEQ z=[0 for n]
buffer [(j*n)+z]:=0.0

"PAR j=[1 FOR n]
VAR tl,t2:
SEQ

loc (j,1,tl)
loc (j,n,t2)
t2:= t2+1

PAR
bns{tl] ! buffer [j-1]
bwelt2] | buffer [n+(j-1)]
awe[tl] ! buffer [n3+{j-1)]
ans[t2] ! buffer [n2+(j-1)] .

To close the input file "DATAIN" is:

156

157

close.file (ptr)
str.to.screen ("*n DATA source closed"}

iink ! O:
To open the output file "DATAOUT" and read all the boundaries in parallel
(parallel to sequential bus condenser) is:

PROC data.sink {(CHAN ans|[],bns[],awel },bwe[},link)=
DEF n?=2%*n, ny=3*n
VAR k,i,j:
VAR FLOAT buffer[4*n]:
CHAN ptr:
SEQ
open.file ("dataout" ,"w",ptr)
num.from.chan (ptr,k)
link ? k
SEQ i=[1 FOR k]
SEQ
PAR 3j=[1 FOR nl]
VAR t1,t2
SEQ
loc (3,1,tl)
loc (j,n,t2)
t2:=t2+1
PAR
ans [tl] ? buffer [j-11}
awe[t2] ? buffer [n+({j-1)]
bns[t2) ? buffer [nj+(j-1)]
bwe [tl]) ? buffer [n}+(3j-1))

The output is sequential to the datacut, i.e.,

SEQ
SEQ j=[0 for 4]
SEQ
str.to.chan (ptr, "*n")
SEQ z=[0 FOR n]
SEQ

158

fp.num.to.chan (ptr,buffer [j*n+z])
str.to.chan (ptr, " ")

str.to.chan (ptr, "*n")

To close the output file is:

close.file (ptr)
str.to.screen ("*n data sink closed"}
link ? any

abort.program:

To define the ISA grid (network), which is the main procedure comprising
the setups and to start the ISA grid is:

DEF size=n*(n+l)
CHAN ans([size] ,bns[size] ,awelsize] ,bwelsize],sellsize],inslsize]:
CHAN link[3]
VAR i,j:
PaAR
PAR i=[1l FOR n]
PAR j=[l1 FOR n]
VAR tl,t2,t3,t4:
SEQ
loc (i,j,tl)
loc (j,1i.t2)
t3:=t1l+l
td:-=t2+1
plug {ans[t2],awel[t3]),bns[t4],bwe[tl],bns[t2],bwe(t3],
ans{t4]l,awe[tl],ins{t2],ins[t4],sel[tl]),sel[t3])
The interface program which will connect the selector file (source and

the selector file (sink) is:

source (sel,link([0],0)

sink (sel,link([0])
The interface program which will connect the instruction file (source)

with the instruction file (sink) is:

159

source {ins,link{1]1,1)

sink {ins,link[1])
The interface program will connect the data file (source) with the
data file (sink) is:

data.source {ans,bns,awe,bwe,link[2])

data.sink (ans,bns,awe,bwe,link[2])
The dimension of the array in the case of a 4x4 grid: DEF n=4, and if
the user wishes to change the dimension of the array we only need to
change the value of n.

To run the ISA grid program described above we need to use the
interface routines which are called from the library routines. The
interface routines used here are shown in the complete code of the ISa

grid..in Appendix II.

4.3.2 The Processing Element (PE)

The processing element (PE} considered here in our implementation
is a very general element which allows the chcice of a wide range of
arithmetic and logical operaters, and allows the simulation of a wide
class of algorithms without the need to develop more special purpose
PE's immediately. As the design unfolds it becomes apparent that highly
specialized processors can be developed by reducing the number of
instructions implemented by the PE's, [Muslih and Evans, 1987].

The PE design indicates the type of program required to deal with
the movement of instructions and selectors through the array which will
in the main be a generic form for all library PE's.

The PE to be developed is fairly complex and is shown in Figure

4.6. It consists of a central processing element which is enabled by

NDATA

INSTRUCTION
N l
N.BUF
SELECTOR \ : SELECTOR OUT S
IN y
1 [11
D wam— ///// //////
. E //////
> B ' ; WORKING
ata | U \ PROCESSOR B A|R|R|] RIR
WD Fl | U cin| el s|w
—~7 F c|(DpD| p|l D|D
—_ /
BUS
I.BUF S.BUF EDATA
l >
' D
INSTRUCTION SDATA
ouT

FIGURE 4.6: The Basic Cell (Processing Element)

09T

161

a selector high signal and any instruction except the NO.OP. A simple
bus connects the port input buffers to the memory (Figure 4.7), which

contain the port value storage registers . (RND, RED, RSD, RWD) as well

A R R R R AUXILIARY MEMORY

R Cc Cc N E 5 W FOR TEMPORARY

C D D D D VARIABLES + DATA

R: RESULT REGISTER

C: COMMUNICATION REGISTER
ACC: SECONDARY ACCUMULATOR
RND: REGISTER NORTH DATA
RED: REGISTER EAST DATA
RSD: REGISTER SOUTH DATA

RWD: REGISTER WEST DATA

FIGURE 4.7: The Memory Crganization

as working memory for data and temporary results and variables, and R
which acts as an accumulator and holds the results of the computation
until C has been read and ACC which is a secondarxry accumulator for
complex computation, and C which is the communication register (the
current output of the cell).

This processing element embodies all the principles of the ISA
cell. Communication can be achieved by first loading the output buffers
with C, and then takiné the input and output in parallel. The
input buffers are then.read sequentially to memory to complete the
communication phase and various masks can be made on the

input buffers so as to prevent the overwriting of RND, RED, RSD or

162

RWD and so aveid unnecessary movement of data in the memory, when a
previous input is to be retained. The port mask is defined as part
of the processor instruction which is a four field instruction. For
simplicity there is the need to keep the bandwidth narrow. The
instruction is represented as an 8 digit integer (Figure 4.8) with

each field 2-digits wide to allow the possible implementation of 100

FD3 FD2 FD1 FDO
op PORT OPD1 OPD2
+——

TWO DECIMAL DIGITS

FIGURE 4.8: The Instruction Format

instructions and an internal memory address space of 100 instructions.
The port specification allows 100 combinations of Input/Output but only
the first 16 have been used here. One possible extension is to utilise
the extra slots to allow multiple communication registers in each cell,
REMARK: These operations can be implemented more effectively by
using bit logic and slices, but the Loughborough 0OCCAM is
restricted in this respect. Furthermore, a 2-digit field

alsc allows a wide range of library PE's to be developed.

The processor operation_codes (Figure 4.9) and the port controllers
(Figure 4.10) indicate the instruction to be implemen§ed. The
definitions of the read masks usiné the port instruction field are:

a high bit indicates that the value of what input port will be copied

to memory, while a low bit indicates that the value is not transferred.

op CODE COMMENT
00 NULL NO OPERATION
ol COPY MOV R TO C
02 ADD R:=A+B

03 SUB R:=A-B

04 MULT R:=A*B

05 DIV R:=A/B

06 MIN R:=MIN(A,B)
07 MAX R:=MAX(A,B)
08 DATA C:=A

0% MOV MEM [FDO] : =3

A=MEM [FD1],

B=MEM [FDQ]

FIGURE 4.9: The Processor Operation Code

The instruction format allows two address fields OPPl and OPD2 which
can be used for memory referencing, including RNDb, RED, RSD, RSW, R,C,
and ACC hence quite general data manipulation can be formed.
Originally an extra result field was intended but would not fit into a
single integer sized data item.

The resulting instructions are easily decoded by the following

OCCAM code:

SEQ j=[0 FOR 4]

SEQ

£A[3] :=i\LOO

i:=iN\100

i=Instruction Integer

163

w |-s |E [N INPUT VALID

o o Jo |o NO VALID DATA

o lo Jo |1 N VALID
o o |2 |o E VALID
o jo |1 |1 N,E VALID
o |1 |0]o s VALID
o |1 o |1 S,N VALID
ol1 {1]o0 S,E VALID
o |1 |1 |1 S,E,N VALID
1 o |o o W VALID
1o o |1 W,N VALID
1 o |1 o W,E VALID
1 |o |1]2 W,E,N VALID
1{1}o0]o W,S VALID
1 |1 {o |1 W,S,N VALID
11l o W,S,E VALID
1 1 1+ 1 W,5,E,N VALID

FIGURE 4.10: The Port Controllers

and the port mask with port:=£d4[2]

SEQ i=[0 FOR 4]
SEQ
pli] :=port\2
port:=port/2

164

To define the size of the processing element and the external interface

in oCccaM;

165

LIBRARY PROC PE(CHAN wn,we,wsS,wWw,In,re,rs,rw,in,is,sw,se)=

DEF msize=10:
VAR FLOAT a,b, mem[msize],c,i.o.buf[4]:
VAR i,j,s,port,pl4] ,£4[4] ,op,0ld.i,old.s:

VAR running
where mem[msize] is the internal memory cell, i.o.buf[] is what was
input from adjacent cells,and ¢ contains the value which the cell is
outputting. Finally old.i and old.s is last instruction and last
selector signal.
To initialise the cell memory and switch on the cell to make it
ready to start and fetch instruction is:

SEQ
- running:=true
mem{l] :=0.0
mem[Q] :=0.0

old.i:=0
old.s:

o
WHILE running
SEQ

c:=mem[1]
To read instruction, selector and data, and send the old instruction,
old selector and the value of ¢ through the channels is:

PAR
in ? i
is ! old.i
swWw ? s

se ! old.s

wn ! cC
we ! ¢©
ws ! ¢
ww ! C

—

n i.o.buf[0]

166

re ! i.0. buf[l]

rs ! i.o. buf(2]

rw ! i.o. buf(3]
cld.s:=s

old.i:=1i
The next stage is the decoding of the instruction and the ports as
described above, and then copying the valid data is:

SEQ i=[0 FOR 4]
IF
plil=1
mem[i+3]:=i.c.buf(i]

To execute the instruction considering the processor operation code is:

a:=mem[£fd[1]]
b:=mem [f4[0]]
IF
(s<>0) AND {(op<>0Q)
IF
op=1
mem([l] :=mem[C] (null operation)
op=2
mem [C] :=a+b (add cperation)
op=3
mem[Q] :=a-b {sub operation)
op=4
mem [O] :=a*Db (mult operation)
op=5
mem [0] :=a/b {(div operation)
op=6
SEQ
iFr
a>b
mem[O] :=a
TRUE (get min operation)
mem[OQ] :=b

167

op=7
SEQ
IF
a>b
mem [0] :=a
TRUE (get max operation)
mem [C] :=b
op=8
mem(l] :=mem[£d{1]] (get data operation)
op=9
mem[£d4{0]] :=a : {(moving data operation)

The full processing element (PE) OCCAM coding is given in Appendix II.

CHAPTER 5

THE IMPLEMENTATION OF THE REPLICATING

INSTRUCTION SYSTOLIC ARRAY LANGUAGE

(RISAL) AND SYSTEM TESTING

i68

5.1 INTRODUCTION

While a great deal of programming language design has progressed,
much of it has been at cross purposes. On the one hand the designer
has been trying to facilitate the messy process of human understanding;
on the other hahd he has had to insure efficient use of modern
computers. These difficulties constitute the impedance match between
grossly diffe#ent representations. In some sense the designer has
beeﬁ limited to the top of a towér of léﬂguages that starts at bits
in a computer memory and builds up through the stages to his higher
level language. Between.each stage there must be an automatic
translation program. As might be expected, there is only a limited
amount of variation possible under these constraints. The major
concepts that have arisen are the variables and structures composed
of variables which are, in fact, ways of using computer memory; finite
functions over data structures; and sequence control. The fact that
programming ¢osts now exceed computer costs has forced the language
designer to concentrate more on structuring the programming process
than the program itself. There is as much to save by reducing the pre-
inspiration flailings of a programmer as there is in eliminating a
redundant STORE in the inner loop.

Two additional levels of language appear to be forming on top of
the more traditional programming structures {(Figure 5.1). One is
. characterized by a top-down analysis of the program structure. The
other is characterized by predicates over various abstract data
structures. At the highest‘level we now see we have statements of

things that must be true, perhaps at specific points in the computation.

169

In the brain of
the problem solver

-
-
-

Region of human +

translation predicates that describe

certain relationships that must
be satisfied by the program

Top down, hierarchical
decompesition of the program

Programming language

Region of automatic Intermediate languages in
translation the compilation process

lLoadable program modules

\ Bits in computer memory

FIGURE 5.1: Levels in the Program Scolving Language Tover

Once we have established these restrictions, we fragment the program
hierarchically into the most natural units possible. O©Only then do we
map the preogram onto machine-related constructs. These topmost
mappings are probably not done automatically; it is easier to do them
by hand than to formalize the mapping process. BAgain, since it is the
programming preocess that is being facilitated, we observe that progress
down the tower of abstraction may well run into problems, causing
lower level cobstacles to be solved by changing higher level
descriptions. It is an iterative process involving all levels of
abstraction.

The substantive questions are what structures are useful at each

of the various levels of abstraction. The new viewpoint is that it is

170

not necessary to mix all the levels into one notation. To put it
differently, it was a mistake to assime we could think effectively

in a (single) programming language.

171

5.2 LANGUAGE DESIGN PRINCIPLES

There are many motives for the design of computer languages, but
the point of view expressed here is that there is a special application
area and a special machine which needs a special language. The first
question, is how to do it? The first rule, is to keep it simple.

The problem then reduces to achieving the necessary features in a
consistent manner, The simplest way to proceed is to write some
programs. A small program will generally exercise a large part of

the language. Then attempt to use the grammars to specify the
language concisely. The restrictive form of definition will surely
suggest changes in the language, then, in turn, changes in the sample
programs. We iterate the process until both the programs and the
language description are elegant and understandable.

One might suspect that the language would not improve by having
to conform to a restrictive defining tool. But experience shows that
it does. 1In some sense there is no art unless there is a restriction
of the medium. In some perverse way, the human mind, in copin3 with
the restrictions, produces its best results, and grammars, the very
formalization of nested definition, are a rich medium.

Orthogonality is a desirable property to the language. The
facilities that are there should be highly independent, e.g. if there
are features for sequence control, then there should not be an
additional set of sequence controlling features down inside the
instructions. '
Adequacy is also a desirable property. It should be able to

express the solutions to all the algorithms to be solved in it, but

that is not the same as generality, or completeness. There is no
reason to be able to compute an arbitrary function if we know ahead
of time that only certain simple classes of functions are going to be
used. Translatability is a desirable property for the language.
There is not much point in designing a neat language that cannot be
translated, eventually, to a form acceptable by the machine.

Given the ISA grid and the processing element.(éE) to plug into
the grid points, we require a suitable meaium in which to prepare and
debug the ISA control programs, and a method for generating the
necessary form of instructions for the ISA. Early test programs
were developed in a format akin to a machine code and were difficult

to modify and relate tc the abstract algorithms. The RISAL compiler

172

(see later) was developed and introduced to allow a simple but adeguate

design environment. RISAL accepts instructions in an assembler like

form, but is fairly permissive about the format within the constraints

of syntax. The syntax of RISAL is:

1. RISAL FILE

D SETUP RLINE END

2. SETUP

—3 GRIDSIZE NUMBER OF
LINES
3. RLINE
REPL VALUE [} LINE
4, LINE
JINSTRUCTION
LINE
» DATA LINE >
SELECTOR
LINE
5. INSTRUCTION LINE
REP VALUE 3 ILINE

)V

C
A

W

v

173

174

6. ILINE

——3 OPERATICN PORTS 5

O

3 o©oPD1 OPDLl - —

7. DATALINE

N
> E
> : 3 5 3 DLINE >
W
————3 NONE >
p

)

175

8. DLINE

W

- REP VALUE) DATA ITEM

[

N

9. SELECTOR LINE

. REP ‘ VALUE ‘ 0 <

A

()
./

10. VALUE = INTEGER < GRIDSIZE
1l. GRIDSIZE = MAXIMUM NUMBER OF COLUMNS OR ROWS OF PROCESSORS

12. DATA ITEM

REAL {BUT CAN BE EXTENDED TO OTHER MORE COMPLEX TYPES)

13. OPERATION RESERVED (MNEMONIC) KEYWORD FOR OPERATION

v

176

14. PORTS

N LY
> 7 E)J > >
s
v
7 W
15. OPDl INTEGERS IN RANGE O...MSIZE-1
OPD2 (MSIZE = SIZE OF PE PRIVATE MEMORY)

RISAL contains a proportion of semantic rules not indicated in the
syntax and allows programs (instruction, data and selector files) to
be produced using the same syntax and compiler. Instruction, data,
or selector files can be prefixed with a replicating copmand which
will generate the follcwing instruction by a specified number (e.qg.
REP(4)), also can be prefixéd with a replicating command which will

generate the following lines of instruction by a specified number

177

(e.g. REPL{20)), checks are made to ensure that enough data, instructions

or selectors are given to control the selected gridsize. The start of

a file (instruction, data, or selector) must identify three things:

1. Instruction (p), data (d), and selector (s).

2. The size of the grid, the instruction and sélectors can be
different giving rectangular grids.

3. The number of rows in the file. This brovides the OCCaM ISA with
a primitive shut-down capacity and could be removed on a real
machine where a reset is available. The choice of p, d or s
directs the RISAL compiler to fix .the syntax for a particular type
of file, preventing the mixing of instructions; data, and selectors
in one file, and giving useful error messages as to malformed

constructions in a file (see later).

THE DATA FILE

The data file is more complex than the rest, as it regquires the
specification of input for the possible four boundaries of the ISA grid.
The current iﬁplementation does not expose all the inherent parallelism
in collecting the boundary data, as we can define four-files one for
each boundary, and then use the buffers in parallel, howevef, there is
a considerable expense in checking that enough boundary data is
available which requires the specification of four separate files.

Here we define only one file and sequentially buffer the boundary input
and output, this makes the checks easier and the setting up of a data
input segquence is more easily related to the algorithms being simulated.
For large grids however this method will become impractical and adding

a pre-processor to the ISA, to separate out the data into temporary files

178

seems the best alternative. RISAL contains a certain amount of
semantics to check that data boundaries are not confused, and
replicators do not generate too much data so a special command NONE
is also available which allows a complete boundary to be masked out.
The data must always be input in order N,E,S,W (Figure 5.2), and the

RISAL compiler will check this.

-).
+ + + +
1.0 2.0 3.0 4.0
+ 4.0 1.0 «
> 3.0 2.0 «
* > 2.0 3.0 « ¥
=+ 1.0 1.0 <«

n 1.0, 2,0, 3.0, 4.0;
e 1.0, 2.0, 3.0, 4.0;
s 4.0, 3.0, 2.0, 1.0;
w 4.0, 3.0, 2.0, 1.0:

FIGURE 5.2: The Input to the ISA Boundaries
Example for Data statement:

n 1.0, 1.0, 2.0, 3.0;
e 3.0, rep(3) 0.0;
s rep(4) 0.0;

nene: 1.0 1.0 2.0 3.0
-
. -+
no data
nasked out
0.0 «
0.0 «

0.0 0.0 0.0 0.0
I

179

The north boundary of the 4x4 ISA grid receives 1.0, 1.0, 2.0, 3.0
as data, while the east boundary receives 3.0 and zeros for the
remaining inputs, with the south boundary inputting 4 zeros and finally

the west boundary is masked out {(no data).

THE SELECTOR FILE

Selectors are Boolean values and can be specified similarly, e.g.
to select all the cells in column one of a 4x4 ISA grid, we would send

1, 1, 1, 1: or equivalently to rep(4)l: into the first column.

d 1
§ ’ i
% > 1
3
fd
73]

> 1

On the next step, if we sent 1, 1, O, O: or equivalently to rep{2)1;

rep(2)0O: into the first column the picture will be:

> l +1
2 > l 1
&
Q)
m
d > O+ 1
7]

180

THE INSTRUCTION FILE

The instructions enter the ISA grid from the north moving across
to the south row by row, and each PE in the grid is activated by a
combination of an instruction and a selector. The selectors enter
the grid from the west moving across to the east column by column.
Below is a list of operation codes which represent all the operations
occurred in the PE if the selector entered is a high signal:

null
data

copy

mov

add

sub

mult

div

min

max
An example of an instruction: DATA n, 03, 00 means read the north data
port and move the value into the communication register for the PE
defined previously in Chapter 4.

DATA n, 03, 00Q; DATA n, 03, O0; DATA n, 03,00; DATA n, O3, 00:

issues the same command to 4 columns of a 4%4 grid simultanecusly and

is equivalent to the replicated form

REP(4) DATA n, 03, 00:

181

5.3 THE RISAL COMPILER

The compiler is a program written in the implementation language,
accepting text in a source language and producing text in a target
language. Language description languages are used to define all these
languages and themselves as well. The source language is an algorithmic
language to be used.by programmers. The target language is suitable
for execution by some particular computer. If the source and target
are reasonably simple, and well matched to each other, the compiler can
be short and easy to implement. The more complex the requirements
become, the more elaborate the compiler must be and, the more elaborate
the compiler, the higher the payoff in applying the techniques of
structured programming.

Compilers can and have been written in almost every programming
language, but the use of structured programming techniques is dependent
upon the implementation language being able to express structure.

Today there are some existing languages which were explicitly designed
for -.the task of compiler writing. The criterion for choosing an
implementation language is quite straight forward, it should minimize
the implementation effort and maximize the performance of the compiler
being written [Alfred, Jeffrey, 1977].

Each compiler is developed in a particular enviromnment in resbonse
to certain needs, and that the environment will shape not only the form
of the completed compiler, but also the process by which it is developed.
This brings into discussion the nature of the target machine, which in
our case is the specially designed virtual machine. The PASCAL
language was used to develop and test the compiler whose job was to

read the Replicated Instruction Systolic Array Language elements (RISAL)

182

and transform it into a form suitable for the wvirtwral machine to run.
The general phases of the RISAL compiler are shown in Figure 5.3.

Explicit goals should be formulated at the outset of any compiler
development, although they may change with time, they provide guide-
lines for the major decisions and .are the basis for evaluwation. The
typical compiler goals:

- correctness, it should give the correct outputs for each
possible input. This is what we mean by a program 'works'.

I1f a program does not work, measures of efficiency, of
adaptability, or production costs have no meaning. OCne goal
of every compiler is to correctly translate all correct input
programs and correctly diagnose all incorrect ones. However,
compilers are seldom absolutely correct: perhaps "réliability"
is a more feasible goal, i.e. keeping the number of errors
encountered acceptably small.

- availability, even a correct compiler that cannot be run is
of little use. Thus, a very important aspect of any compiler
development is its schedule and it must run on the right
machine in the right configuration with the right operating
system.

- generality and adaptability, although some special-purpose
compilers are produced to compile single programs; most
compilers must be planned to handle a large number of programs.
During the life-time of a compiler, requirements and
specifications may change many times {often, even before it is

completed). Unless special care is taken ‘during its

183

RISAL FILE
{ SOURCE PROGRAM)

LEXICAL
ANALYSIS

SYNTAX ERROR
ANALYSIS HANDLING

CODE
GENERATION

RISAL OBJECT
(TARGET PROGRAM)

FIGURE 5.3: Phases of RISAL Compiler

184

construction to ensure adaptability, responding to these
changes may be both traumatic and expensive.

- helpfulness, the kind and amount of help that is most
appropriate will depend on the intended users: beginners need
careful explanationS'of_simple errors in small pregrams, while
system programmers are more concerned with the detection of
subtle errors in large programs, or the location of efficiency
"bottlenecks".

- efficiency, there are several dimensions of efficiency to be
taken into account: efficiency of compiler development process,
efficiency of program development using the compiler (including
efficiency of compilation}, efficiency of target programs
produced by the compiler.:

To develop the RISAL compiler, it is not intended here, nor appropriate,
to demonstrate state-of-the-—art techniques in compiler writing for
parallel processing, but rather to provide a practical way of how

the virtual machine would handle a subset of possible operations to
solve various algorithms. The construction of the RISAL compiler

involves several conceptually distinct processes.

SPECIFICATION

With our design aims chosen then to solve the problem of
generating the three object files (INSTRUCT, DATA, and SELECTOR) which
are used to control the performance 'of the virtual machine {(ISA grid),
the RISAL compiler specification document.includes:

- a precise gpecification of the source language (Section 5.2).

- design target for the compiler size.

185

- a choice of the language in which the RISAL compiler is to

be written (PASCAL language).

DESIGN

The design of the RISAL compiler was started before the
specification and continued well into the implementation phase. The
RISAL compiler was structured into major components (procedures,
modules) , and we allocated functions and responsibilities amongst then,

and the definition of their interfaces.

IMPLEMENTATION

Regardless of the design technique used, at some point the RISAL
compiler must be written in an already implemented language translated
into machine code and executed. As we mentioned above the PASCAL
language was chosen to write the RISAL compiler, because it is easily
readable and understandable, Qith appropriate data objects, in
addition it has a simple yet powerful contrel and data structure,
with enough redundancy for substantial compile-time checking.

The. RISAL éompilation process is partiticned intoc a series of
subprocesses called procedures as shown in Figure 5.4.

In the initialisation procedure the process of setting up the
current keywords are assigned and initialise the values. The size

of the keywords file is 20 and contains the following keywords:

Keyword Code representation.
add 2
copy 1
d (data file) 105

data 8

e

KEYWORDS

FILE

—~””,,~*

INITIALISE
PROCEDURE

PROG
PROCEDURE

SETUP

GET C

PROCEDURE

LEXICATL
ANALYSIS

GENERAL
LINE
PROCEDURE

PROCEDURE

ERROR

/

o~

HANDLING
ROUTINE

]

/ \
- _1L \ b
SELECTOR INSTRUCTICN DATA LINE
LINE LINE PROCEDURE
PROCEDURE PROCEDURE
OUTPUT REPR
PROCEDURE PROCEDURE
FIGURE 5.4: The RISAL Compilation Process

186

187

Keyword Code representaticen
div 5
e (east) 2
end 10l
max 7
min 6
mov 9
mult 4
n (north) 1
none 102
null o
p (program) 104
rep 103
repl 106
s (south) 4
sub 3
w (west) T8

The prog procedure is to decide the input file type, whether
Instruction, Data, or Selector file, and to process this input file.
The checking of the dimension of the ISA grid will occur in this
procedure. The input file must start with header T (valuel,valuel).
This means,

T type of input file

T=p for instruction

T=d for data

T=s for selector

valuel the dimension of the ISA grid (e.g. value 1l=4 in the
' case of 4%x4 ISA grid

value2 the number of lines ended by (:) in the input file

188

The setup procedure is to decipher the input file header. The lexical
analyzer is the interface between the RISAL source program and the
RISAL compiler. The lexical analyzer reads the source program one
character at a time, carving the source program into a sequence of
atomic units called tokens.

A classical lexical analysis was used to develop the scanning
and screening functionality for reading the RISAL statements. Early
in the compilation process the source file (RISAL statements) appear
as a stream of characters. By scanning them finds substrings of
characters that constitute the textual elements (words, punctuation,
operators, comments, spaces, etc.) ‘and classifies each as to which
sort of textual element it is. The screening process discards some
of the textual elements (spaces, comments, etc.) while recognizing
reserved symbols and generating the token stream for parsing. Below
we summarize the scanning taken by the lexical analyzer of the RISAL
compilexr when processing a RISAL statement:

- make sure there is a token and it can be recognized.

- skipping leadiné blanks.

- skipping comments - all comments starting with {.

- skipping trailing blanks

- find token

- .collect identifier

- searching for keywords and locate them

- convert to token value

- convert to a number

- convert-all the integers to a numeric value, and the reals

remain as strings.

189

The purpose of the getc procedure is to maintain a buffer of
characters, keep the buffer filled and to skip the blank spaces.
In addition, book keeping will occur in this preocedure.

The line procedure is to process a general line, checking will
be made first to decide whether the line is from the instruction, data
or selector. There are three separate procedures to implement the
instruction, data and selector line.

The output procedure is to construct the instruct, datain,
or selector object files.

¥inally, the error handling routine is to print out error
messages in output file called ERROR file in case of any fault in
the RISAL program. The RISAL compiler attempts to detect and report
as many errors as possible. Below are the following error messages
provided by the RISAL compiler:

-~ program must start with p,d or s

- expected { but found)

- expected) but found (metos

- expected :, ,, ;, end,]

- too many data elemengs

- :incorrect data boundary spec

- expected integer arguments

- errors detected =

- no errors detected

- - expected integer operands in instruction

- should ke real value in data expression

- reguire integer in rep count parameter

- attempt to read past end of file

190

- alphabetic string found require keyword
— invalid character
- selector should be 0 or 1

- malformed expression

OBJECT FILES

We now turn to the code generation routine, the final phase of
the compilation process. Good code generation is difficult, and it
depends on the construction of the virtual machine we are using.

We initially developed a straightforward algorithm to generate code
from a sequence of statements. The algorithm was used successfully
to produce an ISA form placed in three files (INSTRUCT, DATAIN, and
SELECTCR). To show the picture of generating the ISA form, below is
an example of three inp;t RISAL files to calculate the value of
x=(A+B)* (C-D)/E, and the picture of the ISA form after we compile
them by the RISAL compiler (INSTRUCTION, DATAIN, SELECTOR).
INSTRUCTION FILE

p(4,1l6)

data n,3,0; rep(3) null n,0,0:

mov ,0,7; data n,3,0; rep(2) null n,0,0;
data n,3,0; mov ,0,7; data n,3,0; null n,0,0:
mov ,0,8; data n,3,0; mov ,0,7; null n,0,0:
add ,7,8; mov ,0,8; rep(2) null ,Q,0:

copy ,0,0; sub ,7,8{ rep{(2) null ,0,0:

null ,0,0; mov ,0,7; rep(2) null ,0,0:

null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; mov ,0,8; rep(2) null ,0,0:

null ,0,0; mult ,7,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mov ,0,8; null ,0,0:

rep{(2) null ,0,0; div ,8,7; null ,0,0:

rep(2) null ,0,0; copy ,0,0; null ,0,0:

rep{4) null ,0,0

end

SELECTOR FILE

's(4,16)

repl (16) [1,rep(3)}0]

end

DATA FILE

d(4,16)

n 4.0, 0.0,
n 0.0, 5.0,

=

n 0.0, 3.0,

6.0, 0.0,

0.0,
0.0,
0.0,
0.0,

0.0; none;
0.0; none;
0.0Q; none;

Q.0; none;

repl(12) [rep(4)none]

end

INSTRUCT
16

08010300
0900007
08010300
03000008
02000708
01000000

C 0O O 0 0O 0O 0 0 O ©

10000
08010300
09000007
08010300
09000008
03000708
09000007
08080600
09000008
04000708
01000000

o O O ©

none; none:
none; none:
none; none:

none; none:

10000

0
08010300
09000007

cC 0o 0 O O O O

08080600
03000008
05000807
01000000

c

10c00

© 0O 0O 0O 0O 0 0o O O O o 0o O 0 o°

191

192

SELECTOR

16

DATAIN

.0

0.0

4.0

0.0

5.0

10.0

6.0

3.0

to the end of 16 lines

The complete actual code for the RISAL compiler is given in Appendix II.

5.4 SOFT-SYSTOLIC SIMULATION ARCHITECTURE AND TESTING

From the previous sections in Chapter 4 and this chapter a
number of components are readily identified which need connecting:
the RISAL source files, the RISAL compiler, the compiled object
files, the wvirtual machine (the ISA grid, processing element, and
the virtual spoolers), and the resulting datacut file,

The components mentioned above are serially linked together as
shown in Figure 5.5. The virtual spooling section of the ISA grid,
expects to find instructions in a file called 'INSTRUCT', with
selector information in a file called "SELECTOR" and data from file
"DATAIN". The RISAL compiler allcocws the ocutput of generated ISA
items to be directed to any of these files or temporary files as
reguested by the user using the DYNIX file in direction commands.
It is up to the user to énsure that the spoolers have the correct
data and program = (instruction, selector}.

A typical program specification is as follows:

i) Develop three files -~ -

Il = instructions
Dl = data
51 = selectors

ii) Check syntax with RISAL compiler, generating the files
INSTRUCT, SELECTOR, DATAIN.

iii) All bugs are now semantic errors in the ISA program
Compile ISA.OCC (virtual) grid if not compiled
Compile PE.OCC processing element
Link the two above programs (plugs in PE)

iv) Execute the virtuwal machine in (iii), the results

will be placed in the "DATAOUT" file.

193

RISAL
SOURCE FILES

INSTRUCTION
FILE

DATA
FILE

SELECTOR
FILE

COMPILER

RISAL

COMPILER

OBJECT FILES

INSTRUCT
FILE

DATAIN
FILE

SELECTOR
FILE

FIGURE 5.5: Soft-Systolic Simuldtion Architecture

VIRTUAL MACHINE

RESULT

DATAOUT

FILE

t6l

195

This is how the ISA.OCC virtual ISA can be used as a simulation
architecture to solve soft systolic algorithms, the process is quite

simple and requires only the RISAL .source files.

SAMPLE PROGRAMS

To examine the performance of the solution architecture, we
will illustrate first the use of each operation code mentioned
previously in the instruction file,

1. NULL operation code
e.g. null ,0,0;
means that there is no operation, even if there is a selector
high signal.
2. DATA operation code
e.g. data n,3,0;

T operand 2

_operand 1

port (north)

meaning read the north data port and move the value into the

communication register C, for. the PE defined previocusly.

data n,3,0; data n,3,0; data n,3,0; data n,3,0:

this would issue the same instruction for 4 cells of the 4*4 grid

and is equivalent to the replicated form:

rep(4) data n,3,0:

Example 1

To write a RISAL program to read the data 10,20,30,40 from the |
north data port and move the value into the communication register

(C) for the 4 cells in the first row of the 4*4 grid, and let the data

move across the grid row by row

p(4,7)

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) data n,3,0:
rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0

end
this is equivalent to:

p{4,7)

repl (3) [rep(4) null ,0,0]:
rep(4} data n,3,0:
repl (3) [rep{4) null ,0,0]
end

s(4,7)
1,rep(3),0:
rep{2)1l,rep(2)0:
rep(3)1,0:
rep(4) 1:
O,rep(3)1:
rep(2)0,rep{2)1l:
rep(3)o,1l

end

dai4,7)

repl(3) [rep{(4)none]:

n 10.0, 20.0, 30.0, 40.0;
none; nNone; none:
repl (3) [rep(4) none]

end

SELECTORS

INSTRUCTIONS
null | null | null |[null
null | null | null |null
null | null | null |null
datan] datan| datan|datan
null | null | null |null
null { null | null |null
null | null | null [null
+

O 0 0 1 1 1 1
o] 0 1 1 1 1 0O
o 1 1 1 1 0 0]
1 1 1 1 o o o

4*4 1SA grid

196

-Example 2

2%2 matrix'tran5pose (see the definitions in Section 6.1}.

Transpose the following matrix,

8 5 8
-
6 2 5
'
SELECTORS -

p(4,13)

{load matrix}

data n,3,0; rep(3) null n,0,0:

rep(2) data n,3,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null ,0,0:
{Transpose}

data e,4,0; data w,6,0; rep(2) null ,0,0:

197

null null
null null
null null
null null
null null
datas datas }READOUT
—1
datae dataw
1
) datas null - SPOSE
4
datan null
>
datae dataw
null datan LOAD THE
datan datan MATRIX
} INTO THE
datan null ISA GRID

4*4 ISA grid

198

data n,3,0; rep(3) null ,0,0:

data s,5,0; rep(3) null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:
{readout}

rep(2) data s,5,0; rep(2) null ,0,6:
repl(5) [rep(4) null ,0,0]

end

a(4,13)

n 6.0, 0.0, 0.0, 0.0; none; none; none:
n 8.0, 2.0, 0.0, 0.0; none; none; none:
n 0.0, 5.0, 0.0, 0.0; none; none; none:
repl(10) [rep(4) none]

end

s(4,13)

l, rep(3)0:
rep(2)1l, rep(2)0:
1,rep(3)0:
1,rep{(3)0:
rep(4)0:

rep(2) 1l,rep(2)0:
"1, rep(3)0:
rep(4)0:
rep(2)1l,rep(2)0:
repl(3) [1,rep(3)0]:
rep(4)0

end

3. COPY operation code
e.g. copy ,0,0;
means copying the value from the result register (R) after :the
computation has been made to the communication register (C).
When the store is in the communication register, this means that
the value is ready to be read by the neighbouring cell.

