
LOUGHBOROUGH
UNIVERSITY OF TECHNOLOGY

LIBRARY
AUTHOR/FILING TITLE

--- -- - ----- ---------------- --- -- --- ----- - - ----- ---
ACCESSION/COPY NO,

'----------------- ~~~~.6_~_~ ~ ________________ _
VOl. NO, CLASS MARK

- 5 JUl 1991

1 2 NOV 199,

- 5 JUL 1QQ
_ , t-lO'l 199{f'

-.5~-'

-,

" ,..",\. ,~>'; "'~ :~,> ,

THE INSTRUCTION SYSTOLIC ARRAY (ISA)

AND SIMULATION OF PARALLEL ALGORITHMS

BY

OSSAMA KADOM MUSLIH, B.Sc.,M.PH.

A Doctoral Thesis

submitted in partial fulfilment of the requirements

for the award of Doctor of Philosophy

of the Loughborough University of Technology

September, 1989.

Supervisor: PROFESSOR D.J. EVANS, Ph.D.,D.Sc.,

Department of Computer Studies.

© OSSAMA KADOM MUSLIH, 1989.

Loughborough University
of Technology Library

Date S~~ A. "'"
Class

Ace o 3? St.6 01-No.

To the memory of my

father and mother,

my wife, INTIHA,

and my children, OMAR and OLLA.

ACKNOWLEDGEMENTS

The author wishes to express his sincere thanks to

Professor D.J. Evans for his guidance, suggestions and advice

throughout the course of the research and preparation of this

thesis.

The author also acknowledges the Iraqi Government

(Ministry of Higher Education and Scientific Research) for

their financial support.

Thanks also to my dearest wife, Intiha, for her constant

support during the course of this work.

Finally, thanks to Dr. G.M. Megson, for his help at the

beginning of the research.

i

THE INSTRUCTION SYSTOLIC ARRAY (ISA)

AND SIMULATION OF PARALLEL ALGORITHMS

ABSTRACT

Systolic arrays have proved to be well suited for Very Large

Scale Integrated technology (VLSI) since they:

Consist of a regular network of simple processing cells,

Use local communication between the processing cells only,

Exploit a maximal degree of parallelism.

However, systolic arrays have one main disadvantage compared with

other parallel computer architectures: they are special purpose

architectures only capable of executing one algorithm, e.g., a

systolic array designed for sorting cannot be used to form matrix

multiplication.

Several approaches have been made to make systolic arrays more

flexible, in order to be able to handle different problems on a

single systolic array.

In this thesis an alternative concept to a VLSI-architecture

the Soft-Systolic Simulation System (SSSS), is introduced and

developed as a working model of virtual machine with the power to

simulate hard systolic arrays and more general forms of concurrency

such as the SIMD and MIMD models of computation.

ii

The virtual machine includes a processing element consisting of

a soft-systolic processor implemented in the virtual.machine language.

The processing element considered here was a very general element

which allows the choice of a wide range of arithmetic and logical

operators and allows the simulation of a wide class of algorithms

but in principle extra processing cells can be added making a library

and this library be tailored to ,individual needs.

iii

The virtual machine chosen for this implementation is the

Instruction Systolic Array (ISA). The ISA'has a number of interesting

features, firstly it has been used to simulate all SIMD algorithms

and many MIMD algorithms by a simple program transformation technique,

further, the ISA can also simulate the so-called wavefront processor

algorithms, as well as many hard systolic algorithms. The ISA removes

the need for the broadcasting of data which is a feature of SIMD

algorithms (limiting the size of the machine and its cycle time) and

also presents a fairly simple communication structure for MIMD

algorithms.

The model of systolic computation developed from the VLSI

approach to systolic arrays is such that the processing surface is

fixed, as are the processing elements or cells by virtue of their

being embedded in the processing surface.

The VLSI approach therefore freezes instructions and hardware

relative to the movement of data ,with the virtual machine and soft­

systolic programming retaining the constructions of VLSI for array

design features such as regularity, simplicity and local communication,

allowing the movement of instructions with respect to data. Data can

be frozen into the structure with instructions moving systolically.

Alternatively both the data and instructions can move systolically

around the virtual processors, (which are deemed fixed relative to

the underlying architecture).

The ISA is implemented in OCCAM programs whose execution and

output implicitly confirm the correctness of the design.

iv

The soft-systolic preparation comprises of the usual operating

system facilities for the creation and modification of files during

the development of new programs and ISA processor elements. We allow

any concurrent high level language to be used to model the soft­

systolic program. Consequently the Replicating Instruction Systolic

Array Language (RI SAL) was devised to provide a very primitive program

environment to the ISA but adequate for testing. RI SAL accepts

instructions in an assembler-like form, but is fairly permissive

about.the format of statements, subject of course to syntax.

The RISAL compiler is adopted to transform the soft-systolic

program descript~on (RI SAL) into a form suitable for the virtual

machine (simulating the algorithm) to run.

Finally we conclude .that the principles mentioned here can form

the basis for a soft-systolic simulator using an orthogonally

connected mesh of processors. The wide range of algorithms which the

ISA can simulate make it suitable for a virtual simulating grid.

CONTENTS

PAGE

ACKNOWLEDGEMENTS i

ABSTRAcr ii

CHAPTER 1: FUNDAMENTALS OF PARALLEL COMPUTER ARCHITECTURE

1.1 Introduction 1

1.2 Main Motivations 4

1.3 Design Classifications 6

1.3.1 Flynn's High-Speed Parallel Computers
Classification 6

1.3.2 Shore's Classification 13

1.3.3 Other Classification Approaches 16

1.4 Pipelined Computers 20

1.5 Data-Flow Computers 27

1.6 Array Processors 33

CHAPTER 2: PARALLEL ARCHITECTURES - A VLSI APPROACH

2.1 Introduction to the VLSI Technology Paradigm 38

2.2 Fundamental Architectural Concepts in
Designing Special Purpose VLSI Computing 41
Structures

2.2.1 Systolic Arrays 45

2.2.2 Wavefront Arrays 49

2.3 VLSI-Oriented Architectures 52

2.3.1 The WARP Architecture 52

2.3.2 The CHIP Architecture 53

2.3.3 INMOS Transputers and OCCAM 58

2.3.4 Simulation of Systolic Arrays 61

PAGE

2.4 MIMD Architecture Design - The Sequent
Balance System

2.4.1 MIMD Hardware Organisation

2.4.2 The Sequent Balance 8000 System

CHAPTER 3: THE INSTRUCTION SYSTOLIC ARRAY (ISA) - A
PARALLEL ARCHITECTURE FOR VLSI

3.1 The Instruction Systolic Array (ISA)

3.2 The Instruction Systolic Array and Its
Relation to Other Models of Parallel
Computers

67

67

75

80

85

3.2.1 Basic Definitions 85

3.2.2 A Simple Example Program 91

3.2.3 Relationshi~s Between ISA, IBA, and
PA 97

3.2.4 Relationship of ISA to standard
Models of Parallel Computers 104

3.3 A Comparison-Based Instruction Systolic Array 107

3.3.1 ISA Construction 107

3.3.2 Example Programs on the ISA 110

3.4 To Sort by the Instruction Systolic Array 115

3.4.1 Introduction 115

3.4.2 One Dimensional Sorting Methods 116

3.4.3 The Two Dimensional Sorting Algorithm 121

3.4.4 The Algorithm on the ISA 122

3.5 Additional Algorithms Solution by Using the
Instruction Systolic Array (ISA) 127

3.5.1 Finding the Generalized Matrix
Inversion

~27

3.5.2 Top-Down Designs of Instruction Systolic
Arrays for Polynomial Interpolation and
Evaluation 128

PAGE

3.5.3 Finding Transitive Closure 131

3.5.4 Finding all Cut-Points 131

3.6 The Singe Instruction Systolic Array (SISA)
- Variants of the ISA Model 133

CHAPTER 4: THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS)

4.1 Basic Definitions of the System

4.2 System and Machine Preparation

4.3 The Virtual Machine

4.3.1 The Instruction Systolic Array (ISA)
Network

4.3.2 The Processing Element (PE)

CHAPTER 5: THE IMPLEMENTATION OF THE REPLICATING INSTRUCTION
SYSTOLIC ARRAY LANGUAGE (RISAL) AND SYSTEM
TESTING

136

139

146

147

159

5.1 Introduction 168

5.2 Language Design Principles 171

5.3 The RISAL Compiler 181

5.4 Soft-Systolic Simulation Architecture and
Testing 193

CHAPTER 6: THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS) FOR
VARIOUS ALGORITHMS

6.1 Basic Mathematics

6.2 Matrix Applications Using (SSSS)

6.2.1 4*4 Matrix Transpose

6.2.2 4*4 LU Decomposition

6.2.3 Matrix-Vector Multiplication

6.2.4 Matrix-Matrix Multiplication

207

217

217

221

225

228

PAGE

6.3 The Solution of Linear Systems Using SS SS 235

6.4 Finding the Generalized Inverse of a
Rectangular Matrix Using SSSS 243

6.5 Some Applications to the Generalized
Inverse of a Rectangular Matrix Using SSSS 248

6.5.1 The Solution of a Homogeneous System
of Equations 249

6.5.2 The Most General Solution of a
System of Equations 252

6.6 Deletion from a Heap Sort Using SSSS

6.7 Hermite Polynomial Interpolating and
Evaluation Using SSSS

257

264

CHAPTER 7: SUMMARY AND CONCLUSIONS 280

REFERENCES

APPENDICES:

APPENDIX I:

APPENDIX II:

LOUGHBOROUGH OCCAM COMPILER VERSION 5.0
DOCUMENTATION

THE SOFT-SYSTOLIC. SIMULATION SYSTEM (SSSS)
PROGRAM LISTINGS

APPENDIX III: RISAL PROGRAM LISTINGS

289

298

317

332

CHAPTER 1

FUNDAMENTALS OF PARALLEL COMPUTER

ARCH ITECTURE

1

1.1 INTRODUCTION

The information revolution, has had the most tremendous impact on

both technology and our society. This fast developing revolution has

just recently started to migrate towards a new era - the knowledge

revolution, by giving birth to the Fifth Generation of Super Computers

(FGSC). These have in fact changed our lifestyles, our educational

programs and most of all many professional careers.

Amongst the huge numbers of computer applications which range

from the simple personal computer games to the weather forecasting

calculation and satellite transmission programs, there are many that

require the use of large amounts of computational time. In an attempt

to meet the challenging problem of providing fast and economical

computation, Large-Scale Parallel Computers were developed. ·In fact,

until recently computational speed was derived only from the development

of faster electronic devices.

In the late 1960s, Integrated Circuits (ICS) were used in computer

design and were followed by Large Scale' Integrated (LSI) techniques.

The Very Large-Scale Integrated Circuits (VLSI), developed seven years

ago, are currently being used in the design of very high speed special

and general purpose computer systems.

Until seven years ago, the current state of electronic technology

was such that all factors affecting computational speed were almost

minimised and any further computational speed increase could only be

achieved through both increased switching speeds and increased circuit

density.

Due to the physical laws, the intended breakthrough seemed

unlikely to be achieved mainly because we are fast approaching the

limits of optical resolution. Hence, even if switching times are

almost instantaneous, distances between any two points may not be

small enough to minimise the propagation delays and thus improve

computational speed. Therefore, the achievement of even faster

computers is conditional by the use of new approaches that do not

depend on breakthrough in device technology but rather on imaginative

applications,of the skills of computer architecture.

2

Obviously one approach to increasing speed is through parallelism.

The ideal objective is to create a system containing P processors,

connected in some cooperating fashion, so that it is P t'imes faster

than a computer with a single processor. These parallel computer

systems or multiprocessors as they are commonly known, not only

increase the potential processing speed, but they also increase the

overall throughput, flexibilit~ reliability and provide for the

tolerance of processor failures.

'Hockney and Jesshope [Hockney 1981) summarised the principle ways

of introducing parallelism at the hardware level of the computer

architectures as:

1. The application,of pipe lining - assembly line - techniques

in order to improve the performance of the arithmetic or

control units. A processor is decomposed into a certain

number of elementary subprocesses each of which being capable

of executing on dedicated autonomous units.

2.. The provision of several independent units, operating in

parallel, to perform some basic fundamental functions such as

logic, addition or multiplications.

3. The provision of an array of processing elements performing

simultaneously the same instruction on a set of different

data where the data is stored in the processing elements (PE)

private memory.

3

4. The provision of several independent processors, working in a

co-operative manner towards the solution of a single task by

communicating via a shared or common memory, each one of them

being a complete computer, obeying its own stored instructions.

The following sections will cover a wide selection of the

principle significant parallel computer architectures, which differ

sufficiently from each other, the pipeline, SIMD, MIMD, data-flow and

VLSI systems, to illustrate alternative hardware and software

approaches.

4

1.2 MAIN MOTIVATIONS

During the last decade the multiple processor approach has

tailored a set of long sought after motivating goals in order to

satisfactorily meet many of the. challenging system design requirements.

In reviewing some aspects of parallel processing systems, one finds that

while the hardware is improving at a fast rate, the software tools to

take advantage of the'provided benefits are only slowly forthcoming;

a fact that affects the design motivations mentioned below.

Since the early developed multiple processing systems, the system

characteristics that have motivated the continued development in this

field have not changed much. The most significant of these are

increased throughput, improved flexibility and reliability. Since

none of these goals is numerically specified (i.e. they are all

qualitative goals), it is not surprising that the design of the future

"supercomputers" will also be motivated by the same objectives as

today's parallel computers. However, the improvements of some or all

of these specifications must ultimately result in an improved overall

system performance, usually measured on the basis of cost effectiveness.

The system throughput can be used to mean several different

.characteristics such as the potential number of bits processed per

. time-unit, the number of memory transfers per time unit or the

maximal number of programs that can be handled at the same time.

However, .it is usually used nowadays to describe the long-turnaround

of a program in a multiprocessing environment. The multiple processor'

approach is a cost-effective solution to the achievement of most of

these goals. The use of several cooperating processing units can

considerably increase the system throughput which could not be matched

by a uniprocessor system with enhanced logic circuitry.

Literally, flexibility means the ease in,changing the system

configuration to suit new conditions and the use of more than one

processor has greatly increased the system potential flexibility

since it offers the ability to expand the memory space, the number

of processing units and even the software facilities in order to meet

the new demands. This flexibility may also be used to justify the

increased reliability of the system.

Broadly speaking, the reliability is related to ,two different

system aspects required by different applications. The first one is

the system availability which is defined by the requirement that the

system should remain available even in the case of a malfunctioning

unit.- An example of this is the computer controlled telephone -

switching board. The system integrity is the second one and it is

, defined by the requirement that the information contained within

should be "protected" against any 'defection or corruption (e.g. in a

banking system).

Concluding, since all the system characteristics that have

motivated the development of the parallel processor computers are not

described quantitively, any new major system concept has been_claimed

by its proponents as the ultimate solution to achieving these

motivating goals. In fact, the same motives were behind the follow-up

to the parallel processing systems, the VLSI architectures.

5

6

1.3 DESIGN CLASSIFICATIONS

As a result of the introduction of various forms of parallelism

which has proved to be an effective approach for increasing

computational speed, several competitive computer architectures were

constructed but there was little evidence as to which design was

superior, nor was there sufficient knowledge on which to make a careful

evaluation. Researchers helped the study .of high-speed parallel

computers by attempting to classify all the proposed computer

.architectures, or at least those which have been already well

established. A brief presentation of. the concepts of the architectural

taxonomy given by different researchers, especially by the two

pioneers, Flynn [Flynn 1966] and Shore [Shore 1973], follows below.

~ Howev~r -Flynn' s Cl~~-sification s~heme is t~o b~oad;- since it lumps

all parallel computers except the multiprocessor into the SIMD class

I and draws no distinction between the pipelined computer and the

~ processor array which have entirely different computer architectures.

: These classifications have been widely referenced and their
I

I corresponding terminology has greatly contributed to the formation

i of the Computer Science vocabulary.

1.3.1· Flynn's High-Speed Parallel Computer Classification

Based on the dependent relation between instructions that are

propagated by the computer and the data being processed, Flynn explored

theoretically some. of the organisational possibilites for large scientific

computing machinery before attempting to classify them into four broad

classes. We shall. briefly review his theoretical concepts leading to

the actual grouping of the high-speed.parallel computers.

7

For convenience, he defined the instruction stream as a sequence

of instructions to be processed by the computer and the data stream as,

a set of operands, including input and partial or temporary results.

Also, two additional useful concepts were adopted, bandwidth and

latency. By bandwidth he expressed the time-rate of occurrences, and

latency is used to express the total time between execution of response

of a computing process on a particular data unit. Particularly, for

the former'notion, computational or execution bandwidth is the number

of instructions processed per second and storage bandwidth is the

retrieval rate of the data and instruction from the store (i.e. memory

words per second) •

By using the two former definitions, Flynn categorized the almost

theoretically 'defined computer organisations depending on the

multiplicity of the hardware provided to service the instruction and

data streams. The word "multiplicity", which was intentionally used

to avoid the ubiquitous and ambiguous term "Parallelism", refers to the

maximum number of simultaneous instructions or data in the same phase

of execution at the most constrained component of the organisation.

Flynn observed that as a consequence of the above definitions

four classes emerged naturally, being characterized from the multiplicity

or not of the instruction and data streams:

i) Single Instruction Stream - Single Data Stream (SISO)

ii) Single Instruction Stream - Multiple Data Stream (SIMD)

iii) Multiple Instruction Stream - Single'Data Stream (MISD)

iv) Multiple Instruction Stream - Multiple Data Stream (MIMD)

The SISD computer [e.g. most of the general purpose machines such as

IBM STRETCH, DEC PDP-ll (Serial or unpipelined) and CDC 6600 series,

IBM 360/90 series pipe lined] , is nothing more than the ordinary serial

computer (the von-Neumann type computer). Even though, the CDC 6600

and IBM 360/90 series achieve their power by overlapping various

sequential decision processes which make up· the execution of the

instruction (confluent SISD) , there still remains an essential

constraint of this type of organisation, namely the decoding of one

instruction per unit time. In Figures 1.1 and 1.2 we see a SISD

organisation, 'and the concurrency and instruction processing

respectively.

The SIMD type structure, proposed by IUnger 1958], Slotnick

[Slotnick 1962] is created by replicating the data stream on which

the single instruction stream acts simultaneously thus theoretically

increasing the throughput by a factor almost equal to the number of

data streams. Several factors, such as data conflict and data

communication problems tend to degrade the expected performance.

Solomon and ILLIAC IV are two examples of such a computer.

8

The third, MISD type class of parallel computers, the organisation

of which is outlined in Figure 1.3, is by all means the least

realistic one compared to the others since no examples of any well

established organisation have yet been proposed. In this class, a

forwarding procedure of data flowing through the Execution Units was

forced. Thus, the data stream presented to Execution Unit 2 is the

resultant of Execution Unit 1 operating its instruction on the source

data stream. The instruction performed on any Execution Unit can be

one of the three following types: fixed, semi-fixed or variable. It

may be fixed such that the interconnection of units must be flexible

EXECUTION
BANDWIDTH

STORAGE
--UNIT

--l INSTRUCTION
NSTRUCTION

·
HANDLING

STREAM
· ---e UNIT

DATA
· STREAM

STORAGE --UNIT
STORAGE
BANDWIDTH

./

FIGURE 1.1: F1ynn's SISD Computer Organisation

GENERATION ADDRESS OF INSTRUCTION

FETCH INSTRUCTION
DECODE INSTRUCTION

9

/'

D .

D .

D

[

GENERATE ADDRESS OF OPERAND

r FETCH OPERAND EXECUTE

. _ ,_. ,_. [INSTRUCTION

10 0 .. · DD D· .. D D"'O INST

[;j El
INST 2 D

SR: STORAGE REGENERATION

INST 3 o
L-____ +-__ ~------------INSTRUCTION 1 STARTS

L-__ ~ _________________ INSTRUCTION 2 STARTS

INSTRUCTION 3 STARTS

FIGURE 1.2: Concurrency and Instruction Processing

INSTRUcrION

STORAGE 1

INSTRUCTION

UNIT 1

DATA EXECUTION
STORAGE .

UNIT 1

SOURCE DATA
STREAM

INSTRUCTION

STORAGE 2

INSTRUCTION

UNIT 2

EXECUTION

UNIT 2

RESULTANT DATA
STREAM

FIGURE 1.3: A MISD Organisation

10

INSTRUcrION

STORAGE N

INSTRUcrION

UNIT N

f+--- EXECUTION
f--

UNIT N

semi-fixed such that the function of any unit is fixed for one pass of

the data or variable meaning that the execution of a stream of

instructions can take place at any point on the single data stream.

Consequently this arrangement suggests that only the first processing

component faces the source data stream whereas the remaining Units. are

processing derivations of the data from previous components. By

combining parallelism in both the instruction and data streams a MIMD

type of structure is thus obtained. This computer possesses N

independent executing units (processors), each of which is a complete

computer on its own (has arithmetic and logic capabilities and local

data storage), with processors connected together to provide means for

cooperation during a computation phase.

11

Most serial main frames could be classified as MIMD computers

since they include many data channels, such as Direct Memory Access

(DMA) which are, in a sense, independent processors. Thus, a computer

with one or two data channels is indeed a MIMD parallel computer, but

the MIMD is commonly accepted to refer to large computers with possibly

several identical processors such as Cmmp [Wulf 1972], Cm* [Swan 1977].

Of particular interest, the Balance 8000 parallel computer system which

is in the Department of Computer Studies at Loughborough University of

Technology is an example of this.class, this machine is described in

detail in Chapter 2.

Resuming, Flynn classified computer systems into four broad

classes (Figure 1.4) depending on the multiplicity or not of the

instruction stream and data stream. Due to the fact that the actual

architectural details of the machines were not taken into account,

his taxonomy was somehow obscure since one finds that there is ~o

12

(a) ~ __ CU ______ ~-----------~IIL ____ P_U ____ ~~I'------~L-___ M_U ____ ~

PUl MUl

PU2 MU2

(b) CU

PUN MUN

CUI PUl

cu2 PU2
(c)

MU

CUN PUN

CUI)/ PUl lE MUl

CU2)1 PU2 r MU2

(d)

CUN i PUN r MUN

FIGURE 1.4: Flynn's Computer Organisation Classes:
(a) SISD, (b) SIMD, (c) MISD, and (d) MIMD
where CU, PU, and MU refer to control, processing and
memory unit respectively

13

apparent distinctive differences between classes (MIMD class exempted) •

Consequently, pipelined and· array processor computers are considered

similar, although they are two completely different architectures.

Also, the meaning of the data streams, as used by Flynn, has

caused many ambiguities due to the fact it does not make a distinctive

difference between a single stream of vectorised data .and a multiple

scalar stream.

Consequently, in the sections, the SIMD and pipelined computers

are considered to be two distinct classes along with the multiprocessor

category.

1.3.2 Shore's Classification

Classification of parallel computer systems based on their

constituent hardware components was observed by Shore [Shore 1973] .

Accordingly, all current existing computer architectures were

categorised into six different classes which are schematic ally shown

in Figure 1.5.

The first machine (I), [e.g. CDC 7600 a pipelined scalar computer,

CRAY 1, a pipelined vector computer] which is the conventional serial

Von-Neuman-type organisation, consists of an Instruction Memory (IM) ,

a single Control Unit (CU) , a Processing Unit (PU) and a Data Memory

(OM). The main source of power increase Comes from the processing unit

which may consist of several functional units, pipe lined or not and all

bits of a single word are read in order to be processed simultaneously

(Horizontal PU).

A second alternative machine (II) is obtained from the first one

14

IM CU

t
[J

t
Horiz-
ontal.. CU

PU

III III +
Word Vertical Bit

slice PU slice

OM OM

(II)
(I)

IM cu

1 -'"
Horiz-

CU , ontal PU PU PU
PU

1- TIT/I I1 I . I I

Vertical
PU OM OM OM OM

(In) (IV)

cu CU

-k l I
PU PU PU PU

1 I I
+

OM

OM OM OM

(V) (VI)

FIGURE 1.5: The Configuration of the Six Machine Classes

by simply changing the way data is read from the data memory. Instead

of reading all bits of a single word as (I) does, machine (II) reads

15

a bit from every word in the memory, i.e. bit serially, but word

processing is parallel. In other words, if the memory area is

considered as a two dimensional array of bits, with each word occupying

an individual row, then machine (I) reads horizontal.slices whereas

machine (II) reads vertical slices.

A combination of the two above machines yields machine (Ill).

This means that machine (Ill) has two processing units, a horizontal

and a vertical one and is capable of processing data in either of the

two directions. The ICL DAP could have been a favourable candidate

for this class if only it had separate processing.units to offer this

capability. An example. of this organisation is the Sanders Associates

OMEN 60 Series of computer [Higbie 19721.

Machine (IV) consists of a single control unit and many independent

processing elements, each of which has a processing unit and a data

memory. Communication between these components is restricted to take

place only through the control unit. A good example of this machine is

the PEPE system.

If however, additional limited communication is allowed to take

place among the processor elements in a nearest-neighbour fashion,

then machine (V) is conceived. Thus, communication paths between the

linearly connected·processors offer for any processor in the array the

possibility to access data from its immediate neighbour's memories, as

well as -its own. An example of this-machine type is the ILLIAC IV,

which provides a short cut communication to every eight surrounding

16

processing elements.

The Logic-In-Memory-Array (LIMA) is Shore's last class of computer

organisation. The main difference in machine (VI) and the previous

one is that the processing unit and the data memory are no longer two

individual hardware components, but instead they are constructed on the

same IC board. Examples range from simple associative memories to

complex associative processors.

It is observed that, generally speaking, Shore's classification,

compared with Flynn' s, . does not offer anything new, but only a sub­

categorisation of the obscure SIMD class given by Flynn, except for

machine (I) which is an SISD-type computer. Again, as with Flynn's

categorisation, pipe lined computers do not belong to a well specified

class, that represents their hardware characteristics, but on the

contrary they are mixed up with unpipelined scalar computers.

1.3.3 Other Classification Approaches

This paragraph gives a brief note on some other classification

approaches of less significant importance compared to the former two

and which are based mainly on the concept of parallelism.

One of the taxonomies, based on the amount of parallelism

involved in the control unit, data streams and instruction units was

suggested by Hobbs et al [Hobbs 1970] in 1970. They distinguished

parallel computers into multiprocessors, associative processors, array

processors and functional processors.

Another classification, due to Murtha and Beadles [Murtha 1964]

was based upon the parallelism properties. An attempt to underline

17

the main significant differences between the multiprocessors and

highly parallel organisations was appreciated. Three main classes for

parallel processor systems were identified and they are general-purpose

network computers, special-purpose network computers characterised by

global parallelism and finally non-global, semi-independent network

computers with local parallelism. Furthermore, all these classes,

but the last one, were further subcategorised into two subclasses each.

Whereas, the first class, the general-purpose one, was subdivided into

the general-purpose network computers subclass with centralised common

control and the general-purpose network computers subclass, with many

identical processors, each being capable of, independent from.the others,

executing instructions from its own local storage, the second class

identified the pattern processors and associative processors subclasses:

Hackney and Jesshope [Hackney 1981] formulated a taxonomy scheme

for both serial and parallel computers. The main subdivisions are

shown in Figures 1.6 and 1.7 together with a well-known example in each

class .. Their taxonomy was more detailed than that of Flynn or Shore

and took implicit account of pipelined structures. Therefore, the

Multiple Instruction class was not considered for further categorisation

as with the pipelined and array processor computers. Nevertheless,

this scheme if coupled with that of Flynn could well be suited for a

general classification of parallel computers.

SINGLE
INSTRUCTION

UNIT

COMPUTERS

.~
SINGLE

UNPIPELINED

EXECUTION

UNITS

SERIAL
UNICOMPUTERS

PIPELINED

OR MULTIPLE

EXECUTION

UNITS

PARALLEL
UNICOMPUTERS

MULTIPLE
INSTRUCTION

UNIT

MULTIPLE

COMPUTERS

(MULTIPROCESSORS)

BALANCE 8000

FIGURE 1.6: Structural Classification of Computers

18

PIPELINED

ONLY VECTOR
SCALAR INSTRU=mlO

"NSTRUcrION

~ /~
SPECIAL .

HORIZONTAL ISSUE-WHEN PURPOSE
CONTROL READY PIPES

MULTIPLE
EXECUTION

UNIT

I
MULTI-UNIT PIPELINED PIPELINED SPECIAL

SCALAR HORIZONTAL SCALAR PURPOSE

COMPUTER SCALAR COMPUTER PIPELINED

COMPUTER VECTOR

COMPUTER

CDC 6600 FPS CDC 7600 CRAY-l
AP-120B

FIGURE 1.7: Parallel Computer Systems Based on Functional
parallelism

GENERAL
PURPOSE

PIPES

GENERAL

PURPOSE

PIPELINED

VECTOR

COMPUTER

CDC
CYBER 205

19

1.4 PIPELINED COMPUTERS

The pipeline or vector notion, generally included in the

parallelism notion, has been widely exploited since the 1960's when

the need for faster and more cost-effective computer systems became

critical. Pipelining, a novel architectural design approach, is one

form or technique of embedding parallelism or con currency in a computer

system. Although,. essentially sequential, this type of computer helps

to match the speeds of various subsystems without duplicating the cost

of the entire system involved. It also improves system availability

and reliability by providing several copies of dedicated subsystems.

In principle, the pipeline is closely related to an industrial

assembly line. As in the assembly line, procedure is automatically

observed, but it takes time to fill the pipeline before full efficiency

'per cycle is reached and time to drain the pipeline completely as the

last trailing results are collected.

Figure 1.7 depicts the sequential and vector processing taxonomy

derived from pipeline computers together with examples of some well

known and commercially available computer systems. Although the

pipelined computer architectures present somewhat different

organisational characteristics when compared to SIMD and MIMD computer

architectures, they are of significant interest because of the close

connection between algorithms best suited for SIMD arid those which

achieve great performance on a pipelined computer system.

Pipelined computers achieve an increase in computational speed by

decomposing every process into several sub-processes which can be

executed by special autonomous and concurrently operating hardware

unit. Furthermore pipelining can be introduced at more than one level

20

in the design of computers. Ramamoorthy· [Ramarnoorthy 1977]

distinguished two pipeline levels, the system level for the pipelining

of the processing unit and the subsystem level for the arithmetic

pipelining. Particularly Handler [Handler 1982] introduced a third

level and distinguished them under the names: macro-pipelining for

the program level, instruction pipelining for the instruction level

21

and the arithmetic pipe lining for the word level. Others distinguished

the instruction pipelining, depending on the control structure in the

system, to strict and relax pipelining. A pipe can be further

distinguished by its design configurations and ·control strategies

into two forms; it can be either a static or dynamic pipe. Sometimes

a pipelined structure is dedicated to a single function, e.g. a pipelined

adder or multiplier. In this case it is termed a unifunctional pipe

with static configuration. On the other hand, a pipelined module can

serve several different functions. Such a pipe is called a multi­

functional pipe which can be static or dynamic depending on the number

of active configurations (interconnections). If only one configuration

is active at anyone time, then the pipe is said to be static. Thus

any overlapping of operations has to involve the same configuration.

However, in a dynamic multifunctional pipe, more than one configuration

can be active at anyone time, thus permitting a synchronous overlapping

on different interconnections.

The simplified model of a general pipelined computer ·is shown in

Figure 1.8 where the processor unit is segmented into M modules, each

of which performs its part of the processing and the result appears

at the end of the Mth segment.

22

CONTROL FLOW

___ • DATA FLOW

r --

I
I
I

I
I

I

I
I
---~

L... __ ~

I

I

CONTROL
UNIT

SEGMENT 1

SEGMENT M

I

GENERAL
REGISTERS

ALIGNMENT NETWORK

I MEM~RY MEMORY . . . K

1
CHANNEL

I/O
(SECONDARY

DEVICE MEMORY

FIGURE 1.8: A Parallel Processor· System

P NED PROCESSOR IPELI
UNIT

I

I

I

23

The pipelined concurrency, a main characteristic of the simplest

pipeling, is exemplified by the process of executing instructions. In

Figure 1.9, we considered four modules: Instruction Fetch IIF),

Instruction Decode (ID), Operand Fetch (OF) and Execution lE), obtained

when segmenting the process of processing instructions. Consequently,

if the process is decomposed into four subprocesses and executed on

the four-module pipelined system as defined above, then four successive

instructions may execute in parallel and independently of each other

but at different execution stages: the first instruction is in the

execution phase, the second one is in the operand fetching stage, the

third is in the instruction decoding phase and lastly, the fourth

instruction is in the fetching stage. The overlapping procedure among

these individual modules is depicted in Figure 1.10.

However the expected full-potential computation speed increase is

not always achieved mainly due to some design and operational problems.

These are buffering, busing structure, branching and interrupt handling.

A brief discussion of these major design constituents along with the

pipelining of the arithmetic functions is included. Their importance

and effects which can actually decide the efficiency and performance of

the resulting design are also outlined.

Buffering, an essential process to ensure a continuous smooth

flow of data through the pipeline segments in the case where variable

speed occurs, is virtually a process of storing the results of a

segment temporarily before sending them to the next segment. Similar

to an industrial assembly line, a segment may occasionally· be slowed

down for one of many reasons which could prevent the continuous input

to the next station. To remedy this problem, a sufficient storage

24

1
IF H ID H OF H E ,

FIGURE 1.9: The Modules of a Pipelined Processor

IFl IDl OF
l El IF2 ID2 OF

2 E2 IF3 ID3 PF
3 E3 1F4 ID4 OF

4 E4

NO PIPELINE

IF4 ID4 OF
4 E4 I

IF3 ID3 OF
3 E3

IF2 ID2 OF
2 E2

IIFl IDl OF
l El

IF, ID, OF, E PIPELINING

FIGURE 1.10: Space-Time Diagram

CJ Exponent r:::l r===J D I=-:J EJ U LS_u_h_t_r_a_c_t....: LI ~ U ~ Accumulate Output

FIGURE 1.11: Modules of an Arithmetic Pipelined Processor

space or buffer is included between this segment and its processor,

the latter can continue its operation on other results and transfer

them to the provided buffer until it is full.

25

When the slowing down segment resumes normal service, it clears

out its buffer. Perhaps at a faster speed. Consequently buffering

may be needed before and after a segment with variable processing time.

The inclusion of buffering between segments in a pipelined structure

makes the system perform at a relatively constant rate rather than at

the speed of slowest component. However full-speed is not always

expected to be achieved since buffers have to be stabilised prior to

any transfer activity.

In addition to the architectural features of the pipelined

processor, the busing structure is equally important in deciding the

efficiency of an algorithm to be executed on such a system. Pipelining

in essence, refers to the concurrent·processing of independent

instructions though they may be in different stages of execution due

to overlapping. In real life, often, pipelined computers have to deal

with dependent or intermixed instructions. With dependent tasks,

their input and traversal through the pipe have to be paused before

the dependency is tackled. The internal busing structure serves this

purpose by routing the results to the requesting segment efficiently,

thus reducing the adverse effect of instruction dependency, but still

leaving a great burden on the programmer. However, in the case of

intermixed instructions, more concurrent processing can take place

since the resulting dependency is hidden behind the processing of

independent tasks.

.26

Another damaging factor:.to the pipeline performance, even more

than the instruction dependency is branching. The encounter of a

conditional branch not only delays further executions but affects the

performance of the entire pipe since the exact sequence of instructions

to be followed is hard to foretell until the deciding results becomes

available at the output. To alleviate the effects of branching,

several techniques have been employed to provide mechanisms through

which processing can resume safely even if an incorrect branch occurs

which may create a discontinuous supply of instructions.

A similar degrading effect to the conditional branching is caused

by interrupts which disrupt the continuity of the instruction stream

through the pipeline. Interrupts must be serviced before any action

·can be applied to the next instruction. In the case that the cost of

a recovery mechanism for processing to proceed after an unpredictable

interrupt occurs (while instruction i is the next one to enter the

pipe), is not exceedingly substantial, sufficient information is saved

for the eventual recovery. Otherwise these two instructions, the

interrupt instruction and instruction i, have to be executed

sequentially which is in fact, not aimed at by the pipelining

principle.

Finally, one of the most beneficial applications of overlapped

processing in order to increase the total throughput has been the

execution of arithmetic functions. Specially, the advantages of

pipelining are greatly·enhanced when floating point operations are

being considered since they represent quite a lengthy process. Again,

until all modules in the pipe are excessively used, full speed is not

obtained. For example, the TI ASC arithmetic pipelined processor is

made up of eight modules, as shown in Figure 1.11.

1.5 DATA-FLOW COMPUTERS

A common feature for all the high-speed parallel computer

architectures is that, due to the basic linearity of the program, the

use of implicit sequencing of the instructions is possible. This is

a von-Neumann characteristic which means that the order of execution

of the instructions is determined by the order in which they are

27

stored in the memory with branches used to break this implicit

sequencing at selective points. An alternative form of instruction

controlling is the explicit sequencing which is basically the principal

concept exploited by the data-flow machines to provide the maximum

possibilities for concurrency and speed-up. However, this concept has

a significant impact on the architecture of such machines, the program

representation, and the synchronisation overheads.

In a data-flow architecture the algorithm is represented by a

graph where the nodes correspond to the computations and the arcs

describe the flow of data or operands, from the node producing the data

(as a result) to the node using it as an operand [Dennis 1980]. In

addition to the nodes describing the basic operations, there are nodes

which are used to control the routing of data. Thus, the execution of

any instruction is determined by the availability of all its operands

resulting in a more complex control due to the high overheads

involved in routing the data. With the use of the above graph

representation, the data-flow concept encounters some problems when

the algorithm contains loops ·or subroutine calls, in which case the

same instruction is executed several times. Basically, the

implementation of the data-flow computers can be grouped into two

main classes, the static and dynamic structures, depending on how

28

this problem is tackled. In the first class, the static one, the loops

and subroutine calls are unfolded at compile time so that each

instruction is executed only once. Consequently, the implementation

of the sequencing control is made simple since it directly follows that

of the graph. On the other hand, in the dynamic case, the operands

are labelled so that a single copy of the same instruction can be used

several times for different instances of the loop (or subroutine).

For this type of architecture, it is necessary to match all the

operands with the same label before issuing the single copy of the

instruction, the implementation of the control is significantly more

complex in comparison with that of the previous class. However, the

dynamic approach which allows a compact representation of large

programs, can effectively exploit the concurrency that appears during

execution (for example, recursive calls or data-dependent loops) .

An example of the static approach is the MIT Data-Flow machine

(Figure 1.12) which consists of the following main components; a store

that contains the instruction cells or packets having space for the

operation, operands and for pointers to the successors, and a set of

operating units to perform the operations. These two components are

connected by the two interconnection networks, one to send ready-to­

execute instruction packets to the operating units and 'another to send

results back from the operating units to the 'instructions that use

them as operands. The system has to be carefully designed so as to

prevent any bottleneck from occurring and to provide means for the full

exploitation of all the concurrency.

In such a system, the maximum throughput is determined by the

speed and number of the operating units, the memory bandwidth and by

29

OPERATING
UNITS

I INST CELL I
Z
0 Z H 0

~i;l · ~i;l !.-.......; ":0 HO · ~~ ~~ · HC>l
UlC>l

;Z HZ
Cl

I INST CELL I

FIGURE 1.12: The Static Data-Flow Machine

]

TOKEN QUEUE

T o host

T J.
I/O MATCHING OVERFLOW

SWITCH UNIT UNIT

1 J om host Fr

INSTRUCTION
STORE

J
PROCESSING

UNITS

1
FIGURE 1.13: The Dynamic Data-Flow Machine

/

the interconnection system. As in the other organisations, several

degradation factors reduce the effective throughput. The most

significant are the degree of concurrency·available in the program,

30

the memory access and the interconnection network conflicts, and the

broadcasting of results, all of which except the last one are similar

to the other systems. Sometimes an instruction has several successors,

so that the result has to be sent, or broadcast, to all of them and

this introduces significant overheads in the case when the number of

destination pointers present in an instruction cell is limited.

Examples of the dynamic approach include the U-Interpreter Machine

[Arvind 1982] and the Manchester Dataflow Machine [Gurd 1985]. The main

components of the latter (see Figure 1.13) are the token queue that

stores computed results, the token matching unit that combines the

corresponding tokens into instruction arguments, the instruction store

that holds the read~to-execute instructions, ·the operating units, and

the I/O switch for communication with the host. The degradation factors

are similar to those of the static case except the additional overhead

in token label matching. Due to the above mentioned degradation factors,

data flow machines are only attractive for cases in which the con currency

exhibited is of several·hundred instructions.

Another problem in the use of the dataflow approach is the lack

of any data structure definition, in fact only ·scalar operations were

first utilised in the attempt to·maximise the amount of concurrency

and this had significant limitations in terms of the modularity of the

programs. The inclusion of data structures in the graph representation

requires that the dataflow concept be extended and operations on them

be defined [Davis 1982]. From the operational point of view, the most

straightforward solution is to treat the data structure as an atcmic

31

. operand, requiring the structure tc be sent as a whole to the operating

units even though only few elements are operated on. This can be

performed by sending to the operating unit a pointer to the data

structure instead of its value. However the disadvantage with this is

that the whole data structure has to be copied when any of its elements

is modified resulting in a heavy transfer rate between the memory and

the operating units. To avoid this copying overhead, Dennis [Dennis

1974] has proposed a tree structure to store arrays and operations such

as select and append tc modify parts of the array. However, Dennis'

proposal does not solve the limitation that the elements of the array

have to be modified in a sequential manner, which increases the overhead

for the select and append operations. To reduce this overhead Gandiot

and Evcegovac [Gandiot 1982] proposed the introduction of macro-actors

to perform more complex updating. To eliminate the sequential nature

of the modifications, Arvind and Thomas [Arvind 1980] introduced I­

structures that allow concurrent writes and reads by adding to each

element a tag indicating if the element has already been written and

a list of pending reads to the reads queue to arrive before the

element has been written.

One of the most significant advantages of the data-flow machines,

as claimed by its proponents, is the exploitation of the concurrency

at a low level of the execution hierarchy since it allows the maximum

utilisation of all the available concurrency. However, some researchers

argued that the overhead with this unstructured low-level concurrency

is too high and have proposed the use of a hierarchical approach in

which different types of concurrency can be exploited at different

levels.

Finally, the dataflow'organisation which is still in an

experimental stage, has recently received considerable researchers'

attention. Several prototype systems have been built or simulated and

are being evaluated.

32

33

1.6 ARRAY PROCESSORS

The early interest in the parallel processor area initially

appeared in the investigation of machin~s that were arrays of

processors connected in a four-nearest-neighbour manner "N,E,S,W" such

as the Von Neumann's Cellular Automate [Von Neumann 1968] and the

Holland machine [Holland 1959]. Eventually, as a result of the growing

interest in this form of a computer, parallel processors with a central

control mechanism that controlled the entire array and operating in a

SIMD manner began to emerge.

All the systems in the array processor class can be identified by

their major components, structured in a number of various and different

ways:

A number of identical Processor Elements (PE's) synchronously

operating on different data streams proliferating from a number of

memory banks not necessarily equal to the number of the PE's through a

communication network with some form of local control and finally some

form of global control. A.simple array computer is shown in Figure 1.14.
r----"T , , .:.

~~---,

~
~
Z

~
[il

2
(,!)
H

:;J

--,---- -- - - - ---I
I ",

PROCESSOR 1
MEMORY
BANK 1

MEMORY
PROCESSOR 2

BANK 2

· · ·
PROCESSOR P MEMORY

BANK P

FIGURE 1.14: A General SIMD Architecture

The control unit which is usually a computer itself with its own

arithmetic and logic unit, memory and registers, differs from the

34

other processors in that it can execute scalar and control instructions

(including conditional branch instructions). The processor elements

which lack this ability since they must all be kept in synchronisation,

do not generate their own instructions, but they all receive the same

sequence of vector instruction from the control unit. A local on-off

control unit is used to permit processors to either execute or ignore

certain broadcast vector instructions.

One of the most currently active research areas in computer

architecture is the interconnection networks since they represent the

accumulation of a large number of design decisions made before the

implementation of the actual architecture.

The interconnection networks can be generally distinguished into

two types, the bus and the alignment networks with basic differences

between them: while the former allows only a single one-to-one

communication to take place at any given time, the latter allows several

one-to-one (parallel data and control transfer) or one-to-many

(allowing one unit to broadcast to many units in parallel) communication.

It follows that the bus network is less expensive but a slower network

than the other.

Furthermore, the alignment networks can be topographically sub­

categorised into static and dynamic networks. A static network is

characterised by the required dimensions for layout. Examples range

from one-dimensional structures to hypercube networks. In Figure 1.15,

we 'can see examples of one, two and three-dimensional networks. on

(a) Linear array network

~I
(c) Four-neighbour network

/

/
/

/

I

XJ-----.1----1

(e) 3D-cube

35

(b) Ring network

(d) Tree

(f) Systolic array

FIGURE 1.15: Example of 1,2 and 3-Dimensional Interconnection System

36

the other hand, the .dynamic networks are distinguished into the

single-stage, multiple-stage and crossbar types of networks. The

single-stage network consists of a single stage of switches. The

nearest neighbour network and the perfect shuffle networks are examples

of this type of network (see Figure 1.16). A more generalised

connection network, where every input is connected to every output

channel through a crosspoint is the crossbar switch. Figure 1.17 shows

two representations of the crossbar switch from four inputs to four

outputs. Finally, the multi-stage networks which can provide a cheaper

alternative to the complete connection as offered by the crossbar

switches are based upon a number of interconnected 2x2 crossbar

networks organised into several stages. In Figure 1.18 we can see

two multi-stage networks, the binary Bene's and the indirect binary

n-cube networks. An example of the parallel or array processors is

ILLIAC IV [Barnes 1968].

FIGURE 1.16(a): The Nearest-Neighbour Network

FIGURE 1.16(b): Perfect-Shuffle Network

1
- r-

r M
1 l

I

1--01.
T 2

3 I .L
I

4 L.I.

2 4

- -
n INPUTS

1

2

3

4

37

OU'l'PUTS

1

2

3

4

FIGURE 1.17: Two Representations of the Crossbar Switch from Four Inputs
to Four OUtputs

2x2

FIGURE 1.18(a): The Binary Benes Network USing 2x2 Crossbar Switches

2x2·

FIGURE 1.18(b): The Indirect Binary n-Cube Network

CHAPTER 2

PARALLEL ARCHITECTURES - A VLSI APPROACH

2.1 INTRODUCTION TO THE VLSI TECHNOLOGY PARADIGM

There has been a rapid growth of computing technology that has

followed the invention of transistors in the late 1940's. (The first

transistor was invented in 1948 at the Bell Telephone Laboratories)

38

and integrated circuits in the late 1960's. Through developments in

transistors, new families of small computers (i.e. minicomputers) began

to emerge on the market. As a result, thousands of transistor elements

were assembled on minute chips of silicon. The race for smaller and

faster computing machines has developed ever since. A mainframe

computer built using the original thermionic values had weighed more

than thirty tons and required a room of 60x25 square feet to hold it;

a computer of superior capability could, by 1971, be accommodated on

a sliver of silicon.

The migration of IC to large scale Lntegration (LSI) technology

allowed tens of thousands of electronic components to fit on to a single

chip. Following the rapid advances in LSI technology, the Very Large

Scale Integration (VLSI) circuits have been developed with which

enormously complex digital electronic systems can be fabricated on a

single chip of silicon, one-tenth the size of a postage stamp. In

fact, it is foreseen that the number of components that a VLSI chip

could accommodate would be increased by a multiplier factor of ten to

one hundred in the next two decades [Mead 1980]. Devices which once

required many complex components .can now be built with just a few VLSI

chips, reducing the difficulties in reliability, performance and heat

dissipation that arise from standard SSI and MSI components [Kung 1979].

As computer applications still require faster and more powerful

39

computer architectures than these which are currently available and as

we are migrating from the information processing era towards "knowledge"

based systems which characterise the projected fifth generation of

computers, the research in computer technology has been widened more

than ever before. H.T. Kung was the first to realise that the rapidly

developing chip industry together with automata theory could be the key

success to constructing fast, highly parallel computer structures at

low cost. Until the advent of VLSI, the development of parallel

computers with a large number of processors had been limited by the

unaffordable high costs of manufacture. Existing machines had been

improved by tinkering with the traditional Von Neumann architecture,

for instance cycle stealing, direct memory access (DMA) and pipelining

of fetch and execute operations. As such, parallel machines were

confined only to research purposes or military operations.

The development of new manufacturing techniques for fabrication

of small, dense and inexpensive semi-conductor chips created a unique

circumstance in the computer industry. With ·the use of VLSI in circuits,

size and cost of processing elements and memory was considerably

reduced and it became feasible to combine the prinCiples of automation

theory with the pipeline concepts. The combination was especially

attractive since device manufacture costs remained constant relative

to circuit complexity, with most time and money invested in design

and testing.

In relation with what was said above, approaches to device

designs have progressed so significantly to the point that hardware

design now relies heavily on software techniques, i.e. special rules

for circuit layout and high level design languages (e.g. geometry

languages, stick languages, register transfer languages, etc.) [Mead

1981]. In fact, some of these languages offer the powerful chip

fabrication capability directly from a design they express.

Illustrative of this trend is the term silicon compiler utilised

by the hardware designers to refer to computer-aided design systems

currently under development. Analogous to a conventional software

compiler, the silicon compiler will convert linguistic representations

of hardware components into machine code, which can be stored and

subsequently utilised in computer-assisted fabrication.

40

However, VLSI presents some problems, as the size of wires and

transistors approach the limits of photolithographic resolution for it

becomes literally impossible to achieve further miniaturisation and

actual circuit area becomes a key issue. In addition, the chip area is

also limited in order to maintain high chip yield and the number of

pins (through which the chip communicates with the outside world) is

limited by the finite size of.the chip perimeter. These restrictions

form the basis of the VLSI paradigm.

For a newly developed technology or product to survive in a highly

competitive industry there must be sufficient demand for it. The

emergence and subsequent success of VLSI oriented computing systems is

not due only to H.T. Kung's foresight but also to the timeliness. At

the same time Kung revealed the systolic concept, the idea of using

VLSI for signal processing was the major focus of attention in

governmental, industrial and university research establishments.

2.2 FUNDAMENTAL ARCHITECTURAL CONCEPTS IN DESIGNING SPECIAL PURPOSE

VLSI COMPUTING STRUcrURES

High-performance special-purpose VLSI oriented computer systems

41

are typically used to meet specific applications, or to off-load

computations that are especially taxing to general-purpose computers.

However since most of these systems are built on an adhoc basis for

specific tasks, methodological work in this area is rare. In an attempt

to assist in correcting this adhoc approach, some general design concepts

will be discussed, while in the 'following paragraph the particular

concept of systolic and wavefront array architectures, two general

methodologies for mapping high-level computation problems into

hardware cellular structures, will be introduced.

The problem of embedding a network of processors and memories

into a set of VLSI chips is similar to that of embedding graphs ,whose

nodes are computers, or gates, onto grids so as to minimise area. Most

of the researchers exploring this problem usually make certain

assumptions; for example, they assume that wires run and devices are

orient,ed in only horizontal and ver,tical directions, everything is

embedded on a square grid, all device nodes are at the same layer.

The computational power of a chip is often measured by the number

of transistors it contains. However, this is quite a misleading

approach for the organisation of a chip's circuitry has a very strong

effect. In general, regular chip designs make more efficient

. utilisation of silicon area, which is a more natural measurement

factor for the circuit size than the number of transistors. Such

designs utilise less area for the 'wiring amongst transistors, leaving

more space for transistors themselves.

From the memory capacity point of view, the number of bits has

been quadrupling every few years; in the mid-1970's technology passed

through the era of lK, 4K and l6K bits memory chips. In 1981 the

memory size was expanded to 32K .bits and a 64K bit is predicted.

42

Particularly for the design of special-purpose VLSI oriented

computer machines, cost effectiveness has always been a major concerni

their fabrication must be low enough to justify their specialised, and

consequently, limited applicability. Cost can be distinguished in

non-recurring design and recurring parts costs. Any fall of the

latter's .cost is equally applied for the merit of both special­

purpose and general-purpose computer systems. Furthermore this cost

is even less significant than the design cost, since the production of

special-purpose computer systems in large quantities is quite a rare

phenomenon. Hence, the design of such a system should be relatively

small for it to become more attractive compared to a general-purpose

computer and this can be achieved by the utilisation of appropriate

architectures. More specifically, if the decomposition of a structure

into a few types of simple substructures which are repetitively

utilised with simple and regular interfaces is feasible, then

significant savings are most likely to be achieved.

In addition; special-purpose computer systems based on simple and

regular designs are likely to be modular and consequently adjustable

to various. performance goals, i.e. system costs may be made analogous

to the performance required. This fact reveals that achieving the

architectural challenge for simple and· regular design, yields cost-

effective special-purpose computer systems.

Since such VLSI computing structures can function as peripheral

devices, attached to conventional host computer, receiving data and

control signals and outputting results, at a computation rate, which

will balance the available I/O bandwidth with the host, is the

ultimate performance goal of a special-purpose computer system.

Therefore the likely modular attribute of such a concept is highly

necessary, since it allows the flexibility of the structure to match

a variety of I/O bandwidths; and since an accurate a priori estimate

of available I/O bandwidths in complex systems is often possible.

43

However this problem becomes especially severe when a very large

computation is performed on a relatively small special-purpose computer

system. In this case the computation must be decomposed.

In fact one of the major challenging research items becomes the

development of algorithms that could be mapped into and executed

efficiently by a special-purpose computer system. This implies that

algorithms should decompose into modules, that map compactly into one

VLSI chip (or a module of chips), and modules should be interconnected

in an efficient manner. These algorithms must support high degrees of

concurrency and employ a simple, regular data and control flow to

enable an efficient implementation [Dew, 1984].

To conclude we mention that special-purpose .VLSI oriented

computing structures can be either a single chip, built from a

replication' of simple cells, or a system built from.identical chips,

or even a combination of these two approaches. Figure 2.1 summarises

the principle stages and tasks interdependencies involved in the

design of a VLSI chip (see Foster and Kungs' paper, [Foster 1980]).