4. MIN operation code
e.g. min e,4,1;
The minimum operation code above means read data from the east

port data and compare it with the wvalue in the register east data

199

addressed by operand 1 and put the minimum value in the
communication register (C) addressed by operand 2.
5. MAX operation code
e.g.max w,6,1;
The maximum operation code above means read data from the west
port data and compare it with the value in the rggister west data
addressed by operand 1, and put the maximum value in the
communication register (C) addressed by operand 2.
The operation codes minimum and maximum could form the basis for
a comparison based cell in their own right, possibly augmented with
EQ (equals) and so provide a simpler PE for sorting, and searching ISa
algorithms.
Example 3: Sorting a list of 4 numbers using 4*4 ISA grid

p{4,13)

repl{3) [rep(4) null n,0,0]:

rep(4) data n,3,0:

min e,4,l; max w,6,1; min e,4,1; max w,6,l:
rep(4) copy ,0,0:

null ,0,0; min e,4,1; max w,6,l; null ,0,0:
null ,0,0;rep{2) copy ,0,0; null ,0,0:

min e,4,1; max w,6,1l; min e,4,1; max w,6,1:
rep(4) copy ,0,0:

null ,0,0; min e,4,l; max w,6,1; null ,0,0:
null ,0,0; rep{(2) copy ,0,0; null ,0,0:
rep(4) null ,0,0

end

s5(4,13)
rep(1l3) [L,rep(3)0]
end

da(4,13)

rep(3) [rep(4) none]:

n 4.0,3.0,2.0,1.0; none; none; nine:
repl (9) [rep(4} none]

end

200

1 null 2 null 3 null 4 null
null copy copy null
—1 3 2
1 nall mine maxw 4 null
copy copy copy copy
LT 1 4 &2 2
mine maxw mine maxw
INSTRUCTIONS null copy copy null
' ——>]
3 nulil mine maxw 2 null
CopY copy copy copy
4 —> i — 1
mine maxw mine maxw
da 4 LQAD
datan datan tan atan NUMBERS
null null null null
null null null null
null null null null
SELECTORS
1|11 1i1(1(|1]1
0|0 OO0 |010]0]010C
Ol ol O|lOo|O| Q] OlO| O
O|Oo{Oo |OIC|C|0j0O; O

4*4 ISA grid

6.

201

MOV operation code

e.g. mov ,0,7;

The mov operation code above means move the data in the result
register addressed by operand 1 and put it in the auxiliary memory
of the PE which is addressed by operand 2.

We can use the mov cperation code to move the data from any
register or auxiliary memory to any register in the memory
organization of the PE defined previously by giving the right

addresses in operand 1 and operand 2. -

Example 4: Data array movement

for

To write a RISAL program to read data from the north port data

the first row in the 4*4 ISA grid and move the data to the

auxiliary memory of these cells, and re-read them again to the north.

P(4r

9}

repl(3) [rep(4) null n,0,0]:
rep{4) data n,3,0:

rep(4) mov ,1,7:

rep{4} mov ,7,0:

rep{(4) copy ,0,0:

rep(4) data s,5,0:

rep(4) null ,0,0

end

s(4,

9)

repl(9) [1,rep(3) 0]

end

~al4,

2)

repl{3) [rep(4) ncne]l:

n 2.

0,4.0,6.0,8.0; none; none; none:

repl(5) [rep(4) none]

end

7.

ADD operation code
e.g. add ,7,0;

The operation code add above means add the value in the auxiliary

202

memory addressed by operand 1 to the value in the result register

addressed by operand 2, and the result will be held in the result

register (R).

We can use this operation code to add the value in any two

registers in the memory organization of the PE, and the result

will be held in the result register (R).

Example 5: Summation calculation

To write a RISAL program to add data from the north port data

and the west port data and add them with another set of data from the

same ports for the first cell of the first row of 4*4 ISA grid.

p(4,6)

add nw ,3,6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:

add n w ,3,6; rep{3) null ,0,0:
add ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep{4) null ,0,0

end

s(4,6)
repl (6) [1,rep(3)0]
end

d(4,6)

n 10.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:

n 20.0,0.0,0.0,0.0; none; none; w 7.0,0.0,0.0,0.0:

repl(3) [rep(4) none]
end

The result is 41 which is placed in dataocut file after

from the result register.

8. SUB operation code

e.g. sub ,7,0;

reading it

The operation code sub above means subtract the value in the

203

result register addressed by coperand 2 from the value in the
auxiliary memory addressed by operand 1, and keep the result in
the result register. We can use this operation code to subtract
the .value in any register in the memory organization from any
value in another register and the result of the subtraction will

be held in the result register (R).

Example 6:

To write a RISAL program to add data from the north port data
and the west port data and subtract them from the addition of another
set of data which reads from the same ports of the first cell of the

first row of the 4*4 1SA grid.

p(4,6))
add n w ,3,6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:
add nw ,3,6; rep(3) null ,0,0:
sub ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0

end

s(4,6}
repl(6) [1, rep(3) ©]
end

d{4,6)

n 10,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:

n 20.0,0.0,0.0,0.0; none; none: w 7.0,0.0,0.0,0.0:
repl(3) [rep(4) none}

end

The result is 13 which is placed in dataout file after reading it

from the result register.

9. MULT operation code
e.g. mult ,0,7;

The operation code (mult) above means multiply the wvalue in the

204

result register addressed by operand 1, by the value in the
auxiliary memory of the PE addressed by operand 2, and the

result will be held in the result register.

We can use the operation code (mult) to multiply the wvalue in any
register in the memory organization by the value in another
register and the result will be held in the result register (R).
The mult operation is used also to read the data from two
different ports, multiply them and held the result in the result

register (R).

Example 7: Multiplication of data
To write a RISAL program to read two sets of data from the north

port data and multiply them, and read the result

p{4,9)

relp{(3) ([(rep{4) null n,0,0]:
rep{4) data n,3,0:

rep(4) mov ,0,7:

rep(4) data n,3,0:

rep(4) mult ,0,7:

rep(4) copy ,0,0:

rep(4) null ,0,0

end

s(4,9)
repl(9) [1,rep(3)0]
end

d(4,9)

repl{3) [rep(4) none]:

n 2.0,4.0,6.0,8.0; none; none; none:
rep(4} none:

n 3.0,5.0,7.0,9.0; none; none; none:
repl{3) [rep(4) nonej

end

The result is 6.0, 20.0, 42.0, 72.0 which is placed in the datacut

file after reading all these values from the result register.

205

Example 8: Inner product calculation
To write a RISAL program to read from the north port data and
the west port data for the first cell in the first row of 4*4 ISA
grid, multiply them and store the result in the auxiliary memory,
repeat this process and add the results of the multiplication and read
the result.
p(4,6)
multn w ,3,6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:
multn w ,3,6; rep(3) null ,0,0:
add ,0,7; rep{(3) null ,0,0:
copy fO!OF reP(3) null ,0,0:
rep{4) null ,0,0
end
s(4,6)

repl(6) [1l,rep(3)0]
end

da(4,6)

n 2.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:

n 3.0,0.0,0.0,0.0; none; none; w 5.0,0.0,0.0,0.0:
repl (3) [rep(4)} nonel

end

The result is 23 which is placed in the datacut file.

10. DIV operation code
e.g. div ,7,3;
The operation code div above means .divide the value in the
auxiliary memory of the PE addressed by operand 1 by the value
.in the register north data addressed by operand 2, and the result
to be held in the result register (R). Also we can use the
operation code (div), to divide the value of any register in the
memoyy organization of the PE by the value in another register,

and the result will be held in the result register (R).

206

Example 9: Division of two numbers

To write a RISAL program to add two numbers read from the north
and west port data, store the result into the auxiliary memory and
add another two numbers which is read from the same ports and divide

them by the data stored in the memory and read the result.

p{4,6)

add n w ,3,6; rep(3) null ,0,0:
mov ,0,7; rep{(3) null ,0,0:

add n w ,3,6; rep(3) null ,0,0:
div ,0,7; rep(3) null ,0,0:
copy ,0,0; rep{(3) null ,0,0:
rep{4) null ,0,0

end

s(4,6)
repl{6) [1l,rep(3)0]
end

di4,6))

n 5.0,0.0,0.0,0.0; none; none; w 2.0,0.0,0.0,0.0:
rep{4) none:

n 10.0,0.0,0.0,0.0; none; none; w 11.0,0.0,0.0,0.0:
repl(3) [rep(4) nonel

end

The result is 3 which is placed in-the dataout file.

CHAPTER b

THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS)

FOR VARIOUS ALGORITHMS

207

6.1 BASIC MATHEMATICS

In this section scme basic mathematical definitions and concepts
are given. The material presented is necessary for the description of
algorithms used later in this chapter. First qf all, vectors and
matrices are defined together with some relevant properties and
relations. These are then used to discuss methods for solving linear
systems, matrix-vector multiplication, matrix-matrix multiplication,
matrix transpose and LU decomposition. The generalized matrix
inversion is defined next, and then the Soft-Systolic Simulation

(5585) is used to solve all these problems.

Matrices and Vectors:

Matrices are important to numerical algorithms because they
provide a concise method for specifying manipulating large numbers of
linear equations. A system of m linear equations in n unknown has

the general form,

(6.1.1)

.................................

The coefficients of the (6.1.1) above form a matrix, which we denote

A or (a /) of order mwm, where (i=l,...,m; j=1,...,n), and b (i=1,...,m)
are given numbers. If A is an n*n matrix, that means A is a square
matrix of order n. If the mpatrix has only one column or only one row,

the matrix is called column vector, or row vector,

208

1 1
b2 x2 .
b X
b = 3 x = 3 (6.1.2)
b b4
m n

We say that b is an m-vector, and x is an n-vector. If A=(aij) and
B=(bij) are both matrices, then we say that A egquals B, or A=B,
provided A and B have the same order and aij=bij' all i and j. In the
terminology so far introduced, (6.1.l1) states that the matrix A combined
in a certain way with the one-column matrix, or vector, x should equal
the one-column matrix, or vector, b.

The process of combining matrices involved here is called matrix
multiplication and is defined in general, as follows:

Let A=(aij) be an mxn matrix, B=(bij) an nxp matrix; then matrix
C=(cij) is the (matrix) product of A with B (in that order), or C=AR,

provided C is of order mxp and,

n
= b i = . = . . -
S 45 kél LN for i=1,...,m; j=l,...,p {6.1.3)

In other words, the (i,3) entry of the product C=AB of A with B is
calculated by taking the n entries of row i of A and the n entries of
column j of B, multiplying corresponding entries, and summing the
resulting n products.

With this definition of matrix product and definitions in (6.1.1)
and (6.1.2), we can write our system of equations (6.l1.1l) simply as:

Ax = b . (6.1.4)

Matrix multiplication does not behave like multiplication of numbers,

for example, it is possible to form the product of the matrix A with

209

the matrix B only when the number of columns of A equals the number

of rows of B. Hence, even when the product AB is defined, the product
of B with A need not be defined. Further, even when both AE and BA
are defined, they need not be equal.

If A=(aij)‘is a square matrix of order n, then we call its entries
all,azz,...,ann the ;iagonal entries of A, and call all other entries
off-diagonal. All entries aij of A with i<j are called superdiagonal,
all entries aij with i>j are called subdiagonal. If all off-diagonal
entries of the square matrix A are zero, we call A a diagonal matrix.
If all subdiagonal entries of the square matrix A are zero, we call A
an upper (or right) triangular matrix, while if all superdiagonal
entries of A are zero, then A is called lower (or left) triangular.
Clearly, a matrix is diagonal if and only if it is both upper and lower
-triangular.

If a diagonal matrix of order n has all its diagonal entries eqgual
to 1, then we call it the Identity Matrix of order_n and denote it by I
or In if the order is important. The name identity matrix was chosen

for this matrix because:

(=
e
1l

A for all nxp matrices A

B for all mxn matrices B

es]
-
1}

i.e., the matrix I acts just like the number 1 in ordinary multiplication.

Inversion and Generalized. Inversion of Matrices:

Division of matrices is, in general, not defined. However, for
square matrices, we define a related concept, matrix inversion. We say
that the square matrix A of order n is invertible provided there is a

square matrix B of order n such that:

210

AB = I = BA {(6.1.5)

1 1
The matrix A = [- _x , for instance, is invertible since,

R

J o ooy o Yl

On the other hand, the matrix A

1 2 ‘
[; ;} is not invertible. For if

B were a matrix such that BA=I, then it would follow that:

- =
F’11+2b12 2,) +4b, | Lo
t = BA =
+ +
b, +2b,, 2b, b, LO 1

Heﬁce we should have bll+2b12=l and, at the same time, 2(bll+2b12)=

2bll+4b12=0, which is impossible. We note that {6.1.5) can hold for
at most one matrix B. For if,

AB = I, and CA =1 ,
where B and C are square matrices of the same order as A, then,

C =CI =C(AB) = (CA)B = IB = B
showing that B and C must then be equal. Hence, if A is invertible,
then there exists exactly one matrix satisfying (6.1.5). This matrix
is called the inverse of A an&.is‘denoted by A_l.

It follows at once from (6.1.5) that if A is invertible, then so

is & 7, and its inverse is A; that is

-1 -1

(A) = A . {6.1.

Further, if both A and B are invertible sguare matrices of the same
order, then their product is invertible and

-1 -1 -1
{AB) =B A

. (6.1.

6)

7)

211

It is well known that every non-singular real or complex (square)
matrix A has a unigque inverse which has the property that,

-1 -1
AR =A A=1I. (6.1.8)

This guarantees that the system of linear equations Ax=b has the unique

solution,

X =A b. {(6.1.9)
A matrix has an inverse only if it is square, and a square matrix A
has an inverse if and only if it is nonsingular, that is, if and only
if,
(i) det AFO, or
(ii) the columns of A are linearly independent, or
(iii) the rows of A are linearly independent,
where each of these three properties implies the other two.
If a matrix, rectangular or square is singular, it does not have
an inverse. However it does have a generalized inverse, called a g-
inverse, which has the following properties:
(i) a g-inverse exists for a class of matrices larger than
the class of nonsingular matrices,
(ii) a g-inverse has some of the properties of the ordinary
matrix inverse, and
(iii) a g-inverse reduces to the ordinary matrix inverse, if A
is square and nonsingular.
If A is an mxn matrix and G is a g-inverse of A, then G is an nxm

matrix defined as follows:

DEFINITION: Consider the matrix equations:

(a) AGA = A

{b} GAG =G

H
(c) (aG)

AG

{a) (GA)H Ga ,

1l

where the subscript H denctes the complex conjugate-transpose. The

matrix G is called:

(1)

(ii)

a g-inverse of A, denoted by A_l, if (a) holds,

and (b) hold,

a reflexive g-inverse of A, denoted by A;, if both (a}

212

(1ii) a least-squares g-inverse of A, denoted by A_, if both (a)

L
and (¢) hold,
{(iv) a minimum-norm g-inverse of A, dencted by A;, if both
{a) and (d) hold, and
(v) the Moore-Penrose g-inverse of A, denoted by A+, if (a),

(b} and (4} all hold.

Matrix Transpose:

There is an operation on matrices which has no parallel in

ordinary arithmetic, the formation of the transposed matrix.

and B=(bij) are matrices, we say that B is the transpose of A, or

T
B=A , provided B has as many rows as A has columns and
b,, =a,, all i and j .
ij ji
T
In other words, one forms the transpose A of A by
"reflecting A across the diagonal™

If A =23

then A& is said to be symmetric.

One easily verifies the following rules regarding transposition;:

If a=(a,.) '
ij

213

. . . . T T
(i} If A and B are matrices such that AB is defined, then B A

. . T

is defined and (AB) =BTAT.
. . T.T

(ii) For any matrix A, (A") =A.

. T -1, -
(iii) If the matrix A is invertible, then so is A, and (AT) = A l)

Solution of Linear System:

Consider the linear system,
Ax = b ,

where A is a sgquare (n*n) matrix, b is a given right hand side vector,
and x is an unknown vector. It will be assumed that A is non—sipgular,
hence A—l exists and there is a unique solution x. The choice of
solution method depends on a number of factors including the structure
and size of the matrix A, the number of arithmetic operations required,
and the control of the rounding error growth (or stability). There are
two general classes of methods, direct and iterative methods, As
regards the matrix size and structure, direct methods, are used mainly
when the matrix A is small, dense or banded. Direct methods cannot,
in general, be used for large sparse matrices because of the problem
of fill-ins which occurs during the elimination process. For large
sparse matrices we normally use the iterative methods since these will
not alter the strmcture of the original matrix and therefore preserve
sparsity. However, there are special cases where pivoting techniques
can alleviate the fill-in problem of direct methods.

Herein a briéf introduction on the direct method is presented
which is used later on by our simulation system (8SSS) and to calculate

the generalized inverse of a matrix.

T

214

The direct method concerned factoring a matrix A in terms of a

lower triangular matrix L and an upper triangular matrix U.

In Burden,

Faires and Reynolds [1981] it was shown that this factorization

existed whenever the linear system Ax=b could be solved uniquely by

Gaussian elimination (this method is generally used to solve a system

of linear equations) without row or column interchanges.

The system

-1
LUx=Ax=b could be transformed into the system Ux=L b and, since U is

upper triangular, backward substitution could be applied.

Al though

the specific form of L and U can be obtained from the Gaussian

elimination process,

it is desirable to find a more direct method for

their determination, so that, if many systems are to be solved using

A, only a forward and backward substitution need to be performed. To

illustrate a procedure for the calculation of the entires of these

matrices, we consider that a general matrix (nxn) A can be factored in

the form, _
g1 %12
31 %22
]
A = ' |
\ |
|
anl an2
where,
[Eil
221 222
) S
L = | .
[~
|
i
_%nl"‘ 'v'n,n-l

and U

LU
ulZ —————— u1n
Y22 Yon

For a (4x4}), the 16 known entries can be used to partially determine

215

the ten unknown entries in L and the same number in U. If a procedure

leading to a unique solution is desired, however, four additional
The method to be

conditions on the entries of L and U are needed.

used in this example arbitrarily requires that L 1;

11795733704 "

this is known as Doolittle's method.

a1 210 %3 2] [E0 0 o] fupy o, g u

31 %22 %23 %4 fal ©0 © O uy, Uyy Uyl
5 331 %33 233 %34 231 #3210 O 0 M3y Uy

Li41 242 %43 %44 P41 a2 %43l L_O © 0 Uy

To calculate

all the unknown entries in L and U in the case of a matrix

A (nxn), we can use the following algorithm:

The multiplication of L by U,

Step 1: Select & and Pll satisfying Qllullzall'
Step 2: Generate the entries in the first column of L by the condition:
2., = AL for each §=2,3,...,n.
J 11
Step 3: Generate the entries in the first row of U by the condition:
a,
ul. = E_l , for each j=2,3,...,n.
SRS B
Step 4: Set i=2.
: 1 d i ing,
Step 5 Select gii and u, satisfying
i-1
u. =a.. - y2ou . .
ii ii ii k=1 ik ki
Step 6: If i<n, goto step 7.
If i=n, goto step 10O.
. , .th -
Step 7: Generate the entries in the i column of L by the condition:
1 i-1
L., =— [a., - z £..u .1 , for each §=i+l,i+2,...,n.
ji uii ji k=1 Ik ki

216

Step 8: Generate the entries in the ith row of U by the condition,

i-1

1
u..=——[a..-22.u.
ij Eii ij k=1 ik k3

1 , for j=i+l,i+2,...,n,
Step 9: Add 1 to i and goto step 5.

Step 10: The procedure is complete when all entries of L and U have

been determined.

A difficulty which can arise when using the algorithm above to
obtain the factorization of the coefficient matrix of a linear system
of equations is caused by the fact that no pivoting is used to reduce
the effect of round-off error. The round-cff error can be quite
significant when finite digit arithmetic is used and any efficient
- algorithm must take this effect into consideration. The material of
this section is obtained from ([Burden, Faires and Reynolds, 1981],

[Deboor, 1972].

217

6.2 MATRIX APPLICATIONS USING SSSS

In the following paragraphs of this section the solution of some
matrix applications by using the soft-systolic simulation system is

presented.

6.2.1 4*4 Matrix Transpose

This is a slightly more complex transposition problem incorporating

the use of the 2x2 problem which was defined earlier. Consider the

matrix,
311 %12 %13 %4
851 a2 %3 %y
A = a a a a
31 32 33 34
41 %42 Pz %44

Problem: Trace a RISAL program to ensure that:

R T T}

812 %oz %3 %y
AT =

813 %23 %33 %3

814 %22 %31 %44

To write a RISAL program to transpose the matrix above we implement the
following steps:
REMARK: null=null ,0,0, datan=data n, 3,0, datas=data s,5,0, dataw=daﬁa w,
6,0, and datae;data e, 4,0.
Step 1: By reading the matrix elements from the north intc the ISA
grid, each matrix elemeﬁt will be stored in a processor, as

shown in Figure 6.1.

314
datan
a
13 | %24
datan |datan
a
12 | %23 | %34
datan [datan |[datan
INSTRUCTIONS
211 | %22 | %33 | Paa
datan |datan {datan [datan
%o1 | %32 | %43
datan [datan |datan
831 | a2
datan |datan
ag1
datan
o] O O o] 1 1 1 1
ol © o | o 1 1 1 o)
S
of| o o] o 1 1 o) 0
0| © o0} 0 1 ol o 0
SELECTOR : 4*4 ISA GRID

FIGURE 6.1: Reading the 4x4 Matrix Elements from the North

into the 4*4 ISA Grid.

218

Step 2: Start to transpose the matrix elements as shown in Figure 6.2.

219

null

datae

null

datae

dataw

datae

dataw

datae

null

datae

dataw!

null

datae

dataw

null

null

null

datas

null

null

datas

datan

null

null

datan|

datas

null

null

datas

datae

dataw

INSTRUCTION
datan

datae

dataw

null

datael

dataw

datae]

null

datae

dataw]

null

datae

dataw

datae

dataw

null

null

datas

null

dataeg

dataw|

datan

null

datas

null

datae

dataw

datan|

null

null

null

datae

nuall

null

null

null

null

SELECTOR

1{1| 1f1f{rjr |{oJ1|oOf1|l|l |1]1|1l|o{l |1 ar,

%3

%14

11| ajxfaf1|zf1]|2frirfr jojo{1|olo |o a
N !

423

%24

ofolof1|1|1] 1o} ofolofr {1{o]1f1fo |0 a,,

833

A4

ofolollloll| 9ol do|ojlojljo|OjoOfo|O a4l

242

%43

344

FIGURE 6.2: Transpose RISAL Program for 4*4 Matrix

4*4 ISA GRID

Step 3: Read the matrix elements from the south to the north of the

ISA grid as shown in Figure 6.3.

null | null nulli datas
null | null jdatas)datas
null | datas|datas| datas
INTRODUCTIONS datas| datas|datas| datas
datas| datas|datasl datas
datas| datas|datas| null
datas datas/null | null
datai null
SELECTOR
e} 0] 1 1 1 o] o a1l a21 a31 a4l
o o) 0 O 1 1 a] 0 a12 a22 a32 a42
3
o] o] O O o] 1 0 e} al3 a23 a33 a43
Q 8] 0 0 o] (8] o] 0 a14 a24 a34 a44

4*4 ISA GRID

FIGURE 6.3: Reading the Matrix Elements 4x4 from the South to
the North of the 4*4 Isa Grid.

220

EXAMPLE: Given the matrix,
— — T —_ —
1 2 3 4 1 5 9 13!
5 6 7 8 2 & 10 14
9 10 11 12 3 7 11 15
13 14 15 1e 4 8 12 16
L] - J
6.2.2 4x4 LU Decomposition
Given a 4*4 matrix,
a1 %12 %14
21 %22 %24
A =
331 %3 %34
221 %4z 43 %4

221

To factorize this matrix into a lower triangular matrix L and an

upper triangular matrix U as defined previously in Section 6.1, we obtain,

L Y11 M2 Y3 ay,l
2 1 C) u u
L = 21 Y22 23 Y4
1
Y 0 Uyy Yy
Lay Yo Ry 1 Y44
L _ L -

To determine the unknown entries of L. and U we obtain by comparing

terms:

U entries

Y13 % %1
Y12 T %12
Y13 T %13
Y14 T %14

u

22

Y23

24

33

Y34

Va4

= a -2

= a, -(2

= a, -1

2

8227%21%12

237%21%13

221"14

3~(£

824"
31%13%32%03]
2

%3

)

+
34~ Y¥*31%147%32% 04

aa” Pg1%14% %4214 043134

L entries

La1

31

41

32

42

43

21

11
31

11
41

Y11

2307 %31%12

Y22

242 %1%
Y22
37 (g1 3" %40 03

U33

a4)

To write a RISAL program to determine the matrix entries of L and U

above we have to implement the following steps:

Step 1:

Step 2:

Read the matrix elements A into the 4x4 ISA grid. See 6.2.1,
Step 1.

Start to factorize the matrix A inte L and U by tracing the
RISAL program shown in Figure 6.4. As a result, the elements

of L will be held in the processing elements le.P3l,P32.P41,

P42,P43 and the elements of U will be held in the processing

and P .

elements Pll’Pl2'P13'Pl4'P22'P23'P24'P33'P34 44

222

223

Step 3: Read the L and U elements from the south to the north of the

ISA grid. See 6.2.1, step 3.

EXAMPLE:

Given a 4*4 matrix

il

E 3 3
4 1 2 3

2 2 5 1

3 4 1 2

By tracing the matrix through the RISAL program'in Figure 6.4, we

obtain:
1 '} 2 3 3 2]
O _ - _
Lo l2 1 . 5 -4 1
1 0.2 1 2.8 -0.8
O
1.5 0.1 -1.107143 1 -1.785714
L a L N

224

REMARK : null {null |null |copy
null = null ,0,0 null [null [null |sub
7,6
datan = data n,3,0 null |null jnull |mult
3,6
datas = data s,3,0 null Jnull |null ldataw
dataw = data w,6,0 null |null |(copy |null
11 1 dij dat
datae = data e,4,0 the null ;v3 an
copy = copy ,0,0 null [null |datan|mov
1,7,
null |null |mov copy
, 1,7
null (null |copy |sub
!710
INSTRUCTIONS

null |null |sub muzlt
, 7,0 |,3,6

null |null |mult |dataw
+ 3,6

null |null jdataw| null

null |[copy |null |datan

FIGURE 6.4: 4%X4 LU Decomposition RISAL null ldiv |datan|mov
Program. » 3,7 1,7

null |datan|mov copy
(1,7

null |mov |copy | sub
$1,7 £ 7,0

null {copy | sub mult
+7,01.,3,6

null [sub |[mult | dataw
+7:01,3,6

null jmult | dataw] null
3,6

null |[datawi null | datan

@ 3 %) copy | null [datan| mov
= = [5] 1.7
=] [= oy
B B [
&= [& div datan| mov
g 5 3= ,3,7 1,7
= = [
W e & datan| mov
8 8 @ mov
B oy o, 1,7
g8 & ,
+ + +
a
o oo (o |° 21 1?12 [%13 | %14
o] o 1 1 1 0 azl :::122 a23 324
0 1 11 1 o] 0 a3l a32 ::133 .334
11 1 o |o o a a a a
41 a2 43 44

SELECTOR 4%4 ISA GRID

225

6.2.3 Matrix-Vector Multiplication

Consider the matrix multiplication by vector, i.e. y=Ax, as
defined in Section 6.1, where A is a (nxn) matrix and x,y are (nxl)
vectors. Each component of y is produced by adding the multiplication

of a row of A by x. More formally, the recurrence relatjion can take

the form,
U
Yik+l) = Yik) R
;= yin+l), i,k=1,2,...,n.

For n=4, Figures ©€.5 and 6.6 show the implementation of this
algorithm by using the ISA grid. It is based on the engagement of the
processing elements in the first row of the ISA grid. Each processing
element in this row will implement just multiply and addition
instructions and then move the result of the addition into a storage
register in the auxiliary memory of the processing element. The data
sequences from the north consist of the rows of the matrix A, while
the data from the west are the components of the vector x. Finally,
each element of the resulting vector is accumulated into P

11’P12’P13'

Pl4 simul taneously.

226

44

34 43

24 %33 %42

14 23 32 41

‘
a3 %3 3

N

[]
a a '
12 %
a:1l +
}
X ¥z Xy X7 Py | o] P3| Fig

4x4 ISA GRID

FIGURE 6.5: Data Moving From the North and the West into
the ISA Grid.

In Figure 6.6, each Y instruction represents the following instructicns:

mult n w,3,6;
add ,7.,0:
mov ,0,7;

mov ,6,1;

and datas means data s,5,0;

INSTRUCTIONS

SELECTOR
REPEATED 31 TIMES

datas
copy
,0,0
datas | mov
I 7 IO
copy
,0,0
Y
datas | mov
, 7,0
copy
.0,0
Y Y
datas | mov
+ 7,0
copy
;0,0
Y Y b's
mov
! 7 I'O
Y Y Y Y
Y Y Y
Y Y
Y
P
Pr1 | Fiz2 | Fui3 14

4x4 ISA GRID

FIGURE 6.6: RISAL Program for the 4*4 Matrix Multiplication by Vector

227

228

EXAMPLE:
Given y = Ax, ‘

where the matrix,

2.8 3 2 5.1

3.6 4.8 6 8

4.2 1 o 9

and the vector

[#9)

6.6

By using the RISAL program mentioned previously we obtain the vector,
. 58.540001 |
104 .759995

Y = 68.659996

| 71.219994 |

6.2.4 Matrix-Matrix Multiplication

Ancther problem tec be discussed is the multiplication of two (nxn)
matrices, C=AB, as defined in Section 6.1, again each component of
matrix C is produced by adding the multiplication of each row of matrix

A and each column of matrix B. More formally, the recurrence,

c?%) =0
ij
(k+1) (k)
= b
i3 iy 7 kg
e =MDy 1,2, .

ij ij

229

The formula can be seen as a set of n matrix by vector multiplications
as defined in the previous paragraph. To solve this problem for n=4
and by using the ISA grid, it is again seen as based on the engagement
of the processing elements in the first row of the 1IS2 grid. The data
sequences from the north represents.the matrix B elements, while the
data from the west represents the matrix A elements. By repeating the
same process as in the previous paragraph, the processing element
_(Pll'P12'P13'Pl4) will implement the multiply and addition instructions
and then move the result of the addition into a storage register in the
auxiliary memory of the processing element for every column of the
matrix C. Finally, the elements of the resulting C are accumulated as

follows:

‘The first column in P registers 7,8,9 and 10

11
11} Second n 11 P m n n 11} [1} H
12
third P13
fourth P14
S0, given C=A*B, we have,
41 %12 %13 %14 b1 Pyp By By
851 %2 %23 %4 Po1 Py Pay Poy
C = b4
833 %33 %33 Ty Py B3y Byy Py
i41 %12 %3 %44 Pg1 Pyy Py Pyy

{ELEMENTS OF MATRIX B)

{ELEMENTS OF MATRIX A)
—_——

%31 %24 %23 %22 %21 %14 %13 %12 241

41

31

21

11

31

21

11

41

31

21

11

41

31

21

11

42

32

22

12

42

22

12

42

32

22

12

42

32

22

12

43

33

23

13

43

33

13

43

33

23

13

43

33

23

13

44

34

24

14

44

34

24

44

34

24

14

44

34

24

14

11

12

13

14

ISA GRID

230

FIGURE 6.7: Data of Matrices A and B Moving from the North and the West

into the ISA Grid.

FIGURE 6.8:

C
C Y4
c v, |,
C Y4 Y4 Y4
Y
Y4 4 | Y | Y
Yo | Yo | Vs | Y3
Yy | Y 0 Y
Y4 Y3 Y3 Y3
I3 | ¥3 | Y | Y5
Y3 1% | Y5 Y
3 | Y3 [Y | Y,
3 Y | Y] Y,
Ty | Y9 | Yo | Y
Ll 2 |2 | 4
Y % |t n
LY | % | Y
Hh1h (4| 4n
Y ’
A LS T S T A
i
! v
Yl Yl i
Y : ¥
\ 1 +
H
P P
SELECTOR b Pii| Fiz | Pi3| Paa
REPEATED 68 TIMES
o >
ISA GRID
O
Q

RISAL Program for 4x4 Matrix Multiplication

231

232

Figure 6.7 shows the elements of matrix B moving from the north, and
the elements of matrix A moving from the west into the ISA grid.
Figure 6.8 shows the RISAL program for the matrix-matrix

multiplication process. The symbols Y_,Y

1 2'Y

3,§4 and C represents the
following instruction,

([mult n w,3,6; |
add ,7,0;

mov ,0,7:;

L mov ,6,1; J

[mult n w,3,6; 1
add ,8,0;
mov ,0,8;

| mov ,6.1;]

malt n w,3,6;
add ,9,0;
mov ,0,9;

mov ,6,1; J

mult n w,3,6;
add ,10,0;

mov ,0,10;

\ mov 0.1

and

" EXAMPLE:

mov ,7,0;
copy ,90,0;
data s,5,0;
mov ,8,0;
copy ,0,0;
data s,5,0;
mov ,9,0;
copy ,Q,0;
| data s,5,0;
mov ,10,0;

copy ,0,0;

data s,5,0;

Obtain C=AB, where,

and

By using the multiplication process shown in Figures 6.7 and 6.8 we

obtain,

2.8 3
3.6 4.8
4 3
4.2 1
2.1 0
3 1
5 1.2
6.6 2.2

o

3.3

3.6

233

T s8. 540001
104.759995
68.659996

| 71.219994

16.620001
29.600000
19.060001

20.800001

25.439999

44.279999

28. 600000

14.659999

48.299999]
84.360001

54.720001

46,059998|

234

235

6.3 THE SOLUTION OF LINEAR SYSTEMS USING SSSS

Given the linear system,

Ax = b , (6.3.1)
as defined earlier in section 6.1, where A is a given square matrix of
order n, b a given n-vector. We wish to solve the linear system above
for the unknown n-vector x.

To obtain the vector x we have,
x=A b . (6.3.2)
However A-l is difficult to obtain, so we need to factorize the matrix
A into LU factors because L and U are easily inverted systems. So we

have,
LUx =D .

Let Ux =y .
s0 the system breaks down into 2 triangular systems,

Ly = b , - (6.3.3)
and Ux =y (6.3.4)

For n=4, the matrix,

31 %1y A3 Ay
1 %22 %23 %y
A = a. a a a
31 32 33 34
%1 %42 %u3 %y
1 o 1 P w2 ws ol
T Y22 Y23 Tag
I %3 1 o Y33 Y3g
E‘zn. 2ao 43 1_ i u4i

To obtain vy from (6.3.3) we have,

1 n '}i’ by
1 1 O . Y2l _ (P2
231 %3 1 ¥ Py
L?‘41 a2 Y43 1-_ E’ 4 f’4_

From (6.3.5) above, we obtain,

¥ =Py

¥, = PyinYy

Yy = By7hy ¥y tAa0Y,

Yy = BymRy Y0¥t yaY s

To obtain x from (6.3.4), we have,

Y11 Y12 Y13 Y14 % | 71

Y22 Y23 Y2 *2 2
* =
u u X v
4 3 3
o 3

u X vy

a4 4 4
_ o B Tl N N

From (6.3.6) above we obtain,

Lo la
4 u44
Y35y
x3 - u
. 33
Yy~ (uygXgtug %))
x2 = u
22
Yy~ (g p¥ 0y g%ty 4%,)
x-—..
1 u

11

To write a RISAL progfam to solve this prcoblem we implement the

following steps:

Step 1:

Read the matrix A into the ISA grid, and factorize it by

(6.3.5)

(6.3.6)

Step 2:

Step 3:

237

using the same concepts used in step 1l and step 2 in
paragraph 6.2.2. The elements of L and U will be held in
the ISA grid, each element in a processing element.

As shown in Figure 6.9.

- move the elements of L into register 7 of the processing

, and P _.

elements P21'P31'P32'P41'P42 43

- move the elements of U into register 8 of the processing

and P .

elements P, P 1Py 3rP) y1PoprPogePyyrPagsFay 44

- read one's (1) from the north into register 7 of the

and P, . .

processing elements Pll'P22'P33 44

As shown in Figure 6.10, by reading the value of the vector b

(b, :b_,b

1725/P5 and b4) respectively from the north into the columns

of the ISA grid, we obtain the values of yl,y Y. and y4.as

273

follows:

- in Pll we obtain the value of Yy (yl=b1).

- read the value of Yy from P throughout P.., P_. and P

31 41
and multiply Yl by the value in register 7 of these

11 21

processing elements, and move the result of the multiplication
into the communication registers, and read them to the west

neighbouring processing elements P and P (register 6).

22'F32 42

- i no operation.
in P12 P

- in P22, we obtain the value of y2 by the subtraction of

the value in register 6 from the value of b2 and move the
value of Y, into the communication register,

- read the value of Y, throughout the pfocessing elements
P32,P42 and maultiply YZ by the value in register 7 of these

processing elements, and add the result to the value in

\\8
~
N
Y14
N\
8
AN
~
Y24
~
8
~
N
Y3g
u‘\B
44"\
L M1 KN R b Ra3 | \
N N N \
7 " 7 . 7 N /\\

FIGURE 6.9: Storage of the Elements of L and U in Registers

7 and 8 of the ISA Grid

b
b 4
3 4
b
2
b
L
¥17°1
b, b, b,
| | L |
l !) J
¥y
.. *y ~——1> RG
21 Y1
= - = b
| y2 b2 R6I RG& y2 ?3 ?
1 ‘ ¥ J
¥y ¥y
o, *y. —» R6
31 ¥ . o
L., *Y,*R6 —by_=b_-R6 b,
I 1 | I
J l '
' Y, Y3
* —_—
L4,*Y, —*> R6 f43"Y4*RE *EG_R6=
,,*Y,*R6 ~R6 4~ 0Ty,

FIGURE 6.10:

Determination of the Values of y by Using the

ISA Grid

238

239

register 6. Move the result into the communication
registers and read them to the west neighbouring processing

elements P33 and P43.

- in Pl3 and P23 no operation.

- in P33,.we obtain the value of Yy by the subtraction of the

value in register 6 from the value of b., and move the

3

result (which is y3) into the communication register,

- read Yy into P and multiply Y3 by the value in register

43’

-7,-add the result toc the wvalue in register 6, and move the
result into the communication register, then read it to the

west neighbouring processing element P44.

- in Pl4’ P24 and P34 no cperation.

- in P44, we obtain the value of y4 by subtracting the wvalue

in register 6 from the value of b4.
Step 4: From Step 3 above we have obtained the values of yl,yz,y3 and

and P, .

. 3 1 ’ P
y, stored in the processing elements P, .P, /P, 44

To determine the values of Xy X, ¥y and x4, we implement the

procedure as shown in Figure 6.11.

- in P,,, we divide the value of Y, by the value in register

44
8 to obtain X,-
- read the value of X, to the north throughout the processing
’ r d 1ti i
elements P34 P24 an P14 and multiply x4 by the values in

register 8 of these processing elements, move the results
inte the communication registers, and finally read them to
the east neighbouring processing elements P33,P23 and P13

{register 4).

240

yl—R4
= R4e} x *u13+R4
Y11
- * + ' *

R4 — x2 ul2 §4 §46— x4 ul4 .
1‘2 0 3 I 4
| | [

R4 * +R4
’ u23 R4el—-x *
y2—R4 4 24
X = X X
2 U, A 3 1 4
I I
i} =y3-R4
3 u33
S *
R4+ x4 u34 .
? 4
|
Yy
x4= —_
Y44

FIGURE 6.11: Determination of the Values of x by Using

the ISA Grid

in P we subtract the value in register 4 from the value

33

of y3, and divide the result by the value in register 8 to

btai .
obtain x3

read the value of x3 to the north throughout the processing

element P,.,P ., and multiply the value of x_ by the value

23713 3

in register 8 of these processing elements; add the result
to the value in register 4, and move the result into the
communication registers. Finally, read them to the east

neighbouring P22 and P12 (register 4).

in P22, we subtract the value in register 4 from the value

of Yor and divide the result by the value in register 8 to

btai .
obtain %,

" Step 5: read the values of x7

241

read the value of X, to the north inte the processing

element Pl2 and multiply it by the value in register 8;

add the result to the value in register 4, and move the
result into the communication register. Finally, read it

to the east neighbouring P (register 4).

11

in Pll' we subtract the value in register 4 from the value

of Yqr and divide the result by the value in register 8 of

this processing element to cobtain the value of X,

,x3 and x, from the south of the

1'% 4

first row of the ISA grid.

EXAMPLE:

Given the linear system,

where,

and the vector,

Ax = b ,
2 3 3 2]
4 1 2 3
A =
2 3 6 1
2 3 3 3]
10
10
b = .
12
11

By using the steps mentioned above we factorize the matrix A, to obtain,

|

' =

7 2 3 3 2
1 O -5 -4 -1
o 1 and U = 3 -1 .
o 0o 1 O 1l

242

To obtain the value of y from (6.3.5), we have,

_ _- o 14
1 Yl o]
2 1 O v 10

2
1 o] 1 y3 12
11 Q (0] 1] Ly 4 111 |

_ 15]

v, | 10

-1

Y2 0

¥, 2

I_Y4.J - l_

To obtain the wvalue of x from (6.3.6) we have,

2 3 3 2] %, [10]
-5 -4 -1 X,) ~10
O 3 -1 x5) 2
L 14 x, L 1]
rki- 1]
x2 1
X = 1
x, | 1]

243

6.4 FINDING THE GENERALIZED INVERSE OF A RECTANGULAR MATRIX USING SSS5S

Our aim in this section is to find the optimal solution X to an

inconsistent linear system,
Ax = b
where A any coefficient matrix and b any right side.

First, we have to find a rule that specifies x. Suppose we know
the value of Ax, for every x, AX is necessarily in the column spacé of
A; it is a combination of the columns, weighted by the components of
x. Therefore the optional choice Ax is the point p in this column
space closest to the given b. This choice minimizes the error
E=||Ax-b||. 1In other words, we project b onto the column space,

Ax = P = pb (6.4.1)
The equation above is enough to determine x itself. It is another form
of the normal equation,

ATA% = A'b . (6.4.2)
Certainly x is determined when there is only one combination of the
columns of A that will produce P; the weights in this combination will
be the components of x.

We know several equivalent conditions for the equation Agip to
have only one solution:

(i) The columns of A are linearly independent.

(ii) The null space of A contains only the zero vector.

(iii) The rank of A is n.

(iv) The square matrix ATA is invertible.

In such a case, the only solution to (6.4.1) is,

— -1
X = [(ATa) A]b (6.4.3)

244

This formula, which is comparatively simple, includes the simplest
case of all when A is actually invertible. Then X coincides with the

l — —_
al) aTp=n 1.

one and only solution of the original system Ax=b: X=A
This suggests another way of describing our aim: we are trying to define
the pseudo inverse A+ of a matrix which may not be invertible.
REMARK : A+ is also called the Mcore-Penrose inverse, after its
discoverers, or more commonly known as a generalized inverse of A, as
defined earlier in Section 6.1, But a great many other matrices,
sharing some but not all of the properties we intend for A+, have also
been described as a generalized inverse.
When the matrix is invertible, that means A+=A-l. When the
matrix satisfies the condition (i)-(iv) listed above, the pseudoinverse
is the left inverse which appears in the formula (6.4.3),
2t = aTa) taT . (6.4.4)
But when the conditions (i)-(iv)} do not hold, and X is uniquely
determined by Ax=P, the pseudo inverse remains to be defined. We have
to choose one of the many vectors that satisfy Ax=p and that choice
will be, by definition the optimal solution §=A+b to the inconsistent
linear system Ax=b. To solve the problem above and calculate the
generalized inverse, we have the rectangular linear systenm
Ax = b , (6.4.5)
which after multiplying hy AT, we obtain
aax = a'b , (6.4.6)
x =ADb . (6-4.7)

Then, by factorizing‘i into L and U elements, we have,

T
LUX = A b .

Let

we cobtain,

From (6.4.

245

Ux (6.4.8)

0
v

T
Ly = A b , (6.4.9)

9) we determine the value of y, and by substituting the value

of v in (6.4.8) we cbtain the final value of x.

To write a RISAL program to solve this problem and calculate the

value of x in the case of an (nxm) matrix A when n=3 and m=4, we

implement

Step 1l:

Step 2:

Step 3

Step 4:

the following steps:

- Read the matrix A elements from the north into the ISAa
grid.

~ Transpcose the matrix A by using the same concept in
paragraph 6.2.1.

- multiply the matrix AT by A by using the concept used in
paragrapn 6.2.4. The result will be A and it will be held
in the ISA grid, each element in a processor.

Factorize the matrix A into L and U compoments by using the

same concept mentioned in paragraph 6.2.2 Step 2.

- Move the L and U elements into a different register as has
been done earlier in Step 2 in Section 6.3.

To calculate the values of y and then x's which is the

generalized inverse, we have to implement Step 3 and Step 4

in Section 6.3, by reading the elements of AT (right hand side)

from the north into the ISA grid, instead of the vector b

mentioned in that section. By repeating this process four

times, we will obtain the values of x.

Read the values of x from the south to the north of the ISA

grid.

EXAMPLE:

Given the rectangular linear system in (6.4.5), where,

1 4 3]

2 o 1
A =

3 2 2

4 1w

To determine the value of x, we have to implement the RISAL program
mentioned earlier in Step 1, Step 2, Step 3 and Step 4. First by

applying equation (6.4.6) we have,

T 2 3 4 [4 3 1 2 3 4
‘4 o 2 1 2 0o 1 *x= |4 o0 2 1} *b
l_a 1 2 1 32 2 l_3 1 2 1]
4 1 1
30 14 15 1 2 3 4‘.
14 21 17| *x = i4 o 2 1
|15 17 15 3 1 2 1]
To factorize K in equation {(6.4.7) we obtain,
1 “I l_30 14 15
0.466667 1 k 14.466667 10 * x =
0.5 0.691244 1| 0.587558
1 2 3 4
4 o 2 1| .
301 2 1
To calculate the values of y, we have (4.6.9),
1 Yip Yy, i3 Y] [T2 03 4
0.466667 1 y2l y22 y23 y24 = |4 o 2 1
0.5 0.691244 1] |y, ¥y, Y3, Yg, 3 1 2 1

246

Yin. Y35 ¥Yp3 yl;T

Yor Yoo Yy3 Yol T

Y33 Y35 Y33

5 2

3

0.057608 -0.645159 0.085253

To calculate x's from equation (6.4.8), we have,

30

14 15 7 Ix
14.466667 10 x
0.587558| |x

1 2 3

3.533333 0.933333 0.600002

10.057608 -0.645159 0.085353

From the above we obtain,

11

12

31

which

x12 xl3 xl4t -0.098039
Xyn Koo x241= 0.176471
Xy, Xgg x3fJ 0.098039

11

21

3l

*12 *13 *14
22 Foz *oa
*32 *33 *3
. -
-0.866664
0.400925 |
-0.098039 0.054902
~0.823529 -0.058824
1.098039 0.145098

3.533333 -0.933333 ©.600002 ~0.866664

0.400925

0.0282353]

0.411764

~0,.682353

is the generalized inverse of the rectangular matrix A in (6.4.5).

248

6.5 SOME APPLICATION TO THE GENERALIZED INVERSE OF A RECTANGULAR

MATRIX USING SSSS

Consider the system of m linear algebraic equations in n unknowns,

11 1 12 2 1n n 1
' cee = b
3y1%1 T A%yt T %m*n T P2
a _x. +a X + ...+a x =2b
ml 1 m2 2 mn n m

Ax = b , (6.5.1)
Here A is an m*n matrix, X is an n-vector, and b is an m-vector.
We shall solve this system of equations again in terms of the generalised

inverse of A.

THEOREM:
Let A be any generalized inverse of the coefficient matrix A in
(6.5.1). Then (6.5.1) is consistent if and only if,
aa b = b .
In which case the most general solution is,
X =Ab+ (I-AA)z , (6.5.2)
where Z is an arbitrary n-vector, and I the identity., [Gregory,

Krishnamurthy, 1984].

REMARK: If the system of egquations is homogenecus, that means if b=0,

the x becomes,

x = (I-A Bz . (6.5.3)
If A is a sguare matrix and nensingular, Au=A_l and, in this special

case x=0 is the only solution.

249

6.5.1 The Solution of a Homogeneous System of Equations

First we will solve the egquation in (6.5.3) in the case of the

system of equation being homogenecus, and n=3 and m=4. To write a

RISAL program for calculating the value of x, we implemented the

following steps:

Step 1:

Step 2:

Step 1:

Step 4:

Step 5:

Calculate the generalized inverse cof the matrix A by using the
same steps used in the previous Section 6.4.

Multiply the generalized inverse A~ by the matrix A by using
the same concepts used previously in paragraph 6.2.4. ‘The
result will be a matrix. Move each element of this matrix to
register B of the processing elements of the ISA grid.

Read the identity matrix I from the north into the ISA grid,
and move the elements of the identity into register 7 of the
processing elements of the ISA grid, as shown in Figure 6.12.
Subtract the value in register 8 from the value in register 7,
and move the result into register 9.

4s shown in Figure 6.13, read z, from the north throughout the

1
first column of the ISA grid, multiply the value of zl by the
value in register 9, and move the result into the communication
register. Then read them by the second column of the ISA grid,
so that they will be held in register 6 (west data input
register).

- Read z, from the north throughout the second c¢olumn of the

ISA grid, and multiply the value of z, by the value in

2
register 9 of this column, and add the result of multiplication
to the wvalue in register 6. Move the result to the

communication register to read them by the third column of

the ISA grid (register 6).

FIGURE 6.12: The Identity Elements and the Matrix A Elements Stored
in Register 7 and 8 of the ISA Grid.

4x4 ISA GRID

%)

25

+

¥
Z_.*R9 —13»R6
22*R9+R6 —rRG
’ z_*RY+R6
3
R 1 & Z2 R “3
zl*R9 —bRG
Z 2*R9+R6 —HR6
z_ *RO+R6
3
NN mIN
1) v 1}
zl*R9 —-pbR6
22*R9+R6 —PRE
z3*R9+R6

EN

FIGURE 6.13: Determination of the Values of x's (Step 4.)

I5A GRID

250

251

- Read Z, again from the north throughout the third column,

and multiply the value of z. by the wvalues held in register

3
9. BAdd the result to the values held in register 6, and move

the result into the communication register.
Step 6: Read the values in the communication register of the processing

elements pl ,P23 and P from the south to the north of the ISA

3 33

grid. The values of xl,x2 and Xq which is the solution of a

homogeneous system of equations.

EXAMPLE:

Given the linear system of equation in (6.5.1l) where,

T 3]
2 '] 1
A =
: 3 2 2
41

By implementing Step 1 of the RISAL program, the generalized inverse
of the matrix A is,

-0.098039 -0.098039 0.054902 0.0282353
A =1{ 0.176471 ~-0.823529 -0.058824 0.411764

0.098039 1.098039 0.145098 -0.682353
By implementing Step 2 in the RISAL program (A_A), we obtain

1.000024 0.000036 ©0.000036|

0.000027 1 .000008 O.OOOOI?I

0.000011 0.000002 1.000002]

By implementing Step 3 and Step 4 of the RISAL program (I—A_A), we obtain,

252

-0.000024 -0.000036 —-0.000036
-0.000027 -0.000008 —0.000017|
-0.000011 -0.000002 -0.000002|
1]
Now, if b=0, and vector z = t? , by substituting in egquation (6.5.3)

1
and implementing Step 5 and Step & of the RISAL program, we cbtain

[-0.000024 -0.000036 -0.000036 1
x = [-0.000027 =-0.000008 -0.000017| * |0
|-0.000011 -0.000002 -0.000002 ;J
[-0.000060
x = |-0.000044
|-0.000013

6.5.2 The Most General Solution of a System of Equations

Now we turn to the most general solution of a system of egquations
mentioned earlier in (6.5.2). To write a RISAL program to determine
the value of x in (6.5.2) we implemented the following steps:

Step l: Implement Step l-Step 5 in the previous paragraph 6.5.1, and
that means we.have calculated the generalized inverse of the
matrix A, and the value of x's in case of b=0 (homogeneous
system of equations), at the end of Step 5 mentioned above,
the value of x's are stored in the communication register of

the processing elements, . and P__.

P137P23 33

and P_._.

- t 3
Move the value of x's to register 10 of.P13,P23 33

Step 2:

Step 3:

Step 4:

253

Read the generalized inverse of A into the ISA grid, and move
its elements to register 7 of the processing elements.
As'shown in Figure 6.14, and by implementing the same concept
in Step 5, in 6.5.1 by reading the values of the vector b
from the north, instead of the vector z. At the end of the
multiplication process of (Adb), add the result of this

multiplication to register 10 in P and move the result

12'F237F33

into the communi?ation registers of Pl4'924 and P34.

Read the value of x's from the communication register of Pl4'

P24 and P34 from the south to the north of the ISA grid.

These values are the most general solution of a system of

equations in terms of the generalized inverse.

b

b 4
b, b, e v
. 4

bl*R7 —1*R6 .
b2*R7+R6-——&R6

b_*R7+R6 —»R6
N

+R10O b4*R7+R6
R | \ |
1 2 3

'i[r A v
b b *lo b3
b *R7 ——}R6

b,.*R7+R6 —}>R6

hY

| i
v D LAY

2 b *R7+R6 —RR6
7 ;\\\ é*\\ +R10 }P\\P4*R7+R6

4

b *R7 21 irs b, 3
b2*R7+R6 —13R6 K
b.*R7+R6—pR6

3 +R10 4*R7+R6
7 7 %

3

FIGURE 6.14: Determination of the value of x's (Step 3)

.

254

_EXAMPLE:

Given the system of equations in (6.5.1), where,

i o) 1]
0 1 1
1 1 1
10 o 1]

By implementing Step 1 of the RISAL program, and by applying (6.4.6),

we obtain,

1 o 1 o 1 o T 1 o 1 O
0 1 1 0 o) 1 1t * x = |0 1 1 o
1 1 1 1 1 1 1 1 1 1 1
L = L _
From (6.4.7)
[2 1 2] 1 o 1 o}
1 2 2 *x = (o) 1 1 o
[2 2 4 [} 1 1 1]
By factorizing, we cbtain,
L '] [2 1 2 1 o 1 o
0.5 1 , 1.5 1 * X = 0 1 1 o0
1 0.666667 1 L_ 1.333333] [} 1 1 1

By applying equation (6.4.9), we obtain,

1 Y11 Yyp Yi3 Y4 1 o 1 o
0.5 1 Yo1 Yoy Y3 Yol =10 1 1 o}
1 0.666667 L| |y, ¥, Y5 ¥y, 1 1 1 1
- — L= o —

Y12

¥

Y31 Y3y

By applying
(2 1

1.5

*11

*21

%31

L

Y13 Y4 1 0
Yoy Ype!| = (7O-3 !
Y33 Y3,

1

0.5

equation (6.4.8), we obtain,
2 X1 X2 %13 *pal |t
1 o1 Xa2 ¥*a3 ¥yl |7O-3
1.333333 x31 x32 x33 x34
X, %13 ¥ig [0.5 -0.5 0.5
x22 x23 x24 =|=-0.5 0.5 0.5
x32 x33 x34 0.25 0.25 -~0.25

which is the generalized inverse of the matrix A.

result by multiplying A A, we obtain,

Multiplying by the vector z,

T
o

1

©

) Eﬂ 1 o o
o} - jo 1 o
o 1] o o 1

o 1]
1 1
1 1
o 1

B

we obtain,

1

1

il

’

’

)

o

o

255

&)

o

©.333333 0.333333 -0.333333 %J

o] i

1 0.5

0.333333 0.333333 -0.333333

0.75

_

To verify this

o O
|

1 o
o 1
_

g
= .lJ, we obtain,

Q

256

| n
|

, and z = ll ; is obtained by
1

5
2

The value of x, where b =

2

2

implementing Step 2, Step 3 and Step 4 of the RISAL program. Finally

we obtain,

0.5 -0.5 0.5 -0.5 2] ol
-0.5 Q.5 0.5 -0.5 2 = 0
l_o.zs 0.25 -0.25 o.75_[2 Lz

L2
TRl
9] + 0 = O
2 o] 2

which is the most general sclution of a system of eguations.

6.6 DELETION FROM A HEAP SORT USING SSSS

The heap sort algorithm uses a data structure called a heap,
which is a binary tree with some special properties. The definition
of a heap includes a description of the structure and a condition on
the data in the nodes. Informally, a heap structure is a complete
binary tree with some of the rightmost leaves removed. (See Figure

6.15 for illustrations).

DEFINITION:

Let S be a set of keys with a linear ordering and T be a binary
tree with depth d whose nodes contain the elements of S. T is a heap
if and only if it satisfies the feollowing conditicns:

1. All internal nodes (with one possible exception) have degree 2,
ané at level d-1 the leaves are all to the right of the internal
nedes. The rightmost internal node at level d-1 may have degree
1 (with no right child).

2. The key at any node is greater than or equal to the keys at each
of its children (if it has any).

We will use the term heap structure to describe a binary tree that

satisfies condition (1). Cbserve that a complete binary tree is a

257

heap structure. Wwhen new nodes are added to a heap they must be added

left to right at the bottom level, and if a node is removed, it must
be the rightmost node at the bottom level if the resulting structure
is still to be a heap. Note that the root must contain the largest
key in the heap.

Deletion from the heap means removing the key at the root, the

largest key in the heap, and rearranging the nodes so that the heap

e

A B-tree

A Complete Binary Tree

Heap 1

FIGURE 6.15: B-Tree, Complete Binary Tree, and Heaps

258

properties are still satisfied. Structurally, the node to be removed

is the rightmost leaf at the bottom level. The key, say, K, from

259

that leaf must be placed elsewhere. The only vacant node is the root,

so we begin there and let the key K filter down to its correct position.

At its final position, K must be greater than or equal to each of its
children, so at each step K is compared to the larger of the children
of the currently vacant node. If K is larger (or equal) it can be
inserted, otherwise the larger child is moved up to the wvacant node
and the process is repeated, [Baase, 1978].

The deletion algorithm assumes that there are at least two nodes
in the heap. The algorithm is illustrated in Figure 6.16, by taking
the heap 2 in Figure 6.15 as an example.

To implement the algorithm above using our simulation system,
we need first of all to find a way to embed the heap structure onte
the ISA grid, and rearranging the nodes so that the heap properties
still satisfy the conditions mentioned above.

The binary trees are generally implemented as linked structures;
so that the heap can be stored efficiently in an array in such a way
that accessing a child of a node is quite easy, e.g. the heap 1 in
Figure 6.15 can rearrange its nodes into an H-shape, and then we can
embed it into the ISA grid as shown in Figure 6.17.

To write a RISAL program to solve this problem, we implemented
the following steps:

Step 1l: Read the H-shape structure from the north into the ISA grid.

The root will be held in the processing element P_,, and its

22

children in P and P,_, and their leaves in P._,P and

21 23 13°F33°F11

P3l respectively.

260

Vacant Node,

The key at the root is removed; the
The Heap rightmost leaf at the bottom level is

/ removed. K=6 must be reinserted.

The larger child of P, 30, is The larger child of P, 18, is
greater than K so it moves up greater than K so it moves up
and P moves down. and P moves down. '

Finally, since P is a leaf,
e K=6 is inserted.

FIGURE 6.16: Deletions from a Heap.

261

6
1 H-shape

Heap
(Binary Tree)

O
)

4*4 ISA GRID

FIGURE 6.17: The H-Shape Embedded into the ISA Grid.

Step 2: Read the value in P22 tc the north of the ISA grid, which

represents the key in the root.

Step 3: Move the value in P23 into P22.

Step 4: Compare the value in P with the value in P

o1 997 and store

the largest in P

227
Step 5: Move the value in P33 into P23.
Step 6: Compare the value in P22 with the value in P23, and store

the largest in P_,_, and then implement steps 2,3 and 4.

22

Step 7: Move the value in P13 inte P23, and implement Step &€ and Step

2.

Step 8

Step 9:

262

Move the value in le into P22, and implement Step 6.

Move the wvalue in PBl into P21, and implement Steps 4,2,9,

and 6 respectively.

Step 10: Move the value in P into P,,, and implements Steps 4,2,3,4,

il 21
2,9, and 2 respectively.

By using the RISAL program above, the deletion process from heap 1

shown in Figure 6.17, is illustrated below:

264

6.7 HERMITE POLYNOMIAL INTERPOLATION AND EVALUATION USING SSSS

Interpolation is the process.of "reading between the lines" of
a table or the fitting of a smooth curve to a limited set of data.

We take it up first for a number of reasons, the most obvious of which
is that interpolation is frequently used for estimating quantities
from tabulated data. A more important reason is that many numerical
differentiation and integration procedures are derived by using
interpolation to find a smooth approximation and then differentiating
or integrating the result.

There are two kinds of interpclation, depending on the type of
data provided and the kind of result wanted. In the standard type of
interpolation we are given a set of data points and regquire a curve
that passes smoothly through them. In least sguares interpolation
generally the data has some uncertainty associated with them and we
want to find a smcooth curve that passes sufficiently near the data
points. In standard interpclation the equation of the approximation
curve must have as many parameters as there are data peints; in least
squares fitting the number of parameters typically is much smaller than
the number of data points.

The basic problem of interpolation may be stated as follows.
Given a set of data (xi,yi), i=1l,2,...,n, find a smooth curve f(x) that
passes through the data. We require the following criteria of the
interpolating curve. .

1, From the problem statement, we must have,
f(xi) =Y o i=l,2,...,n ,
2. The function should be easy to evaluate.

3. It should also be easy to integrate and differentiate.

265

4. It should be linear in the adjustable parameters (to simplify

the problem of finding them).

The choice of the interpolating function depends on what one means
by smoothness and on the function to be approximated. Many functions
have been used, the most common of which are polynomials of various
kinds because they satisfy criteria (2) and (3) above better than any
other type of function. Even among polynomial interpolations there
are a number of classes, i.e. Lagrange interpolation, Taylor inter-
polation, Hermite interpolation and others.

Our aim in this section is to solve Hermite interpolation problem,
but first we will begin with the simplest class, the Lagrange form
which leads us to calculate the Hermite interpolation form.

In Lagrange we consider the p;oblem of determining a polynomial
of degree 1 which passes through the distinct points (xo,yo) and (xl,yl).
This problem is the same as approximating a function £, for which
f(xo)=y0 and f(xl}=yl by means of a first-degree polynomial.inter—
polating, or agreeing with, the values of £ at the given points. See
Figure 6.18.

If

pi(x) = ay + a% (6.7.1)

is the polynomial, then ao and al must satisfy,

1
4]
+
v
]

Yy P(xo)

o 0 lo
= = +
vy = Pl = a5+ ax .
Solving these equations for ao and al, we obtain:
s = o 7 %
1 X, = %X

LY
rd

(xl:Yl)

0 (xo,yo)

FIGURE 6.18: The vValues of f at Points (xo,yo) and (xl'yl)'

YO"'Yl
and B T Y T T Y T R -
o1
Substituting the values of aO and al intc equation (6.7.1) we obtain,
Yy - Y Y -y
0 1 1
RGO =y o ¢
o 1 0 1
yl(xo - Xl) - xl(yo - yl) + X(Yo - Yl)

XO—Xl

"%
_ yl(xo-xl+xl-X)) y.{-x x)
T % o
(x - %x.) (x - x)
= ey 2y
(xo - xl) 0 (xl- xo) 1

To generalize the concept of linear interpolation, consider f£inding a

267

pelynomial of degree at most n which passes through (n+l) given points.

This can bhe viewed as an approximation technique in that, given a

function £, we find a polynomial P which agrees with the values of

the function at certain specified points, and the polynomial P is then

-used to approximate f at other points.

THEQREM :
If xo,xl . ,xn are (n+l) distinct points and f is a function
whose degree is at most n, with the property that,

f(xk) = p(xk) for each k=0,1,...,n

this polynomial is given by,

plx) = f(xo)Ln’o(x) + ...+ f(xn)Ln,n(x) (6.7.2)
)
= £(x)L (x) ,
k=0 k' "n,k
where,
(x—x Y (x-x)...(x-xk l)(x-xk+l)...(x—xn) (6.7.3)
Ln k(x) = {(x -x)(x =-x_)...(x -x Y (x, - Yoeo(x, =%)
! k0O k1 k “k-1 k k 1 "k “n
n (x—x) .
= 17 , for each k=0,1,...,n (6.7.4)
(x -X)

i=0
©iFk

268

We will write Ln’k(x) simply as Lk(x) when there can be no
confusion as to its degree. Proof of this theorem is given in [Burden,
Faires, Reynolds, 1978].

There are occasions when we want smoothness beyond that provided
by the Lagrange interpolation. Such smoothness can be cobtained in a
number of ways. One of the simplest is to provide not only the value

of the function at each point, but also the value of its derivative.

We then have Hermite polynomial interpolation.

THEOREM:
If £ € C'[a,b] and xo,...,xn € [a,b] are distinct, the unique

polynomial of least degree agreeing with £ and £' at xo,...,x is

n
given by,
)] £ o8
H {(x) = f(x,)H__.(x) + f'{x)HE _.(x) , {6.7.5)
where,
H (x) = [l-2(x-x)L’ .(X.)]L2 Ax) o, ’ {6.7.6)
n,l do o n,J] n,J .
andg, n 2
HE_ _(x) = {x-x_)L_ _(x) (6.7.7}
n,Jj J 0.l

In this context, Ln : denotes the jth Lagrange coefficient polynomial

r
of degree n defined by (6.7.3). Moreover,

if £ €c®?) [a 1) then,

2
_ (xﬁxo) "t (x—xn) f(2n+2) —

- Hye ¥ S (2n12) 1 (&)

£(x)

for some point E, with a<§>b. The proof of this theorem is giveh in

{Burden, Faires, Refnolds, 1978].

269

To solve the Hermite polyncomial interpolation by using our
simulation system, we consider the polynomial of least degree which
égrees with the data listed in the table below for the Bessel function

of the first kind of order zero, to find an approximation of £(x).

k fE, f(xk) f'(xk)
e} xo f(xo) f'(xo)
1 xl f(xl) f'(xl)
2 x2 f(x2) f'(xz)

By substituting in equation (6.7.3) we cbtain,

(x—xl)(x—xz)

L {x) =
2,0 (xO xl)(xo x2)
. o = (x—x2)+(x-x1)
2,0 (xo—xl)(xo-xz)
(x-xo) (x-xz)
L2 l(X) = (x.-x_){x.,-x.)
! 10 1 2
Lo o - (x—xo)+(x-x2)
2,1 (xl_xo)(xl_x2)
. o (x-xo) (x—xl)
2,2 (xz-xo) (xz-xl)
. o - (x-xo)+(x—xl)
2,2 (xz—xo)(xz—xl)

By substituting in equation (6.7.6) we obtain,

2]
E
1l

[1-2(x-x }L! _(x)]L

2,0 0’ ~2,0 (x)

2
fa]

S
il

2,1 [l—2(x—xl)Lé'l(x)]L

H2'2(x) = [l-2(x—x2)Lé'2(x)]L

270

Further by substituting in equation (6.7.7), we obtain,

ﬁz'o(x) = (x—xo)Lg'o(x)

B, (%) = (x=x L2 (%)
2,1 i" 2,1

A 2

H2,2(x) = (x"xz)Lz,z(x) .

Finally by substituting in equation (6.7.5), we obtain,

HS(X) = f(xO)HZ,O(x) + f(xl)Hz,l{X) + f(xz)Hz,z(x)

~ ~ P
+ f'(xo)H2'O(x) + f(xl)HZ,l(x) + f (}‘:2)H2’2

The value of Hs(x) is accurate to the places listed above,

To write a RISAL program to calculate the value of H O(x), we

S,

implemented the following steps:

Step 1: First we determine the values of Lz’o(x)f L2,l(x) and LZ'Z(X)

and L! (x), L! (x), and

in the processing element Pll' 2,0 2,1

{(x) in the processing element P12, as follows:

- Read the values of x, xo, xl, and x2 from the north into

La.2

the Pll and P12 of the ISA grid, and store them in register
7,8,9, and 10 respectively. We obtain,

- (xo-xl) and (xo-x2) by subtracting the values in registers
9 and 10 from the value in registef 8, and store the results
in registers 11 and 12,

- (xo-xl){xo-x2) by multiplying the values in registers 11
and 12, and store the result in register 13,

- (xl-xo) and (xl-xz) by subtracting the values in registers

8 and 10 from the value in register 9, and store the result

in registers 14 and 15.

Step 2:

271

(xl—xo)(xl—xz} by multiplying the wvalues in registers 14
and 15, and store the result in register 16.

(xz—xo) and (xz—xl) by subtracting the values in register
8 and 9 from the value in register 10, and store the
results in registers 17 and 18.

{x -xo)(x) by multiplying the values in registers 17

2 271
and 18 and store the result in register 19.

Pll' we obtain:

(x—xl) and (x—x2) by subtracting the values in registers 9
and 10 from the wvalue in register 7 and store the results

in registers 11 and 12.

(x~xl)(x-x2) by multiplying the values in registers 1l and
12, and store the result in 14.

(x—xo) by subtracting the value in register 8 from the value
in register 7, and store the result in register 15.
(x-xo)(x-xz) by multiplying the values in registers 15 and
12, and store the result in register 17.

(x—xo)(x—xl) by multiplying the values in register 15 and
11, and store the result in register 18.

Lz,o(x) - by dividinghthe value in register 14 by the value
in register 13, and store the result in 13.

L2,l(x) by dividing the value in register 17 by the value

in register 16, and store the result in 14.

L2 2(x) by dividing the value in register 18 by the value
¥
in register 19, and store the result in l6.
2
L2 O(x) by multiplying the value in register 13 by itself,

and store the result in 13.

Step 3:

In

L; l(x) by multiplying the value in register 14 by itself,
r
and store the result in 14.

2

L2 2(x) by multiplying the value in register 16 by itself,

and store the result in 16.

P12’ we cobtain:

(xo—xz) and (xo—xl) by the subtraction cof the values in
registers 10 and 9 from the value in register B8 and store
the results in registers 11 and 12.

(xo-x2)+(x0-xl) by the addition of the values in register
11 and 12, and store the result in register 14.

(xl—xz) and (xl—xo) by the subtraction of the values in

register 10 and 8 from the value in register 9, and store
the results in registers 15 and 17.

-X) by the addition of the values in registers

(x —x2)+(xl o

1

15 and 17, and store the result in register 18.

(xz-xl) and (x —xo)'by the subtraction of the values in

2

registers 9 and 8 from the value in register 10, and store
the results in registers 11l and 12.

(x —xl)+(x

p —xo) by the addition of the values in registers

2

11 and 12, and store the result in register 17.

Lé O(x) by the division of the value in register 14 by the

value in register 13.

Lé l(x) by the division of the value in register 18 by the

value in register 16.

Lé 2(x) by the division of the value in register 17 by the

value in register 19.

272

273

At this stage of the RISAL program, the values of Lg OCX), Lz l(x).
’ ?

and (x) are held in the processing element P__, and the values of

L2
2,2 11

Lé O(x), Lé l(x) and L. _{x) are held in the processing element P

’ . 2,2 12°

~
Step 4: To determine the values of HZ,O(X)' H2,1(X)’ H2'2(x), HZ,O(X)'

FaY
(x) and H (x):

A
By 2,2

- the wvalues in registers 13, 14 and 16 of P12 were moved

to registers 17, 18 and 19 respectively of Pll'

-~ read 1 and 2 from the north into register 7 and 8 of Pll'

Step 5: 1In Pll' we obtain:

~ 2(x—x0) by the multiplication of the value in register 8
by the value in register 15, and store the result in
register 9.

- 2(x—xo)Lé'O(x) by the multiplication of the wvalue in
register 9 by the value in register 17, and store the result
in register 9.

- 2(x-xl) by the multiplication of the value in register 8
by the value in register 11, and store the result in register
10.

- 2(x—xO)Lé’l(x) by multiplying the value in register 1O by
the value in register 18, and store the result in register 10.

- 2(x—x2) by the multiplication of the value in register 8 by
the value in register 12, and store the result in register
17.

- 2(x—x2)Lé'2{x) by the multiplication of the value in

register 17 by the value in register 19, and store the

result in register 17.

274

[1-2(x—x0)Lé Otxo)] by the subtraction of the value in

register 9 from the value in register 7, and store the
result in register 9.

[l—2(x—xl)Lé l(xl)] by the subtraction of the value in
]

register 10 from the wvalue in register 7, and store the
result in. register 10.
[l-2(x-x2)Lé'2(x2)] by the subtraction of the value in
register 17 from the value in register 7, and store the
result in regiéter 17.

2
- _ ' coa s .
[1-2(x xO)LZ,O(xO)]LZ,Q(x) by the multiplication of the

value in register 9 by the value in register 13, and store

the result in register 7, which is equal to H2 0(x).
’

2
o e , g ,
[1-2(x xl)L2,l(xl)]L2,l(X) by the multiplication of the

value in register 10 by the value in register 14, and store

the result in register 8, which is equal to H2 l(x).

‘ 2
[l—2(x—x2)L2'2(xl)]L2'l(x) by the multiplication of the

value in register 17 by the wvalue in register 16, and store

the result in register 9, which is equal to H2 2(x).

(x—xo)Lg o(x) by the multiplication of the value in register
r

15 by the value in register 13, and store the result in
A
register 10, which is equal to H2 O(x).
!

(x—xl)Lz l(x) by the multiplication of the walue in register
¥

11 by the value in register 14, and store the result in

A
register 11, which is egqual to H2 l(x).

(x—xz)L2 (x) by the multiplication of the walue in iegister

2,2
12 by the value in register 16 and store the result in
n
H

2,230 -

register 12, which is the value of

275

At this stage of the RISAL program the values of H {(x), ® {x),

2,0 2,1
~

A A
H2,2(x)' HZ,O(X)' Hz,l(x) and H2,2(x) are held in the processing

element P11 in registers 7,8,9,10,11,12 and 13 respectively.
By reading the values of f(xo), f(xl), f(xz), f'(xo), f'(xl) and
f'(xz) from the north of the ISA grid and store them in Pll in
registers 13,14,15,16,17 and 18 respectively, we obtain;
- f(XO)HZ,O(x) by the multiplication of the value in register
13 by the value in register 7, and store the result in
register 7.
- f(xl)H2,l(X) by the multiplication of the value in register
14 by the value in register 8, and store the result in
register 8.
- f(x2)H2;2(x) by the multiplication of the value in register
15 by the value in register 9, and store the result in
register 9.
- f'(xo)ﬁz'o(x) by the multiplication of the value in register
16 by the value in register 10, and store the result in
register 10.
- f'(xl)ﬁz’l(x) by the multiplication of the valve in register
17 by the value in register 11, and store the result in
register 11.
- f'(xz)ﬁ2'2(x) by the multiplication of the value in register
18 by the value in register 12, and store the result in
register 12,

Finally, to obtain the value of Hs(x),'we added the values in registers

7,8,9,10,11 and 12.