I

44
PROBLEM

I ALGORITHM DESIGN

LEVEL

,----------1
,FUNCTIONS OF ,

, CELL TYPES J' 1- ___ _

: ~~;A -FLOW - -: ,
1 AND GEOMETRY ,
1- _____ ,

-----,-.---
'CELL 1

/=:~~
GATES LEVEL

,---- ---1 ,---_ ---,
, CELL LOGIC ,: _______ ~(------__I; DATA FLOW 1

~ CIR~U~T- _ J ICO~R~L~~C~

~,-------
: CELL TIMING '
1 1
'SIGNALS 1
1- ___ _

STICKS LEVEL

,----- '-- --, j--- - ---,

" : COMMUNICATION I
: CELL STICKS ~i ----------------!, STICKS '

1 _ _ _ r - - _, 1- _ _ _ ___ J

LAYOUTS LEVEL

,------ ---, ,----- ----,
:CELL LAYOUTS , _______ ~)~------~:CELL BOUNDARY:

" , LAYOUTS J
1- - - -1- --J ,- - - r --
~ MASK AND CHIP ~~ ___ _

FOR FABRICATION '
1 , , ,-

FIGURE 2_1: The Design Stages of a Special-Purpose VLSI Chip

,: SUBTASK ,

45

In fact in the environment of VLSI systems design, the boundary between

software and hardware has become increasingly vague.

2.2.1 Systolic Arrays

The concept of systolic architectures, pioneered by H.T. Kung,

which has been successfully shown to be suitable for VLSI implementation

is basically a general methodology of directly mapping algorithms onto

an array of processor elements. It is especially amenable to a special

class of algorithms, taking advantage of their regular, localised

data flow.

The word 'systole' was borrowed from physiologists who used it to

describe the rhythmically recurrent contraction of the heart and arteries

which pulse blood through the body. By analogy, the function of a cell

in a systolic computing system is to ensure that data and control are

pumped in and out at a regular pulse, while performing some short

computation [Kung 1978], [Dew, 1986].

Thus, a systolic array is a network of processing elements,

usually arranged in a regular pattern and locally linked by

communication channels. Operands are pumped through the array at a

regular pulse. Everything is planned in advance so that all inputs

to a cell arrive at just the right time before they are consumed.

Intermediate results are passed on immediately to become the inputs

for further cells. A steady stream flows at one end of the array

which is said to consume data and produce results 'on the fly'. For

instance, by locally connecting a few basic cells, known as Inner

Product steps 'IPS' - each performing the operation C=C+A*B - leads

to a fundamental network capable of performing computation - intensive

46

algorithms, such as digital filtering, matrix multiplication, and

other related problems (see Table 2.1 for a more comprehensive list

of potential systolic applications).

The systolic array systems feature the important properties of

modulari ty regularity local interconnection, a high degree of pipe-

lining and highly synchronised multiprocessing. Such features are.

particularly more interesting in the implementation of compute-bound

algorithms, rather than input/output - 'I/O' - bound computations.

In a compute-bound algorithm, the number of computing operations is

larger than the total number of I/O elements, otherwise the problem

is termed I/O-bound. Illustrative of these concepts are the following

matrix-matrix multiplication and addition examples. An ordinary

algorithm, for the former, represents a compute-bound task, since

every entry in the matrix is multiplied by all the entries in some row

th .. (3 1 b or column of the 0 er matr~x - ~.e. 0 n) mu tiply-add steps, ut

2
only O(n } I/O elements. The addition of two matrices, on the other

hand ,is an I/O bound task. Since the total number of adds is not

larger than the total number of I/O operations, i.e. o(n
2

} add steps

2
and O(n } I/O elements.

It is apparent that any attempt to speed-up an I/O-bound

computation must rely on an increase in memory bandwidth (the so-

called 'Von Neumann' bottlenecks). Memory bandwidths can be increased

by the utilisation of either fast components, which may be quite

expensive, or interleaved memories, which may create complex memory

management problems. However, the speed~up of a compute-bound

computation may. often be achieved in a relatively simple and

inexpensive manner,that is by the systolic architectural approach.

'SYSTOLIC' PROCESSOR
ARRAY STRUCTURE

I-D linear arrays

2-D square arrays

2-D hexagonal arrays

Trees

Triangular arrays

PROBLEM CASES

FIR-filter, convolution, 'Discrete

Fourier Transform' - DFT, matrix­

vector multiplication, recurrence

evaluation, solution of triangular

linear systems, carry pipelining,

cartesian product, odd-even

transposition sort, real-time

priority queue, pipeline

arithmetic units.

Dynamic programming for optimal

parenthesization-, image processing I

pattern matching, numerical

relaxation, graph algorithms

involving adjacency matrices.

Matrix problems (matrix multi­

plication), LU decomposition by

Gaussian elimination without

pivoting, QR-factorization,

transitive closure, relational

database operations, DFT.

Searching algorithms (queries on

nearest neighbour, rank, etc.,

systolic search (tr·ee), recurrence

evaluation.

Inversion of triangula! matrix,

formal language recognition.

47

TABLE 2.1: The potential Utilization of 'Systolic' Array Configurations

The fundamental principle of a systolic architecture, asystolic

array in particular is illustrated in Figure 2.2. By replacing a

single processing element with an array of PEs, a higher computation

throughput can be achieved without increasing memory bandwidth. This

is apparent if we assume that the clock period of each PE is lOOns;

then the conventional memory~processor organisation (al has at most

5 MOPS performance,while with the same clock rate, the systolic

array (bl will result in a possible 35 MOPS performance.

48

Finally, this approach of utilising each input data item a number

of times, thus achieving a high computation throughput with only a

modest memory bandwidth, is just one of the advantages.of the systolic

concept. Other equally significant criteria and advantages include

modular expansibility, utilisation of simple, uniform cells, extensive

concurrency and fast response time.

However, one problem associated with systolic arrays is that the

data and control movements are controlled by global timing-reference

beats. In order to synchronise the cells, extra delays are often used

to ensure correct timing. More critically, the burden of having to

synchronise the entire network will eventually become intolerable for

very large or ultra large scale arrays [Dew, 1984].

MEMORY

lOOns

PE

(a) The Conventional Organisation

•

MEMORY

100 ns

PE PE PE PE PE PE PE

(b) A Systolic Processor Array

FIGURE 2.2: Systolic Design Principle

2.2.2 Wavefront Arrays

A solution to the above mentioned problems, as suggested by

S.Y. Kung [Kung 1985], is to take advantage of the data and control

flow locality, inherently possessed by most algorithms. This permits

a data-driven, self-timed approach to array processing. Conceptually

such an approach substitutes the requirement of correct 'timing' by

correct 'sequencing',this concept is used extensively in data flow

computers and wavefront arrays;

Basically the derivation of a wave front process consists of the

three following steps:

49

a) the algorithms are expressed in terms of a sequence of

recursions;

b) each of the above recursions is mapped to a corresponding

computation wavefront; and

c) the wavefronts are successively pipelined through the

processor array.

Based on this approach, S.Y. Kung introduced the Wavefront Array

Processor (WAP) which consists of an NXN processing element with a

regular connection structure, a program store and memory buffering

modules.as illustrated in Figure 2.3. The processor grid acts as a

wave propagating medium using handshaking protocols.

50

Each processor performs a limited number of computations and is

controlled by a program loaded in the program store. Data is stored in

memory modules around the boundary and extra time must be allowed to

set up a computation. An algorithm is executed by a series of wave­

fronts moving across the grid with processors computing whenever its

data and instructions are available. Processors are assumed to support

pipelining of waves and the spacing of waves (T) is determined by the

availability of data and the execution of the basic operation. The

speed of wavefront A is equivalent to the data transfer time.

Summarising, the wavefront approach combines the advantages of

data flow machines with both the localities of data flow and control

flow.inherent in a certain class of algorithms. Since the burden of

synchronising the entire array is avoided, a wavefront array is

architecturally'scalable'.

PROGRAM .
CODE
MEMORY 1\

MEMORY MODULES

1[\

------ -- - FIRST WAVE

- - - SECOND WAVE

6 UNIT TIME OF DATA TRANSFER

T UNIT TIME OF ARITHMETIC OPERATION

FIGURE 2.3: The Wavefront Array Processor

51

2.3 VLSI-ORIENTEO ARCHITECTURES

For large applications it may not be feasible to design a single

chip implementation of an array, especially when balance between

flexibility, efficiency, performance and implementation cost is

essential. An alternative approach is to implement basic cells at the

board level using a set of 'off-the-shelf' components which are widely

available as chip packages from various manufacturers.

52

Systolic arrays achieve high performance and efficiency by

considering only restricted problem classes, at the expense of flexibility

and implementation cost. For a more economical solution, arrays must

be constructed with many incorporated features so as to handle a large

number of systolic algorithms. In this section, we shall briefly

review the main contenders of VLSI-Oriented computing systems which

have received attention to date.

2.3.1 The WARP Architecture

The WARP architecture, one of.the most advanced VLSI-oriented

systems, was developed at Carnegie Mellon University (CMU) by H.T. Kung

and his associates for purely.systolic algorithms. Initially, the

design began with a preliminary study of different architectures based

on general purpose microprocessors which could implement a variety of

systolic algorithms efficiently. The study resulted in the Programmable

Systolic Chip (PSC) discussed in [Fisher 1984] and prompted research

into cell structures for high performance systolic arrays in a

particular area .(signal processing) •

The WARP architecture is a 1-0 linear systolic array with data

and control flowing in one direction (with input at one end of the

array and output at the other). From the preceeding discussion we

observe that the design allows easy implementation, synchronisation by

a simple global clock mechanism, minimum input/output requirements and

the use of efficient fault tolerance techniques for malfunction.

The basic WARP cell is constructed from a collection of chips as

is illustrated in Figure 2 .. 4", its main characteristics being the

pipelining of data and control. Weitek 32-bit floating point

53

multiplier (MPY) and ALU's perform operations and can be used in a

pipeline mode to improve throughput by two level pipelining. The MPY

and ALU register files use Weitek register file chips and can compute

approximate functions like inverse square roots using look-up facilities.

The X,Y and address-files are also register files but this time they

are used to implement delays for synchronising data paths, and can be

used as extra registers for book-keeping operations, while the data

memory is used to reduce the input/output bandwidth by implementing

tables of data and storing intermediate results. It can also be used

to implement multiple cells on the same processor and hence 2-D arrays.

The crossbar and input multiplexors (muxes) provide communication

between the individual elements and can be reconfigured by control

signals. The muxes permit two-directional data flow and ring set-ups.

A ten-cell prototype has been built at CMU and tested on a number of

example arrays discussed in H.T. Kung [Kung 1984l.

2.3.2 The CHIP Architecture

In order.to derive a more flexible VLSI-oriented computing system

than the special-purpose computers, where the .same hardware would be

Y, 1 l.-

X,
l.-1

•

Y -i-1

addr, 1
l.-

M code
L-...l

3:1

J I Y-FILE
J

muX
'I

I :1
2:1 ,I X-FILE

1 muX

-{ ADDR-FILE J-
,--

L-fJ
DATA

MEMORY

, FIGURE 2.4: Data Paths for the WARP Cell

C

R

0

S

S

MPY

B
REG FILE

A

R
,,-

ALU 'J REG FILE

MPY

r ALU

I--

I--

~

1

In

""

used to solve several different problems, L. Snyder suggested the

design of the configurable, highly parallel architecture 'CHIP'

[Snyder 1982] based on the configurability principle. Conceptually,

the chip represents a family of systems, each built out of three major

components: a set of processing ·elements (PE's), a switch lattice and

a controller. The lattice, the most important component of a chip,

55

is a 2-D structure of programmable switches connected by data paths.

The PEs are placed at regular intervals. Figure 2.5 shows two examples

where squares represent PEs, circles represent switches and lines

represent data paths. Note that the PEs are not directly connected to

each other, but rather are connected to switches.

The processing elements are microprocessors each coupled with

several kilo-bytes of RAM used as local storage. Data can be read or

written through any of the eight data paths or ports connected to the

PE. Generally, the data transfer unit is a word, though the physical

data path may be narrower. The PE~S operate synchronously and

systolically.

Each programmable switch contains a small amount (around 16 words)

of local RAM which is used to store instructions (one instruction per

word) called configuration.settings. Each configuration setting

specifies pairs of data paths to be connected. When.executed, each

pair which is also known as a crossover level, establishes a direct,

static connection across the switch that is independent of the others.

The data paths are bidirectional and fully duplex, i.e. data movements

can take place in either direction simultaneously. NOW, executing a

.configuration settings program causes the specified connections to be

(a) (b)

FIGURE 2.5:- Two Lattice Structures

established and to persist over time, e.g. over the execution of an

entire algorithm.

The processing elements can be connected together to form a

particular structure by directly configuring the lattice. That is,

the programmer sets each switch such that collectively they implement

the desired processor interconnection graph. Figure 2.6 illustrates

three examples of how the lattice of Figure 2.5(a) might be con figured

to implement some commonly used 'interconnection schemes.

In addition to the lattice, a controller is also provided, and

is responsible for loading programs and configuration settings into

PE and switch memories respectively. This task is performed through

an additional data path network, called 'skeleton'.

56

610
(a) Binary tree

(b) Systolic array

(c) Four-neighbour network

0
0
0

0
()

0
0

0

o
o
o
o
o
G

o
o
o

0

0 0 D

0 0 0 0 0

FIGURE 2.6: Embedding Graphs into the Lattice of Figure 2.5

57

0 0

0

0

0

0

0

0

0
0

From the functional point of view, CHIP processing starts with

the controller broadcasting a command to all switches to invoke a

particular configuration setting; for example to implement a mesh

pattern. The established configuration remains during the execution

of a particular phase of an algorithm. When a new phase of processing,

requiring different configuration settings is to begin, the controller

broadcasts a command to all switches so that they invoke the new

configuration setting; for example, a structure implementing a tree.

With the lattice thus restructured, the PE's resume processing, having

taken only a single logical step in reconfiguring the structure.

In conclusion, the chip computer which is a highly parallel

computing system, providing a programmable interconnection structure

integrated with the processor elements, is well suited for VLSI

implementation. Its main objective is to provide the flexibility needed

in order to solve general problems while retaining the benefits of

regularity and locality.

2.3.3 INMOS Transputers and OCCAM

A third possibility is the INMOS transputer, a single chip micro­

processor containing a memory, processor and communication links for

connection to other transputers, which provides direct hardware support

for the parallel language OCCAM. The structure of a transputer is given

in Figure 2.7.

The transputer and OCCAM were designed in conjunction and all

transputers include special instructions and hardware which provide

optimal implementations of the OCCAM· model of concurrency and

58

---l
---l

RESET
ANALYSE

:RROR BOOT FRO
ROM

M_

CLX

VCC

GND

T MEM(S.Bits

T MEM WR(4)

r MEM RD
r MEM RP

MEM WAIT

MEM CONF.

~

---;

-
-

)

SYSTEM
SERVICES

ON-CHIP
RAM

(2K bytes)

APPLICATION
AND
SPECIFICATION
INTERFACE

~ K 32)

~I
K32 :>

k(.32 ">

~
I K32 :>
K 32 ')

I
< MEMORY 32

FIGURE 2.7: Transputer Architecture

PROCESSOR
(32 bit)

LINK ~ INTERFACE

LINK
INTERFACE

~ LINK
INTERFACE

LINK
INTERFACE

,

EVENT

I'

)

•

)

>

59

INO

OUTO

1Nl

OUTl

IN2

OUT2

IN3

OUT3

EVENT REG

EVENT ACK

MEM REG

MEM GRAN

communication. Different types of transputers can have different

instruction sets depending on the required balance between cost,

performance, internal concurrency and hardware, without altering the

users view of OCCAM. Hence the transputer is a Reduced Instruction Set

Computer (RISC).

The processor contains a scheduler which enables any number of

process.s to run on a single transputer sharing processing time, while

each link provides two unidirectional channels for point to point

communication synchronised by a handshaking protocol. Communication. on

any link can occur concurrently with communication on other links and

with program execution.

OCCAM itself is based on communicating sequential processors

[Hoare 1978] where parallel activities are viewed as black boxes with

internal states, called processes, and which communicate with each

other using a one-way channel. Communication is achieved by sending

a message down a channel between two processes; one process sends a

message and another reads it from the channel.

As every transputer implements OCCAM, an OCCAM program can be

executed on a single transputer or a network of transputers. In the

former case, parallel processes share ·the processor time and channel

communication is simulated by moving data in memory. For a transputer

network processes are distributed among transputers and channels

allocated to links.

The main characteristic of the OCCAM language is its simplicity

which makes it an appealing prospect for proving the correctness of

the processes. It has fewer than thirty keyworks, and only a small

60

61

number of constructors. Although each process used destructive

assignments, the use of -channels for interprocess communication

makes it entirely consistent with data flow and graph reduction

computer architectures. OCCAM was designed with computer architectures

of this nature in mind, and with a view towards fifth generation

applications. Together with the Inmos transputers, it provides a

modular hardware/software component of the type which is essential in

the construction of highly.parallel computer systems.

However, its lack of a powerful data structure and its closeness

to the hardware, means that OCCAM is likely to be the low-level

language of fifth generation systems with applications possibly written

in a more abstract language.

2.3.4 Simulation of Systolic Arrays

We use the fact that OCCAM programs.can be divorced from transputer

configurations by using the language as a simulation tool throughout

the development of our simulation system in this research. A brief

summary of the OCCAM language is given in Chapter 4. The general

structure of OCCAM programs which represent the simulation of systolic

arrays is shown in Figure 2.8, where branching indicates parallel

execution. The construction of programs follows ideas developed by

G.M. Megson. [Megson 1984]. Consequently OCCAM programs simulate the

formal proofs by replacing I/O descriptions by actual results.

Although the simulation does not guarantee correctness it is nevertheless

a less time consuming approach which does not result in unsolvable

equations. Furthermore, a working OCCAM program retains the possibility

GETDATA

SETUP

ALLOCATOR

SOURCES CELLS SINKS DEBUG

)

DE-ALLOCATOR

PUTDATA

.FIGURE 2.8: Structure of OCCAM Program for Simulating
Systolic Arrays

62

of actual transputer implementation and so solves two problems in one

attempt.

The g.etdata and putdata sections of Fig.ure 2.8 which represent

63

the host machine interface, are. responsible for receiving. and sending.

data and control to and from the prog.ram. Each routine contains enough

memory to store the initial array input data and the final output data

corresponding to the global input and output sequences of the model.

In principle, the two routines can be run in parallel with each other

and the array, but generally they are sequential, in order to emphasise

the parallel operation of the array. The actual host can be predefined

I/O files or simply the terminal. The former method is useful for

buffering and throughput testing, while the latter helps with debugging

and interactive array performance. The routines can be augmented with

user friendly features directing the program .use, the collection of data

necessary for the array construction and formatting of results.

The setup routine is a key section of the algorithm which computes

array dependent quantities. More specially, it performs many necessary

calculations whose values are useful in defining the structure of the

array. These structural values are more important as the array becomes

more complex.

sources, sinks and cells are OCCAM procedures that define the

network model. A source is located initially with a vector from getdata

representing its associated bounded data sequence, together with

additional values from the set-up routine. Sinks are analogous to

sources except they work in inverse by placing real values into data

vectors which are then passed to putdata for output. The cell

64

procedures implement the.n-ary sequence operators. Generally there

is one procedure for each type of cell, and the programming task is

simplified for homogeneous networks. The I/O sequences are represented

by OCCAM channels appearing as actual parameters in the procedure

headings. Where cell definitions are only marginally.different, extra

switches and flags can.be added to a procedure heading so it can set

up the correct cell type. This collapses a number of definitions onto

a single generic one. Extra parameters can also be used for preloading

array values.

A cell definition is divided into three sections, initialization,

communication and computation. Initialization is performed only once

and allows cells to be cleared before use or predetermined values to be

set up. In particular, initialization defines neutral element quantities

which can be used in communication before real data reaches the cell

and is essential to maintain dataflow in OCCAM programs. The

communication and computation sections of the cell are performed many

times and are enclosed in a loop for iteration, and are performed

sequentially one after the other. All communication is performed in

parallel and computation is mainly sequential. The allocator routine

is called after setup and is supplied with parameters about the array

dimensions, synchronisation details of the total number of cycles in

the algorithm, if a loop scheme. is used, and data sequence sizes. The

allocator is simply a set of .parallel loops which specify and start-up

the computational graph by connecting corresponding procedures using

OCCAM channels as arcs and allocating channels accordingly. To achieve

setup, the graph is mapped onto a grid of points whose points and

hence arcs can be recovered from a simple address type calculation.

The simpler the array the easier are the mapping functions, and the

result is an allocation similar to the VLSI grid model. Once started

the sources and sinks control the computation, and the allocator only

terminates when all the graph cell procedures have terminated.

Termination of procedures is assumed to be globally synchronised if a

for-loop is used in cells and asynchronous if while-loops are

incorporated. As OCCAM is.an asynchronous communication language,

for-loops tend to be messy requiring some additional computation after

the loop to clear all the channels - hence avoiding deadlock. While­

loops are better suited to the model of concurrency and when augmented

with systolic control sequences can be used to selectively close down

cells, input and output.channels. Consequently array cells can be

switched off or de-allocated by a wavefront progression or pipelined

approach from sources to sinks.

65

An additional procedure for debugging purposes can be added which

runs in parallel with graph networks, and is mainly a screen/file mixer

routine. The allocator sets up the procedure and network cells are

augmented with an additional channel each, which the debug routine uses

to analyse cells. Debug channels are allocated from a pool of channels

and require an ordering of network cells for correct indexing. When

the indexing function is simple, debug can be used to output snapshots

in a sequential cell-ordering and the additional debug channel

communication must be placed carefully in cell definitions.

Finally, the techniques described above have been used successfully

to implement designs in OCCAM by G.M. Megson [Megson 1987), but can in

principle be extended to any parallel language provided channels

and cells can be modelled.

In fact Brent, Kung and Luk [Brent 1983] used an extended version

of Pascal, ;.ADA also seems a likely candidate as ADA vendezvous is

very similar to channel communication both being based.on CSP. The

adoption of OCCAM offers more direct hardware support for special

purpose designs as well as common architectures.

66

2.4 MIMD ARCHITECTURE DESIGN - THE SEQUENT BALANCE SYSTEM

2.4.1 MIMD Hardware Organisation

67

One of the motivations of the MUID computer design is the increase

in computational speed-up by the concurrent execution of instructions,

organised in several sequential streams with infrequent dependencies

among them, by a large pool of processors with approximately similar

capabili ties. Of . importance to this type of structure is th·e mechanism

to synchronise and communicate between·processors. Specifically the

used mechanisms can be classified into two classes, those that use a

shared memory, and those.that use passing messages (see [Baer 1976],

[Enslow 1977] and [Stone 1980]). The use of the shared memory which

might be a multiported main memory, cache memory or a multiported disk,

results in a faster mechanism but requires all the proc~ssors to access

the shared memory. Consequently, this limits the total number of

processors that the system can effectively handle. On the other hand,

the mechanism based on messages has a large overhead so that it is only

useful when synchronisation and communication are very infrequent

[Gehrig 1982].

The general class of MIMD computers was distinguished into two

main classes, the tightly-coupled and the loosely-coupled systems

depending on the amount of interactions between the processing elements

(see [Hayes 1978]). In the case of tightly coupled processors, as

shown·in Figure 2.9, (i.e. a large number of processors sharing a

common parallel memory via a high-speed multiplexed bus), the processors

operate under the strict control of the bus assignment·scheme which is

implemented in hardware at the bus/processor interface. On the other

hand, in a system with loosely-coupled processors the communication and

68

SHARED MEMORY

PROCESSOR PROCESSOR PROCESSOR

1 2 3

FIGURE 2.9: Tightly-Coupled Multiprocessor System

MEMORY MEMORY MEMORY

1 2 3

PROCESSOR PROCESSOR PROCESSOR

1 2 3

FIGURE 2.10: Loosely-Coupled Multiprocessor System

interaction takes place on the basis of information exchange. Figure

2.10 shows a general architecture of a loosely coupled system where

each processor has its own local memory. Comparing the above two

classes of multiprocessor systems, the main difference lies in the

organisation of the memory and the bandwidth of the interconnection

network.

Several interconnection.networks with different characteristics

such as bandwidth, delay and cost, ranging from the shared common bus

to the crossbar switch have been proposed.

However. Enslow identified three fundamentally. different organis­

ations, namely the time-shared common bus, the multiport memory and

the crossbar switch.

69

The time-shared common bus interconnection scheme, as illustrated

in Figure 2.11, represents the simplest form of connecting all the

functional units using a single bus which incorporates some arbitration

logic associated with every bus/unit interface to resolve the bus

request contention since only one transfer can take place at any given

time. Thus, the unit wishing to initiate a transfer, a processor or

an I/O unit, must first determine the availability state of the bus,

then address the receiving unit as well as determining its availability

and capability to receive the transfer.

By its nature, such a system is quite reliable and its cost is

relatively low, however several limitations are introduced that can

have serious damaging effects·on both the system, since. a malfunction

of any unit interface causes a system fa·ilure, and the total overall

transfer rate.

70

PROCESSOR PROCESSOR PROCESSOR
1 2 3

MEMORY I M~" I
I/O UNIT

1 1

FIGURE 2.11: The Time-Shared Common Bus Interconnection System

several interconnection systems such as the use of two one-way

paths and multiple two-way buses have been provided in an attempt to

solve this problem of a single transfer. The former example which

does not increase system complexity or diminish reliability has a

comparable performance with its predecessor since a single transfer

requires· the use of both paths. On the other hand with the latter

technique multiple simultaneous transfers are possible but at

additional system complexity.

The most extensive and expensive interconnection network providing

a separate path for every· processor, memory module and I/O unit is

the crossbar switch (see Figure 2.12).

71

EJ MEMORY I~' I 2

I/Ol

PROCESSOR
1

I/02

PROCESSOR
2

I/03

PROCESSOR
3

FIGURE 2.12: The Crossbar Switch System

In the case that the multiprocessor system contains p processors

and m memories, the crossbar requires pxm switches, each of which is

capable of switching parallel transfers and arbitrating conflicting

requests. In this system, the bus-interface logic required by the

functional units is kept at the lowest level since some of the

functions, i.e. transfer recognition and conflicts resolution, which

are performed at every bus-unit interface, are assumed by the switch

matrix. Consequently, such an interconnection is very complex

(exponential growth for large p and m), expensive and physically

large. However the important characteristics of this system which

is shown in Figure 2.12,are the extreme simplicity of the switch­

functional unit interfaces and the ability to support concurrent

transfers for all memory modules.

The interconnection of· the control, switching and priority

arbitration logic, which are distributed throughout the crossbar

switch matrix, at the interface to the memory modules leads to the

multiport memory organisation, as shown in Figure 2.13, where every

processor has a private bus to every passive unit, i.e. memory and

I/O units. The multiple ports of every passive unit, one for each

connection to a processor, are assigned fixed priorities through

which arising conflicts are resolved.

This organisation offers a high potential transfer rate within

the system at a comparable hardware complexity with that of the

crossbar switch except for ·the localised logic, but with a severe

constraint on the number of processors imposed by the number and type

of the memory ports.

72

Besides these three presented interconnection networks, there

are many others which can be valuable for the multiprocessor

organisation such·as the Omega network [Lawrie 1975] and the Delta

network [Patel 1981] ·and the Augmented Data Manipulator [Siegel 1979].

The interference or ·conflict, produced in the accessing of a

shared memory in a multiprocessor system, which is one of the factors

that degrade the overall performance of the system has been

PROCESSOR PROCESSOR

1 2

MEMORY

1

MEMORY

2

MEMORY

3

FIGURE 2.13: The Multi-port Memory Interconnection System

PROCESSOR PROCESSOR

3 4

I/01

I/02

I/03

...,
w

investigated extensively, resulting in some exact and approximate

modules under various assumptions [Chang 1977], [Janek 1981],

[Janek 1982], [Lillevik 1984] and [Basket 1976]. These interferences

can be generally classified into two types: software and hardware

types.

The first memory conflict is caused by a processor attempting to

use a data set while it is currently being accessed by another

processor which has eventually activated a software 'lock' mechanism

to prevent any other processor from accessing the same data set.

Thus, although this action forces serial manipulation of some

sensitive data sets through a software mechanism, called critical

region it-ensures data integrity in a multiple processor environment.

On the other hand, the second type of memory conflict is caused

when two or more processors attempt to access the same memory module

simultaneously, i.e. more than one request is made to .the same module

during a single memory cycle by different processors. Therefore, all

but one request must wait to be served sequentially since only one

access can be made per memory cycle. Thus, programs with a large

number of these conflicts have greater degradation in their overall

performance.

A way to reduce the processor interconnection network and the

interference in the memory is to have a cache memory associated to

each processor. The main difficulty· with this approach is the

coherence problem that appeared when shared data is present

simultaneously in several caches. _Another solution to this problem

is to partition the physical memory into local memories while keeping

the uniform access at the virtual level. To reduce·even further the

74

cost of the interconnection network, it is useful to divide the

processors into clusters and have a slower interconnection between

clusters. This approach is implemented in the Cm* [Gehrig 1982] .

2.4.2 The Sequent Balance 8000 System

75

The Balance 8000 which·was.developed by Sequent Computer System

Inc., Oregon, using a new processor pool architecture"was installed in

Loughborough University, Computer Studies Department in 1986. This

system dynamically shares its load among twelve architecturally similar

processing units and operates under a single copy of a Unix-based

operating system, known as DYNIX, capable of delivering up to 5 MIPS.

The pool processing organisation requires dynamic balancing of the

system workload among the processors with an effective use·of all

resources in general. Consequently.the system. automatically and

continuously assigns tasks to run on any processor that is currently

idle or busy with a lower priority task, meaning that a process does

not necessarily run to completion on the same processor but on the

contrary it may involve several processors. This balancing process is

carried out transparently; neither the user nor the programmer need

to be aware that the system supports multi-tasking operations.

From the hardware point of· view .. the· Balance 8000 consists of a

pool of two· to twelve processors, a bandwidth bus, up.to ·28 Mbytes of

main memory,· a diagnostic pr6cessor·up to four high-performance I/O

channels and up to four IEEE-796 (multibusr·bus couplers.·· .Figure 2.14

shows the main functional blocks of the Balance 8000 system.

Each processor is a subsystem· containing three VLSI components:

16 LINE
MUX

USER
DEVICES

I hn.TAP~ I

396 ~lbyte""
DISK

Ul
::>
P'l

...
Ul
u
Ul

v
FIGURE 2.14

MULTIBUS
ADAPTER
BOARD

~ruLTIBUS

INTERFACE
BOARD

DUAL
CPU
BOARD

MC
BOARD

ME
BOARD

SCSIC
EI

The Balance 0000 System Configuration

Legend:

MC: Memory controller
ME: Memory expansion
SCSIC: SCSI controller
El: Ethernet interface
DP: Diagnostics processor

Hn. TAPE

72 Mbyte
DISK

77

a 32-bit processing unit, a hardware floating-point unit and a paged

virtual memory management unit. Two such subsystems are on one circuit

board (see Figure 2.15 which shows the major units of a dual processor

board). Also each processor contains a cache memory that almost

reduces to zero all the processor waiting periods and minimises the

bus traffic. The two-way set-associative cache consists of 8 Kbytes

of very high speed memory and stores recently accesses instructions

and data, so subsequent requests for the same data are satisfied from

the cache, rather than from the main memory.

However, with the use of these cache memories two coherence

problems arise, mainly the coherence of the data between the main

memory and L~e caches on each processor and the coherence of the data

between the caChes themselves. For the former problem, a write­

through mechanism is utilised in order to keep the main memory up-to­

date with all the eventual changes made in every processor's cache.

In addition to the update of the appropriate cache, this mechanism

would allow· the same write cycle to pass to the bus and memory. In the

latter case, the answer is provided by the bus watching logic

implemented in every cache. Consequently, all the write cycles on the

bus are monitored and the addresses are compared with those in the

cache, so whenever the contents of the cache are altered, the cache

invalidates the entry·in question.

Significant processing time is saved by including a write-buffer

in each processor which can proceed immediately after issuing a write

cycle letting the buffer wait for the memory cycle to complete.

Finally, to complete the description of the components found in

MEMORY
,MANAGEMENT
UNIT CACHE L

I

'-- WRITE -SYSTEM LINI<
BUFFER

AND INTERR- PROCESSOR
f-

UPT 1

CONTROLLER

'FLOATING
POINT
UNIT

~£MORY

MANAGEMENT
UNIT

~IRITE

t- BUFFER t-

SYSTEM'
PROCESSOR t- LINK AND CACHE

2
INTERRUPT
C:O ... no;OLlE~

FLOATING
POINT
UNIT

FIGURE 2.15: Configu~ation of a CPU Board with 3 VLSI
Components Attached to Each Processor

78

BUS
- INTER- t-

FACE

the processor subsystem we need to refer to the system "System Link

Interrupt Controller" (SLIC) which is a chip, one for each processor

and for every other bo~rd, attached to the SB 8000 bus. This SLIC

chip manages interprocessor communication, synchronised access to

shared data structures, distribution of interrupts among the

processors, and diagnostics and configuration control. The SLIC

bus which is a part of the SB 8000 system bus provides an inter­

connection for communication among the SLIC chips.

The SB 8000 system .. bus is a 32-bit wide, pipelined, packet bus

supporting multiple overlapped memory and I/O transactions and

capable of achieving a throughput rate of 26 Mbyte/sec. It also

supports several packet lengths and checks· parity to aid in error

detection.

79

This system provides up to 28 Mbytes of principal memory, a 4

Mbytes I/O address space that can be shared by all the processors and

a 16 Mbyte virtual memory address space for each process. The Balance

8000 supports up to four memory controllers, each with an optional

expansion board, reducing memory contention among processors. It also

supports standard I/O throughout the system, and permits several

instances of each interface to increase the I/O bandwidth. More

specifically this system supports a SCSI interface for disc and tape

I/O, a Multibus interface for serial communications, large disc and

tape support, and user-added devices, and finally an Ethernet local

area network for communication amongst systems.

CHAPTER 3

THE INSTRUCTION SYSTOLIC ARRAY (ISA) -

A PARALLEL ARCHITECTURE·FOR VLSI

80

3.1 THE INSTRUCTION SYSTOLIC ARRAY (ISA)

Systolic arrays have proved to be well sulted for VLSI technology

since they:

consist of a regular network of simple processing cells,

use local communication between the processing cells only,

exploit a maximal degree of parallelism.

However, systolic arrays have one main disadvantage compared with

parallel computer architectures: They are special purpose architectures

only capable of executing one algorithm, (or a collection of related

problems in a generic array) i.e., a systolic array designed for

sorting cannot multiply matrices, whereas a systolic array for matrix

multiplication cannot solve pattern matching problems and so on.

Several approaches have been made to make systolic arrays more

flexible, in order to be able to handle different problems on a

single systolic array. In Hans-Werner Lang [Lang 1985] the instruction

systolic array (ISA) has been suggested as a new architecture for

parallel computation which meets the requirements of VLSI and be

capable of efficiently executing a large variety of parallel

algorithms.

The basic idea of this concept is illustrated in Figure 3.1.

Instead of pumping data through the array of processing cells which

can execute only one fixed instruction (as in a systolic array), the

ISA moves the instructions through the array of processing cells. In

addition to the vertical stream of instructions, a horizontal stream

of selector bits is introduced (Figure 3.2). An instruction is

executed if it meets a selector bit '1', whereas execution of an

instruction is suppressed if the selector bit is '0'. So the

instructions may be executed only in certain rows of the processor

array.

DATA

PROCESSOR
ARRAY

(a)

FIGURE 3.1: (a)
(b)

INSTRUCTIONS

W

j PROCESSOR
ARRAY

(b)

Data is Shifted Through the Systolic Array
Instructions are Shifted Through the ISA

SELECTORS

INSTRUCTIONS

PROCESSOR
ARRAY

FIGURE 3.2: The Vertical Instruction Stream is Combined with a
Horizontal Stream of Selector Bits

81

82

Our basic model of a parallel computer is a mesh-connected nxn-

2
array of N=n identical processors (Figure 3.3). The processors can

execute instructions from a small instruction set. The processor

array is synchronized by a global clock and the execution of every

instruction is assumed to take the same time.

I I I I)

- f- - c- - -

I L I I

- f- f- r- - -

1 I I J

- - I- - - I-
n

I I I

I I I

- - ~ - - - - -

FIGURE 3.3: A Mesh-Connected Processor Array

Each processor has some data registers including a designated

communication register (CR). Communication between two processors P

and Q is done in the following way:

If a data item is to be sent from P to Q, P writes the data item

into its communication register. In the next instruction cycle Q

reads the contents of p's communication register.

Each processor can write only into its own communication

register, but it can read from the communication registers of its

four direct neighbours. It is allowed that two or more processors

read from the same communication register simultaneously. In order

to avoid read/write conflicts we assume that reading from a register

is done during the first half of the execution of an. instruction and

writing into a register during the second half (Figure 3.4), or any

equivalent mechanism: it must be guaranteed that reading from a

register always yields its 'old' contents (of a previous instruction

cycle) •

FETCH EXECUTE INSTRUCTION
INSTRUCTION ~----------------~--.---------------

~-----------~-----------~-----------r-----------I
READ DATA COMPUTE WRITE

DATA

FIGURE 3.4: Instruction Cycle

The processors do not have their own control units but are

supplied with instructions from outside. Each processor has an

instruction register. At the beginning of each instruction cycle

each processor fetches the instruction from the instruction register

of its top neighbour. This is done synchronously, ·so that, by this

mechanism, rows of instructions are· shifted through the processor

array from the top to the bottom. The processors in the top row of

the array are supplied with instructions from a memory outside. In

an analog way columns of selector bits are simultaneously shifted

83

through the array from left to right. A processor executes its

instruction if and only if its selector bit is '1' otherwise it

performs 'no operation I (no-op). More formally we define:

(1) (r)
A program on an ISA consists of a sequence p , ..• ,p of n

(1) (r)
-tuples over the instruction set I and a sequence s , •.. ,s of

n-tuples over {O,l}. For every i,j~n and t~r,p(t) is the row of

instructions which enters the ith row of the ISA at time t+i-l, and

sIt) is the column of selector information which enters the jth

column of the ISA at time t+j-l. That means, the instruction

executed by processor (i,j) is:

(t+i-l) .ff (t-j+l) 1
Pj ~ si ;

p(i,j) ;
no-op otherwise

Input and output of data to the processor array is done via the open-

ended processor links at the boundary of the array. The ISA is

assumed to be embedded in an environment that is capable of:

supplying the ISA with instructions and selectors,

84

supplying the ISA with input data and sorting its output data,

both at the speed determined by the clock of the ISA chip.

The length of a program on an instruction systolic array does not

affect its area requirements, whereas the complexity of many systolic

algorithms is proportional to their time complexity [Ullman 1984] .

The reduced area requirements imply that on the fixed area (of a chip)

larger problem sizes can be treated than on comparable standard

systolic architectures.

85

3.2 THE INSTRUCTION SYSTOLIC ARRAY AND ITS RELATION TO OTHER MODELS

OF PARALLEL COMPUTERS

3.2.1 Basic Definitions

In this section we study the feasability of the ISA concept by

comparing it to other parallel computer concepts based on mesh-

connected arrays (Figure 3.3).

Now, in the MIMD concept of parallelism, all the processors of

a given array (denoted PAl can execute different instructions. That

2
means the array consists of n independent processors having their

own control store. Similar to the ISA the PA uses local communication

only, which makes it suitable for VLSI but the processors have to be

much larger than the ISA. Therefore, on the same area the ISA concept

can realise a larger degree of parallelism than the PA. Furthermore,

2
a PA program (see later) may consist of up to n different programs

for the individual processors which have to be distributed over the

array before the PA program can be executed as it filters through the

array, whereas in the ISA the program is executed while it is moved

through the array. Consequently it is easier to execute a pipelined

sequence of different programs on the ISA than on the"PA.

As mentioned in Section 3.1, the basic model parallel computer

2
is a mesh-connected nXn array of n identical processors (Figure 3.3),

which is synchronized by a global clock. The processors can execute

instructions from some instruction set, where the execution time of

all instructions is the same. Each processor has some local memory

including a designated Communication Register (CR). The communication

between processors is done in the following way:

86

If a processor needs data from one of its four direct neighbours,

it reads that neighbour's .communication register. This means that

at most five processors can read from a communication register

simultaneously (including the processor itself). Reading and writing

is done in the same manner as described in Figure 3.4. This timing

assures a mutual exclusion of reading and writing in the communication

register. The open-ended data links of the processors at the

boundaries of the array are used for external input and the output of

data.

Now, in the SIMD concept of parallelism, at every time unit,

all active processors of the array execute the same instruction.

The instructions are broadcast by a central control unit to all the

processors. Since this involves signal propagation on long wires this

concept is not suitable for implementation in VLSI technology.

A control structure in between the ISA and the SIMD array is the

Instruction Broadcasting Array (IBA). Here, as in the ISA, new

instructions are fed into the array at every step, but these

instructions are broadcast to all the processors of a column and not

pumped through the array. Because of the broadcasting, this model is

less suitable for VLSI than the ISA. But since it is conceptually

simpler than the ISA we include it in our comparative investigation.

The three architectures we consider in the following differ in

how the control information is supplied to the processors [Kunde,

Lang, Schimmler, Schmeck,. Schroder 19861:

(i) The Processor Array (PA)

Where each processor has its own control store, Figure 3.3.

(ii) The Instruction Broadcast Array (IBA):

This computer's structure is depicted in Figure 3.5. The

processors need only a very simple control unit without a control

store. Instructions are broadcast to all the processors of a column.

In addition, selector information ('0' or '1') is broadcast to all

the processors of a row. A '0' means that all the processors of this

row are inactive, i.e. they execute a "no-operationlT-instruction. A

'1' means that all the processors of this row are active and execute

If I
j

is the instruction

of column j, and s. is the selector of row i processor p .. performs
1 1J

the instructions that have been broadcast.

operations according to:

1
I. iff s.=l

J 1

Pij
=

no-op iff s.=o
1

(iii) The Instruction Systolic Array (ISA):

This computer's structure is depicted in Figure 3.6. It is

identical to the IBA except that the instructions and the selectors

information are not broadcast but pumped systolically through the

array of processors. The instructions move row-wise north-south, and

the selectors move column-wise west-east;

Corresponding to the informal description given above·we now

define the notion of a program on a PA , IBA , or ISA (whenever the
. n n n

side length n of the underlying array is relevant we write it as a

subscript) :

Let I be the set of instructions the processors can execute,

where no-op is an operation contained in the instruction set which

87

88

INSTRUCTIONS

I I I)

1= f--

~ I I
H I -{ f--
I I

~ I I I

i I I

- ~ n

I
I I .-

• • • I

FIGURE 3.5: Instruction Broadcast Array (IBA)

INSTRUCTIONS

FIGURE 3.6: Instruction Systolic Array (ISA)

does not modify the processors memory contents.

(1) (2) (r)
A program on a PA : is a sequence p ,p , ... ,p of nXn matrices

n

over I, such that for all i,j~n and t~r the instruction executed by

processor (") , ,(t)
1,) at t1me t 1S Pij .

A program on an IBA
n

(vectors) over I and

(1) (2) (r)
is a sequence p ,p , ... ,p of n-tuples

(1) ,(r)
a sequence s , ... ,s of n-tuples (vectors)

(t)
over {O,l} such that for all i,j~n and t~r/P, is the instruction

)

(t)
broadcast to all the processors of column j and si is the selector

information broadcast to all the processors of row i at time t.

Alternatively processor p(i,j) executes according to:

p(i,j)

89

A program on an ISA :
, n

(1) (r)
,is a sequence P , •.. ,p of n-tuples over I

(1) (r)
and a sequence s , ... ,s of n-tuples over {O,l}. For every i,j~n

(t)
and t~r/P is the row of instructions which enters the ith row of

the ISA
n

(t)
at time t+i-l and s is the column of selector information

which enters the jth column of the ISA at time t+j-l. This means

that the instruction executed by processor (i,j) at time t is:

p(i,j) =
(

(t+i-l) 'ff (t-j+l) - 1
Pj 1 Si -

No-op otherwise.

Finally, the execution of an ISA program terminates after the last

row of instructions per) has entered the first row of processors.

Therefore, if the last instruction row is supposed to be moved down

to the last row of the array, it has to be followed by n-l rows of

no-ops.

90

REMARK:

The definitions are easily extended to rectangular grids

denoted PA ,IBA and ISA with simple mcdifications to the
m,n m,n m,n

i,j indices, where m~n. If P is a program on a PA , IBA or ISA ,
n n n

then T(p) denotes ·the execution time of p, which is equal to the

length of the program. Let c= (C ..) be an nxn-matrix, where C .. are
~J ~J

the contents of the communication register of processor (i,j) of a

PA , IBA, or ISA before the execution of program p. Then c. denotes
n n n p

the ·corresponding contents of the communication registers after the

execution of p (i.e. at time T(p)+l).

The input of a program p occurs every time a processor on the

boundary reads from the communication register of a non-existent

neighbour, i.e. every time a processor uses one of the open-ended data

links. From now on these "non-existent" communication registers

are called Input Registers. The input of a program is specified by

defining E (P), the Environment of p, to be a 4n-tuple of strings of

values that are read from the input registers during the execution of

p. The contents of the communication registers of processors on the

boundary of the array are viewed as "Potential Output". Therefore,

these communication registers are called Output Registers of the array.

The output of a program F then is a subsequence of the sequence of

values of some output registers during the execution of p .

Finally, we define the equivalence of programs. Among the

various conceivable notions we choose the following: Programsp and

q on a PA , IBA or ISA are called equivalent, if for all identical
n n n

environments E(p) and E(q), for every initial contents C, and for

every interpretation of the instructions occurring in p or q we have

c =c. This type of equivalence could also be called Internal in p q

constrast to an External Equivalence which could be defined with

respect to output sequences instead of the final contents of the

communication registers.

3.2.2 A Simple Example Program

To illustrate some of the basic definitions mentioned above, a

simple parallel algorithm for merging two sorted data sets is

implemented on each of the three models.

Algorithm Merge

Input:
n

Two Zxn arrays of data, the upper one sorted in right-to-

left row-major order, the lower one sorted in left~to-

right row-major order (Figure 3.7a).

output: One nxn array sorted in left-to-right row-major order.

Step 1: Sort all columns of nxn array by odd-even-transposition

sort (Figure 3.7b).

Step 2: Sort all rows of the nxn array by odd-even transposition

sort (Figure 3.7c).

The validity of this algorithm is easily seen using the 0-1

principle [Knuth 1973]: If a sorting network sorts all sequences of

o's and l's then it will also sort any· sequence of elements chosen

from an arbitrary ordered set.

n
Thus, we may assume the sorted Zxn-arrays to consist of O's and

l's only (Figure 3.8a). After step 1 at most one row of the array

consists of both O's and l's (Figure 3.8b). Therefore, step 2 yields

the completely sorted nxn array (Figure 3.8c).

91

<

J
)

(al

(bl

>

(cl

FIGURE 3.7: Merge Algorithm

(al

o

(bl

0,

(cl

FIGURE 3.8: Merging Two Arrays of
O's and l's

The Merge Programs on PA4 , IBA4 and ISA4

A PA4 program for the merge algorithm is illustrated in

(Figure 3.9al. Each square symbol of these matrices represents an

instruction. The meaning of the instruction symbols is given in

Figure 3.9b. By a simultaneous execution of a max and a min

92

instruction of this kind a comparison-exchange of the two communication

-~
-4
-~

--.:
~

FIGURE 3.9a: PA4 Program for Merge Algorithm

G

D
K

K:=min(K,K
l

)
ower

K:=max(K,K)
upper

K:=min(K,K . h)
r~g t

K:=max(K,Kleft)

Communication Register

FIGURE 3.9b: Instruction Symbols and its Meaning

93

register contents is achieved. Matrices 1 through 4 correspond to

step 1 of the algorithm and matrices 5 through B to step 2. Thus,

the time of the program is B steps.

Figure 3.10a shows the IBA4 version of the merge algorithm.

Instruction rows 1 through 12 (together with the corresponding

selector column 1 through 12) from step 1 of the algorithm, rows 13

through 16 step 2. Due to the broadcasting of instructions along the

columns, in the IBA model the simultaneous execution of different

instructions in one column is not possible. Therefore, modified

instructions for the vertical comparisons are used [(Figure 3.10b,

for details, see paragraph 3.2.3(b)]. This causes a delay factor of

3 in the execution time of step 1, leading to a time of 16 steps for

the execution of the entire program.

The ISA
4

program for the merge algorithm is given in Figure 3.11.

Now the meaning of the instruction symbols is again the same as in

the FA program (Figure 3 .Bb). Both the instruction and the selector

part of an ISA program can be viewed as diamond shaped, consisting of

diagonals of instructions and selector bits, respectively. The ith

selector bit in a selector diagonal tells whether the corresponding

diagonal of instructions is to be executed in row i of the ISA or

not. Diagonals 1 through 6 now correspond to step 1 of the merge

algorithm and diagonals "I through 12 to step 2. Note that this ISA

program is not simply the skewed version of the IBA program from

above, because on the ISA it is possible (and generally the case)

that different instructions are executed simultaneously in one column.

The time of the program is 16 steps.

94

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

FIGURE 3.l0a: IBA4 Version of the Merge Algorithm

R:=min(K,K
l

)
ower

R:=max(K,K)
upper

K:=R

1

1

95

16

15

14
t--t--+-+--l

13
t-t--t--t--I

12

11

10 t--I--t--t--I

9 I-+--:t---=f-::I
8

7 1-+-+-+-1
6

1-+-:+--:+--:1
.5

4 1-+--+-;---1
3

IBA

FIGURE 3.10b: Vertical Comparison Symbols and its Meaning

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

FIGURE 3.11: ISA Version .of the Merge Algorithm

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

96

- ..
-~ -

- ~
-~ -~

I

. ... , .
I I I

I I~ I
, ...

,+
I

....
I

I IY I
[+ ,+ I •

I 1+
I.

97

3.2.3 Relationships Between ISA, IBA AND PA

In this paragraph we study the relationship between our three

different mesh-connected processor arrays, the PA, the IBA, and the

ISA. For every pair of these different models we determine tight

bounds on the worst-case delay introduced by a transformation of a

program on one parallel computer model into a program on the other:

(a) ISA, IBA + PA

Obviously, for every programp on an ISA or an IBA there is an

equivalent program q on a PA such that T(p)=T(q). Although there are

programs that can be simulated by much faster programs on the PA,

these are simple worst cases where.no speed-up is possible. Therefore

we get

Proposition 1:

Every program p on an ISA or an IBA can be :simulated by an
n n

equivalent program q on the PA such that
n

T(q) = T(p)

In general, it is not possible to achieve a speed-up.

(b) PA + IBA

A simple way of simulating a program p on a PA by a program on an

(t)
IBA would be to simulate every step p of p by n steps on an IBA: In

the ith of these n steps the ith row of p(t) is broadcast and only the

ith row of the array is selected. However this may lead to problems,

(t)
whenever an instruction of row i of p reads from the communication

register of a processor of row i-l, because in the suggested simulation

•
it would read the possibly new contents of the communication register

ft th t ' f th ' tru t' of row l.'-l of pet) a er e execu l.on 0 e l.ns c l.ons Therefore,

to produce an equivalent program on the IBA it is necessary to save

the old contents of the communication register of a processor at least

until all its four neighbours have read this information. This is

achieved as follows:

Every processor in the IBA is augmented with a new internal

register R and a flag F. Every instruction b on the PA is replaced

with an instruction b' on the IBA which is identical to b, but instead

of writing into the communication register it writes it into R, sets

F, and leaves the contents of the communication register unchanged.

In addition, a special copy instruction C is introduced which copies

the contents of R into the communication register, if the flag F is

set, and resets F. All other instructions do not change the value of

F. Obviously, the effect of the sequence of instructions b' and C is

the same as the effect of b. In all further statements on the

equivalence of programs it is assumed that the instructions, their

primed versions, and the special instructions C and no-op are always

interpreted exactly as defined above.

(t)
Now p can be simulated correctly by n+l steps on the IBA

(Figure 3.12).

In the ith of the first n steps the "primed" version of the ith

row of pet) is broadcast and only the ith row of the IBA is selected.

In the (n+l)st step an n-tuple of C'sis broadcast and all the rows of

the IBA are selected.

Hence we get,

98

(t)
p

1 1

1

1 o
1

1
o

1

99

c c c c

p' (t)

1
IBA

FIGURE 3.12: Program Simulation on IBA

Proposition 2:

For every program p on a PA there exists an equivalent program
n

q on an IBA such that T(q)~(n+l)T(p), for a lower bound on the worst­
n

case delay that can occur, if a program on a PA is simulated by an

equivalent program on an IBA.

Proposition 3:

For every r>O there exists a program p on a PA with T(p)=r such
n

that for any equivalent program q on an IBA we have T(q)~(n+l)T(p).
n

An outline of the proof can be illustrated by the program p of

length 1 which is shown in Figure 3.13.

.100

a _______ a b

a ______ a b a

--- ---b----

a b a----- a

b a- -- ----a

FIGURE 3.13: p Program

p consists of n "linearly independent" rows of instructions which

cannot be simulated by fewer than n steps on an IBA. Assuming that a
n

or b cause a processor to read from its neighbours communication

registers, the simulation has to use the primed versions. of a and b.

Therefore, one additional step is needed to broadcast the copy

instruction c.

(c) IBA'" ISA

Let p be a program on an IBA with selector sequence sand T(p)=r.

Obviously, it is not possible to obtain an equivalent program on an ISA

by simply moving the rows of instructions of p and column of selector

information of s through the array simultaneously, since this would

lead to incorrect combinations of selectors and instructions. The

correct combinations could be achieved in a program q on the ISA with

1 t ' . f f 1 f . < p (t) and s (t) se ec or sequence 5 ~, or examp e, or every 1,n i i

appeared in the (t+i-l)th row of q and (t+i-l)th column of s',

respectively. This skewed input of p and s would lead to the same

problem as in part (b): Instructions that are executed in neighbouring

101

processors of the IBA simultaneously would be executed at different

times on the ISA. Therefore, the same construction as in part (b) has

to be used. Every processor is augmented with a new internal register

R and flag F, every instruction b on the IBA is replaced with its

primed version b' on the ISA, and an additional copy instruction C is

introduced. The transformation of p and s into an equivalent program

q with selector sequence s' on the ISA can now be done in the following

way (Figure 3.14):

p and s are transformed into sequences p' and s" of length 3r by

replacing every n-tuple of p with its primed version followed by an

n-tuple of C' s and an n-tuple of no-opland by inserting after every n-

tuple of s two n-tuples of l's. q and s' are defined to be the skewed

versions of p' and .i", respectively, (of length 3r+n-l) followed by n-l

(t)
n-tuples of M'''pS,More formally, for every t~3r+2n-2 and i~n, qi and

, (t) , (t-i+l) d" (t-Hl)
sl.' are p, an s, , respectively if 1~t-i+l~3r and

1. 1.

no-op otherwise. The final n-l rows of no-operation instructions in q

are necessary because it takes that many steps to move the instruction

(r) from the first to the last row of the ISA. Pn We thus obtain,

Proposition 4:

For every programp on an IBA there exists an equivalent program
n

q on an ISA such that:
n

T(q) ~ 3T(p)+2n-2

Hence, the asymptotic time complexity of p and q is the same, if T(p)

is in n(n), It can easily be shown that it is not possible to do much

better.