276

EXAMPLE:
Consider the preoblem described above to find an approximation of

£(1.5). The data is:

b3 X £ (x,) £ (x)

0 1.3 0.620086 ~0.522023
1 1.6 0.455402 -0.569895
2 1.9 0.281818 -0.581157

By implementing Step 1, Step 2, and Step 3 of the RISAL program

mentioned above, we obtain:

L2,O(X) = é
Lé,o(x) = -5
Ly = %
Lé’l(x) = 0
Ly, 2®) = - %
Lé'2(x) = 5

By implementing Step 4, we obtain:

H - 4
2,0 27
g _ 64
2,1 81
u - 2
2,2 81
ﬁ _ 4
2,0 405
A _ 32
Hool T 7 %05
A 2

Hy 2 205

By implementing Step 5, we cobtain:

4 64 5
Hs(l.S) = 0.620086(27) + 0'455402(§I) + 0.281818(81)
4 32 2
0'522023(265) - 0.569895(- Zag) - 0.581157(- 405)

]

0.511827.

The result above is accurate to the places listed above.

Parallel Polyncmial Evaluation:

To locate approximate roots of a polynomial P, it is necessary
to evaluate P and its derivative at specified wvalues. If the nth-
degree polynomial p(x) = P0+p1X+PZX2+ ‘e +pnxn, therefore, to
evaluate p(x), it requires (2n-1) multiplications and n additions.

To write a RISAL program to solve the problem mentioned above,

we consider the polynomial,
(x) = +p. X+ x2+ x3+ x4+ x5+ x6+ x?
By rearranging we cbtain,

= (p_+p_.x) + x2(+p_ X} + 4(+p _X) 4 6(+p_x)
= PPy Py™Py X (PyTRgH) T X ARSI,
Figure 6.19 illustrates the polynomial above in terms of a balanced
tree.

First of all, we have to evaluate the powers of xz(l,xz,x4,x6)

277

and place it in each processor, and evaluate pi+pi+lx in each processor.

To achieve this concept we implemented the following steps:

Step 1: Read the value of x from the north into the first row of the

ISA grid, and store it in register 7.

I and pP_,, multiply the value in the result

nForPg 14

register by the value in register 7.

278

FIGURE 6.19: Balanced Tree Representation of Polynomial Evaluation
Equation

- In Plz’ move the value in the result register into register 8.

- 1In P13 and P14 multiply the value in the result register by

the value in register 7.

- In P13, move the value in the result register into register 8.

- In P14' multiply the value in the result register by the value

in register 7, and move the result into register 8.

279

Step 2: Read the value of Pl'PB'pS and P7 from the north (register 3)

multiply the value in register 3 by the value in register
7, and store the result in register 9.

and P_ from the north (register 3).

- . P
read the value of PO P2, 4 6

- Add the value in register 3 to the value in register 9.

In Pl2’P13 and Pl4 move the value in the result register
into register 10, and multiply the value in register 10 by
the value in register 8. Finally, store the result in
register 10.

Step 3: Add the value in result register of P to the register 10

11’

of angd P to obtain the final result.

P12:%13 14

EXAMPLE:

Given the polynomial,

(x) = P _+P_+P x2+P x3+P x4+P x5+P x6+P x7
PUx} = FoTFyThph TE™ FET TR TEgT RS

where PO =3, P =4,P_ =5,P =6,P =7,P.=8,p. =9, P_=10,
and x = 2.
By implementing Step 1, Step 2, and Step 3 of the RISAL program,

we obtain that,

pi{x) = 2303.

CHAPTER 7

SUMMARY AND CONCLUSIONS

280

In this thesis an alternative concept to a VLSI-architecture,
the Soft-Systolic Simulation System (SSSS) is introduced and developed
as a working model of a2 virtual machine with the power to simulate
hard systolic arrays and more general forms of concurrency such as the
SIMD and MIMD models of computation. An overall system structure was
defined and the virtual machine discussed in detail. A primitive
assembler/compiler for a speciﬁl language the Replicating Instruction
Systolic Array Language (RISAL) was devised for experimentation with
the machine.

In the first three introductory chapters, a brief and disciplined
state-of-the-art survey was compiled with up-to-date information on
the present parallel computing environment.

More analytically, in Chapter 1, we have discussed the main
motivations that led to the "parallel way of thinking" and presented
several different forms of exploiting this novel idea. Although
several attempts (at least three of them were presented in this thesis)
have been made to classify these various architectural designs, none
of them seem to succeed in providing a clear distinction between the
classes since sometimes the intersection of two classes is not empty.

0f the architectures designed for highly parallel processing we
presented the pipeline, data-flow computer, and array processors. In
the pipeline computer the sequential, vector processing taxonomy,
some well known and commercially available computers were discussed.

The data-flow computers are grouped into two classes (static and
dynamic), i.e. for the static approach is the MIT data~flow, and for

the dynamic approach, the U-interpreter machine and Manchester data-

281

flow machine are presented. The general SIMD architecture is also
presented as an example of the array processor. BAlso, the inter-
connection networks are discussed as a most currently active research
area in computer architecture.

In Chapter 2, we presented the VLSI technology as a substantial
contender to the achievement of very high-performance, cost effective
computing systems for the future decade. We also presented its
fundamental concepts such as regularity, planarity, use of pipelining
and concurrency, in designing special-purpose and general-purpose
computing structures. For the special-purpose class of VLSI-oriented
systems we established two main contenders which are the sgystolic
arrays as suggested by H.T. Kung and the wavefront arrays resulting
from the work of S.Y. Kung. Although these systems are cost—effective
they are however specially designed for one particular class of
problems. In order to increase flexibility, the general-purpose
computing structures such as the Warp, built by H.T. Kung and the chip
of L. Snyder can be used to solve a predefined set of algorithms.
Also, a possibility is the Inmos Transputer which is a single chip
processor. The Transputer and Occam language were designed in
conjunction and all transputers include special instructions and
hardware which provides optimal implementations of the Qccam model of
concurrency and communication. Following these substantial benefits,
a research program was carried out in the Department of Computer
Studies, at Loughborough University to investigate the simulation of
systolic arrays, by using the fact that Occam programs can be divorced

from transputer configurations and using the language as a simulaticn

282

tool. The general structure of Occam programs which represent the
simulation of systolic arrays is introduced, and the techniques
described have been used successfully to implement designs in Occam.

The adoption of Occam offers more direct hardware support for
special purpose designs as well as common architectures. We concluded
this chapter by introducing the MIMD architecture design, and described
the Sequent Balance system installed in the Computer Studies Department,
Loughborough University in 1986. This sysfem was used to develop and
imblement the simulation system presented in this thesis.

In Chapter 3, the Instruction Systolic Array (ISA) was introduced
as a highly parallel computer architecture that combines the advantages
of systolic arrays with the idea of a universai machine, which is
capable of solving a large variety of problems.

The analysis of the relationship between the MIMD type mesh-
connected parallel computer or Processor Array {PA), and the Instruction
Systolic Array ([sh)(lwfjshows that programs on a PA can be simulated by
equivalent programs on either of the two other models such that the
delay is at most proportional to the square root of the number of
processors. Asymptotically, the same delay occurs in the simulation
of programs on an ISA by equivalent programs on an IBA whereas in the
opposite direction we have only constant factor delays. Therefore,
with respect to this worst case analysis the ISA is superior to the
IBA. Since no instructions have to be broadcast, there is only local
information transfer in the ISA. This property is especially
advantageous with respect to its realization using VLSI technology.

The only main advantage of the IBA over .the other two models is its

conceptual simplicity: it is much easier to design and understand

283

programs on an IBA than on an ISA.

Although the PA is the most powerful of the three types of
parallel architectures, its main disadvantage is that each of its
processors needs its own program store and has to be individually
programmable. Because of this increased complexity of the processors
the area of a PA is much larger than the area of an IBA or ISA which
makes it less suitable for VLSI. The comparison with MIMD- and SIMD-
machines shows that the instruction systolic arrays are at least as
powerful as array type SIMD-machines. Thus, the large variety of
programs on SIMD-machines is easily simulated on ISA. While in many
applications the high degree of independence of the individual |
preocessors of MIMD-machines is not exploited, the SIMD concept seems
to be too restrictive.

In the remainder of this chapter there are many algorithms solved
by using the ISA which shows that the ISA is a flexible and powerful
parallel architecture well suited for VLSI.

In Chapters 4 and 5, using the flexible architecture (ISA) as a
virtual machine programmed in Occam, we developed and implemented a
soft-systolic simulation system (SSSS) where the emphasis was on
executing programs systolically rather than systolic movement of data
An overall system structure was defined. We demonstrate the feasibility
of the system by concentrating on the System and Machine Preparation,
Virtual Machine, and Replicating Instruction Systolic Array Language
(RISAL), and its RISAL compiler.

More analytically, in Chapter 4, the system and machine

preparation used to develop the system was discussed. We reported

284

that the Balance 8000 Sequent computer system running under the Dynix
operating system at Loughborough provides an excellent environment
for software development parallel program using support tools for
i.e., creaticn and manipulation and parallel program develcpment.
The main features of Loughborough Occam were introduced and used to
develop the system.
The virtual machine introduced has three basic sections:
a) An ISA network of data and control paths.
b) A set of virtual spoolers for driving the ISA computation and
opening up the communication bandwidth of the array.
¢) A collection of processing elements (PE) descriptions for

creating specific ISA grids.

The Instruction Systolic Array was introduced as an orthogonal
grid of processing elements. Each processing element executes a
number of simple operations, and includes memory for intermediate
results and registers for communication with other processing cells.
Each PE is activated by a combination of an instruction and selector.

We introduced the wvirtual spoolers which played the role of
buffers for the ISA array interface with higher levels of the system,
allowing the bandwidth of the input to meet that of the ISA. The
grid architecture was a simple specification of network connections
between processors, the PE libraries simply containing cell descriptions
which responded to ISA instructions with different characteristics.

Using Loughborough Occam, we described the implementation cf the
virtual machine in detail. We concluded this chapter by describing

the processing element (PE) considered in our simulation system which

285

was a very deneral element which allows the choice of a wide range

of arithmetic and logical operators, and allows the simulation of a
wide class of algorithms without the need to develop more special
purpose PE's immediately. The structure of the processing element is
described in detail, and the implementation process using Loughborough
Qccam is also presented in detail.

Chapter 5 constitutes a complement tc the implementation of the
simulation system introduced in Chapter 4. The Replicating Instruction
Systolic Array Language (RISAL) is presented here as a suitable medium
in which to prepare and debug the ISA control programs, and a method
for generating the necessary form of instructions for the ISA. Also,
the RISAL compiler was introduced to allow a simple but adequate
design environment. RISAL accepts instructions in an assembler-like
form, but is fairly permissive about format within the constraints
of the syntax. The syntax of RISAL is described in detail. RISAL
contains a proportion ¢f semantic rules not indicated in the syntax
and allows programs (instruction, selector and data files) to be
produced using the same syntax and compiler. The instruction, selector,
and data files are described in detail, and can be prefixed with a
replicating command which will generate the following instruction by
a specified number, and also prefixed with another command teo
repliéate the following lines by a specified number. We used these
replicating commands extensively to achieve a reduction of RISAL
program coding.

The Pascal language was used to develop and test the RISAL

compiler whose task was to read the replicating instruction systelic

286

array language elements and transform them into a form suitable for

the virtual machine to run. The specification and implementation
process of the RISAL compiler is described in detail. By then, a
number of components are jdentified and connected serially to form

the Soft-Systolic Simulation System (SSSS). This chapter was concluded
by testing the simulation system to examine the performance of the
solution architecture.

In Chapter 6, the Soft-Systolic Simulation System (35555) was used
to solve a wide range of algorithms. We have shown the simplicity of
this implementation which emphasises the practical significance of
the ISA as a flexible array processor architecture. These implementations
required a small set of instructions and smaller capacity local memory
for the processor, thereby facilitating massive parallelism in a
smaller area. While preserving the advantages of the systolic array,
namely local communication, regularity and identical simple cell, the
ISA concept used in our simulation system overcomes the main disadvantages
of the systolic arrays, namely their lack of flexibility. Another
important aspect of the ISA is their fault tolerance. If defective
processors can be bypassed, a large part of the remaining array may
still be used by adjusting the programs to an array of smaller size.

Naturally the power of our simulation system depends on the size
of the instruction set. We feel that the restriction to such a simple
instruction set is necessary to keep the processors small enough, in
order to allow integration of many processors on a single chip.

Although RISAL is very primitive it has been useful in

illustrating the ISA's capabilities and has suggested some improvements

287
to the design of the PE, the interfacing arrangements such as spooling
for the virtual grid and a number of additicnal features to produce
a more robust version of RISAL itself.

To allow a wide flexibility in PE development it was observed
that reading operation definitions from a file (in alphabetical order)
including operation codes allowed new commands to be enlisted easily
inside RISAL and permitted the same code for different operations in
alternative PE's. We remark here that care must be taken in using
duplicate codes but no real problems were encountered.

For RISAL, two main constructs suggest themselves as follows:

i) Replicated line section (REPS): For example, data n,03,00;
data n,03,00; REPS{count) {null ,0,0;data n,03,00] ;null ,0,0:
which would repeat the section of the line in brackets count times.
The main difficulty in implementing this statement is keeping
track of REP nesting and checking that the correct number of
instructions are generated.

ii) Replicated line shift (REPLS): of the form,
REPLS (count,shift) [line]:
Here a specified line is replicated count times and on each
replication is shifted right or left. 'Shift' places according
to the sign of the shift. Instructions falling off the end of a
line must be neglected and spare places filled with a default
operation like null.

Many variations to these basic constructions such as c¢yclic line

shifting, shifting of line sections, and conditional line shifting are

also apparent - but amount only to improving the readability of the

ISA program.

288

In the ISA design which is introduced in this thesis, the ISA instruction
is represented as an 8 digit integer with each field being 2-digits wide
to allow for the possible implementation of 100 instructions and ;n
internal memory address space of 100 instructions. The port specifications_
also allows 100 combinations of input/output but only the first 16 have
been used. : !

To improve the communication between the registers it is necessary
to utilise the extra slots to allow for multiple communication registers
in each cell. These operations can be implemented more effectively b&
using bit logic and slices, but Loughborough OCCAM is restricted in
this respect. Furthermore, a 2-digit field also allows a wide range of
library PE's to-be developed.

The data file introduced here is more complex than the instruct and
selector .file, as it requires the specification of input for the- four
possible boundaries of the ISA grid. The current implementation does
not expose all the .inherent parallelism in collecting.the boundary data,
as we can define four files one for each boundary, and then use the
buffers in parallel. However, there is a considerable overhead in
checking that sufficient boundary data is available. This requires the
specification of four separate files. 1In our implementation, one file
is defined and the boundar? input and output is sequentially buffered.
This makes the checking and the setting up of the data input sequence
easier and more related to the algorithms being simulated. For large
grids howeveF this method will become impractical and adding a pre-
processor to the ISA to separate out the data into témporary files seems

the best alternative.

In general, the reading of input and writing of output data is

2B8Ba

performed in the ISA in parallel with the ISA execution. Clearly this
is the place where any bottlenecks are likely to occur especially.for
large n {(large grid size). It is clear that the matrix size and
structure of the ISA is useful mainly when the matrix is small, dense
or banded. However, the ISA operation will become slow for the case of
large sparse matrices, hence the present system design with a bounded
number of processcrs can simulate smaller networks without difficulty.

There are a number of issues concerning the problem of transforming
programs that were originally designed for different models of parallel
computers into ISA programs. Among these different models are the MIMD
and SIMD type mesh-connected processor arrays and some variants of the
ISA. The main result is that an arbitrary program that runs on an (nxn)
mesh-connected parallel computer in k steps can be transformed into an
ISA program having O(nk) steps. In many cases, however, especially when
the original machine is of SIMD-type, this transformation introduces
cnly a delay of 0{(l1). Often it is possible, e.qg. in the case of two-
dimensional systolic algorithms, to re-design an existing algorithm.
Sometimes it will be necessary to develop a new algorithm in order to
meet the requirements of the ISA.

Naturally, the power of the ISA depends on the size and complexity
of the instruction set :. .. lead§to the use of complex processors which
will inevitably slow down the whole system. Besides, the integratiocon
of many different types of processors is not easy, especially if other
types of problems are to be considered i.e. graph theoretic problems.
Thus, our Instruction Systolic Array having a different and more powerful

set of instructions would h!td‘h: be much more complex zgain.

288b

Finally, the ISA design can be considered analcogous to the
choreography of the ballet which consist in fitting a story to both
music and scenario. In the ISA, the problem corresponds to the story,
the algorithm to the ballet, the timing steps to the dance movements
and the VLSI layout to the scenario. Thus, the instruction stream
from the top of the ISA and the selector stream from the left of the
ISA are analogous and should be planned in advance so that each
instruction when executed meets a required selector bit. In view of
these considerations, the ISA seems to be a candidate for the

realization of a highly parallel VLSI computer design.

REFERENCES

289

ALFRED, V. AHO, JEFFREY, D. ULLMAN [1977): "Principles of Compiler
Design”, addison-Wesley Series in Computer Science and
Information Processing, Bell Laboratories, Murray Hill, New

Jersey, 1977.

ARVIND, and GOSTELOW, K.P. ([1982]: "The U-Interpreter", I1EEE Computers,

Feb. 1982, pp.42-49.

ARVIND, and THOMAS, R.E. [1980]: "I: Structures: An Efficient Data

e for Functional Lan es”, MIT/LCS/TMN-178, Sept. 1980.
p guag

ATALLAH, M.J., KOSARAJU, S.R. [1984]): "Graph Problems on a Mesh-

Connected Processor Array”, JACM, Vol. 31, No.3, Jul. 1984.

BAASE, S. [1978]: "Computer Algorithms: Introduction to Design and

Analysis”, Addison-Wesley Series in Computer Science, 1978.

BARNES, G.H. ET AL [1968]): "The Illiac IV Computer”, IEEE Trans.

Comput., vol. C-17, No.8, Aug. 1%68, pp.746-757.

BASKET, F. and SMITH, A.J. [1976]: "Interference in Multiprocessor
Computer Systems with Interleaved Memory", Communications of the

ACM, Vol. 19, No.6, June, 1976.

BEAR, J.L., [1976]): "Multiprocessing Systems", IEEE Trans.Comput.,

vol. €-25, No.12, Dec. 1976, pp.1271-1277.

BRENT, KUNG, H.T. and LUK {19831: "Some Linear TIime Algorithms for
Systolie Arrays", CMU-ROL-83 and Invited Paper 9th World

Computer Congress, Paris, 1983,

290

BURDEN, R.L., FAIRES, J.D., REYNOLDS, A.C. ([19811: "Numerical Analysis”,
Prindle, Weber and Schmidt Incorporated, 20 Newbury Street,

Boston, Massachusetts 02116, 1981.

CHANG, D.Y. ET AL [1977]:"On the Effective Bandwidth of Parallel

Memories"”, Vol.C-26, No.5, May 1977, pp.-480-490.

DE BOOR, C. [1972): "Elementary Numerical Analysis: An Algorithmic

Approach”, McGraw-Hill Kogakusha Ltd., Second Edition, 1972,

DENNIS, J.B. {1980]: "Data Flow Supercomputer", IEEE Computer, Nov.

1980, pp.48-56.

DENNIS, J.B. [1974]: "First Version of a Data Flow Procedure Language",

Computer Science, Vol.l9, Springer-Verlag, 1974, pp.362-376.

DEW, P.M. [19841: "VLSI Architectures for Problems in Numerical
Computation”, Workshop on Progress in the Use of Vector and

Array Processors, eds. Paddon D.J. and Pryce, J.D., pp.l-24.

DEW, P.M., MANNING, L.J., MCEVOY, K. [1986]: "A Tutorial on Systolic
Array Architectures for High Performance Processors", 2nd Int.
Electronic Image Week, Nice, 1986, and Report No.205, Leeds

University.

ENSLOW, P.H. [1977]: "Multiprocessor Organisation — A Survey”, Comp.

Surveys, Vol.9, No.l, March 1877, pp.l03-129.

FISHER ([1984): "Implementation Issues for Algorithmic VLSI Processor

Arrays”, Ph.D. Thesis, 1984, CMU, Pittsburgh.

291

FLYNN, M.J. [1972]: "Some Computer Organizations and Their Effective-

ness”, Trans. Comput. C-21, 1972.

FLYNN, M.J. [1966]: "Very High-Speed Computing Systems"”, Proc. of

the IEE, Vol.54, No.l2, Dec. 1966, pp.1901-1909.

FOSTER, M.J. and KUNG, H.T. [1980): "The Design of Special-Purpose

VLSI Chips", Computer, Vol.l3, No. 1, Jan. 1980, pp.26-40.
p

GANDIO, J.L. and ERCEGOVAC, M.D. [1982}: "A Scheme for Handling Arrays
in Data Flow Systems”, Proc. 3rd Int.Conf. Distributed Computing

Systems, 1983, pp.235-242.

GEHRIG, E. ET AL [1982): "The (M* Testbed", IEEE Computer. Oct.l982,

pp.40-53.

GREGORY, R.T., KRISHNAMURTHY, E.V. [1984]: "Methods and Applications

of Error-Free Computation”, Springer Verlag, New York, 1984.

GUIBAS, L.J., KUNG, H.T., THOMPSON, C.D. [1979]: "Direct VLSI
Iﬁplementation of Combinatorial Algorithms", Proc. Caltech Conf.
on VLSI, Californian Institute of Technology, Pasadena, 1979,
Pp.509-525.

GURD, J.R., KIRKHAM, C.C. and WATSCN, I. [1985]: "The Manchester
Prototype Data-Flow Computer”, Comm. ACM, No. 1, Jan. 1985,
pp.34-52.

HAMBRUSCH, S.E. (1983] : "VLSI Algorithms for Connected Component Problem”,
SIaM J. Computing, Vol.l2, Nr.2, 1983.

HANDLER, W. [1982]: "Innovation Computer Architectures - How to Increase
Parallelism But Not Complexity”, in Parallel Processing Systems,

Evans, D.J. (Ed.), Cambridge University Press, 1982, GB, pp.l-41.

292

HAYES, J.P. [1978): "Computer Architecture and Organisation”,

McGraw-Hill, Kogakusha Ltd., Japan, 1978.

HIGBIE, L.C. -[1972]: "The Omen Computers: Associative Array

Processors", IEEE Comp.Conf., 1972, Digest, pp.287-290,

HOARE, C.A. [1978]1: "Communicating Sequential Processors”,

Communications of the ACM, Vol.2l, No.8, Aug. 1978, pp.666-677.

HOBBS, L.C. and THESIS, D.J. [1970]: "Survey of Parallel Processor
Approaches and Techniques", in Parallel Systems: Technology and
Applications, Hobbs et .al (Eds.), Spartan Books, New York,

1970, pp-3-20.

HOCKNEY, R.W. and JESSHOPE, C.R. [1981]: "Parallel Computers -
Architecture: Programming and Algorithms", Adam Hilger Ltd.,

Bristol, England 1981.

KNUDE, M., LANG, H.W., SCHIMMLER, M., SCHMECK, H., SCHRODER, H.
[1985] : "The Instruction Systolic Array and Its Relation to
Other Models of Parallel Computer", Proc.Int.Conf. Parallel

Computing 85, North Holland 1985.

KNUTH, D.E. [1973): "The Art of Computer Programming”, Vol. 3:

Sorting and Searching, Addison Wesley, 1973.

KUNG, S.Y. [1985]: "VLSI Array Processors", IEE ASSP Magazine, July

1985, pp.5-22.

KUNG, S.Y., LO, S.C., LEWIS, P.S. [1987]: "Optimal Systolic Design

for the Transitive Closer and the Shortest Path Problems",

293

IEEE Trans. Compt. Veol. C-36, No.5, 1987, pp.603-614.

KUNG, S.¥Y. [19871: "VLSI Array Processors”, in Systolic Arrays,

Will Moore et al (eds.), Adam Hilger, Bristecl and Boston, 1987.

KUNG, H.T. [1984]: "Systolic Algorithms for the CMM Warp Processor"”,

CMUC-CSA-84-158 (7th Int.Conf.).

KUNG, H.T. [1979]: "Let'’s Design Algorithms for VLSI System”, Proc.
Conf. Very Large Scale Integration: Architecture, Design,
Fabrication, California Institute of Technology, Jan. 1979,

pp.65-90.

KUNG, H.T. and LEISERSON, C.E. [1978]: "Systoliec Arrays (for VLSI)",

in Proc. Sparse Matrix sSymp. (SIaM), 1978, pp.256-282.

LANG, H.W. [1985]: "The Instruction Systolic Array, a Parallel
Architecture for VLSI", Integration, the VLSI Journal 4, 1986,

pp.65-74.

LANG, H.W. [1987]: "Transitive Closure on the Instruction Systolic
Array”, Technical Rep. Institut for Informatic and Praktische

Mathematik, Keil Univ., F.R. Germany, 1987.

LANG, H.W. {1987]: "ISA and SISA: Two Variants of a General Purpose
Systolic Array Avchitecture”, Proc. Second Int.Conf. on

Supercomputing, Vol.l, 1987, pp.460-465.

LANG, H.W., SCHIMMLER, M., SCHMECK, H., SCHRODER, H. [1983]: "4 Fast

Sorting Algorithm for VLSI", LNCS 154, Springer-Verlag, 1983.

LAWRIE, D.H., LAYMAN, T., BEAR, D., RANDAL, J.M., [1975): "GLIPNIR -
A Programming Language for ILLIAC IV", Comm.ACM, Vol.18, March

1975, pp.157-164.

LILLEVIK, S.L., EASTERDAY, J.L. [19841: "Throughput of Multiprocessor
with Replicated Shared Memories"”, National Computer Conference,

1984, pp.51-56.

McKEOWN, G.P. [1986]1: "Iterated Interpolation using Systolic Arrays”,

ACM Trans.Math. Software, Veol.l2, 1986, pp.1l62-170.

MEAD, C.A. [1981]: "VLSI and Technological Innovations”, in VLSI 81,
Proceedings of the lst Int. Conf. on Very Large Scale
Integration, Univ. of Edinburgh, Aug. 1981, J.P. Gray (ed.),

Academic Press, London, U.K., pp.3-11.

MEAD, C.A. and CONWAY, L.A. [1980]: "Introduction to VLSI System”,

Addison-Wesley, Reading, Mass. 1980.

MEGSON, G.M. [1984]1: "Implementing Systolic Algorithms in OCCAM",

Technical Report, Leeds University, 1984.

MEGSON, G.M. [1987]: "Novel Algorithms for the Soft-Systolic

Paradigm", Ph.D. Thesis, 014518102, L.U.T., 1987.

MOLDOVAN, D.I. [1983]: "On the Design of Algorithms for VLSI Systolic
Arrays”, Proceedings of the IEEE, Vol. 71, No.l, Jan. 1983,

Pp-113-120.

MONGENET, C., PERRIN, G.R. [1987]: “Synthesis of Systolic Arrays for
Inductive Problems"”, Lecture Notes in Computer Science 258,

Springer-Verlag, 1987, pp.260-277.

294

295

MURTHA, J. and BEADLES, R. [1964]: "Survey of the Highly Parallel
Information Processing Systems”, Prepared by the Westinghouse

Electric Corp., Aerospace Division, ONR, Rept. No. 4755, Nov.l1964.

MUSLIH, O.K., EVANS, D.J. [1987]1: "Simulation of Soft—-Systolic
Programs”, Int.Rept. No. 408, Dept. of Computer Studies, L.U.T.

1987.

NASSIMI, D., SAHNI, S. [1979]: "Bitoniec Sort on a Mesh—Connected

Parallel Computer"”, IEEE Trans. Computers, Vol. C-28, 1979.

PATEL, J.H. [1981]): "Performance of Processor-Memory Interconnections,
for. Myultiprocessors”, IEEE Trans.Comp., Vol. C-31, No.l0, Oct.

1981, pp.771-780.

RAMAMOORTHY, C.V. and LI, H.F. [1977]: "Pipeline Architecture”,

Computer Survey Vol.9, No.l, March 1977, pp.61-102,.

ROBERT, Y., TRYSTRAM, D. [1986]: "Systolic Solution of the Algebraic
Path Problem", in W. Moore, A. McCabe, R. Urquhart (eds.):

Systolic Arrays, Adam Hilger, Bristol, 1986, pp.l171-180.

RODRIGUE, G.H., [1982]: "Parallel Computations”, Vol. 1, Academic

Press, New York, 1982.

ROTE, G. [19851: "4 Systolic Array Algorithm for Algebraic Path
Problem (Shortest Path; Matrixz Inversion)", Computing 34, 1985,

pp.191-219.

SCHIMMLER, M. [1987]: "Fast Sorting on the Instruction Systolic Array”,

Inst. Fur Informatic U.P.M., Universitat. Kiel, West Germany,

296

Tech.Rept. No.8705, 1987.

SCHIMMLER, M., SCHRODER, H. [1987]: "Pinding all Cut-Points on the
Instruetion Systolie Array”, Computer Science Laboratory,
Australian National University, Canberra, ACT, 2601, Australia,

1987.

SCHMECK, H. [1986]: "4 Comparison-Based Instruction Systolic Array”,
in Parallel Algorithms and Architectures, M. Cosnard et al.,
Editors, Elsevier Science Publishers B.V., North-Helland, 1986,

pp.281-292.

SCHRODER, H. [1988): "Top-Down Designs of Instruction Systolic Arrays
for Polynomial Interpolation and Fvaluation”, Computer Science
Laboratory, Australian National University, Canberra, ACT 2601,

Australia, Feb. 1988.

SCHRODER, H., KRISHNAMURTHY, E.V. [1988]: "Generalized Matrix
Inversion using Instruction Systolic Arrays", Computer Science
Laboratory, Australian National University, Canberra, ACT 2601,

Australia, March, 1988.

SEIGEL, H.J. [1979): "Interconnection Networks for SIMD Machines”,

IEEE Computer, June 1979, pp.57-65.

SHORE, J.E. [1973]: "Second Thoughts on Parallel Processing”, Comput.

Elect.Eng., pp.925-109, 1973.

SILOTNICK, D.L., BORCH, W.C., McREYNOLDS, R.C. [1962]1: "The SOLOMON

Computer”, 1962 Fall Joint Computer Conf., American AFIPS Proc.

297

vol.22, Washington, Spartan, D.C. 1962, pp.97-107.

SNYDER, L. [1982]: "Introduction .to the Configurable Highly Parallel

Computer”, IEEE, Comput. 1982 (15), pp.47-56.

STONE, H.S. [1971]: "Parallel Processing with the Perfect Shuffle”,

IEEE 7Trans.Comput. Vol. C-20, 1971.

STONE, H.S. [1980]): "Parallel Computers"”, in Introduction to Computer
Architectures, Stcone, H.S. {ed.), SRA, Chicago, USa, 1975,

pPp-318-374.

SWAN, R.J., FULLER, S.H., SIEWIOREK, D.P. [1977]): "CM - A Modular

Microprocessor"”, National Computer Conference, 1977, pp.637-646.

THOMPSON, C.D., KUNG, H.T. [1977]: "Sorting on a Mesh-Connected

Parallel Computer”, CACM, Vol.20, 1977.

ULLMAN, J.D. [1984): "Computational Aspects of VLSI", Computer Science

Press, 1984.

UNGER, S.H. ([1958]: "4 Computer Oriented Toward Spatial Problems",

Proc. IRE, Oct. 1958, pp.l7-44.

WARSHALL, S. [1962): "4 Theorem on. Boolean Matrices”, J.Assoc.Comput.

Mach. 9, 1962, pp.11-12.

WULF, W., BELL, C.G. [1972]1: "Cmmp a Multi-Mini-Processor”, AFIPS Fall
Joint Computer Conf. American AFIPS Proc. Vol. 22, Washington,

D.C., Spartan, 1962, pp.97-107, 1972, FJOC, pp.765~777.

APPENDIX 1

Loughborough Occam™ Compiler
Version 5.0 Documentation

UNIX is a trademark of A.T. & T. Technologies Incorporated, occam is a trademark of Inmos
Limited

298

Help for running the occam compiler
A source ‘occam'’ file (OCCAM and INMOS are trademarks of the INMOS group of

companies) must be of the form '*.occ', to compile it to form an 'a.cut’' command file
use the default options. For example to compile 'my_first.occ’ :-
occam my_first.occ
An executable object 'a.out’ is produced. As a shortcut you can omit the '.occ’ affix and just
say 'occam my_first', the compiler will add on the affix for you. If a program is split {nto
several files these can be separately compiled and linked together using the occam compiler
and built in linker. Each previously compiled occam program is specified in the command
line in the form '*.0'e.g. ;-
occam main.occ numericlib.o screenlib.o
This will compile the source of 'main’ and link it in with the pre compiled library occam
files 'numericlib.occ’ 'screenlib.occ’. The -1 option is used to generate new versions of
library file objects. Various switch options are provi&ed, mainly for compiler debugging.
Flags can either be put separately (*-g -1') or together and in any order (-1g', "-gl'). The
following switches may be useful :-
g
occam -g fast.occ
Compile the occam program as before but run the resulting program immediately (a
compile,load and go option). If flag options are specified that apply to the run of the program
these will be passed on as in 'occam -gqc fast',
-1:
occam -1 new_lib
Compile the program and produce object but do not link the object files together to
produce an object program. This option is used for bulding up libraries of routines or to cut
down the compilation time for compiling one long pl-'ogram.
-0:
occam keep_it -0 saverun
Compile the program as normal but place the object program in the file 'saverun’ rather

than the default 'a.out'. Useful for saving several occam object files at the same time.

299

occam -x old_fashioned.occ
Compile according to the strict Inmos occam specification, LUT extensions (see file
'occamversion’) currently include :-
Multiple source file cross linking.
Dynamic features.
Variable PAR replicator counts.

Floating point arithmetic.

a.out -c
Run the object program with cursor addressable facilities enabled, the standard library
procedures 'goto.x.y' and ‘clear.screen’ require these facilities.
-G:
occam -G error_prone
Compiles the file as normal but generates a symbol file as well (in this case it would be
‘error_prone.sym’), this is used by the run-time system to inspect the values of variables.
q:
a.out -q
Run the object program without producing any characters to the screen other than those
output by the program (unless CTRL ¢ used). This enables occam programs to dump
output that can be processed by other occam programs.
-Fand -M:
occam -F num.occ
".F' Includes the floating point library routines to provide a simple real number arithmetic
capability. "-M' includes both the floating point and mathematical library routines to provide
mathematical library routines.
-1: |
This provides the features of the Inmos proto-occam definition (see 'occam_version’) such

as STOP and TIME, it should be used where possible as it is closer to the occam-2 definition.

300

Full list of compiler option flags

The full (often cryptic) range of switch options are as follows. Several switch flags can be
given, in any order and either separately or together. The mnemonic character giving the
switch is highlighted by a capital letter. They are divided into sections - user defined flags,
and system defined options, which are selected by prefixing with '%',

User Flags

-% The next flag(s) are system flags - switch flag mode.

-¢c Run the program with Cursor addressable options enabled. The library routines
'clear.screen’ and 'goto.x.y' need this flag set. If used for the compiler must also give

the -g option.

-¢ Produce object/run object for Execution tracing. The resulting object file is then run
with the '-¢’ option. This utility is described in 'tracerinfo’.

-f Force full occam semantic check on use of variables.
A variable (not vectors though) can not be set within a PAR construct if the
declaration is outside the PAR. This applies equally to procedure calls that change
global variables.

-g Run the resulting object file if compilation succeeded.

The program Goes immediately it is ready to.

-h Print out this 'Help' information.

-i Force an Interrupt immediately before start of execution - immediately displays the
debug help menu. This enables break and trace points to be setup prior to anything
being executed.

-1 Compile but do not link the occam source. Needed when using multiple occam

source Library files.

-m Check that every channel Match properly on execution, channels can have only one

input and one output process during execution.

—o. Produce an Object program with name given by the non-switch argument
following this switch. Enables you to choose an object file name other than
'a.out’,

-q Run the program without outputting some non occam program produced messages -

e.g. 'OCCAM Start Run'. Must give -g option as well 'q’ stands for Quiet.

301
Useful when producing output to be piped or processed by other programs.

-w Suppress the Warning messages from the compiler - when you have seen these
warnings once you may find it less irritating to suppress themon subsequent
compilations - does not affect error reporting or any other compiler action.

-x Do not permit any local LUT eXtensions in the source text. See 'occinfo’ for
information about these - for example recursion and EXTERNAL procedure

definitions. Useful if moving an occam program for use on another occam compiler
system.

-F Include the standard Floating point library routines. Provides routines to read or
write floating point routines to channels.

-G Produce a symbol table file (with affix '.sym') for use with the 'm’ option in the
dynamic debugger for symbol \}aluc examihation.

-I Permit the use of INMOS proto-occam version 2. These changes include the use of

"TIME' instead of ' NOW', the 'STOP' primitve and the use of 'Stopping IF' - an
alternative without any TRUE conditions will STOP.

-I. Use Long winded load, all the 'C' libraries are added at the last momment rather than
using the pre-linked object, this may be useful if a user occam/C library calls a 'C'
routine that is not used in the occam run time system. See 'libraryhelp’ for more info.

-M Include the Mathematical library and floating point routines.