102

(2) (2)
Pl P2

(2)
P3

(2)
P4

(1) (1) (1) (1)
Pl P2 P3 P4

(2) (1)
51 51

(2) (1)
5 52 2

(2) (1)
53 53

(2) (1)
54 54 IBA

• no
op

no
C

°P
no

C
(2)

op P4

no (2) no
C P3 op op

(2) no
C P2 C

op

(2) no (1)
Pl C P4 op

no (1)
C P3 op

C
(1)

P2

(1)
P l

0 1 (2)
51 0 1

(1)
51

0 1
(2)

0 1 (1)
52 52

0 1
(2)

0 1
(1) ...

53· 53

0 1
(2)

0 54 1
(1)

54 ISA

FIGURE 3.14: Tran5formation Program from IBA to ISA

Proposition 5:

-
For every r>O there exists a program p on an IBA with T(p)=r

n

such that for any equivalent program q on an ISA T(q) is in Q(T(p».
n

(d) PA + ISA

To simulate a program p on a PA by a program q on an ISA,

similar constructions as in (b) and (c) can be used resulting in the

following propositions.

Proposition 6:

For every program p ona PA there exists an equivalent program q
n

on an ISA such that T(q)~(n+2)T(p)+2n-2.
n

Proposition 7:

For every r>O there exists a program p on a PA with T(p)=r such
n

that T(q)~(n+2)T(p) for any equivalent program q on an ISA .
n

(e) ISA + IBA

The results of parts (a) and (b) immediately provide an upper

bound on the worst case effect of simulating a program on an ISA by

a program on an IBA. The initial n steps of the execution of a program

on an ISA can be simulated somewhat faster. In step t (t~n) there
n

are at most t active rows in the array of processors, thus t+l steps

on the IBA suffice to simulate step t. The analog holds for the last

n steps. Therefore, to simulate the first and the last n steps of an

ISA program of length r~2n on the IBA, n(n+3) steps are needed.
n

Proposition 8:

For every program p on an ISA there exists an equivalent program

103

q on an IBA such that T(q)~(n+l)T(p)-n2+n, if T(p)~2n.
n

The example of a program shown in Figure 3.13 can be used to

produce programs of arbitrary length on an ISA such that their

simulation on an IBA causes a delay of Q(n) .

Proposition 9:

For every r~ there exists a program p on the ISA with T(p)=r
n

such that for any equivalent program q on an IBA we have T(q)=Q(n)T(p) .
n

3.2.4 Relationship of ISA to Standard Models of Parallel Computers

If we consider the taxonomy of parallel computers as introduced

by Flynn [Flynn 1972], all three different types of processor arrays

under consideration have to be characterized as MIMD-machines, since

several different instructions can be executed simultaneously on

different rows and columns hence data streams of the mesh. Obviously

the processor array of type PA is closest to the commonly assumed

structure of an MIMD-machine. Since the processors in an IBA or an

ISA do not have their own control store, the processor arrays of type

IBA or ISA are more similar to the array-type SIMD-machines which

consist of a mesh-connected nxn-array of processors receiving their

instructions via broadcasting from a central control unit.

Since there exists a large variety of programs based on array-

type SIMD-machines [Flynn 1972], [Rodrigue 1982], it is of interest

to know how these programs can be simulated on our types of processor

arrays. We consider programs for SIMD-machines as special cases of

programs for the PA. A full SIMD-program on a PA is a sequence of

instructions matrices, each consisting of only identical instructions.

104

105

Of course, these programs can be simulated on the IBA and ISA in a

much simpler and faster way than ordinary programs.

Proposition 1: [Knude, Lang, Schimmler, Schmeck, Schroder (1985»)

For every full SIMD-program on a PA there is an equivalent program

on an IBA having the same time complexity.

(t)
The proof is simple: Each program vector p in the IBA program

is simply a repetition of the instruction occurring in step t, all

selectors are 1. We also refer to the kind of programs on the IBA as

full SIMD-programs.

If SIMD-programs on a PA or an IBA have to be simulated on an ISA,

we have to deal with the same problem as in the case of aribtrary

programs, because instructions executed simultaneously by neighbouring

processors of the PA or the IBA will be executed in consecutive steps

on the ISA. Therefore we get,

Proposition 2: [Knude, Lang, Schimmler, Schmeck, Schroder (1985»)

For each full SIMD-program p on a PA or an IBA there is an
n n

equivalent program q on the ISA with T(q)~3T(p)+2n-2.

To capture the situation where instructions of SIMD-machines may

be executed by only some of the processors, we define a partial SIMD-

program on a PA or an IBA to be a program such that all the instructions

executed simultaneously by active processors (i.e. all instructions

that are not no-operation instructions O's) are identical.

An example of a partial SIMD-program on a PA is:

a 000

a a 0 0

o a a 0

o 0 a a

It is a slightly changed version of the example used in the proof of

Proposition 3 in the previous paragraph.

proposition 3:

For every r there is a partial SIMD-program p on a PA with T(p)=r
n

106

such that for any equivalent program q on an IBAn we have T(q)~(n+l)T(p).

Although we just saw that, in general, partial SIMD-programs on

a PA cannot be simulated on an IBA faster than arbitrary programs,

there is a large sub-class of partial SIMD-programs which can be

simultaed as fast as full SIMD-programs: A partial SIMD-program on a

PA is termed vector oriented, if in every instruction matrix pIt) the

no-operation instruction 0 occurs only in complete rows or columns of

no-op's. As an example, the SIMD program for a PA is vector oriented:

o bOb

o 000

o bOb

o bOb

prOpoSition 4: [Kunde, Lang, Schimmler, Schmeck, Schroder (1985)]

For every vector-oriented SIMD-program on a PA there is an

equivalent partial SIMD-program on an IBA having the same time complexity.

In order to transform a PA program step pIt) with an instruction

b occurring in it into an equivalent step on the IBA, we set,

(t)
= { Pj

(t)
b, if column j in p is not a complete no-op column

no-op, otherwise

and put,

(t) { s. =
.1

1, if row i is not a complete no-op row

0, otherwise.

107

3.3 A COMPARISON-BASED INSTRUCTION SYSTOLIC ARRAY

3.3.1 ISA Construction

In Section 3.1 a realisation of an instruction systolic array was

described. Now we consider an ISA, the processors of which are capable

of executing a small set of one and two operand instructions for comparing

and exchanging data items of adjacent processors. Examples of simple

programs on the ISA for determining the maximum value or for performing

a perfect shuffle are given.

In order to construct an instruction systolic array (ISA) capable

of executing algorithms using comparison and exchange operations, the

following set of instructions have been developed by Hartmut Schmeck

[Schmeck 1986]. In the following K' denotes the communication register

of one of the adjacent processors in the north, east, south, or west.

In the case of a processor on the boundary of the array, K' may denote

an I/O-pad.

read (K') :

min(K,K'):

max(K,K') :

neg:

K gets the value of K'

pictorial representation EJG~GJ
K gets the minimum of its own value and that of K'.

pictorial representation ~ ~ ~ ~

K gets the maximum of its own value and that of K'.

pictorial representation c:::J G W EJ .
K is negated, i.e. it gets the one-complement of

its own value.

pictorial representation.

no-op:

Appropriate

The value of K is not changed, the register is only

refreshed.

pictorial representation D
combinations of read instructions (rE, I + I) can

be used to execute an exchange operation between adjacent processors.

In the same way, a combination of min and max instructions can be used

to execute a comparison-exchange. Although the effect of a comparison­

exchange will always be the same while it is being moved through the

array, a preceding use of the neg instruction in some rows of the array

can lead to comparison-exchanges in the opposite direction. This is

desirable, if e.g. the rows of the array are to be sorted in alternating

order (ascending and descending).

All the instructions are executed bit-serially. Otherwise the

108

number of wires and I/O pads and therefore the area of the ISA would be

too large. Because of the bit-serial mode of operation, the communication

registers are implemented as shift-registers.

The block structure of an ISA-processor realizing the 14 different

instructions is shown in (Figure 3.15). The functional unit essentially

consists of a bit-level comparison-exchange unit. Depending on the

control signals received, it provides K, Kt, -Kt min(K,K t
) or

max(K,K') as output. To allow for a very simple decoding the

instructions are encoded using 5 instead of 4 bits. The input of

instructions into the array is done bit-serially, to save I/O pads.

However, they are passed from row to row in a bit-parallel way. The

execution of an instruction takes k+l clock cycles where K is the

109

.J.,. J, J. ~ t
KN KE K S KW

Co C1 1 C~ C
3 C41 S

1
, [, . • , , v - ,r I

'\ L
'-...,/ Y

,- -- - '- -- - - - -'- - -,
I I
I

1/'1, I
I

e:~'
I ,r-- I K' I r---- I

,
I •

COMPARATOR I , K •
/L-- I

,
I max ~ L..,-

I
~V

I
I

L{).
I

I I
I I
I I I I
I _____ J L_ ---------

COMMUNICATION REGISTER

,!'

FIGURE 3.15: Block Structure of a Comparison Based ISA-Processor

length of the data items. If instructions were passed bit-serially,

either the execution time would be longer or an extra register for

sorting the instruction would be necessary.

3.3.2 Example Programs on the ISA

(i) Input and Output of Data Items

To initialize the communication registers of the Instruction

Systolic Array, the program depicted in Figure 3.1~may be used which

2
moves n data items from the left into the array. The execution of

this program could be overlapped with the execution of the program of

'Figure 3.1Gbwhich moves the contents of the communication registers to

110

the right and out of the array. Since the instructions of both programs

have to be executed in every processor the selector sequence consists

of ones only_

(~

FIGURE 3.16: (a) Input into and (b) 'Output from an Bx8-ISA

III

(ii) To Determine the Maximum

One way of determining the maximum of the n
2

items stored in the

ISA is to move the maximal data item to a fixed location, e.g. to the

processor at the lower right corner. In the worst case this requires

at least 2n-2 local exchanges. Two simple ISA-programs for achieving

this are given in Figure 3.17a and 3.17b. Both programs have only two

diagonals of instructions. After "execution of the program shown

in Figure "3.17b, we do not only have the maximum of all the data items

in the lower right corner, but for every i~n we have the maximum of

the first i rows (columns) in the i-th processor of the rightmost

column (bottom row).

~
?

r--

~ ~
~ ~ .~

~ . ~
.~

~ ~ ~

~ ~ 1+
~ ~ +

~ ~

+
0 1 1 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

(a) (b)

FIGURE 3.17: Programs for Determining the Maximum on an 8x8-ISA

If it were not acceptable to change the set of data items stored

in the array, one could extend the programs by two diagonals using

comparison-exchanges instead of the simple max instructions. Obviously

112

the minimum may be determined completely analogously, unless it has

to be moved to the upper left corner of the array. It is easy to

notice that it is much harder to move a data item from the right to

the left or from the bottom to the top than in the opposite direction.

A program for moving the bottom row of data items to the top row is

shown in Figure 3.18. It has 2n-n diagonals of instructions and

selectors. The corresponding program for moving the top row to the

bottom would consist of two diagonals only.
-

T
~ ,

, J, ,
o L

T_ T.

If
, , !

f

~
.~

T
~

v
k

~
.I , • • b ,

I IJ T ! • I! • t
• . , • I. b . f ! .

-.1. ~ f Il , I LT l! , , j
I. t.

f
1 I.

t I t IL .. • i. 11
I

I
L , , L r J. f

T L T 1 , I~ , I~
1 I, !

"
• If)

, J. I
b • I·

• f • j' J.

I, • T I

I' I.
j

IT I

•
10000000 0000 00

0 1 1 000 000 0000 0
00 o 1 1 o 0 0 0 0 0 000

000 001 10 0 0 0 0 00
00000001 1 0 0 0 0 0

0000000001 1 00 0
00000000000 110

000000000000 o 1
8x8 ISA

FIGURE 3.18: Program for Moving the Bottom Row to the Top Row of an
8x8-ISA

Ilff!4t
000000 1 1 1 111

1 0 0 0 0 0 111111
o 1 1 000 111 1 1 1

001 1 1 0 111 1 1 1
000 1 1 1 111 1 1 1

00001 1 111111
000001 1 1 1 111

000000 1 1 1 111
(a) (b)

FIGURE 3.19: Perfect Shuffle on (a) the Rows and (b) the Columns of an 8x8-ISA.

I-'
I-'
cv

114

(iii) To Perform the Perfect Shuffle

The perfect shuffle is an operation that is used in many different

algorithms [Stone 19711. It transforms the sequence al""'~'

the perfect shuffle on all the rows or all the columns of the ISA

are depicted in Figure 3.19. Both programs have n-2 diagonals of

instructions. The" program for the perfect shuffle on the rows is

somewhat simpler, since only n/2-l of its rows contains instructions

that are different from no-op.

(iv) Sort Program

Figure 3.20 shows two simple-ISA programs for sorting a 2 x2-array.

r--

I
i

I
t

- I->

~ I-

100 1 1 0 101 100
o 1 1 1 1 1 o 1 001 1

FIGURE 3.20: Two Simple ISA-Programs for Sorting a 2x2-Array

115

3.4 TO SORT BY THE INSTRUCTION SYSTOLIC ARRAY

3.4.1 Introduction

2
In this section an algorithm for sorting n items on a nxn mesh-

connected processor array (Figure 3.3) in time O(n) is presented. It

is very simple in its structure and can be implemented easily on a

systolic array. In particular, it can be written as a simple program

for the ISA.

There is a lot of previous work done in closely related fields.

In [Thompson, Kung 1977], [Nassimi, Shani 1979], sorting algorithms with

time complexity O(n) are presented. This time performance is

asymptotically optional for mesh-connected architectures. Another

algorithm with the asymptotic time complexity can be found in [Lang,

Schimmler, Schmeck, Schroder 1983] together with asystolic array:to

2
sort n items in 8n steps. (The constants are very interesting in this

context since there is no difference in the asymptotic behaviour) .

Naturally, the power of the ISA depends on the power of the

individual processors. The restriction to a rather simple instruction

set seems desirable to keep the processors small enough, in order to

allow integration of many processors on a single chip.

Formally, the operation executed by processor (i,j) at time t is

defined in the following way:

For every i, j~n and t~r p(t) is the row of instructions which

enters the i-th row of the ISA at time t+i-l, and s(t) is the column

of selector information which enters the j-th column of the ISA at

time t+j-l. This means, that the instruction executed by processor

(i,j) at time t is:

p(i,j) =

1
(t+i-l) . ff (t-j+l) = 1

Pj 1 Si

no-op otherwise

116

Hence we assume each processor to have only one register (communication

register) and to be able to execute the following instructions chosen

by Manfred Schimmler [Schimmler 1986]:

SYMBOL

EJ

G
c:J
EJ
G
w
QJ

D

MEANING

(Read the contents of the left neighbour's

register, compare it with its own register,

and store the maximum in.~its own register) •

C:= max(Cright'C)

C:= max(C ,C)
upper

C:= min(Cleft,C)

C:= min(C . ht'C) r1g

C:= min(C
l

,C)
ower

C:= C

(Invert all bits of the contents of C)

NO-OP (no-operation)

3.4.2 One Dimensional Sorting Methods

Here we introduce two parallel sorting methods for one dimensional

sequences which we use as part of the algorithm (for two dimensional

arrays). For a better understanding we represent them as sorting nets

117

in the manner shown by [Knuth 1973]. For example, the odd-even-

transposition sort for n=6 items is illustrated in (Figure 3.21).

Comparator models are represented by vertical arrows between two lines.

The number enters at the left and each comparator causes an inter-

change of its inputs, if necessary, so that the larger number appears

on the line of the arrow head after passing the comparator. At the

right of the diagram all numbers are in order from top to bottom.

(i) The K-Triangle Merger:

K
The K-triangle merge net (Figure 3.22) consists of 2 parallel

comparison steps, where the i-th comparison step consists of the

comparisons [i+j-l : i+j], j=0,2,4, ••• ,k-2i ([l:m] denotes a comparison-

exchange between the elements on line 1 and line m).

It turns out to be a sorting net if the input consists of two

K
sorted sequences (of length 2) that have been concatenated and perfectly

shuffled afterwards:

Lemma 1:

Given an even number K and a sequence a ,al,·.·,a 1 of items to o k-

be sorted, where a
O

,a
2

, .•• ,a
k

_
2

and a
l

,a
3

, .•• ,a
k

_
l

are already sorted

in non-decreasing order, the K-triangle merger sorts the whole

sequence into non-decreasing. order.

Proof:

Using the O-l-principle for sorting nets [Knuth 1973] we can

assume the input elements a. to be O's or l's only. We will prove the
l.

Lemma by induction on K: K=2:A 2-triangle merger consists of exactly

one comparator between line 0 and line 1, so obviously every sequence

of length two will be sorted by a 2-triangle merger. K>2: Assume

Ha

6 3 3 3 3 1 1

3 6 4 4 1 1 3 2

4 4 1 6 1 J 4 2 l 3

5 5 1 6 2 1 4 4

1 1 1 5 2 1 6 5 1 5

2 2 2 5 5 1 6 6

FIGURE 3.21: Odd-Even-Transposition Sorting Net for n;6 ltems

2 1 1 1 1

1 2 2 2

6 3 3 3

3 4 4

7 6 5

4 5 6 6

a 7 7 7

5 a a a

FIGURE 3.22: The a-Triangle Merger

4 4 4 1 1 1

5 2 2

6 3

1 4

2 5

3 6

FIGURE 3.23 : The 6-Diamond Merger

Lemma 1 to be true for the K-triangle merger. We consider the

sequence aO,al, ••. ,a
k

_
l

as input into the K-triangle merger. We have

to distinguish four cases:

(1) a =0 a =0
0'1

The sequence a
2

,a
3

, ••• ,a
k

_
l

is sorted by the K-2-triangle merger

obtained by removing the first comparator of each step of the k-

triangle merger. Thus, the whole sequence aO,al, ••• ,a
k

_
l

is sorted

by the K-triangle merger, since the inputs into .the additional

comparators are already sorted.

(2) a =0 a =1
0'1

119

al=l implies a
2i

+
l

=1 for i=O,l, ••• ,I-l Thus the inputs into all

the comparators of the first step of the. K-triangle merger are alr·eady

sorted. The remaining comparators from exactly a K-2 triangle merger

that sorts the sequence a
l

, ••• ,a
k

_
2

• Since ao=O and ak_l=l the whole

sequence is sorted after passing the k-triangle merger.

(3) a =1 a =0
0'1

ao=l implies a
2i

=1 for i=O,l, .•• ,~-l Thus, initially we have

a2i~a2i+l for every i. After passing the first step of the K-triangle

merger the sequence is transformed to al,aO,a3,a2, .•• ,ak_l,ak_2. As

in Case 2 the whole sequence is sorted by the remaining K-2~triangular

merger.

(4) a =1 a =1
0'1

This implies that the whole sequence consists of ones only and

it is obviously sorted before and after passing the merger.

120

(ii) The K-Diamond Merger

The K-diamond merge net (Figure 3.23) consists of k-l parallel

comparison steps, where for i;1,2, .•• ,~ the ith comparison step

, f h t [k, 2' k '2' 1] '1 ' 1 consLsts 0 t e compara ors 2 -L+) : 2 - L+)+ ,);0, , •.• ,L- ,

kk k
for i=Z +1, 2 +2, •.• ,k-l it consists of the comparators [i- 2+2j

i- ~ +2j+l], j;O,l, ••. ,k-i-l.

Lemma 2:

and

Given an even number K and a sequence aO,al, ••. ,a
k

_
l

of items to

be sorted, where aO,al,··.,ak/2_1 and a k / 2 , ak/2+1, ••• ,ak_l are each

sorted in non-decreasing order, the K-dimensional merger sorts the

whole sequence into non-decreasing order.

Proof:

The O-I-principle again allows us to restrict the inputs to O's

and l's only. We prove Lemma 2 by induction on K: K;2: A 2-diamond

merger consists of one comparator that obviously sorts any sequence of

length two. K>2: Assume Lemma 1 to be true for the K-2-diamond merger.

Let aO,al, .•• ,a
k

_
l

be the input sequence. The K-diamond merger

consists of a K-2-diamond merger followed by the comparators [j-l j]

and [k-j-l : k-j], j;1,2, ••• ,~. The K-2-diamond merger sorts the

sequence a
l

,a
2

, ••. ,a
k

_
2

by the induction hypothesis, leaving only a
O

and a
k

_
l

to be inserted. If a
O

is 0, it is already in its final

position. If a
O

is 1 its final position is somewhere between line 0

and line k
2

, since a ;1 implies a,;l for i;0,1""'~2 -1. Thus the
. 0 L

remaining comparator diagonal [j-l : j], j;1,2, .•. ,~, will insert a
O

into its correct position. The dual argument shows that a
k

_
l

finds its

•

121

position by the comparator diagonal [k-j-l k-j], j=1, ••. ,2, ••. ,~.

3.4.3 The Two Dimensional Sorting Algorithm

We consider a simple model of an MIMD computer: a mesh-connected

nXn array of identical processors (Figure 3.3). Every processor has

some local memory including a designated communication register. It

can execute a small number of instructions and is capable of generating

its own instruction sequence. The processor array is synchronized by

a global clock, and the execution of every instruction is assumed to

take the same time. During the sorting process every processor contains

one data item in its communication register. Observe that there are

situations, where two elements initially loaded at the opposite corner

processors have to be transposed during the sorting. It is easy to

argue that even for this simple transposition at least 2n-n local

interchange steps are needed. This implies that no algorithm on such

2
a mesh-connected processor array can sort n elements in less than O(n)

steps.

The following algorithm is to be executed on the processor array:

Algorithm Merge:

Input:
n n

Four 2 x 2 arrays, the upper sorted in left to right row

major order, the lower ones in right to left row major order.

Output: One nXn array sorted in row major order.

1. Merge all columns of the nXn array by the n-l steps of an n-

diamond merger.

2. Sort all rows by n-steps of the odd-even-transposition sort,

the odd rows in left-to-right direction, the even rows in right-

to-left direction.

122

3. Merge all columns by the ~ steps of an n-triangle merger.

4. Sort the rows by n-steps of the odd-even-transposition sort.

The validity of the algorithm may be seen again by the use of the 0-1-

principle: the initial configuration is that of (Figure 3.24a), four

n n
sorted 2 x 2 subarrays, where the white regions denote O's and black

regions l's. After step 1 of the algorithm the array consists of two

n
n x 2 arrays and in both halves there is only one row still unsorted

(Figure 3.24b). This is called the critical row. Step 2 sorts all

rows in alternating directions and can so produce two different

situations:-

a. the critical rows are still in different halves (Figure 3.24c)

or b. the critical rows are in the same half (e.g. the left as in

Figure 3.24d). In both cases step 3 results in a situation

where there is only one single unsorted row in the whole nXn

array (Figure 3.24e). Obviously step 4 suffices to complete

the sort (Figure 3.24f).

For the complexity analysis we assume one elementary comparison-

exchange step to require the time t. Step 1 needs (n-l)t. For
c c

n
Step 2 we need ntc and Step 3 requires ~c. Step 4 again needs nt

c
n n

and so the time TM(C) for the merge stage of four 2 x 2 arrays is:

= (3!n-l)t
c

3.4.4 The Algorithm on the ISA

In this paragraph we give a program for the ISA that realizes the

algorithm MERGE. We assume that the items to be sorted are loaded in

the nXn array before starting the sorting process, each one in the

123

(a) (b)

(c) (d)

(e) (f)

FIGURE 3.24: Sorting an Array of 0'5 and 1'5;
White Regions are 0'5, Black Regions are 1'5.

communication register of one processor. We give the program as an

instruction stripe and a selector stripe, where the i-th row of the

instruction stripe is the i-th instruction n-tuple (counted from the

bottom to the top) and the i-th column of the selector stripe is the

i-th selector n-tuple (counted from the right to the left). The

124

meaning of the instruction symbols has been explained in paragraph 3.4.1.

As an example (Figure 3.25) shows the program for a 6-triangle merger

for the columns of a 6 x6 ISA. The complete program of the last merge

stage of an 8x8 sorter is depicted in (Figure 3.26).

The length of the sorting program is the number of instruction

n-tuples of the ISA program. The program is composed of diagonals of

either identical instructions or no-ops and instructions of the same

type. So it is easy to count the number of instruction diagonals (ND)

for the logical blocks of the algorithm and sum these up to compute

the length of the whole sorting program [Lang 1987). The merging of

two half-columns of an KXK array with K-diamond merger requires K

instruction diagonals. One diagonal is used to invert every bit of the

elements of the even rows of the array. Now we can sort all rows (in

K-2 diagonals) of the array and again invert the elements of every

even row. The effect is that the even rows are sorted in right-to­

left order by this. Sorting the columns with a K-triangle merger

again needs K diagonals and sorting the rows afterwards needs 2+K-2

diagonals. Since the sorting direction on this .last step alternates

(according to the position of the KXK subarray in the whole nXn array)

we need two more diagonals of invert operations, one before and after

the final sorting of the rows.

-

1
1 1

1 1 1

1 1 1 1

1 1 1 1 1

INSTRUCTIONS

INSTRUCTIONS

SELECTORS
1

1 1

1 1 1

1 1 1

1 1

1

FIGURE 3.25: ISA Program for the 6-Triangle Merger

(Enpty instruction boxes denote no-op,
empty selector boxes denote O's)

SELECTORS

1 1!1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111

1 1 1 1 1 1 1 1 1 1 1 1 III 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1

1 1 1 1 1 1 1 1 1 1. q 1 I
1 1 1 1 1 1 1 1 1 1 iT 1 1 !
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 111 1 1 1 1

1 11
,
11 1 1 1 1 1 1,1 1 1 1 1

1 1 1 1 1 1; I 1 1 1 1 1

1 1 1 ! I 1 1

1 1 1 \ 1

FIGURE 3.26: ISA Program for the Last Merge Stage ofax8 Sorter

125

1 ;

l'

ISA

126

If we sum up the number of instruction diagonals for the (log K)th

merge step of the sorting program on the ISA we get:

.and for the whole sorting algorithm

Since NDS(l)=O, we get,

12 * n - 12 .

To complete the ISA program we have to add a number of no-ops

instructions to fill up the empty spaces under the first and on top

of·the last instruction diagonals, and we must add n instruction rows

containing no-ops only at the end of the program to ensure that the

last significant instruction is executed by the processor (n,n) when

the program is terminated. So the length of the sorting program on

.an nxn ISA is:

L (n) = 14 * n - 13 .
S

127

3 • 5 ADDITIONAL ALGORITHMS SOLUTION BY USING THE INSTRUcrION SYSTOLIC

ARRAY (ISA)

3.5.1 Finding the Generalized Matrix Inversion

Matrix inversion is a very important operation in scientific

computation and for this reason there is a large and growing body of

literature concerned with the design of parallel processor networks

for this purpose. H. Schroder and E.V. Krishnamurthy [Schroder,

Krishnamurthy 1988] used two different implementations for Greville's

algorithm [Gregory, Krishnamurthy 1984] on the new concept of parallel

computation is the Instruction Systolic Array. A matrix of instruction

codes (called left program (LP)) is pumped through the array of

processors in a systolic fashion, in addition a boolean matrix TP (top

program) is also pumped through the array of processors. If a (zero)

o meets an instruction in a processor then it prevents the instruction

to be executed, while a (one) 1 enables its execution. Thus, an ISA-

program consists of a pair (LP,TP).

The first implementation of the g-inversion presented uses an

nx(m+l) matrix of mesh connected processors p .. with i~l to n, j~O to
1.]

ID; and an extra processor to carry out the division operations.

+
Let A be an mxn matrix, A is generated iteratively in n cycles

n

(counting the basis as one cycle).
+

Ai is generated in cycle i. The

ISA-program represents the systolic execution of cycle i. In the

execution of cycle i only the upper i rows of the ISA grid are engaged.

The second implementation uses for the execution of cycle i only a

linear array of Pl, •.. ,Pi (column for each step), and a device to

execute the division.
+

The matrices Ai and Ai can either be stored

outside the chip or in cyclic shift registers on the chip and be

supplied to the processors on demand.

The two different implementations of Greville's algorithm

mentioned above permit a free choice of algorithmic mode, also they

require a smaller set of instructions and a smaller capacity local

memory for the processors, thereby facilitating massive parallelism

in a smaller area of the VLSI chip.

3.5.2 Top-Down Designs of Instruction Systolic Arrays for Polynomial

Interpolation and Evaluation

In [McKeown 1986) a parallel version of Aitken's method of

iterated linear interpolation is presented. Its execution time is 2n

and its period is n using n processing elements. An elementary step

in their implementation consists of two additions (subtractions),

two multiplications and one division (which has to be executed after

the multiplications are finished).

In [Schroder 1988) a generalized version of a design method for

systolic arrays due to S.Y. Kung [Kung 1987) was presented. As in

[Kung 1987) Schroder starts with a locally recursive·algorithm and

generates the Dependence Graph. A geometric layout of the dependence

graph is then projected onto an array of processors. Now in the

design process of systolic arrays this projection can only be done

along an axis of shift-invariance, designing instruction systolic

arrays allows projections of the dependence graph in different

directions, which allows optimisation of the implementation under

128

other aspects than the execution time. This method results in a design

which is optimal in execution time and period. This can easily be

129

seen using standard network planning techniques. The parallel

interpolation algorithm presented has the advantage over the algorithm

in [McKeown 1986] that a single step consists of either two multi­

plications or one division only. Another advantage of the implement~

ations in this method of using the concept of instruction systolic

arrays leads to a significant flexibility. Here the evaluation program

can be started right after the interpolation program.

The Dependence Graph for a set of recursive equations contains the

information which evaluations of variables (tasks) have to precede

with. Its geometrical layout is not unique and has a major impact on

the quality of the resulting implementation.

There are different techniques to generate valid and optimal

schedules from dependence graphs [Moldovan 1983], [Mongenet, Perrin

1987]. Mongenet and Perrin show how transformations in the 'time­

space' can be used to ensure that coefficients are not used before

they are produced. Those techniques would have to be modified to

ensure that the coefficients are read before they are overwritten.

The next step in the top-down design is projecting the geometric

layout of the dependence graphs on to a I-dimensional array of

processing elements. Designing systolic arrays would have to project

along directions of Shift Invariance [Kung·1987] (i.e. all tasks

following this specific direction are the same). Since each processing

element is capable of executing one operation only.

Designing Instruction Systolic.Array programs have several

choices for the projection direction. The implementations are based

on vertical projection which in the case of the interpolation algorithm

is not along the direction of Shift Invariance (i.e. along the diagonal

130

from the north-west to the south-east). Vertical projection for the

evaluation algorithm has been used here in order to achieve a short

period. Horizontal projection of the evaluation algorithm would enable

the evaluation with just one or two processors, with a period

proportional to n.

The hardware requirement here is a nXn connected processor array,

each processor having nine registers. The ISA program terminates when

the last instruction row has entered the first processor row. A lxn

instruction systolic array is used, selectors are not needed and are

thus omitted. Let a polynomial of degree 3 be given by xO,rO and xl,r
l

and x
2
,r

2
and x

3
,r

3
. Figures 3,27a,b represent an ISA-program for

interpolation and evaluation.

(a)

(b)

DATA

r - T - ,- - T - I - -;
I 0 0 I·x r Ix

2
r

2
1x rIP< r ,

1 ,3 3, ,I, 0 0, ______ .1.-. ___ 1

r

r

DATA

r

+

,---I ,
r--- L ---.
I L I __ 1 ___ .L ___ .1 , ,

\ I I ... -,--1---,
'I ' 1 I, INSTRUCTION
1---1- --r---
1 1 1
1"""--1----
1 1 :
r--..j---~

1
1-- - -I
1 1
1- __ , +

r--
r

INSTRUCTION

ISA

FIGURE 3.27: (a)
(b)

The ISA-Program for Interpolation, n=3
The ISA-Program for Evaluation, n=3

3.5.3 Finding Transitive Closure

+
Finding the transitive R of a binary relation R over a finite

set M is fundamental in computing. The well-known Warshall Algorithm

3
[Warshall 1962] solves this problem on a sequential machine in O(n)

steps, where n=IMI. Several algorithms for parallel computers and

especially for systolic arrays, which solve the transitive closure

problem or related problems in time O(n), are known. In [Guibas,

Kung 1979] a systolic algorithm for computing the transitive closure

is given. In [Kung, Le, Lewis 1987] systolic solutions for the

transitive closure and the shortest path problem are presented. The

problem of finding the connected components of a graph is solved by

S.E. Hambrusch [Hambrusch 1983] on a mesh-connected processor array.

Y. Robert and D. Trystram [Robert, Trystram 1986] and G. Rote [Rote

1985] give systolic arrays for the algebraic path problem, which is a

generalisation of the transitive closure problem.

Hans-Werner Lang [Lang 1987] presents a parallel implementation

of the Warshall algorithm on an instruction systolic array. The

transitive closure problem may be generalised to the algebraic path

problem. So the ISA program given is ·to implement a generalized

closure algorithm for solving the algebraic path problem. A

decomposition technique is also given in order to map arbitrary large

problem instances onto a processor array of fixed size.

3.5.4 Finding All Cut-Points

A cut-point (articulation point, cut vertex, cut node) of a

graph is a vertex whose omission increases the number of connected

131

components. Finding all cut-points in a connected graph is an

important problem with numerous applications as e.g. in network flow

theory. M. Schimmler and H. Schroder [Schimmler, Schroder 1987]

present a method to find all cut-points of an undirected connected

graph in time o<iviloglvl) on an ISA. It is based on an ISA suitable

version [Lang 1987] of Warshall's transitive closure algorithm

[warshall 1962] which is used to check for every vertex whether its

removal produces more than one connected component. This algorithm

does not meet the lower bound O(n) on the time complexity as it is

achieved by M.J. Atallah and S.R. Kosaraju [Atallah, Kosarju 1984] .

Its main advantage compared to the algorithm presented in [Atallah,

Kosaraju 1984] is its simplicity.

132

3.6 THE SINGLE INSTRUCTION SYSTOLIC ARRAY (SISA) VARIANTS OF THE

ISA MODEL

133

The asymmetry of the flow of control information in the rSA-m-bit

instruction codes from the top, I-bit selectors from the left could be

resolved by:

i) breaking the control code into two equal sized parts.

Instruction Prefixes that are shifted through the processor

array from the top and Instruction Suffixes that are shifted

through from the left. Inside the array prefixes and suffixes

recombine to form instructions (including no-op) .

ii) using column selectors in addition to the row selectors and

shifting single instructions in diagonal wavefronts through

the array, starting at the upper left corner (Figure 3.28).

Now the instructions are executed only if both row and column

selector bits are '1'.

The advantage of this variant which will be referred to as SISA (for

Single Instruction Systolic Array) is the reduction of the overall

amount of code by a factor of approximately m/2, m being the length

of an instruction code.

Hans-werner Lang [Lang 1987] sketched the relationships between

SISA and other models of mesh-connected processor arrays (rSA and SIMD) .

The results are summarized here as:

i) SISA ++ ISA

A SISA program can directly be transformed into an rSA program

by replacing each '1' in a column selector diagonal by the corresponding

instruction, each '0' by 'no-op'.

SELECTORS)

,/ , ~. / /
,/.- ,/ /

/.- .- /
/ / /

/ ;/ ,/
/ /

/ /PROCESSOR
v/ ARRAY , , , ,

"

FIGURE 3.28: single Instruction Systolic Array (SISA)

134

In the converse direction, only such ISA programs can directly be

transformed into SISA programs, where in each instruction diagonal

there occur only identical instructions other than no-op. This is quite

frequently the case in practical applications.

ii) SISA ++ SIMD

One observes a strong similarity between .the control structures

of the SISA and the SIMD-type mesh-connected processor array. In fact,

a SIMD array whose masking mechanism is not more· powerful than the SISA

masking mechanism, can be simulated by the SISA within a delay factor

of 3. The corresponding program transformation consists of replacing

each SIMD instruction by a sequence of at most three modified

instructions and "skewing" the masking information appropriately.

However, simply "unskewing" a SISA program to get an equivalent SIMD

program is in general not possible. It is an open question whether

the SISA is more powerful than the SIMD processor array or not!

On the other hand, there are operations like "broadcasting" a

,data item from the left or from the top across the whole array, or

like ring shifting a row or a column of data, that can be realized

135

on the SISA with constant period. On the SIMD array these operations

take time [l(n) , but n of these operations still take"only time O(n).

Thus, if all these n operations are meaningful, a constant period is

achieved also. But it is not clear if, when trying to transform a SISA

program to an SIMD program, these meaningful operations can be found.

On the other hand, the similarity of control structures of the two·

models suggests that they are equally powerful.

CHAPTER 4

THE SOFT-SYSTOLIC SIMULATION

SYSTEM (SSSS)

136

4.1 BASIC DEFINITIONS OF THE SYSTEM

The basic design problem for a general systolic array simulator is

to provide a fixed architecture which is capable of simulating the

arbitrary graph structure of an array, while also mapping parallel

processors to achieve parallelism. In Chapter 2 we have envisaged

systolic arrays as a systolic program written in OCCAM language with

the implicit understanding that OCCAM can be executed effectively on

transputer networks to provide parallelism. The problem with this

scheme is that it may be better to write a dedicated transputer based

version of a method rather than simulate a systolic array version of

the algorithm. Thus, as we accept the idea of programmable arrays the

effectiveness of the special purpose systolic approach to specific

algorithms is not so imPortant. The essential problem is the emphasis

placed on dataflow which demands a different OCCAM program structure

for each design. The ISA on the other hand as we mentioned in Chapter

3 places emphasis on the systolic movement of instructions fixing the

data communication and processor structure, and the chances of producing

a fast and an economic systolic simulator, with an alternative perspective

on the meaning of a "SYSTOLIC COMPUTER".

In this chapter we consider a soft-systolic simulation system implemented

on the Balance 8000 Sequent Computer System running under DYNIX

operating system, at Loughborough University of Technology, Computer

Studies Department, and solve a number of common problems to demonstrate

its flexibility. The system can be used to develop special purpose

algorithms with a regular form and opens up the possibility of a

systolic design works tat ion for development of simple systolic

processing systems.

137

An overview of the system is shown in Figure 4.1, and the main

sections of our soft-systolic simulation system are:

*

*

System and Machine preparation:

comprises the operating system facilities, programming language,

and the compiler. .

Replication Instruction Systolic Array Language (RI SAl) and

RISAL compiler:

which comprises the virtual machine language and the adopted

RISAL compiler.

* Virtual Machine:

*

which consists of an Instruction Systolic Array (ISA) network,

a set of virtual spoolers, and a collection of processing

elements.

Virtual to Real Mapping:

Here we define a library of processor plugs which allow a

number of virtual processors to be essentially plugged into a

single real processing element of the underlying architecture.

Thus, allowing a large virtual grid to be mapped onto a smaller

real grid.

* The Real Architecture:

For simplicity we assume that this is a square orthogonally

connected grid of processors such as a transputer network,

capable of executing any of the virtual PE's and mapping plugs.

To demonstrate the feasibility of the system we concentrate in

this chapter on the system and machine preparation, and the virtual

138

machine. In the following chapter we will describe the Replication

Instruction Systolic Array Language (RISAL) and its RI SAL compiler.

However, the virtual machine and RISAL and the compiler will form the

core of the design.

INSTRUCTION, (

DATA,

1
SELECTOR,

FILE
GENERATION

ISA + PROCESSING{
ELEMENT LIBRARY
(OCCAM PROGRAMS)

TRANSPUTER

NETWORK {

,
\

\

SOFT-SYSTOLIC SYSTEM PREPARATION

RISAL AND RISAL COMPILER

,

VIRTUAL SPOOLERS

VIRTUAL MACHINE

\
\

\

I
I

MAPPING
(VIRTUAL TO REAL)

,
I

I

\
\

\

PARALLEL: .ARCHITECTURE

HARDWARE

1 VIRTUAL MACHINE
I

J
PROGRAM

DEVELOPMENT

,
I

)
VIRTUAL MACHINE

+

INTERFACE

)
1-1 PROCESSOR
CORRESPONDENCE

MANY-l PROCESSOR
. CORRESPONDENCE

)
STATIC
COMMUNICATION
CONFIGURED
ARCHITECTURE

FIGURE 4.1: Organisation of Soft-Systolic Simulation System

139

4.2 SYSTEM AND MACHINE PREPARATION

The soft-systolic system preparation section comprises of the

usual operation system facilities for the creation and modification of

files during the development of new programs and ISA processor

elements. We allow here any concurrent high level language to be used

to model the.soft-systolic system.

We develop our soft-systolic system on the Balance 8000 Sequent

system, the system operates under the powerful DYNIX operating system

which is based on the UNIX uniprocessor operating system with several

significant enhanced features to support multitasking. The DYNIX

kernel or executive has.been made shareable, so that all the processors

can execute the same system calls and other kernel code simultaneously.

The DYNIX system schedules the processes to execute on the processor

such that the workload is well balanced. This means that any user or

system-defined process can run on any processor at any time and may

involve several processors to complete. The DYNIX determines the

minimum and maximum amount of physical memory that a given process can

consume, then adjusts the memory allocation for each process between

these two bounds to maintain each processor's paging rate and tune the

virtual memory performance for the entire system.

The Balance 8000 system provides an excellent environment for

software development. Program support tools include.the standard UNIX

utilities for creation and manipulation, program development,

performance analysis, text editing, and document preparation.

The system implemented in OCCAM (Loughborough University

Implementation) was implemented by R.P. STALLARD in the Computer Studies

Department. The main features of the OCCAM language are briefly

reviewed as: an OCCAM program is written in terms of concurrent

processes, communicating via channels. Individual processes operate

mostlyi~independence of each other. Hence, a design problem can be

expressed as a hierarchical structure. Groups of processes connected

by communication channels can be conceived of as individual processes

in their own right, with inter-process connections of the group

140

ignored (a process known as hiding), as a result complex systems can

be built with only a few processes under consideration at anyone time.

In an OCCAM program, each channel provides a one-way connection

between two concurrent processes; one of the processes may output to

the channel, and the other may input from it. The two concurrent

processes must communicate by using input and output primitives.

Input and output are synchronised, and an input will not complete

execution until an output on the same channel is also executed, and

so on. For example, we have two concurrent processes, initially both

will start executing in parallel; after some time one of them will

reach its input process. Now, this process has to wait until it

receives a value down the channel it is waiting on. There are two

possibilities, either the second process is at the output process

already (for the same channel) or the second process has not reached

its output. In the first case, the process waiting for input

immediately receives the value and so does not wait any further.

In the second case the input waits and eventually the second process

outputs a value, thus completing the input wait of the other process.

The key thing is that eventually the communication is made and the

141

processes continue executing in parallel.

The basic data type in OCCAM is the WORD. The word can be used

to represent CHARACTERS, NUMBERS, and BOOLEAN values, as well as BIT

PATTERNS. These basic types can be manipulated using a wide variety

of arithmetic, logical and bitwise operations (e.g. shift left,

shift right, exclusive or) •

Values can also be declared as VECTORS, with appropriate sub-

scripting available. VALUES can be declared (i.e. created) by

definitions. Definitions are introduced by the keywords CHAN, VAR,

DEF. The keyword CHAN, VAR, DEF, and PROG (for named process

substi tution) is followed by a ":" on the last line of the declaration.

The process code must follow on the next line after the declaration at

the same level of indentation.

e.g.

represent

VAR declaration

VAR x:

SEQ

Input ? x

Output ! x*x

SEQ PROCESS

INPUT ---->11 ,~:, 2
x

I----~) OUTPUT

This declares the identifier x to hold a value within the SEQ process.

The keyword CHAN is used to declare a channel used for

communication; it is declared in the same way as a VAR except the word

CHAN is used.

OCCAM programs are built from a small number of primitive

processes. These are:

(i) ASSIGNMENT (denoted by symbol :=)

(ii) INPUT (denoted ?)

(iii) OUTPUT (denoted !)

(iv) WAIT (denoted WAIT)

Complex programs are built by constructing complex processes by

connecting these primitive processes together using constructors.

There are five types of constructors:

(i) SEQUence (SEQ)

(ii) PARallel (PAR)

(iii) Conditional (IF)

(iv) ALTernative (ALT)

(v) Repetition (WHILE)

142

The first four constructors can be accompanied by a replicater, which

replicates the component processes to which it is attached a specified

number of times, e.g. Creation of n processes performing infinite

while-loop with variable x

CHAN c [n+lJ :

PAR i=[O FOR nl

WHILE TRUE

VAR x:

SEQ

c [iJ ? x

c [i+ll x

represent

e.g. selecting first available input from n~channels and route to

output channel simulates a mux or merger.

WHILE TRUE
c[l]

VAR X:
C [2]

ALT i;[l FOR n] c

c [i] ? x
c[n]

c ! x

143

Each primitive process (input, output, ... etc.) is a single line of

code, and generally constructs have their component process indented

by two spaces from the first letter 'of the constructor. All processors

at the same level of indentation are assumed to be components of the

same constructor. Declarations are at the same level of indentation

as the constructs they are attached to (note that procedures are

declarations). The number of channels declared is fixed in the

program text (i.e. constant bounds on vectors)' this limits the amount

of parallelism in a program definition.

The OCCAM compiler has an improved method of calling routines

from the library routines, and provide commonly used routines to read

and write to the keyboard and screen channels e.g.

EXTERNAL PROC num.from.keyboard (VARn):

This means read a number from the keyboard and assign to variable ~n'.

EXTERNAL PROC num.from.chan (CHAN c, VAR n) :

Read a number from a channel 'c'. If 'c' is the keyboard this is

equivalent to calling 'num.from.keyboard'. The routines are written

in C language and OCCAM. Also provided are general routines for use

for pause or to abort a program as well as to use the 'c' random

number routines. These routines are available by default to all

programs unless the -s compiler flag is used to override their

inclusion. Also provided are routines to perform floating point

input/output operations. They are available by giving the compiler

flag '-F' when linking an OCCAM program, which we commonly used in

144

our implementation, floating point value can be assigned and transmitted

via channels just like normal integer values, e.g.

EXTERNAL PROC fn.num.from.keyboard (VAR FLOAT f):

means to read in a floating point number. The number is expected to

begin with a digit or '.' (indicating 0.), leading spaces are ignored.

The number ends with a non-digit and this character will not be

available to subsequent reads from the keyboard channel, e.g.:

EXTERNAL PROC fp.num.from.chan (CHAN c, VAR FLOAT f):

This means to read a floating point number from a channel 'c'. If

the channel is a keyboard this is equivalent to 'fp.num.from.keyboard'

external procedure.

one of the most important features of the OCCAM compiler (5.0

version implemented by R.P. STALLARD) is the Execution Trace. When an

OCCAM program is compiled and run with the '-e' flag, it produces a

trace history of all the synchronization events of all the processes.

When compiled the object code includes updates of a timing variable

to model the execution of an actual parallel computer. The operation

times can be given with the '-T' flag, by default they resemble those

of the transputer. The trace history file can later be inspected with

the 'tracer' utility, specific time periods can be analysed. discovering

where idle time is incurred or tracing the behaviour up to the time of

a fault. The run time system keeps the processes running as if in

parallel and not in a round-robin priority fashion so that the program

may well behave differently depending on the setting of the '-e' flag.

A 'timerbuild' utility is available to construct the user's own timing

profile for a target parallel system. The system currently has a

number of limitations, it assumes all 'PAR I processes are executing on

separate parallel computers and that all channel intercommunication is

on direct identical 'links'.

The OCCAM compiler implements the OCCAM language as defined in

145

the OCCAM programming manual published by INMOS Limited subject to a

few restrictions and extensions that are described in Appendix I (which

comprises a listing of the online documentation for the Loughborough

OCCAM 5.0 compiler). These differences are intended to make the

transform of OCCAM programs from different implementations feasible.

146

4.3 THE VIRTUAL MACHINE

A part of the virtual machine chosen for this implementation is

the Instruction Systolic Array (ISA). As we have mentioned in Chapter

3, the ISA has a number of interesting features. Firstly it has

been used to simulate all SIMD algorithms and many MIMD algorithms by a

simple program transformation technique. Further, the ISA can also

simulate the so-called wavefront processor algorithms, as well as many

hard systolic algorithms, hence allowing the gap between systolic and

other needs of computation to be bridged. The ISA removes the need

for the broadcasting of data which is a feature of SIMD algorithms

(limiting the size of the machine and its cycle time) and also

presents a fairly simple communication structure for MIMD algorithms.

The model of systolic computation developed from the VLSI approach to

systolic arrays is such that the processing surface is fixed, as are

the processing elements or cells by virtue of their being embedded in

the processing surface.

The VLSI approach therefore freezes instructions and hardware

relative to the movement of data, with the virtual machine and soft­

systolic system retaining the constraints of VLSI for array design of

regularity, simplicity and local communication, allowing the movement

of instructions with respect to data. Data can be frozen in the

structure with instructions moving systolically or both the data and

instructions can move systolically around the virtual processor (which

are deemed fixed relative to the underlying architecture). our

virtual machine can thus implement time-static and time-dynamic

systolic algorithms, allowing the virtual machine to be fixed (static)

during the time of computing as for hard systolic algorithms or

dynamically changing from one systolic configuration to another on the

virtual processing surface with time.

The virtual machine consists of an ISA network of data and

control paths, and a set of virtual spoolers for driving the ISA

computation and opening up the communication bandwidth of the array,

and a collection of processing elements (PE) descriptions for creating

specific ISA grids. In the following two paragraphs we will describe

the basic sections of the virtual machine.

4.3.1 The Instruction Systolic.Array (ISA) Network

147

The Instruction Systolic Array is an orthogonal grid of processing

elements. 'Each processing element executes a number of simple

operations, and includes memory for intermediate results and registers

for communication with other processing cells and a save register

holding results until the neighbouring PE's have had a chance to read

the communicationS. Each PE is activated by a combination of an

instruction and selector. If the selector entering the cell is high

(1) it executes the instruction which also entered the cell. Otherwise

the cell remains inactive if the selector is low (0). The selectors

move through the ISA column by column, while the instructions move row

by row as shown in Figure 4.2.

The systolic movement of instructions and selectors is reminiscient

of the wavefront processor and obviates the need of control store in

the PE as is required for designs like the 'PSC WARP' device.

Additional data inputs on the boundary make it easy to simulate a

wavefront processor.

00
~

PE

INSTRUCTIONS

~
~ ----+~----r-----+-----+---__1
~
00

FIGURE 4.2: ISA Processors (Grid 4x4)

148

To retain the possibility of a straightforward mapping of virtual

machine to real processor architecture we implement the ISA in OCCAM,

using the powerful system features of DYNIX coupled with Loughborough

OCCAM, the ISA was easily specified as a two part design consisting of:

1. PE library files

2. Grid architecture and virtual spoolers.

The virtual spoolers played the role of buffers for the ISA array

interface with higher levels of the system," allowing the bandwidth of

the input to meet that of the ISA. The grid architecture was a simple

specification of network connections between processors, the PE

libraries simply containing cell descriptions which responded to ISA

instructions with different characteristics. Loughborough OCCAM allows

the precomputation of library PE's"and the grid connection network,

which could be simply linked when the virtual machine was required to

run effectively plugging in the correct PE's. Thus, a user of the

system can develop programs and new PE's with only an abstract working

knowledge of the ISA grid. The virtual grid architecture is shown in

Figure 4.4 based on the cell structure for a 4>4 case as shown in

Figure 4.3.

WDATA {_-I

NDATA
I IN _________

1 1 1
PROCESSING

ELEMENT

SOUT

} EDATA

NDATA ; NORTH INPUT/OUTPUT DATA

EDATA ; EAST INPUT/OUTPUT DATA

SDATA ; SOUTH INPUT/OUTPUT DATA

WDATA ; WEST INPUT/OUTPUT DATA

SIN'SOUT ; SELECTOR INPUT/OUTPUT

IIN,I
OUT

= INSTRUCTION INPUT/OUTPUT

FIGURE 4.3: The Cell Structure

Included with the ISA grid specification is the data and

instruction spool er code. The spoolers are concurrent processes

representing buffers for data and instruction input to the boundary

cells of the grid. The spoolers also include data output and

instruction/selector garbage collection for values falling off the

grid. The interface between the virtual machine and the program/PE

149

CHANNEL SPECIFICATIONS

OF THE ISA GRID:

INS - INSTRUCTION NORTH
SOUTH

ANS - 'A' NORTH SOUTH

BNS - 'B' " "
SEL - SELECTOR WEST

EAST

AWE - 'A' WEST EAST

BWE - 'B'" "

o 0_ 0

;:)r...Lo lUJ ~. ~ - LoLl L'"

AWE [0] [1] [2]

BWErO]
1,1

rll
1,2

r21

~ \0 ~

[5] [6] [7]

[5J [6J [7J
2,1 2,2

[5J [6J [7J

~
~

N " ~
~

[loJ [11J [12J

3,1 3,2

~
~

M CD
~

~

[15] [16] [17J

4,1 4,2

~

~

'" "" ~

~

'" v
FIGURE 4.4: The Virtual Grid Architecture

," '" L-> l

. [3]
1,3

r 31

~
~

[8]

[B]
2,3

[BJ

~

N
[13]

3,3

~

M
[lBJ

4,3

~

'" .-<
~

/
,

~

\0
~

~

"
~

CD
~

~

'"
~

'" I

1,4

2,4

3,4

4,4

~ ~.t:..LI L'jJ
•

"WE [4]

aWE-.LH

[9]

[9] •
[91

[14]

•

[19]

...
'" o

151

development section is assumed to be of narrow bandwidth. In fact all

data and instructions are assumed to be placed in three files denoted

DATAIN, SELECTOR, INSTRUCT, and the output is dumped in DATAOUT to

represent virtual spool files. The virtual spoolers (shown in Figure

4.5) read these sequentially and convert the input into a parallel form

for the ISA. Likewise for the ISA output the spooler converts the

output back into a single stream output sequentially to DATAOUT. The

reading of input and writing of output data is performed in parallel

with the ISA execution. Clearly this is the place where any bottlenecks

are likely to occur especially for large n. The spoolers can also be

used to pad out unused cells with dummy values, when the ISA program

running is smaller than the total number of virtual processors. Hence

the system with a bounded number of processors can simulate smaller

networks without difficulty, [Muslih and Evans, 1987].

To allocate the channel to the virtual grid architecture, the

correct channels can be hooked up by a simple computation using the

grid PE position of the form,

PROC LOC (VALUE i,j, VAR V)=

SEQ

r:=«((i-l)*(n+l»+j)-l:

The PE to fit.the locations is called as a library routine,

EXTERNAL PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)=

and the library PE section uses the PE definitions:

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)=

code for the cell.

The external environment communicates with the grid (processing

elements network) by passing the data, instruction and selector to be

152

'" 11
Z
...
0

""'
<n ...
Cl

.-<

r
0

i i
0

'" '" .-<
<tJ

" .jJ
:>

'"
'"
~

E'i
<.!J
H

'"

sent to sources. Sources communicate the signals directly to the grid

interfaces through the virtual spoolers, by pumping the signals into

the grid, this serves the purpose of each source modelling itself as a

process.

Information sent down the source interface channels can be

classified into two categories:

a) control - (instruction, and selector) for directing the

computation.

b) data - for use in computation.

For simplicity, we can consider separate sources for the data and

control (instruction and selector). The merging of sources for data

can be performed, likewise merging of the control (instruction, and

selector) sources can be performed.

To implement this concept in OCCAM, the generic source for the

instruction and selector files, which is sequential to parallel

program bus expander is:

PROC SOURCE (CRAN OUT Cl, Link, value t)=

VAR k,i,j, buffer [nl:

CRAN ptr

SEQ

IF

t=O

open.file ("selector","rll,ptr)

TRUE

open. file: (11 instruct 11 I urn I ptr)

open the selector input file if t=O, otherwise open the instruct input

file.

To read the next input line from the selector or instruct input

153

file and pump in parallel into the grid, we write:

num.fromchan(ptr,k)

link ! k

SEQ i=[l FOR k]

SEQ

IF

i>k

PAR j=[l FOR n]

VAR tl:

SEQ

loc (j ,l,tl)

OUT [tl] ! 0

TRUE

SEQ

close.file(ptr)

SEQ j=[l FOR n]

num.from.chan (ptr,buffer[j-l])

PAR j= [1 FOR n]

VAR tl:

SEQ

loc (j,l,tl)

OUT [tl] ! buffer [j-l]

str.to.screen ("*n source closed lt
)

link ! 0

The opposite of a source process is the sink process and the sink

cannot perform any output to the grid. Data and control (instruction

and selector) leaving the grid through the virtual spoolers directly

enters the sink, where it is routed to relevant areas of surrounding

outer environment. In this light the sink corresponds to the output,

it also collects all the data and control (instruction, and selector)

pumped into the grid by the source.

154

155

As for sources we allow multiple sinks processes, corresponding

to different stages of output. So the purpose of the garbage collector

(sink process) is to collect the instructions and selectors and output

them from the grid, i.e.,

PROC SINK (CHAN in[],link]=

VAR i,j,k

SEQ

link ? k

SEQ i=[l FOR k]

PAR j=[l FOR n]

VAR tl:

SEQ

loc (j,n,tl)

in [tl+l] ? any

str.to.screen (lI*n sink closed")

link ? any :

The generic source for the DATA file (data bus expander), to open the

data input file "datain" and decide the number of lines in the file for

each input line is:

PROC data.source (CHAN ans[], bns[], awe [], bwe[],link)=

DEF n~=2*n, n!=3*n:

VAR k,i,j,t:

VAR FLOAT buffer [4*n]:

CHAN ptr

SEQ

open.file (lIdatainll,"r",ptr)

num.from.chan (ptr,k)

link! k

str.to.screen ("*nk=l1)

num.to.screen (k)

To read the north, east, south and west boundaries of the grid is:

SEQ i=[l FOR k]

SEQ

str.to .. screen ("*ni=")

num.to.screen (i)

SEQ j= [0 for 4]

IF

i<=k

SEQ

num.from.chan (ptr,t)

IF

t<O

SEQ zerO for n]

buffer [(j*n)+z] :=0.0

TRUE

SEQ zerO FOR n]

fp.num.from.chan (ptr,buffer [j*n)*z])

To pump all the data elements around the boundaries into the ISA grid

in parallel is:

TRUE

SEQ zerO for n]

buffer [(j*n)+z] :=0.0

. PAR j= [1 FOR n]

VAR tl,t2:

SEQ

loc (j,l,tl)

loc (j ,n, t2)

t2:= t2+1

PAR

bns[tl] buffer

bwe[t2] buffer

awe [tl] buffer

ans[t2] buffer

. [j-l]

[n+(j.,.l)]

[n3+(j-l)]

[n2+(j-l)]

To close the input file "DATAIN" is:

156

close.file (ptr)

str.to.screen (u*n DATA source closed")

link ! 0:

157

TO open the output file "DATAOUT" and read all the boundaries in parallel

(parallel to sequential bus condenser) is:

PROC data.sink (CHAN ans[],bns[],awe[],bwe[],link)=

DEF n~=2*n, n~=3*n

VAR k,i,j:

VAR FLOAT buffff[4*n]:

CHAN ptr:

SEQ

open .. file ("dataoutll ,IIWIt ,ptr)

num.from.chan(ptr,k)

link? k

SEQ i= [1 FOR k]

SEQ

PAR j= [1 FOR n]

VAR tl,t2

SEQ

loc (j,l,tl)

loc (j,n,t2)

t2 :=t2+1

PAR

ans[tl] ?

awe [t2] ?

bns[t2] ?

bwe[tl] ?

buffer

buffer

buffer

buffer

[j-l]

[n+(j-l)]

[ni+(j-l)]

[n~+(j-l)]

The output is sequential to the dataout, i.e.,

SEQ

SEQ j= [0 for 4]

SEQ

str.to.chan (ptr, lI*n1l)

SEQ z=[O FOR n]

SEQ

158

fp.num.to.chan (ptr,buffer [j*n+z)

str.to.chan (ptr, 11 ")

str.to.chan (ptr, "*nll)

To close the output file is:

close.file (ptr)

str.to.screen ("*n data sink closed")

link? any

abort.program:

To define the ISA grid (network), which is the main procedure comprising

the setups and to start the ISA grid is:

DEF size=n* (n+l)

CHAN ans[size),bns[size) ,awe [size) ,bwe[size) ,sel[size),ins[size):

CHAN link [3)

VAR i,j:

PAR

PAR i= [1 FOR n)

PAR j=[l FOR n)

VAR tl,t2,t3,t4:

SEQ

loc (i , j , tl)

loc (j ,i,t2)

t3: =tl+l

t4:=t2+l

plug (ans [t2) ,awe [t3) ,bns [t4) ,bwe [tU ,bns [t2) ,bwe [t3) ,
ans [t4) ,awe [tl) ,ins [t2) ,ins [t4) ,sel [tl) ,sel [t3))

The interface program which will connect the selector file (source and

the selector file (sink) is:

source (sel,link[O) ,Ol.

sink (sel,link[O)

The interface program which will connect the instruction file (source)

with the instruction file (sink) is:

source (ins,link[l] ,1)

sink (ins,link[l])

The interface program will connect the data file (source) with the

data file (sink) is:

data.source (ans,bns,awe,bwe,link[2])

data.sink (ans,bns,awe,bwe,link[2])

The dimension of the array in the case of a 4x4 grid: DEF n=4, and if

the user wishes to change the dimension of the array we only need to

change the value of n.

To run the ISA grid program described above we need to use the

interface routines which are called from the library routines. The

interface routines used here are shown in the complete code of the ISA

grid .. in Appendix II.

4.3.2 The processing Element (PE)

159

The processing element (PE) considered here in our implementation

is a very general element which allows the choice of a wide range of

arithmetic and logical operators, and allows the simulation of a wide

class of algorithms without the need to develop more special purpose

PE's immediately. As the design unfolds it becomes apparent that highly

specialized processors can be developed by reducing the number of

instructions implemented by the PE's, [Muslih and Evans, 1987].

The PE design indicates the type of program required to deal with

the movement of instructions and selectors through the array which will

in the main be a generic form for all library PE's.

The PE to be developed is fairly complex and is shown in Figure

4.6. It consists of a central processing element which is enabled by

INSTRUCTION
IN

SELECTOR __ ~ S
E
L

IN

W

B

WDATA U
F

I.BUF

INSTRUCTION
OUT

,

BUS

NDATA

N.BUF

SELECTOR OUT

E /~
B A R R R R WORKING
U R C C N E S W MEMORY
F C D D D D

EDATA

SDATA

FIGURE 4.6: The Basic Cell (processing Element)

161

a selector high signal and any instruction except the NO.OP. A simple

bus connects the port input buffers to the memory (Figure 4.7), which

contain the port value storage registers. (RND, RED, RSD, RWD) as well

A R R R R AUXILIARY MEMORY

R C C N E S W FOR TEMPORARY

C D D D D VARIABLES + DATA

R: RESULT REGISTER

C: COMMUNICATION REGISTER

ACC: SECONDARY ACCUMULATOR

RND: REGISTER NORTH DATA

RED: REGISTER EAST DATA

RSD: REGISTER SOUTH DATA

RWD: REGISTER WEST DATA

FIGURE 4.7: The Memory Organization

as working memory for data and temporary results and variables, and R

which acts as an accumulator and holds the results of the computation

until C has been read and ACC which is a secondary accumulator for

complex computation, and C which is the communication register (the

current output of the cell) •

This processing element embodies all the principles of the ISA

cell. Communication can be achieved by first loading the output buffers

with C, and then taking the input and output in parallel. The.

input buffers are then read sequentially to memory to complete the

communication phase and various masks can be made on the

input buffers so as to prevent the overwriting of RND, RED, RSD or

RWD and so avoid unnecessary movement of data in the memory, when a

previous input is to be retained. The port mask is defined as part

of the processor instruction which is a four field instruction. For

simplicity there is the need to keep the bandwidth narrow. The

instruction is represented as an 8 digit integer (Figure 4.8) with

each field 2-digits wide to allow the possible implementation of 100

FD3 FD2 FDl FDO

OP PORT OPDl OPD2

•
TWO DECIMAL DIGITS

FIGURE 4.8: The Instruction Format

162

instructions and an internal memory address space of lOO instructions.

The port specification allows 100 combinations of Input/OUtput but only

the first 16 have been used here. One possible extension is to utilise

the extra slots to allow multiple communication registers in each cell.

REMARK: These operations can be implemented more effectively by

using bit logic and slices, but the Loughborough OCCAM is

restricted in this respect. Furthermore, a 2-digit field

also allows a wide range of library PE's to be developed.

The processor operation codes (Figure 4.9) and the port controllers

(Figure 4.10) indicate the instruction to be implemented. The

definitions of the read masks using the port instruction field are·

a high bit indicates that the value of what input port will be copied

to memory, while a low bit indicates that the value is not transferred.

163

OP CODE COMMENT

00 NULL NO OPERATION

01 COpy MOV R TO C

02 ADD R:=A+B

03 SUB R: =A-B

04 MULT R:=A*B

05 DIV R:=A/B

06 MIN R:=MIN(A,B}

07 MAX R:=MAX(A,B}

08 DATA C:=A

09 MOV MEM [FDO] : =A

A=MEM[FD1], B=MEM[FDO]

FIGURE 4.9: The Processor Operation Code

The instruction format allo;1s two address fields OPDl and OPD2 which

can be used for memory referencing, including RND, RED, RSD, RSW, R,C,

and ACC hence quite general data manipulation can be formed.

Originally an extra result field was intended but would not fit into a

single integer sized data item.

The resulting instructions are easily decoded by the following

OCCAM code:

SEQ j=[O FOR 4]

SEQ

fd[j] :=i'.lOO

i :=i'J.OO i=Instruction Integer

W ·5 E N INPUT VALID

0 0 0 0 NO VALID DATA

0 0 0 1 N VALID

0 0 1 0 E VALID

0 0 1 1 N,E VALID

0 1 0 0 5 VALID

0 1 0 1 5,N VALID

0 1 1 0 5,E VALID

0 1 1 1 S,E,N VALID

1 0 0 0 W VALID

1 0 0 1 W,N VALID

1 0 1 0 W,E VALID

1 0 1 1 W,E,N VALID

1 1 0 0 W,5 VALID

1 1 0 1 W,S,N VALID

1 1 1 0 W,S,E VALID

1 1 1 1 W,S,E,N VALID

FIGURE 4.10: The port Controllers

and the port mask with port:=fd[2]

5EQ i=[O FOR 4]

5EQ

p[i] :=port\2

port:=port/2

164

To define the size of the processing element and the external interface

in OCCAM:

LIBRARY PRoe PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)=

DEF msize= 10:

VAR FLOAT a,b, mem[msize] ,c,i.o.buf[4] :

VAR i,j ,s,port,p[4] ,fd[4] ,op,old.i,old.s:

VAR running

where mem[msize] is the internal memory cell, i.o.buf[] is what was

input from adjacent cells, and c contains the value which the cell is

outputting. Finally old.i and old.s is last instruction and last

selector signal.

To initialise the cell memory and switch on the cell to make it

ready to start and fetch instruction is:

SEQ

running: =true

mem[l] :=0.0

mem[O] :=0.0

old.i:=O

old.s:=O

WHILE running

SEQ

c:=mem[l]

To read instruction, selector and data, and send the old instruction,

old selector and the value of c through the channels is:

PAR
in ? i

is old.i

sw ? s

se old.s

wn c

we c

ws ! c

ww l c

rn Lo.buf [0]

165

re Lo. buf[l]

rs Lo. buf[2]

rw Lo. buf[3]

old.s:;s

old.i:;i

The next stage is the decoding of the instruction and the ports as

described above, and then copying the valid data is:

SEQ i;[O FOR 4]

IF

p[i];l

mem[i+3] :;i.o.buf[i]

166

To execute the instruction considering the processor operation code is:

a:;mem[fd[l]]

b:;mem[fd[O]]

IF

(s<>O) AND (op<>O)

IF

op;l

mem [1] : ;mem [0]

op;2

mem [0] :;a+b

op;3

mem[O] :;a-b

op;4

mem [0] : ;a*b

op;5

mem [0] : ;a/b

op;6

SEQ

IF

a>b

mem [0] :;a

TRUE

mem[O] :;b

(null operation)

(add operation)

(sub operation)

(mult operation)

(div operation)

(get min operation)

op=7

SEQ

IF

op=8

a>b

mem [0] : =a

TRUE

mem [0] :=b

mem[l] :=mem[fd[l]]

op=9

mem[fd[o]] :=a

(get max operation)

(get data operation)

(moving data operation)

The full processing element (PE) OCCAM coding is given in Appendix II.

167

•

CHAPTER 5

THE IMPLEMENTATION OF THE REPLICATING

INSTRUCTION SYSTOLIC ARRAY LANGUAGE

(RISAL) AND SYSTEM TESTING

168

5.1 INTRODUCTION

While a great deal of programming language design has progressed,

much of it has been at cross purposes. On the one hand the designer

has been trying to facilitate the messy process of human understanding;

on the other hand he has had to insure efficient use of modern

computers. These difficulties constitute the impedance match between

grossly different representations. In some sense the designer has

been limited to the top of a tower of languages that starts at bits

in a computer memory and builds up through the stages to his higher

level language. Between each stage there must be an automatic

translation program. As might be expected, there is only a limited

amount of variation possible under these constraints. The major

concepts that have arisen are the variables and structures composed

of variables which are, in fact, ways of using computer memory; finite

functions over data structures; and sequence control. The fact that

programming costs now exceed computer costs has forced the language

designer to concentrate more on structuring the programming process

than the program itself. There is as much to save by reducing the pre­

inspiration flailings of a programmer as there is in eliminating a

redundant STORE in the inner loop.

Two additional levels of language appear to be forming on top of

the more traditional programming structures (Figure 5.1). One is

characterized by a top-down analysis of the program structure. The

other is characterized by predicates over various abstract data

structures. At the highest level we now see we have statements of

things that must be true, perhaps at specific points in the computation.

Region of human
translation

Region of automatic
translation

In the brain of
the problem solver

predicates that describe
certain. relationships that must
be satisfied by the program

TOp down, hierarchical
decomposition of the program

Programming language

Intermediate languages in
the compilation process

Loadable program modules

Bits in computer memory

FIGURE 5.1: Levels in the Program Solving Language Tower

Once we have established these restrictions, we fragment the program

hierarchically into the most natural units possible. Only then do we

map the program onto machine-related constructs. These topmost

mappings are probably not done automatically; it is easier to do them

169

by hand than to formalize the mapping process. Again, since it is the

programming process that is being facilitated, we observe that progress

down the tower of abstraction may well run into problems, causing

lower level obstacles to be solved by changing higher level

descriptions. It is an iterative process involving all levels of

abstraction.

The substantive questions are what structures are useful at each

of the various levels of abstraction. The new viewpoint is that it is

170

not necessary to mix all the levels into one notation. To put it

• differently, it was a mistake to assume we could think effectively

in a (single) programming language.

171

5.2 LANGUAGE DESIGN PRINCIPLES

There are many motives for the design of computer languages, but

the point of view expressed here is that there is a special application

area and a special machine which needs a special language. The first

question, is how to do it? The first rule, is to keep it simple.

The problem then reduces to achieving the necessary features in a

consistent manner. The simplest way to proceed is to write some

programs. A small program will generally exercise a large part of

the language. Then attempt to use the grammars to specify the

language concisely. The restrictive form of definition will surely

suggest changes in the language, then, in turn, changes in the sample

programs. We iterate the process until both the programs and the

language description "are elegant and understandable.

One might suspect that the language would not improve by having

to conform to a restrictive defining tool. But experience shows that

it does. In some sense there is no art unless there is a restriction

of the medium. In some perverse way, the human mind, in copin~ with

the restrictions, produces its best results, and grammars, the very

formalization of nested definition, are a rich medium.

Orthogonality is a desirable property to the language. The

facilities that are there should be highly independent, e.g. if there

are features for sequence control, then there should not be an

additional set of sequence controlling features down inside the

instructions.

Adequacy is also a desirable property. It should be able to

express the solutions to all the algorithms to be solved in it, but

that is not the same as generality, or completeness. There is no

reason to be able to compute an arbitrary function if we know ahead

of time that only certain simple classes of functions are going to be

used. Translatability. is a desirable property for the language.

There is not much point in designing a neat language that cannot be

translated, eventually, to a form acceptable by the machine.

Given the ISA grid and the processing element .(PE) to plug into

the grid points, we require a suitable medium in which to prepare and

debug the ISA control programs, and a method for generating the

necessary form of instructions for .the ISA. Early test programs

were developed in a format akin to a machine code and were difficult

172

to modify and relate to the abstract algorithms. The RISAL compiler

(see later) was developed and introduced to allow a simple but adequate

design environment. RI SAL accepts instructions in an assembler like

form, but is fairly permissive about the format within the constraints

of syntax. The syntax of RISAL is:

1. RISAL FILE

---0 P --l

D SETUP -;.-? RLINE '----1 END

---i S I---:l

:

173

2. SETUP

)0' 1----lIJ-M I LINES

3. RLINE

REPL VALUE LINE

4. LINE

I NSTRUCTI 00
LINE

DATA LINE

SELECTOR
LINE

5. INSTRUCTION LINE

REP VALUE ILINE

174

6. ILINE

, ,
----; OPERATION PORTS ,

.

~ OPD1 --' OPD1 ,

7. DATALINE

N

E

S DLINE

W

NONE

;

175

8. DLINE

REP VALUE DATA ITEM

9. SELECTOR LINE

REP VALUE

10. VALUE ~ INTEGER < GRIDSIZE

11. GRIDSIZE ~ MAXIMUM NUMBER OF COLUMNS OR ROWS OF PROCESSORS

12. DATA ITEM ~ REAL (BUT CAN BE EXTENDED TO OTHER MORE COMPLEX TYPES)

13. OPERATION ~ RESERVED (MNEMONIC) KEYWORD FOR OPERATION

14. PORTS

15.

,

OPDl

OPD2 }

N

E

S

W

~ , ,

• •
~

INTEGERS IN RANGE O ... MSIZE-l

(MSIZE = SIZE OF PE PRIVATE MEMORY)

RISAL contains a proportion of semantic rules not indicated in the

syntax and allows programs (instruction, data and selector files) to

be produced using the same syntax and compiler. Instruction, data,

or selector files can be prefixed with a replicating command which

will generate the following instruction by a specified number (e.g.

REP(4», also can be prefixed with a replicating command which will

generate the following lines of instruction by a specified number

176

177

(e.g. REPL(20», checks are made to ensure that enough data, instructions

or selectors are given to control the selected gridsize. The start of

a file (instruction, data, or selector) must identify three things:

1. Instruction (p), data (d), and selector (s).

2. The size of the grid, the instruction and selectors can be

different giving rectangular grids.

3. The number of rows in the file. This provides the OCCAM ISA with

a primitive shut-down capacity and could be removed on a real

machine where a reset is available. The choice of p, d or s

directs the RISAL compiler to fix·the syntax for a particular type

of file, preventing the mixing of instructions, data, and selectors

in one file, and giving useful error messages as to malformed

constructions in a file (see later) •

THE DATA FILE

The data file is more complex than the rest, as it requires the

specification of input for the possible four boundaries of the ISA grid.

The current implementation does not expose all the inherent parallelism

in collecting the boundary data, as we can define four files one for

each boundary, and then use the buffers in parallel, however, there is

a considerable expense in checking that enough boundary data is

available which requires the specification of four separate files.

Here we define only one file and sequentially buffer the boundary input

and output, this makes the checks easier and the setting up of a data

input sequence is more easily related to the algorithms being simulated.

For large grids however this method will become impractical and adding

a pre-processor to the ISA, to separate out the data into temporary files

seems the best alternative. RISAL contains a certain amount of

semantics to check that data boundaries are not confused, and

replicators do not generate too much data so a special command NONE

is also available which allows a complete boundary to be masked out.

The data must always be input in order N,E,S,W (Figure 5.2), and the

RISAL compiler will check this.

... 4.0

... 3.0

t
... 2.0

... 1.0

1.0 2.0 3.0 4.0

4.0
t

n

e

s

w

3.0 2.0
t t

-<-

1.0, 2.0,

1.0, 2.0,

4.0, 3.0,

4.0, 3.0,

1.0
t

3.0 ;

3.0,

2.0,

2.0,

.0 -<-

2 .0 -<-

3 .0 -<-

4 .0 -<-

4.0;

4.0;

1.0;

1.0:

FIGURE 5.2: The Input to the ISA Boundaries

Example for Data statement:

n 1.0, 1.0, 2.0, 3.0;

e 3.0, rep(3) 0.0;

s rep(4) 0.0;

none:

no data
masked out

+ +
1.0 1.0

0.0
t

0.0
t

+ +
2.0 3.0

0.0 0.0
t t

3.0 -<-

0.0 -<-

0.0 -<-

0.0 -<-

178

179

The north boundary of the 4x4 ISA grid receives 1.0, 1.0, 2.0, 3.0

as data, while the east boundary receives 3.0 and zeros for the

remaining inputs, with the south boundary inputting 4 zeros and finally

the west boundary is.masked out (no data).

THE SELECTOR FILE

Selectors are Boolean values and can be specified similarly, e.g.

to select all the cells in column one of a 4x4 ISA grid, we would send

1, 1, 1, 1: or equivalently to rep(4)1: into the first column.

1

1

1

+ 1

On the next step, if we sent 1, 1, 0, 0: or equivalently to rep(2)1;

rep(2)0: into the first column the picture will be:

1 1

1 1

° 1

+ ° 1

THE INSTRUCTION FILE

The instructions enter the ISA grid from the north moving across

to the south row by row, and each PE in the grid is activated by a

combination of an instruction and a selector. The selectors enter

the grid from the west moving across to the east column by column.

Below is a list of operation codes which represent all the operations

occurred in the PE if the selector entered is a high signal:

null

data

copy

mov

add

sub

mult

div

min

max

An example of an instruction: DATA n, 03, 00 means read the north data

port and move the value into the communication register for the PE

defined previously in Chapter 4.

DATA n, 03, 00; DATA n, 03, 00; DATA n, 03,00; DATA n, 03, 00:

issues the same command to 4 columns of a 4 x4 grid simultaneously and

is equivalent to the replicated form

REP(4) DATA n, 03, 00:

180

181

5.3 THE RISAL COMPILER

The compiler is a program written in the implementation language,

accepting text in a source language and producing text in a target

language. Language description languages are used to define all these

languages and themselves as well. The source language is an algorithmic

language to b~ used by programmers. The target language is suitable

for execution by some particular computer. If the source and target

are reasonably simple, and well matched to each other, the compiler can

be short and easy to implement. The more complex the requirements

become, the more elaborate the compiler must be and, the more elaborate

·the compiler, the higher the payoff in applying the techniques of

structured programming.

Compilers can and have been written in almost every programming

language, but the use of structured programming techniques is dependent

upon the implementation language being able to express structure.

Today there are some existing languages which were explicitly designed

for·the task of compiler writing. The criterion for choosing an

implementation language is quite straight forward, it should minimize

the implementation effort and maximize the performance of the compiler

being written [Alfred, Jeffrey, 1977].

Each compiler is developed in a particular environment in response

to certain needs, and that the environment will shape not only the form

of the completed compiler, but also the process by which it is developed.

This brings into discussion the nature of the target machine, which in

our case is the specially designed virtual machine. The PASCAL

language was used to develop and test the compiler whose job was to

read the Replicated Instruction systolic Array Language elements (RI SAL)

and transform it into a form suitable for the virtual machine to run.

The general phases of the RISAL compiler are shown in Figure 5.3.

182

Explicit goals should be formulated at the outset of any compiler

development, although they may change with time, they provide guide­

lines for the major decisions and-are the basis for evaluation. The

typical compiler goals:

correctness, it should give the correct outputs for each

possible input. This is what we mean by a program 'works'.

If a program does not work, measures of efficiency, of

adaptability, or production costs have no meaning. One goal

of every compiler is to correctly translate all correct input

programs and correctly diagnose all incorrect ones. However,

compilers are seldom absolutely correct: perhaps "reliability"

is· a more feasible goal, iwe; keeping the number of errorS

encountered acceptably small.

availability, even a correct compiler that cannot be run is

of little use. Thus, a very important aspect of any compiler

development is its schedule and it must run on the right

machine in the right configuration with the right operating

system.

generality and adaptability, although some special-purpose

compilers are produced to compile single programs, most

compilers must be planned to handle a large number of programs.

During the life-time of a compiler, requirements and

specifications may change many times (often, even before it is

completed). Unless special care is taken -during its

183

RISAL FILE
(SOURCE PROGRAM)

1
LEXICAL
ANALYSIS

1
SYNTAX ERROR
ANALYSIS HANDLING

1
CODE
GENERATION

1
RISAL OBJECT
(TARGET PROGRAM) ..

i

FIGURE 5.3: Phases of RISAL Compiler

construction to ensure adaptability, responding to these

changes may be both traumatic and expensive.

184

helpfulness, the kind and amount of help that is most

appropriate will depend on the intended users: beginners need

careful explanations ·of simple errors in small programs, while

system programmers are more concerned with the detection of

subtle errors in large programs, or the location of efficiency

"bottlenecks" .

efficiency, there are several dimensions of efficiency to be

taken into account:efficiency·of compiler development process,

efficiency of program development using the compiler (including

efficiency of compilation), efficiency of target programs

produced by the compiler.·

To develop the RISAL compiler, it is not intended here, nor appropriate,

to demonstrate state-of-the-art techniques in compiler writing for

parallel processing, but rather to provide a practical way of how

the virtual machine would handle a -subset of possible operations to

solve various algorithms. The construction of the RISAL compiler

involves several conceptually distinct processes.

SPECIFICATION

With our design aims chosen then to solve the problem of

generating the three object files (INSTRUCT, DATA, and SELECTOR) which

are used to control the performance·of the virtual machine (ISA grid),

the RISAL compiler specification document includes:

a precise specification of the source language (section 5.2) .

design target for the compiler size.

DESIGN

a choice of the language in which the RISAL compiler is to

be written (PASCAL language).

185

The design of the RISAL compiler was started before the

specification and continued well into the implementation phase. The

RISAL compiler was structured into major components (procedures,

modules), and we allocated functions and responsibilities amongst them,

and the definition of their interfaces.

IMPLEMENTATION

Regardless of the design technique used, at some point the RISAL

compiler must be written in an already implemented language translated

into machine code and executed. As we mentioned above the PASCAL

language was chosen to write the RI SAL compiler, because it is easily

readable and understandable, with appropriate data objects, in

addition it has a simple yet powerful control and data·structure,

with enough redundancy for substantial compile-time checking.

The.RISAL compilation process is partitioned into a series of

subprocesses called procedures as shown in Figure 5.4.

In the initialisation procedure the process of setting up the

current keywords are assigned and initialise the values. The size

of the keywords file is 20 and contains the following keywords:

Keyword

add

copy

d (data file)

data

Code representation.

2

1

105

8

KEYWORDS
FILE

GET C
PROCEDURE

SELECTOR
LINE

PROCEDURE

OUTPUT
PROCEDURE

INITIALISE
PROCEDURE

PROG
PROCEDURE

LEXICAL
ANALYSIS

GENERAL
LINE

PROCEDURE

INSTRUCTION
LINE

PROCEDURE

SETUP
PROCEDURE

ERROR
HANDLING

ROUTINE

DATA LINE
PROCEDURE

REPR
PROCEDURE

FIGURE 5.4: The RISAL Compilation Process

186

Keyword Code representation

div 5

e (east) 2

end 101

max 7

min 6

mov 9

mult 4

n (north) 1

none 102

null 0

p (program) 104

rep 103

repl 106

s (south) 4

sub 3

w (west) 8

The prog procedure is to decide the input file type, whether

Instruction, Data, or Selector file, and to process this input file.

The checking of the dimension of the ISA grid will occur in this

procedure. The input file must start with header T (valuel,value2).

This means,

T type of input file

T=p for instruction

T=d for data

T=S for selector

187

valuel the dimension of the ISA grid (e.g. value 1=4 in the

case of 4x4 ISA grid

value2 the number of lines ended by (:) in the input file

188

The setup procedure is to decipher the input file header. The lexical

analyzer is the interface between the RrSAL source program and the

RrSAL compiler. The lexical analyzer reads the source program one

character at a time, carving the source program into a sequence of

atomic units called tokens.

A classical lexical analysis was used to develop the scanning

and screening functionality for reading the RrSAL statements. Early

in the compilation process the source file (RrSAL statements) appear

as a stream of characters. By scanning them finds substrings of

characters that constitute the textual elements (words, punctuation,

operators, comments, spaces, etc.) -and classifies each as to which

sort of textual element it is. The screening process discards some

of the textual elements (spaces,- comments, etc.) while recognizing

reserved symbols and generating the token stream for parsing. Below

we summarize the scanning taken by the lexical analyzer of the RrSAL

compiler when processing a RrSAL statement:

make sure there is a token--and it can be recognized.

skipping leading blanks.

skipping comments - all comments starting with { .

skipping trailing blanks

find token

_collect identifier

searching for keywords and locate them

convert to token value

convert to a number

convert-all the integers to a numeric value, and the reals

remain as strings.

The purpose of the getc procedure is to maintain a buffer of

characters, keep the buffer filled and to skip the blank spaces.

In addition, book keeping will occur in this procedure.

The line procedure is to process a general line, checking will

189

be made first to decide whether the line is from the instruction, data

or selector. There are three separate procedures to implement the

instruction, data and selector line.

The output procedure is to construct the instruct, datain,

or selector object files.

Finally, the error handling routine is to print out error

messages in output file called ERROR file in case of any fault in

the RIsAL program. The RIsAL compiler attempts to detect and report

as many errors as possible. Below are the following error messages

provided by the RI SAL compiler:

program must start with p,d or s

expected

expected

but found

but found

expected : I ." ; I end,

too many data elements

: incorrect da ta boundary spec

expected integer arguments

errors detected ;

no errors detected

expected integer operands in instruction

should be real value in data expression

require integer in rep count parameter

attempt to read past end of file

alphabetic string found require keyword

invalid character

selector should be ° or 1

malformed expression

OBJECT FILES

We now turn to the code generation routine, the final phase of

the compilation process. Good code generation is difficult, and it

depends on the construction of the virtual machine we are using.

We initially developed a straightforward algorithm to.generate code

from a sequence of statements. The algorithm was used successfully

to produce an ISA form placed in three files (INSTRUCT, DATAIN, and

SELECTOR). TO show the picture of generating the ISA form, below is

an example of three input RISAL files to calculate the value of

X=(A+B)*(C-D}/E, and the picture of the ISA form after we compile

them by the RISAL compiler (INSTRUCTION, DATAIN, SELECTOR).

INSTRUCTION FILE

p(4,16}

data n,3,0; rep(3} null n,O,O:

mov ,0,7; data n,3,0; rep(2} null n,O,O:

data n,3,O; mav ,0,7; data n,3,O; null n,C,O:

mov ,0,8; data n,3,O; mav ,0,7; null n,D,O:

add ,7,8; mov ,0,8 ; rep(2} null ,0,0:

copy ,0,0; sub ,7,8; rep (2) null ,0,0:

null ,0,0; mov ,0,7; rep (2) null ,0,0:

null ,0,0; data w/6,O; rep (2) null ,0,0:

null ,0,0; mov ,0,8 ; rep (2) null ,0,0:

null ,0,0; mult ,7,8; rep(2} null ,0,0:

null ,0,0; copy ,0,0; rep(2) null ,0,0:

rep(2} null ,0,0; data w,6,0; null ,0,0:

rep(2} null ,0,0; mov ,0,8; null ,0,0:

190

rep(2) null ,0,0; div ,8,7; null ,0,0:

rep(2) null ,0,0; copy ,0,9; null ,0,0:

rep(4) null ,0,0

end

SELECTOR FILE

5(4,16)

repl (16) [1, rep (3) 0]

end

DATA FILE

d(4,16)

n 4.0, 0.0, 0.0, 0.0; nonei

n 0.0, 5.0, 0.0, 0.0; none;

n 6.0, 0.0, 0.0, 0.0; none;

n 0.0, 3.0, 0.0, 0.0; none;

repl(12) [rep(4) none]

end

INSTRUCT

16

08010300 10000

09000007 08010300

08010300 09000007

09000008 08010300

02000708 09000008

01000000 03000708

° 09000007

° 08080600

° 09000008

° 04000708

° 01000000

° °
° °
° °
° °
° °

nonei none:

none; none:

nonei none:

none; none:

10000

°
08010300

09000007

°
°
°
°
°
°
°

08080600

09000008

05000807

01000000

°

10000

°
°
°
°
°
°
°
°
°
°
°
°
°
°
°

191

192

SELECTOR

16

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 o· 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

-1 0 0 0 0

1 0 0 0 0

DATA1N

16

0 4.0 0.0 0.0 0.0

-1

-1

-1

0 0.0 5.0 0.0 0.0

-1

-1

-1

0 6.0 0.0 10.0 0.0

-1

-1

-1

0 0.0 3.0 0.0 0.0

-1

-1

to the end of 16 lines

The complete actual code for the R1SAL compiler is given in Appendix 11 .

5.4 SOFT-SYSTOLIC SIMULATION ARCHITECTURE AND TESTING

From the previous sections in Chapter 4 and this chapter a

number of components are readily identified which need connecting:

the RISAL source files, the RISAL compiler, the compiled object

files, the virtual machine (the ISA grid, processing element, and

the virtual spoolers), and the resulting dataout file.

The components mentioned above are serially linked together as

shown in Figure 5.5. The virtual spooling section of the ISA grid,

expects to find instructions in a file called 'INSTRUCT', with

selector information in a .file called "SELECTOR" and data from file

"DATAIN". The RISAL compiler allows the output of generated ISA

items to be directed to any of these files or temporary files as

requested by the user using the DYNIX file in direction commands.

It is up to the user to ensure that the spoolers have the correct

data and program = (instruction, selector).

A typical program specification is as follows:

i) Develop three files--

11 = instructions

Dl = data

Sl = selectors

ii) Check syntax with RISAL compiler, generating the files

INSTRUCT, SELECTOR, DATAIN.

iii) All bugs are now semantic errors in the ISA program

Compile ISA.OCC (virtual) grid if not compiled

Compile PE.OCC processing element

Link the two above programs (plugs in PE)

iv) Execute the virtual machine in (iii), the results

will be placed in the "DATAOUT" file.

193

RISAL
SOURCE FILES COMPILER OBJECT FILES

INSTRUCTION INSTRUCT
FILE FILE

DATA RI SAL ~ DATAIN I -r. I ~ FILE COMPILER FILE

SELECTOR SELECTOR
FILE FILE

FIGURE 5.5: Soft-Systolic Simu11tion Architecture

VIRTUAL MACHINE

I -~I

RESULT

DATAOUT
FILE

....
lO ...

195

This is how the ISA.oce virtual ISA can be used as a simulation

architecture to solve soft systolic algorithms, the process is quite

simple and requires only the RI SAL source files.

SAMPLE PROGRAMS

To examine the performance of the solution architecture, we

will illustrate first the use of each operation code mentioned

previously in the instruction file.

1. NULL operation code

e.g. null ,0,0;

means that there is no operation, even if there is a selector

high signal.

2. DATA operation code

e.g. data n,3,Oj

operand 2

.operand 1

port (north)

meaning read the north data port and move the value into the

communication register e, for. the PE defined previously.

data n,3,O; data n,3,O; data n,3,O; data n,3,O:

this would issue the same instruction for 4 cells of the 4*4 grid

and is equivalent to the replicated form:

rep(4) data n,3,0:

Example 1

To write a RISAL program to read the data 10,20,30,40 from the

north data port and move the value into the communication register

(C) for the 4 cells in the first row of the 4*4 grid, and let the data

move across the grid row by row

p(4,7)

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0:

rep(4) data n,3,0:

rep (4) null ,0,0:

rep(4) null ,0,0:

rep(4) null ,0,0

end

this is equivalent to:

p(4,7)
repl(3)[rep(4) null ,0,0):
rep(4) data n,3,0:
repl(3) [rep(4) null ,0,0)
end

s(4,7)
1,rep(3) ,0: INSTRUCTIONS
rep(2)1,rep(2)0:
rep(3)1,0:
rep(4) 1:
0,rep(3) 1:
rep(2)0,rep(2)1:
rep(3)0,1
end

d(4,7)
repl (3) [rep(4) none] :
n 10.0, 20.0, 30.0, 40.0;
none; none; none:
repl(3) [rep(4) none]
end

SELECTORS

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 0

null null null null

null null null null

null null null null

datan datan datan datan

null null null null

null null null null

null null null null

+

1 1

1 0

0 0

0 0

4*4 ISA grid

196

197

.Example 2

2*2 matrix transpose (see the definitions in Section 6.1) .

Transpose the following matrix,

:] ...

SELECTORS
-.

° 1 1 1 1 ° 1 1 ° 1 1 1 1

° ° ° ° 1 ° ° 1 ° ° ° 1 °

p(4,13)
{load matrix}
data n,3,0; rep(3) null n,O,O:
rep(2) data n,3,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null ,0,0:
{Transpose}
data e,4,0; data w,6,0; rep(2) null ,0,0:

null

null

null

null

null

datas

<-
datae

It datas

I ~ datan

data';-

null

datan

datan

null

null

null

null

null

datas

~ataw

null

null

-+dataw

datan

datan

null

\
J

READOUT

TRANSPOSE

LOAD THE

MATRIX

INTO THE

ISA GRID

4*4 ISA grid

data n,3,0; rep(3) null ,0,0:
data s,5,0; rep(3) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
{readout}
rep(2) data s,5,0; rep(2) null ,0,6:
repl(5) [rep(4) null ,0,0]
end

d(4,13)
n 6.0, 0.0, 0.0, O.Oj

n 8.0, 2.0, 0.0, 0.0;
n 0.0, 5.0, 0.0, 0.0;
repl(lO) [rep(4) none]
end

s(4,13)
1, rep(3)0:
rep(2)1, rep(2)0:
1 ,rep(3) 0:
1,rep(3)0:
rep(4)0:
rep(2) 1,rep(2)0:

"1, rep(3)0:
rep(4)0:
rep (2) 1 ,rep(2) 0:
repl(3) [1,rep(3)0]:
rep(4)0
end

none;
none;
none;

3. COpy operation code

e.g. copy ,0,Oj

none; none:
none; none:
none; none:

means copying the vaLue from the result register (R) after:the

computation has been made to the communication register (C).

When the store is in the communication register, this means that

the value is ready to be read by the neighbouring cell.

4. MIN operation code

e.g. min e,4,1;

The minimum operation code above means read data from the east

198

port data and compare it with the value in the register east data

199

addressed by operand 1 and put the minimum value in the

communication register (C) addressed by operand 2.

5. MAX operation code

e.g.max w, 6,!;

The maximum operation code above means read data from the west

port data and compare it with the value in the register west data

addressed by operand 1, and put the maximum value in the

communication register (C) addressed by operand 2.

The operation codes minimum and maximum could form the basis for

a comparison based cell in their own right, possibly augmented with

EQ (equals) and so provide a simpler PE for sorting, and searching ISA

algorithms.

Example 3: sorting a list of 4 numbers using 4*4 ISA grid

p(4,13)
repl(3) [rep(4) null n,O,O]:
rep(4) data n,3,0:
min e,4,1; max w ,6,!; min e,4,1; max w/6,l:
rep(4) copy ,0,0:
null ,0,0; min e,4,1; max w/6,l; null ,0,0:
null ,0,0;rep(2) copy ,0,0; null ,0·,0:
min e,4,l; max w, 6,1; min e,4,1; max w/ 6,l:
rep(4) copy ,0,0:
null ,0,0; min e,4,1·; max w,G,l; null ,0,0:
null ,0,0; rep(2) copy ,0,0; null ,0,0:
rep(4) null ,0,0
end

s(4,13)
rep(13) [1,rep(3)0]
end

d(4,13)
rep(3) [rep(4) none]:
n 4.0,3.0,2.0,1.0; none; none; nine:
repl(9) [rep(4) none]
end

1
null

null

1 null

copy

3
mine

INSTRUCTIONS
null

3
null

copy

4
mine

datan

null

null

null

SELECTORS

1 1 1 1 1 1 1 1 1 1 1 1 1

0 o 0 0 0 0 00 0 o 0 0 0

0 o 0 0 0 0 o 0 0 0 00 0

0 0 0 0 0 0 0 0 0 0 o 0 0

2
null

3
null

copy copy

3 2
mine maxw

copy copy

1 4
maxw mine

copy copy

4 1
mine maxw

copy copy

3 2
maxw mine

datan datan

null null

null null

null null

4*4 ISA grid

4
null

null

4
null

copy

2
maxw

null

2
null

copy

1
maxw

datan

null

null

null

200

LOAD
NUMBERS

:<01

6. MOV operation code

e.g. mov ,0,7;

The mov operation code above means move the data in the result

register addressed by operand 1 and put it in the auxiliary memory

of the PE which is addressed by operand 2.

We can use the mov operation code to move the data from any

register or auxiliary memory to any register in the memory

organization of the PE defined previously by giving the right

addresses in operand 1 and operand 2.

Example 4: Data array movement

To write a RISAL program to read data from the north port data

for the first row in the 4*4 ISA grid and move the data to the

auxiliary memory of these cells, and re-read them again to the north.

p(4,9}
repl(3} [rep(4} null n,O,O]:
rep(4} data n,3,0:
rep(4} mov ,1,7:
rep(4} mov ,7,0:
rep(4} copy ,0,0:
rep(4} data s,5,0:
rep(4} null ,0,0
end

s(4,9}
repl(9} [1,rep(3}O]
end

d(4,9}
repl(3} [rep(4} none]:
n 2.0,4.0,6.0,8.0; none; none; none:
repl(5} [rep(4} none]
end

7. ADD operation code

e.g. add ,7,0;

The operation code add above means add the value in the auxiliary

202

memory addressed by operand 1 to the value in the result register

addressed by operand 2, and the result will be held in the result

register (R).

We can use this operation code to add the value in any two

registers in the memory organization of the PE, and the result

will be held in the result register (R).

Example 5: Summation calculation

TO write a RISAL program to add data from the north port data

and the west port data and add them with another set of data from the

same ports for the first cell of the first row of 4*4 ISA grid.

P (4,6)
add n w ,3,6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:
add n w ,3,6; rep(3) null ,0,0:
add ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0
end

s(4,6)
repl(6) [1,rep(3)0]
end

d(4,6)

.. '--.

n 10.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:
n 20.0,0.0,0.0,0.0; none; none; w 7.0,0.0,0.0,0.0:
repl(3) [rep(4) none]
end

The result is 41 which is placed in dataout file after reading it

from the result register.

8 • SUB opera ticin code

e.g. sub ,7,0;

The operation code sub above means subtract the value in the

result register addressed by operand 2 from the value in the

auxiliary memory addressed by operand 1, and keep the result in

the result register. We can use this operation code to subtract

the ·value in any register in the memory organization from any

value in another register and the result of the subtraction will

be held in the result register (R).

Example 6:

To write a RISAL program to add data from the north port data

and the west port data and subtract them from the addition of another

set of data which reads from the same ports of the first cell of the

first row of the 4*4 ISA grid.

p{4,6)
add n w ,3 .. 6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:
add n w ,3,6; rep(3) null ,0,0:
sub ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0
end

s{4,6)
repl (6) [1, rep(3) 0]
end

d{4,6)
n 10,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:
n 20.0,0.0,0.0,0.0; none; none: w 7.0,0.0,0.0,0.0:
repl(3) [rep(4) none]
end

The result is 13 which is placed in dataout file after reading it

from the result register.

9. MULT operation code

e.g. mult ,0,7;

The operation code (mult) above means multiply the value in the

203

result register addressed by operand 1, by the value in the

auxiliary memory of the PE addressed by operand 2, and the

result will be held in the result register.

We can use the operation code (mult) to multiply the value in any

register in the memory organization by the value in another

register and the result will be held in the result register (R).

The mult operation is used also to read the data from two

different ports, multiply them and hold the result in the result

register (R).

Example 7: Multiplication of data

To write a RISAL program to read two sets of data from the north

port data and multiply them, and read the result

p(4,9)
relp(3) [rep(4) null n,O,O]:
rep(4) data n,3,0:
rep(4) mov ,0,7:
rep(4) data n,3,O:
rep(4) mult ,0,7:
rep(4) copy ,0,0:
rep(4) null ,0,0
end

s(4,9)
repl(9) [1,rep(3)0]
end

d(4,9)
repl(3) [rep(4) none]:
n 2.0,4.0,6.0,8.0; none; none; none:
rep(4) none:
n 3.0,5.0,7.0,9.0; none; none; none:
repl (3) [rep (4) none]
end

The result is 6.0, 20.0, 42.0, 72.0 which is placed in the dataout

file after reading all these values from the result register.

1:"11

204

205

Example 8: Inner product calculation

To write a RISAL program to read from the north port data and

the west port data for the first cell in the first row of 4*4 ISA

grid, multiply them and store the result in the auxiliary memory,

repeat this process and add the results of the multiplication and read

the result.

p(4,6)
mult n w ,3,6; rep(3) null ,0,0:
mOv ,0,7; rep(3) null ,0,0:
mult nw, 3,6; rep (3) null ,0,0:
add ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0
end

s(4,6)
repl(6) [l,rep(3)0]
end

d(4,6)
n 2.0,0.0,0.0,0.0; none; none; w 4.0,0.0,0.0,0.0:
rep(4) none:
n 3.0,0.0,0.0,0.0; none; none; w 5.0,0.0,0.0,0.0:
repl (3) [rep(4) none]
end

The result is 23 which is placed in the dataout file.

10. DIV operation code

e.g. div ,7,3;

The operation code div above means divide the value in the

auxiliary memory of the PE addressed by operand 1 by the value

in the register north data.addressed by operand 2, and the result

to be held in the result register (R). Also we can use the

operation code (div) , to divide the value of any register in the

memory organization of the PE by the value in another register,

and the result will be held in the result register (R).

Example 9: Division of two numbers

TO write a RISAL program to add two numbers read fron the north

and west port data, store the result into the auxiliary memory and

add another two numbers which is read from the same ports and divide

them by the data stored in the memory and read the result.

p{4,6)
add n w ,3,6; rep(3) null ,0,0:
mov ,0,7; rep(3) null ,0,0:
add n w ,3,6; rep(3) null ,0,0:
div ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0
end

s{4,6)
repl(6) [1,rep(3)Ol
end

d(4,6)
n 5.0,0.0,0.0,0.0; none; none; w 2.0,0.0,0.0,0.0:
rep(4) none:
n 10.0,0.0,0.0,0.0; none; none; w 11.0,0.0,0.0,0.0:
repl (3) [rep(4) nonel
end

The result is 3 which is placed in··the dataout file.

206

CHAPTER 6

THE SOFT-SYSTOLIC SIMULATION SYSTEM (SSSS)

FOR VARIOUS ALGORITHMS

207

6.1 BASIC MATHEMATICS

In this section some basic mathematical definitions and concepts

are given. The material presented is necessary for the description of

algorithms used later in this chapter. First of all, vectors and

matrices are defined together with some relevant properties and

relations. These are then used to discuss methods for solving linear

systems, matrix-vector multiplication, matrix-matrix multiplication,

matrix transpose and LU decomposition. The generalized matrix

inversion is defined next, and then the Soft-Systolic Simulation

(SSSS) is used to solve all these problems.

Matrices and Vectors:

Matrices are important to numerical algorithms because they

provide a concise method for specifying manipulating large numbers of

linear equations. A system of m linear equations in n unknown has

the general form,

(6.1.1)

amlx
l

+ a x + .•• + a x = b
m2 2 mn n m

The coefficients of the (6.1.1) above form a matrix, which we denote

A or (a.,) of order mxn, where (i=l, •.• ,m; j=l, ... ,n), and b, (i=l, ..• ,m)
~J ~

are given numbers. If A is an nXn matrix, that means A is a square

matrix of order n. If the matrix has only one column or only one row,

the matrix is called column vector, or row vector,

208

~l
b

2

r:,l
x

2

b

~l
x3

(6.1.2) = x =

x
n

We say that b is an m-vector, and x is an n-vector. If A={a ..) and
1)

B= (b ..) are both matrices, then we say that A equals B, or A=B,
l.J

provided A and B have the same order and a .. =b .. , all i and j. In the
l.J l.J

terminology so far introduced, (6.l.l) states that the matrix A combined

in a certain way with the one-column matriX, or vector, x should equal

the one-column matrix, or vector, b.

The process of combining matrices involved here is called matrix

multiplication and is defined in general, as follows:

Let A={a ..) be an mXn matrix, B={b ..) an nxp matrix; then matrix
l.J l.)

c= (c ..) is the (matrix) product of A with B (in that order), or C=AB,
l.J

provided C is of order mxp and,

n
L aikb

kj
, for i::;;l, ... ,ro; j=l, ... ,p

k=l
(6.1. 3)

In other words, the (i,j) entry of the product C=AB of A with B is

calculated by taking the n entries of row i of A and the n entries of

column j of B, multiplying corresponding entries, and summing the

resulting n products.

With this definition of matrix product and·definitions in (6.l.l)

and (6.l.2), we can write our system of equations (6.l.l) simply as:

Ax = b • (6.1.4)

Matrix multiplication does not behave like multiplication of numbers,

for example, it is possible to form the product of the matrix A with

209

the matrix B only when the number of columns of A equals the number

of rows of B. Hence, even when the product AB is defined, the product

of B with A need not be defined. Further, even when both AB and BA

are defined, they need not be equal.

If A=(a ..) is a square matrix of order n, then we call its entries
~J

all,a22, ... ,ann the diagonal entries of A, and call all other entries

off-diagonal. All entries a .. of A with i<j are called superdiagonal,
~J

all entries a .. with i>j are called subdiagonal. If all off-diagonal
~J

entries of the square matrix A are zero, we call A a diagonal matrix.

If all subdiagonal entries of the square matrix A are zero, we call A

an upper (or right) triangular matrix, while if all superdiagonal

entries of A are zero, then A is called lower (or left) triangular.

Clearly, a matrix is diagonal if and only if it is both upper and lower

triangular.

If a diagonal matrix of order n has all its diagonal entries equal

to 1, then we call it the Identity Matrix of order n and denote it by I

or I if the order is important. The name identity matrix was chosen
n

for this matrix because:

I A = A for all nxp matrices A
n

B I = B for all mXn matrices B
n

i.e., the matrix I acts just like the number 1 in ordinary multiplication.

Inversion and Generalized. Inversion of Matrices:

Division of matrices is, in general, not defined. However, for

square matrices, we define a related concept, matrix inversion. We say

that the square matrix A of order n is invertible provided there is a

square matrix B of order n such that:

210

(6.1.5)

The matrix A , for instance, is invertible since,

C
On the

B were

11 r -J r J lJ

= =

~ ~

other hand, the matrix A = G
a matrix such that

rll +2b12

t21 +2b 22

BA=I, then it

2bll+4bl~

2b 21 +4b 2..:.1

11 -~ r 11

L2 ~ l.Q lJ

~ is not invertible.

would follow that:

= BA =

° L

For if

Hence we should have b
ll

+2b
12

=1 and, at the same time, 2(b
ll

+2b
12

)=

2b
ll

+4b
12

=O, which is impossible. We note that (6.1.5) can hold for

at most one matrix B. For if,

AB = I, and CA = I ,

where Band C are square matrices of the same order as A, then,

C = Cl = C(AB) = (CA)B = IB = B

showing that B and C must then be equal. Hence, if A is invertible,

then there exists exactly one matrix satisfying (6.1.5). This matrix

-1
is called the inverse of A and is" denoted by A

It follows at once from (6.1.5) that if A is invertible, then so

-1
is A and its inverse is A; that is

-1 -1
(A) = A (6.1.6)

Further, if both A and B are invertible square matrices of the same

order, then their product is invertible and

-1 -1 -1
(AB) = B A (6.1.7)

211

It is well known that every non-singular real or complex (square)

matrix A has a unique inverse which has the property that,

-1 -1
AA = A A = I . (6.1.8)

This guarantees that the system of linear equations Ax=b has the unique

solution,
-1

x = Ab. (6.1.9)

A matrix has an inverse only if it is square, and a square matrix A

has an inverse if and only if it is nonsingular, that is, if and only

if,

(i) det Aio, or

(ii) the columns of A are linearly independent, or

(iii) the rows of A are linearly independent,

where each of these three properties implies the other two.