-O Produce optimized object. May improve run time by 20%.

-R Use Randomized scheduling when running the program - the same scheduler
choices will not be made on separate executions. This gives non-deterministic
execution and will be slightly slower but may be useful occasionally.

-S Do not include the Standard I/O routines with the object. This library is included
by default, thereis no reason not to want to include it unless you want to devise a
totaliy new one.

-T The next argument is a Timing definition file built by the ‘timebuild’ utility to be used in
- - - conjuntion with the '-e' option , supplyin:c,; *-T" autornatically selects '-¢". If this option
is not selected the execution timings are taken from the source library file times'. Look
at the 'timerinfo' help file for more details.

-V The compiler will normally desist reporting errors and warnings after the first fifty or

303
anything - like -n' in the UNIX 'make' command. Useful when options start getting

complicated. A No operation facility.

Undocumented feature under test.

Do not apply some Simplifying transformations on the program. These currently
remove constructs with no processes in them and redundant SEQ and PAR headers.
These save a small amount of space and time atrun and compile time and there is
little pointin turning off this option.

Print out the procedures that have been defined in the link files but has not been
referenced - detects eXtra procedures defined across files but not used.

Produce the linker assembler output in a permanent file rather than ina temporary
file on '/tmp’. Enables the output from the linker to be debugged.

Get the linker to print out all the definitions it is told about.

304

Description of the library routines
Standard Library

Provide commonly used routines to read and write to the keyboard and screen channels.
The routines are written in 'C' and occam and use standard C or 'curses’ I/O routines.
There are also general routines for use to pause or abort a program as well as to use the
'C' random number routines. They are available by default to all programs unless the -S

compiler flag is used to override their inclusion.
EXTERNAL PROC str.to.screen (VALUE s []) :

Qutput the string s (a byte array with byte 0 as the length). The whole string is
guaranteed to be printed in one sequence, two concurrent calls to str.to.screen will
not interleave. Equivalent to the program fragment :-

PROC str.to.screen (VALUE s []) =
SEQn={1fors[BYTE 0]]
screen ! s [BYTE n] :

EXTERNAL PROC num.to.screen (VALUE n) :
Output a number to the screen. The number can be signed, and uses the minimum number

of characters (no leading spaces). Equivalent to the 'C' language ‘printf ("%d",n);'
statement.

EXTERNAL PROC str.to.chan (CHAN ¢,VALUE s []) :

Output the string s to a channel 'c’. The call 'str.to.chan (screen,"fred") is identical to
'str.to.screen (fred)’. Useful for string output to files.

EXTERNAL PROC num.to.chan (CHAN ¢,VALUEn) :

Output ascii string for the number 'n’ to channel 'c’, Like 'str.to.chan’ but for numbers
not channels.

EXTERNAL PROC num.to.screen.f (VALUE n,d) :

Output 2 number to the screen in a field of width 'd’. If the number is too big for the
field the number is written out in full regardless, the routine call num.to.screen.f (n,1) is
equivalent to num.to.screen (n). The routine uses the 'C' language printf format %nd
where n is the field width.

305
EXTERNAL PROC goto.x.y (VALUE x,y) :

Use the 'curses’ package to implement a cursor 'goto’ facility, No error checking is
made that the move is within the screen area. The x-axis is across the screen and y-axis
down, co-ordinate (0,0) is in the top left hand comer of the screen. The first line is used
by the run time system to print messages.

EXTERNAL PROC clear.screen :

Use curses to clear the screen,if cursor addressable option not used this will still try to
clear the screen using the curses "CL" termcap defined string.

EXTERNAL PROC num.from.keyboard (VAR n) :

Read a number from the keyboard and assign to variable 'n'. The routine is not very
sophisticated. It will read negative numbers (start -') and ignore any leading 'space’
characters. The number must be followed by a non-digit, this character is read by the
routine and not available on a subsequent 'Keyboard ? ch' process. There is no check
that the number is too big for the number range. It will expect at least one digit otherwiae it
will give an error message.

EXTERNAL PROC num.from.chan (CHAN c,VAR n) :

Read a number from a channel 'c’. If 'c’is the keyboard this is equivalent to calling
'num.from.keyboard'.

EXTERNAL PROC abort.program :

Force the program to abort execution. An explanatory message is printed so that the
cause will be known.

EXTERNAL PROC force.break :

Perform the same action as if 'CTRL-C' was pressed at the terminal. The user interface
routines can then be run under the menu selection facility provided.

EXTERNAL PROC random (VALUE d,YAR n) :

Return a pseudo random number in the range O to d-1 by using the 'C' 'random ()’
function in the variable n. The VALUE of d must not be zero. The sequence of random

numbers will be modified if the "-R' run option is used.

306
EXTERNAL PROC init.random (VALUE n) :

Initialise the seed for the random number generator for subsequent calls to the procedure
Tandom’'. Uses the 'C' language routine 'srandom ()",

EXTERNAL PROC trace.value (VALUE n) :

Print out the integer value of 'n' on the screen with the prefix string Trace value : ' -
this makes debugging a little easier.

EXTERNAL PROC open.file (VALUE path.name [],access [],CHAN io.chan) :

Connect the channel 'io.chan’ to a UNIX file. The procedure must be provided with the

1m n

pathname of the file as a string, and the access mode ("r" read access,"w" write
access,"a" append access). Subsequentinput or output on ‘io.chan’ will fetch/put a
single character from/to the file. Attempts to input past the end of file will receive the value
-1.
EXTERNAL PROC close.file (CHAN io.chan) :

Cease connection of the channel with its currently open file.
EXTERNAL PROC open.pipe (VALUE command.name [],access [],CHAN io.chan) :

Connect the channel 'io.chan' to a UNIX pipe running command 'command.name’. The
procedure must be provided with the UNIX command name and 'r' to read from it, or 'w’
to write to it). Subsequent input or output on 'io.chan' will fetch/put a single character
from/to the file. Attempts to input past the end of file will receive the value -1.
EXTERNAL PROC close.pipe {(CHAN io.chan) :

Cease connection of the channel with its currently active command.

EXTERNAL PROC system.call (VALUE command [J,VAR code) :

Execute the UNIX command contained in the string ‘command’ and return the value in
‘code’ TRUE if the command succeeded without error and FALSE otherwise.

EXTERNAL PROC set.timers (VALUE init.value) :

Set up the interval timers ITIMER_REAL,ITIMER_VIRTUAL to the given start value,
These are used for timing sections of code on the VAX. Uses 'setitimer’ call. Note that

307

using 'WAIT primitive will reset the timer so it can only be used for simple sections of
code. It should also be noted that it imes the whole program and not a single occam

process.
EXTERNAL PROC get.real.timer (VAR secs,micro.secs) :

Get the current elapsed timer values in seconds and microseconds. Timers count
downwards and are not especially accurate. Uses 'getitimer’ call.

EXTERNAL PROC get.cpu.timer (VAR secs,micro.secs) :

Get the current executed CPU timer values in seconds and microseconds. Timers count
downwards and are not especially accurate.

Floating Point Library
Routines to perform floating point input/output. They are available by giving the

compiler flag '-F' when linking an occam program. Floating point value can be
assigned and transmitted via channels just like normal integer values, see the file
‘occamversion’ for details as to the language extensions introduced to support them.

Input/Output Routines
EXTERNAL PROC fp.num.to.screen {(VALUE FLOAT f) :

Print out the floating point number in 'C’ language float format "%6.6f". If the number is
too small or too big the standard 'C’ action will be taken.

EXTERNAL PROC fp.num.to.screen.f (VALUE FLOAT {,VALUE w,) :

Print out the floating point number in 'C’ real format "%w.df". If the number is too small
or too big problems will arise.

EXTERNAL PROC fp.num.to.screen.g (VALUE FLOAT f) :

Print out the floating point number in ‘C’ real format "%g". This will use the most
appropriate format - exponent form if necessary.

EXTERNAL PROC fp.num.to.chan (CHAN c,VALUE FLOATf) :

Write a number to a channel. If channel is 'screen' this is equivalent to
'fp.num.to.screen’. Useful for writing data to files.

308
EXTERNAL PROC fp.num.from.keyboard (VAR FLOAT f) :

Read in a floating point number. The number is expected to begin with a digit or "'
(indicating 0.), leading spaces are ignorcd..'I'he number ends on a non-digit and this
character will not be available to subsequent reads from the keyboard channel. The
following are valid input numbers followed by the interpreted value for the input.

45.35 (45.35) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0)

EXTERNAL PROC fp.num.from.chan (CHAN ¢,VAR FLOATf) :

Read a floating point number from a channel 'c’. If channel is keyboard this is equivalent
to 'fp.num.from.keyboard'.

Mathematical Routine Library
Mathematical routines from the UNIX '-lm’ library. These are included by specifying the
'-M' flag. They are all in single precision even though double precision 'C' routines are
called.
EXTERNAL PROC fp.sine (VALUE FLOAT a, VAR FLLOAT res) :
Return the sine of 'a’ in 'res’. Angles are in radians.
EXTERNAL PROC fp.cosine (VALUE FLOAT a, VAR FLOAT res) :
Return the cosine of 'a’ in 'res’. Angles are in radians.
EXTERNAL PROC fp.arc.sine (VALUE FLOAT a, VAR FLOAT res) :
Return the arc sine of 'a’ in 'res’. Angles are in radians.
EXTERNAL PROC fp.arc.cosine (VALUE FLOAT a, VAR FLOAT res) :
Return the arc cosine of 'a’ in 'tes’. Angles are in radians.
EXTERNAL PROC fp.arc.tan (VALUE FLOAT a, VAR FLOAT res) :
Return the arc tangent of 'a’ in 'res'. Angles are in radians.

EXTERNAL PROC fp.exp (VALUE FLOAT a, VAR FLOAT res) :

Return e to the power 'a' in 'res’.

309

EXTERNAL PROC fp.log (VALUE FLOAT a, VAR FLOAT res) :

Natural logarithm of 'a’ in 'res'.

EXTERNAL PROC fp.sqrt (VALUE FLOAT a, VAR FLOAT res) :

Square root of 'a’ in res'. Returns an occam error if 'a’ is negative.

310

The run time system

As you might hope when an occam program is executed it will follow the program execution
until one of three things happen.

1] The program terminates

2] CTRL-C is pressed on the keyboard
3] An error is detected.

In the case of (2) and (3) a debug option will be displayed, this allows you to abort the
program, ignore the interrupt (continue), and to restart the program again. Other options
control the '-¢' trace output, provide a 'system' debug option (which is only really useful to
someone who knows their way around the compiler), an option to specify which source file
you warnt to debug and the 'screen animated debug'. This later option should be of most use
and is described in detail in the next section.

Errors come in two types Fatal Errors' and just 'Errors’, it is not possible {(or wise) to
continue execution after the former, but the latter may be ignored if the symptom is expected.

The run ime display deBuggcr

This utility that runs under the run time system enables users to look at the status of the
processes during execution of a program.

The utility requires the use of a cursor addressable terminal. The system provides selective
display of the source file(s) that were compiled to form the program together with a column
showing the currently existing processes on those particular lines of the source file.

When initially entered by pressing ‘CTRL-C' the program execution will be halted, the
execution can be restarted in 'stepped mode' so that the display will be updated every occam
scheduler action.

Breakpoints and trace points can be added at selected line numbers. Break points cause
the debug display tol be automatically entered when any of the process executes any of the
source lines on which a break pointis set. Trace points cause temporary entry into the
debug display before resuming normal execution after five seconds pause. |

If a file has been compiled with the -G’ flag then the value of occam variables and the status
of channels can be printed. Because an occam program can have several processes running
with different values to the same identifiers (e.g. within PAR n =[0 FOR 7],'n" has a

different value for each separate process) a single process must be selected as before this

311
facility can be used. When selected a second window within the debug display is opened and

the values printed by the program are placed within it.

Straightforward use of the debug display will normally entail running a program and
pressing CTRL-C when a dubious section of code is about to be executed and entering the
debug display ('z' command). Thereafter the commands 'p' to find the next process, 'f’
and b’ might be used to see whereabouts the process is executing. The program can then be
single stepped through using the 'r' command to start execution and 's' command to stop
execution. Eventually exit of the debug displayer can be made with the 'x’ command.

There are two special markers that are used, ">' on a line indicates the currently selected line
and '-' the currently selected process.

The commands where practical have been made similar to those in UNIX 'vi'. (UNIXis a
trademark of A. T. & T.).

Available commands
Moving about within the file

AD- Move forward half a page of source text.

AF- Move forward a page of source text.

AU- Move backward half a page of source text.

AB- Move backward a page of source text.

:<number> - Move to given line <number> in file.

k - (or ’K) Move down one line.

J 2 (or AJ) Move up one line.

/<string> - Find given <string> in file from current position.

n - Find next string occurrence for match string selected by /' command.

P - Find the next process in the file.

Trace/Bre ints

b - Add breakpoint at currently selected line.

t - Add tracepoint at currently selected line.

d - Delete the trace/break point at the selected line.
¢ - Delete all the points in the current file.

C - Delete all the points in all the files.

P - Print process status of the currently selected process .

312

D - Deselect the current debug occam process.

S - Select the current debug occam process.

N - Select next process on the same line, if there are several processes that are shown as
executing on the same line then 'S’ will make an arbitrary choice, 'N' can be used to override
this and step through the processes until the one that is desired is selected.

Svmbol inspection

m - Select a symbol to display, if no symbols have been selected before then the symbol
window is opened and the value of the variable or the status of a channel.

M - Repeat the previous 'm' command. To find the value of the same variable name again.
Execution control

a - Abort the run.

r - Run debug display if a debug process is selected the debug display will be re-entered
every time that process is run, otherwise the debug display will be run each time any process
is run.

> - Execute in single step mode. Only a single step is executed.

s - Stop the debug display from running temporarily after a 't or '’x' command.

u - Change display step interval (initial step interval is 1), this permits the location of
processes to be seen after 'n' steps rather than after each and every time it is executed. Not
particularly useful.

x - Exit display debugger, program will proceed normally until a trace/break point is found or
'‘AC' is pressed.

X - Exit to main *C’ menu so that program restart,abort,file selection or system debug can
be done. Used when you wish to debug a different file or to set things going again after
setting up breakpoints.

Miscellaneous

? - Print out this help information.

AL- (or *R) Redraw the current displayed information.

i - Buffer keyboard channel input text for the program.

O - Print overall data about the pr(;ccsses currently executing - how many are in each
process status, stack use and clock time.

V - Display the occam program's current screen output temporarily .

313

v - Invoke the 'view' command on the occam source file (this is just like 'vi' but with read
only access to the file - This can be used to provide more powerful string search facilitdes
when debugging.
Display key
The column between the line number and the text is used to display the number and status of
processes executing on that line. Because of the compilation these may be out by a line or
two in some circumstances. Most sequential code will be executed as a single block - so a
process will not move through a SEQ block one step at a time necessarily.
The special symbol P’ does not represent a process, it indicates that a procedure has been
called at that point. 'P' therefore represents the 'call point' of the procedure.
The following symbols are used to represent the various process statii :-
* - An active process - may be chosen for execution at any time.
a - Process waiting for one or more ALT guards to become TRUE.
w - Process waiting for a clock time or for input/output.
¢ - Process is waiting for one or more child PAR processes to terminate.
In addition break and trace points are indicated in the column by giving a 'T" for a trace
point and ‘B’ for a break point.
So a display of -
316:3*w : occam.s ? razor
indicates that there are three active processes and one process waiting input on line 316.
Keyboard and Screen input/output
Because the debug display routine is fully interactive the screen and keyboard data from
the program can not be handled in the same manner as normal. Input for the keyboard must be
input using the 't command - a whole line can be input and will be buffered up for program
input in this way. Screen output should be displayed as it is produced (but a copy of it will
be sent to the screen image that will redisplayed on exit from the display debugger) or the V'
-command. Strings can have cscabcs in them "n' means newline,*r’ carriage return ahd k!

space.

314

Non standard occam features

This compiler to the best of my knowledge (Mr.R.P. Stallard of the Department of
Computer Studies, Loughborough University of Technology, U.K.) implements the
occam language as defined in the occam programming manual published by INMOS
- limited subject to a few restrictions and extensions that are described in this file. These
differences are intended to make transfer of occamn programs from different
implementations feasible. It is intended to be compatible to the INMOS booklet version
and the Prentice Hall book definition. OCCAM,INMOS and Transputer are registered
trademarks of the INMOS Group of Companies.

INMOS proto-occam language revisions

The following additional features introduced into INMOS occam products can now be
selected by the compiler flag option *-I'.

STOP primitive.
TIME channel.
IF on finding none of the conditions TRUE STOPs.

Restrictions
These restrictions are either optional features as described in the published language
definition or compiler restrictions unlikely to limit ordinary use of occam.
No configuration section nules.
The operator ">>' uses VAX shift right operator.
No prioritized PAR, all parallel processes have equal priority.
Number of arguments to a procedure limited to 255 maximum.
AFTER returns a time difference not a boolean value.
Extensions
PAR replicator count and base can be variables
A variable number of processes can be created by replicated PAR.

Recursive calls to procedures permitted

A procedure can call itself,
Screen channel can be used by more than one process

The special screen channel can be accessed by any number of different
occam processes. This facilitates debugging of occam programs and is not
difficult to implement.
Multiple source file compilation

Procedures and Variables can be defined in one file and referenced in another.
The definition is preceded by the new keyword 'LIBRARY"' before 'PROC' and the
definition must be at the outer level of program nesting.

References to procedures in other files are defined by preceding 'PROC' by

315
'EXTERNAL' and replacing the '=" start of procedure definidon by "' to indicate end
of definition.

e.g.
File main.occ File sub.occ

EXTERNAL PROC f (valuen): LIBRARY PROC f (value n) =
SEQ SEQ
f(27) num.to.screen {n*102)
str.to.screen ("Enter next"):
The two files can be compiled by :-

occam main.occ sub.occ to compile both together
occam sub.occ -1 to compile sub.occ separately
occam main.occ sub.o to link in the pre-compiled sub.occ file

In 5.0 this has been extended to variables and channels, in the case of vectors of
variables and channels the size need not be specified but the type must be :-

Defining file :-

LIBRARY CHAN network,comms [56] :
LIBRARY VAR blot [BYTE 4],spot [42] :
LIBRARY VAR FLOAT hyper,bolic [2],active [17] :

Referring file :-

EXTERNAL CHAN network,comms [] :
EXTERNAL VAR blot [BYTE],spot [],bolic [FLOAT] :
EXTERNAL VAR FLOAT hyper,active [] :

Floating point arithmetic

The compiler permits the use of floating point numbers and arithmetic operators.
The compiler uses 32 bit VAX floating point throughout.

Floating point numbers are declared by following VAR by the new keyword float :-

VAR FLOAT x,y,factor : -- Floating point number declaration
VAR num,ply : -- Normal occam variables.

Floating point number constants are supported these may be in two forms with
decimal point or with decimal point and exponent :-

x:=145

316
y :=2.3e-23 + 3.4e+1 -- Note that the exponent must be given asign

The following operators may be used on floating point numbers (both operands
must be floating point)

+ - ¥ [< > <= >= = <> - (monadic minus)
x = 1.3 + (y * factor)
IF
x> 67.8
y:=-34 -- Note use of monadic minus.

Parameters to procedures must also have type set to VAR FLOAT or VALUE
FLOAT - the actual parameters must be of the same type. '

PROC sum (VALUE FLOAT a [],b[],VAR FLOAT res [, VALUEnn) =
PAR i=[0 FOR n]
res[i]:=af[i]+b[i]:
VAR FLOAT t [23],s [45],w [32] :

sum (t,s,w,12)

Floating values may be transmitted along channels - but there are no checks that
the sender and receiver both expect floating point values. Input of floating point
numbers can be carried out by calling the library routine 'fp.num.from.keyboard'
and output by the routine 'fp.num.to.screen’.

Interconversion of floating point and integers is performed by the assignment

operator :-
num:=x -- Convert floating 'x' to integer 'num'’
y:=num -- Convert integer 'num' to floating 'y’

Attempts to use logical and shift operators on floating point numbers are flagged as
€ITOrS.

APPENDIX I1

THE SOFT-SYSTOLIC SIMULATION SYSTEM

(SSSS) PROGRAM LISTINGS

1. 1Isa

2. PROCESSING CELL

3. PLUG

4. RISAL COMPILER

317

—— PROGRAM NO. 4.3.1.A.
—— THE INSTRUCTION SYSTOLIC ARRAY (ISA).

-- Notes:

- Implements an orthogonally connected grid of processors,
- each processor can be plugged into the system or a group
- of processors can be plugged into the same grid point.
- Programs and data are read from files and buffered into
- the array. Results are read from any of the four boun-
- daries as dictated by the program. The grid cannot be

- closed down systolically, the program termination is

- performed by an abort at the end of the user program.

-—- Dimensions of array and interface routines.
DEF n = 4

EXTERNAL proc abort.program :

EXTERNAL proc open.file{value path.namef],access{],chan io.chan):
EXTERNAL proc close.file{chan io.chan)

EXTERNAL proc str.to.chan(chan c, value s[]) :
EXTERNAL proc fp.num.to.chan(chan ¢, value float f)
EXTERNAL proc fp.num.from.chan(chan c, wvar float f)
EXTERNAL proc num.to.chan(chan ¢, value n)
EXTERNAL proc num.from.chan(chan c, var n)
EXTERNAL proc str.to.screen{value s[]) :

EXTERNAL proc fp.num.to.screen(value float f) :
EXTERNAL proc num.to.screen{value n) :

EXTERNAL proc fp.num.from.keyboard(var float f)
EXTERNAL proc num, from.keyboard{var n}

-— Plug to expand system, each plug point can be an
-— m*m ISA grid.

EXTERNAL proc plug(chan wn,we,ws,ww,rn,re,rs,rcw,
in,is,sw,se |

—-~ Plug/processor grid allocation function.

PROC loc(VALUE i,j, VAR r}) =
SEQ
r := (((i-1)*(n+1))+3)-1

-—- Sequential to parallel program bus expander.

PROC source{CHAN outl[], link, VALUE t)=
VAR k,i,j,buffer[n]
CHAN ptr
SEQ
IF
t=20
open.file("selector","r",ptr}
TRUE '
open.file("instruct”,"c",ptr)
num. from.chan(ptr, k)

link!k
SEQ i=[1 for k]
SEQ
- str.to.screen("*n")
IF

i»k

PAR j=[1 for n]

VAR tl :
SEQ 318
loc(j,1,tl)
out{tl])!0
TRUE
SEQ
SEQ j=[{1 for n]
SEQ
num. from.chan{ptr,buffer(j-1})
- IF
- t =290
—_ SEQ
- num. to.screen(buffer(j-1])
- str.to.screen{(" ")
PAR j=[1 for n)
VAR t1
SEQ
loc(j,1,tl)

out[tl])!buffer(j-1]
close.file(ptr)
str.to.screen("*n Source closed")
link:!0

~— Garbage collector.

PROC sink(CHAN in[], link)} =
VAR i,j, k
SEQ
link?k
SEQ i=[1 for k]
PAR j =[1 for nj}
VAR tl
SEQ
loc(j,n,tl)
inftl+ljzany
str.to.screen("*nsSink closed")
linkzany

-- Data bus expander.

PROC data.source(CHAN ans{],bns(],awe[],bwel],link) =
DEF n2=2*n,n3=3#*n
VAR k,i,3., t :
VAR FLOAT buffer[4*n]
CHAN ptr :
SEQ
open.file("datain","r",ptr)
num. from.chan(ptr,k)
link!k
str.to.screen("*nk = ")
num.to.screen(k)
SEQ i=[1 for k]
SEQ
str.to.screen("*ni = ")
num.to.screen(i)
SEQ j=[0 for 4]
IF
i <=k
SEQ
num. from.chan(ptr,t)
- str.to.screen{"*n")
IF
t <0
SEQ z =[0 for n}

buffer((j*n)+ z] := 0.0
TRUE 319
SEQ z =[0 for n]
SEQ
fp.num.from.chan(ptr,buffer[(j*n)+z])
- fp.num.to.screen(buffer[(j*n)+z))
TRUE
SEQ z=[{0 for n]
buffer[{(j*n)+z] := 0.0
PAR j=[1 for n]
VAR tl,t2
SEQ
loc(j,1,tl)
loc(j,n,t2)
t2 = t2 + 1
PAR
bns{tl]!buffer(j-1]
bwe[t2]!buffer[n+(j-1)]
awe[tl]!buffer[n3+(j-1)]}
ans{t2]!buffer[n2+(j-1)]
close.file(ptr)
str.to.screen{"*n Data Source closed")
link!0.0

—-- Parallel to sequential bus condenser.
PROC data.sink{ CHAN ans[],bns[],awe[],bwe[], link)

DEF n2=2#*n, n3=3*n
VAR k,1,]

VAR FLOAT bufferf[d#*n]
CHAN ptr
SEQ .
open.file{"dataout”,"w",ptr)
link?k
SEQ i=[1 for k]
SEQ
PAR j=[1 for n]
VAR tl,t2 :
SEQ

loc(j,1,t1)
loc(j,n,t2)
t2 = t2 + 1
PAR
ans[tl)?buffer(j-1]
awe{t2]?buffer[n+(j-1}]
bns[t2)?buffer{n2+(j-1))
bwe[tl]?buffer[n3+(j-1)]
SEQ
SEQ j=[0 for 4]
SEQ
str.to.chan(ptr,"#n")
SEQ z=[0 for n)
SEQ
fp.num. to.chan{ptr,buffer[(j*n)+z])
str.to.chan(ptr," ")
str.to.chan(ptr,"*n")
close.file(ptr)
str.to.screen("*n Data sink closed")
link ? any
abort.program :

-— Main program.
-— Setups and starts the isa grid.

DEF size = n*(n+l) :
CHAN ans[size),bns[size],awe[size],bwel[size],sel[size],ins[size]:

CHAN link([3} :
VAR i,j : 320
PAR

—— The grid.

PAR i=[1 for n]
PAR j=[1 for n]
VAR tl1,t2,t3,t4
SEQ
loc(i,j,tl)
loc(j,i,t2)
t3 :=ti+l
td := t2 + 1
plug(ans[t2]),awe[t3],bns(td],bwe[tl]), bns(t2],bwe[t3],
ans[td],awel[tl],ins[t2],1ins[td],sel[tl]),sel[t3])

—-- Program interface.

source{sel,link([0],0)
sink(sel,link[0])

source{ins,link[1],1)
sink{ins,link[1])

—— Data input/output.

data.source({ans,bns,awe,bwe,link[2})
data.sink(ans,bns,awe,bwe,link[2]})

-— PROGRAM NO. 4.3.2.
—— THE PROCESSING ELEMENT.

-~ Notes:

-— General processor to illustrate the development of
-— a PE for the ISA grid, it is placed in the grid by a
- plug procedure which allows the same defintion to
- implement a grid of processors and is control by a
- assembler program generated by the RISAL.P compiler.

EXTERNAL proc num.to.screen{(value n) :
EXTERNAL proc fp.num.to.screen{value float f)
EXTERNAL proc str.to.screen(value s[])

LIBRARY PROC PE(CHAN wn,we,wsS,wWwW,In,re,rs,rw,
in,is,sw,se)=
DEF msize = 20:
VAR FLOAT a,b, mem[msize],c, 1.0.buf[d4] :
VAR i,j,s,port,pid],fd(4],0p,0ld.i,old.s
VAR running :

SEQ
running := true
mem[1l] := 0.0
mem[0] := 0.0
cld.i := 0
old.s := 0
WHILE running
SEQ

—— Fetch instruction.
c := mem[l]

PAR
in?i
islold.i
SwW?s
selold.s
wnlc
welc
ws!lc
wwlc
rn?i.o.buf[0]
re?i.o.bufll]
rs?i.o.buf(2]
rw?i.o.buff3]
old.s := s
old.i = i

—— Decode intstruction.

SEQ
SEQ j =[0 for 4]
SEQ
fd[j] := i\100
i «= 1i/100
port := £d4d[2]
op := £d[3]

—-— Communication enable,
SEQ

SEQ i=[0 for 4]
SEQ

pli] := port\2
port := port/2
SEQ i=[0 for 4]
IF
pli] =1
mem[i+3] := i.o.buffi]

Execute instruction.

a := mem[fd[1]]
b := mem[£4[{0]j]
IF
(5¢<>0) AND (op <> 0)
iF
op =1
mem([1l] := mem{0Q]
op = 2
mem[0] := a + b
op = 3
mem{(0] := a - b
op = 4
mem{0] := a * b
op = b
mem{Q0} = a / b
op = 6
SEQ
Ir
a<b
mem[0] := a
TRUE
mem[0] := b
op = 71 _
SEQ
IF
a > b
mem{0] := a
TRUE
mem{0] := b
op = 8
mem{l] := mem[£d[1l]]
op = 9

mem[£4[0]}:= a

322

323

-~ PROGRAM NO. 4.3.1.B.
—— THE PLUG PROCEDURE.

~~ Notes:

- Single processor plug use to plug a processor
- into the grid. '
EXTERNAL proc PE(CHAN wn,we,ws,wWw,rn,re,rs,rw,in,is,sw,se):

LIBRARY PROC plug(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)s=
SEQ
PE{wn,we,ws,wWww,In,re,rs,rw,in,is,sw,se) :

(* PROGRAM NO. 5.3. *)
(* THE RISAL COMPILER *)

(* This compiler is used to compile the RISAL language *)
{* and develop the ISA programs *)

program lan(input,output,error,keywords);
label 99 ; (* for abort *)
const
asig= 4; nsig=8;
size = 20; bufsize = 80;
com= 44; sem = 59; col = 58;
rtbk = 41; 1lbk = 40; aend = 101; rep =103; repl=106; p=104;
d = 105; s = 4; none = 102;
srbk = 93; slbk = 91;
type
words = array([l..asig] of char;
var
tk,f,n,k,count,statcount, rpos,cpos,int,lim:integer;
mwords,linecount,errs,sindx : integer;
progm,data, selector,eflag,drepflg : boolean;
number :array[l..nsig] of char;
saveline:array[1..2000] of integer ;
kword:array[l..size] of words;
tval:array[l..size] of integer;
buf:array[l..bufsize] of char;
error,keywords:text;

procedure intialise;
(* set up current keywords and intial values *)
var i,j : integer;
ch : char;
begin

(* get keywords *)
reset(keywords);
read({keywords,mwords); readln(keywords);
if mwords > size then
begin
writeln(’'Too many words in vocabulary'):
goto 99 :
end;
for i := 1 to mwords do
begin
for j := 1 to asig do
read(keywords, kword[i}[j]);
repeat read(keywords,ch} wuntil ch =" 7;
read(keywords,tval(i)); readln(keywords);
end;

rpos := 0; cpos:= 0; linecount := 0; errs := 0;
eflag := false; drepflg := false;

rewrite{error);
(* keywords array now contains keywords *)
end; .

procedure m(i,j:integer);
(* error message routine *)
var k :integer;
begin

(* book keeping *)
for k := 1 to 11 do write(error,’' ');
if eflag then
begin
for X := 1 to rpos do write(error,buf(k]);
writeln(error};
eflag := false;
end;
(* format message *)
if (1<>»9) and (i<>10) then
begin
errs := errs + 1;
write(error,linecount,’:’);
for k := 1 to (cpos - 1) do write{error,’-");
write(error,’""');writeln{error);
end; .
case i of
l:writeln(error, 'program must start with p,d, or s');
2:writeln(error, "expected’’ (' 'but found’'’’,buf(cpos], "'’);
3:writeln(error,’expected’’)’’but found’’’,bufi{cpos]),’ "'’);
4d:writeln(error,’'expected’’:'",’";'! ,or''end"’or'"'})’'"'");
S:writeln(error,’too many data elements’);
6:writeln{error,'incorrect data boundary spec’);
7:writeln{error,’'expected integer arguments’);
8:writeln(error,’'expected *":77,t";r"r1);
9:writeln(error,’errors detected = ",errs);
10:writeln(error,’'no errors detected’);
ll:writeln(error,"expected integer operands in instruction’};
l2:writeln(error, 'should be real value in data expression’);
13:writeln(error,’require integer in rep count parameter’};
l4:writeln{error,'more than required number of statements’);
15:writeln(error,’attempt to read past end of file’};
l6:writeln(error,’alphabetic string found require keyword’};
17:writeln(error,'invalid character’);
18:writeln{error,’selector should be "70'', or "*1'7"7};
19:writeln(error,'malformed expression’);
20:writeln(error,’expected "'['’, OC ,"']1"77);
end;
(* fatal message abort *)
if j = 1 then goto 99
end;

procedure getc(var ch:char);
(* maintain buffer of characters *)
begin
if rpos=cpos then
if eof then m(15,1)
else
begin
{(* £il1ll buffer *)
cpos := 0; rpos :=0;
while not eoln do
begin
(* skip white space *)
rpos := rpos + 1;
repeat
read(buf(rpos]); _
until not (ord{buf{rpos}) in [0..9,14..31]);
end;
(* book keeping *)
eflag := true; linecount := linecount + 1;
readln;
rpos := rpos + 1;
buf{rpos} := " 7;
end;
cpos := cpos + 1;

‘-‘

ch := buf[cpos];
end;

function token(var f:integer) :integer;
(* lexical analyser *)
var
i,first,last,ptr,sign : integer;
letter,digit,punc: set of char;
flag : boolean;
string: words;
ch : char ;
begin
(* make sure there is a token and it
can be recognized *)
token := -1;
punc ¢ = [r rrf)r'r(r'r'lrr'.r'
letter :=["a’'..'z2',’A'..'Z2"']);
digit := [707..'9"'];
getc(ch);
(* skip leading blanks *)
while ch = * ' do getc(ch);
(* skip comment *)
if ch = *{" then
begin
while ch <> '}’ do getc(ch);
getc(ch); '
end;
(* skip trailing blanks *)
while ch = " ' do getc(ch);
(* £find token *)
if ch in letter then

begin
first := 1; last := mwords;
for i := 1 to asig do string[i]
i = 0;
{* collect identifier *)
repeat

i =1+ 1;
if i¢= asig then string[i] :=
getc{ch);

until not((ch in letter) or (ch in digit)};

f := 2; cpos := cpos - 1;
(* search for keyword *)
repeat
flag := true; i:=0;
ptr := (first + last) div 2;
repeat
ix=14+ 1;

if ord(string[i]) < ord(kword[ptr][i]) then

begin

ch;

A AAPRE SR R

!