If a matrix, rectangular or square is singular, it does not have

an inverse. However it does have a generalized inverse, called a g-

inverse, which has the following properties:

(i) a g-inverse exists for a class of matrices larger than

the class of nonsingular matrices,

(ii) a g-inverse has some of the properties of the ordinary

matrix inverse, and

(iii) a g-inverse reduces to the ordinary matrix inverse, if A

is square .and nonsingular.

If A is an mxn matrix and G is a g-inverse of A, then G is an nXm

matrix defined as follows:

DEFINITION: Consider the matrix equations:

(a) AGA = A

(b)

(c)

GAG = G

H
(AG) = AG

(d) (GA)H = GA

where the subscript H denotes the complex conjugate'transpose. The

matrix G is called:

(i)
-1

a g-inverse of A, denoted by A if (a) holds,

(ii) a reflexive g-inverse of A, denoted by AR' if both (a)

and (b) hold,

21:l

(iii) a least-squares g-inverse of A, denoted by AL' if both (a)

and (c) hold,

-
(iv) a minimum-norm g-inverse of A, denoted by AM' if both

(a) and (d) hold, and

+
(v) the Moore-Penrose g-inverse of A, denoted by A , if (a),

(b) and (d) all hold.

Matrix Transpose:

There is an operation on matrices which has no parallel in

ordinary arithmetic, the formation of the transposed matrix. If A=(a
ij

)

and B=(b,.) are matrices, we say that B is the transpose of A, or
l.J

T .
B=A , provl.ded B has as many rows as A has columns and

b
ij

= a
ji

all i and j

In other words, one forms the transpose AT of A by

"reflecting A across the diagonal ll

If

then A is said to be symmetric.

One easily verifies the following rules regarding transposition:

(i) If A and B are matrices such that AB is defined, then BTAT

T TT
is defined and (AB) =B A .

« <) Ft' A (AT)T ~~ or any ma r:LX, =A.

213

(H <) f .. ibl th . T (T -~ -l)T ~~~ I the matr:LX A ~s invert e, en so ~s A , and A) ,A •

solution of Linear System:

consider the linear system,

Ax = b ,

where A is a square (nXn) matrix, b is a given right hand side vector,

and x is an unknown vector. It will be assumed that A is non-singular,

-1
hence A exists and there is a unique solution x. The choice of

solution method depends on a number of factors including the structure

and size of the' matrix A, the number of arithmetic operations required,

and the control of the rounding error growth (or stability). There are

two general classes of methods, direct and iterative methods. As

regards the matrix size and structure, direct methods, are used mainly

when the matrix A is small, dense or banded. Direct methods cannot,

in general, be used for large sparse matrices because of the problem

of fill-ins which occurs during the elimination process. For large

sparse matrices we normally use the iterative methods since these will

not alter the structure of the original matrix and therefore preserve

sparsity. However, there are special cases where pivoting techniques

can alleviate the fill-in problem of direct methods.

Herein a brief introduction on the direct method is presented

which is used later on by our simulation system (SSSS) and to calculate

the generalized inverse of a matrix.

214

The direct method concerned factoring a matrix A in terms of a

lower triangular matrix L and an upper triangular matrix U. In Burden,

Faires and Reynolds [1981) it was shown that this factorization

existed whenever the linear system Ax=b could be solved uniquely by

Gaussian elimination (this method is generally used to solve a system

of linear equations) without row or column interchanges. The system

-1
LUx=Ax=b could be transformed into the system Ux=L b and, since U is

upper triangular, backward substitution could be applied. Although

the specific form of Land U can be obtained from the Gaussian

elimination process, it is desirable to find a more direct method for

their determination, so that, if many systems are to be solved using

A, only a forward and backward substitution need to be performed. To

illustrate a procedure for the calculation of the entires of these

matrices, we consider that a general matrix (nxn) A can be factored in

the form,

all a
12 - - --

a
21

a
22

- - --
I

A = I
I

anI a
n2

where,

L =

a
ln

a
2n

I
I

I

a
nn

and U =

LU

u 12 - - - - -- ul~

u
22

u
2n

I
,

,

o

, ,
,

u
nn

For a (4 x4), the 16 known entries can be used to partially determine

215

the ten unknown entries in L and the same number in U. If a procedure

leading to a unique solution is desired, however, four additional

conditions on the entries of Land U are needed. The method to be

this is known as Doolittle's method. The multiplication of L by U,

:l~
24

;

a 34 /

a4~

o o

o

Ul~
u 24 ' u)
u4J

o o
A ;

~:: o
L

o

To calculate all the unknown entries in Land U in the case of a matrix

A (nxn) , we can use the following algorithm:

Step 2: Generate the entries in the first column of L by the condition:

, for each j=2,3, ... ,n.

Step 3: Generate the entries in the first row of U by the condition:

, for each j=2,3, ... ,n.

Step 4: Set i;2.

Step 5: Select ~ii and u
ii

satisfying,

~ .. U., ; a,.
1.1. 11. 1.1

Step 6: If i<n, goto step 7.

If i;n, goto step 10.

Step 7: Generate the entries in the ith column of L by the condition:

i-l
; _1_ [a" - I ~'kuk,l

U ii JL k;l J L
, for each j=i+l,i+2, ... ,n.

216

Step 8: Generate the entries in the ith row of U by the condition,

, for j=i+l,i+2, ... ,n.

step 9: Add 1 to i and goto step 5.

Step 10: The procedure is complete when all entries of Land U have

been determined.

A difficulty which can arise when using the algorithm above to

obtain the factorization of the coefficient matrix of a linear system

of equations is caused by the fact that no pivoting is used to reduce

the effect of round-off error. The round-off error can be quite

significant when finite digit arithmetic is used and any efficient

algorithm must take this effect into consideration. The material of

this section is obtained from [Burden, Faires and Reynolds, 1981),

[Deboor, 1972].

217

6.2 MATRIX APPLICATIONS USING SSSS

In the following paragraphs of this section the solution of some

matrix applications by using the soft-systolic simulation system is

presented.

6.2.1 4*4 Matrix Transpose

This is a slightly more complex transposition problem incorporating

the use of the 2x2 problem which was defined earlier. Consider the

matrix,

~u
a

12
a

13 al~
a

21
a

22
a

23

::~ A =

~"
a

32
a

33

a
41

a
42

a
43 44

Problem: Trace a RI SAL program to ensure that:

all a
21

a
31 a4~

I

AT

a
12

a
22

a
32

a
42

=
a
l3

a
23

a
33

a
43

a
14

a
24

a
34

a
44

To write a RISAL program to transpose the matrix above we implement the

following steps:

REMARK: null=null ,0,0, datan=data n,3,0, datas~data s,5,0, dataw=data w,

6,0, and datae=data e,4,0.

Step 1: By reading the matrix elements from the north into the ISA

grid, each matrix element will be stored in a processor, as

shown in Figure 6.1.

<114

datan
a

13
a

24
datan datan

a
12

a
23

a
34

datan datan datan
INSTRUCTIONS all a

22
a

33
a

44
datan datan datan datan

a
21

a
32

a
43

datan datan datan
a

31
a

42
datan datan

a41
datan

+

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 0

...
0 0 0 0 1 1 0 0

0 0 0 0 1 0 0 0

SELECTOR 4*4 ISA GRID

FIGURE 6.1: Reading the 4x4 Matrix Elements from the North
into the 4*4 ISA Grid.

218

Step 2: Start to transpose the matrix elements as shown in Figure 6.2.

219

null datae dataw

null datae dataw null

datae dataw datae dataw

null datae dataw null

datae dataw null null

null datas null null

datas datan null null

datan datas null null

datas datan datae dataw
INSTRUCTION

datan datae dataw null

datae dataw datae dataw

null datae data,. null

datae dataw datae dataw

null null datas null

datae dataw datan null

datas null datae dataw

datan null null null

datae dataw null null

null null null null

SELECTOR

0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 1
all a

12
a

13
a

14

0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0
+

a
2l

a
22

a
23

a
24

0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0 0 a 3l
a

32
a

33
a

34

0 0 0 0 1 0 1 0 0 c 0 00 1 0 0 0 0 0 a
4l

a
42

a
43

a
44

4*4 ISA GRID
FIGURE 6.2: Transpose RISAL Program for 4*4 Matrix

Step 3: Read the matrix elements from the south to the north of the

ISA grid as shown in Figure 6.3.

null null null datas

null null datas datas

null datas datas datas

INTRODUcrIONS datas datas datas datas

datas datas datas datas

datas datas datas null

datas datas null null

datas null

SELECTOR

0 0 0 I I I 0 0 all a
21

a
31

a
41

0 0 0 0 I I 0 0 a
l2

a
22

a
32

a
42

0 0 0 0 0 I 0 0 a
l3

a
23

a
33

a
43

0 0 0 0 0 0 0 0 a
l4

a
24

a
34

a
44

4*4 ISA GRID

FIGURE 6.3: Reading the Matrix Elements 4x4 from the South to
the North of the 4*4 ISA Grid.

220

221

EXAMPLE: Given the matrix,

r: 2 3 "4f 11 5 9 131

14 i 6 7 81 2 6 10
~

9 10 11 12 3 7 11 15

~3 14 15 16 t 8 12 16
1

J J

6.2.2 4x4 LU Decomposition

Given a 4*4 matrix,

f11
a

12
a
l3 a~~

a
21

a
22

a
23

a
24

A ~

~31
a

32
a

33
a

34

a
41

a
42

a
43 a 44J

To factorize this matrix into a lower triangular matrix L and an

upper triangular matrix U as defined previously in section 6.1, we obtain,

~" l r11
u

12 ul) ulJ
0

1 u
22

u
23

u
24 L ~ U ~

9.
31

9.
32

1 u
33 U 34 !

j 0
9.
41

9.
42

9.
43 L u441

L :J
To determine the unknown entries of Land U we obtain by comparing

terms:

U entries

ull
~ all

u
12

~ a
12

u
l3

~ a
l3

u
14

~ a
14

222

u
22

~ a 22-1,2lu12

u
23

~ a 23-1,2lu13

u
24

~ a 24 -1,21 u 14

u
33

~ a 33-(1,3lu13+1,32u 23)

u
34

~ a 34-(1,3lu14+1,32u 24)

u
44

~ a44-(1,4lu14+1,42u24+1,43u34)

L entries

1,21

a
2l

~

ull
a

31
1,31

~

u
l1

1,41

a
41

~

u
1l

a -1, u

1,32
32 31 12

~

u
22

1,42
a42-1,4l u12

~

u 22

1,43
a43-(i4lu13+1,42u23)

u
33

To write a RISAL program to determine the matrix entries of Land U

above we have to implement the following steps:

Step 1: Read the matrix elements A into the 4x4 ISA grid. See 6.2.1,

Step 1.

Step 2: Start to factorize the matrix A into Land U by tracing the

RISAL program shown in Figure 6.4. As a result, the elements

of L will be held in the processing elements P21,P3l,P32,P4l'

P
42

,P
43

and the elements of U will be held in the processing

elements Pll,P12,P13,P14,P22,P23,P24,P33,P34 and P44 .

223

Step 3: Read the L and U elements from the south to the north of the

ISA grid. See 6.2.1, step 3.

EXAMPLE:

Given a 4*4 matrix

r 3 3 2

4 1 2 3
A =

2 2 5 1

~ 4 1 2J

By tracing the matrix through the RI SAL program in Figure 6.4, we

obtain:

11 l r 3 3 2

0 2 1 -5 -4 -1
L = U

1 0.2 1 2.8 -0.8

I
~

0
1.5 0.1 -1.107143 L -1. 7857141

L J

REMARK:

null = null ,0,0

datan data n,3,o

datas = data 5,5,0

dataw = data w,6,O

datae = data e,4,O

copy = copy ,0,0

INSTRUCTIONS

FIGURE 6.4: 4 X 4 LU Decomposition RISAL
Program.

Ul Ul
to to Ul
>: >: to
H H >: H
i'5 '" to

" :>
H H H
to to ...
" " " to ., to

~
... ...
I:i I:i

0. 0. 0.
to ., to
0: 0: 0:

+ + +

0 0 0 0 0

0 0 1 1 1

0 1 1 1 0

1 1 1 0 0

SELECTOR

0

0

0

0

224

null null null copy

null null null sub
,7,6

null null null mult
,3,6

null null null dataw

null null copy null

null null div datan
,7,3

null null datan mov
1,7,

null null mov copy
,1,7

null null copy sub
,7,0

null null sub mult
,7,0 ,3,6

null null mult dataw
,3,6

null null dataw null

null copy null datan

null div datan mov
,3,7 ,1,7

null datan mov copy
,1,7

null mov copy sub
,1,7 ,7,0

null copy sub mult
,7,0 ,3,6

null sub mult dataw
,7,0 ,3,6

null mult dataw null
1 3 ,6

null data. null datan

copy null datan mov
,1,7

div datan mov
,3,7 ,1,7

datan mov
,1,7

mOv
,1,7

all a
12

a
l3

a
14

a
2l

a
22

a
23

a
24

a
3l

a
32

a
33

a
34

a
4l

a
42

a
43

a
44

4 X 4 ISA GRID

225

6.2.3 Matrix-Vector Multiplication

Consider the matrix multiplication by vector, i.e. y=Ax, as

defined in Section 6.1, where A is a (nxn) matrix and x,y are (nxl)

vectors. Each component of y is produced by adding the multiplication

of a row of A by x. More formally, the recurrence re la tion can take

the form,

o

(n+l)
Y

i
; Y

i
' i,k=1,2, ... ,n.

For n=4, Figures 6.5 and 6.6 show the implementation of this

algorithm by using the ISA grid. It is based on the engagement of the

processing elements in the first row of the ISA grid. Each processing

element in this row will implement just multiply and addition

instructions and then move the result of the addition into a storage

register in the auxiliary memory of the processing element. The data

sequences from the north consist of the rows of the matrix A, while

the data from the west are the components of the vector x. Finally,

each element of the resulting vector is accumulated into P
ll

,P12'P
13

,

P
14

simultaneously.

In

a
44

a
34

a
43

a
24

a
33

a
42

a
14

a
23

a
32

a
4l

a
l3

a
22

a
3l

""
a

12
a

2l

""
all

"" ~

x
4 x3 x

2 xl ->- PH P
12

P
13

P
14

4x4 ISA GRID

FIGURE 6.5: Data Moving From the North and the West into
the ISA Grid.

226

Figure 6.6, each Y instruction represents the following instructions:

mult n w,3,6;

add ,7,0;

mov ,0,7;

mov ,6,1;

and datas means data s,5,0;

INSTRUCTIONS

SELECTOR

REPEATED 31 TIMES
1

datas

copy
,0,0

datas mov
,7,0

copy
,0,0

y

datas mov
,7,0

copy
,0,0

y y

mov
,7,0

Y Y Y

Y Y Y

Y Y

Y

Pll P
12 P13

4><4 ISA GRID

datas

copy
,0,0

mov
,7,0

y

y

y

Y

P
14

FIGURE 6.6: RISAL Program for the 4*4 Matrix Multiplication by Vector

227

228

EXAMPLE:

Given y = Ax,

where the matrix,

2.8 3 2 :.,
3.6 4.8 6

A =
4 3 2.2 6.1

4.2 1 0 9 J

and the vector

r:·
1

x =
5

L6.6_

By using the RISAL program mentioned previously we obtain the vector,

58.540001

104.759995

y
68.659996

L 71.219994

6.2.4 Matrix-Matrix Multiplication

Another problem to be discussed is the multiplication of two (nxn)

matrices, C=AB, as defined in Section 6.1, again each component of

matrix C is produced by adding the multiplication of each row of matrix

A and each column of matrix B. More formally, the recurrence,

(1)
c.. = 0
~J

(k+l)
c
ij

(n+l)
c
ij

= c
ij

, i,j,k=1,2, ... ,n.

229

The formula can be seen as a set of n matrix by vector multiplications

as defined in the previous paragraph. To solve this problem for n=4

and by using the ISA grid, it is again seen as based on the engagement

of the processing elements in the first row of the ISA grid. The data

sequences from the north represents the matrix B elements, while the

data from the west represents the matrix A elements. By repeating the

same process as in the previous paragraph, the processing element

(Pll,P12,P13,P14l will implement the multiply and addition instructions

and then move the result of the addition into a storage register in the

auxiliary memory of the processing element for every column of the

matrix C. Finally, the elements of the resulting C are accumulated as

follows:

·The first column in P
ll

registers 7,8,9 and 10

n second n n P n n n n n n

12
n third n n P

l3
n n n n n n

n fourth n n P
14

n n n n n n

So, given C=A*B, we have,

!all a
12

a
l3 al~ b

ll
b

12 b13 blJ
I

b 24 1
la2l

a
22

a
23

a
24

b
2l

b
22

b
23

C = x I
a

3l
a

32
a

33
a b

3l
b

32
b

33
b

34 a 34
1 a

4l
a

42
a

43 ~4l b
42

b
43

b
44 L 4~1 ~

230

b
44

b
43

b
34

b
42

b
33

b
24

b
41

b
32

b
23

b
14

b
31

b
22 b13 b

44

b
21

b
12

b
43

b
34

b
U

b
42

b
33

b
. 24

b
31

b
22 b13 b

44

b
21

b
12

b
43

b
34

(ELEMENTS OF MATRIX B) b
U

b
42

b
33

b
24

b
41

b
32

b
23

b
14

b
31

b
22 b13 b

44

b
21

b
12

b
43

b
34

b
U

b
42

b
33

b
24

b
41

b
32

b
23

b
14

b
31

b
22 b13

b
21

b
12

b
U

(ELEMENTS OF MATRIX A)

Pu P
12 P13 P

14

ISA GRID

FIGURE 6.7: Data of Matrices A and B Moving from the North and the West
into the ISA Grid.

SELECTOR

REPEATED 68 TIMES

1

o

o

o

C

Y
4

Y
4

Y
4

Y
4

Y
3

Y
3

Y
3

. Y3

Y
2

Y
2

Y
2

Y
2

Y
l

Y
l

Y
l

Y
1

PH

C

C Y4

Y
4

Y
4

Y
4

Y
4

Y
4

Y
4

Y
4

Y
3

Y
3

Y
3

Y
3

Y
3

Y
3

Y
3

Y
3

Y
2

Y
2

Y
2

Y
2

Y
2

Y
2

Y
2

Y
2

Y
1

Y
1

Y
1

Y
1

Y
1

Y
1 \

Y
l

,
: ,

, + , ,
+

P
12 P13

ISA GRID

FIGURE 6.8: RISAL Program for 4x4 Matrix Multiplication

231

C

Y
4

Y
4

Y
4

Y
4

Y
3

Y
3

Y
3

Y
3

Y
2

Y
2

Y
2

Y
2

Y
1

Y
1

Y
1

Y
l

, ,
:
+

P
14

232

Figure 6.7 shows the elements of matrix B moving from the north, and

the elements of matrix A moving from the west into the ISA grid.

Figure 6.8 shows the RISAL program for the matrix-matrix

multiplication process. The symbols Y
l

'Y
2

'Y
3

'Y
4

and C represents the

following instruction,

mult n w,3,6;

1 add ,7,0;
Y

l
=

mov ,0,7;

J mov ,6,1;

mult n w,3,6;

add ,8,0 ;
Y

2
=

mov ,0,8 ;

mov ,6,1;

mult n w,3,6i

add ,9,Oj
Y

3
=

mov ,0,9 ;

mov ,6,1;

mult n w,3,6i

add ,10,0;
Y

4
=

mov ,0,10;

mov ,6,1;

and

233

mov ,7,0;

copy ,O,Qj

data 5,5,0;

mov ,8,0;

copy ,D,Q;

data 5,5,0;

C =
mav ,9,0;

copy ,0,0.;

data 5,5,0;

mov ,10,0;

copy ,0,0;

data s,5,0;

EXAMPLE:

Obtain C=AB, where,

~.8 3 2 :·1 3.6 4.8 6
A =

6.11 4· 3 2.2

L4.2 1 0 9 J
and

f2 .1
-

0 2.3 1.8

3 1 5 6.1
B =

~.6
1.2 2

3.3J

2.2 0 3.6

By using the multiplication process shown in Figures 6.7 and 6.8 we

obtain,

234

58.540001 16.620001 25.439999 48.299999\

104.759995 29.600000 44.279999 84.360001
C =

68.659996 19.060001 28.600000 54.720001

Ln.219994 20.800001 14.659999 46.059998

235

6.3 THE SOLUTION OF LINEAR SYSTEMS USING SSSS

Given the linear system,

(6.3.1)

as defined earlier in section 6.1, where A is a given square matrix of

order n, b a given n-vector. We wish to solve the linear system above

for the unknown n-vector x.

To obtain the vector x we have,

-1
x = A b (6.3.2)

-1
However A is difficult to· obtain, so we need .to factorize the matrix

A into LU factors because Land U are easily inverted systems. So we

have,
LUx = b •

Let

so the system breaks down into 2 triangular systems,

Ly = b (6.3.3)

and Ux = y (6.3.4)

For n=4, the matrix,

fll a
12

a
l3 :l~ a

21
a

22
a

23 24
A =

a
31

a
32

a
33

a
34

a
41

a
42

a
43

a
44 :J

11

i"
u

12
u

l3
U

IJ
1.21 1

0
u

22
u

23
u

24
=

u 3J 1.31 1.32 1 u
33

l 0 I
1.41 1.42 1.

43
1 u4~1 L

To obtain y from (6.3.3) we have,

1 o
1

l
1

J

From (6.3.5) above, we obtain,

Yl = b l

Y2 = b 2-R.2lYl

Y3 = b3-R.3lYl+R.32Y2

*

Y4 b4-R.4lYl+R.42Y2+R.43Y3

To obtain x from (6.3.4), we have,

*
o

x
L 4

From (6.3.6) above we obtain,

x =
1

Y4
u44

Y3-Y34x4

u
33

Y2-(u23x3+u24x4)

u 22

Yl-(ul2x2+u13x3+ul4x4)

u
ll

-

=

To write a RISAL program to solve this problem we implement the

following steps:

236

(6.3.5)

(6.3.6)

Step 1: Read the matrix A into the ISA grid, and factorize it by

using the same concepts used in step 1 and step 2 in

paragraph 6.2.2. The elements of Land U will be held in

the ISA grid, each element in a processing element.

Step 2: As shown in Figure 6.9.

move the elements of L into register 7 of the processing

elements P2l,P3l,P32,P4l,P42' and P43 .

move the elements of U into register 8 of the processing

elements Pll,P12,PI3,PI4,P22,P23,P24,P33,P34 and P44 •

read one's (I) from the north into register 7 of the

processing elements Pll,P22,P33 and P44 .

237

Step 3: As shown in Figure 6.10, by reading the value of the vector b

(b
l

,b
2

,b
3

and b
4

) respectively from the north into the columns

of the ISA grid, we obtain the values of YI'Y2'Y3 and y4 ,as

follows:

in P
Il

we obtain the value of Y
I

(yl=b
l
).

read the value of Y
l

from P
ll

throughout P
2l

, P
3l

and P
4l

and multiply Y
l

by the value in register 7 of these

processing elements, and move the result of the multiplication

into the communication registers, and read them to the west

neighbouring processing eleme~ts P
22

,P
32

and P
42

(register 6).

in P
12

no operation.

in P
22

, we obtain the value of Y
2

by the subtraction of

the value in register 6 from the value of b
2

and move the

value of Y
2

into the communication register.

read the value of Y
2

throughout the processing elements

P
32

,P
42

and multiply Y
2

by the value in register 7 of these

processing elements, and add the result to the value in

K
,
,8 ,8 ,8

1 Ul~" , , , , ,
u

12
u

13
u

14 -r, ..

X " ,8 ,8

R.21
22 ",

" " ,
" 1

u u
24 "/ , 23

"- 7 "

X
,

,8
u3; "

R.31 R.32
,

,
u

34 ,
" 1',1 , ,

7 , 7 , 7 '.

~ R.41 , R.42 R.43 ~~ U44
", , "

,
7 " 7 7 " , , , ,

FIGURE 6.9: Storage of the Elements of L and U in Registers
7 and 8 of the ISA Grid

b
3

b
4

+
b

2
+

b
+1

+

yl=bl

b
2

b
3

b
4

I I I I

t ~ J, l
Yl

R.21 *y 1 R6
Y =b -R6 R6=y ~3 b

4 I 221 2

J. ~ J. 1
Yl Y2

R.3/Yl
R6

R.32 *y 2 +R6 - f?y =b -R6 b
4 3 3

I I T
~) ~

Yl Y3 2
R. 4 /Y3+RG - f->R6

R.41*Y
l

R6
b -R6=y

R.42 *y 2 +R6- f-.R6 4 4

FIGURE 6.10: Determination of the Values of y by Using the
ISA Grid

238

239

register 6. Move the result into the communication

registers and read them to the west neighbouring processing

elements P33 and P43 ·

in P
13

and P
23

no operation.

in P 33' we obtain the value of y 3 by the subtraction of the

value in register 6 from the value of b
3

, and move the

result (which is Y3) into the communication register.

read Y3 into P
43

, and multiply Y3 by the value in register

·7,. add the result to the value in register 6, and move the

result into the communication register, then read it to the

west neighbouring processing element P
44

.

in P
14

, P
24

and P
34

no operation.

in P
44

, we obtain the value of Y
4

by subtracting the value

in register 6 from the value of b
4

.

Step 4: From Step 3 above we have obtained the values of Y
l

'Y
2

'Y
3

and

Y
4

stored in the processing elements Pll,P22,P33 and P
44

.

To determine the values of x
l

,x
2

,x
3

and x
4

' we implement the

procedure as shown in Figure 6.11.

in P
44

, we divide the value of Y
4

by the value in register

8 to obtain x
4

.

read the value of x
4

to the north throughout the processing

elements P
34

,P
24

, and P
14

and multiply x
4

by the values in

register 8 of these processing elements, move the results

into the communication registers, and finally read them to

the east neighbouring processing elements P33,P
23

and P
13

(register 4) .

240

Y -R4
1

R4~ x *u +R4 x =---
1 u

ll
3 13

R4<- -x
2
*u

12
+R4 R4<- -x

4
*u

14
x

2
l' {3 1

x
4

1 1 I
R4t- x *u +R4

Y -R4
3 23 R4<- '- x

4
*u

24
2 x =-- x3 x

2 u
22 't t 4

1 1
y -R4

3 x =--
3 u

33R4 <-
~x4*u34

,/4

1

Y4
x =-

4 u
44

FIGURE 6.11: Determination of the Values of x by Using
the ISA Grid

in P33' we subtract the value in register 4 from the value

of Y3' and divide the result by the value in register 8 to

obtain x
3

'

read the value of x3 to the north throughout the processing

element P
23

,P
13

, and multiply the value of x3 by the value

in register 8 of these processing elements; add the result

to the value in register 4, and move the result into the

communication registers. Finally, read them to the east

neighbouring P
22

and P
12

(register 4) .

in P
22

, we subtract the value in register 4 from the value

of Y2' and divide the result by the value in register 8 to

obtain x
2

'

241

read the value of x
2

to the north into the processing

element P
12

and multiply it by the value in register 8;

add the result to the value in register 4, and move the

result into the communication register. Finally, read it

to the east neighbouring P
ll

(register 4) •

in P
ll

, we subtract the value in register 4 from the value

of Yl' and divide the result by the value in register 8 of

this processing element to obtain the value of xl.

Step 5: read the values' of xi,x
2

,x
3

and x
4

from the south of the

first row of the ISA grid.

EXAMPLE:

Given the linear system,

Ax = b ,

where,
3 3 2

1 2 3
A =

3 6 1

3 3 3

and the vector,

b =

By using the steps mentioned above we factorize the matrix A, to obtain,

L =

fi
2

1

~

1

o
o

l
o
1

and U =

o ~

f2 3

-5

LO

3

-4

3

j
-~I
~

242

To obtain the value of y from (6.3.5), we have,

1

= o 1 12

o o IJ
4 Lll

=

To obtain the value of x from (6.3.6) we have,

3 3

-5 -4

o 3

L

1

1

=
1

1

243

6.4 FINDING THE GENERALIZED INVERSE OF A RECTANGULAR MATRIX USING SS SS

OUr aim in this section is to find the optimal solution x to an

inconsistent linear system,

where A any coefficient matrix and b any right side.

First, we have to find a rule that specifies x. Suppose we know

the value of Ai, for every x, Ax is necessarily in the column space of

A; it is a combination of the columns, weighted by the components of

x. Therefore the optional choice AX is the point p in this column

space closest to the given b. This choice minimizes the error

E=I IAx-bl I. In other words, we project b onto the column space,

Ax = P = pb (6.4.1)

The equation above is enough to determine x itsexf. It is another form

of the normal equation,

T _
AAx (6.4.2)

Certainly x is determined when there is only one combination of the

columns of A that will produce P; the weights in this combination will

be the components of x.

we know several equivalent conditions for the equation Ax=p to

have only one solution:

(i) The columns of A are linearly independent.

(ii) The null space of A contains only the zero vector.

(iii) The rank of A is n.

(iv) The
. T

is invertible. square matr~x A A

In such a case, the only solution to (6.4.1) is,

T -1 T
x = [(A A) A)b (6.4.3)

244

This formula, which is comparatively simple, includes the simplest

case of all when A is actually invertible. Then x coincides with the

_ -1 T -1 T -1
one and only solution of the original system Ax~b: x~A (A) A b~A b.

This suggests another way of describing our aim: we are trying to define

+
the pseudo inverse A of a matrix which may not be invertible.

+
REMARK: A is also called the Moore-Penrose inverse, after its

discoverers, or more commonly known as a generalized inverse of A, as

defined earlier in Section 6.1. But a great many other matrices,

. +
sharing some but not all of the properties we ~ntend for A , have also

been described as a generalized inverse.

+ -1
When the matrix is invertible, that means A ~A When the

matrix satisfies the condition (i)-(iv) listed above, the pseudoinverse

is the left inverse which appears in the formula (6.4.3),

+ T -1 T
A ~ (A A) A . (6.4.4)

But when the conditions (i)-(iv) do not hold, and x is uniquely

determined by AX~P, the pseudo inverse remains to be defined. We have

to choose one of the many vectors that satisfy AX~p and that choice

- + will be, by definition the optimal solution x~A b to the inconsistent

linear system Ax~b. To solve the problem above and calculate the

generalized inverse, we have the rectangular linear system

Ax ~ b ,

T
which after multiplying by A , we obtain

-Ax

Then, by factorizing A into Land U elements, we have,

T
LUx ~ A b

(6.4.5)

(6.4.6)

(6.4.7)

Let

we obtain,

Ux = y ,

T
Ly = Ab,

245

(6.4.8)

(6.4.9)

From (6.4.9) we determine the value of y, and by substituting the value

of y in (6.4.8) we obtain the final value of x.

To write a RISAL program to solve this problem and calculate the

value of x in the case of an (nxm) matrix A when n=3 and m=4, we

implement the following steps:

step 1: Read the matrix A elements from the north into the ISA

grid.

Transpose the matrix A by using the same concept in

paragraph 6.2.1.

T
multiply the matrix A by A by using the concept used in

paragraph 6.2.4. The result will be A and it will be held

in the ISA grid, each element in a processor.

step 2: Factorize the matrix A into Land U compoments by using the

same concept mentioned in paragraph 6.2.2 Step 2.

Move the Land U elements into a different register as has

been done earlier in Step 2 in Section 6.3.

step 3: To calculate the values of y and then x's which is the

generalized inverse, we have to implement Step 3 and Step 4

in Section 6.3, by reading the elements of AT (right hand side)

from the north into the ISA grid, instead of the vector b

mentioned in that section. By repeating this process four

times, we will obtain the values of x.

Step 4: Read the values of x from the south to the north of the ISA

grid.

246

EXAMPLE:

Given the rectangular linear system in (6.4.5), where,

1 4 3

2 0 1
A =

3 2 2

4 1 J
To determine the value of x, we have to implement the RISAL program

mentioned earlier in Step 1, Step 2, Step 3 and Step 4. First by

applying equation (6.4.6) we have,

fl 2 3 4 1 4 ~ r 2 3 41
14 0 2 1 2 0

11
* x = 14 0 2 1 * b

~ 3 2 11 1J 1 2 1 :J 1 2

4 1

~o
14 15 fl 2 3

4l
1

14 21 17 * x =
14

0 2 1

l.!5 1"1 15 11 1 2 1

~

TO factorize Ain equation (6.4.7) we obtain,

1 14 15

0.466667 1 14.466667 10 * x ;.

0.5 0.691244 0.587558

1 2 3 4

4 0 2 1

3 1 2 1

To calculate the values of y, we have (4.6.9) ,

1 Yll Y12 Y13

::l
1 2 3 41

~ 0.466667 1 Y21 Y22 Y23
4 0 2

0.5 0.691244 1 Y31 Y32 Y33 Y34
3 1 2

247

Yll Y12 Y13

::~
[l 2 3 4 -I

I I
Y21 Y22 Y23 ~.mm -0.933333 0.600002 -0.866664/

Y31 Y32 Y33 Y34
0.057608 -0.645159 0.085253 0.4oo92~/

To calculate x's from equation (6.4.8), we have,

130 14 15 -I \xll x
12 x13 x

14

10 I 14.466667 x
21

x
22

x
23

x
24

0.58755~ IX31 x
32 x33 X34 !

L J

1 2 3 4 l
3.533333 0.933333 0.600002 -0.866664\

0.057608 -0.645159 0.085353 0.4oo925J

From the above we obtain,

fll x
12 xl3 x141

-0.098039 -0.098039 0.054902 0.02823531

I /x12
x

22
x

23 x 24 \ = 0.176471 -0.823529 -0.058824 0.411764

-0.682353J t31
x

32 x33 x3~ 0.098039 1.098039 0.145098

which is the generalized inverse of the rectangular matrix A in (6.4.5).

248

6.5 SOME APPLICATION TO THE GENERALIZED INVERSE OF A RECTANGULAR

MATRIX USING SSSS

Consider the system of m linear algebraic equations in n unknowns,

allx l + a 12x 2 +

a
21

x
l

+ a
22

x
2

+

which we write in the form,

Ax ; b •

+ a x
ln n

+ a x
2n n

; b
m

Here A is an mXn matrix, x is an n-vector, and b is an m-vector.

(6.5.1)

We shall solve this system of equations again in terms of the generalised

inverse of A.

THEOREM:

Let A be any generalized inverse of the coefficient matrix A in

(6.5.1). Then (6.5.1) is consistent if and only if,

AA-lb ; b •

In which case the most general solution is,

-x ; Ab + (I-A A)z ,

where Z is an arbitrary n-vector, and I the identity, [Gregory,

Krishnamurthy, 19841.

(6.5.2)

REMARK: If the system of equations is homogeneous, that means if b;O,

the x becomes,

x ; (I-A A)z (6.5.3)

- -1
If A is a square matrix and nonsingular, A;A and, in this special

case x;O is the only solution.

6.5.1 The solution of a Homogeneous System of Equations

First we will solve the equation in (6.5.3) in the case of the

system of equation being homogeneous, and n=3 and m=4. To write a

RISAL program for calculating the value of x, we implemented the

following steps:

249

Step 1: Calculate the generalized inverse of the matrix A by using the

same steps used in the previous Section 6.4.

Step 2: Multiply the generalized inverse 'A by the matrix A by using

the same concepts used previously in paragraph 6.2.4. The

result will be a matrix. Move each element of this matrix to

register 8 of the processing elements of the ISA grid.

Step 3: Read the identity matrix I from the north into the ISA grid,

and move the elements of the identity into register 7 of the

processing elements of the ISA grid, as shown in Figure 6.12.

Step 4: Subtract the value in register 8 from the value in register 7,

and move the result into register 9.

Step 5: As shown in Figure 6.13, read zl from the north throughout the

first column of the ISA grid, multiply the value of zl by the

value in register 9, and move the result into the communication

register. Then read them by the second column of the ISA grid,

so that they will be held in register 6 (west data input

register) .

Read z2 from the north throughout the second column of the

ISA grid, and multiply the value of z2 by the value in

register 9 of this column, and add the result of multiplication

to the value in register 6. Move the result to the

communication register to read them by the third column of

the ISA grid (register 6) .

4x4 ISA GRID

FIGURE 6.12: The Identity Elements and the Matrix A Elements Stored
in Register 7 and 8 of the ISA Grid.

z3
z2 .j.

Z *R9 - ~R6 1
z2*R9+R6 - f)-R6

z3*R9+R6

~ Z \ ~2 I~ z3 ,1 ---

Z *R9 ~ R6
-l- ~

1
z2*R9+R6 - ~R6

z3*R9+R6

!~ zl ~ ~2 I~ ~3

ISA GRID

.J, .J, ~
z *R9 f'R6 -

1
z2*R9+R6 - ~R6

z3*R9+R6

~ I~ ~

FIGURE 6.13: Determination of the Values of x's (Step 4)

250

251

Read z3 again from the north throughout the third column,

and multiply the value of z3 by the values held in register

9. Add the result to the values held in register 6, and move

the result into the communication register.

Step 6: Read the values in the communication register of the processing

elements P
13

,P
23

and P
33

from the south to the north of the ISA

grid. The values of x
l

,x
2

and x3 which is the solution of a

homogeneous system of equations.

EXAMPLE:

Given the linear system of equation in (6.5.1) where,

1 4

2 o
A =

3 2

1

By implementing Step 1 of the RISAL program, the generalized inverse

of the matrix A is,

-0.098039 -0.098039

A = 0.176471 -0.823529

0.098039 1.098039

0.054902

-0.058824

0.145098

0.028235~

0.411764 J
-0.682353

By implementing Step 2 in the RISAL program (A A), we obtain

1.000024 0.000036

0.000027 1.000008

0.000011 0.000002

0.0000361

I
0.000017

1

1.OOOOO~

By implementing Step 3 and Step 4 of the RISAL program (I-A A), we obtain,

252

-0.000024 -0.000036 -o.00003~

-0.000027 -0.000008 -0.000017 1

-0.000011 -0.000002 -O.ooooo~

NOw, if b;O, and vector z , by substituting in equation (6.5.3)

and implementing Step 5 and Step 6 of the RISAL program, we obtain

6.5.2 The Most General Solution of a System of Equations

Now we turn to the most general solution of a system of equations

mentioned earlier in (6.5.2). To write a RISAL program to determine

the value of x in (6.5.2) we implemented the following steps:

Step 1: Implement Step I-Step 5 in the previous paragraph 6.5.1, and

that means we have calculated the generalized inverse of the

matrix A, and the value of x's in case of b~O (homogeneous

system of equations), at the end of Step 5 mentioned above,

the value of x's are stored in the communication register of

the processing elements, P13,P23' and P33·

Move the value of x's to register 10 of .P
13

,P23 and P
33

•

253

step 2: Read the generalized inverse of A into the ISA grid, and mOVe

its elements to register 7 of the processing elements.

Step 3: As shown in Figure 6.14, and by implementing the same concept

in Step 5, in 6.5.1 by reading the values of the vector b

from the north, instead of the vector z. At the end of the

multiplication process of (A b), add the result of this

multiplication to register 10 in P12,P23,P33 and move the result

into the communication registers of P
14

,P
24

and P
34

.

Step 4: Read the value of x's from the communication register of P
14

,

7

P
24

and P
34

from .the south to the north of the ISA grid.

These values are the most general solution of a system of

equations in terms of the generalized inverse.
b

4

b *R7
1

7

R6
b

2
*R7+R6

',).0 , ,

b '10
3 ' ,

b *R7+R6
3 +R10

-I-

*R7+R6

R6
4*R7+R6

7

3

FIGURE 6.14: Determination of the value of x's (Step 3)

254

. EXAMPLE:

Given the system of equations in (6.5.1), where,

T 0 11
0 1 1

1 1

:J ~ 0

By implementing Step 1 of the RISAL program, and by applying (6.4.6) ,

we obtain,

1 0 1 0 fl 0 1 1 0 1 0

0 1 1 0 10 1 1 * x 0 1 1 0

1 1 1 1 ~ 1 1 1 1 1 1

0 1

From (6.4.7)

i2 1 21
~

0 1 01
1 2

;j
* x = 1 1 0

~ 2 ~ 1 1 IJ
By factorizing, we obtain,

1 l [2 1 2 l ~
0 1 0

I 0.5 1

IJ
1.5 1 * x = 1 1 0

L I ~ 1 0.666667 1.33333~ 1 1 1

By applying equation (6.4.9), we obtain,

~.5
Yll Y12 Y13 Y14 1 0 1

~ 1 Y21 Y22 Y23 Y24 = 0 .1 1

~ j 0.666667 1 Y31 Y32 Y33 Y34
1 1 1

255

Y11 Y12 Y13 :l
1 0 1 Cl

01 Y2l Y22 Y23
-0.5 1 0.5

J Y31 Y32 Y33 Y34
0.333333 0.333333 -0.333333

By applying equation (6.4.8), we obtain,

f 1 2 l Ix 11 x
l2 xl3 xl~1 1 0 1

1.5 x
2l

x
22

x
23

x
24 -0.5 1 0.5

l :m"~ x
3l

x
32 x33 x

34
0.333333 0.333333 -0.333333

-0.5 0.5 -0.5-1

0.5 0.5 -0.5 I
0.25 -0.25 0.7~

which is the generalized inverse of the matrix A. To verify this

result by multiplying A A, we obtain,

0.5 -0.5 0.5 o 1

-0.5 0.5 0.5 1 1 =

0.25 0.25 -0.25 1 1

o J
To calculate the value of x in case of b=O, and z =

1 o

o 1

o o
j - o

o

o

1 o

o 1

o o

Multiplying by the vector z, we obtain,

o o 1

o o * 1 =

o o 1

o 01
I

1 0

o 1

J

obtain,

~
J

256

The value of x, where b ~

.

2:2

j
-1

, 11]
and z ~ l~ , is obtained by

implementing Step 2, Step 3 and Step 4 of the RISAL program. Finally

we obtain,

C· 5 -0.5 0.5 -o·~l r:1
~ol

-0.5 0.5 0.5 -0.5 ~ d LO.25 0.7J 0.25 -0.25 21

l2J

101 fol 10-/

/0

l:J
+ ~

l:J loJ

which is the most general solution of a system of equations.

6.6 DELETION FROM A HEAP SORT USING SSSS

The heap sort algorithm uses a data structure called a heap,

which is a binary tree with some special properties. The definition

of a heap includes a description of the structure and a condition on

the data in the nodes. Informally, a heap structure is a complete

binary tree with some of the rightmost leaves removed. (See Figure

6.15 for illustrations) .

DEFINITION:

Let S be a set of keys with a linear ordering and T be a binary

tree with depth d whose nodes contain the elements of S. T is a heap

if and only if it satisfies the following conditions:

1. All internal nodes (with one possible exception) have degree 2,

and at level d-l the leaves are all to the right of the internal

nodes. The rightmost internal node at level d-l may have degree

1 (with no right child) .

2. The key at any node is greater than or equal to the keys at each

of its children (if it has any).

257

We will use the term heap structure to describe a binary tree that

satisfies condition (1). Observe that a complete binary tree is a

heap structure. When new nodes are added to a heap they must be added

left to right at the bottom level, and if a node is removed, it must

be the rightmost·node at the bottom level if the resulting structure

is still to be a heap. Note that the root must contain the largest

key in the heap.

Deletion from the heap means removing the key at the root, the

largest key in the heap, and rearranging the nodes so that the heap

258

o
AB-tree

o
A Complete Binary Tree

50

Heap 1 Heap 2

FIGURE 6.15: B-Tree, Complete Binary Tree, and Heaps

properties are still satisfied. Structurally, the node to be removed

is the rightmost leaf at the bottom level. The key, say, K, from

259

that leaf must be placed elsewhere. The only vacant node is the root,

so we begin there and let the key K filter down to its correct position.

At its final position, K must be greater than or equal to each of its

children, so at each step K is compared to the larger of the children

of the currently vacant node. If K is larger (or equal) it can be

inserted, otherwise the larger child is moved up to the vacant node

and the process is repeated, [Baase, 19781.

The deletion algorithm assumes that there are at least two nodes

in the heap. The algorithm is illustrated in Figure 6.16, by taking

the heap 2 in Figure 6.15 as an example.

To implement the algorithm above using our simulation system,

we need first of all to find a way to embed the heap structure onto

the ISA grid, and rearranging the nodes so that the heap properties

still satisfy the conditions mentioned above.

The binary trees are generally implemented as linked structures;

so that the heap can be stored efficiently in an array in such a way

that accessing a child of a node is quite easy, e.g. the heap 1 in

Figure 6.15 can rearrange its nodes into an H-shape, and then we can

embed it into the ISA grid as shown in Figure 6.17.

To write a RISAL program to solve this problem, we implemented

the following steps:

Step 1: Read the H-shape structure from the north into the ISA grid.

The root will be held in the processing element P
22

, and its

children in P21 and P23 , and their leaves in P13,P33,Pll and

P
31

respectively.

The Heap

/

The larger child of P, 30, is /
greater than K so it moves up
and P moves down.

~
24

FIGURE 6.16: Deletions from a Heap.

260

vacant Node,
P

The key at the root is removed; the
rightmost leaf at the bottom level is
removed. K=6 must~ be reinserted.

Q /
24

The larger child of P, 18, is
greater than K so it moves up
and P moves down.

18

Finally, since P is a leaf,
K=6 is inserted.

261

)

H-shape

Heap
(Binary Tree)

FIGURE 6.17: The H-Shape Embedded into the ISA Grid.

4*4 ISA GRID

Step 2: Read the value in P22 to the north of the ISA grid, which

represents the key in the root.

Step 3: Move the value in P
23

into P
22

.

Step 4: Compare the value in P
21

with the value in P
22

, and store

the largest in P
22

.

Step 5: Move the value in P
33

into P
23

.

Step 6: Compare the value in P
22

with the value in P
23

, and store

the largest in P
22

, and then implement steps 2,3 and 4.

Step 7: Move the value in P
13

into P
23

, and implement Step 6 and Step

2.

Step 8: Move the value in P
21

into P
22

, and implement Step 6.

Step 9: Move the value in P
31

into P 21' and implement Steps 4,2,9,

and 6 respectively.

Step 10: Move the value in P
ll

into P
21

, and implements Steps 4,2,3,4,

2,9 I and 2 respectively.

By using the RISAL program above, the deletion process from heap 1

shown in Figure 6.17, is illustrated below:

P

/
•

1

262

263

1
p

p

8
1

)

(

p

p

1
p

264

6.7 HERMITE POLYNOMIAL INTERPOLATION AND EVALUATION USING SSSS

Interpolation is the process of "reading between the lines" of

a table or the fitting of a smooth curve to a limited set of data.

We take it up first for a number of reasons, the most obvious of which

is that interpolation is frequently used for estimating quantities

from tabulated data. A more important reason is that many numerical

differentiation and integration procedures are derived by using

interpolation to find a smooth approximation and then differentiating

or integrating the result.

There are two kinds of interpolation, depending on the type of

data provided and the kind of result wanted. In the standard type of

interpolation we are given a set of data pOints and require a curve

that passes smoothly through them. In least squares interpolation

generally the data has some uncertainty associated with them and we

want to find a smooth curve that passes sufficiently near the data

points. In standard interpolation the equation of the approximation

curve must have as many parameters as there are data points; in least

squares fitting the number of parameters typically is much smaller than

the number of data points.

The basic problem of interpolation may be stated as follows.

Given a set of data (x, ,y,l, i=l,2, ... ,n, find a smooth curve f(xl that
l. l.

passes through the data. We require the following criteria of the

interpolating curve.·

1. From the problem statement, we must have,

f(x,l = y, , i=l,2, ••• ,n ,
l. l.

2. The function should be easy to evaluate.

3. It should also be easy to integrate and differentiate.

265

4. It should be linear in the adjustable parameters (to simplify

the problem of finding them).

The choice of the interpolating function depends on what one means

by smoothness and on the function to be approximated. Many functions

have been used, the most common of which are polynomials of various

kinds because they satisfy criteria (2) and (3) above better than any

other type of function. Even among polynomial interpolations there

are a number of classes, i.e. Lagrange interpolation, Taylor inter-

polation, Hermite interpolation and others.

OUr aim in this section is to solve Hermite interpolation problem,

but first we will begin with the simplest class, the Lagrange form

which leads us to calculate the Hermite interpolation form.

In Lagrange we consider the problem of determining a polynomial

of degree 1 which passes through the distinct pOints (xo'Yo) and (xl'Yl)

This problem is the same as approximating a function f, for which

f(XO)=YO and f(xl)=Yl by means of a first-degree polynomial inter-

polating, or agreeing with, the values of f at the given points. See

Figure 6.18.

If
(6.7.1)

is the polynomial, then a
o

and a
l

must satisfy,

Y = p(x) = a + a x o 0 0 1 0

Solving these equations for a
O

and a
l

, ~e obtain:

=

Y

f

p

L------------r------------~------------------~X

and

substituting

p(x}

the values of a
O

and a
l

into equation (6.7.1)

=

=

Yo - Y Yo - Y
Y - (x l}x + (l}x

1 - x 1 Xo - xl 0 1

Yl (xo - xl) - xl (YO - Yl) + x(Yo - Y
l

}

Xo - xl

we obtain,

266

267

Yl (xO - xl) - x (y -
1 0 Yl) + x (y - y) o 1

;

Xo - x
1

Y
l

(x
O - xl + xl - x)

+
Y (-x o 1

+ x)

x -
0 xl Xo - x

1

(x - xl) (x - xO)
= Yo

+ Yl
.

(x
O

- xl) (x - x)
1 0

To generalize the concept of linear interpolation, consider finding a

polynomial of degree at most n which passes through (n+l) given points.

This can be viewed as an approximation technique in that, given a

function f, we find a polynomial P which agrees with the values of

the function at certain specified points, and the polynomial P is then

-used to approximate f at other points.

THEOREM:

If x ,xl""'x are (n+l) distinct points and f is a function o n

whose degree is at most n, with the property that,

this polynomial is given by,

where,

p(x) = f(x)L (x) o n,O
+ ••. +f(x)L (x)

n n,n

L k(x) ; n,

(x-x) (x-xl) .•• (x-x 1) (x-x) ... (x-x) o k- k+l n

n

TT
i;O
ilk

(x-x.)
. ~

I for each k=O,l, ... ,n

(6.7.2)

(6.7.3)

(6.7.4)

268

We will write Ln,k(X) simply as Lk(X) when there can be no

confusion as to its degree. Proof of this theorem is given in [Burden,

Faires, Reynolds, 1978).

There are occasions when we want smoothness beyond that provided

by the Lagrange interpolation. such smoothness can be obtained in a

number of ways. One of the simplest is to provide not only the value

of the function at each point, but also the value of its derivative.

We then have Hermite polynomial interpolation.

THEOREM:

If fEe' [a ,b) and x , ... ,x E [a,b) are distinct, the unique o n

polynomial of least degree agreeing with f and f' at x , ... ,x is o n

given by,

H2n+l (x)

where,

H . (x)
n, J

and,
" H . (x)
n,J

n

~
j=O

f(x .)H . (x) +
J n, J

n
~f'(X.)H .(x)

j=O J n,J

2
= [1-2 (x-x.) L' . (x .)) L . (x)

.J n,J J n,J

2
= (x-x .)L . (x)

J n,J

(6.7.5)

(6.7.6)

(6.7.7)

In this context, L . denotes the jth Lagrange coefficient polynomial
n, J

of degree n defined by (6.7.3). Moreover,

if fEe (2n+2) [a ,b) then,

f(x) - H
2n

+
l

(x) =
2 2

(x-x) • •• (x-x) o n
(2n+2) !

for some point ~, with a<~>b. The proof of this theorem is given in

[Burden, Faires, Reynolds, 1978).

269

TO solve the Hermite polynomial interpolation by using our

simulation system, we consider the polynomial of least degree which

agrees with the data listed in the table below for the Bessel function

of the first kind of order zero, to find an approximation of f(x) .

k ~ f(x
k

) f' (x
k

)

0 Xo f(x)
0

f' (x)
0

1 xl f(x
l

) f' (xl)

2 x
2

f (x
2

) f' (x
2

)

By substituting in equation (6.7.3) we obtain,

L2 ,O(X)
(x-xl) (x-x

2
)

=
(x

o
-xl) (x

O
-x

2
)

L2,O(X)
(x-x 2) + (x-xl)

=
(xo xl) (xo -x2)

L2 ,1 (x)
(x-x

o
) (x-x

2
)

=
(xl-x

O
) (x

l
-x

2
)

L2,1(X)
(x-x

o
) + (x-x

2
)

(xl-x
O

) (x
l
-x

2
)

L2 ,2(x)
(x-x

o
) (x-xl)

= (x
2
-x

O
) (x

2
-x

l
)

(x-x) + (x-x)
L2,2(x)

o 1
=

(x2 Xo) (X2 Xl)

By substituting in equation (6.7.6) we obtain,

H2 ,O(X)
2

= [1-2 (x-x) L2 (x») L2 (x) o ,0 ,0

H2 ,1 (x)
2

= [1-2(x-Xl)L2 ,1 (X»)L2 ,1 (x)

H2 ,2(X)
2

= [1-2(x-X2)L2 ,2(x»)L2 ,2(X)

Further by substituting in equation (6.7.7), we obtain,

-, 2
H2 ,0 (x) (x-x) L2 (x) ° ,0
A 2
H2 ,1(X) = (X-X

l
)L

2
,1(X)

" 2
H2 ,2(X) = (x-x

2
) L

2
, 2 (x)

Finally by substituting in equation (6.7.5), we obtain,

The value of HS(x) is accurate to the places listed above.

To write a RISAL program to calculate the value of HS (x), we
,0

implemented the following steps:

Step 1: First we determine the values of L
2

,0(X), L
2

,1 (x) and L
2

,2(x)

in the processing element P
ll

, and LZ,O(X), LZ,l (x), and

L
Z

,2(x) in the processing element P
12

, as follows:

270

Read the values of x, x
o

' xl' and x
2

from the north into

the P
ll

and P
12

of the ISA grid, and store them in register

7,8,9, and 10 respectively. We obtain,

9 and 10 from the value in register 8, and store the results

in registers 11 and 12.

and 12, and store the result in register 13.