F .

flag := false; last := ptr -1;

end;

if ord(string{i]) > ord(kword(ptrjfil}) then

begin
flag := false; first :=
end;

until(not flag) or (i = asig);

until(first > last) or flag;

(* convert to token value *)

if flag then token := tvallptr]

else m(16,0);
end

else if (ch in digit) or (ch = '+') or (ch

begin
{(* convert to number *)
f:= 0; i:=1; int := 0; sign

1;

r

ptr + 1;

r-*) then

326

if ch = -’ then sign := -1;
repeat
if i <= nsig then
begin
number{i] := ch; :
int := int*10 +(ord(ch)-ocd(707));
getc(ch};
i =14+ 1;
end
until not (ch in digit);
int := int * sign;
if ch = *.' then

begin
£ := 1;
repeat

if i <= nsig then number(i] := ch;
getc(ch);
i =14+ 1;
until not{(ch in digit);
end;
cpos := cpos - 1;
token := i-1;
(* integers are converted to numeric wvalue
reals remain as strings *)
end
else if ch in punc then
(* punctutaion symbols #*)

begin
f := 3;
token := ord{ch);
end
else m(17,0)

end;

procedure outpt(lim,com,typ :integer);
(* construction of data,program or selector file *)
var i,j : integer;
begin
(* decides on replicated construct and checks
for more data than specified #*)
if (lim > n-count) and {not drepflg) then m{6,1)
else if lim = 0 then
begin
if typ = 1 then
for i:= 1 to com do
write(number(i})
else
begin sindx := sindx + 1;
saveline[sindx] := com;
write(com)’;
end;
count := count + 1;
if count < n then write(’' *)
else writeln;
end
else
for i := 1 to lim do
begin
if typ=1 then
for j := 1 to com do
write(number(j])
else
begin sindx := sindx + 1;
saveline[sindx] := com;
write(com);
end;

327

count := count + 1; 328
if count < n then write(’ ')
else writeln;
end;
end;

procedure repr(var lim:integer});
(* process replicator *)
begin
if token(f) <> 1lbk then m(2,0); tk := token(f);
if £=0 then lim := int else m(13,1);
if token(f) <> rbk then m{(3,0}); tk := token(f);
end;

procedure sline;
(* line of selector file *)
begin
repeat
if (£=0) and ((int = 0)or(int=1)) then outpt(0,int,0)
else if tk = rep then
begin
repr{lim);
if (f=0) and ((int=0}or(int=1}) then
outpt(lim,int,0)
else m(18,1);
end
else m{19,1);
tk := token(f);
if {(tk<>ceol) and (tk<>com} and (tk <> aend)
and (tk <> srbk) then m{4,0};
if { tk = com) or {tk = srbk) then tk := token(f);
until (tk = col} or (tk = aend) ;
end;

procedure dline;
{* line of data *)
var save : integer;
begin
if tk = none then
begin
save := count; count := n;
outpt(0,-1,0);
count := save;
tk := token(f);
end
else
begin
if tk <> rep then
outpt{0,0,0); count := count - 1;
while (tk <> sem) and (tk <> col) and (tk<>aend) do
begin
if (tk = rep) then
begin
repr(lim);
save := count; count := n;
drepflg := true;
outpt(lim,-1,0);
drepflg := false;
count := save;
end
else Dbegin tk := token(f); if f= 1
then outpt(0,tk,1l) else m(12,0);
end;
tk := token({f);
if tk = srbk then tk := token(f)
end;

end;
end;

function inst: integer;
(* check instruction format *)
var coma,port,j : integer;

begin
{* decipher communication ports *)
port := 0; j:=1; coma := tk;
repeat

tk := token(f);
if (tk in [1,2,4,8]) and (j<=4)then
begin
port := port + tk; j := 3 + 1;
end
else
if {j > 4} and (tk in [1,2,4,8]) then m(5,1);
until tk = com;
(* construct ISA assembler instruction *)
coma := coma * 100 + port ;tk := token(f};
if £=0 then coma := coma*100 + int else m(11,0)};
if token(f) <> com then m(4,0); tk:= token{f);
if £=0 then coma := coma*1l00 + int else m(1l1l,0);
inst := coma;
end;

procedure instruction;
(* instruction line *)
var lim : integer;
begin
lim := 0;
if tk <> rep then outpt(lim,inst,0)
else '
begin
repr(lim); outpt(lim,inst,0);
end;
end;

procedure line ;
(* process a general line *)
var j,cl ,1i,1l: integer;
begin
J = 9;
if progm then
(* line is in program *)
repeat
tk := token(f);
if tk = repl then

begin
sindx := 0;
repr(cl);

if tk <» slbk then m{20,0);
tk := token(f); instruction
for i =1 to (cl-1)
do begin for 1 := 1 to sindx do

.
I

begin write{saveline[l]);
if 1 < sindx then

write(’ ')
end;
writeln
end;
tk := token{f);
if tk <> srbk then m(20,0);
end
else instruction;
tk := token(f);

329

if (tk <> col} and (tk<>sem}) and 330
(tk <> aend) then m{(4,0);
until (tk = col) or {tk=aend)
else if data then
(* line is from data *)
repeat
count := 0;
tk := token(f);
if 3 > 8 then j := 1;
if (tk<>j) and {tk<>none)} and (tk<>rep)
and (tk <> repl) then m{8,0);
if tk = repl then :
begin sindx := 0;
repr(cl);
if tk <> slbk then m{20,0);
tk := token(f);dline;
for i := 1 to cl-1 do
begin
for 1 := 1 to sindx do
writeln(saveline[l]};

end
end
else dline;
] 1= j * 2

]
if (tk<>col) and (tk<>sem)
and (tk <> aend) then m(4,0);
until {(tk=col) or (tk = aend)
else if selector then
{* line is from selector *)
begin
tk := token{f);
if tk = repl then
begin
sindx := 0;
repr{cl);
if tk ¢> slbk then m{(20,0};
tk := token(f); sline;
for i := 1 to cl-1 do
begin for 1 := 1 to sindx do
begin write(saveline{ll});
if 1 ¢ sindx then
write(’ ')

end;
writeln
end;
end
else sline;
end
else m(1l,1);

end;

procedure setup;

(* decipher file header¥*)

begin
tk := token{(f};
if £f=0 then n:= int else m(7,1);
if tcken{(f) <> com then m(4,0);
tk := token(f);
if £=0 then k := int else m(7,1};
write{k);writeln;

end;

procedure prog;
(* process input file *)
begin

progm := false; data:= false; selector : falsé;

tk := token(f); 331
(* decide file type *)
if (tk<>p) and (tk<>s) and (tk<>d) then m(1,1)
else
case tk of
p : progm := true;
d : data := true;
s : selector:=true;
end;
(* dimensions of ISA *)
if token{f) <» 1lbk then m(2,0);
setup;
if token(f) <> rbk then m(3,0);
statcount := 0; .
(* process lines of file *)
repeat
count := 0;
line;
if (tk<>aend) and (tk<>col) then m(4,0);
statcount:= statcount + 1;
if statcount>k then m(14,0);
until tk = aend;
{if errs = 0 then m(10,0) else m(9,0)}
end;

(* main program *)
begin
intialise;

prog;
99 :end.

APPENDIX III

RISAL PROGRAM LISTINGS

332

p(4,34)

{ NO. 6.2.1 }

{ Program for matrix transpose 4*4 }

data n,3,0; rep(3) null ,0,0:

rep(2) data n,3,0; rep{(2) null ,0,0:

rep{3) data n,3,0; nulll ,0,0:

rep(4) data n,3,0 :

null ,0,0; rep(3) data n,3,0:

rep(2) null,0,0; rep(2) data n,3,0:

rep{(3) null ,0,0; data n,3,0:

rep(4) null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,0,0:

data s,5,0; null,®,0; data e,4,0; data w,6,0:
data e,4,0; data w,6,0; data n,3,0; null ,0,
rep{2) null,0,0; data s5,5,0; null ,0,0:

data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0
data n,3,0; data e,4,0;data w,6,0; null ,0,0:
data s,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data s,5,0; rep(2) null ,0,0:

data s,5,0; data n, 3,0, rep{(2) null ,0,0:

null ,0,0; data s, 5,0; rep(2) null ,0,0:

data e,4,0; data w,6,0, rep{2) null ,0,0:

null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data s,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data s,5,0; rep{(2) null ,0,0:

rep(3) data s,5,0; null ,0,0:

repl(Z)[rep(4) data 5,5,0]:

null ,0,0; rep(3) data s,5,0:

rep(2) null ,0,0; rep(2) data s,5,0:
rep(3) null ,0,0; data s,5,0:
rep(4) null ,0,0

end

d(4,34)

{ NO. 6.2.1 }

{ Data file for matrix transpose 4+%4 }
n 13.0,0.0,0.0,0.0;
none ;none;none:

n 9.0,14.0,0.0,0.0;
none;none;none:

n 5.0,10.0,15.0,0.0;
none ;none;none:
nl.0,6.0,11.0,16.0;
none;none;none:

n 0.0,2.0,7.0,12.0;
none;none;none:

n 0.0,0.0,3.0,8.0;
none;none;none:

n 0.0,0.0,0.0,4.0;
none;none;none:
repl(27)[rep(4) none]
end

333

Selector file for matrix transpose 4%*4 }

o
— an —
o~ o oo
- - - — —
—— (= }] o O < b2l
- - - —r
— =) cCO O — O, o7
. .~ . - O e DO T
™~ [= | - -~ - — - —
. B eh 8 A et b 44] (Y} 00] s wr e LI o I ey | O
—\D COO0 ™ —~—0O =] ~ OO0 O —— o0~
<y L O a2 K a B N o TR o I N A e N a8 X o B SN A -
m - OO A = M DA M OO PN e N OO
-~Q L e e T = T T T ¥ L e S
TZ2NO-H - o 4 O i AL O 0T
— « m s a D W e QO o~ OOV -~
Vet = A e N MO HeleAd W MO0 - MWW He A N R

334

p(4,38)

{ NO. 6.2.2 }

{ Program for LU decomposition 4*4 matrix }
{ load matrix}

data n,3,0; rep(3) null n,0,0 :

rep(2) data n,3,0; rep(2) null n,0,0:
rep(3) data n,3,0; null n,0,0 :

rep(4) data n,3,0:

{ start factorisation}

mov s,1,7; rep(3) data n,3,0:

data n,3,0; mov s,1,7; rep(2) data n,3,0:

div ,7,3, data n,3,0; mov s5,1,7; data n,3,0;
copy ,0,0; null ,0,0; data n,3,0; mov s,1,7:
null ,0,0; data w,6,0; null ,0,0; data n,3,0 :
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; sub ,7,0 ; mult ,3,6; data w,6,0 :
null ,0,0; copy ,0,0; sub ,7,0; mult ,3,6 :
null ,0,0; mov s,1,7; copy ,0,0; sub ,7,0 :
null ,0,0; data n,3,0; mov s,1,7; copy ,0,0 :
null ,0,0; div ,7,3; data n,3,0; mov s,1,7:
null ,0,0; copy ,0,0; null ,0,0; data n,3,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; data w,6,0:
rep(2) null ,0,0; sub ,7,0; mult ,3,6:

rep(2) null ,0,0; copy ,0,0; sub ,7,0:

rep(2) null ,0,0; mov s,1,7; copy ,0,0:
rep(2) null ,0,0; data n,3,0; mov s,1,7:
rep(2) null ,0,0; div ,7,3; data n,3,0 :
rep(2) null ,0,0; copy ,0,0; null ,0,0

rep(3) null ,0,0; data w,6,0:

rep(3) null ,0,0; mult ,3,6:

rep(3) null ,0,0; sub ,7,0:

rep(3) null ,0,0; copy ,0,0:

{ read result}

data s,5,0 ; rep(3) null ,0,0:

rep(2) data s,5,0; rep(2) null,0,0:
rep(3) data s,5,0; null,0,0:
repl(3)[rep(4) data s,5,0]}:

null ,0,0; rep(3) data s,5,0:

rep(2) null ,0,0; rep(2) data s,5,0:
rep(3) null ,0,0; data s,5,0:

rep(4) null ,0,0

end

d(4,38)
{ NO. 6.2.2 }
{ Data file for LU decomposition 4*4 matrix }
n 3.0,0.0,0.0,0.0;
' none; none; none:
n 2.0,4.0,0.0,0.0;
none; none; none:
n 4.0,2.0,1.0,0.0;
none; none; none :
n2.0,1.0,5.0,2.0;
rione; none; none :
n 0.0,3.0,2.0,1.0;
none; none; none:
n 0.0,0.0,3.0,3.0;
none; none; none:
n 0.0,0.0,0.0,2.0;
none; none; none:

repl(3l)[rep(4) none]
end

s(4,38)

{ NO. 6.2.2 }

{ Selector file for LU decomposition 4*4 matrix }
1, rep(3)0 :

rep(2)1, rep(2)0:

rep(3)1, O:

rep(4)1

rep(4)0 :

0 ,1,rep(2)0:

0 ,1,1,0:

repl(5)[(0, rep(3}1]:
repl(8){rep(2) 0, rep(2)1]:

repl(8){rep(3) 0, 11]:
repl{3)[rep(4) 0]:
rep(4) 1:

rep(3) 1,0:

rep{(2) 1, rep(2}) 0

1, rep(3) O:
repl(3)[(rep(4) 01

335

336

p(4,34)

{f NO. 6.2.3 }

{ Program for 4*4 matrix-vector multiplication }
fcalculation}

rep(4d) mult n w, 3 6:

rep(4) add ,7,
rep{(4} mov ,0,
rep(4) mov ,6,
rep{(4) mult
rep(4) add ,7,
rep{(4) mov ,0,
rep(4) mov ,6,
rep(4) mult
rep(4) add ,7,
rep{(4) mov ,0,
rep(4) mov ,6,
rep(4) mult
rep(4) add ,
rep(4}) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add ,
rep{(4) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add ,
rep(4) mov ,
rep(4) mov ,
rep{4) mult
rep(4) add ,
rep(4) mov ,
rep{4) mov ,
rep(4) mov ,
rep{4) copy
repl(4)[rep(
end

- = om

-~ m ow

T OO RO RSO RSO PO E H~4c>£|a~Jc

N e R
5 o

T

b

(]

o

o

!

d(4,34)

{ NO. 6.2.3 }

{ pata file for 4*4 matrix-vector multiplication }
n 2.8,0.0,0.0,0.0;none;none;w 2.1,0.0,0.0,0.0:

repl(3){rep{(4) none]l:

n 3.0,3.6,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) nonej:

n 2.0,4.8,4.0,0.0;none;none;w 5.0,0.0,0.0,0.0:
repl(3)[rep(4) none} :
n5.1,6.0,3.0,4.2;none;none;w 6.6,0.0,0.0,0.0:
repl(3)[rep(4) none]:

n 0.0,8.0,2.2,1.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) nonel:

n 0.0,0.0,6.1,0.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3){rep(4) nonel:

n 0.0,0.0,0.0,9.0;none;none;w 0.0,0.0,0.0,0.0:
repl(9)[rep(4) nonel

end

337
s(4,34)
{ NO. 6.2.3 ‘
{ Selector file for 4*4 matrix-vector multiplication }
repl(34)[(1,rep(3)0]
end

338

p(4,85)
{ NO. 6.2.4 }
{ Program for 4*4 matrix-matrix multiplication }
rep(4) mult n w,3,6:
rep(d4) add ,7,0:
rep(4) mov ,0,7
rep(4) mov ,6,1:
rep(4) mult n w
rep(4) add ,7,0:
rep{4) mov ,0 7
rep(4) mov ,6,1:
rep(4) mult n w
rep(4) add ,7,0
rep(4) mov ,0,7:
rep(4) mov ,6,1
rep(4) mult n w
rep(4) add ,7,0
rep(4) mov ,0,7
1
w
)
)
1
W
0

0

6
rep(4) mult n 3,6
add ,8,0;rep(3) add ,7,0:
mov ,0,8;rep(3) mov ,0,7:
rep(4} mov ,6,
rep(4} mult n w,3,6:
rep(2}) add ,8,0;rep(2) add ,7,0:
rep(2) mov ,0,8;rep(2) mov ,0 s
rep(4}) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep{4) mov ,6,1:
rep{4) mult n w,3,6:
rep{4) add ,8,0:
rep{(4) mov ,0,8:
rep(4) mov ,6,1:
rep(4d) mult n w,3,6
add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0; rep(Z) add ,8,0:
rep(2) mov ,0 9;rep(2) mov ,0 8:
rep(4) mov ,6,1:
rep{4) mult n w,3,6:

rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,9,0:

rep(4) mov ,0,9:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

add ,10,0;rep{(3) add ,9,0:

mov ,0,10;rep(3) mov ,0,9:
rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(2) add ,10,0;rep(2) add ,9,
rep(2) mov ,0,10;rep(2) mov ,0,
rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(3) add ,10,0;add ,9,0:
rep(3) mov ,0,10;mov ,0,9:

0:
9.

rep(4) mov ,6,1:

rep(4) mult n w,3,6: : 339
rep{(4) add ,10,0:

rep(4) mov ,0,10:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,10,0:

rep(4}) mov ,0,10;

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,10,0:

rep(4) mov ,0,10:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,10, O:

rep(4) mov ,0 10:

rep(4) mov ,
rep{4) mov ,
rep(4) copy ,
rep(4) mov ,8,
rep{(4) copy ,0
rep(4) mov ,9,
rep(4) copy ,0
rep{(4) mov ,10
rep(4) copy ,0
rep(4) null ,0
end

d(4,85)

{ NO. 6.2.4 }

{ Data file for the 4*4 matrix-matrix multiplication }
n 2.1,0.0,0.0,0.0;none;none;w 2.8,0.0,0.0,0.0:
repl(3){rep{4) none]:

n 3.0,0.0,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0:

repl(3)[rep(4) none]

n 5.0,1.0,2.3,0.0;none;none;w 2.0,0.0,0.0,0.0
repl(3)[rep(4) none] .

n 6.6,1.2,5.0,1.8;none;none;w 5.1,0.0,0.0,0.0:
repl(3)[rep(4) none]:

n 2.1,2.2,2.0,6.1;none;none;w 3.6,0.06,0.0,0.0:
repl(3)[(rep(4) none]):

n 3.0,0.0,0.0,3.3;none;none;w 4.8,0.0,0.0,0.0:
repl{(3)[(rep{4) none]l:

n 5.0,1.0,2.3,3.6;none;none;w 6.0,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 6.6,1.2,5.0,1.8;none;none;w 8.0,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 2.1,2.2,2.0,6.1;none;none;w 4,0,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 3.0,0.0,0.0,3.3;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 5.0,1.0,2.3,3.6;none;none;w 2.2,0.0,0.0,0.0:
repl(B)[rep(d) none]

n 6.6,1.2,5.0,1.8;none;none;w 6,1,0.0,0.0,0.0:
rep1(3)[rep(4) none]
n2.1,2,2,2.0,6.1;none;none;w 4.2,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 3.0,0.0,0.0,3.3;none;none;w 1.0,0.0,0.0,0.0:
rep1(3)[rep(4) none}

n 5.0,1.0,2.3,3.6;none;none; Ad ¢.0,0.0,0.0,0.0:
repl(3)[rep(4) none] .

n 6.6,1.,2,5.0,1.8;none;none;w 9.0,0.0,0.0,0.0:
repl(3)[rep(4) none]

n 0.0,2.2,2.0,6.1;none;none;w 6.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:

n 0.0,0.0,0.8,3.3;none;none;w 0.0,0.0,0.0,0.0:
repl(3){rep(4) none]:

n 0.0,0.0,0.0,3.6;none;none;w 0.0,0.0,0.0,0.0:
repl{i2){rep(4)none]

end

s{(4,85)

{ NO. 6.2.4 }

{ Selector file for the 4#%4 matrix-matrix multiplication }
repl(85)[1,rep(3)0] '
end

340

341

p{4,147)

{ NO. 6.3 }

{Program for the solution of linear systems }
data n,3,0; rep(3) null n,0,0 :

rep(2) data n,3,0; rep(2) null n,0,0:

rep(3) data n,3,0; null n,0,0 :

rep(4) data n,3,0:

{ start factorisation}

mov s,1,7; rep(3) data n,3,0:

data n,3,0; mov s,1,7; rep(2) data n,3,0:

div ,7,3; data n,3,0; mov s,1,7; data n,3,0:
copy ,0,0; null ,0,0; data n,3,0; mov s,1,7:
null ,0,0; data w,6,0; null ,0,0; data n,3,0 :
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; sub ,7,0 ; mult ,3,6; data w,6,0 :
null ,0,0; copy ,0,0; sub ,7,0; mult ,3,6 :
null ,0,0; mov s,1,7; copy ,0,0; sub ,7,0 :
null ,0,0; data n,3,0; mov s,1,7; copy ,0,0
null ,0,0; div ,7,3; data n,3,0; mov s,1,7:
null ,0,0; copy ,0,0; null ,0,0; data n,3,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; data w,6,0:
rep(2) null ,0,0; sub ,7,0; mult ,3,6:
rep{2) null ,0,0; copy ,0,0; sub ,7,0:
rep(2) null ,0,0; mov s,1,7; copy ,0,0:
rep{2) null ,0,0; data n,3,0; mov s,1,7:
rep(2) null ,0,0; div ,7,3; data n,3,0 :
rep{2) null ,0,0; copy ,0,0; null ,0,0
rep(3) null ,0,0; data w,6,0:

rep{3) null ,0,0; mult ,3,6:

rep(3) null ,0,0; sub ,7,0:

mov s,1,8; rep(2) null ,0,0; copy ,0,0
rep(4) null ,0,0:

null ,0,0; mov s,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:)

mov s,1,7; null ,0,0; mov s,1,8; null ,0,0:
rep(4) null ,0,0:

null ,0,0; mov s,1,7; null ,0,0; mov s,1,8:
rep(4) null ,0,0:

rep(2) nulill ,0,0; mov s,1,7; null ,0,0:

{ read result}

data s,5,0 ; rep(3) null ,0,0:

rep(2) data s,5,0; rep(2) null,0,0:
rep(3) data s,5,0; null,0,0:
repl{3)[rep(4) data s,5,0]:

null ,0,0; rep(3) data s,5,0:

rep(2) null ,0,0; rep(2) data s,5,0:
rep(3) null ,0,0; data s,5,0:

rep(4) null ,0,0:

data n,3,0; rep(3) null ,0,0:

rep(4}) null ,0,0:

null ,0,0; data n,3,0; rep{2) null ,0,0:
rep(4) null ,0,0:

mov s,1,7; null ,0,0; data n,3,0; null ,0,0:
rep(4} null ,0,0:

null ,0,0; mov s,1,7; null ,0,0; data n,3,0:
rep(4} null) ,0,0:

rep(2) null ,0,0; mov s5,1,7; null ,0,0:
rep(4} null ,0,0:

data n,3,0; rep(2) null ,0,0; mov s,1,7:
mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
rep(4) null n,0,0:

null n,0,0; sub ,3,6; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
rep(4) null n,0,0:
null n,0,0; mult ,
null n,0,0; add ,e6

7; rep(2) null n,0,0:
rep(2) null n,0,0:
rep{2) null n, 0,0
a w,6,0; null n,0,0:
an,3,0; null n,0,0:

null n,0,0; copy

rep(2) null n,0,0;
rep(2) null
rep(4) null
rep(2) null
rep{2) null
rep(2) null
rep(4) null

; sub ,3,6; null n,0,0:
; copy ,0,0; null n,0,0:
; data n,3,0; null n,0,0:

rep(2) null ; mult ,3,7; null n,0,0:
rep(2) null ; add ,6,0; null n,0,0:
rep(2) null ; copy ,0,0; null n,0,0:
rep(3) null ; data w,6,0;:
rep(3) null ; data n,3,0:
rep(4) null
rep(3) null ; sub ,3,6:
rep{3) null ; copy ,0,0:
rep(3) null ; data s,5,0:
rep(3}) null ; data s,5,0:
rep(3} null ; data s,5,0:

rep(2) null
rep(2}) null
null n,0,0;

~ =~ 23983335353 D03305 3303323000

GO * We % m a wm owm e mm m R otmen momowmowm oW ow owewn MO % M u oW M oM oW R O™ oMW oW oW oW omoow

rep{(2) data s,5,0:
rep(2) data s,5,0:
3) data s,5,0:

rep(4) data s,5,

repl(4)[rep(4) n ll n,0,0]

rep(3) null n,0,0; div ,0,8

rep(3) null n,0,0; copy ,0,0

rep{(4) null n,0,

rep(3) null n,0,0; data s,5,0:

rep{(3) null n,0,0; mult ,5,8:

rep(3) null n,0,0; copy ,0,0:

rep(2) null n,0,0; data e,4,0; null n,0,0

repl{(2)[rep(4) null n,0,0]:

rep(2}) null n,0,0; sub ,0,4; null n,0,0

rep(2) null n,0,0; div ,0,8; data s,5,0

rep(2) null n,0,0; copy ,0,0; null n,0,0

rep(4) null n,0,

rep(2) null n,0,0; data s,5,0; null n,0,0:

rep(2) null n,0,0; mult ,5,8; data s,5,0:

rep(2) null n,0,0; copy ,0,0; mult ,5,8:

rep(2) null n,0,0; mov s5,1,8; copy ,0,0:

rep(2) null n,0,0; data e,4,0; null ,0,0:

rep(2}) null n,0,0; add ,4,8; null n,0,0:

rep(2} null n,0,0; copy 0,0, null n,0,0:

null n,0,0; data e,4,0; rep(2) null n,0,0:

rep(4) null n,0,0:

rep{3) null n,0,0; data s,5,0:

null ,0,0; sub ,0,4; rep(2) null ,0,0

null ,0,0; div ,0,8; data s,5,0; null ,0,0:
0,

null ,0,0; copy
rep(4) null ,0,0:
null ,0,0; data s,5,0; rep(2) null ,0,0:

null ,0 0; mult 5 8 data s,5,0; null ,0,0
null ,0,0; copy ,0,0; mult ,5,8; data s,5,0
null ,0,0; mnov 5,1,8; copy ,0,0; mult ,5,8:

rep(2) null ,0,0; mov s,1,8; copy ,0,0:
rep(2) null ,0,0; data e,4,0; null ,0,0:
rep(2) null ,0,0; add ,4,8; null ,0,0:

rep(2) null ,0,0;
null ,0,0; data e
null ,0,0; add ,4

3

copy ,0,0; null ,0,0;
,4,0; rep(2) null ,0
,8; rep(2) null ,0,
0,0; rep(2) null ,0,
) null ,0,0:

0:
null ,0,0; copy 0:
data e,4,0; rep(
rep(4) null ,0,0:
sub ,0,4; rep(3) null ,0
div ,0,8; rep(3) null ,0

0:

!
copy ,0,0; rep(3) null ,0 0
repl(3)[(rep(4) null ,0,0]:
rep(3) null ,0,0; data s,5,0:
rep{2) null ,0,0; rep(2) data s5,5,0:
rep(2) null ,0,0; rep(2) data s,5,0:
null ,0,0; rep(3) data s,5,0:
null ,0,0; rep{3) data s,5,0:
rep(4) data s,5,0

end

d(4,147)

{ NO. 6.3 }
{ Data file
n 2.0,0.0,0.
none; none;
n 2.0,3.0,0.
none; none;
n 4.0,3.0,3.
none; none;
n 2.0,1.0,6.
none; none;
n 0.0,3.0,2.
none; none;
n 0.0,0.0,3.
none; none;
n 0.0,0.0,0.
none; none;
repl(39)[rep
nl1.0,0.0,0.
none; none;
n 0.0,1.0,0.
none; none;
n 0.0,0.0,1.
none; none;

for the solution of linear systems }
0,0.0;

none:

0,0.0;

none:

0,0.0;

none :

0,3.0;

none :

0,1.0;

none:

0,3.0;

none:

0,2.0;

none:

(4} nonel:

0,0.0; none;none;none:
none; none:

0,0.0; none;none;none:
none; none:

0,0.0; none;none;none:
none; none:

n 0.0,0.0,0.0,1.0; none;none;none:
repl(3)[rep(4) none]:

n 10.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:

n 0.0,10.0,0.0,0.0; none;none;none:
repl(9)[rep(4) none]

n 0.0,0.0,12.0,0.0; none;none;none:
repl(9)[rep(4) none]

n 0.0,0.0,0.0,11.0; none;none;none:
repl(66)[rep{4) none |

end

s(4,147)

{ NO, 6.3 }

{ Selector file for the solution of linear systems }

1, rep(3)0 :

rep{2)1l, rep(2)0:

rep(3)1, 0:
rep(4)1l
rep(4)0 :

0 ,1,rep(2)0:

o ,1,1,0:

343

344

—
o~
S
2y ..
e () = —
g - <o .y L) -
—l .o (=) — — — —
— . W . e — r— a4 ™~ LY} - fae) s — .
Mmoo —— — O — & —— — — — - - — o~ —_——
— SO o~ oo — o7 < o — oo oo
o L] — —_ . m —— il ~ — — — - o
QDN M OO =r (o1 oo = 1] -4 (a2 lag s m - O
T S - e Q % — -~ - — e B -
jeTRaT —SAOO Lk e OO D0 A v O O Q. Oy —
- Q - w ow ow{) o oM = = U v =~ — - [[1}] [l] L @ . [
O MW HOOO W s+« & o - Hel O _— o — L P Y] [I SN] o oo
e et et 80 P et et bt bt et 7]]] e et [S O Y T TR TR TINT TR o & S e R GE S e 8 S b P e B N e b #O L T T B L I T T PR ¥ Ry 1)
o o]) —— 3\!))001000100}0)000111(0)0l011310)1)03))100010010))00
NOM a2 «atNIN N NN N M NN 2 2 e ow T o Il o B B o L T o [T o B Y T R ot BN~ IR~ o I N e b T 4 B e e
e~ % wme el et DA 2w a A L LY L I o o I . e N | | R N an Bt e L L I N R e e = T L)
oo oA ON AL OO0 0O A 0O oS 0O O O AU LA S L0 O O et WO O el
VOO -~ ~ 0DV PYOQ ~DBU ~*>~ocows vnQUOU 0 L «QOU ~DU ~~ >~ QUG ~ ~QVO =~~~ B ~0 ~ QO « =~
Mo Mo e M M M N M H H] NN MHAODODOOO A A N R A MO MO HNO HHMYWMO HAAOO HH MHAA R HMNOOOH WO HMOO M M-~

345

—ae o
p—) — —_—
o O o m
-~ -
= o o
-0 -
-~ - -
~ © -
— o ~ —
[- et

346

p(4,300)

{ NO. 6.4]

{ Program for finding the g-inverse of a rec-matrix }
data n,3,0; rep(3) null ,0,0:

rep{2) data n,3,0; rep(2) null ,0,0:

rep(3) data n,3,0; null ,0,0:

rep(4) data n,3,0 :

null ,0,0; rep(3) data n,3,0:

rep(2) null,0,0; rep(2) data n,3,0:

rep(3) null ,0,0; data n,3,0:

rep(4) null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,0,0:

data s,5,0; null,0,0; data e,4,0; data w,6,0:
data e,4,0; data w,6,0; data n,3,0; null ,L0,
rep{2) null,0,0; data s,5,0; null ,0,0:

0:

data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0
data n,3,0; data e,4,0;data w,6,0; null ,0,0:
data s,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data s,5,0; rep{2) null ,0,0:

data s,5,0; data n,3,0; rep(2) null ,0 0:

null ,0,0; data s,5,0; rep(2) null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:

null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,56,0; null ,0,0:
data s,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data s,5,0; rep(2} null ,0,0:

rep(3) data s,5,0; null ,0,0:

rep{4) data s,5,0:

rep(4) data s,5,0:

null ,0,0; rep(3) data s,5,0:

rep{2) null ,0,0; rep(2) data s,5,0:

rep(3) null ,0,0; data s,5,0:

rep{4) null ,0,0:

{matrix multiplication 4x4}

repl{(3){rep(4) null n,0,0]}:
{calculation}

rep(4) mult n w, 3 6:

rep{(4) add ,
rep(4) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add ,
rep{(4) mov ,
rep{4) mov ,
rep(4) mult
rep{d4) add ,
rep(4) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add ,7,
rep(4) mov ,0,
rep{4) mov ,6,1‘

rep(4) mult n w,3,6:

add ,8,0;rep(3) add ,7,0:

mov ,0,8;rep{3) mov ,0,7:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(2) add ,8,0;rep{(2) add ,7,0:

- ow - w o=
T -

L% WJ

- -

[¢a] h

- W

-Joi: P~OoOf P~OE l—--.lo

O~ O~ Jd OO~ O~
-
C
~
[+2]

rep(2) mov ,0,8;rep(2) mov ,0,7:

rep(4) mov ,6,1:

rep{4) mult n w,3,6:

rep(3) add ,8,0;add ,7,0:

rep(3) mov ,0,8;mov ,0,7:

rep(4) mov ,6,1:

rep(4) mult n w,3,6

rep(4) add ,8,0:

rep{(4) mov ,0,8:

rep{(4) mov ,6,1:

rep(4) mult n w,3,6:

add ,9,0;rep(3) add ,8,0

mov ,0,9;rep(3) mov ,0,8

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep{2) add ,%,0;rep(2) add ,8,0:

rep(2) mov ,0,9;rep(2) mov ,0,8:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(3) add ,9,0;add ,8,0:

rep(3) mov ,0,9;mov ,0,8:

rep(4) mov ,6,1:

rep(4) mult n w,3,6

rep{(4) add ,9,0:

rep{(4} mov ,0,9:

rep(4}) mov ,6,1:

rep(4) mult n w,3,6

rep(4) add ,9,0:

rep(4) mov ,0,9:

rep{4) mov ,6,1:

rep(4) mult n w,3,6

rep(4) add ,9,0:

rep(3) copy ,0,0; null ,0,0:

data n,3,0; rep(3) null ,0,0:

mov s,1,7; data n,3,0; rep(2) null ,0,0:
mov ,8,0; mov s,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,8,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; nuil ,0,0
mov s,1,7; data n,3,0; copy ,0,0; null ,0,
mov ,7,0; mov s,1,7; data n,3,0; null ,0,0
copy ,0,0; mov ,7,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0
div ,7,3; data n,3,0; copy ,0,0; null ,0,0
copy ,0,0; null ,0,0; data n,3,0; null ,0,
null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; mult ,3,6; data w,6,0; null ,0,
null ,0,0; sub ,7,0 ; mult ,3,6; null ,0,0
null ,0,0; copy ,0,0; sub ,7,0; null ,0,0:
null ,0,0; mov s,1,7; copy ,0,0; null ,0,0
null ,0,0; data n,3,0; mov s,1,7; null ,0,
null ,0,0; div ,7,3; data n,3,0; null ,0,0
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; null ,0,0:
rep(2) null ,0,0; sub ,7,0; null ,0,0:

mov s,1,8; null ,0,0; copy ,0,0; null ,0,0:

rep{(4) null ,0,0: .

null ,0,0; mov s,1,8; rep(2) null ,0,0:
rep(4}) null ,0,0:

mov s,1,7; null ,0,0; mov s,1,8; null ,0,0:
rep(4) null ,0,0:

data n,3,0;mov s,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data n,3,0; rep(2) null ,0,0:
rep(4) null ,0,0:

mov s$,1,7; null ,0,0; data n,3,0; null ,0,0:

347

rep(4) null ,0,0: 348
null ,0,0; mov s,1,7; rep(2} null ,0,0:

rep(4) null ,0,0:

data n,3,0; null ,0,0; mov s,1,7; null ,0,0:

f start factorisation}

mult ,3,7; rep(3) null n,0,0:

copy rep(3) null n,0,0:

.0,0;
null n,0,0; data w,6,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3,6; rep(Z) null n,0,0:
null n,0,0; copy ,0,0, rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep{2) null n,0,0, data n,3,0, null n,0,0:
rep(2}) null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:
rep(2) null n,0,0; data s,5,0; null n,0,0:
rep(2) nuil n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
nult n,0,0; data e,4,0; data s5,5,0; null n,0,0:
null ,0,0; sub ,0,4; rep(2) null 0,0.
null ,0,0; div ,0,8; rep(2) null ,0,0
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4}) null ,0,0:
null ,0,0; data $,5,0; rep(2) null ,0,0:
null ,0,0; mult 5 8 data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
sub ,0,4; rep(3) null 0,0
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) nulil ,0,0; data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
rep(3) data s,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
[start factorisation}
mult ,3,7; rep(3) null n,0,0:
copy ,0, 0, rep(3) null n,0,0:
null n,0,0; data w,6,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub 3,6, rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0: '
null n,0,0; copy ,0,0; rep(2) null n,0,0
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3 0; null n,0,0: -
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep{2) null n,0,0; copy ,0,0; null n,0,0:
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2} null n,0,0; copy ,0,0; null n,0,0:
rep{4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0: 349
rep{(2) null n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data 5,5,0; null n,0,0:
null ,0,0, sub ,0,4; rep(2) null 0,0

null ,0,0; div ,0,8; rep(2) null ,0,0

null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0: '
null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep{2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep(4} null ,0,0:

rep(2) null ,0,0; data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0;:
rep{(3) data s,5,0; null ,0,0:

data n,3,0; rep{(3) null ,0,0

{ start factorisation}

mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep{3) null n,0,0:

null n,0,0; data w,6,0; rep(Z) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3,6, rep(z) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep{2) null n,0,0
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2} null n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6, null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(2}) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0:
rep(2) null n,0,0; rmult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data s,5,0; null n,0,0:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:

rep(4) null ,0,0:

null ,0,0; data s,5,0; rep{(2) null ,0,0:
nall ,0,0; mult ,5,8; data s,5,0; null
null ,6,0; copy ,0,0; mult ,5,8; null
null ,0,0; mov s,1,9; copy ,0,0; null
null ,0,0; data e,4,0; rep(2) null ,0
null ,0,0; add ,4,9; rep(2) null ,0,
null ,0,0; copy ,0,0; rep(2) null ,0,
data e,4,0; rep{(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8, rep{3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(2) null ,0,0; data s,5,0; null ,0,0:

,0,0:
0,0
:0,0:
, 0
0:
0:

null ,0,0;
null ,0,0;
rep{3) data
data n,3,0

rep(2) data s,5
rep{(2) data s,5
5,5,0; null ,0
rep(3} null ,0

: null ,0,0:
; null ,0,0:

{ start factorisation}

mult ,3,7;

{ pata file for finding the g-inverse of a rec-matrix }
n 4.0,0.0,0.

rep(3} null n,0,0:

0,0.0;

none ;none;none:

n 3.0,1.0,0.

0,0.0;

none ;none;none:

n 2.0,2.0,1.

0,0.0;

nomne ;none ;none:

nl.0,0.0,2.

0,0.0;

none ;none;none:

n 0.0,4.0,1.

0,0.0;

none ;none;none:

n 0.0,0.0,3.

0,0.0;

none ;none;none:

n 0.0,0.0,0.