8 and 10 from the value in register 9, and store the result

in registers 14 and 15.

and 15, and store the result in register 16.

8 and 9 from the value in register 10, and store the

results in registers 17 and 18.

(X
2

-Xo) (x
2
-x

l
) by multiplying the values in registers 17

and 18 and store the result in register 19.

step 2: In P
ll

, we obtain:

(X-Xl) and (x-x
2

) by subtracting the values in registers 9

and 10 from the value in register 7 and store the results

in registers 11 and 12.

271

(X-Xl) (x-x
2

) by multiplying the values in registers 11 and

12, and store the result in 14.

(X-Xc) by subtracting the value in register 8 from the value

in register 7, and store the result in register 15.

(X-Xc) (x-x
2

) by multiplying the values in registers 15 and

12, and store the result in register 17.

(X-Xc) (x-xl) by multiplying the values in register 15 and

11, and store the result in register 18.

L
2

,O{X) - by dividing the value in register 14 by the value

in register 13, and store the result in 13.

L
2

,1 (x) by dividing the value in register 17 by the value

in register 16,·and store the result in 14.

L
2

,2{X) by dividing the value in register 18 by the value

in register 19, and store the result in 16.

L22 (x) by multiplying the value in register 13 by itself,
,0

and store the result in 13.

L~,l (x) by multiplying the value in register 14 by itself,

and store the result in 14.

L~'2(X) by multiplying the value in register 16 by itself,

and store the result in 16.

Step 3: In P12' we obtain:

(x
O
-x

2
) and (xO-x

l
) by the subtraction of the values in

registers 10 and 9 from the value in register 8 and store

the results in registers 11 and 12.

11 and 12, and store the result in register 14.

register 10 and a from the value in register 9, and store

272

the results in registers 15 and 17.

(x
l
-x

2
)+(x

1
-x

O
) by the addition of the values in registers

15 and 17, and store the result in register la.

registers 9 and a from the value in register 10, and store

the results in registers 11 and 12.

11 and 12, and store the result in register 17.

L
2
' (x) by the division of the value in register 14 by the
,0

value in register 13.

L2,1 (x) by the division of the value in register.la by the

value in register 16.

L2,2(X) by the division of the value in register 17 by the

value in register 19.

273

2 2
At this stage of the RISAL program, the values of L

2
,0(X), L

2
,1 (x),

2
and L

2
,2(X) are held in the processing element P

ll
, and the values of

L;,O(X) , L;,l (x) and L;,2(x) are held in the processing element P12 ·

A

Step 4: To determine the values of H2 ,0(X), H2 ,1 (x), H2 ,2(X), H2,0(X)'

A A

H2 ,1 (x) and H2 ,2(X):

the values in registers 13, 14 and 16 of P
12

were moved

to registers 17, 18 and 19 respectively of P
ll

.

read 1 and 2 from the north into register 7 and 8 of P
ll

.

Step 5: In P
ll

, we obtain:

2(x-x
o

) by the multiplication of the value in register 8

by the value in register 15, and store the result in

register 9.

2(x-x)L
2
' (x) by the multiplication of the value in ° ,0

register 9 by the value in register 17, and store the result

in register 9.

2(x-x
l

) by the multiplication of the value in register 8

by the value in register 11, and store the result in register

10.

2(x-x)L' l(x) by multiplying the value in register 10 by ° 2,

the value in register 18, and store the result in register 10.

2(x-x
2

) by the multiplication of the value in register 8 by

the value in register 12, and store the result in register

17.

2(X-X
2
)L;,2(X) by the multiplication of the value in

register 17 by the value in register 19, and store the

result in register 17.

274

[1-2(x-x)L
2
' (x)] by the subtraction of the value in o ,0 0

register 9 from the value in register 7, and store the

result in register 9.

[1-2(x-X
l

)L2,1 (xl)] by the subtraction of the value in

register 10 from the value in register 7, and store the

result in register 10.

[1-2(X-X
2

)L2,2(x2)] by the subtraction of the value in

register 17 from the value in register 7, and store the

result in register 17.

2
[1-2(x-x)L

2
' (x)]L

2
(x) by the multiplication of the o ,0 0 ,9

value in register 9 by the value in register 13, and store

the result in register 7, which is equal to H2 (x).
,0

2
[1-2(x-X

l
)L2,1 (X

l
)]L

2
,1 (x) by the multiplication of the

value in register 10 by the value in register 14, and store

the result in register 8, which is equal to H
2

,1(X).

2
[1-2(x-X

2
)L2,2(Xl)]L

2
,1 (x) by the multiplication of the

value in register 17 by the value in register 16, and store

the result in register 9, which is equal to H
2

,2(x).

(x-x)L
2
2

(x) by the multiplication of the value in register o ,0

15 by the value in register 13, and store the result in

" register 10, which is equal to H2 (x).
,0

(X-Xl)L~,l (x) by the multiplication of the value in register

11 by the value in register 14, and store the result in

1\
register 11, which is equal to H

2
,1(X).

(X-X2)L~,2(X) by the multiplication of the value in register

12 by the value in register 16 and store the result in

/\
register 12, which is the value of H

2
,2(X).

At this stage of the RISAL program the values of H2 ,0 (xl, H2 ,1 (xl,

~ h A
H2,2(xl, H2,0(Xl, H2 ,1 (xl and H2 ,2(xl are held in the processing

element P
ll

in registers 7,8,9,10,11,12 and 13 respectively.

By reading the values of f(xo" f(xl', f(x2" f'(xo" f' (xl' and

f' (x
2

) from the north of the ISA grid and store them in Pu in

registers 13,14,15,16,17 and 18 respectively, we obtain;

275

f(x)H
2

(xl by the multiplication of the value in register ° ,0

13 by the value in register 7, and store the result in

register 7.

f(x l 'H
2

,1 (xl by the multiplication of the value in register

14 by the value in register 8, and store the result in

register 8.

f(X2'H2,2(X' by the multiplication of the value in register

15 by the value in register 9, and store the result in

register 9.

" f' (x)H
2

(xl by the multiplication of the value in register ° ,0

16 by the value in register 10, and store the result in

register 10.

h

f' (Xl'H2,1 (xl by the multiplication of the value in register

17 by the value in register 11, and store the result in

register 11.

" f' (x2'H2,2(X' by the multiplication of the value in register

18 by the value in register 12, and store the result in

register 12.

Finally, to obtain the value of H
5

(xl ,'we added the values in registers

7,8,9,10,11 and 12.

EXAMPLE:

Consider the problem described above to find an approximation of

f(1.5). The data is:

k

o 1.3 0.620086 -0.522023

1 1.6 0.455402 -0.569895

2 1.9 0.281818 -0.581157

By implementing Step 1, Step 2, and Step 3 of the RISAL program

mentioned above, we obtain:

L2 ,1 (x)

Li,l (x)

L2 ,2(X)

Li,2(X)

By implementing

H =
2,0

H2 ,1 =

H2 ,2 =

" H =
2,0

A

H2 ,1 =

"
H2 ,2 =

=
2
9

= -5

=

=

=

8
9

0

5

Step

4
27

64
81

5
81

4
405

32

1
9

4,

- --
405

2
405

we obtain:

276

277

By implementing Step 5, we obtain:

H
5

(1.5) ; 0.620086(2~) + 0.455402(~~) + 0.281818(8~) -

4 32 2
0.522023(405) - 0.569895(- 405) - 0.581157(- 405)

; 0.511827.

The result above is accurate to the places listed above.

Parallel Polynomial Evaluation:

To locate approximate roots of a polynomial P, it is necessary

to evaluate P and its derivative at specified values. If the nth-

2 n
degree polynomial p(x) ; PO+Pl

x+P 2
x + ... +Pnx , therefore, to

evaluate p(x), it requires (2n-l) multiplications and n additions.

To write a RISAL program to solve the problem mentioned above,

we consider the polynomial,

By rearranging we obtain,

Figure 6.19 illustrates the polynomial above in terms of a balanced

tree.

2 2 4 6
First of all, we have to evaluate the powers of x (l,x ,x ,x)

and place it in each processor, and evaluate P.+P. IX in each processor.
~ ~+

To achieve this concept we implemented the following steps:

step 1: Read the value of x from the north into the first row of the

ISA grid, and store it in register 7.

In P
12

,P
13

and P
14

, multiply the value in the result

register by the value in register 7.

278

+

+
1

x
x

x x

FIGURE 6.19: Balanced Tree Representation of Polynomial Evaluation
Equation

In P
12

, move the value in the result register into register 8.

In P13 and P
14

multiply the value in the result register by

the value in register 7.

In P
13

, move the value in the result register into register 8.

In P
14

, multiply the value in the result register by the value

in register 7, and move the result into register 8.

279

Step 2: Read the value of P
l

,P
3

,P
s

and P
7

from the north (register 3)

multiply the value in register 3 by the value in register

7, and store the result in register 9.

read the value of P
O

,P
2

,P
4

and P
6

from the north (register 3).

Add the value in register 3 to the value in r~ister 9.

In P
12

,P13 and P
14

move the value in the result register

into register 10, and multiply the value in register 10 by

the value in register 8. Finally, store the result in

register 10.

Step 3: Add the value in result register of P
ll

, to the r~ister 10

of P
12

,P
13

and P
14

to obtain the final result.

EXAMPLE:

Given the polynomial,

where Po = 3, P
l

= 4, P
2

= 5, P
3

= 6, P
4

= 7, Ps = 8, PG = 9, P
7

= 10,

and x = 2.

By implementing Step 1, Step 2, and Step 3 of the RISAL program,

we obtain that,

p(x) = 2303.

CHAPTER 7

SUMMARY AND CONCLUSIONS

280

In this thesis an alternative concept to a VLSI-architecture,

the Soft-Systolic Simulation System (SSSS) is introduced and developed

as a working model of a virtual machine with the power to simulate

hard systolic arrays and more general forms of con currency such as the

SIMD and MIMD models of computation. An overall system structure was

defined and the virtual machine discussed in detail. A primitive

assembler/compiler for a special language the Replicating Instruction

Systolic Array Language (RISAL) was devised for experimentation with

the machine.

In the first three introductory chapters, a brief and disciplined

state-of-the-art survey was compiled with up-to-date information on

the present parallel computing environment.

More analytically, in Chapter 1, we have discussed the main

motivations that led to the "parallel way of thinking" and presented

several different forms of exploiting this novel idea. Although

several attempts (at least three of them were presented in this thesis)

have been made to classify these various architectural designs, none

of them seem to succeed in providing a clear distinction between the

classes since sometimes the intersection of two classes is not empty.

Of the architectures designed for highly parallel processing we

presented the pipeline, data-flow computer, and array processors. In

the pipeline computer the sequential, vector processing taxonomy,

some well known and commercially available computers were discussed.

The data-flow computers are grouped into two classes (static and

dynamic), i.e. for the static approach is the MIT data-flow, and for

the dynamic approach, the U-interpreter machine and Manchester 'data-

281

flow machine are presented. The general SIMD architecture is also

presented as an example of the array processor. Also, the inter­

connection networks are discussed as a most currently active research

area in computer architecture.

In Chapter 2, we presented the VLSI technology as a substantial

contender to the achievement of very high-performance, cost effective

computing systems for the future decade. We also presented its

fundamental concepts such as regularity, planarity, use of pipelining

and concurrency, in designing special-purpose and general-purpose

computing structures. For the special-purpose class of VLSI-oriented

systems we established two main contenders which are the systolic

arrays as suggested by H.T. Kung and the wavefront arrays resulting

from the work of S.Y. Kung. Although these systems are cost-effective

they are however specially designed for one particular class of

problems. In order to increase flexibility, the general-purpose

computing structures such as the Warp, built by H.T. Kung and the chip

of L. Snyder can be used to solve a predefined set of algorithms.

Also, a possibility is the Inmos Transputer which is a single chip

processor. The Transputer and Occam language were designed in

conjunction and all transputers include special instructions and

hardware which provides optimal implementations of the Occam model of

concurrency and communication. Following these substantial benefits,

a research program was carried out in the Department of Computer

Studies, at Loughborough University to investigate the simulation of

systolic arrays, by using the fact that OCcam programs can be divorced

from transputer configurations and using the language as a simulation

tool. The general structure of Occam programs which represent the

simulation of systolic arrays is introduced, and the techniques

described have been used successfully to implement designs in Occam.

282

The adoption of Occam offers more direct hardware support for

special purpose designs as well as common architectures. We concluded

this chapter by introducing the MIMD architecture design, and described

the Sequent Balance system installed in the Computer Studies Department,

Loughborough University in 1986. This system was used to develop and

implement the simulation system presented in this thesis.

In Chapter 3, the Instruction Systolic Array (ISA) was introduced

as a highly parallel computer architecture that combines the advantages

of systolic arrays with the idea of a universal machine, which is

capable of solving a large variety of problems.

The analysis of the relationship between the MIMD type mesh­

connected parallel computer or Processor Array (PA) , and the Instruction

Systolic Array (HI\),(1l!t\)shows that programs on a PA can be simulated by

equivalent programs on either of the two other models such that the

delay is at most proportional to the square root of the number of

processors. Asymptotically, the same delay occurs in the simulation

of programs on an ISA by equivalent programs on an IBA whereas in the

opposite direction we have only constant factor delays. Therefore,

with respect to this worst case analysis the ISA is superior to the

IBA. Since no instructions have to be broadcast, there is only local

information transfer in the ISA. This property is especially

advantageous with respect to its realization using VLSI technology.

The only main advantage of the IBA over .the other two models is its

conceptual simplicity: it is much easier to design and understand

283

programs on an IBA than on an ISA.

Although the PA is the most powerful of the three types of

parallel architectures, its main disadvantage is that each of its

processors needs its own program store and has to be individually

programmable. Because of this increased complexity of the processors

the area of a PA is much larger than the area of an IBA or ISA which

makes it less suitable for VLSI. The comparison with MIMD- and SIMD­

machines shows that the instruction systolic arrays are at least as

powerful as array type SIMD-machines. Thus, the large variety of

programs on SIMD-machines is easily simulated on ISA. While in many

applications the high degree of independence of the individual

processors of MIMD-machines is not exploited, the SIMD concept seems

to be too restrictive.

In the remainder of this chapter there are many algorithms solved

by using the ISA which shows that the ISA is a flexible and powerful

parallel architecture well suited for VLSI.

In Chapters 4 and 5, using the flexible architecture (ISA) as a

virtual machine programmed in Occam, we developed and implemented a

soft-systolic simulation system (SSSS) where the emphasis was on

executing programs systolically rather than systolic movement of data

An overall system structure was defined. We demonstrate the feasibility

of the system by concentrating on the System and Machine Preparation,

Virtual Machine, and Replicating Instruction Systolic Array Language

(RISAL), and its RI SAL compiler.

More analytically, in Chapter 4, the system and machine

preparation used to develop the system was discussed. We reported

that the Balance 8000 Sequent computer system running under the Oynix

operating system at Loughborough provides an excellent environment

for software development parallel program using support tools for

i.e., creation and manipulation and parallel program development.

The main features of Loughborough Occam were introduced and used to

develop the system.

The virtual machine introduced has three basic sections:

a) An ISA network of data and control paths.

b) A set of virtual spoolers for driving the ISA computation and

opening up the communication bandwidth of the array.

c) A collection of processing elements (PE) descriptions for

creating specific ISA grids.

The Instruction Systolic Array was introduced as an orthogonal

grid of processing elements. Each processing element executes a

number of simple operations, and includes memory for intermediate

results and registers for communication with other processing cells.

Each PE is activated by a combination of an instruction and selector.

We introduced the virtual spoolers which played the role of

buffers for the ISA array interface with higher levels of the system,

allowing the bandwidth of the input to meet that of the ISA. The

284

grid architecture was a simple specification of network connections

between processors, the PE libraries simply containing cell descriptions

which responded to ISA instructions with different characteristics.

Using Loughborough Occam, we described the implementation of the

virtual machine in detail. We concluded this chapter by describing

the processing element (PE) considered in our simulation system which

285

was a very general element which allows the choice of a wide range

of arithmetic and logical operators, and allows the simulation of a

wide class of algorithms without the need to develop more special

purpose PE'S immediately. The structure of the processing element is

described in detail, and the implementation process using Loughborough

occam is also presented in detail.

Chapter 5 constitutes a complement to the implementation of the

simulation system introduced in Chapter 4. The Replicating Instruction

Systolic Array Language (RISAL) is presented here as a suitable medium

in which to prepare and debug the ISA control programs, and a method

for generating the necessary form of instructions for the ISA. Also,

the RISAL compiler was introduced to allow a simple but adequate

design environment. "RISAL accepts instructions in an assembler-like

form, but is fairly permissive about format within the constraints

of the syntax. The syntax of RISAL is described in detail. RISAL

contains a proportion of semantic rules not indicated in the syntax

and allows programs (instruction, selector and data files) to be

produced using the same syntax and compiler. The instruction, selector,

and data files are described in detail, and can be prefixed with a

replicating command which will generate the following instruction by

a specified number, and also prefixed with another command to

replicate the following lines by a specified number. We used these

replicating commands extensively to achieve a reduction of RISAL

program coding.

The Pascal language was used to develop and test the RISAL

compiler whose task was to read the replicating instruction systolic

array language elements and transform them into a form suitable for

the virtual machine to run. The specification and implementation

process of the RISAL compiler is described in detail. By then, a

number of components are identified and connected serially to form

286

the Soft-Systolic Simulation System (SSSS). This chapter was concluded

by testing the simulation system to examine the performance of the

solution architecture.

In Chapter 6, the Soft-Systolic Simulation System (SSSS) was used

to solve a wide range of algorithms. We have shown the simplicity of

this implementation which emphasises the practical significance of

the ISA as a flexible array processor architecture. These implementations

required a small set of instructions and smaller capacity local memory

for the processor, thereby facilitating massive parallelism in a

smaller area. While preserving the advantages of the systolic array,

namely local communication, regularity and identical simple cell, the

ISA concept used in our simulation system overcomes the main disadvantages

of the systolic arrays, namely their lack of flexibility. Another

important aspect of the ISA is their fault tolerance. If defective

processors can be bypassed, a large part of the remaining array may

still be used by adjusting the programs to an array of smaller size.

Naturally the power of our simulation system depends on the size

of the instruction set. We feel that the restriction to such a simple

instruction set is necessary to keep the processors small enough, in

order to allow integration of many processors on a single chip.

Although RISAL is very primitive it has been useful in

illustrating the ISA's capabilities and has suggested some improvements

287

to the design of the PE, the interfacing arrangements such as spooling

for the virtual grid and a number of additional features to produce

a more robust, version of RISAL itself.

To allow a wide flexibility in PE development it was observed

that reading operation definitions from a file (in alphabetical order)

including operation codes allowed new commands to be enlisted easily

inside RISAL and permitted the same code for different operations in

alternative PE's. we remark here that care must be taken in using

duplicate codes but no real problems were encountered.

For RISAL, two main constructs suggest themselves as follows:

i) Replicated line section (REPS): For example, data n,03,OO;

data n,03,00; REPS (count) [null ,0,0;data n,03,OO] ;null ,0,0:

which would repeat the section of the line in brackets count times.

The main difficulty in implementing this statement is keeping

track of REP nesting and checking that the correct number of

instructions are generated.

ii) Replicated line shift (REPLS): of the form,

REPLS(count,shift) [line]:

Here a specified line is replicated count times and on each

replication is shifted right or left. 'Shift' places according

to the sign of the shift. Instructions falling off the end of a

line must be neglected and spare places filled with a default

operation like null.

Many variations to these basic constructions such as cyclic line

shifting, shifting of line sections, 'and conditional line shifting are

also apparent - but amount only to improving the readability of the

ISA program.

288

In the ISA design which is introduced in this thesis, the ISA instruction

is represented as an 8 digit integer with each field being 2-digits wide

to allow for the possible implementation of 100 instructions and an

internal memory address space of.loo instructions. The port specifications

also allows 100 combinations of input/output but only the first 16 have

been used.

To improve the communication between the registers it is necessary

to utilise the extra slots to allow for multiple communication registers

in each cell. These operations can be implemented more effectively by

using bit logic and slices, but Loughborough OCCAM is restricted in

this respect. Furthermore, a 2-digit field also allows a wide range of

library PE's to·be developed.

The data file introduced here is more complex than the instruct and

selector. file, as it "requires the specification of inpu_~ for the' four

possible boundaries of the ISA grid. The current implementation does

not expose all the inherent parallelism in collecting. the boundary data,

as we can define four files one for each boundary,'and then use the

buffers in parallel. However, there is a considerable overhead in

checking that sufficient boundary data is available. This requires the

specification of four separate files. In our implementation, one file

is defined and the boundary input and output is sequentially buffered.

This makes the checking and the setting up of the data input sequence

easier and more related to the algorithms being simulated. For large

grids however this method 'will become impractical and" addin"g a pre-

processor to the ISA to separate out the data into temporary files seems

the. best alternative. 0.

In general, the reading of input and writing of output data is

288a

performed in the ISA in parallel with the ISA execution. Clearly this

is the place where any bottlenecks are likely to occur especially. for

large n (large grid size). It is clear that the matrix size and

structure of the ISA is useful mainly when the matrix is small, dense

or banded. However, the ISA operation will become slow for the case of

large sparse matrices, hence the present system design with a bounded

number of processors can simulate smaller networks without difficulty.

There are a number of issues concerning the problem of transforming

programs that were originally designed for different models 'of parallel

computers into ISA programs. Among these different models are the MIMD

and SIMD type mesh-connected processor arrays and some variants of the

ISA. The main result is that an arbitrary program that runs on an (nxn)

mesh-connected parallel computer in k steps can be transformed into an

ISA program having O(nk) steps. In many cases, however, especially when

the original machine is of SIMD-type, this transformation introduces

only a delay of 0(1). Often it is possible, e.g. in the case of two­

dimensional systolic algorithms, to re-design an existing algorithm.

Sometimes it will be necessary to develop a new algorithm in order to

meet the requirements of the ISA.

Naturally, the power of the ISA depends on the size and complexity

of the instruction set ,,', leadSto the use of complex processors which

will inevitably slow down the whole system. Besides, the integration

of many different types of processors is not easy, especially if other

types of problems are to be considered i.e. graph theoretic problems.

Thus, our Instruction Systolic Array having a different and more powerful

set of instructions would Y\td to be much more complex again.

288b

Finally, the ISA design can be considered analogous to the

choreography of the ballet which consist in fitting a story to both

music and scenario. In the ISA, the problem corresponds to the story,

the algorithm to the ballet, the timing steps to the dance movements

and the VLSI layout to the scenario. Thus, the instruction stream

from the top of the ISA and the selector stream from the left of the

ISA are analogous and should be planned in advance so that each

instruction when executed meets a required selector bit. In view of

these considerations, the ISA seems to be a candidate for the

realization of a highly parallel VLSI computer design.

REFERENCES

ALFRED, V. AHO, JEFFREY, D. ULLMAN [1977]: "Principles of Compiler

Design", Addison-Wesley Series in Computer Science and

Information Processing, Bell Laboratories, Murray Hill, New

Jersey, 1977.

289

ARVIND, and GOSTELOW, K.P. [1982]: "The U-Interpreter", IEEE Computers,

Feb. 1982, pp.42-49.

ARVIND, and THOMAS, R.E. [1980]: "I: Structures: An Effioient Data

TYpe for Functional Languages", MIT/LCS/TMN-178, Sept. 1980.

ATALLAH, M.J., KOSARAJU, S.R. [1984]: "Graph Problems on a Mesh­

Connected Prooessor Array", JACM, vol. 31, No. 3, Jul. 1984.

BAASE, S. [1978]: "Computer Algorithms: Introduction to Design and

Analysis", Addison-Wesley Series in Computer SCience, 1978.

BARNES, G.H. ET AL [1968]: "The IUiac IV Computer", IEEE Trans.

Comput., Vol. C-17, No.8, Aug. 1968, pp.746-757.

BASKET, F. and SMITH, A. J. [1976]: "Interference in MuZ tiprocessor

Computer Systems with Interleaved Memory", Communications of the

ACM, Vol. 19, No.6, June, 1976.

BEAR, J.L .. , [1976]: "Multiprocessing Systems", IEEE Trans.Comput.,

Vol. C-25, No.12, Dec. 1976, pp.1271-1277.

BRENT, KUNG, H.T. and LUK [1983]: "Some Linear Time Algorithms for

Systolic Arrays", CMU-ROL-83 and Invited paper 9th world

Computer Congress, Paris, 1983.

290

BURDEN, R.L., FAIRES, J.D., REYNOLDS, A.C. (1981): "Numerica~ Ana~ysis",

Prindle, Weber and Schmidt Incorporated, 20 Newbury Street,

Boston, Massachusetts 02116, 1981.

CHANG, D. Y. ET AL (1977):"On the Effective BandJJidth of Parane~

Memories", Vol.C-26, No.S, May 1977, pp.480-490.

DE BOOR, c. (1972): "E~ementary Numerica~ Ana~ysis: An A~gorithmic

Approach", McGraw-Hill Kogakusha Ltd., Second Edition, 1972.

DENNIS, J.B. (1980): "Data F~ow Supercomputer", IEEE Computer, Nov.

1980, pp.48-S6.

DENNIS, J .B. (1974): "First Version of a Data Flow Procedure Language",

computer Science, Vol.19, Springer-Verlag, 1974, pp.362-376.

DEW, P .M. (1984): "VLSI Architectures for Prob~ems in Nwnerica~

Computation", Workshop on Progress in the Use of Vector and

Array Processors, eds. Paddon D.J. and Pryce, J.D., pp.1-24.

DEW, P.M., MANNING, L.J., MCEVOY, K. (1986): "A Tutorial on Systolic

Array Architectures for High Performance Processors", 2nd Int.

Electronic Image Week', Nice, 1986, and Report No. 205, Leeds

University.

ENSLOW, P.H. (1977): "Multiprocessor Organisation - A Survey", Comp.

Surveys, Vol.9, No.l, March 1977, pp.l03-129.

FISHER [1984]: "Imp~ementation Issues for A~gorithmic VLSI Processor

Arrays", Ph.D. Thesis, 1984, CMU, Pittsburgh.

FLYNN, M.J. [1972]: "Some Computer Organizations and Their Effective­

ness", Trans. Comput. C-21, 1972.

FLYNN, M.J. [1966]: "Very High-Speed Computing Systems", Prec. of

the lEE, Vol.54, No.12, Dec. 1966, pp.1901-1909.

FOSTER, M.J. and KUNG, H.T. [1980]: "The Design of Special-Purpose

VLSI Chips", Computer, Vol.l3, No. 1, Jan. 1980, pp. 26-40.

291

GANDIO, J.L. and ERCEGOVAC, M.D. [1982]: "A Scheme for Handling Arrays

in Data Flow Systems", Proc. 3rd Int.Conf. Distributed Computing

Systems, 1983, pp.235-242.

GEHRIG, E. ET AL [1982]: "The CM* Testbed", IEEE Computer. Oct.1982,

pp.40-53.

GREGORY, R.T., KRISHNAMURTHY, E.V. [1984]: "Methods and Applications

of Error-Free Computation", Springer Verlag, New York, 1984.

GUIBAS, L.J., KUNG, H.T., THOMPSON, C.D. [1979]: "Direct VLSI

Implementation of Combinatorial Algorithms", Proc. Caltech conf.

on VLSI, Californian Institute of Technology, pasadena, 1979,

pp.509-525.

GURD, J.R., KIRKHAM, C.C. and WATSON, 1. [1985]: "The Manchester

Prototype Data-Flow Computer", Comm. ACM, No. 1, Jan. 1985,

pp. 34-52.

HAMBRUSCH, S.E. [1983]: "VLSI Algorithms for Connected Component Problem",

SIAM J. Computing, Vol.12, Nr.2, 1983.

HANDLER, W. [1982]: "Innovation Computer Architectures - How to Increase

Parallelism But Not Complexity", in Parallel Processing Systems,

Evans, D.J. (Ed.), Cambridge University Press, 1982, GB, pp.1-41.

HAYES, J.P. [1978]: "Computer Architecture and Organisation",

McGraw-Hill, Kogakusha Ltd., Japan, 1978.

HIGBIE, L.C .. [1972]: "The Omen Computers: Associative Array

Processors", IEEE Comp.Conf., 1972, Digest, pp. 287-290.

HOARE, C.A. [1978): "Communicating Sequential Processors",

Communications of the ACM, Vol.21, No.8, Aug. 1978, pp.666-677.

HOBBS, L.C. and THESIS, D.J. [1970): "Survey of Parallel Processor

Approaches and Techniques", in Parallel Systems: Technology and

Applications, Hobbs et.al (Eds.), spartan Books, New York,

1970, pp.3-20.

HOCKNEY, R.W. and JESSHOPE, C.R. [1981]: "Parallel Computers·

Architecture: Programming and Algorithms", Adam Hi1ger Ltd.,

Bristol, England 1981.

KNUDE, M., LANG, H.W., SCHIMMLER, M., SCHMECK, H., SCHRODER, H.

[1985]: "The Instruction Systolic Array and Its Relation to

Other Models of Parallel Computer", Proc.lnt.Conf. Parallel

Computing 85, North Holland 1985.

KNUTH, D.E. [1973]: "The Art of Computer Programming", vol. 3:

Sorting and Searching,Addison Wesley, 1973.

KUNG, S. Y. [1985]: "VLSI Array Processors", lEE ASSP Magazine, July

1985, pp.5-22.

KUNG, S.Y., LO, S.C., LEWIS, P.S. [1987): "Optimal Systolic Design

for the Transitive Closer and the Shortest Path Problems",

292

IEEE Trans. Compt. vol. C-36, No.5, 1987, pp.603-614.

KUNG, S.Y. [1987), "VLSI AI'r'ay Processors", in Systolic Arrays,

Will Moore et al (eds.), Adam Hilger, Bristol and Boston, 1987.

KUNG, H.T. [1984), "Systolic Algorithms for the CMM Warp Processor",

CMUC-CSA-84-158 (7th Int.Conf.).

KUNG, H.T. [1979), "Let's Design Algorithms for VLSI System", Proc.

Conf. Very Large Scale Integration, Architecture, Design,

Fabrication, California Institute of Technology, Jan. 1979,

pp.65-90.

KUNG, H.T. and LEISERSON, C.E. [1978): "Systolic Arrays (for VLSI)",

in Proc. Sparse Matrix Symp. (SIAM), 1978, pp. 256-282.

LANG, H.W. [1985): "The Instruction SystoZic Array, a Parallel

Architecture for VLSI", Integration, the VLSI Journal 4, 1986,

pp.65-74.

LANG, H. W. [1987): "Transitive Closure on the Instruction SystoZic

Array", Technical Rep. Institut for Informatic and Praktische

Mathematik, Keil Univ., F.R. Germany, 1987.

LANG, H.W. [198"1)" "ISA and SISA: Two Variants of a General Purpose

Systolic Array Architecture", Proc. Second Int.Conf. on

Supercomputing, Vol.l, 1987,. pp.460-465.

LANG, H.W., SCHIMMLER, M., SCHMECK, H., SCHRODER, H. [1983): "A Past

Sorting Algorithm for VLSI", LNCS 154, Springer-Verlag, 1983.

293

LAWRIE, D.H., LAYMAN, T., BEAR, D., RANDAL, J .M., [1975]: "GLIPNIR -

A Programming. Language for ILLIAC IV", Comm.ACM, Vol.18, March

1975, pp.157-164.

LILLEVIK, S.L., EASTERDAY, J.L. [1984]: "Throughput of Multiprocessor

with Replicated Shared Memories", National Computer Conference,

1984, pp. 51-56.

McKEOWN, G.P. [1986]: "Iterated Interpolation using Systolic Arrays",

ACM Trans.Math. Software, Vol.12, 1986, pp.162-170.

MEAD, C.A. [1981]: "VLSI and Technological Innovations", in VLSI 81,

Proceedings of the 1st Int. Conf. on Very Large Scale

Integration, Univ. of Edinburgh, Aug. 1981, J.P. Gray (ed.),

Academic Press, London, U.K., pp.3-11.

MEAD, C.A. and CONWAY, L.A. [1980]: "Introduction to VLSI System",

Addison-Wesley, Reading, Mass. 1980.

MEGSON, G.M. [1984]: "Implementing Systolic Algorithms in OCCAM",

Technical Report, Leeds University, 1984.

MEGSON, G.M. [1987]: "Novel Algorithms for the Soft-Systolic

Paradigm", Ph.D. Thesis, 014518102, L.U.T., 1987.

294

MOLDOVAN, 0.1. [1983]: "On the Design of Algorithms for VLSI Systolic

Arrays", Proceedings of the IEEE, Vol. 71, No.l, Jan. 1983,

pp.1l3-120.

MONGENET, C., PERRIN, G.R. [1987]: "Synthesis of Systolic Arrays for

Inductive Problems", Lecture Notes in Computer Science 258,

Springer-Verlag, 1987, pp.260-277.

295

MURTHA, J. and BEADLES, R. (1964): "Survey of the Highly Parallel

Information Processing Systems", Prepared by the Westinghouse

Electric Corp., Aerospace Division, ONR, Rept. No. 4755, Nov.1964.

MUSLIH, O.K., EVANS, D.J. (1987): "Simulation of Soft-Systolic

Programs", Int.Rept. No. 408, Dept. of Computer Studies, L.U.T.

1987.

NASSIMI, D., SAHNI, S. (1979): "Bitonic Sort on a Mesh-Connected

Parallel Computer", IEEE Trans. Computers, vol. C-28, 1979.

PATEL, J.H. (1981): "Performance Of Processor-Memory Interconnections,

for. Multiprocessors", IEEE Trans.Comp., vol. C-31, No.lO, Oct.

1981, pp.771-780.

RAMAMOORTHY, C.V. and LI, H.F. (1977): "Pipeline Architecture",

Computer Survey Vol.9, No.l, March 1977, pp.61-102.

ROBERT, Y., TRYSTRAM, D. (1986): "Systolic Solution: of the Algebraic

Path Problem", in W. Moore, A. McCabe, R. Urquhart (eds.):

Systolic Arrays, Adam Hilger, Bristol, 1986, pp.171-180.

RODRIGUE, G.H., (1982): "Parallel Computations", vol. 1, Academic

press, New York, 1982.

ROTE, G. (1985): "A Systolic Array Algorithm for Algebraic Path

Problem (Shortest Path; Matrix Inversion)", Computing 34, 1985,

pp.191-219.

SCHIMMIER, M. (1987): "Fast Sorting on the Instruction Systolic Array",

Inst. Fur Informatic U.P.M., Universitat.Kiel, West Germany,

Tech.Rept. No.8705, 1987.

SCHIMMLER, M., SCHRODER, H. [1987): "Finding aU Cut-Points on the

InstT'Uction Systo~ic Array", computer Science Laboratory,

Australian National University, Canberra, ACT, 2601, Australia,

1987.

SCHMECK, H. [1986): "A Comparison-Based Instruction Systolic Array",

in Parallel Algorithms and Architectures, M. Cosnard et al. ,

Editors, Elsevier Science Publishers B.V., North-Holland, 1986,

pp. 281-292.

SCHRODER, H. [1988]: "Top-Down Designs of Instruction SystoZic Arrays

for Po~ynomia~ Interpowtion and Eva~uation", Computer Science

Laboratory, Australian National University, Canberra, ACT 2601,

Australia, Feb. 1988.

SCHRODER, H., KRISHNAMURTHY, E.V. [1988): "Genera~ized Matrix

Inversion using Instruction Systo~ic Arrays", Computer Science

Laboratory, Australian National University, Canberra, ACT 2601,

Australia, March, 1988.

SEIGEL, H.J. [1979): "Interconnection Networks for SIMD Machines",

IEEE Computer, June 1979, pp.57-65.

SHORE, J.E. [1973): "Second Thoughts on Para~lel Processing". Comput.

Elect.Eng., pp.95-109, 1973.

SLOTNICK, D.L., BORCH, W.C., MCREYNOLDS, R.C. [1962): "The SO['OMON

Computer", 1962 Fall Joint Computer Conf., American AFIPS Proc.

296

Vol.22, Washington, Spartan, D.C. 1962, pp.97-107.

SNYDER, L. [1982]: "Introduction .to the Configurable Highly Parallel

Computer", IEEE, Comput. 1982 (15), pp.47-56.

STONE, H.S. [1971]: "Parallel Processing with the Perfect Shuffle",

IEEE Trans.Comput. Vol. C-20, 1971.

STONE, H.S. [1980]: "Parallel Computers", in Introduction to Computer

Architectures,- Stone, H.S. (ed.), SRA, Chicago, USA, 1975,

pp.318-374.

SWAN, R.J., FULLER, S.H., SIEWIOREK, D.P. [1977]: "CM - A Modular

Microprocessor", National Computer Conference, 1977, pp. 637-646.

THOMPSON, C.D., KUNG, H.T. [1977]: "Sorting on a Mesh-Connected

Parallel Computer", CACM, Vo1.20, 1977.

297

ULLMAN, J.D. [1984]: "Computational Aspects of VLSI" , Computer Science

Press, 1984.

UNGER, S.H. [1958]: "A Computer Oriented Toward Spatial Problems",

Proc. IRE, Oct. 1958, pp.17-44.

WARS HALL , s. [i962]: "A Theorem on. Boolean Matrices", J .ASsoc.Comput.

Mach. 9, 1962, pp.11-12.

WULF, W., BELL, C.G. [1972]: "Cnmp a Multi-Mini-Processor", AFIPS Fall

Joint Computer Conf. American AFIPS Proc. Vol. 22, Washington,

D.C., Spartan, 1962, pp.97-107, 1972, FJOC, pp.765-777.

APPENDIX I

Loughborough Occam™ Compiler
Version 5.0 Documentation

UNIX is a trademark of A.T. & T. Technologies Incorporated, occam is a trademark of Inmos
Limited

298

Help for running the occam compiler

A source 'occam' file COCCAM and INMOS are trademarks of the INMOS group of

companies) must be of the form '*.occ', to compile it to form an 'a.out' command file

use the default options. For example to compile 'my_frrstocc' :-

occam my_first.occ

An executable object 'a.out' is produced. As a shortcut you can omit the '.occ' affix and just

say 'occam my_first', the compiler will add on the affix for you. If a program is split into

several files these can be separately compiled and linked together using the occam compiler

and built in linker. Each previously compiled occam program is specified in the command

line in the form '*.0' e.g. ;-

occam main.occ numericlib.o screenlib.o

This will compile the source of 'main' and link it in with the pre compiled library occam

files 'numericlib.occ' 'screenlib.occ'. The -1 option is used to generate new versions of

library file objects. Various switch options are provided, mainly for compiler debugging.

Flags can either be put separately ('-g -I') or together and in any order C-Ig', '-gl'). The

following switches may be useful :-

-g :

occam -g fast.occ

Compile the occam program as before but run the resulting program immediately Ca

compile,load and go option). If flag options are specified that apply to the run of the program

these will be passed on as in 'occam -gqc fast'.

-1 :

occam -1 new_lib

Compile the program and produce object but do not link the object files together to

produce an object program. This option is used for bulding up libraries of routines or to cut

down the compilation time for compiling one long program.

-0 :

occam keep_it -0 saverun

Compile the program as normal but place the object program in the file 'saverun' rather

than the default 'a.out'. Useful for saving several occam object files at the same time.

299
-x:

occam -x oldjashioned.occ

Compile according to the strict Inmos occam specification, LUT extensions (see file

'occamversion') currently include :­

Multiple source file cross linking.

Dynamic features.

-c:

Variable PAR replicator counts.

Floating point arithmetic.

a.out -c

Run the object program with cursor addressable facilities enabled, the standard library

procedures 'goto.x.y' and 'clear.screen' require these facilities.

-G:

occam -G errocprone

Compiles the file as normal but generates a symbol file as well (in this case it would be

'errocprone.sym'), this is used by the run-time system to inspect the values of variables.

-q:

a.out -q

Run the object program without producing any characters to the screen other than those

output by the program (unless CfRL c used). This enables occam programs to dump

output that can be processed by other occam programs.

-Fand -M:

occam -F num.occ

'-F Includes the floating point library routines to provide a simple real number arithmetic

capability. '-M' includes both the floating point and mathematical library routines to provide

mathematical library routines.

-I :

This provides the features oCthe Inmos proto-occam definition (see 'occarn_ version) such

as STOP and TIME, it should be used where possible as it is closer to the occarn-2 defmition.

300

Full list of compiler option flags

The full (often cryptic) range of switch options are as follows. Several switch flags can be

given, in any order and either separately or together. The mnemonic character giving the

switch is highlighted by a capitallener. They are divided into sections - user defined flags,

and system defined options, which are selected by prefixing with '%'.

User Flags

-% The next flag(s) are system flags - switch flag mode.

-c Run the program with Cursor addressable options enabled. The library routines

'clear. screen' and 'goto.x.y' need this flag set. If used for the compiler must also give

the -g option.

-e Produce object/run object for Execution tracing. The resulting object fIle is then run

with the '-e' option. This utility is described in 'tracerinfo'.

-f Force full occam semantic check on use of variables.

A variable (not vectors though) can not be set within a PAR construct if the

declaration is outside the PAR. This applies equally to procedure calls that change

global variables.

-g Run the resulting object fIle if compilation succeeded.

The program Goes immediately it is ready to.

-h Print out this 'Help' information.

-i Force an Interrupt immediately before start of execution - immediately displays the

debug help menu. This enables break and trace points to be setup prior to anything

being executed.

-I Compile but do not link the occam source. Needed when using mUltiple occam

source Library files.

-m Check that every channel Match properly on execution, channels can have only one

input and one output process during execution.

-0 Produce an Object program with name given by the non-switch argument

following this switch. Enables you to choose an object file name other than

'a.out'.

-q Run the program without outpuning some non occam program produced messages -

e.g. 'OCCAM Start Run'. Must give -g option as well 'q' stands for Quiet.

301

Useful when producing output to be piped or processed by other programs.

-w Suppress the Warning messages from the compiler - when you have seen these

warnings once you may find it less irritating to suppress them on subsequent

compilations - does not affect error reporting or any other compiler action.

-x Do not permit any local LUT eXtensions in the source text. See 'occinfo' for

information about these - for example recursion and EXTERNAL procedure

defmitions. Useful if moving an occam program for use on another occam compiler

system.

-F Include the standard Floating point library routines. Provides routines to read or

write floating point routines to channels.

-G Produce a symbol table file (with affix '.sym') for use with the 'm' option in the

dynamic debugger for symbol value examination.

-I Permit the use of INMOS proto-occarn version 2. These changes include the use of

'TIME' instead of 'NOW', the 'STOP' primitve and the use of 'Stopping IF' - an

alternative without any TRUE conditions will STOP.

-L Use Long winded load, all the 'C' libraries are added at the last momment rather than

using the pre-linked object, this may be useful if a user occam/C library calls a 'C'

routine that is not used in the occam run time system. See 'libraryhelp' for more info.

-M Include the Mathematical library and floating point routines.

-0 Produce optimized object May improve run time by 20%.

-R Use Randomized scheduling when ruilning the program - the same scheduler

choices will not be made on separate executions. This gives non-deterministic

execution and will be slighdy slower but may be useful occasionally.

-S Do not include the Standard I/O routines with the object. This library is included

by default, there is no reason not to want to include it unless you want to devise a

totally new one.

-T The next argument is a Timing defmition file built by the 'timebuild' utility to be used in

-- conjuntion with the '-e' option, supplying '-T automatically selects '-e'. If this option

is not selected the execution timings are taken from the source library file 'times'. Look

at the 'timerinfo' help file for more details.

-V The compiler will normally desist reporting errors and warnings after the first fifty or

303

anything -like '-n' in the UNIX 'make' command. Useful when options start getting

complicated. A No operation facility.

-Q Undocumented feature under test

-S Do not apply some Simplifying transformations on the program. These currently

remove constructs with no processes in them and redundant SEQ and PAR headers.

These save a small amount of space and time at run and compile time and there is

little point in turning off this option.

-X Print out the procedures that have been defmed in the link files but has not been

referenced - detects eXtra procedures defmed across files but not used.

-Y Produce the linker assembler output in a permanent file rather than in a temporary

file on '/tmp'. Enables the output from the linker to be debugged.

-Z Get the linker to print out all the definitions it is told about

Description of the library routines

Standard Library

304

Provide commonly used routines to read and write to the keyboard and screen channels.

The routines are written in 'C' and occarn and use standard C or 'curses' I/O routines.

There are also general routines for use to pause or abort a program as well as to use the

'C' random number routines. They are available by default to all programs unless the -S

compiler flag is used to override their inclusion.

EXTERNAL PROC Sir. to. screen CV ALUE s []) :

Output the string s (a byte array with byte 0 as the length). The whole string is

guaranteed to be printed in one sequence, two concurrent calls to Sir. to. screen will

not interleave. Equivalent to the program fragment :-

PROC sir. to. screen CV ALUE s []) =
SEQ n = [1 for s [BYTE 0]]

screen! s [BYTE n] :

EXTERNAL PROC num.to.screen (VALUE n) :

Output a number to the screen. The number can be signed, and uses the minimum number

of characters (no leading spaces). Equivalent to the 'C' language 'printf ("%d",n);'

statement

EXTERNAL PROC Slr.to.chan (CHAN c,V ALUE s []) :

Output the string s to a channel 'c'. The call 'Slr.to.chan (screen,"fred")' is identical to

'Slr.to.screen (fred)'. Useful for string output to files.

EXTERNAL PROC num.to.chan (CHAN c, VALUE n) :

Output ascii string for the number 'n' to channel 'c'. Like 'slr.to.chan' but for numbers

not channels.

EXTERNAL PROC num.to.screen.f (VALUE n,d) :

Output a number to the screen in a field of width 'd'. If the number is too big for the

field the number is written out in full regardless, the routine call num.to.screen.f (n, 1) is

equivalent to num.to.screen (n). The routine uses the 'C' language printf format %nd

where n is the field width.

305

EXTERNAL PROC goto.x.y CV ALUE x,y) :

Use the 'curses' package to implement a cursor 'goto' facility. No error checking is

made that the move is within the screen area. The x-axis is across the screen and y-axis

down, co-ordinate (0,0) is in the top left hand corner of the screen. The first line is used

by the run time system to print messages.

EXTERNAL PROC clear. screen :

Use curses to clear the screen,if cursor addressable option not used this will still try to

clear the screen using the curses "CL" terrncap defined string.

EXTERNAL PROC num.from.keyboard CV AR n) :

Read a number from the keyboard and assign to variable 'n'. The routine is not very

sophisticated. It will read negative numbers (start '-') and ignore any leading 'space'

characters. The number must be followed by a non-digit, this character is read by the

routine and not available on a subsequent 'Keyboard? ch' process. There is no check

that the number is too big for the number range. It will expect at least one digit otherwiae it

will give an error message.

EXTERNAL PROC num.from.chan (CHAN c, V AR n) :

Read a number from a channel 'c'. If 'c' is the keyboard this is equivalent to calling

'num.from.keyboard'.

EXTERNAL PROC abort.program :

Force the program to abort execution. An explanatory message is printed so that the

cause will be known.

EXTERNAL PROC force. break :

Perform the same action as if 'CfRL-C' was pressed at the terminal. The user interface

routines can then be run under the menu selection facility provided.

EXTERNAL PROC random CV ALUE d,VAR n) :

Return a pseudo random number in the range ° to d-l by using the 'C' 'random 0'
function in the variable n. The VALUE of d must not be zero. The sequence of random

numbers will be modified if the '-R' run option is used.

'.

306
EXTERNAL PROC init.random CV ALUE n) :

Initialise the seed for the random number generator for subsequent calls to the procedure

'random'. Uses the 'C' language routine 'srandom 0'.

EXTERNAL PROC trace.value CV ALUE n) :

Print out the integer value of 'n' on the screen with the preflx string Trace value: ' -

this makes debugging a little easier.

EXTERNAL PROC open.rue (VALUE path.name D,access D,CHAN io.chan) :

Connect the channel 'io.chan' to a UNIX rue. The procedure must be provided with the

pathname of the rue as a string, and the access mode ("r" read access,"w" write

access,"a" append access). Subsequent input or output on 'io.chan' will fetCh/put a

single character from/to the rue. Attempts to input past the end of rue will receive the value

-1.

EXTERNAL PROC close.rue (CHAN io.chan) :

Cease connection of the channel with its currently open rue.

EXTERNAL PROC open. pipe (VALUE command. name [],access [],CHAN io.chan) :

Connect the channel 'io.chan' to a UNIX pipe running command 'command.name'. The

procedure must be provided with the UNIX command name and 'r' to read from it, or 'w'

to write to it). Subsequent input or output on 'io.chan' will fetch/put a single character

from/to the rue. Attempts to input past the end of rue will receive the value -1.

EXTERNAL PROC close. pipe (CHAN io.chan) :

Cease connection of the channel with its currently active command.

EXTERNAL PROC system.call CV ALUE command D,VAR code) :

Execute the UNIX command contained in the string 'command' and return the value in

'code' TRUE if the command succeeded without error and FALSE otherwise.

EXTERNAL PROC set.timers CV ALUE initvalue) :

Set up the interval timers ITIMER_REAL,ITIMER_ VIRTUAL to the given start value.

These are used for timing sections of code on the V AX. U~es 'setitimer' call. Note that

307

using W AlT' primitive will reset the timer so it can only be used for simple sections of

code. It should also be noted that it times the whole program and not a single occam

process.

EXTERNAL PROC get.real.timer (V AR secs,micro.secs) :

Get the current elapsed timer values in seconds and microseconds. Timers count

downwards and are not especially accurate. Uses 'getitimer' call.

EXTERNAL PROC get.cpu.timer (V AR secs,micro.secs) :

Get the current executed CPU timer values in seconds and microseconds. Timers count

downwards and are not especially accurate.

Roating Point Library

Routines to perform floating point input/output. They are available by giving the

compiler flag '-F' when linking an occam program. Roating point value can be

assigned and transmitted via channels just like normal integer values, see the file

'occamversion' for details as to the language extensions introduced to suppon them.

Input/Output Routines

EXTERNAL PROC fp.num.to.screen (VALUE FLOAT f) :

Print out the floating point number in 'C' language float format "%6.6f'. If the number is

too small or too big the standard 'C' action will be taken.

EXTERNAL PROC fp.num.to.screen.f (VALUE FLOAT f,V ALUE w,d) :

Print out the floating point number in 'C' real format "%w.df". If the number is too small

or too big problems will arise.

EXTERNAL PROC fp.num.to.screen.g (VALUE FLOAT f) :

Print out the floating point number in 'C' real format "%g". This will use the most

appropriate format - exponent form if necessary.

EXTERNAL PROC fp.num.to.chan (CHAN c,V ALUE FLOAT f) :

Write a number to a channel. If channel is 'screen' this is equivalent to

'fp.num.to.screen'. Useful for writing data to files.

308

EXTERNAL PRoe fp.num.from.keyboard (V AR FLOAT 1) :

Read in a floating point number. The number is expected to begin with a digit or '.'

(indicating 0.), leading spaces are ignored. The number ends on a non-digit and this

character will not be available to subsequent reads from the keyboard channel. The

following are valid input numbers followed by the interpreted value for the input

45.35 (45.35) 0.0004 (0.0004) .0 (0.0) 1. (1.0) 124 (124.0)

EXTERNAL PROe fp.num.from.chan (eHAN c,VAR FLOAT 1) :

Read a floating point number from a channel 'c'. If channel is keyboard this is equivalent

to 'fp.num.from.keyboard'.

Mathematical Routine Library

Mathematical routines from the UNIX '-lm' library. These are included by specifying the

'-M' flag. They are all in single precision even though double precision 'C' routines are

called.

EXTERNAL PROe fp.sine (VALUE FLOAT a, V AR FLOAT res) :

Return the sine of 'a' in 'res'. Angles are in radians.

EXTERNAL PROe fp.cosine (VALUE FLOAT a, V AR FLOAT res) :

Return the cosine of 'a' in 'res'. Angles are in radians.

EXTERNAL PROe fp.are.sine (VALUE FLOAT a, V AR FLOAT res) :

Return the arc sine of 'a' in 'res'. Angles are in radians.

EXTERNAL PROe fp.are.cosine (VALUE FLOAT a, V AR FLOAT res) :

Return the arc cosine of 'a' in 'res'. Angles are in radians.

EXTERNAL PROe fp.arc.tan (VALUE FLOAT a, VAR FLOAT res) :

Return the arc tangent of 'a' in 'res'. Angles are in radians.

EXTERNAL PROC fp.exp (VALUE FLOAT a, VAR FLOAT res) :

Return e to the power 'a' in 'res'.

309

EXTERNAL PROC fp.log CV ALUE FLOAT a, V AR FLOAT res) :

Natural logarithm of 'a' in 'res'.

EXTERNAL PROe fp.sqrt CV ALUE FLOAT a, V AR FLOAT res) :

Square root of 'a' in 'res'. Returns an occam error if 'a' is negative.

310

The run time system

As you might hope when an occam program is executed it will follow the program execution

until one of three things happen.

1] The program tenninates

2] CTRL-C is pressed on the keyboard

3] An error is detected.

In the case of (2) and (3) a debug option will be displayed, this allows you to abort the

program, ignore the interrupt (continue), and to restart the program again. Other options

control the '-e' trace output, provide a 'system' debug option (which is only really useful to

someone who knows their way around the compiler), an option to specify which source me

you want to debug and the 'screen animated debug'. This later option should be of most use

and is described in detail in the next section.

Errors come in two types 'Fatal Errors' and just 'Errors', it is not possible (or wise) to

continue execution after the former, but the latter may be ignored if the symptom is expected.

The run time display debugger

This utility that runs under the run time system enables users to look at the status of the

processes during execution of a program.

The utility requires the use of a cursor addressable terminal. The system provides selective

display of the source file(s) that were compiled to form the program together with a column

showing the currently existing processes on those particular lines of the source file.

When initially entered by pressing 'CTRL-C' the program execution will be halted, the

execution can be restarted in 'stepped mode' so that the display will be updated every occam

scheduler action.

Breakpoints and trace points can be added at selected line numbers. Break points cause

the debug display to be automatically entered when any of the process executes any of the

source lines on which a break point is set. Trace points cause temporary entry into the

debug display before resuming normal execution after five seconds pause.

If a me has been compiled with the '-G' flag then the value of occam variables and the status

of channels can be printed. Because an occam program can have several processes running

with different values to the same identifiers (e.g. within PAR n = [0 FOR 7],'n' has a

different value for each separate process) a single process must be selected as before this

311

facility can be used. When selected a second window within the debug display is opened and

the values printed by the program are placed within it

Straightforward use of the debug display will normally entail running a program and

pressing CfRL-C when a dubious section of code is about to be executed and entering the

debug display Cz' command). Thereafter the commands 'p' to find the next process, 'f

and b' might be used to see whereabouts the process is executing. The program can then be

single stepped through using the 'r' command to start execution and's' command to stop

execution. Eventually exit of the debug displayer can be made with the 'x' command.

There are two special markers that are used, '>' on a line indicates the currently selected line

and '-' the currently selected process.

The commands where practical have been made similar to those in UNIX 'vi'. (UNIX is a

trademark of A.T. & T.).

Available commands

Moving about within the fIle

"D- Move forward half a page of source text.

"F- Move forward a page of source text.

"V- Move backward half a page of source text.

"B- Move backward a page of source text.

:<number> - Move to given line <number> in file.

k - (or "K) Move down one line.

j - (or" J) Move up one line.

/<string> - Find given <string> in file from current position.

n - Find next string occurrence for match string selected by 'r command.

p - Find the next process in the file.

TracelBreakooints

b - Add breakpoint at currently selected line.

t - Add tracepoint at currently selected line.

d - Delete the tracelbreak point at the selected line.

c - Delete all the points in the current fIle.

C - Delete all the points in all the fIles.

P - Print process status of the currently selected process.

D - Deselect the current debug occam process.

S - Select the current debug occam process.

312

N - Select next process on the same line, if there are several processes that are shown as

executing on the same line then'S' will make an arbitrary choice, 'N' can be used to override

this and step through the processes until the one that is desired is selected.

Symbol inspection

m - Select a symbol to display, if no symbols have been selected before then the symbol

window is opened and the value of the variable or the status of a channel.

M - Repeat the previous 'm' command. To fmd the value of the same variable name again.

Execution control

a - Abort the run.

r - Run debug display if a debug process is selected the debug display will be re-entered

every time that process is run, otherwise the debug display will be run each time any process

is run.

> - Execute in single step mode. Only a single step is executed.

s - Stop the debug display from running temporarily after a 'r' or 'x' command.

u - Change display step interval (initial step interval is I), this permits the location of

processes to be seen after 'n' steps rather than after each and every time it is executed. Not

particularly useful.

x - Exit display debugger, program will proceed normally until a tracelbreak point is found or

'"C' is pressed.

X - Exit to main 'IIC' menu so that program restart,abort,fIle selection or system debug can

be done. Used when you wish to debug a different fIle or to set things going again after

setting up breakpoints.

Miscellaneous

? - Print out this help information.

"L- (or "R) Redraw the current displayed information.

i-Buffer keyboard channel input text for the program.

o -Print overall data about the processes currently executing - how many are in each

process status, stack use and clock time.

Y - Display the occam program's current screen output temporarily.

313

v - Invoke the 'view' command on the occam source file (this is just like 'vi' but with read

only access to the fIle - This can be used to provide more powerful string search facilities

when debugging.

Display key

The column between the line number and the text is used to display the number and status of

processes executing on that line. Because of the compilation these may be out by a line or

two in some circumstances. Most sequential code will be executed as a single block - so a

process will not move through a SEQ block one step at a time necessarily.

The special symbol 'P' does not represent a process, it indicates that a procedure has been

called at that point. 'P' therefore represents the 'call point' of the procedure.

The following symbols are used to represent the various process statii :­

* - An active process - may be chosen for execution at any time.

a - Process waiting for one or more ALT guards to become TRUE.

w - Process waiting for a clock time or for input/output.

c - Process is waiting for one or more child PAR processes to terminate.

In addition break and trace points are indicated in the column by giving a 'T for a trace

point and 'B' for a break point.

So a display of :-

316:3*w : occam.s? razor

indicates that there are three active processes and one process waiting input on line 316.

Keyboard and Screen input/output

Because the debug display routine is fully interactive the screen and keyboard data from

the program can not be handled in the same manner as normal. Input for the keyboard must be

input using the 'i' command - a whole line can be input and will be buffered up for program

input in this way. Screen output should be displayed as it is produced (but a copy of it will

be sent to the screen image that will redisplayed on exit from the display debugger) or the 'V'

command. Strings can have escapes in them '*n' means newline,'*r' carriage return and ,**,

space.

314

Non standard occam features

This compiler to the best of my knowledge (Mr.R.P. Stallard of the Department of

Computer Studies, Loughborough University of Technology, U.K.) implements the

occarn language as defined in the occam programming manual published by INMOS

. limited subject to a few restrictions and extensions that are described in this file. These

differences are intended to make transfer of occam programs from different

implementations feasible. It is intended to be compatible to the INMOS booklet version

and the Prentice Hall book definition. OCCAM,INMOS and Transputer are registered

trademarks of the INMOS Group of Companies.

INMOS proto-occam language revisions

The following additional features introduced into INMOS occam products can now be

selected by the compiler flag option '-I'.

STOP primitive.

TIME channel.

IF on finding none of the conditions TRUE STOPs.

Restrictions

These restrictions are either optional features as described in the published language

definition or compiler restrictions unlikely to limit ordinary use of occam.

No configuration section rules.

The operator '»' uses V AX. shift right operator.

No prioritized PAR, all parallel processes have equal priority.

Number of arguments to a procedure limited to 255 maximum.

AFTER returns a time difference not a boolean value.

Extensions

PAR replicator count and base can be variables

A variable number of processes can be created by replicated PAR.

Recursive calls to procedures permitted

A procedure can call itself.

Screen channel can be used by more than one process

The special screen channel can be accessed by any number of different

occ·am processes. This facilitates debugging of occam programs and is not

difficult to implement.

Multiple source file compilation

Procedures and Variables can be defined in one file and referenced in another.

The definition is preceded by the new keyword 'LIBRARY' before 'PROC' and the

definition must be at the outer level of program nesting.

References to procedures in other files are defined by preceding 'PROC' by

315

'EXTERNAL' and replacing the '=' start of procedure definition by':' to indicate end

of definition.

e.g.

File main.occ File sub.occ

EXTERNAL PROC f (value n) :

SEQ

f(27)

LlliRARY PROC f (value n) =

SEQ

The two fIles can be compiled by :-

num.to.screen (n*102)

str.to.screen ("Enter next"):

occam main.occ sub.occ to compile both together

occam sub.occ -I to compile sub.occ separately

occam main.occ sub.o to link in the pre-compiled sub.occ me

In 5.0 this has been extended to variables and channels, in the case of vectors of

variables and channels the size need not be specified but the type must be :-

Defming file :-

LlliRARY CHAN network,comrns [56] :

LlliRARY VAR blot [BYTE 4],spot [42] :

LlliRARY V AR FLOAT hyper,bolic [2],active [17] :

Referring fIle :-

EXTERNAL CHAN network,comrns [] :

EXTERNAL VAR blot [BYTE],spot D,bolic [FLOAT]:

EXTERNAL VAR FLOAT hyper,active 0 :

Floating point arithmetic

The compiler permits the use of floating point numbers and arithmetic operators.

The compiler uses 32 bit V AX floating point throughout

Floating point numbers are declared by following V AR by the new keyword float:-

V AR FLOAT x,y,factor : -- Floating point number declaration

V AR num,ply : -- Normal occam variables.

Floating point number constants are supported these may be in two forms with

decimal point or with decimal point and exponent :-

x:= 1.45

316

y:= 2.3e-23 + 3.4e+1 -- Note that the exponent must be given a sign

The following operators may be used on floating point numbers (both operands

must be floating point)

+ - * / < > <= >= = <> - (monadic minus)

x := 1.3 + (y * factor)

IF

x> 67.8

y := -3.4 -- Note use of monadic minus.

Parameters to procedures must also have type set to V AR FLOAT or VALUE

FLOAT - the actual parameters must be of the same type.

PROC sum (VALUE FLOAT a D,b [], V AR FLOAT res D, VALUE D) =

PAR i = [0 FOR n]

res [i] := a [i] + b [i] :

VAR FLOAT t [23],s [45],w [32] :

sum (t,s,w;12)

Floating values may be transmitted along channels - but there are no checks that

the sender and receiver both expect floating point values. Input of floating point

numbers can be carned out by calling the library routine 'fp.num.from.keyboard'

and output by the routine 'fp.num.to.screen'.

Interconversion of floating point and integers is performed by the assignment

operator :-

num :=x -- Convert floating 'x' to integer 'num'

y:=num -- Convert integer 'Dum' to floating 'y'

Attempts to use logical and shift operators on floating point numbers are flagged as

errors.

APPENDIX 11

THE SOFT-SYSTOLIC SIMULATION SYSTEM

(SSSS) PROGRAM LISTINGS

1. ISA

2. PROCESSING CELL

3. PLUG

4. RISAL COMPILER

PROGRAM NO. 4.3.1.A.

THE INSTRUCTION SYSTOLIC ARRAY (ISA).

Notes:
Implements an orthogonally connected grid of processors,
each processor can be plugged into the system or a group
of processors can be plugged into the same grid point.
Programs and data are read from files and buffered into
the array. Results are read from any of the four boun­
daries as dictated by the program. The grid cannot be
closed down systolically, the program termination is
performed by an abort at the end of the user program.

Dimensions of array and interface routines.

DEF n = 4 :

EXTERNAL proc abort.program :

317

EXTERNAL proc open.file(value path.name[],access[],chan io.chan):
EXTERNAL proc close.file(chan io.chan) :
EXTERNAL proc str.to.chan(chan c, value s[]) :
EXTERNAL proc fp.num.to.chan(chan c, value float f)
EXTERNAL proc fp.num.from.chan(chan c, var float f)
EXTERNAL proc num.to.chan(chan c, value n) :
EXTERNAL proc num.from.chan(chan c, var n)
EXTERNAL proc str.to.screen(value s[]) :
EXTERNAL proc fp.num.to.screen(value float f)
EXTERNAL proc num.to.screen(value n) :
EXTERNAL proc fp.num.from.keyboard(var float f)
EXTERNAL proc num.from.keyboard(var n) :

-- Plug to expand system, each plug point can be an
m*m ISA grid.

EXTERNAL proc plug(chan wn,we,ws,ww,rn,re,rs,rw,
in,is,sw,se) :

-- Plug/processor grid allocation function.

PROC loc(VALUE i,j, VAR r) =
SEQ

r := «(i-l)*(n+l»+j)-l

-- Sequential to parallel program bus expander.

PROC source(CHAN out[], link, VALUE t)=
VAR k,i,j,buffer[n]
CHAN ptr :
SEQ

IF
t = 0

open.file("selector","r",ptr)
TRUE

open.file("instruct","r",ptr)
num.from.chan(ptr,k)
link!k
SEQ i=[l for k]

SEQ
str.to.screen("*n")

IF
i > k

PAR j=[l for n)
VAR tl :
SEQ

TRUE
SEQ

loc (j , 1 , tl)
out[tl) ! 0

SEQ j=[l for n)
SEQ

num.from.chan(ptr,buffer[j-l)
IF

t = 0
SEQ

num.to.screen(buffer[j-l))
str.to.screen(" ")

PAR j=[1 for n)
VAR tl :
SEQ

loc(j,l,tl)
out[tl)!buffer[j-l)

close.file(ptr)
str.to.screen("*n Source closed")
link!O :

-- Garbage collector.

PROC sink(CHAN in[), link) =
VAR i,j, k :
SEQ

link?k
SEQ i=[l for k)

PAR j =[1 for n)
VAR tl :
SEQ

loc(j,n,tl)
in[tl+l) ?any

str.to.screen("*nSink closed")
link?any :

Data bus expander.

PROC data.source(CHAN ans[),bns[),awe[),bwe[),link =
DEF n2=2*n,n3=3*n :
VAR k,i,j,t :
VAR FLOAT buffer[4*n)
CHAN ptr :
SEQ

open.file("datain","r",ptr)
num.from.chan(ptr,k)
link! k
str.to.screen("*nk = ")
num.to.screen(k)
SEQ i=[l for k]

SEQ
str.to.screen("*ni = ")
nurn.to.screen(i)
SEQ j=[0 for 4]

IF
i <= k

SEQ
num.frorn.chan(ptr,t)

str.to.screen("*n")
IF

t < 0
SEQ z =[0 for n]

318

buffer[(j*n)+ z] := 0.0
TRUE 319

SEQ z =[0 for n]
SEQ

TRUE

fp.num.from.chan(ptr,buffer[[j*n)+z])
fp.num.to.screen(buffer[(j*n)+z])

SEQ z=[O for n]
buffer[(j*n)+z] := 0.0

PAR j=[l for n]
VAR tl,t2 :
SEQ

loc (j , 1 , tl)
loc(j,n,t2)
t2 : = t2 + 1
PAR

bns[tl]!buffer[j-l]
bwe[t2]!buffer[n+(j-1)]
awe[tl]!buffer[n3+(j-1)]
ans[t2]!buffer[n2+(j-1)]

c1ose.file(ptr)
str.to.screen("*n Data Source closed")
link!O.O :

Parallel to sequential bus condenser.

PROC data.sink(CHAN ans[],bns[],awe[],bwe[], link)
DEF n2=2*n, n3=3*n :
VAR k,i,j :
VAR FLOAT buffer[4*n]
CHAN ptr:
SEQ .

open.file("dataout","w",ptr)
link?k
SEQ i=[1 for k]

SEQ
PAR j=[1 for n]

VAR tl, t2
SEQ

loc(j,1,tl)
loc(j,n,t2)
t2 : = t2 + 1
PAR

SEQ

ans[t1]?buffer[j-l]
awe[t2]?buffer[n+(j-1)]
bns[t2]?buffer[n2+(j-l)]
bwe[tl]?buffer[n3+(j-1)]

SEQ j=[O for 4]
SEQ

str.to.chan(ptr,"*n")
SEQ z=[O for n]

SEQ
fp.num.to.chan(ptr,buffer[(j*n)+z])
str.to.chan(ptr," ")

str.to.chan(ptr,"*n")
close.file(ptr)
str.to.screen("*n Data sink closed")
link? any
abort.program :

Main program.
Setups and starts the isa grid.

DEF size = n*(n+1) :
CHAN ans[size],bns[size],awe[size],bwe[size],sel[size],ins[size]:

CHAN link [3)
VAR i, j :
PAR

-- The grid.

PAR i=[l for n)
PAR j=[l for n)

VAR tl,t2,t3,t4
SEQ

loc(i,j,tll
loc(j,i,t2l
t3 :=tl+l
t4 : = t2 + 1
plug(ans[t2),awe[t3),bns[t4],bwe[tl],bns[t2],bwe[t3],

ans[t4],awe[tl],ins[t2],ins[t4],sel[tl],sel[t3]l

Program interface.

source(sel,link[O],Ol
sink(sel,link[O]l

source(ins,link[l],ll
sink(ins,link[l]l

-- Data input/output.

data.source(ans,bns,awe,bwe,link[2]l
data.sink(ans,bns,awe,bwe,link[2)l

320

PROGRAM NO. 4.3.2.

THE PROCESSING ELEMENT.

Notes:
General processor to illustrate the development of

a PE for the ISA grid, it is placed in the grid by a
plug procedure which allows the same defintion to
implement a grid of processors and is control bya
assembler program generated by the RISAL.P compiler.

EXTERNAL proc num.to.screen(value n) :
EXTERNAL proc fp.num.to.screen(value float f)
EXTERNAL proc str.to.screen(value sIll :

LIBRARY PROC PE(CHAN wn,we,ws,ww,rn,re,rs,rw,
in,is,sw,se)~

DEF msize ~ 20:
VAR
VAR
VAR
SEQ

FLOAT a,b, mem[msize],c, i.o.buf[4]
i,j,s,port,p[4],fd[4],op,old.i,old.s
running :

running :~ true
mem [1] : ~ O. 0
mem [0] : ~ O. 0
old. i : ~ 0
old.s :~ 0
WHILE running

SEQ
-- Fetch instruction.
c :~ mem[1]
PAR

in?i
is!old.i
sw?s
se!old.s
wn!c
we!c
ws! c
ww! c
rn?i.o.buf[O]
re?i.o.buf[1]
rs?i.o.buf[2]
rw?i.o.buf[3]

old.s :~ s
old.i :~ i

-- Decode intstruction.

SEQ
SEQ j ~[O for 4]

SEQ
fd[j] :~ i\100
i :~ i/lOO

port :~ fd[2]
op :~ fd[3]

-- Communication enable.

SEQ
SEQ i~[O for 4]

SEQ

321

p[i] := port\.2
po·rt := port/2

SEQ i=[O for 4]
IF

p[i] = 1
me m [i+3] := i .o.buf[i]

Execute instruction.

a := me m [fd[l]]
b := mem[fd[O]]
IF

(5<>0) AND (op <> 0)
IF

op = 1
mem[l] := mem[O]

op = 2
mem [0] : = a + b

op = 3
me m [0] • - a - b

op = 4
me m [0] • - a * b

op = 5
me m [0] : = a / b

op = 6
SEQ

IF
a < b

mem[O] .-
TRUE

mem[O] :::
op = 7

SEQ
IF

a > b
mem[O] .-

TRUE
mem[O] :=

op = 8

a

b

a

b

mem[l] .- me m [fd[l]]
op = 9

mem[fd[O]] := a

322

PROGRAM NO. 4.3.l.B.

THE PLUG PROCEDURE.

Notes:
Single processor plug use to plug a processor
into the grid.

EXTERNAL proc PE(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se):

LIBRARY PROC plug(CHAN wn,we,ws,ww,rn,re,rs,rw,in,is,5w,se)=
SEQ

PE(wn,we,ws,ww,rn,re,rs,rw,in,is,sw,se)

323

(*. PROGRAM NO. 5. 3. *)

(* THE RISAL COMPILER *)

(* This compiler is used to compile the RISAL language *)
(* and develop the ISA programs *)

program lan(input,output,error,keywords);
label 99 ; (* for abort *)
const

asig= 4; nSig=8;
size = 20; bufsize = 80;
com= 44; sem = 59; col = 58;
rbk = 41; lbk = 40; aend = 101; rep =103; repl=106; p=104;
d = 105; s = 4; none = 102;
srbk = 93; slbk = 91;

type
words = array[l .. asig] of char;

var
tk,f,n,k,count,statcount,rpos,cpos,int,lim:integer;
mwords,linecount,errs,sindx : integer;
progm,data,selector,eflag,drepflg : boolean;
number :array[l .. nsig] of char;
saveline:array[1 .. 2000] of integer
kword:array[l .. size] of words;
tval:array[l .. size] of integer;
buf:array[l .. bufsize] of char;
error,keywords:text;

procedure intialise;
(* set up current keywords and intial values *)
var i,j integer;

ch char;
begin

(* get keywords *)
reset(keywords);
read(keywords,mwords); readln(keywords);
if mwords > size then

begin
writeln('Too many words in vocabulary');
go to 99

end;
for i:= 1 to mwords do

begin
for j := 1 to asig do

read(keywords,kword[i][j]);
repeat read(keywords,ch) until ch = ' ';
read(keywords,tva1[i]); readln(keywords);

end;

rpos := 0; cpos:= 0; linecount := 0; errs .- 0;
eflag := false; drepflg := false;

rewrite(error) ;
(* keywords array now contains keywords *)

end;

procedure m(i,j:integer);
(* error message routine *)
var k :integer;
begin

324

(* book keeping *)
for k := 1 to 11 do write(error,' ');
if eflag then

begin
for k :~ 1 to rpos do write(error,buflkl);
writeln(error);
eflag := false;

end;
(* format message *)
if (i<>9) and (i<>lO) then

begin
errs := errs + 1;
write(error,linecount,':');
for k := 1 to (cpos - 1) do write(error,'-');
write(error,'·');writeln(error);

end;
case i of

325

l:writeln(error,'program must start with p,d, or s');
2:writeln(error,'expected"("but found'" ,buflcposl,"");
3:writeln(error,'expected")"but found"',buflcposl,"");
4:writeln(error,'expected":" ,"i" ,or"end"or"]"');
5:writeln(error,'too many data elements');
6:writeln(error,'incorrect data boundary spec');
7:writeln(error,'expected integer arguments');
8:writeln(error,'expected ":" ,";"');
9:writeln(error,'errors detected = , ,errs);

10:writeln(error,'no errors detected');
II:writeln(error,'expected integer operands in instruction');
12:writeln(error,'should be real value in data expression');
13:writeln(error,'require integer in rep count parameter');
14:writeln(error,'more than required number of statements');
15:writeln(error,'attempt to read past end of file');
16:writeln(error,'alphabetic string found require keyword');
17:writeln(error,'invalid character');
18:writeln(error,'selector should be "0", or "1"');
19:writeln(error,'malformed expression');
20:writeln(error,'expected "1", or ,"I"');

end;
(* fatal message abort *)
if j = 1 then goto 99

end;

procedure getc(var ch:char);
(* maintain buffer of characters *)
begin

if rpos=cpos then
if eof then m(15,1)
else

begin
(* fill buffer *)
cpos := 0; rpos :=0;
while not eoln do

begin
(* skip white space *)

rpos := rpos + 1;
repeat

read(buf[rposl);
until not (ord(buf[rposl) in [0 .. 9,14 .. 31]);

end;
(* book keeping *)
eflag := true; linecount := linecount + 1;
readln;
rpos := rpos + 1;
buf[rposl := , . ,

end;
cpos := cpos + 1;

ch := buf[cpos];
end;

function token(var f: integer) : integer;
(* lexical analyser *)
var

i,first,last,ptr,sign : integer;
letter,digit,punc: set of char;
flag : boolean;
string: words;
ch : char ;

begin
(* make sure there is a token and it

can be recognized *)
token := -1;
punc:= [' ',')','{',',','i',':','[',']')i
letter :=['a' .. 'z','A' .. 'Z'];
digit := ['0' .. '9'];
getc(ch);
(* skip leading blanks *)
while ch = , , do getc(ch);
(* skip comment *)
if ch = '(' then

begin
while ch <> 'I' do getc(ch);
getc(ch);

end;
(* skip trailing blanks *)
while ch = , , do getc(ch);
(* find token *)
if ch in letter then

begin

end

first := 1; last := mwords;
for i := 1 to asig do string[i] := ' ';
i : = 0;
(* collect identifier *)
repeat

i:=i+1;
if i<= aSig then string[i] := ch;
getc(ch) ;

until not((ch in letter) or (ch in digit));
f := 2; cpos := cpos - 1;
(* search for keyword *)
repeat

flag := true; i:=O;
ptr := (first + last) div 2;
repeat

i:=i+1;
if ord(string[i]) < ord(kword[ptr][i]) then

begin
flag := false; last := ptr -1;

end;
if ord(string[i]) > ord(kword[ptr][i]) then

begin
flag := false; first := ptr + 1;

end;
until(not flag) or (i = asig);

until(first > last) or flag;
(* convert to token value *)
if flag then token := tval[ptr]
else m(16,0);

else if (ch in digit) or (ch = '+') or (ch = '-') then
begin

(* convert to number *)
f:= 0; i:=l; int := 0; sign := 1;

326

end;

if ch = '-' then sign .- -1;
repeat

if i <= nsig then
begin

end

numbe r [i) : = ch;
int := int*10 +(ord(ch)-ord('O'»;
getc(ch);
i:=i+1;

until not (ch in digit);
int := int * sign;
if ch = '.' then

begin
f : = 1;
repeat

if i <= nsig then number[i) := ch;
getc(ch) ;
i:=i+1;

until not(ch in digit);
end;

cpos := cpos - 1;
token := i-1;
(* integers are converted to numeric value

reals remain as strings *)
end

else if ch in punc then
(* punctutaion symbols *)
begin

f : = 3;
token := ord(ch);

end
else m(17,O)

procedure outpt(lim,com,typ :integer);
(* construction of data,program or selector file *)
var i~j : integer;
begin

(* decides on replicated construct and checks
for more data than specified *)

if (lim > n-count) and (not drepflg) then m(6,1)
else if lim = ° then

begin

end
else

if typ = 1 then
for i:= 1 to com do

write(number[i)
else

count := count + 1;

begin sindx := sindx + 1;
saveline[sindx) := cam;
write(cam)';
end;

if count < n then write(' ')
else writeln;

for i := 1 to lim do
begin

if typ=l then
for j := 1 to cam do

write(number[j])
else

begin sindx := sindx + 1;
saveline[sindx) := cam;
write(com);
end;

327

end;

count := count + 1;
if count < n then write(' ')
else writeln;

end;

procedure repr(var lim:integer);
(* process replicator *)
begin

if token(f) <> lbk then m(2,O); tk := token(f);
if f=O then lim := int else m(13,1);
if token(f) <> rbk then m(3,O); tk := token(f);

end;

procedure sline;
(* line of selector file *)
begin

repeat
if (f=O) and «int = O)or(int=l» then outpt(O,int,O)
else if tk = rep then

begin
repr (lim) ;
if (f=O) and «int=O)or(int=l» then

ou t p t (li m, in t , °)
else m(18,1);

end
else m(19,1);
tk := token(f);
if (tk<>col) and (tk<>com) and (tk <> aend)

and (tk <> srbk) then rn(4,O);
if (tk = corn) or (tk = srbk) then tk := token(f);

until (tk = col) or (tk = aend)
end;

procedure dline;
(* line of data *)
var save integer;
begin

if tk = none then
begin

save := count; count .- n;
outpt(O,-l,O);
count := save;
tk : = token (f) ;

end
else

begin
if tk <> rep then

outpt(O,O,O); count := count - 1;
while (tk <> sem) and (tk <> col) and (tk<>aend) do

begin
if (tk = rep) then

begin

end

repr(lirn);
save := count; count := n;
drepflg := true;
outpt(lim,-l,O);
drepflg := false;
count := save;

else begin tk := token(f); if f= 1
then outpt(O,tk,l) else m(12,O);

end;
tk := token(f);
if tk = srbk then tk := token(f)

end;

328

end;
end;

function inst: integer;
(* check instruction format *)
var coma,port,j : integer;
begin

(* decipher communication ports *)
port := 0; j:=l; coma := tk;
repeat

tk := token(f);
if (tk in [1,2,4,8]) and (j<=4)then

begin
port := port + tk; j := j + 1;

end
else

if (j > 4) and (tk in [1,2,4,8]) then m(5,1);
until tk = corn;
(* construct ISA assembler instruction *)
coma := coma * 100 + port ;tk := token(f);
if f=O then coma := coma*100 + int else m(ll,O);
if token(f) <> corn then m(4,0); tk:= token(f);
if f=O then coma := coma*IOO + int else m(II,O);
inst := coma;

end;

procedure instruction;
(* instruction line *)
var lim : integer;
begin

Urn := 0;
if tk <> rep then outpt(lim,inst,O)
else

end;

begin
repr(lim); outpt(lim,inst,O);

end;

procedure line ;
(* process a general line *)
var j,cl ,i,l: integer;
begin

j : = 9;
if progm then

(* line is in program *)
repeat

tk : = token (f) ;
if tk = repl then

begin
sindx := 0;
repr(cl) ;

if tk <> slbk then m(20,0);
tk := token(f); instruction
for i := I to (cl-I)
do begin for 1 .- 1 to sindx do

begin write(saveline[l]);

end;
writeln

end;
tk : = token (f) ;

if 1 < sindx then
write(' ')

if tk <> srbk then m(20,0);
end

else instruction;
tk := token(f);

329

if (tk <> col) and (tk<>sem) and
(tk <> aend) then m(4,0);

until (tk - col) or- (tk-aend)
else if data then

(* line is from data *)
repeat

count : - 0;
tk :- token(f);
if j > B then j : - I;
if (tk<>j) and (tk<>none) and (tk<>rep)

and (tk <> repl) then m(B,O);
if tk - repl then
begin sindx :- 0;

end

repr(cl);
if tk <> slbk then m(20,0);
tk :- token(f);dline;
for i :- I to cl-1 do

begin

end

for I :- I to sindx do
writeln(saveline[l);

else dline;
j:-j*2;
if (tk<>col) and (tk<>sem)

and (tk <> aend) then m(4,0);
until (tk-col) or (tk - aend)

else if selector then
(* line is from selector *)

begin
tk :- token(f);
if tk - repl then

begin
sindx :- 0;
repr(cl);
if tk <> slbk then m(20,0);
tk :- token(f); sline;
for i :- I to cl-l do

begin for I :- 1 to sindx do
begin write(saveline[l);

if I < sindx then
write(' ')

end;
writeln

end;
end

else sline;
end

else m(l,l);
end;

procedure setup;
(* decipher file header*)
begin

tk :- token(f);
if f-O then n:- int else m(7,l);
if token(f) <> corn then m(4,0);
tk : - token (f) ;
if f-O then k :- int else m(7,1);
write(k);writeln;

end;

procedure prog;
(* process input file *)
begin

progm :- false; data:- false; selector :- false;

330

tk := token(f);
(* decide file type *)
if (tk<>p) and (tk<>s) and (tk<>d) then m(l,l)
else

case tk of
p : progm := true;
d : data := true;
s : selector:=true;

end;
(* dimensions of ISA *)
if token(f) <> lbk then m(2,0);
setup;
if token(f) <> rbk then m(3,0);
statcount := 0;
(* process lines of file *)
repeat

count := 0;
line;
if (tk<>aend) and (tk<>col) then m(4,0);
statcount:= statcount + 1;
if statcount>k then m(14,0);

until tk = aend;
(if errs = 0 then m(10,0) else m(9,0)}

end;

(* main program *)

begin
intialise;
prog;

99 :end.

331

APPEND I X I 11

RISAL PROGRAM LISTINGS

p(4,34)
{ NO. 6.2.1 }
{ Program for matrix transpose 4*4 }
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; nulll ,0,0:
rep(4) data n,3,0 :
null ,0,0; rep(3) data n,3,0:
rep(2) null,O,O; rep(2) data n,3,0:
rep(3) null ,0,0; data n,3,0:
rep(4) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,O,O:
data 5,5,0; null,O,O; data e,4,0; data w,6,0:
data e,4,0; data w,6,0; data n,3,0; null ,0,0:
rep(2) null,O,O; data 5,5,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0 :
data n,3,0; data e,4,0;data w,6,0; null ,0,0:
data 5,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data 5,5,0; rep(2) null ,0,0:
data 5,5,0; data n,3,0; rep(2) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data 5,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data 5,5,0; rep(2) null ,0,0:
rep(3) data s,5,0; null ,0,0:
repl(2)[rep(4) data 5,5,0]:
null ,0,0; rep(3) data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(4) null ,0,0
end

d(4,34)
{ NO. 6.2.1 }
{ Data file for matrix transpose 4*4 }
n 13.0,0.0,0.0,0.0;
none;none;none:
n 9.0,14.0,0.0,0.0;
none;none;none:
n 5.0,10.0,15.0,0.0;
none;none;none:
n 1.0,6.0,11.0,16.0;
none;none;none:
n 0.0,2.0,7.0,12.0;
none;none;none:
n 0.0,0.0,3.0,8.0;
none;none;none:
n 0.0,0.0,0.0,4.0;
none;none;none:
repl(27)[rep(4) none]
end

332

s(4,34)
{ NO. 6.2.1 }
{ Selector file for matrix transpose 4*4 }
1,0,0,0:
1,1,0,0:
1,1,1,0:
1,1,1,1:
repl(3)[O,O,O,O):
repl(2)[l, rep(3) 0):
0,0,1,0:
rep (3) 1, 0:
1, rep (3) 0 :
1,0,1,1:
rep(3) 1, 0:
repl(2)[l,l,O,O):
0,1,0,0:
1,1,0,0:
0,1,1,0:
rep(4)1:
rep (3) 1,0:
rep (4) 1 :
repl (3) [1 ,1, 0 , 0 J :
repl(2)[rep(4)0):
rep (3) 1,0:
1,1,0,0:
1,0,0,0:
repl(4)[rep(4) 0):
end

333

p(4,38)
{ NO. 6.2.2 }
{ Program for LU decomposition 4*4 matrix}
{ load matrix}
data n,3,O, rep(3) null n,O,O :
rep(2) data n,3,O, rep(2) null n,O,O:
rep(3) data n,3,O, null n,O,O
rep(4) data n,3,0:
{ start factorisation}
mov 5,1,7, rep(3) data n,3,0:
data n,3,O, mov 5,1,7, rep(2) data n,3,0:
div ,7,3, data n,3,O, mov 5,1,7, data n,3,0:
copy ,0,0, null ',0,0, data n,3,O, mov 5,1,7:
null ,0,0, data w,6,O, null ,0,0, data n,3,0
null ,0,0, mult ,3,6, data w,6,O, null ,0,0:
null ,0,0, sub ,7,0 , mult ,3,6, data w,6,0
null ,0,0, copy ,0,0, sub ,7,0, mult ,3,6 :
null ,0,0; mov 5,1,7; copy ,0,0; sub ,7,0 :
null ,0,0; data n,3,O, mov 5,1,7; copy ,0,0
null ,0,0, div ,7,3; data n,3,0; mov 5,1,7:
null ,0,0; copy ,0,0; null ,0,0, data n,3,0:
rep(2) null ,0,0, data w,6,O, null ,0,0:
rep(2) null ,0,0; mult ,3,6; data w,6,0:
rep(2) null ,0,0, sub ,7,0; mult ,3,6:
rep(2) null ,0,0; copy ,0,0; sub ,7,0:
rep(2) null ,0,0, mov 5,1,7, copy ,0,0:
rep(2) null ,0,0; data n,3,O, mov 5,1,7:
rep(2) null ,0,0, div ,7,3, data n,3,0
rep(2) null ,0,0, copy ,0,0, null ,0,0 :
rep(3) null ,0,0; data w,6,0:
rep(3) null ,0,0; mult ,3,6:
rep(3) null ,0,0; sub ,7,0:
rep(3) null ,0,0, copy ,0,0:
{ read result}
data 5,5,0 , rep(3) null ,0,0:
rep(2) data 5,5,0, rep(2) null,O,O:
rep(3) data 5,5,0, nu1l,0,0:
repl(3)[rep(4) data 5,5,OJ:
null ,0,0, rep(3) data 5,5,0:
rep(2) null ,0,0, rep(2) data 5,5,0:
rep(3) null ,0,0, data 5,5,0:
rep(4) null ,0,0
end

d(4,38)
{ NO. 6.2.2 }
{ Data file for LU decomposition 4*4 matrix}
n 3.0,0.0,0.0,0.0,
none, none, none:
n 2.0,4.0,0.0,0.0,
none, none, none:
n 4.0,2.0,1.0,0.0;
none, none; none :
n 2.0,1.0,5.0,2.0,
none, none, none:
n 0.0,3.0,2.0,1.0,
none; none, none:
n 0.0,0.0,3.0,3.0,
none; none, none:
n 0.0,0.0,0.0,2.0;
none, none, none:

334

repl(31)[rep(4) none)
end

5(4,38)
{ NO. 6. 2 • 2 I
{ Selector file for LU decomposition 4*4 matrix I
1, rep (3) 0 :
rep(2)1, rep(2)0:
rep(3)1, 0:
rep(4)1 :
rep(4)0 :
o ,1,rep(2)0:
o ,1,1,0:
repl(S)[O, rep(3)l):
repl(8)[rep(2) 0, rep(2)l):
repl(8)[rep(3) 0, 1):
repl (3) [rep (4) 0):
rep (4) 1:
rep (3) 1,0:
rep(2) 1, rep(2) 0
1, rep (3) 0:
repl(3)[rep(4) 0)
end

335

p(4,34)
(NO. 6.2. 3)
(Program for 4*4 matrix-vector multiplication)
(calculation)
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,7, ° :
rep(4) mov ,0,7:
rep (4) mov ,6, 1 :
rep(4) mu1t n w,3,6:
rep(4) add ,7,0:
rep (4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mu1t n w,3,6:
rep (4) add ,7, ° :
rep (4) mov ,0, 7 :
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep (4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add, 7 ,0:
rep (4) mov ,0, 7 :
rep(4) mov ,6,1:.
rep(4) mult n w,3,6:
rep (4) add ,7, ° :
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep (4) mov ,7, ° :
rep(4) copy ,0,0:
repl(4)[rep(4) null ,O,OJ
end

d(4,34)
(NO. 6.2.3
(Data file for 4*4 matrix-vector multiplication)
n 2.8,0.0,0.0,0.0;none;none;w 2.1,0.0,0.0,0.0:
repl(3) [rep(4) noneJ:
n 3.0,3.6,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) noneJ:
n 2.0,4.8,4.0,0.0;none;none;w 5.0,0.0,0.0,0.0:
repl(3)[rep(4) noneJ:
n 5.1,6.0,3.0,4.2;none;none;w 6.6,0.0,0.0,0.0:
rep1(3)[rep(4) noneJ:
n 0.0,8.0,2.2,1.0;none;none;w 0.0,0.0,0.0,0.0:
repl (3)[rep (4) none J :
n 0.0,0.0,6.1,0.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) noneJ:
n 0.0,0.0,0.0,9.0;none;none;w 0.0,0.0,0.0,0.0:
repl(9)[rep(4) noneJ

·end

336

5(4,34)
{ NO. 6.2.3 }
{ Selector file for 4*4 matrix-vector multiplication}
repl(34)[l,rep(3)O)
end

337

p(4,85)
{ NO. 6.2. 4 }
{ Program for 4*4 matrix-matrix multiplication }
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov .,6,1:
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep (4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,8,0;rep(3) add ,7,0:
mov ,0,8;rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,0;rep(2) add ,7,0:
rep(2) mov ,0,8;rep(2) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,8,0:
rep(4) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,10,0;rep(3) add ,9,0:
mov ,0,10;rep(3) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,10,0;rep(2) add ,9,0:
rep(2) mov ,0,10;rep(2) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,10,0;add ,9,0:
rep(3) mav ,0,10;mov ,0,9:

338

rep(4) mov ,6,1:
rep(4) mu1t n w,3,6:
rep(4) add ,10,0:
rep(4) mov ,0,10:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,10,0:
rep(4) mov ,0,10:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,10,0:
rep(4) mov ,0,10:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,10,0:
rep(4) mov ,0,10:
rep (4) mov ,6, 1 :
rep(4) mov ,7,0:
rep(4) copy ,0,0:
rep(4) mov ,8,0:
rep(4) copy ,0,0:
rep(4) mov ,9,0:
rep(4) copy ,0,0:
rep(4) mov ,10,0:
rep(4) copy ,0,0:
rep(4) null ,0,0
end

d(4,85)
(NO. 6. 2 • 4)
(Data file for the 4*4 matrix-matrjx multiplication
n 2.1,0.0,0.0,0.0;none;none;w 2.8,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,0.0,0.0,0.0;none;none;w 3.0,0.0,0.0,0.0:
rep1(3)[rep(4) none]:
n 5.0,1.0,2.3,0.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 6.6,1.2,5.0,1.8;none;none;w 5.1,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.1,2.2,2.0,6.1;none;none;w 3.6,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,0.0,0.0,3.3;none;none;w 4.8,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 5.0,1.0,2.3,3.6;none;none;w 6.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 6.6,1.2,5.0,1.8;none;none;w 8.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.1,2.2,2.0,6.1;none;none;w 4.0,0.0,0.0,0.0:
repl(3) [rep(4) none]:
n 3.0.,0.0,0.0,3.3;none;none;w 3.0,0.0,0.0,0.0:
rep1(3)[rep(4) none]:
n 5.0,1.0,2.3,3.6;none;none;w 2.2,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 6.6,1.2,5.0,1.8;none;none;w 6.1,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.1,2.2,2.0,6.1;none;none;w 4.2,0.0,0~0,0.0:
rep1 (3) [rep (4) none]:
n 3.0,0.0,0.0,3.3;none;none;w 1.0,0.0,0.0,0.0:
rep1(3)[rep(4) none]:
n 5.0,1.0,2.3,3.6;none;none;w 0.0,0.0,0.0,0.0:
rep1(3)[rep(4) none]:
n 6.6,1.2,5.0,1.8;none;none;w 9.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.0,2.2,2.0,6.1;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:

339

n 0.0,0.0,0.0,3.3;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.0,0.0,0.0,3.6;none;none;w 0.0,0.0,0.0,0.0:
repl(l2)[rep(4)none]
end

5(4,85)
{ NO. 6.2.4]
{ Selector file for the 4*4 matrix-matrix multiplication}
repl(85) [l, rep(3)0]
end

340

p(4,147)
{ NO. 6.3 }
(program for the solution of linear systems
data n,3,0; rep(3) null n,O,O :
rep(2) data n,3,0; rep(2) null n,O,O:
rep(3) data n,3,0; null n,O,O :
rep(4) data n,3,0:
{ start factorisation}
mov 5,1,7; rep(3) data n,3,0:
data n,3,0; mov 5,1,7; rep(2) data n,3,0:
div ,7,3; data n,3,0; mov 5,1,7; data n,3,0:
copy ,0,0; null ,0,0; data n,3,0; mov 5,1,7:
null ,0,0; data w,6,0; null ,0,0; data n,3,0
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; sub ,7,0 ; mult ,3;6; data w,6,0
null ,0,0; copy ,0,0; sub ,7,0; mult ,3,6 :
null ,0,0; mov 5,1,7; copy ,0,0; sub ,7,0 :
null ,0,0; data n,3,0; mov 5,1,7; copy ,0,0
null ,0,0; div ,7,3; data n,3,0; mov 5,1,7:
null ,0,0; copy ,0,0; null ,0,0; data n,3,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; data w,6,0:
rep(2) null ,0,0; sub ,7,0; mult ,3,6:
rep(2) null ,0,0;' copy ,0,0; sub ,7,0:
rep(2) null ,0,0; mov 5,1,7; copy ,0,0:
rep(2) null ,0,0; data n,3,0; mov 5,1,7:
rep(2) null ,0,0; div ,7,3; data n,3,0
rep(2) null ,0,0; copy ,0,0; null ,0,0 :
rep(3) null ,0,0; data w,6,0:
rep(3) null ,0,0; mult ,3,6:
rep(3) null ,0,0; sub ,7,0:
mov 5,1,8; rep(2) null ,0,0; copy ,0,0:
rep(4) null ,0,0:
null ,0,0; mov 5,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0:
rep(4) null ,0,0:
null ,0,0; mov 5,1,7; null ,0,0; mov 5,1,8:
rep(4) null ,0,0:
rep(2) null ,0,0; mov 5,1,7; null ,0,0:
{ read result}
data 5,5,0 ; rep(3) null ,0,0:
rep(2) data 5,5,0; rep(2) null,O,O:
rep(3) data 5,5,0; null,O,O:
repl(3)[rep(4) data 5,5,01:
null ,0,0; rep(3) data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(4) null ,0,0:
data n,3,0; rep(3) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data n,3,0; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0:
rep(4) null ,0,0:
null ,0,0; mov 5,1,7; null ,0,0; data n,3,0:
rep(4) null ,0,0:
rep(2) null ,0,0; mov 5,1,7; null ,0,0:
rep(4) null ,0,0:
data n,3,0; rep(2) null ,0,0; mov 5,1,7:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

341

null n,O,O; data w,6,0; rep(2) null n,O,O: 342
null n,O,Oi data n,3,0; rep(2) null n,O,O:
rep(4) null n,O,O:
null n,O,O; 5ub ,3 I 6 i rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
rep(4) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6, 0; rep(2) null n,O,O:
null n,O,O; copy , ° , ° ; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,Oj data n,3,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; 5ub ,3 , 6 i null n,O,O:
rep(2) null n,O,O; copy ,0 ,0 ; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; mult , 3 ,7; null n,O,O:
rep(2) null n,O,O; add ,6,0 i null n,O,O:
rep(2) null n,O,O; copy , ° , ° ; null n,O,O:
rep(3) null n,O,O; data w,6,0:
rep(3) null n,O,O; data n,3,0:
rep(4) null n,O,O:
rep(3) null n,O,O; 5ub , 3 ,6:
rep(3) null n,O,O; copy , ° , ° :
rep(3) null n,O,O; data 5,5,0:
rep(3) null n,O,O; data 5,5,0:
rep(3) null n,O,O; data 5,5,0:
rep(2) null , 0 , 0 ; rep(2) data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
null n,O ,0; rep(3) data 5,5,0:
rep(4) data 5,5,0:
repl(4)[rep(4) null n,O,Oj:
rep(3) null n,O,O; div , ° ,8 :
rep(3) null n,O,O; copy , ° , ° : rep(4) null n,O,O:
rep(3) null n,O,Oj data 5,5,0:
rep(3) null n,O,O; mult ,5,8:
rep(3) null n,O,O; copy , ° , ° : rep(2) null n,O,O; data e,4,0; null n,O,O:
repl (2) [rep(4) null n,O,Oj:
rep(2) null n,O,O; 5ub ,0,4; null n,O,O:
rep(2) null n,O,O; div I 0 , 8 i data 5,5,0:
rep(2) null n,O,O; copy , ° , ° ; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; data 5,5,0:
rep(2) null n,O,Oj copy ,0,0; mult ,5,8:
rep(2) null n,O,O; mov 5,1,8; copy , ° , ° : rep(2) null n,O,O; data e,4,0; null , ° , 0:
rep(2) null n,O,O; add ,4,8; null n,O,O:
rep(2) null n,O,O; copy , ° , ° ; null n,O,O:
null n,O,O; data e,4,O; rep(2) null n,O,O:
rep(4) null n,O,O:
rep(3) null n,O,O; data 5,5,0:
null , ° , ° ; 5ub ,0,4; rep(2) null , ° , ° : null ,0,0; div ,0,8; data 5,5,0; null , ° , ° : null , ° , ° ; copy , ° , 0; rep(2) null , ° , 0 :
rep(4) null ,0,0:
null , ° , 0 ; data 5,5,0; rep(2) null ,0, ° :
null , ° , ° ; mult ,5,8; data 5,5,0; null , 0 , ° :
null , ° , ° ; copy , ° , 0 ; mult ,5,8; data 5,5,0:
null , ° , ° ; mov 5,1,8; copy ,0,0; mult ,5,8:
rep(2) null ,0,0; mov 5,1,8; copy ,0, ° :
rep(2) null ,0,0; data e,4,0; null ,0, ° :
rep(2) null ,0,0; add ,4,8; null ,0,0:

rep(2) null ,0,0'; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
rep(4) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
repl(3)[rep(4) null, 0, 0]:
rep(3) null ,0,0; data 5,5,0:
rep(2) null ,0,0; rep(2) data s,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
null ,0,0; rep(3) data 5,5,0:
null ,0,0; rep(3) data 5,5,0:
rep(4) data 5,5,0
end

d(4,147)
{ NO. 6. 3 }
{ Data file for the solution of linear systems)
n 2.0,0.0,0.0,0.0;
none; none; none:
n 2.0,3.0,0.0,0.0;
none; none; none:
n 4.0,3.0,3.0,0.0;
none; none; none :
n 2.0,1.0,6.0,3.0;
none; none; none:
n 0.0,3.0,2.0,1.0;
none; none; none:
n 0.0,0.0,3.0,3.0;
none; none; none:
n 0.0,0.0,0.0,2.0;
none; none; none:
repl(39)[rep(4) none]:
n 1.0,0.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,1.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,0.0,1.0,0.0; none;none;none:
none; none; none; none:
n 0.0,0.0,0.0,1.0; none;none;none:
repl(3)[rep(4) none]:
n 10.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,10.0,0.0,0.0; none;none;none:
repl(9)[rep(4) none]:
n 0.0,0.0,12.0,0.0; none;none;none:
repl (9) [rep (4) none]:
n 0.0,0.0,0.0,11.0; none;none;none:
repl(66)[rep(4) none]
end

5(4,147)
{ NO. 6. 3 }
{ Selector file for the solution of linear systems }
1, rep(3)0 :
rep(2)1, rep(2)0:
rep(3)1, 0:
rep(4)1 :
rep(4)0 : ° ,1,rep(2)0: ° ,1,1,0:

343

repl(S)[O, rep(3)1):
repl(8)[rep(2) 0, rep(2)1):
repl(7)[rep(3) 0, 1):
1,0,0,1:
1,0,0,0:
repl(2)[1,1,0,0):
repl(2)[0,1,1,0):
repl(2)[0,0,1,1):
repl(2)[0,0,0,1):
repl(2)[rep(4) 0):
rep (4) 1:
rep(3) 1,0:
rep(2) 1, rep(2) °
1, rep (3) 0:
repl(3)[rep(4) 0):
repl(2)[1,0,0,0):
repl(2)[1,1,0,0):
1,1,1,0:
0,0,1,0:
0,1,0,1:
0,0,0,0:
0,0,1,0:
0,0,0,0:
1,0,0,1:
1,1,0,0:
1,1,1,0:
repl(2)[rep(4)1):
rep(3)0,1:
repl(2)[0,1,rep(2)0):
rep(4)0:
0,1,1,0:
rep(4)0:
0,0,1,1:
1,0,1,1:
rep(4)1:
0, rep(3)1:
rep(4)0:
repl(2)[0,0,1,0):
rep(4)0:
0,0,1,1:
rep(4)0:
1,0,0,1:
1,1,0,1:
0,rep(3)1:
0,0,1,1:
rep(4)0:
repl(2)[rep(3)0,1):
rep(4)1:
repl(4)[rep(3)1,0):
1,1,0,0:
1,rep(3)0:
repl(4)[rep(4)0):
repl(2)[rep(3)O,1):
0,0,1,1:
0,0,1,0:
0,1,1,0:
1,0,1,0:
rep(3) 1, 0:
0,1,1,0:
rep(4)0:
0,0,1,1:
0,0,1,0:
repl(2)[0,1,1,0):
repl(7)[0,1,0,0):
1,1,1,0:
1,1,0,0:

344

rep(4)0:
0,1,1,0:
0,1,0,0:
rep1(2)[1,1,0,0]:
repl(16)[l,0,0,0]:
repl(3)[rep(4)0]:
rep(4)1:
1,1,1,0:
repl(2)[1,1,0,0]:
repl(2)[1,rep(3)0]
end

345

p(4,300)
{ NO. 6.4
{ Program for finding the g-inver5e of a rec-matrix }
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; null ,0,0:
rep(4) data n,3,0 :
null ,0,0; rep(3) data n,3,0:
rep(2) null,O,O; rep(2) data n,3,0:
rep(3) null ,0,0; data n,3,0:
rep(4) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,O,O:
data 5,5,0; null,O,O; data e,4,0; data w,6,0:
data e,4,0; data w,6,0; data n,3,0; null ,0,0:
rep(2) null,O,O; data 5,5,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0 :
data n,3,0; data e,4,0;data w,6,0; null ,0,0:
data 5,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data 5,5,0; rep(2) null ,0,0:
data 5,5,0; data n,3,0; rep(2) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; "data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data 5,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data 5,5,0; rep(2) null ,0,0:
rep(3) data 5,5,0; null ,0,0:
rep(4) data 5,5,0:
rep(4) data 5,5,0:
null ,0,0; rep(3) data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(4) null ,0,0:
{matrix multiplication 4x4}
repl(3)[rep(4) null n,O,O):
{calculation}
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,8,0;rep(3) add ,7,0:
mov ,0,~;rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,0;rep(2) add ,7,0:

346

rep(2) mov ,0,8;rep(2) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mu1t n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mu1t n w,3,6:
add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(3) copy ,0,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov 5,1,7; data n,3,0; rep(2) null ,0,0:
mov ,8,0; mov 5,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,8,0; mov 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0:
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0:
mov ,7,0; mov 5,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,7,0; mov 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0:
div ,7,3; data n,3,0; copy ,0,0; null ,0,0:
copy ,0,0; null ,0,0; data n,3,0; null ,0,0:
null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; 5ub ,7,0 ; mult ,3,6; null ,0,0:
null ,0,0; copy ,0,0; 5ub ,7,0; null ,0,0:
null ,0,0; mov 5,1,7; copy ,0,0; null ,0,0:
null ,0,0; data n,3,0; mov 5,1,7; null ,0,0:
null ,0,0; div ,7,3; data n,3,0; null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; null ,0,0:
rep(2) null ,0,0; 5ub ,7,0; null ,0,0:
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0:
rep(4) null ,0,0:
null ,0,0; mov 5,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0:
rep(4) null ,0,0:
data n,3,0;mov 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data n,3,0; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0:

347

rep(4) null ,0,0:
null ,0,0; mov 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
data n,3,0; null ,0,0; mov 5,1,7; null ,0,0:
{ start factorisation}
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:
null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) riull n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data 5,5,0; null n,O,O:
null ,0, 0; sub ,0,4; rep (2) null ,0, ° :
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0, 0; copy, 0, 0; rep(2) null ,0, 0:
data e,4,0; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
(start factorisation)
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

,0 , ° :
, 0, ° : , ° , ° :

null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:

348

rep(2) null n,O,O; data s,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data s,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data s,5,0;
null ,0,0; rep(2) data s,5,0;
null ,0,0; rep(2) data s,5,0;
rep(3) data s,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
{ start factorisation}
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

,0,0:
, 0 , 0 :
,0,0:

null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null _n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data s,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data s,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:

349

null ,0,0; rep(2) data s,5,0; null ,0,0:
null ,0,0; rep(2) data s,5,0; null ,0,0:
rep(3) data s,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
{ start .factorisation}
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:
null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; ·data n,3,0; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data s,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0;· null ,0,0:
null n,O,O; data e,4,0; data s,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:

'null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data s,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data s,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov s,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data s,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data s,5,0;
rep(3) data s,5,0; null ,0,0
end

d(4,300)
{ NO. 6.4 }

null
null
null

,0,0:
,0,0:
,0,0:

{ Data file for finding the g-inverse of a rec-matrix
n 4.0,0.0,0.0,0.0;
none;none;none:
n 3.0,1.0,0.0,0.0;
noneioone;none:
n 2.0,2.0,1.0,0.0;
none;none;none:
n 1.0,0.0,2.0,0.0;
none;none;none:
n 0.0,4.0,1.0,0.0;
none;none;none:
n 0.0,0.0,3.0,0.0;
none;none;none:
n 0.0,0.0,0.0,0.0;