0,0.0;

copy ,0,0; rep(3) null n,0,0:

null n,0, 0 data w,6,0; rep(2) null n,0,0:
null n,0,0, ‘'data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3, 6, rep(Z) null n,0,0:
null n,0,0; copy ,0,0, rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0;:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
rep{2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3,0; null n,0,0:
rep{2) null n,0,0; sub ,3,6; null n,0,0:
rep(2} null n,0,0; copy ,0,0; null n,0,0:
rep{2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep{4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0:
rep(2) null n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data s5,5,0; nul
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
‘null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s5,5,0; null ,Q,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0;:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep{(4) null ,0,0:

rep(2} null ,0,0; data s5,5,0; null ,0,0
null ,0,0; rep(Z) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0
rep(3) data s,5,0; null ,0,0

end

d{4,300)

{ NO. 6.4 }

350

none ;NeNe ;none :
repl(27)[rep(4) none]:
repl(3)(rep{4) nonel:

nl1l,0,0.0,0.0,0.0;none;none;w 1.0,0.0,0.0,0.
rep1(3 [rep{4) nonel:
n 2.0, ,0.0,0.0;none;none;w 2.0,0.0,0.0,0.
repl(3 [ep(4) nonel:
.0, .0,0.0;none;none;w 3.0,0.0,0.0,0.
epl(3 [{4) nonel:
.0, .0,0.0;none;none;w 4.0,0.0,0.0,0.
e 1(3 [(4) nonel:
.0, .0,0.0;none;none;w 4.0,0.0,0.0,0.
epl(3 [{4) necnel:
.0, .0,0.0;none;none;w 0.0,0.0,0.0,0.
epl(3 [(4) nonel:
.0, .0,0.0;none;none;w 2.0,0.0,0.0,0.
epl(3 [(4) none]l:
.0, .0,0.0;none;none;w 1.06,0.0,0.0,0.
e 1(3 [{4) nonel:
.0, .0,0.0;none;none;w 3.0,0.0,0.0,0.
epl(3 [() none):
.0, ,0.0:none;none;w 1.6,0.0,0.0,0.
epl(3 [() none]
.0, ,0.0;none;none;w 2.0,0.0,0.0,0.
epl(3 [() none]
.0, 0.0;none;none;w 1.0,0.0,0.0,0.
epl(3 [() ncnel:
.0, +0.0;none;none;w 0.9,0.0,0.0,0.
epl(3 [() none]:
.0 ,0.0;none;none;w 0.0,0.0,0.0,0.
eplf) none]
0

- Al

o]
. ('D
QO - QOO N~ OO0~ QO QOO a— O~ O3 3 OOO-—'HUNUOV.&VHVNVOV&VHVNVOV&V

O+ O-
OO O OoOR O OO OO OO O OJd O3 Ov—-Oﬁ C‘Jl‘i CJH Ort Or-t OH Ori OH OH OH OH Ol"i OH

e D~ M~ M= (O~ M~ H~ P~ M= H~ M~ M~ D> M= (D~ i~ (M= MDD~ M~ MO~ P~ M~ M~ D~ M=~ M~ D=~

e; none:

.0; none;none;none:

[41] l—"'U o"U o m N"O O'U cvm |—l"cl c'o o0 WY O o H- O~ O |—=’U N*c 1—"U w*ci t—"U (SLel Lo BL oM SLo M S Lo B Lo BEFL o B]

.0; none;none;none:
e; none:
.0; none;none;none:

0

.0,0.
epl(3)[(none]

.0,0. 0.0; none;none;none:
epl{3)] { nonej:

.0,4. .0; none;none;none:
epl{7)I (none]j:

.0,0. .0; none;none;none:
epl(30) P nonej:

.0,0. .0; none;none;none:
epl(3)] (none]:

.0,0. .0; none;none;none:
epl(7)! (none]:

.0,0. .0; none;none;none:
epl(30) none]):

.0,0. .0; none;none;none:
epl(3)((none])

0,2, .0; none;none;none
epl(7)[(none j

.0,0. .0; none;none;none:
epl(30) p nonel:

.0,0. . .0; none;none;none:
epl(3)[{ ncnel:

.0,1. 0.0; none;none;none:
epl(7)[(nonej:

.0,0. 0.0¢; none;none;none:

1(30)}) none]

gg:ﬂnsvﬂ:ﬂ:‘lﬂ:n:&n:ﬁn:ﬁn::n:in:iﬂ:n:!g:is:in:in:iﬂ:tn:jﬁ::ﬂnn:iﬂ:tn:!r-t:!n:!ﬂ:!
O o OoU &'y Oog O W O o7JY T oY o] I—*'UDDC)’J!—"UO'UD'O -h'Uw'UN'UI—"‘U-b'U wg N'UI—"Ub’Uw'U
1)

351

352

Selector file for finding the g-inverse of a rec-matrix }

e —
—_—o
. O -
»e — ~ =]
— TR =) -
O . — —_— - e . .
—— — —— om [K= — e — — — —
o m o oo — — [N Nw (=] [T
— - - —— —_ 0 o, — [. - -~ -
< o o < o [Mg Ol -t (=1 —
— - [N — H o -~ = n -~ - -~
~— [aTRY] o O — o, a, ~ o B — o - — o
QD = - o - O R] - Q) LS - - ~
<t [- — ~ =i - - - o~ = (=2 N - O - Lo | (=] o
—_— s vh s 88 e (Tt]| s v 4 aw 0 e | e s] (U b el #8580 bt b .. 0 e B8 iy A8 e e
oW 0001\..\.0 — el —~O 0O A —_—— 00\17000000000000))00)))00000000)0\;0)0
o Lt e e T o R R e 12 Tt T T T . 1 ¥ 2 T L T . T A S b e A o T N I o T A s ol N -
m COMHMM— MU M= OO A TM P e N OO OO0 AT OO0 e O r o OO H OO O rd O~ o T |
...0 L T = T e T o e e e M e e e T e T T T S R R VO U SR Y VU Y P e T e s e T . T T T T T O T e R
- 2 Or-id- o 0, O -+ OO0 OHO Ao O - OO OO0~ A0 L0100~ 0O0 - O+ Oy QLU
— L A ¢ TN T | R S, | T B S L I I+ I (I I 1 I | I | A A QU ~ ~ QDY ~ « « = = =« = “Q - O D -
Nt e o H MO Mt HHOAO H M ML H N AA YN A A OC=AAOOO HMHMAA HH HNA O OCOrrm HO M M e

353

0,0,1,0]:
0,1,0,0]
[11010;0]:
[1,0,0,0]:
1,1,1,0]:
[0111000]:
[0,0,1,0}:
(0,0,1,0]:
[0,1,0,0]:
.[1101010]:
(1,0,0,0]:
[1,1,1,0]:
[0,1,0,0]:
[0,0,1,0]:
[0,0,1,0]:
[0,1,0,0]:
1{1,0,0,0]:
(1,0,0,0]:
[1,1,1,0):
[0,1,0,0):
[0,0,1,01:
[0,0,1,0]:
{0,1,0,0]:
{1,0,0,0]:
{1,0,0,01}

. e - as e ' . e

L Y L LSy " CURE T ey} L BT T L B T [T T T
O~ ~0O0-10OC0 ~0O —~0O —~0O -~ O~~~ —n O o~ _—~0 0 —~0O —0 e~ OO~ —_—0 A~ ~ o —~ —_ -t OO .~
LT g B o e LTS £ o Y o N o P o I T BN o R U T o TN o B o BN o\ I T ¢ BT e BN TN T BN o8 BERCAY o5 B o B N T S e L e
ot e et O e QD O e Ot e e P et il] e A O OO0 O T A e QO OO O T A r O e OO e
N e T e T L e G T e T T e T Y o B R e) o T Y o T T e D e e B e e T S O e B B O B B R e L T BN [A e |
= e e O A Qi Qe 0 A i i O - O A RO - O O H O A O B 0~ O i QO — 0D
«@Q «f) af) » 2 QU «VD QO ~ QY O SO Q) sV DD O) ceQ D s~ a) D DO D . e Y Q) O~ -~
O MHO M- RHOO HE RO MM EAO MO M MO O N MO Wb e O HO Me MOO M MO MM A SO HO HA HOD W QO

354

p(4,300)

(NO. 6.5.1 part-1 }

{ Program for solution of a homogenous system of eqgs. }
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null
rep(3) data n,3,0; null ,0,0:
rep(4) data n,3,0 :

.0,0:

null

,0,0;

rep(2)
rep(3)
- rep(4)

null,0
null
null
data e,4,0;
data n,3,0;
data s5,5,0;

rep(3) data n,3,0:

,0; rep(2) -data n,3,0:
,0,0; data n,3,0:

,0,0:

data w,6,0; rep(2) null
rep(3) null,o0,0:
null,0,0; data e,4,0; data w,6,0:

,0,0:

data e,4,0; data w,6,0; data n,3,0; null ,0,0:
rep{2) null,(,0; data s,5,0; null ,0,0:

data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0 :
data n,3,0; data e,4,0;data w, 6,0; null ,0,0:
data s,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data s,5,0; rep{(2) null ,0,0:

data s,5,0; data n,3,0; rep(2) null ,0,0:

null ,0,0; data s,5,0; rep(2} null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:

null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data s,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data s,5,0; rep(2) null ,0,0:

rep(3) data s,5,0; nulli ,0,0:

rep(4) data s,5,0:

rep(4) data s5,5,0:

null ,0,0; rep(3) data s,5,0:

rep(2) null ,0,0; rep(2) data s,5,0:

rep{3} null ,0,0; data s,5,0:

rep(4) null ,0,0:

{fmatrix multiplication 4x4}

repl(3){rep(4) null n,0,0]:

fcalculation}

rep(4) mult n w, 3,6:
rep(4) add ,
rep(4) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add
rep(4) mov ,
rep(4) mov ,6
rep(4) mult
rep{4) add ,
rep(4) mov ,
rep(4) mov ,
rep(4) mult
rep(4) add ,
rep{4) mov ,
rep(4) mov ,

9
0
6
n
.7
0

rep{4) mult 1 3:6:

add ,8,0;rep(3) add ,7,0:
mov ,0,8;rep(3) mov ,0,7:
rep(4) mov ,6, .

rep(4) mult

rep(2) add (2) add ,7,0:

rep(2) mov ,0,8;rep(2) mov ,0,7:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(3) add ,8,0;add ,7,0

rep(3) mov ,0,8;mov ,0,7

rep(4) mov ,6,1:

rep{4) mult n w,3,6:

rep(4) add ,8,0:

rep(4) mov ,0,8:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

add ,9,0;rep(3) add ,8,0:

mov ,0,9;rep{(3) mov ,0,8:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(2) add ,9,0; rep(Z) add ,8,0:

rep(2) mov ,0,9 rep(2) mov ,0,8:

rep{(4) mov ,6,1:

rep{4) mult n w,3,6

rep(3) add ,9,0;add ,8,0:

rep(3) mov ,0,9;mov ,0,8:

rep(4) mov ,6,1:

rep(4}) mult n w,3,6

rep(4) add ,9,0:

rep(4) mov ,0,9:

rep(4) mov ,6,1:

rep(4) mult n w,3,6

rep{4) add ,9,0:

rep{(4) mov ,0,9:

rep(4) mov ,6,1:

rep(4) mult n w,3,6

rep(4) add ,9,0;:

rep(3) copy ,0,0; null ,0,0:

data n,3,0; rep(3) null ,0,0:

mov s,1,7; data n,3,0; rep(2) null ,0,0:
mov ,8,0; mov s5,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,8,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0:
mov s,1,7; data n,3,0; copy ,0,0; null ,0,0:
mov ,7,0; mov s,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,7,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0:
div ,7,3; data n,3,0; copy ,0,0; null ,0,0:
copy ,0,0; null ,0,0; data n,3,0; null ,0,0:
null ,0,0; data w 6,0; rep(2) null (0,0:
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; sub ,7,0 ; mult ,3,6; null ,0,0:
null ,0,0; copy ,0,0; sub ,7,0; null ,0,0:
null ,0,0; mov s,1,7; copy ,0,0; null ,0,0:
nutl ,0,0; data n,3,0; mov s5,1,7; null ,0,0:
null ,0,0; div ,7,3; data n,3,0; null ,0,0:
null ,0,0; copy ,0,0; rep(2) nuil ,0,0:
rep(2) null ,0,0; data w, 6,0, null ,0,0;:
cep{2) null ,0,0; mult ,3 6; null ,0,0:
rep(2) null ,0,0; sub ,7,0; null ,0,0

mov s,1,8; null ,0,0; copy ,0,0; null ,0,0:

rep(4) null ,0,0:

null ,0,0; mov s,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:

mov s,1,7; nulil ,0,0; mov s5,1,8; null ,0,0:
rep(4) null ,0,0:

data n,3,0;mov s,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data n,3,0; rep{2) null ,0,0:
rep{(4) null ,0,0:

mov s,1,7; null ,0,0; data n,3,0; null ,0,0:

355

rep(4) null ,0,0:

null ,0,0; mov s,1,7; rep(2) null ,0,0: 356
rep(4) null ,0,0:

data n,3,0; null ,0,0; mov s,1,7; null ,0,0:

mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(Z) null n,0,0:
null n,0,0; data n,3, 0, rep(2) null n,0,0:
null n,0,0; sub ,3,6; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep{(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,o0,
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0.
rep(2} null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3 0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep{2} null n,0,0; copy ,0,0; null n,0,0'
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep{2) null n,0,0; data s,5,0; null n,0,0:
rep{(2} null n,0,0; mult ,5,8; nuill ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data s,5,0; null n,0,0:
null ,0,0; sub ,0,4; rep(2} null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null 0,0

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep(4) null 0,0

rep{(2) null ,0,0; data s,5,0; null ,0,0
nuil ,0,0; rep(2) data s,5,0; null ,0,0
null ,0,0; rep(2) data s,5,0; null ,0,0
rep(3) data s,5,0; null ,0,0:

data n, 3,0; rep(3) null ,0,0:

mult ,3,7; rep{(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub 3,6; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0.
rep{2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3,0; null n,0,0:
rep(2} null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0:
rep(2) null n,0,0; mult ,5,8; null ,0,0:

rep(2) null n,0,0; copy ,0,0; nuil ,0,0:

null n,0,0; data e,4,0; data s,5,0; null n,0,0:

null ,0,0; sub ,0,4; rep(2) null ,0,0:

null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep{4) null ,0,0:

rep{(2) null ,0,0; data s,5,0; null ,0,0
null ,0,0; rep(2) data s,5,0; null ,0,0
null ,0,0; rep(2) data s5,5,0; null ,0,0
rep{3) data s,5,0; null ,0,0:

data n,3,0; rep(3) null ,0,0:

mult ,3,7; rep{3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(Z) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3,6; rep(Z) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
nuil n,0,0; copy ,0,0; rep(2) null n,0,0
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep(2} null n,0,0; data s5,5,0; null n,0,0:
rep(2) null n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data s,5,0; null n,0,0
null ,0,0; sub ,0,4; rep(2) null ,0,0:
nuli ,0,0; div ,0,8; rep{(2) null ,0,0:
null ,0,0; copy ,0,0; rep{(2) null ,0,0
rep{4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
nultl ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9 rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3}) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:
rep{2) null ,0,0; data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
rep(3) data s,5,0; null ,0,0:

357

data n,3,0;
mult ,3,7;

copy ,0,0;

null n,0,0;
null n,0,0;
null n,0,0;
null n,0,0;
null n,d,0;
null n,0,0;
null n,0,0;
null n,0,0;
rep(2) null
rep(2) null
rep(2) null
rep(2) null
rep(2) null

null n,0,0;
null ,0,0;
null ,0,0;
null ,0,0;
rep(4) null

‘null ,0,0;

rep(3) null ,0,0:
rep(3) null n,0,0:
rep(3) null n,0,0:

data w,6,0; rep(2) null n,
data n,3,0; rep(2) null n,
sub ,3,6, rep(Z) null n,0,
copy ,0,0; rep(2) null n,O
data n,3,0; rep(2) null n,
mult ,3,7; rep(2) null n,0
add ,6,0; rep(2) null n,o0,
copy ,0,0; rep(2) null n,O
n,0,0; data w,6,0; null n,
n,0,0; data n,3,0; null n,
n,0,0; sub ,3,6; null n,0,
n,0,0; copy ,0,0, null n,0
n,0,0; div ,0,8; null ,0,0
n,0,0; copy ,0,0; null n,0
n,0,0:
n,0,0; data s5,5,0; null n,
n,0,0; milt ,5,8; null ,0,
n,0,0; copy ,0,0; null ,0,
data e,4,0; data s,5,0; nu
sub ,0,4; rep(2) null ,0,0:
div ,0,8; rep(2) null ,0,0
copy ,0,0; rep(2) null ,0,0
,0,0:

data s,5,0; rep(2) null ,0,

null ,0,0; mult ,5,8; data s,5,0; null
null ,0,0; copy ,0,0; mult ,5,8; null

null ,0,0; mov s5,1,9; copy ,0,0; null

null ,0,0; data e,4,0; rep(2) null ,0,
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3}) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep{(2) null ,0,0; data s,5,0; null ,0,
null ,0,0; rep(2) data s,5,0; null ,0,
null ,0,0; rep(2) data s,5,0; null ,0,
rep{3) data s,5,0; null ,0,0

end

d(4,300)

{ NO. 6.5.1 part-1 }

{ pata file for solution of a
n 4.0,0.0,0.0,0.0;
none ;none ;none;

n 3.0,1.0,0.0,0.0;
none ;none;none:

n 2.0,2.0,1.0,0.0;
nene;nene;none:
nl1l.0,0.0,2.0,0.0;
none ;none ;none:

n 0.0,4.0,1.0,0.0;
none ;none;none:

n 0.0,0.0,3.0,0.0;
none ;none;none:

n 0.0,0.0,0.0,0.0;
none;none;none:
repl{(27)[rep(4) nonel:
repl(3)[rep(4) none]:

n1.0,0.0,0.0,0.0;none;none;w 1.0,0.0,0.0,0.0;

0:

0:

L4
0
0

0:
0:
0-

0

0:
0:

0:

homogenous system of eqgs.

358

2.0,0.0,0.0,0.0:
3.0,0.0,0.0,0.0:
4.0,0.0,0.0,0.0:
4.0,0.0,0.0,0.0:
0.0,0.0,0.0,0.0:
2.0,0.0,0.0,0.
1.0,0.0,0.0,0.
3.0,0.0,0.0,0.
1.0,0.0,0.0,0.
2.0,6.0,0.0,0.
1.0,0.0,0.0,0.

o o o o O o O

0.0,0.0,0.0,0.
0.0,0.0,0.0,0.0:

1]
o

0.
) none]:
0.

— .
p—
—_

none]j:

i
=
_—.

nonelj:

L]
L= ~]s W s ~d= s W~

[
~— e

none]

= I3
g

s{4,300)
{ NO. 6.5.1 part-1 }

{f Selecter file for solution of a homogenous system of eqgs.}

0; none;none;none:
0.0; none;none;none:

0.0; none;none;none:
)

repl(3)[rep(4) nonel:

n 2.0,4.0,0.0,0.0;none;none;w
rep1(3)[rep(4) none]

n 3.0,0.0,3.0,0.0;none;none;w
rep1(3)[rep(4) none]

n 4.0,2.0,1.0,0.0;none;none;w
cepl(3)[rep(4) nonel:
nl1.0,1.0,2.0,0.0;none;none;w
rep1(3)[rep(4) none]

n 2.0,4.0,1.0,0.0;none;none;w
rep1(3)[rep(4) none]

n 3.0,0.0,3.0,0.0;none;none;w
rep1(3)[reP(4) none]

n 4.0,2.0,1.0,0.0;none;none;w
repl(3)[rep(4) none]
nl.0,1.0,2.0,0.0;none;ncne;w
repl(3)[rep(4) none]

n 2.0,4.0,1.0,0.0;none;none;w
rep1(3)[rep(4) none]

n 3.0,0.0,3.0,0.0;none;none;w
repl(3)[rep(d) none]

n 4.0,2.0,1.0,0.0;none;none;w
repl(3)[rep(4) none]

n 0.0,1.0,2.0,0.0;none;none;w
repl(3){rep(4) none]

n 0.0,0.0,1.0,0.0;none;none;w
repl(30)[rep(4) nonel:
nl.0,0.06,0.0,0.0; none;none;none:
none; none; none; none:

n 0.0,1.0,0.0,0.0; none;none;none:
none; none; none; none:

n 0.0,0.0,1.0,0.0; none;none;none:
repl(3)[(rep(4) nonel:
nl.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]

n 0.0,4.0,0.0,0.0; none;none;none:
repl(7}{rep(4) none]

n 0.0,0.0,3.0,0.0; none;none;none:
repl(30)[{rep(4) nonel:

n 2.0,0.0,0.0,0.0; none;none;none:
repl{(3)[rep(4) none]

n 0.0,0.0,0.0,0.0; none;none;none:
repl{7)[rep(4) none]
n0.0,0.0,1.0,0.0; none;none;none:
repl(30){rep(4) none]l:

n 3.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]

n 0.0,2.0,0.0,0.0; none;none;none:
repl(7}(rep(4) none]

n 0.0,0.0,2.0,0.0; none;none;none:
repl(30)[rep(4

n 4.0,0.0,0.0,

repl(3)[rep(4)

n 0.0,1.0,0.0,

repl(7)[rep(4)

n 0.0,0.0,1.0,

repl(30)[rep(4

end

359

360

_—
. =S
. — et
— w O — *
Y =) . . _—— _—~ .o . . —_ .
p— y— — o m ™~N O —r—r— r— Lam] — — — o — —
om o oo — ~— oOOo o [o (=] o ~ o o
a— - - — — o, [S - - ~ - o - -
< . o o < W v Ot - O - -~ O - (=T
~) " e L — | W g n owm W - [- [- o - -
b o0 oo i o~ ol -l o - 4 o (= . - o o
Q - - o - o [] « Q - m e - (8 -~ - - i - -
- - -— [- - - | [BB W =R — o o o [an] ot - i
LRy Y i s T TR B P YL [Qi Ry RL RN L S, —] [—y T - et 0 A— [I L N N o [
=l ——~ —] —~O OO~ —— 0nu)—.....000000000000))00)))00000000)0)0\!00)0)0100)0)
D e T o N N s T N I i o T o I Y o I N T e e e o I e N . T Y [BN o IFE A o B NN U3 T o N B ¥ o B o |
e e M VA MO0 TTMY e MO O 000110000 O e e O OO0 -H OO OO — e T wrrmdr] o — O~ OO O~
T T e L . [L L L L e

OO OO HOOO N OO Whoco LA HOOACO A Qi L OALWO 4 Oy Qued O — Lurd
PO I S DS (1 N+ N S, N T (I I+ I 1 S ST N | I« B N O S S PO ~ ~Q U U ~ « » =~ & &« = « QU ~ P OO ~ s 0 U -~ QU -~
HH MU UA A N HeA OO A OO A~ OO0 M HMAA NN HMNAODAOOOHM HO H M HAO HO He HOO M

361

0,1,0,0]:
[0,0,1,0]:
0,0,1,0]:
(0,1,0,0}:
5[1.0,0,01:
[1,0,0,0]:
1,1,1,0]:
[0.1.0;0]=
[0,0,1,0]:
[0,0,1,0]:
[0.1f0.0]:
)[1,0,0,0]:
[1,0,0,0]:
1,1,1,0]:
0,1,0,0]:
[0,0,1,0]:
[0,0,1,0]:
[0,1,0,0]:
[1,0,0,0]:
1,0,0,0]

. LTI TRy 1Y
0)0)00\10)0100)0)0)0)00)0)0100)0\}.0}0\100)0)0100)
a0 = w2l w2~ wr w2l 2] =N wU) s arl s w) A AN N v) w™ me=] W P
e P ot Al e A = O = OO0 - O P A O~ 00O - O P e A=A — O —OQ O~

p(4,91)
{f NO. 6.5.1 part-2 }

{ Program for solution of a homogenous system of eqs. }
repl(3){rep(4) null n,0,0]:

{calculation}
rep(4) mult n
rep(4) add ,7
rep(4) mov ,0
rep(4) mov ,6
rep{4) mult n
rep(4) add ,7
rep(4) mov ,0
rep{4) mov ,6
rep{4) mult n
rep(4) add ,7
rep(4) mov ,0
rep(4) mov ,6
rep{(4) mult n
rep(4) add ,7,
rep(4) mov ,0,
rep{4) mov ,6,
rep(4) mult n
add ,8,0;rep(
mov ,0,8;rep(
rep{4) mov ,6
rep{4) mult n
8
0
6
n
8
0
6
n
8
0
6
n
(
({
6
n
9
0
6
n

- -
Wl [¥%)

- -
(o) [«)}
.

.~
LFS)
(22

- w m

-
¥V

-
2]

0O -
<o
o~

~ Www

rep(2) add ,
rep(2) mov ,
rep(4) mov ,
rep(4) mult

rep(3) add ,
rep(3) mov ,
rep(4) mov ,
rep(4) mult

rep(4} add ,
rep(4) mov ,
rep{(4) mov ,
rep(4) mult

add ,9,0;rep
mov ,0,%9;rep
rep{4) mov ,
rep(4) mult

rep(2) add ,
rep{2) mov ,
rep(4) mov ,
rep(4) mult

rep{3) add ,9,
rep(3) mov ,0,
rep(4) mov ,6,
rep{4) mult n
rep{4) add ,9
rep(4) mov ,0
rep(4) mov ,6
rep(4) mult n
rep(4) add ,9,
tep(4) mov ,0,
rep(4) mov ,6,
rep(4) mult n
rep{4) add ,9
rep(4) mov ,0
rep(4}) mov ,6
rep(4) mov ,7
rep(4) copy ,
tep(4) mov ,8

N Hw BN w

3w

o Qu~ o M-

<oy oo o
[\]
e
a3
<

- W

- m m - W
H 0w oW 30w
O - O D~ O Q.-
<oy U oy < L on

e mg e

w
h

o e =
Lt
-
o2
.

O OCHFWOSE HFUOUOS HOVUOE HPFOOE HPOUOE RP—— S PO RPROE PRSP —Ef POl HP~OSP-JOE P~OE%E
-~ e ge 4o *% 20 vy = - - IE N TR ¥) ad 4% 4
w [#¥)
(=] [#)

-

- O~ v o~

-1 <

o

o -l
-o

362

rep(4) copy ,0,0:

rep(4) mov ,9,0:

rep(4) copy ,0,0:

rep(4) null ,0,0:

data n,3,0; rep(3) null ,0,0:

rep(2) data n,3,0; rep(2) null ,0,0:

rep(3) data n,3,0; null ,0,0:

mov s,1,7; rep(2) data n,3,0; null ,0,0:
data n,3,0; mov s,1,7; data n,3,0; null ,0,0
rep{2) data n,3,0; mov s,1,7; null ,0,0:
rep(3) data n,3 0; null ,0,0:

mov s$,1,8; rep(2) data n,3,0; null ,0,0: !
sub ,7,8; mov §,%1,8; data n,3,0; null ,0,0:
mov ,0,9; sub ,7,8; mov s,1,8; null ,0,0:
data n,3,0; mov ,0,9; sub ,7,8; null ,0,0:
mult ,3,9; data n,3,0; mov ,0,9; null ,0,0:
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0:
null ,0,0; mov ,0,10; mult ,3,9; null ,0,0:
null ,0,0; data w,6,0; mov ,0,10; null ,0,0:
null ,0,0; add ,6,10; rep(2) null ,0,0:

null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep{(2) null ,0,0; data w,6,0; nuil ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep{(2) null ,0,0; copy ,0,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep{(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep{(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0

end

d(4,91)

[NO. 6.5.1 part-2 }
{ Data file for sclution of a
repl(3){rep(4) nonel:
nl1l.0,0.0,0,.0,0.0;none;none;w

repl(3)[rep(4) nonel:

n 2.0,4.0,0.0,0.0;none;none;w
repl{3}{rep(4) none]:

n 3.0,0.0,3.0,0.0;none;none;w
repl(3){rep(4) nonel:

n 4.0,2.0,1.0,0.0;none;none;w
repl(3)[rep(4) none]:
nl1.0,1.0,2.0,0.0;none;none;w
repl(3)[rep(4) none]:

n 2.0,4.0,1.0,0.0;none;none;w
repl{(3)[rep{d4) none]l:

n 3.0,0.0,3.0,0.0;none;none;w
repl(3}{rep(4) none]:

n 4.0,2.0,1.0,0.0;none;none;w
repl{(3){rep(4) none]:

n 1.0,1.0,2.0,0.0;none;none;w
repl(3)[rep(4) none]l:

n 2.0,4.0,1.0,0.0;none;none;w
repl(3){rep(4) none]l:

n 3.0,0.0,3.0,0.0;none;none;w
repl(3)[rep(4) nonel:

n 4,0,2.0,1.0,0.0;none;none;w
repl(3)[rep(4) none]

n 0.0,1.0,2.0,0.0;none;none;w
repl(3)[rep(4) nonelj:

n 0.0,0.0,1.0,0.0;none;none;w
repl(10)[rep(4)nonel:

n 0.0, 0.0, 0.0, 0.0;

nomne ;none ;none:

homogenous system of egs. }
-0.098039,0.0,0.0,0.0:
-0.098039,0.0,0.0,0.0:
0.054%902,0.0,0.0,0.0:
0.282352,0.0,0.0,0.0:
0.176471,0.0,0.0,0.0:
-0.823529,0.0,0.0,0.0:
-0.058824,0.0,0.0,0.0:
0.411764,0.0,0.0,0.0:
0.098039,0.0,0.0,0.0:
1.098039,0.0,0.0,0.0:
0.145098,0.0,0.0,0.0:
-0.682353,0.0,0.0,0.0:
0.0,0.0,0.0,0.0:.
0.0,0.0,0.0,0.0:

363

n 0.0, 0.0, 0.0, 0.0;

none ;none ;none: 364
nl. 0, 1.0, 1.0, 0.0;

none ;none;none:

n 0.0, 0.0, 0.0, 0.0;
none;none;none:

n 0.000011, CG.0, 0.0, 0.0;

none ;none;none:

n 0.000027, 0.000002, 0.0, 0.0;

none ;none ; none: '
n 1.000024, 1.000008, 1.000002, 0.0;
none;none;none:

n 0.0, 0.000036, 0.000017, 0.0;
none;nene;none: -

n 0.0, 0.0, 0.000036, 0.0;
none;none;none:

none;none;none;none:

nl.0, 0.0, 0.0, 0.0;

none ; none;none:

n 0.0, 0.0, 0.0, 0.0;
none;none;none:

n 0.0, 0.0, 1.0, 0.0;

none ;none;none:

repl(12)[rep(4}) none}

end

s(4,91)

{ NO. 6.5.1 part-2 }

[Selector file for solution of a homogenous system of egs. }
repl(66){1,rep(3)0]:

l,rep(3)0:

1,1,0,0:

P as e m s e
o OO O

rep(3)1,01:

[1,0,0,0]:

DO PFPFRPROOMNMPRPARRAEFERFREF
S~ D~ = = % D ~ DO~~~ =
LoD PHROFTUEFRTT PR B
“ p=w m owmow P () e~~~ w (D~
O~ OR PR~ WwoT ~
- BJw m om om AW e e w
O—= DOO0O~— O WHEFEFOWOD

p(4,91)
{ NO. 6.5.1 part-2 }

{ Program for solution of a homogenous system of egs.
repl(3)[rep(4) null n,0,0]:

fcalculation]}

rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4d)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)

add ,8,0;rep
mov ,0,8;rep

rep(4)
rep(4}
rep{2)
rep(2)
rep(4)
rep{4)
rep(3)
rep(3)
rep(4)
rep(4)
rep{4)
rep(4)
rep{d)
rep(4)

add ,9,0;rep
mov ,0,9;rep

rep(4)
rep(4)
rep{2)
rep(2)
rep(4)
rep(4)
rep(3)
rep(3)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep(4)
rep{4)
rep(4)
rep(4)
rep{4)

mult n w,3,6:
add ,7,0:
mov ,0,7:
mov ,6,

,7 0:
0,7
mov ,

mult n w,3,6:
add ,9,0:
mev ,0,9:
mov ,6,1:
mov ,7,0:

(2) add ,7,0:
(2) mov ,0,7:

]

365

rep(4} copy ,0,0:
rep(4) mov ,8,0:

rep(4) copy ,0,0:

rep(4) mov ,9,0:

rep(4) copy ,0,0:

rep(4) null ,0,0:

data n,3,0; rep(3) null ,0,0;:

rep(2) data n,3,0; rep(2) null ,0,0:

rep(3) data n,3,0; null ,0,0: ’

mov s,1,7; rep(2) data n,3,0; null ,0,0
data n,3,0; mov s,1,7; data n,3,0; null ,0,0:
rep(2) data n, 3,0, mov s,1,7; null ,0,0:
rep(3}) data n,3,0; null ,0,0:

mov s,1,8; rep(2) data n,3,0; null ,0,0:
sub 7 B, mov s,1,8; data n,3,0 null ,0,0;:
nov ,0,9 sub ,7,8;: mov s5,1,8; null ,0,0:
data n,3,0; mov ,0,9; sub ,7,8; null ,0,0:
mult ,3,9 data n,3,0; mov ,0,9; null ,0,0:
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0:
nuil ,0,0; mov ,0,10; mult ,3,9; null ,0,0:
null ,0,0; data w,6,0; mov ,0,10; null ,0,0:
null ,0,0; add ,6,10; rep(2) null ,0,0:

null ,0,0; copy ,0,0; rep(2) null ,0,0.
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep(2) null ,0,0; copy ,0,0; null ,0,0:
rep{2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep{(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0

end

d(4,91)

{ NO. 6.5.1 part-2 }

{ Data file for solution of a

repl(3)[(rep(4) nonel:
n 1.0,0.0,0.¢,0.0;none
repl [rep(4) nonel:
0.0,0.0;none

(3)
n 2.0,4.0,
repl(3) rep(4) none]:
n 3.0,0.0,3.0,0.0;none
repl(3)[rep(4) nonel:
n 4.0,2.0,1.0,0.0;:none
repl(3)[rep(4) none]:
nl.0,1.0,2.0,0.0;none
repl(3}[(rep{(4) none]:
n 2.0,4.0,1.0,0.0;:none
repl(3)[rep(4) none):
n 3.0,0.0,3.0,0.0;none
repl(3)[rep(4) nonel:
n 4.0,2.0,1.0,0.0;none
repl(3)[rep(4) nonej:
nl.0,1.0,2.0,0.0;none
repl(3)[rep(4) nonel:
n 2.0,4.0,1,0,0.0;none
repl(3)[rep(4) none]
n 3.0,0.0,3.0,0.0;none;
repl(B)[rep(4) none}
n 4.0,2.0,1.0,0.0;none
repl(3)[rep(4) none]
n ¢.0,1.0,2.0,
repl(3)[rep(4) none]:
n 0.0,0.0,1.0,
repl(lO)[rep(4)none]

;none;w -0.098039,0.0,0.0,0.0¢:
;jnone;w -0.098039,0.0,0.0,0.0:
;none;w 0.054902,0.0,0.0,0.0:
;none;w 0.282352,0.0,0.0,0.0:
;none;w 0.176471,0.0,0.0,0.0;:
;jnone;w -0.823529,0.0,0.0,0.0:
;none;w -0.,058824,0.0,0.0,0.0:
;none;w 0.411764,0.0,0.0,0.0:
;jnone;w 0.098039,0.0,0.0,0.0:
;none;w 1,098039,0.0,0.0,0.0:

;none;w -0.682353,0.0,0.0,0.0:
0.0;none;none;w 0.0,0.0,0.0,0.0:
0.0;none;none;w 0.0,0.0,0.0,0.0:

homogenous system of egqgs.

none;w 0.145098,0.0,0.0,0.0:

366

n 0.0, 0.0, 0.0, 0.0;
none;none;none: 367
n 0.0, 0.0, 0.0, 0.0;
none;none;none:

nl1l.0, 1.0, 1.0, 0.0;

none ;none;none:

n 0.0, 0.0, 0.0, 0.0;

none ;none;none:

n 0.000011, 0.0, 0.0, 0.0;
none;none;none:

n 0.000027, 0.0G00002, 0.0, 0.0;
none;none;none:

n 1.000024, 1.000008, 1.000002, 0.0;
none;none;none:

n 0.0, 0.000036, 0.000017, 0.0;
none;none;none:

n 0.0, 0.0, 0.000036, 0.0;
none;none;none:
none;none;none;none:

nl.0, 0.0, 6.0, 0.0;
none;none;none:

no0.0, 0.0, 0.0, 0.0;

none ;none;none:

n 0.0, 0.0, 1.0, 0.0;
none;none;none:

repl(12){rep{4) none]

end

s(4,91)
{ NO. 6.5.1 part-2 }

{ Selector file for solution of a homogenous system of egs. }
repl(66)[1,rep(3)0]:

l,rep(3)0:
1,1,0,0:

1,1,1,0.

1, rep(3)0:
1,1,0,0:
rep(3)1,0:
rep(3)1,0:
1,rep(3)0:
1,1,0,0:
repl{9)[rep(3)1,0]:
0,1,1,0:

0,0,1,0:

1,1,1,0:

1,1,0,0:
repl(2)(1,0,0,01]:
0,0,0,0

end

3e8

p(4,300)

{ NO. 6.5.2 part-1 }

{ Program for the most general solution of a system of egs. }
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null
rep(3) data n,3,0; null ,0,0:
rep(4) data n,3,0 :

null ,0,0; rep{3) data n,3,0:
rep(2) null,0,0; rep(2) data n,3,0:
rep(3) null ,0,0; data n,3,0:

,0,0:

rep(4) null
data e,4,0;
data n,3,0;

,0,0:

data w,6,0; rep(2) null ,0,0:
rep(3) null,0,0:

data e,4,0; data w,6,0:

data s,5,0; null,0,0;

data e,4,0; data w,6,0; data n,3,0; null ,0,0:
rep(2) null,0,0; data s,5,0; null ,0,0:

data e,4,0; data w,6,0; data e,4,0; data w,6,0
null ,0,0; data e,4,0; data w, 6 0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0
data n,3,0; data e,4,0;data w, 6 0; null ,0,0:
data s,5,0; data n,3,0; data e, 4 0; data w,6,0
data n,3,0; data s,5,0; rep(2) null 0,0:

data s,5,0; data n,3,0; rep(2) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:

data e,4,0; data w,6,0; rep(2) null ,0,0:

null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data s,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data s,5,0; rep(2) null ,0,0:

rep(3) data s,5,0; null ,0,0:

rep(4) data s,5,0:

rep(4) data s,5,0:

null ,0,0; rep(3) data s,5,0:

rep(2) null ,0,0; rep(2) data s,5,0:

rep(3) null ,0,0; data s,5,0:

rep(4) null ,0,0:

{matrix multiplication 4x4)}

repl(3){rep(4) null n,0,0]:
{calculation}

rep(4) mult n w,3,6:
rep(4) add ,7,0:

rep(4) mov ,0,7:

rep(4) mov ,6,1:

rep(4) mult n
rep(4) add
rep(4) mov ,
rep(4) mov ,
rep{4) mult
rep(4) add
rep{4) mov
rep(4) mov
rep{4) mult
rep(4) add
rep(4) mov
rep(4) mov
rep(4) mult
add ,8, 0 re

rep(4) mov
rep(4) mult

6:
rep(2) add , ep(2) add ,7,0:

rep{2) mov ,0,8;rep(2
rep(4) mov ,6,1:
rep(4) mult n w,3,6:

}y mov ,0,7:

rep(3) add ,8,0;add ,7,0:

rep(3) mov ,0,8;mov ,0,7:

rep{4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,8,0:

rep{4) mov ,0,8:

rep(4) mov ,6,1:

rep{d4) mult n w,3,6:

add ,9,0;rep{3) add ,8,0:

mov ,0,9;rep(3) mov ,0,8

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

tep(2) add ,9,0;rep(2) add ,8,0-

rep(2) mov ,0,9;rep{(2) mov ,0,8

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep{(3) add ,9,0;add ,8,0:

rep(3) mov ,0,9;mov ,0,8:

rep(4) mov ,6,1:

rep(4) mult n w,3,6

rep{4) add ,9,0:

rep(4) mov ,0,9:

rep(4) mov ,6,1: -

rep(4) mult n w,3,6

rep(4) add ,9,0:

rep{(4) mov ,0,9:

rep(4) mov ,6,1:

rep(d) mult n w,3,6:

rep{4) add ,9,0:

rep(3) copy ,0,0; null ,0,0:

data n,3,0; rep{3) null ,0,0:

mov s,1,7; data n,3,0; rep(2) null ,0,0:
mov ,8,0; mov s,l,?; data n,3,0; null ,0,0:
copy ,0,0; mov ,8,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0:
mov s,1,7; data n,3,0; copy ,0,0; null ,0,0:
mov ,7,0; mov s,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,7,0; mov s,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0:
div ,7,3; data n,3,0; copy ,0,0; null ,0,0:
copy ,0,0; null ,0,0; data n,3,0; null ,0,0:
null ,0,0; data w,6,0; rep{(2) null ,0,0:
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; sub ,7,0 ; mult ,3,6; null ,0,0:
null ,0,0; copy ,0,0; sub ,7,0; null ,0,0:
null ,0,0; mov s,1,7; copy ,0,0; null ,0,0:
null ,0,0; data n,3,0; mov s,1,7; null ,0,0:
null ,0,0; div ,7,3; data n,3,0; null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:

rep(2) null ,0,0; mul

rep(2) null ,0,0; sub

mov s,1,8; null ,0,0;
rep(4) null ,0,0;:
null ,0,0; mov s,1,8;
rep(4) null ,0,0:
mov s,1,7; null ,0,0;
rep(4) null ,0,0:
data n,3,0;mov s5,1,7;
rep(4) null ,0,0:

nuill ,0,0; data n,3,0;

rep(4) null ,0,0:
mov s,1,7; null ,0,0;

t ,3,6; null ,0,0:
rTJOF null ,0,0:

copy ,0,0; null ,0,0:
rep(2) null ,0,0:

mov s5,1,8; null ,0,0:
rep(2) null ,0,0:
rep(2) null ,0,0:

data n,3,0; null ,0,0:

369

rep(4) null ,0,0:

null ,0,0; mov s,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:

data n,3,0; null ,0,0; mov s,1,7; null ,0,0:
mult ,3,7; rep(3) null n,0,0:

370

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3,6, rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep{(2) null n,0,0:
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2) nulil n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep{2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0: ,
rep{(2) null n,0,0; data s5,5,0; null n,0,0:
rep(2) null n,0,0; mult ,5,8; null ,0,0:
rep{2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data $,5,0; null n,0,0
null ,0,0; sub ,0,4; rep(Z) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0

null ,0,0; copy ,0,0; rep(2) null ,0,0
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep(2) nuil ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep{(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep{(3) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(2) null ,G6,0; data s,5,0; null ,0,0
null ,0,0; rep(2) data s,5,0; null ,0,0
null ,0,0; rep(2) data s5,5,0; null ,0,0
rep(3) data s,5,0; null ,0,0:

data n,3,0; rep(3) null ,0,0:

{ start factorisation}

mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(2) null n,90,0:
null n,0,0; data n,3,0; rep(2}) null n,0,0:
null n,0,0; sub ,3,6; rep(Z) null n,0,0:
null n,0,0; copy ,90,0; rep(2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep{(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0:
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,O,U; copy ,0,0; null n,0,0:
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0:

rep(2) null n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e, d4,0; data $,5,0; null n,0,0:
null ,0,0; sub ,0,4; rep{(2) null 0,0

null ,0,0; div ,0,8, rep(2) null ,0,0

null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep{4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3} null ,0,0:

rep{4) null ,0,0:

rep{4) null ,0,0;:

rep(2) null ,0,0; data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
rep(3) data s,5,0; null ,0,0:

data n,3,0; rep(3) null ,0,0:

mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(Z) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub 3,6, rep{2) null n,0,0:
null n,0,0; copy ,0,0; rep{2) null n,0,0:
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2}) null n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep(2) null n,0,0; copy ,0,0; null n,0,0:
rep{(2) null n,0,0; div ,0,8; null ,0,0:
rep(2} null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep(2) null n,0,0; data s,5,0; null n,0,0:
rep{2}) null n,0,0; mult 5 8; null ,0,0: -
rep{2) null n,0,0; copy 0 0; null ,0,0:
null n,0,0; data e,4,0; data $,5,0; null n,0,0
nuil ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep{2) null ,0,0

null ,0,0; copy ,0,0; rep(2) null ,0,0
rep{4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; nuil ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0:

div ,0,8; rep(3) null ,0,0:

copy ,0,0; rep(3) null ,0,0:

rep{4) null ,0,0:

rep(4) null
rep(2) null
null ,0,0;
null ,0,0;

,0,0:

,0,0; data s,5,0; null ,0,0:
rep(2) data s,5,0; null ,0,0:
rep(2) data s,5,0; null ,0,0:

371

rep(3) data s,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
r J'O

mult ,3,7; rep(3) null n,0,0:

copy ,0,0; rep(3) null n,0,0:

null n,0,0; data w,6,0; rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; sub ,3,6, rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0
null n,0,0; data n,3,0; rep(2) null n,0,0:
null n,0,0; mult ,3,7; rep(2) null n,0,0:
null n,0,0; add ,6,0; rep(2) null n,0,0:
null n,0,0; copy ,0,0; rep(2) null n,0,0:
rep(2) null n,0,0; data w,6,0; null n,0,0:
rep(2) null n,0,0; data n,3,0; null n,0,0:
rep(2) null n,0,0; sub ,3,6; null n,0,0:
rep{2) null n,0,0; copy ,0,0; null n,0,0:
rep(2) null n,0,0; div ,0,8; null ,0,0:
rep{2) null n,0,0; copy ,0,0; null n,0,0:
rep(4) null n,0,0:

rep{(2) null n,0,0; data s,5,0; null n,0,0:
rep(2} null n,0,0; mult ,5,8; null ,0,0:
rep(2) null n,0,0; copy ,0,0; null ,0,0:
null n,0,0; data e,4,0; data s,5,0; null n,0,0
null ,0,0; sub ,0,4; rep{(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep{(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep{(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

sub ,0,4; rep(3) null ,0,0

div ,0,8; rep(3} null ,0,0:

copy ,90,0; rep(3) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(2) null ,0,0; data s,5,0; null ,0,0:
null ,0,0; rep{2) data s5,5,0; null ,0,0:
null ,0,0; rep(2) data s,%,0; null ,0,0
rep(3) data 5,5,0; null ,0,0

end

d{4,300)

{f NO. 6.5.2 part-1 }

{ pata file for the most general sclution of a system of eqgs.

n 0.0,0.0,0.0,0.0;
none ;none ;none:

n 1.0,0.0,0.0,0.0;
none ;none ;none;

n 0.0,1.0,1.0,0.0;
none ;none;none:
ni.0,1.6,1.0,0.0;
none ;none;none:
n0.0,0.0,1.0,0.0;
none;none;none:

n 0.0,0.0,1.0,0.0;
none ;nomne ;none:

n 0.0,0.0,0.0,0.0;
none;none;none:
repl{27)[rep{(4) none]:
repl(3)[{rep(4) none]:

37z

=
p—

1

® o

[

W W W
— —.

-
—

M
Wis =

14

—

i

©
W= W~ -

—_—

1]

—

(1]
W~ W~

1]
s e s s s =t =

£
W= W~
Lo BEY s

1]

1]
=

k=T l= oo YeuloNelf Selo ol ekl ~Eal=—Ey o ko= = ko i

~ L~ W

OO~ O OO0 Q~ =t — OO0 H - 0000 - O—QO~ OO0 3J ON OO‘-'O‘—'th“—’cvo'-ﬂl—l\—'l—l-'o-_'o-—fl—lv'—lvcyo
0
fD!—"‘Ul—"U!—"‘UI-'*OI—"UI—"D!—-"UI—"UI—"D!—"UI—"UI—"UC)’UO

=l
. £|—'-
<
LI o ol
o

S~

[
T OO O OO OO O OO O O O30 0 —OR OO O ORX O"i o O O On QH o OHO

M~ O~ M~ M~ @~ @~ M~ @~ M~ M=~ M~ M~ M~ M~ @~ —F"~ O~ O~ O~ O~ O~ ®~ MO~ M~ M~ O~ M~ O~ O~

o]
M

14
=
—

m
=

~3~ W~ Lo~
—_

L]
— e

p——

4]
— v

L]
= s s
— -

D
i =~Iw = W~

1]
[uirp
S

® 44 D o
— e = s] []
L B p— L] p—— ~ s

[
= R W T e T A e TR o T e B e T e SO o T e TP e T A s I 1T

= e =
e~ WS s =~ W~

—

gg:ﬂ'1:3HSH:‘H:JHDH:SH:‘H:"‘:’H'J"1'.3"15.'3'.38:3'*"15"1:1"13”5“5“5”:’”5“:"15”5“:”5"5
AT oY o O O O =g o o O O O g o::sogn—-m*o oY O O =YD o BT O =D OT T o »o o

s(4,300)

. — —— . e —— —~ e — — — — e~ —

—~a e e s Y e s s MY e s s e .
OB O A~ O RO RO~ OLOLO~COROBOLACT OB O

O RDOoODOoOn T O O BT O OM I OT O He O

{ NO. 6.5.2 part-1 }
f Selector file for the most general solution of a system of egs.}

1,0,0,0:

.0,0.0;none;none;w 1.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;none;w 0.0,0.0,0.0,0.
4) none]:
0,0.0;none;none;w 1.0,0.0,0.0,0.
4) none]:
.0,0.0;none;none;w 0.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;none;w 0.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;none;w 1.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;none;w 1.0,0.0,0.0,0.
4) none]l:
0,0.0;none;none;w 0.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;none;w 1.0,0.0,0.0,0.
4) nonel:
.0,0.0;none;nene;w 1.0,0.0,0.0,0.
4) none]l:
0,0.0;none;nene;w 1.0,0.0,0.0,0.
4) nonej:
.0,0.0;none;none;w 1.0,0.0,0.0,0.
4) none]:
.0,0.0;none;none;w 0.0,0.0,0.0,0.
4} nonel:
0,0.0;none;none;w 0.0,0.0,0.0,0.
{4) nonel:

,0.0; none;none;none:

one; none:

,0.0; none;none;nocne:

one; none:

,0.0; none;none;none:

) none]

,0.0; none;none;none:

} nonel

,0.0; none;none;none:

) none]

,0.0; none;none;none:

4) none}:

+0.0; none;none;none:

) none]

,0.0; none;none;none:

) nonel:

,0.0; none; none none:

4) none]:

,0.0; none;none;none:

} none]

,0.0; none;none;none:

) none]:

+0.0; none;none;none:

4) nonel:

.0.0; none;none;none:

) none]:

;0.0; none;none;none:

} nonel:

,0.0; none;none;none:

4) none])

o o O o o

o o O o o

373

374

L e]

—_—

. =Y

LYY — -

— oo — .o
e O an . ——— — - (1] LT (3] LT3 — ne
o m o L= R ve-} — — oo (= o o o o - o
~ - -~ - — 0, o, — [S - - - - - o -
= O, [o < @© @ NN O i o - v o - o
) e .4 -~ L — Yy [O - - - - -~ o -
[« TR¥] oo o - o Ry ~ o - O — — o (=) — -~ o
Q =~ - o ~ QO QU -l ~ O - o - - - - - — -
tb e ~— L= - — o~ o Lee T] - O — o <o (=] o — —
LY R R o e T S ¥ g Qe PP [et it Y4 98 e s — —_— — — — — —
OO = ™~ o — —_—_ OO A e 00)7000000000000))00)))00000000)0)0)00)0)0100)
[o A o T I e e e a1 R T S 0 T2 T S S S SN A L s S o wl] w0l ol N[~ med o~ o~
OQEld = ™M U~ M e OO YMP MO~ — OO OO~ OO0 OO0 A ——rrlO O OO0 100 OO0 O~ i e e e O (DO
L I i N e s S S P R T 3 [e e
el O M O A= 0L O D.D.nuOl.UOOllUOll Lo Oo UG AAAOOAOO = i Lo — Qi Qo QLO — Dy
e 2P U 2L s DD v~ DGOV OD v~ -~ WU .~ morowomomomomomoaow o U U =~ ~ QU QD =~ »~ = = = = nu = U ~ VDD ~ - QW SO =~ -
e it WO MAA N WO AO oM MM M W

— e r100110011000rrll HMH HMMOAOOOe=cd HO N M BHMeEelO MO WM MO O W

375

(1,1,1,0]
[0,1,0,0]:
Eof‘oflpol:
}{1,0,0,0]:
(0,0,1,0]:
5[lr0r0r0]:
[0,1,0,0]:
[0,0,1,01:
(0,1,0,01:
)[1,0,0,0]:
[1,0,0,0]

I I R N T s LY b L T I T T o (PN R N I T o R S T Y o T o B S T o IS T o B e R 1
O rd e ey e =] e O QO r Ot P e O OO O T == = O O O
L e Y e Bl | LT B S I S | LY o B o S | « wmp= o w wH - L e B e e A Y Y |] o m—
e OO GO o Qe Dl O = Ot e 00O A O i O A G e OGO) i Oy O~ WD
U s DO D -~~~ s U D DO e QD s s~ D OO~~~ s ~ ~QUE
AHO H M HMAO HO Hd HOO M HO HMHBHEAQO MO MA MOO M HO H H HEAO RO MA MOO W QO

376

p(4,108)

{ NO. 6.5.2 part-2 }

{ Program for the most general solution of a system of egs. }

repl{(3){rep(4) null n,0,0]:

{calculation}

rep(4) mult n w,3,6:

rep{(d4) add ,7,0:

rep{4) mov ,0,7:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:

rep(4) add ,7,0:

rep{(4) mov ,0,7:

rep{4) mov ,6,

rep{4) mult n

rep(4) add ,7

rep(4) mov ,0

rep(4) mov ,6

rep(4) mult n

rep{(4) add ,7

rep(4) mov ,0

rep(4) mov ,6
n

rep(4) mult ;3,6:

add ,8,0;rep(3) add ,7,0:
mnov ,O,B;rep(B mov ,0,7:
rep(4) mov ,6,1:

rep(4) mult n w,3,6:
rep(2) add ,8,0; rep(Z) add ,7,0
rep{2) nov ,0 8;rep(2) mov ,0,7
rep(4) mov ,6,1:

rep{(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:

rep(4) mult n w,3,6
rep{4) add ,8,0:

rep(4) mov ,0,8:

rep{4) mov ,6,1:

rep(4) mult n w,3,6

add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3} mov ,0,8:
rep{(4) mov ,6,1:

rep(4) mult n w,3,6:
rep{2) add ,9,0;rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep(4) mov ,6,1:

rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep(4) mov ,6,1:

rep(4) mult n w,3,6:
rep(4) add ,9,0:

rep(4) mov ,0,9:

rep(4) mov ,6,1:

rep(4) mult n w,3,6:
rep(4) add ,9,0:

rep(4) mov ,0,9

rep(4) mov ,6,1

rep(4) mult n w,3,6:
rep{4) add ,9,0

rep(4) mov ,0,9

rep(4) mov ,6,1

rep(4) mov ,7,0

rep{(4) copy
rep(4) mov
rep(4) copy
rep(4) mov

rep(4) copy
rep(4) null
data n,3,0;
rep(2) data
rep(3) data
mov s,1,7;

data n, 3 0,
rep(2) data
tep(3) data
mev s,1,8;

sub ,7,8; mov

mov ,0,9: s
data n,3,0;
mult ,
copy .
null ,
null ,
null ,
null ,
rep(2)
rep{2) null
data n,3,0;
rep(2) data
rep(3) data

mov s,1,7;
data n,3,0;
mult ,3,7;
copy ,0,0;
null ,0,0;
null ,0,0;
null ,0,0;
null ,0,0;
rep{2) null
rep(2) null
rep{2) null
rep(2) null
rep(3) null
rep(3) null
rep(3) null
rep(3}) null
rep(3) null
rep(3) null
rep(3) null
rep(3) null
end
d(4,108)

{ NO. 6.5.2

{ Data file for the most general solution of a system of eqs.

repl(3)[rep

n 1.0,0.0,0.0,0.0;none;none;w 0.5,0.0,0.0,0.0:

repl(3)[rep
n 0.0,0.0,

rep1(3)[rep
nl,0,1.0,1
repl(3)[rep
n 0.0,1.0,1
repl(3)[rep
nl1l.0,0.0,1.
repl(3)[rep
n 0.0,0.0,1.

,0,0:
,8,0:

,0,0:
,9,0:

,0,0:

,0,0: :

rep{3} null ,0,0:

n,3,0; rep(2) null ,0,0:

n,3,0; null ,0,0:

rep(2) data n,3,0; null ,0,0:

mov s,1,7; data n,3,0; null ,0,0:
n,3,0, mov s,1,7; null ,0,0:
n,3,0 null ,0,0:

rep(2) data n,3,0; null ,0,0:

s,1,8; data n, 3 0; null ,0,0:

ub ,7,8; mov s,l,B; null ,0,0:
mov ,0,9; sub ,7,8; null ,0,0:
data n,3,0; mov ,0,9; null ,0,0
mult ,3,9; data n,3,0; null ,0,0:
mov ,0,10; mult ,3,9%9; null ,0,0:
data w,¢,0; mov ,0,10; null ,0,0:
add ,6,10; rep(2) null ,0,0:
copy ,0,0; rep(2) null ,0,0

,0,0; data w,6,0; null ,0,0:
,0,0; add ,6, 10 null ,0,0:

null ,0,0; mov ,0,10; null ,0,0
n,3,0; rep(Z) null ,0,0;:

n,3,0; null ,0,0:
rep(3) data n,3,0:

mov s,1,7; rep(2) data n,3,0:

data n,3,0; mov s5,1,7; data n,3
mult ,3,7; data n,3,0; mov s,1,
mov ,0,8; mult ,3,7; data n,3,0:
data w,6,0; mov ,0,8; mult ,3,7:
add ,6,8; null ,0,0; mov ,0,8:
copy ,0,0; rep(2) null ,0,0:

:0,0; data w,6,0; null ,0,0:

,0,0; add ,6,8; null ,0,0:

,0,0; add ,0,10; null ,0,0:

,0,0; copy ,0,0; null ,0,0:

,0,0; data w,6,0:

,0,0; add ,6,8:

,0,0; copy ,0,0:

,0,0; data s,5,0:

,0,0; data s,5,0:

,0,0; data s,5,0:

,0,0; data s,5,0:

,0,0; data s,5,0

part-2 }

{4) nonel:
(4) none]
(4) none]:
4) nonel:
) nonel:

) none]

0.0;none;none;w 0.5,0.0,0.0,0.0:

0

0.0,0.0;none;none;w -0.5,0.0,0.0,0.0:
0,0.0;none;none;w 0.5,0.0,0.0,0.0:
0,0.0;none;none;w -0.5,0.0,0.0,0.0:
g 0.0;none;none;w —0 5,0.0,0.0,0.0:
0.

377

) nonel:
,0.0;none;none;w
) none]

m
[}

L)
e =

— .

®
O OO~ O D QD O™ O O~

) none]

,0.0;none;none;w
) none]

,0.0;none;none;w
) none]

,0.0;none;none;w
) none]
r
)
!
)
'
4

D
[urN

~— e M, g

=i »

[
W= s W W W= W

-t
—

o]

0.0;none;none;w
none]

0.0;none;none;w
none]

.0;none;none;w

= .
W~
—_—

(
(

[0}

OO O3 FDoboNlon I ol oT O OT O =D O =Y O -G
(L

®
e e
<Do=ao~—H~—H~—o~—o-H»—H-

m
¢ = On Ol'i C)l'"(CDH O O O OnN

ot~ (b~ B~ M~ M=~ D~ D~ D=

o]

D
O~

[s]
G

[}

[}
DRI OoOT O—:

e

s s

Q

o

©
O~e O

Q

one;none:

0. O, 0.0, 0.0;
one;ncne:

0.0, 0.0, 0.0;
one;none:

1.0, 1.0, 0.0;
one;none:

0.0, 0.0, 0.0;
one;none:

0. 0, 0.0, 0.0;
none ;none ;none:

none ;none;none;none:
nl.0, 0.0, 0.0, 0.0;
none;none;none:

n 0.0, 1.0, 0.0, 0.0;
none;none;none:
n 0.0, 0.0, 1.0, 0.0;
none;none;none:
repl(é6}[rep(4) none]l:
n 0.25, 0.0, 0.0, 0.0;
none;none;none: .
n -0.5, 0.25, 0.0, 0.0;
none;none;none:
n 0.5, 0.5, -0.25, 0.0;
none;none;none:
n 0.0, -0.5, 0.5, 0.75;
none;none;none:
n2.0, 0.0, 0.5, -0.5;
none ;none;none:
n0.0, 2.0, 0.0, -0.5;
none ;none ;none:
n 0.0, 0.0, 2.0, 0.0;
none;none;none:
n 0.0, 0.0, 0.0, 2.0;
none;none;none:
repl(15)}[rep(4) nonel
end

o}
. (M e
£ ~e

Q
i+
CO~e O~

@]
M

O~
He g O g. Se T Ma Ha pan

o

DB U000 D08 035333038000 dnnIdRnonrDnN

.«
O~
-

0.5,0.0,0.0,0.0:

+0.0;none;none;w -0.5,0.0,0.0,0.0:

0.25,0.0,0.0,0.0:
0.25,0.0,0.0,0.0:

-0.25,0.0,0.0,0.0:

0.75,0.0,0.0,0.0:
0.0,0.0,0.0,0.0:
0.0,0.0,0.0,0.0:

378

{ Selector file for the most general solution of a system of egs.}

— .s e
o~y o — o
] — (] - .
4 [ad] - - —r—
1 ¥} St - - oo
(s o, _— (221 -
-t O m — oo
1] — o - -
o - jan} o] oo
. — e L et L
g} —_— nU 000 L e Lan Lo
- w— A M e e g #5 se e ST ke se e LY S —
[=s i ts) 6300301130)00000000000))
[) W & e mrmameers a2 A w ow owr e v ow w0
- O O MM O - A DO A OO — i e O
- — QD » 2 mrrawr U we] v a2 m w owm] e w e ae]
< 2 A A WA A H- A OO A O (O~ T
— e rrrrr DO >~ ~Q =~ « = = = 2@} ~ =« ~QOL
[l B Hrd A A N HrA S O A A A OO A =W

380

p(4,39)
{ NO. 6.6 }
{ Program for the deletion from the heap sort }
{loading data}-
data n,3,0; rep(3) null ,0,
data n,3,0; rep(3}) null ,0,
rep(3) data n,3,0; null ,0,
null ,0,0; rep(2) data n, 3,
rep(2) null ,0,0; data n,3,
{calculation}
rep(2) null ,0,0; data s,5,0; ,
null ,0,0; data e,4,0; data s,5,0; n
null ,0,0; data s,5,0; rep(2) null ,0,
min e,4,1; max w,6,1; rep{2) null ,0,0:
ul

0:

0:

0:

0; null ,
0; null ,
0

null

null ,0,0; max ,4,1; min w,6,1; nu
null ,0,0; data s,5,0; rep(2) null
rep(4) null ,0,0:

null ,0,0; data e,4,0; rep(2) null
rep(2) null ,0,0; data n,3,0; null
min e,4,1; max w,6,1; rep(2) null
null ,0,0; max e,4,1; min w,6,1; n
null ,0,0; data s,5,0; rep(2) null
data s,5,0; data w,6,0; rep(2) null ,
null ,0,0; max e,4,1; nin w,6,1; null
rep(4) null ,0,0:

min e,4,1; max w,6,1; rep{(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep{2) null ,0,0
null ,0,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null ,0,0:

null ,0,0; max e,4,1; min w,6,1; null ,0,0:
rep(4) null ,0,0:

min e,4,1; max w,6,1; rep(2) null ,0,0:
rep(4) null ,0,0:

null ,0,0; data s,5,0; rep(2) null ,0,0:
rep{(4) null ,0,0:

null ,0,0; data e,4,0; rep(2) null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
rep{(4) null ,0,0:

o~

-

null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; data w,6,0; rep{2) null ,0,0:
null ,0,0; data s5,5,0; rep(2) null ,0,0:
npull ,0,0; data s,5,0; rep(2) null ,0,0:
rep(4) null ,0,0

end

d(4,39)

{ NO. 6.6 }

{ Data file for the deletion from the heap sort }
n 4.0,0.0,0.0,0.0;rep(3}) none:
n5.0,0.0,0.0,0.0;rep(3) none:
n1.0,9.0,6.0,0.0;rep(3) none:

n 0.0,0.0,7.0,0.0;rep(3) none:

n 0.0,0.0,3.0,0.0;rep(3) none:
repl(34)(rep(4) none]

end

s(4,39)
{ NO. 6.6 }

{ Selector file for the deletion from the heap sort }

repl(3)({rep(3) 1, 0]}:
repl(2)[rep(4) 0]:

0, rep(2) 1, 0:
rep(2) 1, rep(2) 0:
rep(4) O:

0, 1, rep(2) 0;:
rep(2) 1, rep(2) 0:
rep(4) 0:

0, 1, rep(2) 0:

1, 1, rep(2) 0:
rep(4) 0:

0, 1, rep(2) 0:
rep(2) 1, rep(2) O:
rep(4}) 0:

G, 1, rep(2) 0:

0, rep(2) 1, 0:
tepl(2)[(0, 1, rep(2) 01]:
rep(2) 1, rep(2) 0:

rep(4) 0:

repl(2)[0, 1, rep(2) 0]:
rep(2) 1, rep(2) 0:
rep(4) 0:

0, 1, rep(2) 0:

rep(2) 1, rep(2) O0:
rep(4) 0:

repl(3)[0, 1, rep(2) 0]:
rep(2) 1, rep(2) 0:
rep(4) 0:

repl(3)[rep(2) 1, rep{(2) 0}:

rep(3) 1, O
end

381

p(4,121)

{ NO. 6.7 HPI }

{ Program for Hermite Polynomial Interpolation }
data n,3,0; rep(3) null ,0,0:

mov s,1,7; rep(3) null ,0,0:

rep(2) data n,3,0; rep(2) null ,0,0
rep{2) mov s,1,8; rep(2) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(2) mov s,1,9; rep(2) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(2) mov s, 1,10; rep(2) null ,0,0:
tep(2) sub ,8,9; rep(2) null ,0,0:
rep(2) mov ,0,11; rep(2) null ,0,0:
rep(2} sub ,8,10; rep{2) null ,0,0:
rep(2) mov ,0,12; rep(2) null ,0,0:
rep(2) mult ,11,12; rep(2) null ,0,0:
rep(2) mov ,0,13; rep(2) null ,0,0:
rep{(2) sub ,9,8; rep(2) null ,0,0:
rep(2) mov ,0,14; rep(2) null ,0,0:
rep(2) sub ,9,10; rep{2) null ,0,0:
rep{2) mov ,0,15; rep(2) null ,0,0:
rep(2) mult ,14,15; rep(2) null ,0,0:
rep(2) mov ,0,16; rep{(2) null ,0,0:
rep(2) sub ,10,8; rep(2) null ,0,0:
rep{2) mov ,0,17; rep(2}) null ,0,0:
rep(2) sub ,10,9; rep(2) null ,0,0:
rep{(2} mov ,0,18; rep(2) nuil ,0,0:
rep{2) mult ,17,18; rep(2) null ,0,0:
rep(2) mov ,0,19; rep(2) null ,0,0:
sub ,7,9; sub ,8,10; rep(2) null ,0,0
rep(2) mov ,0,11; rep(2) null ,0,0:

sub ,7,10; sub ,8,9; rep{(2) null ,0,0:
rep(2) mov ,0,12; rep(2) null ,0,0:
mult ,11,12; add ,11,12; rep(2) null ,0,0:
rep(2) mov ,0,14; rep{(2) null ,0,0:
sub ,7,8; sub ,9,10; rep(2) null ,0,0:
rep(2) mov ,0,15; rep(2) null ,0,0:
mult ,15,12; sub ,9,8; rep(2) null ,0,0:

rep(2) mov ,0,17; rep{(2) null ,0,0:
mult ,15,11; add ,15,17; rep(2) null ,0,0:
rep(2) mov ,0,18; rep(2) null ,0,0:

div ,14,13; sub ,10,9; rep(2) null ,0,0:
mov ,0,13; mov ,0,11; rep(2) null ,0,0:
div ,17,16; sub ,10,8; rep(2) null ,0,0:
mov ,0,14; mov ,0,12; rep(2) null ,0,0:
div ,18,19; add ,11,12; rep(2) null 0,0
mov ,0,16; mov ,0,17; rep(2}) null ,0,0:
mult ,13,13; div ,14,13; rep(2) null ,0,0:

rep(2) mov ,0,13; rep{2}) null ,0,0:

mult ,14,14; div ,18,16; rep(2) null ,0,0:
rep{(2) mov ,0,14; rep(2) null ,0,0:

mult ,16,16; div ,17,19; rep{(2) null ,0,0:
rep(2) mov ,0,16; rep(2) null ,0,0:

data n,3,0; mov ,13,0; rep(2) null ,0,0:

mov s,1,7; rep(3) null ,0,0:

data n,3,0; copy ,0,0; rep(2) null ,0,0:
mov s,1,8; rep(3) null ,0,0:

data e,4,0; mov ,14,0; rep(2) null ,0,0:
mov s,1,17; copy ,0,0; rep(2) null ,0,0:
data e,4,0; mov ,16,0; rep(2) null ,0,0:
mov s,1,18; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:

mov s,1,19; rep(3) null ,0,0:
mult ,8,15; rep(3) null ,0,0:
mov ,0,9; rep(3) null ,0,0:
mult ,9,17; rep(3) null ,0,0:
mov ,0,9; rep(3) null ,0,0:
mult ,8,11; rep(3) null ,0,0:
mov ,0,10; rep(3) null ,0,0:
mult ,10,18; rep(3) null ,0,0:
mov ,0,10; rep(3) null ,0,0:
mult ,8,12; rep(3) null ,0,0:
mov ,0,17; rep(3) null ,0,0:
mult ,17,19; rep(3) null ,0,0:
mov ,0,17; rep(3) null ,0,0:
sub ,7,9; rep(3) null ,0,0:
mov ,0,9; rep(3) null ,0,0:
sub ,7,10; rep(3) null ,0,0:
mov ,0,10; rep(3) null ,0,0:
sub ,7,17; rep(3) null ,0,0:
mov ,0,17; rep(3) nuil ,0,0:
mult ,9,13; rep(3) null ,0,0:
mov ,0,7; rep{3) null ,0,0:
mult ,10,14; rep(3) null ,0,0
mov ,0,8; rep(3) null ,0,0:
mult ,17,16; rep(3) null ,0,0
mov ,0,9; rep(3) nuill ,0,0:
mult ,15,13; rep(3) null ,0,0:
mov ,0,10; rep(3) null ,0,0:
mult ,11,14; rep(3) null ,0,0:
mov ,0,11; rep(3) null ,0,0:
mult ,12,16; rep(3) null ,0,0:
mov ,0,12; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0;:
mov s,1,13; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov s,1,14; rep{3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov s5,1,15; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov s,1,16; rep(3) null ,0,0:
data n,3,0; rep(3} null ,0,0:
mov s,1,17; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov §,1,18; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null
mult ,13,7; rep(3} null ,0,0:
mov ,0,7; rep(3) null ,0,0:
mult ,14,8; rep(3) null ,0,0:
mov ,0,8; rep(3) null ,0,0:
mult ,15,9; rep(3) null ,0,0:
mov ,0,9; rep(3) null ,0,0:
mult ,16,10; rep(3) null ,0,0:
mov ,0,10; rep(3) null ,0,0:
mult ,17,11; rep(3) null ,0,0:
mov ,0,11; rep(3) null ,0,0:
mult ,18,12; rep(3) null ,0,0:
add ,0,11; rep(3) null ,0,0:
add ,0,10; rep(3) null ,0,0:
add ,0,9; rep(3) null ,0,0:
add ,0,8; rep(3) null ,0,0:
add ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0

383

384

d(4,121)
{ NO. 6.7 HPI }

{ Data file for Hermite Polynomial Interpolation }
nl.5, 0.0, 0.0, 0.0; none; none; none:

rep{(4) none:

nl.3, 1.3, 0.0, 0.0; none;none;none:

rep{4) none:
nl.é, 1.6, 0.
rep(4) none:
nl.9, 1.9, 0.0,
repl(43)[rep(4
nl.0, 0.0, 0.
rep(4) none:
n 2.0, 0.0,

0, 0.0; none;none;none:

0.0; none;none;none:
) nonel:
0, 0.0; none; none; none:
0.0, 0.0; none; none; none:
repl(37){rep{4) none]:
n 0.620086, 0.0, 0.0,
0.0
0.0

r

. 0.0; none; none; none:
rep(4) none:
n 0.455402,
rep(4) none:
n 0.281818,
rep(4) none:)
n -0.522023, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:

n -0.5698%85, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:

n -0.581157, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:)

n 0.0, 0.0, 0.0, 0.0; none; none; none:
repl(18)(rep(4) none]

end

.0, 0.0, 0.0; none; none; none:
. 0

. .0, 0.0; none; none; none:

s{4,121)

{ NO. 6.7 HPI }

{ Selector file for Hermite Polynomial Interpolation }
repl(121){1,0,0,0]

end

p(4,29)

{ NO. 6.7 PE } :

{ Program for parallel evaluation }
rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) data n,3,0:

rep(4) mov ,3,7:

null ,0,0; rep(3) mult ,3,7:

nuil ,0,0; mov ,0,8; rep(2) mult ,0,7:

[
rep(2) null ,0,0; rep(2) mult ,0,7:
rep(2) null ,0,0; mov ,0,8; mult ,0,7:
rep{3) null ,0,0; mult ,0,7:
rep(3) null ,0,0; mov ,0,8:
rep{4) data n,3,0:
rep(4} mult ,3,7:
rep(4) mov ,0,9:
rep(4) data n,3,0
rep(4}) add ,3,9:
copy ,0,0; rep{(3) mov ,0,10:
null ,0,0; rep(3) mult ,8,10:
null ,0,0; rep(3) mov ,0,10:
null ,0,0; data w,6,0; rep{(2) null ,0,0:
null ,0,0; add ,6,10; rep{(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) nuill ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep{2) null ,0,0; copy ,0,0; null ,0,0:
rep(3) null ,0,0; data w,6,0:
rep(3) null ,0,0; add ,6,10:
rep{(3) null ,0,0; copy ,0,0:
rep(4) null ,0,0
end
d(4,29)

{ NO. 6.7 PE }

{ Data file for parallel evaluation }
repl{(3)[rep(4) none]:

n 2.0,2.0,2.0,2.0;none;none;none:
repl(7)[rep(4) nonel:

n 4.0,6.0,8.0,10.0;none;none;none:
rep(4) none:

rep{4) none:

n 3.0,5,0,7.0,9.0;none;none;none:
repl(1l4){rep(4) none)

end

s(4,29)

{ NO. 6.7 PE }

{ Selector file for parallel evaluation }
repl(29)[(1,0,0,0]

end

385