350

noneinoneinone:
repl(27)[rep(4) none]:
repl(3)[rep(4) none]:
n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.0,4.0,O.O,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.0,O.0;none;none;w 4.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,l.0,2.0,O.0;none;none;w 4.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.0,4.0,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,l.0,2.0,O.0;none;none;w 3.0,0.0,0,0,0.0:
repl(3)[rep(4) none]:
n 2.0,4.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
rep1(3)[rep(4) none]:
n 0.O,l.0,2.0,O.0;none;none;w O.O,O.O,O.O,O.O~
repl(3)[rep(4) none]:
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(30)[rep(4) none]:
n_1.0,O.O,O.O,O.0; none;none;none:
nonei none; none; none:
n 0.0,1.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,0.0,1.0,0.0; none;none;none:

- repl(3)[rep(4) none]:
n 1.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,4.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,3.0,0.0; none;none;none:
repl(30)[rep(4) none]:
n 2.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,0.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none]:
n 3.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,2.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,2.0,0.0; none;none;none:
repl(30)[rep(4) none]:
n 4.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,1.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none]
end

351

5(4,300)
{ NO. 6.4 }
{ Selector file for finding the g-inver5e of a rec-m~trix }
1,0,0,0:
1,1,0,0:
1,1,1,0:
1,1,1,1:
repl (3) [rep (4) 0] :
repl(2)[1,rep(3)0]:
0,0,1,0:
rep (3) 1, 0:
1, rep (3) 0 :
1,0,1,1:
rep(3) 1, 0:
repl(2)[1,1,0,0]:
0,1,0,0:
1,1,0,0:
0,1,1,0:
rep(4)1:
rep(3) 1,0:
rep(4) 1 :
repl(3)[1,1,0,0]:
repl(2)[rep(4)0]:
rep(3) 1,0:
1,1,0,0:
1,0,0,0:
repl(4)[rep(4) 0]:
repl(57) [1,rep(3)0]:
1,0,0,0:
0,0,0,0:
0,1,0,0:
1,0,1,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
1,1,0,0:
1,0,0,0:
0,0,0,0:
0,1,0,0:
0,1,1,0:
repl(4)[0, rep(2)1,0]:
repl(7)[rep(2) 0, 1,0]:
1,0,1,0:
1,0,0,0:
repl(2)[1,1,0,0]:
repl(2)[0,1,l,0]:
repl(2)[1,0,1,0]:
1,1,0,0:
0,1,0,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
0,0,0,0:
1,0,1,0:
1,1,0,0:
repl(2)[l,I,I,0]:
0,1,1,0:
repl(2)[0,1,0,0]:
rep(4)0:
repl(2)[0,0,1,0]:
1,0,1,0:

352

0,1,1,0:
repl(5) [0,0,1,0):
0,1,1,0:
repl(7)[O,1,0,0):
1,1,0,0:
repl(11)[1,0,0,0):
0,0,0,0:
0,1,0,0:
repl(5)[1,0,0,0):
1,1,0,0:
repl(2)[1,1,1,0):
0,1,1,0:
repl(2)[O,1,0,0):
rep(4)0:
repl(2)[O,0,1,0):
1,0,1,0:
0,1,1,0:
repl(5)[O,0,1,0]:
0,1,1,0:
repl(7)[O,1,0,0]:
1 , 1 , ° , ° :
repl(11)[1,0,0,0):
0,0,0,0:
0,1,0,0:
repl(5)[1,0,0,0]:
1,1,0,0:
repl(2)[1,1,1,0]:
0,1,1,0:
repl(2) [0,1,0, 0):
rep(4)0:
repl(2)[O,0,1,0):
1,0,1,0:
0,1,1,0:
repl (5) [0, 0,1, 0) :
0,1,1,0:
repl (7) [0,1, 0, 0) :
1,1,0,0:
repl(11)[1,0,0,O):
0,0,0,0:
0,1,0,0:
repl(5)[l,0,0,0] :
1,1,0,0:
repl(2)[1,1,1,0]:
0,1,1,0:
repl (2) [0,1, 0, 0] :
rep(4)0:
repl (2) [° , ° , 1 , 0) :
1,0,1,0:
0,1,1,0:
repl (5) [° , ° , 1 , °] :
0,1,1,0:
repl(7)[O,1,0,0]:
1,1,0,0:
repl(11)[1,0,0,0]:
0,0,0,0:
0,1,0,0:
repl(4)[1,0,0,0]
end

353

p(4,300)
(NO. 6.5.1 part-1)
{ Program for solution of a homogenous system of eqs. }
data n,3,O, rep(3) null ,0,0:
rep(2) data n,3,O, rep(2) null ,0,0:
rep(3) data n,3,O, null ,0,0:
rep(4) data n,3,0 :
null ,0,0, rep(3) data n,3,0:
rep(2) null,O,O, rep(2) -data n,3,0:
rep(3) null ,0,0, data n,3,0:
rep(4) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,O,O:
data 5,5,0, null,O,O, data e,4,0; data w,6,0:
data e,4,O, data w,6,O, data n,3,0; null ,0,0:
rep(2) null,O,O; data 5,5,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,O, data w,6,0:
null ,0,0, data e,4,O, data w,6,0; null ,0,0:
data e,4,O, data w,6,0; data e,4,0; data w,6,0 :
data n,3,O, data e,4,0;data w,6,0; null ,0,0:
data 5,5,0; data n,3,O, data e,4,0; data w,6,0:
data n,3,0; data 5,5,0; rep(2) null ,0,0:
data 5,5,0, data n,3,O, rep(2) null ,0,0:
null ,0,0, data 5,5,0; rep(2) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
null ,0,0, data e,4,0; data w,6,0; null ,0,0:
data e,4,O, data w,6,O, data e,4,0; data w,6,0:
null ,0,0; data e,4,O, data w,6,0; null ,0,0:
data 5,5,0; null ,0,0; data e,4,O, data w,6,0:
rep(2) data 5,5,0; rep(2) null ,0,0:
rep(3) data 5,5,0; null ,0,0:
rep(4) data 5,5,0:
rep(4) data 5,5,0:
null ,0,0; rep(3) data 5,5,0:
rep(2) null ,0,0, rep(2) data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(4) null ,0,0:
{matrix multiplication 4x4}
repl(3)[rep(4) null n,O,O):
(calculation)
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,7, ° :
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add, 7 ,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep (4) mov ,6,1:
rep(4) mult n w,3,6:
add ,8,0;rep(3) add ,7,0:
mov ,0,8,rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ',8,O,rep(2) add ,7,0:

354

rep(2) mav ,0,8;rep(2) mav ,0,7:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mav ,0,8;mav ,0,7:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
add ,9,0;rep(3) add ,8,0:
mav ,0,9;rep(3) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mav ,0,9;rep(2) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mav ,0,9;mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mav ,0,9:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(3) copy ,0,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
mov 5,1,7; data n,3,0; rep(2) null ,0,0:
mov ,8,0; mov 5,1,7; data n,3,0; nutl ,0-,0:
copy ,0,0; mov ,8,0; mov 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0:
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0:
mov ,7,0; mov 5,1,7; data n,3,0; null ,0,0:
copy ,0,0; mov ,7,0; mov 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,7,0; null ,0,0:
div ,7,3; data n,3,0; copy ,0,0; null ,0,0:
copy ,0,0; null ,0,0; data n,3,0; null ,0,0:
null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; mult ,3,6; data w,6,0; null _,0,0:
null ,0,0; sub ,7,0 ; mult ,3,6; null ,0,0:
null ,0,0; copy ,0,0; sub ,7,0; null ,0,0:
null ,0,0; mov 5,1,7; copy ,0,0; null ,0,0:
null ,0,0; data n,3,0; mov 5,1,7; null ,0,0:
null ,0,0; div ,7,3; data n,3,0; null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; null ,0,0:
rep(2) null ,0,0; sub ,7,0; null ,0,0:
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0:
rep(4) null ,0,0:
null ,0,0; mov 5,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; mov 5,1,8; null ,0,0:
rep(4) null ,0,0:
data n,3,0;mov 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data n,3,0; rep(2) null ,0,0:
rep(4) null ,0,0:
mov 5,1,7; null ,0,0; data n,3,0; null ,0,0:

355

rep(4) null ,0,0:
null ,0,0; mov 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
data n,3,O; null ,0,0; mov 5,1,7; null ,0,0:
mu1t ,3,7; rep(3) null n,O,O:
copy iO,O; rep(3) null n,O,O:
null n,O,O; data w,6,O; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,O; null n,O,O:
rep(2) null n,O,O; data n,3,O; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,O; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,O; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,O; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0;. rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:
data n,3,O; rep(3) null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

, 0 , 0 :
,0,0:
,0,0:

null n,O,O; data w,6,O; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,O; null n,O,O:
rep(2) null n,O,O; data n,3,O; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:

356

rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,O; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,O; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,O; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:
data n,3,O; rep(3) null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

, 0 , 0 :
, 0 , 0 :
,0,0:

null n,O,O; data w,6,O; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,O; null n,O,O:
rep(2) null n,O,O; data n,3,O; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,O; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,O; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,O; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:

null
null
null

,0,0:
, 0 , 0 :
, 0 , 0 :

357

data n,3,O; rep(3) null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:
null n,O,O; data w,6,O; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,O; null n,O,O:
rep(2) null n,O,O; data n,3,O; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,O; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:

,rep(4) null ,0,0:
'null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,O; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,O; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0
end

d(4,300)
{ NO. 6.5.1 part-1)

null
null
null

,0,0:
,0,0:
,0,0:

{ Data file for solution of a homogenous system of eqs.)
n 4.0,0.0,0.0,0.0;
none;none;none:
n 3.0,1.0,0.0,0.0;
none;none;none:
n 2.0,2.0,1.0,0.0;
none;none;none:
n 1.0,0.0,2.0,0.0;
none;none;none:
n 0.0,4.0,1.0,0.0;
none;none;none:
n 0.0,0.0,3.0,0.0;
none;none;none:
n 0.0,0.0,0.0,0.0;
none;none;none:
repl(27)[rep(4) none):
repl(3)[rep(4) none):
n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0:

358

repl(3)[rep(4) none]:
n 2.0,4.0,O.O,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.0,O.0;none;none;w 4.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,l.0,2.0,O.'O;none;none;w 4.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.0,4.0,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.O,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,l.0,2.0,O.0;none;none;w 3.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 2.0,4.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 3.0,O.O,3.0,O.0;none;none;w 2.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 4.0,2.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.O,l.0,2.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(30)[rep(4) none]:
n 1.0,0.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,1.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,0.0,1.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 1.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,4.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,3.0,0.0; none;none;none:
repl(30)[rep(4) none]:
n 2.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,0.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none]:
n 3.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,2.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,2.0,0;0; none;none;none:
repl(30)[rep(4) none]:
n 4.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none]:
n 0.0,1.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none]:
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none]
end

s(4,300)
{ NO. 6.5.1 part-1 j
{ Selecter file for solution of a homogenous system of eqs.j
1,0,0,0:
1 , 1 , 0 , 0 :
1 , 1 , 1 , 0 :

359

1,1,1,1:
repl (3) [rep(4) 0) :
repl(2)[1,rep(3)0):
0,0,1,0:
rep(3) 1, 0:
1, rep (3) ° :
1,0,1,1:
rep(3) 1, 0:
repl(2)[1,1,0,0):
0,1,0,0:
1,1,0,0:
0,1,1,0:
rep(4)1:
rep(3) 1,0:
rep(4) 1 :
repl(3)[1,1,0,0):
repl(2)[rep(4)0):
rep(3) 1,0:
1,1,0,0:
1,0,0,0:
repl(4)[rep(4) 0):
repl(S7)[1,rep(3)0):
1,0,0,0:
0,0,0,0:
0,1,0,0:
1,0,1,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
1,1,0,0:
1,0,0,0:
0,0,0,0:
0,1,0,0:
0,1,1,0:
repl(4)[0, rep(2)1,0):
repl(7)[rep(2) 0, 1,0):
1,0,1,0:
1,0,0,0:
repl(2)[1,1,0,0):
repl(2)[0,1,1,0):
repl(2)[1,0,1,0):
1,1,0,0:
0,1,0,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
0,0,0,0:
1,0,1,0:
1,1,0,0:
repl(2)[1,1,1,0):
0,1,1,0:
repl(2)[0,1,0,0):
rep(4)0:
repl(2)[0,0,1,0):
1,0,1,0:
0,1,1,0:
repl(S)[0,0,1,0):
0,1,1,0:
repl(7)[O,1,0,Oj:
1,1,0,0:
repl(11)[1,0,0,0):
0,0,0,0:
0,1,0,0:
repl(S)[1,0,0,Oj:
1,1,0,0:
repl(2)[1,1,1,Oj:

360

0,1,1,0:
rep1(2)[0,1,0,0):
rep(4)0:
repl(2)[0,0,1,0):
1,0,1,0:
0,1,1,0:
repl (5) [0 , 0 , 1 , 0) :
0,1,1,0:
repl(7)[0,1,0,0):
1,1,0,0:
repl(ll)[l,O,O,O):
0,0,0,0:
o , 1 , 0 , 0 :
repl(S)[l,O,O,O):
1,1,0,0:
repl(2)[1,1,1,0):
0,1,1,0:
repl(2)[0,1,0,0):
rep(4)0:
repl(2)[0,0,1,0):
1,0,1,0:
0,1,1,0:
repl (5) [0,0,1,0) :
0,1,1,0:
repl(7)[0,1,0,0):
1,1,0,0:
repl(ll)[l,O,O,O):
0,0,0,0:
0,1,0,0:
repl(S)[l,O,O,O):
1,1,0,0:
repl(2)[1,1,1,0):
0,1,1,0:
repl(2)[0,1,0,0):
rep(4)0:
rep1(2)[0,0,1,0):
1,0,1,0:
0,1,1,0:
repl(S)[O,O,l,O):
0,1,1,0:
repl(7)[0,1,0,0]:
1,1,0,0:
repl(ll)[l,O,O,O):
0,0,0,0:
0,1,0,0:
repl(4)[1,O,0,0)
end

361

p(4,91)
{ NO. 6.5.1 part-2 }
{ Program for solution of a homogenous system of eqs: }
repl(3)[rep(4) null n,O,O):
{calculation}
rep(4) mult n w,3,6:
rep (4) add ,7, ° :
rep(4) mov ,0,7:
rep (4) mov ,6, 1 :
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep (4) mov ,0,7:
rep (4) mov ,6, 1 :
rep(4) mu1t n w,3,6:
rep (4) add ,7, ° :
rep(4) mov· ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,8,O,rep(3) add ,7,0:
mov ,0,8,rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,O,rep(2) add ,7,0:
rep(2) mov ,0,8;rep(2) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,9,O,rep(3) add ,8,0:
mov ,0,9,rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,O,rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep (4) mov ,6, 1 :
rep(4) mult n w,3,6:
rep(3) add ,9,O,add ,8,0:
rep(3) mov ,0,9,mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep (4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mu1t n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mov ,7,0:
rep(4) copy ,0,0:
rep(4) mov ,8,0:

362

rep(4) copy ,0,0:
rep(4) mov ,9,0:
rep(4) copy ,0,0:
rep(4) null ,0,0:
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; null ,0,0:
mov s,1,7; rep(2) data n,3,0; null ,0,0:
data n,3,0; mov s,1,7; data n,3,0; null ,0,0:
rep(2) data n,3,0; mov s,1,7; null ,0,0:
rep(3) data n,3,0; null ,0,0:
mov s,1,8; rep(2) data n,3,0; null ,0,0:
sub ,7,8; mov s,1,8; data n,3,0; null ,0,0:
mov ,0,9; sub ,7,8; mov s,1,8; null ,0,0:
data n,3,0; mov ,0,9; sub ,7,8; null ,0,0:
mult ,3,9; data n,3,0; mov ,0,9; null ,0,0:
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0:
null ,0,0; mov ,0,10; mult ,3,9; null ,0,0:
null ,0,0; data w,6,0; mov ,0,10; null ,0,0:
null ,0,0; add ,6,10; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep(2) null ,0,0; copy ,0,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0:
rep(2) null ,0,0; data s,5,0; null ,0,0
end

d(4,91)
(NO. 6.5.1 part-2)
(Data file for solution of a homogenous system of eqs.
repl(3)[rep(4) none):
n 1.0,0.0,0.0,0.0;none;none;w -0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,0.0,0.0;none;none;w -0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,0.0,3.0,0.0;none;none;w 0.054902,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,1.0,0.0;none;none;w 0.282352,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,1.0,2.0,0.0;none;none;w 0.176471,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,1.0,0.0;none;none;w -0.823529,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,0.0,3.0,0.0;none;none;w -0.058824,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,1.0,0.0;none;none;w 0.411764,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,1.0,2.0,0.0;none;none;w 0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,1.0,0.0;none;none;w 1.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,0.0,3.0,0.0;none;none;w 0.145098,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,1.0,0.0;none;none;w -0.682353,0.0,0.0,0.0:
repl(3)[rep(4) none}:
n 0.0,1.0,2.0,0.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.0,0.0,1.0,0.0;none;none;w 0.0,0.0,0.0,0.0:
repl(10)[rep(4)none}:
n 0.0, 0.0, 0.0, 0.0;
none;none;none:

363

n 0.0, o .0, o . 0 , 0.0;
none;none;none:
n 1. 0, 1. 0, 1. 0, 0.0;
none;none;none:
n 0.0, o . 0 , o .0, 0.0;
noneinoneinone:
n 0.000011, o . 0 , 0.0, 0.0;
none;none;none:
n 0.000027, 0.000002, 0.0, 0.0;
none;none;none:
n 1.000024, 1.000008, 1.000002, 0.0;
none;none;none:
n 0.0, 0.000036, 0.000017, 0.0;
none;none;none:
n 0.0, 0.0, 0.000036, 0.0;
none;none;none:
none;none;none;none:
n 1.0, 0.0, 0.0, 0.0;
noneinoneinone:
n 0.0, 0.0, 0.0, 0.0;
none;none;none:
n 0.0, 0.0, 1.0, 0.0;
noneinoneinone:
repl(12)[rep(4) none]
end

s(4,91)
{ NO. 6.5.1 part-2 }
{ Selector file for solution of a homogenous system of eqs. }
repl(66)[l,rep(3)0]:
l,rep(3)0:
1,1,0,0:
1,1,1,0:
l,rep(3)0:
1,1,0,0:
rep(3)l,O:
rep(3)l,O:
l,rep(3)0:
1,1,0,0:
repl(9)[rep(3)l,O]:
0,1,1,0:
0,0,1,0:
1,1,1,0:
1,1,0,0:
rep1(2)[l,O,O,O]:
0,0,0,0
end

364

p(4,91)
{ NO. 6.5.1 part-2 }
{ Program for solution of a homogenous system of eqs.
repl(3)[rep(4) null n,O,O]:
{calculation}
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep (4) mov ,6, 1 :
rep(4) mult n w,3,6:
rep (4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,G,l:
rep(4) mult n w,3,G:
rep (4) add ,7,0:
rep (4) mov ,0, 7 :
rep(4) mov ,G,l:
rep(4) mult n w,3,G:
add ,8,0;rep(3) add ,7,0:
mov ,0,8;rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,0;rep(2) add ,7,0:
rep(2) mov ,0,8;rep(2) mov ,0,7:
rep (4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep (4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep (4) mov ,6, 1 :
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep (4) mov ,0, 9 :
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep (4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mov ,7,0:

365

rep(4) copy ,0,0:
rep(4) moY ,8,0:
rep(4) copy ,0,0:
rep(4) moY ,9,0:
rep(4) copy ,0,0:
rep(4) null ,0,0:
data n,3,O; rep(3) null ,0,0:
rep(2) data n,3,O; rep(2) null ,0,0:
rep(3) data n,3,O; null ,0,0:
moy 5,1,7; rep(2) data n,3,O; null ,0,0:
data n,3,O; moy 5,1,7; data n,3,O; null ,0,0:
rep(2) data n,3,O; mOY 5,1,7; null ,0,0:
rep(3) data n,3,O; null ,0,0:
moy 5,1,8; rep(2) data n,3,O; null ,0,0:
sub ,7,8; moy 5,1,8; data n,3,O; null ,0,0:
moy ,0,9; sub ,7,8; moy 5,1,8; null ,0,0:
data n,3,O; moy ,0,9; sub ,7,8; null ,0,0:
mult ,3,9; data n,3,O; mov ,0,9; null ,0,0:
copy ,0,0; mult ,3,9; data n,3,O; null ,0,0:
null ,0,0; moy ,0,10; mult ,3,9; null ,0,0:
null ,0,0; data w,6,O; mov ,0,10; null ,0,0:
null ,0,0; add ,6,10; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,O; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep(2) null ,0,0; copy ,0,0; null ,0,0:
rep(2) null ,0,0; data 5,5,0; null ,0,0:
rep(2) null ,0,0; data 5,5,0; null ,0,0:
rep(2) null ,0,0; data 5,5,0; null ,0,0:
rep(2) null ,0,0; data 5,5,0; null ,0,0:
rep(2) null ,0,0; data 5,5,0; null ,0,0
end

d(4,91)
{ NO. 6.5.1 part-2 }
{ Data file for solution of a homogenous system of eqs. }
repl(3)[rep(4) none):
n 1.0,O.O,O.O,O.0;none;none;w -0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,O.O,O.0;none;none;w -0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,O.O,3.0,O.0;none;none;w 0.054902,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,l.0,O.0;none;none;w 0.282352,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,l.0,2.0,O.0;none;none;w 0.176471,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,l.0,O.0;none;none;w -0.823529,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,O.O,3.0,O.0;none;none;w -0.058824,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,l.0,O.0;none;none;w 0.411764,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,l.0,2.0,O.0;none;none;w 0.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 2.0,4.0,l.0,O.0;none;none;w 1.098039,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 3.0,O.O,3.0,O.0;none;none;w 0.145098,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 4.0,2.0,l.0,O.0;none;none;w -0.682353,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,l.0,2.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(10)[rep(4)none):

366

n 0.0, 0.0, 0.0, 0.0;
nonejnOneinone:
n 0.0, o .0, 0.0, o . 0 ;
none;none;none:
n 1. 0, 1. 0, 1. 0, 0.0;
none;none;none:
n o .0, o .0, 0.0, 0.0;
none;none;none:
n 0.000011, 0.0, 0.0, 0.0;
none;none;none:
n 0.000027, 0.000002, 0.0, 0.0;
none;none;none:
n 1.000024, 1.000008, 1.000002, 0.0;
none;none;none:
n 0.0, 0.000036, 0.000017, 0.0;
nonejnonejnone:
n 0.0, 0.0, 0.000036, 0.0;
none;none;none:
none;none;none;none:
n 1.0, 0.0, 0.0, 0.0;
nonejnonejnone:
n 0.0, 0.0, 0.0, 0.0;
nonejnOneinone:
n 0.0, 0.0, 1.0, 0.0;
none;none;none:
repl(12)[rep(4) none]
end

s(4,91)
{ NO. 6.5.1 part-2 }
{ Selector file for solution of a homogenous system of eqs. }
repl(66)[l,rep(3)0]:
l,rep(3)0:
1,1,0,0:
1,1,1,0:
I, rep (3) 0 :
1,1,0,0:
rep(3)l,O:
rep(3)l,O:
l,rep(3)0:
1,1,0,0:
rep1(9)[rep(3)l,O]:
0,1,1,0:
0,0,1,0:
1,1,1,0:
1,1,0,0:
repl(2)[l,O,O,O]:
0,0,0,0
end

367

p(4,300)
{ NO. 6.5.2 part-1 }
{ program for the most general solution of a system of eq5. }
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; null ,0,0:
rep(4) data n,3,0 :
null ,0,0; rep(3) data n,3,0:
rep(2) null,a,O; rep(2) data n,3,0:
rep(3) null ,0,0; data n,3,0:
rep(4) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
data n,3,0; rep(3) null,O,O:
data 5,5,0; null,O,O; data e,4,0; data w,6,0:
data e,4,0; data w~6,0; data n,3,0; null ,0,0:
rep(2) null,O,O; data 5,5,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0 :
data n,3,0; data e,4,0;data w,6,0; null ,0,0:
data 5,5,0; data n,3,0; data e,4,0; data w,6,0:
data n,3,0; data 5,5,0; rep(2) null ,0,0:
data 5,5,0; data n,3,0; rep(2) null ,0,0:
null ,o,oi data 5,5,0; rep(2) null ,0,0:
data e,4,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data e,4,0; data w,6,0; data e,4,0; data w,6,0:
null ,0,0; data e,4,0; data w,6,0; null ,0,0:
data 5,5,0; null ,0,0; data e,4,0; data w,6,0:
rep(2) data 5,5,0; rep(2) null ,0,0:
rep(3) data 5,5,0; null ,0,0:
rep(4) data 5,5,0:
rep(4) data 5,5,0:
null ,0,0; rep(3) data 5,5,0:
rep(2) null ,0,0; rep(2) data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(4) null ,0,0:
{matrix multiplication 4x4}
repl(3)[rep(4) null n,O,O]:
{calculation}
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) may ,0,7:
rep(4) may ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) may ,0,7:
rep(4) may ,6,1:
rep(4) mult n w,~,6:
rep(4) add ,7,0:
rep(4) may ,0,7:
rep(4) moy ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) may ,0,7:
rep(4) moY ,6,1:
rep(4) mult n w,3,6:
add ,8,0;rep(3) add ,7,0:
moY ,0,8;rep(3) may ,0,7:
rep(4) moy ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,0;rep(2) add ,7,0:

368

rep(2) mav ,0,8;rep(2) mav ,0,7:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mav ,0,8;mav ,0,7:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
add ,9,0;rep(3) add ,8,0:
mav ,0,9;rep(3) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mav ,0,9;rep(2) mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mav ,0,9;mav ,0,8:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mav ,0,9:
rep(4) mav ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mav ,0,9:
rep(4) may ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(3) copy ,0,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
may 5,1,7; data n,3,0; rep(2) null ,0,0:
may ,8,0; may 5,1,7; data n,3,0; null ,0,0:
copy ,0,0; may ,8,0; may 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; mov ,8,0; null ,0,0:
mov 5,1,7; data n,3,0; copy ,0,0; null ,0,0:
may ,7,0; mav 5,1,7; data n,3,0; null ,0,0:
copy ,0,0; may ,7,0; may 5,1,7; null ,0,0:
data n,3,0; copy ,0,0; may ,7,0; null ,0,0:
div ,7,3; data n,3,0; copy ,0,0; null ,0,0:
copy ,0,0; null ,0,0; data n,3,0; null ,0,0:
null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; mult ,3,6; data w,6,0; null ,0,0:
null ,0,0; 5ub ,7,0 ; mult ,3,6; null ,0,0:
null ,0,0; copy ,0,0; 5ub ,7,0; null ,0,0:
null ,0,0; mav 5,1,7; copy ,0,0; null ,0,0:
null ,0,0; data n,3,0; mav 5,1,7; null ,0,0:
null ,0,0; div ,7,3; data n,3,0; null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; mult ,3,6; null ,0,0:
rep(2) null ,0,0; 5ub ,7,0; null ,0,0:
mov 5,1,8; null ,0,0; copy ,0,0; null ,0,0:
rep(4) null ,0,0:
null ,0,0; may 5,1,8; rep(2) null ,0,0:
rep(4) null ,0,0:
mav 5,1,7; null ,0,0; may 5,1,8; null ,0,0:
rep(4) null ,0,0:
data n,3,0;mav 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data n,3,0; rep(2) null ,0,0:
rep(4) null ,0,0:
mav 5,1,7; null ,0,0; data n,3,0; null ,0,0:

369

rep(4) null ,0,0:
null ,0,0; mov 5,1,7; rep(2) null ,0,0:
rep(4) null ,0,0:
data n,3,0; null ,0,0; mov 5,1,7; null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:
null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null .,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
{ start factorisation}
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

,0,0:
, 0 , 0 :
, 0 , 0 :

null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:

370

rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data 5,5,0; null n,O,O:
null ,0,0; 5ub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
5ub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0:
data n,3,0; rep(3) null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:

null
null
null

, ° , ° :
, 0, ° :
,0 ,0:

null n,O,O; data w,6,0; rep(2) null n,O,O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; 5ub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O;O:
null n,O,O; data n,3,0; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,0; null n,O,O:
rep(2) null n,O,O; data n,3,0; null n,O,O:
rep(2) null n,O,O; 5ub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,0; data 5,5,0; null n,O,O:
null ,0,0; 5ub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0, 0; copy ,0, 0; rep (2) null ,0, ° :
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,0; rep(3) null ,0,0:
5ub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0;
null ,0, 0; rep(2)
null ,0,0; rep(2)

data
data
data

5,5,0;
5,5,0;
5,5,0;

null
null
null

, ° , ° : , ° , 0:
, 0, ° :

371

rep(3) data 5,5,0; null ,0,0:
data n,3,O; rep(3) null ,0,0:
mult ,3,7; rep(3) null n,O,O:
copy ,0,0; rep(3) null n,O,O:
null n,O,O; data w,6,O; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; sub ,3,6; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
null n,O,O; data n,3,O; rep(2) null n,O,O:
null n,O,O; mult ,3,7; rep(2) null n,O,O:
null n,O,O; add ,6,0; rep(2) null n,O,O:
null n,O,O; copy ,0,0; rep(2) null n,O,O:
rep(2) null n,O,O; data w,6,O; null n,O,O:
rep(2) null n,O,O; data n,3,O; null n,O,O:
rep(2) null n,O,O; sub ,3,6; null n,O,O:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(2) null n,O,O; div ,0,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null n,O,O:
rep(4) null n,O,O:
rep(2) null n,O,O; data 5,5,0; null n,O,O:
rep(2) null n,O,O; mult ,5,8; null ,0,0:
rep(2) null n,O,O; copy ,0,0; null ,0,0:
null n,O,O; data e,4,O; data 5,5,0; null n,O,O:
null ,0,0; sub ,0,4; rep(2) null ,0,0:
null ,0,0; div ,0,8; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; mult ,5,8; data 5,5,0; null ,0,0:
null ,0,0; copy ,0,0; mult ,5,8; null ,0,0:
null ,0,0; mov 5,1,9; copy ,0,0; null ,0,0:
null ,0,0; data e,4,O; rep(2) null ,0,0:
null ,0,0; add ,4,9; rep(2) null ,0;0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
data e,4,O; rep(3) null ,0,0:
sub ,0,4; rep(3) null ,0,0:
div ,0,8; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(2) null ,0,0; data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
null ,0,0; rep(2) data 5,5,0;
rep(3) data 5,5,0; null ,0,0
end

d(4,300)
{ NO. 6.5.2 part-1 }

null
null
null

, 0 , 0 :
, 0 , 0 :
, 0 , 0 :

{ Data file for the most general solution of a system of,eqs. }
n 0.0,0.0,0.0,0.0;
noneinoneinone:
n 1.0,0.0,0.0,0.0;
none;none;none:
n 0.0,1.0,1.0,0.0;
none;none;none:
n 1.0,1.0,1.0,0.0;
none;none;none:
n 0.0,0.0,1.0,0.0;
none;none;none:
n 0.0,0.0,1.0,0.0;
none;none;none:
n 0.0,0.0,0.0,0.0;
noneinoneioone:
repl(27)[rep(4) none]:
repl(3)[rep(4) none]:

372

n 1.0,O.O,O.O,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n O.O,O.O,O.O,O.O;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,l.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n O.O,O.O,l.O,O.O;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl (3) [rep (4) none):
n 0.O,l.0,l.O,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 1.0,O.O,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,O.O,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl (3) [rep (4) none):
n 1.0,l.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,1.0,l.0,O.0;none;none;w 1.0,0.0,0.0,0.0:
repl(3) [rep(4) none):
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) none):
n 0.O,O.O,l.0,O.0;none;none;w 0.0,0.0,0.0,0.0:
repl (30) [rep (4) none):
(new data)
n 1.0,0.0,0.0,0.0; none;none;none:
none; none; none; none:
n 0.0,1.0,0.0,0.0; non~;none;none:
none; none; none; none:
n 0.0,0.0,1.0,0.0; none;none;none:
rep1(3)[rep(4) none):
n 1.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none):
n 0.0,0.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none):
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none!:
n 0.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none):
n 0.0,1.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none):
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none):
n 1.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none):
n 0.0,1.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none):
n 0.0,0.0,1.0,0.0; none;none;none:
repl (30)[rep(4) none):
n 0.0,0.0,0.0,0.0; none;none;none:
repl(3)[rep(4) none):
n 0.0,0.0,0.0,0.0; none;none;none:
repl(7)[rep(4) none):
n 0.0,0.0,1.0,0.0; none;none;none:
repl(30)[rep(4) none]
end

5(4,300)
(NO. 6.5.2 part-1)

373

{ selector file for the most general solution of a system of eqs.}
1,0,0,0:

1,1,0,0:
1 , 1 , 1 , 0 :
1,1,1,1:
rep1(3)[rep(4)0]:
rep1(2)[l,rep(3)0]:
0,0,1,0:
rep(3) I, 0:
1, rep (3) 0 :
1,0,1,1:
rep(3) 1, 0:
repl(2)[l,l,O,O]:
0,1,0,0:
1,1,0,0:
0,1,1,0:
rep(4)1:
rep(3) 1,0:
rep (4) 1 :
repl (3) [1,1,0,0] :
repl(2)[rep(4)0]:
rep (3) 1,0:
1,1,0,0:
1,0,0,0:
repl(4)[rep(4) 0]:
repl(57)[l,rep(3)0]:
1 , 0 , 0 , 0 :
0,0,0,0:
0,1,0,0:
1,0,1,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
1,1,0,0:
1 , 0 , 0 , 0 :
0,0,0,0:
0,1,0,0:
0,1,1,0:
repl(4)[O, rep(2)l,O]:
repl(7)[rep(2) 0, 1,0]:
1,0,1,0:
1,0,0,0:
repl(2)[l,l,O,O]:
repl(2)[O,l,l,O]:
repl(2)[l,O,l,O]:
1,1,0,0:
0,1,0,0:
1,0,1,0:
0,0,0,0:
0,1,0,0:
0,0,0,0:
1,0,1,0:
1 , 1 , 0 , 0 :
repl(2)[l,l,l,O]:
0,1,1,0:
repl(2)[O,l,O,O]:
rep(4)0:
repl(2)[O,O,l,O]:
1,0,1,0:.
0,1,1,0:
repl(5)[O,O,l,O]:
0,1,1,0:
repl(7)[O,l,O,O]:
1,1,0,0:
repl(ll)[l,O,O,O]:
o , 0 , 0 , 0 :
0,1,0,0:
repl(5)[l,O,O,O]:

314

1,1,0,0:
rep1(2)[l,1,1,0):
0,1,1,0:
rep1(2)[O,1,0,0):
rep(4)0:
rep1(2)[O,0,1,0):
1,0,1,0: .
0,1,1,0:
repl(5)[O,0,1,0):
0,1,1,0:
repl(7)[O,1,0,0):
1,1,0,0:
repl(ll)[l,O,O,O):
0,0,0,0:
0,1,0,0:
repl(5)[l,0,0,0):
1,1,0,0:
repl(2)[l,1,1,0):
0,1,1,0:
repl(2)[O,1,0,0):
rep(4)0:
repl(2)[O,O,l,0):
1,0,1,0:
0,1,1,0:
repl(5)[O,0,l,O):
0,1,1,0:
rep1(7)[O,l,0,0):
1,1,0,0:
repl(ll)[l,O,O,O):
0,0,0,0:
0,1,0,0:
repl(5)[l,O,0,0):
1,1,0,0:
rep 1 (2) [1,1,1,0) :
0,1,1,0:
repl(2)[O,l,O,O):
rep(4)0:
repl(2)[O,O,l,O):
1,0,1,0:
0,1,1,0:
repl(5)[O,O,l,0):
0,1,1,0:
repl(7)[O,l,O,O):
1,1,0,0:
repl(ll)[l,O,O,O):
o , 0 , 0 , 0 :
0,1,0,0:
repl(4)[1,0,0,0)
end

375

p(4,108)
{ NO. 6.5.2 part-2 }
{ Program for the most general solution of a system of eqs. }
repl(3)[rep(4) null n,O,OJ:
{calculation}
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,7,0:
rep(4) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,8,0;rep(3) add ,7,0:
mov ,0,8;rep(3) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,8,0;rep(2) add ,7,0:
rep(2) mov ,0,8;rep(2) mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,8,0;add ,7,0:
rep(3) mov ,0,8;mov ,0,7:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,8,0:
rep(4) mov ,0;8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
add ,9,0;rep(3) add ,8,0:
mov ,0,9;rep(3) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(2) add ,9,0;rep(2) add ,8,0:
rep(2) mov ,0,9;rep(2) mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(3) add ,9,0;add ,8,0:
rep(3) mov ,0,9;mov ,0,8:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mult n w,3,6:
rep(4) add ,9,0:
rep(4) mov ,0,9:
rep(4) mov ,6,1:
rep(4) mov ,7,0:

376

rep(4) copy ,0,0:
rep(4) mov ,8,0:
rep(4) copy ,0,0:
rep(4) mov ,9,0:
rep(4) copy ,0,0:
rep(4) null ,0,0:
data n,3,0; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; null ,0,0:
mov 5,1,7; rep(2) data n,3,0; null ,0,0:
data n,3,0; mov 5,1,7; data n,3,0; null ,0,0:
rep(2) data n,3,0; mov 5,1,7; null ,0,0:
rep(3) data n,3,0; null ,0,0:
mov 5,1,8; rep(2) data n,3,0; null ,0,0:
5ub ,7,8; mov 5,1,8r data n,3,0; null ,0,0:
mov ,0,9; 5ub ,7,8; mov 5,1,8; null ,0,0:
data n,3,0; mov ,0,9; 5ub ,7,8; null ,0,0:
mult ,3,9; data n,3,0; mav ,0,9; null ,0,0:
copy ,0,0; mult ,3,9; data n,3,0; null ,0,0:
null ,0,0; mov ,0,10; mult ,3,9; null ,0,0:
null ,0,0; data w,6,0; mov ,0,10; null ,0,0:
null ,0, 0; add ,6,10; rep (2) null ,0, ° :
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
data n,3,0; null ,0,0; mov ,0,10; null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(3) data n,3,0; null ,0,0:
mov 5,1,7; rep(3) data n,3,0:
data n,3,0; mov 5,1,7; rep(2) data n,3,0:
mult ,3,7; data n,3,0; mov 5,1,7; data n,3,0:
copy ,0,0; mult ,3,7; data n,3,0; mov 5,1,7:
null ,0,0; mov ,0,8; mult ,3,7; data n,3,0:
null ,0,0; data w,6,0; mov ,0,8; mult ,3,7:
null ,0,0; add ,6,8; null ,0,0; mov ,0,8:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,8; null ,0,0:
rep(2) null ,0,0; add ,0,10; null ,0,0:
rep(2) null ,0,0; copy ,0,0; null ,0,0:
rep(3) null ,0,0; data w,6,0:
rep(3) null ,0,0; add ,6,8:
rep(3) null ,0,0; copy ,0,0:
rep(3) null ,0,0; data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(3) null ,0,0; data 5,5,0:
rep(3) null ,0,0; data 5,5,0
end

d(4,108)
{ NO. 6.5.2 part-2 }
{ Data file for the m05t general 50lution of a 5y5tem of eq5. }
repl(3)[rep(4) none]:
n 1.0,0.0,0.0,0.0;none;none;w 0.5,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n O.O,O.O,O.O,O.O;none;none;w -0.5,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,1.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.0,1.0,1.0,0.0;none;none;w -0.5,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 1.0,0.0,1.0,0.0;none;none;w -0.5,0.0,0.0,0.0:
repl(3)[rep(4) none]:
n 0.0,0.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0:

377

repl(3)[rep(4) nonel:
n 1.0,1.0,1.0,0.0;none;none;w 0.5,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n O.O,l.O,l.O,O.O;none;none;w -0.5,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n 1.0,0.0,1.0,0.0;none;none;w 0.25,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n O.O,O.O,l.O,O.O;none;none;w 0.25,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n 1.0,1.0,1.0,0.0;none;none;w -0.25,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n O.O,l.O,l.O,O.O;none;none;w 0.75,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n O.O,O.O,l.O,O.O;none;none;w 0.0,0.0,0.0,0.0:
repl(3)[rep(4) nonel:
n O.O,O.O,l.O,O.O;none;none;w 0.0,0.0,0.0,0.0:
repl(10)[rep(4)nonel:
n 0.0, 0.0, 0.0, 0.0;
noneinoneinone:
n 0.0, ° . ° , 0. ° , 0.0;
none;none;none:
n 1. 0, 1. 0, 1. 0, 0. 0;
none;none;none:
n 0. ° , 0. ° , 0. ° , o . ° ;
noneinonejnone:
n 0.0, 0.0, 0.0, 0.0;
noneinoneinone:
n ° . ° , 0.0, 0.0, 0.0;
none;none;none:
n 1. 0, 1. 0, 1. ° , o . ° ;
noneinoneinone:
n ° . ° , 0.0, 0. ° , 0.0;
none;none;none:
n 0.0, 0. ° , 0.0, 0.0;
none;none;none:
noneinoneinoneinone:
n 1.0, 0.0, 0.0, 0.0;
noneinOnejnone:
n 0.0, 1.0, 0.0, 0.0;
nonejnonejnone:
n 0.0, 0.0, 1.0, 0.0;
nonejnonejnone:
repl(6)[rep(4) nonel:
n 0.25, 0.0, 0.0, 0.0;
none;none;none:
n -0.5, 0.25, 0.0, 0.0;
none;none;none:
n 0.5, 0.5, -0.25, 0.0;
none inane inane:
n 0.0, -0.5, 0.5, 0.75;
none;none;none:
n 2.0, 0.0, 0.5, -0.5;
noneinoneinone:
n 0.0, 2.0, 0.0, -0.5;
none;none;none:
n 0.0, 0.0, 2.0, 0.0;
none;none;none:
n 0.0, 0.0, 0.0, 2.0;
none;none;none:
repl(15)[rep(4) nonel
end

378

379

s(4,108)
{ NO. 6.5.2 part-2 }
{ Selector file for the most general solution of a sy'stem of eqs.}
repl(66)[1,rep(3)0]:
1,rep(3)0:
1,1,0,0:
1 , 1 , 1 , 0 :
1,rep(3)0:
1,1,0,0:
rep(3)1,0:
rep(3)1,0:
1,rep(3)0:
1,1,0,0:
repl(9)[rep(3)1,0]:
0,1,1,0:
1,0,1,0:
1 , 1 , 0 , 0 :
1,1,1,0:
1,0,0,0:
1,1,0,0:
repl(10)[rep(3)1,0]:
0,1,1,0:
0,0,1,0:
1 , 1 , 1 , 0 :
1,1,0,0:
repl(2)[1,0,0,0]:
repl(2)[0,0,0,0]
end

p(4,39)
{ NO. 6.6 }
{ Program for the deletion from the heap sort }
{loading data}·
data n,3,0; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
rep(3) data n,3,0; null ,0,0:
null ,0,0; rep(2) data n,3,0; null ,0,0:
rep(2) null ,0,0; data n,3,0; null ,0,0:
{calculation}
rep(2) null ,0,0; data 5,5,0; null ,0,0:
null ,0,0; data e,4,0; data 5,5,0; null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
null ,0,0; max e,4,1; min w,6,1; null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
rep(2) null ,0,0; data n,3,0; null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
null ,0,0; max e,4,1; min w,6,1; null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
data 5,5,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; max e,4,1; min w,6,1; null ,0,0:
rep(4) null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
null ,0,0; data w,6,0; rep(2) null ,0,0:
data n,3,O; rep(3) null ,0,0:
null ,0,0; max e,4,1; min w,6,l; null ,0,0:
rep(4) null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data e,4,0; rep(2) null ,0,0:
min e,4,1; max w,6,1; rep(2) null ,0,0:
rep(4) null ,0,0:
null ,0,0; data 5,5,0;
null ,0,0; data w,6,0;
null ,0,0; data 5,5,0;
null ,0,0; data 5,5,0;
rep(4) null ,0,0
end

d(4,39)
{ NO. 6.6 }

rep(2)
rep(2)
rep(2)
rep(2)

null
null
null
null

,0,0:
,0,0:
,0,0:
,0,0:

{ Data file for the deletion from the heap sort }
n 4.0,0.0,0.0,0.0;rep(3) none:
n 5.0,0.0,0.0,0.0;rep(3) none:
n 1.0,9.0,6.0,0.0;rep(3) none:
n 0.0,0.0,7.0,0.0;rep(3) none:
n 0.0,0.0,3.0,0.0;rep(3) none:
repl(34)[rep(4) none]
end

380

5(4,39)
(NO. 6.6)
(Selector file for the deletion from the heap sort)
repl(3)[rep(3) 1, 0):
repl(2)[rep(4) 0):
0, rep (2) 1, 0:
rep(2) 1, rep(2) 0:
rep(4) 0:
0,1, rep(2) 0:
rep (2) 1, rep (2) 0:
rep (4) 0:
0,1, rep(2) 0:
1, 1, rep (2) 0:
rep(4) 0:
0, 1, rep (2) 0:
rep(2) 1, rep(2) 0:
rep (4) 0:
0, 1, rep(2) 0:
0, rep(2) 1, 0:
repl(2)[0, 1, rep(2) 0):
rep(2) 1, rep(2) 0:
rep(4) 0:
repl (2) [0, 1, rep (2) 0):
rep(2) 1, rep(2) 0:
rep(4) 0:
0, 1, rep(2) 0:
rep(2) 1, rep(2) 0:
rep(4) 0:
repl (3) [0, 1, rep (2) 0):
rep(2) 1, rep(2) 0:
rep(4) 0:
repl(3)[rep(2) 1, rep(2) 0):
rep(3) 1, 0
end

381

p(4,121)
{ NO. 6.7 HPI }
{ Program for Hermite polynomial Interpolation
data n,3,0; rep(3) null ,0,0:
mov 5,1,7; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(2) mov 5,1,8; rep(2) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(2) mov 5,1,9; rep(2) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
rep(2) mov 5,1,10; rep(2) null ,0,0:
rep(2) sub ,8,9; rep(2) null ,0,0:
rep(2) mov ,0,11; rep(2) null ,0,0:
rep(2) sub ,8,10; rep(2) null ,0,0:
rep(2) mov ,0,12; rep(2) null ,0,0:
rep(2) mult ,11,12; rep(2) null ,0,0:
rep(2) mov ,0,13; rep(2) null ,0,0:
rep(2) sub ,9,8; rep(2) null ,0,0:
rep(2) mov ,0,14; rep(2) null ,0,0:
rep(2) sub ,9,10; rep(2) null ,0,0:
rep(2) mov ,0,15; rep(2) null ,0,0:
rep(2) mult ,14,15; rep(2) null ,0,0:
rep(2) mav ,0,16; rep(2) null ,0,0:
rep(2) sub ,10,8; rep(2) null ,0,0:
rep(2) mov ,0,17; rep(2) null ,0,0:
rep(2) sub ,10,9; rep(2) null ,0,0:
rep(2) mav ,0,18; rep(2) null ,0,0:
rep(2) mylt ,17,18; rep(2) null ,0,0:
rep(2) mov ,0,19; rep(2) null ,0,0:
sub ,7,9; sub ,8,10; rep(2) null ,0,0:
rep(2) mav ,0,11; rep(2) null ,0,0:
sub ,7,10; sub ,8,9; rep(2) null ,0,0:
rep(2) mov ,0,12; rep(2) null ,0,0:
mult ,11,12; add ,11,12; rep(2) null ,0,0:
rep(2) mov ,0,14; rep(2) null ,0,0:
sub ,7,8; sub ,9,10; rep(2) null ,0,0:
rep(2) mov ,0,15; rep(2) null ,0,0:
mult ,15,12; sub ,9,8; rep(2) null ,0,0:
rep(2) mov ,0,17; rep(2) null ,0,0:
mult ,15,11; add ,15,17; rep(2) null ,0,0:
rep(2) mov ,0,18; rep(2) null ,0,0:
div ,14,13; sub ,10,9; rep(2) null ,0,0:
mov ,0,13; mov ,0,11; rep(2) null ,0,0:
div ,17,16; sub ,10,8; rep(2) null ,0,0:
mov ,0,14; mov ,0,12; rep(2) null ,0,0:
div ,18,19; add ,11,12; rep(2) null ,0,0:
mov ,0,16; mov ,0,17; rep(2) null ,0,0:
mult ,13,13; div ,14,13; rep(2) null ,0,0:
rep(2) mov ,0,13; rep(2) null ,0,0:
mult ,14,14; div ,18,16; rep(2) null ,0,0:
rep(2) mov ,0,14; rep(2) null ,0,0:
mult ,16,16; div ,17,19; rep(2) null ,0,0:
rep(2) .mov ,0,16; rep(2) null ,0,0:
data n,3,0; mov ,13,0; rep(2) null ,0,0:
mov 5,1,7; rep(3) null ,0,0:
data n,3,0; copy ,0,0; rep(2) null ,0,0:
mov 5,1,8; rep(3) null ,0,0:
data e,4,0; mov ,14,0; rep(2)
mov 5,1,17; copy ,0,0; rep(2)
data e,4,0; mov ,16,0; rep(2)
mov 5,1,18; copy ,0,0; rep(2)
data e,4,0; rep(3) null ,0,0:

null
null
null
null

, ° , ° :
,0,0: , ° , ° : , ° , ° :

382

moy s,1,19; rep(3) null ,0,0:
mult ,8,15; rep(3) null ,0,0:
moy ,0,9; rep(3) null ,0,0:
mult ,9,17; rep(3) null ,0,0:
moy ,0,9; rep(3) null ,0,0:
mult ,8,11; rep(3) null ,0,0:
moy ,0,10; rep(3) null ,0,0:
mult ,10,18; rep(3) null ,0,0:
moy ,0,10; rep(3) null ,0,0:
mult ,8,12; rep(3) null ,0,0:
moy ,0,17; rep(3) null ,0,0:
mult ,17,19; rep(3) null ,0,0:
moy ,0,17; rep(3) null ,0,0:
sub ,7,9; rep(3) null ,0,0:
moy ,0,9; rep(3) null ,0,0:
sub ,7,10; rep(3) null ,0,0:
moy ,0,10; rep(3) null ,0,0:
sub ,7,17; rep(3) null ,0,0:
moy ,0,17; rep(3) null ,0,0:
mult ,9,13; rep(3) null ,0,0:
moy ,0,7; rep(3) null ,0,0:
mult ,10,14; rep(3) null ,0,0:
moy ,0,8; rep(3) null ,0,0:
mult ,17,16; rep(3) null ,0,0:
moy ,0,9; rep(3) null ,0,0:
mult ,15,13; rep(3) null ,0,0:
moy ,0,10; rep(3) null ,0,0:
mult ,11,14; rep(3) null ,0,0:
moy ,0,11; rep(3) null ,0,0:
mult ,12,16; rep(3) null ,0,0:
moy ,0,12; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moy s,1,13; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moy s,1,14; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moY s,1,15; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moy s,1,16; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moy s,1,17; rep(3) null ,0,0:
data n,3,0; rep(3) null ,0,0:
moy s,1,18; rep(3) null ,0,0:
rep(2) data n,3,0; rep(2) null ,0,0:
mult ,13,7; rep(3) null ,0,0:
moy ,0,7; rep(3) null ,0,0:
mult ,14,8; rep(3) null ,0,0:
moy ,0,8; rep(3) null ,0,0:
mult ,15,9; rep(3) null ,0,0:
moy ,0,9; rep(3) null ,0,0:
mult ,16,10; rep(3) null ,0,0:
moY ,0,10; rep(3) null ,0,0:
mult ,17,11; rep(3) null ,0,0:
moy ,0,11; rep(3) null ,0,0:
mult ,18,12; rep(3) null ,0,0:
add ,0,11; rep(3) null ,0,0:
add ,0,10; rep(3) null ,0,0:
add ,0,9; rep(3) null ,0,0:
add ,0,8; rep(3) null ,0,0:
add ,0,7; rep(3) null ,0,0:
copy ,0,0; rep(3) null ,0,0:
rep(4) null ,0,0
end

383

d(4,121)
{ NO. 6.7 HPI }
{ Data file for Hermite Polynomial Interpolation
n 1.5, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:
n 1.3, 1.3, 0.0, 0.0; none;none;none:
rep(4) none:
n 1.6, 1.6, 0.0, 0.0; none;none;none:
rep(4) none:
n 1.9, 1.9, 0.0, 0.0; none;none;none:
repl(43)[rep(4) none]:
n 1.0, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:
n 2.0, 0.0, 0.0, 0.0; none; none; none:
repl(37)[rep(4) none]:
n 0.620086, 0.0, 0.0, 0.0; none; none; none:
rep(4) none:
n 0.455402, 0.0, 0.0,
rep(4) none:
n 0.281818, 0.0, 0.0,
rep(4) none:
n -0.522023, 0.0, 0.0,
rep(4) none:
n -0.569895, 0.0, 0.0,
rep(4) none:
n -0.581157, 0.0, 0.0,
rep(4) none: _
n 0.0, 0.0, 0.0, 0.0;
repl(18)[rep(4) none]
end

5(4,121)
{ NO. 6.7 HPI }

0.0;

0.0;

0.0;

o . 0 ;

o .0;

none;

none; none; none:

none; none; none:

none; none i none:

none; none; none:

none; none; none:

none; none:

{ Selector file for Hermite polynomial Interpolation}
repl(121)[1,0,0,0]
end

384

p(4,29)
{ NO. 6.7 PE }
{ Program for parallel evaluation }
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(4) null ,0,0:
rep(4) data n,3,0:
rep(4) mov ,3,7:
null ,0,0; rep(3) mult ,3,7:
null ,0,0; mov ,0,8; rep(2) mult ,0,7:
rep(2) null ,0,0; rep(2) mult ,0,7:
rep(2) null ,0,0; mov ,0,8; mult ,0,7:
rep(3) null ,0,0; mult ,0,7:
rep(3) null ,0,0; mov ,0,8:
rep(4) data n,3,0:
rep(4) mult ,3,7:
rep(4) mov ,0,9:
rep(4) data n,3,0:
rep (4) add ,3,9:
copy ,0,0; rep(3) mov ,0,10:
null ,0,0;rep(3) mult ,8,10:
null ,0,0; rep(3) mov ,0,10:
null ,0,0; data w,6,0; rep(2) null ,0,0:
null ,0,0; add ,6,10; rep(2) null ,0,0:
null ,0,0; copy ,0,0; rep(2) null ,0,0:
rep(2) null ,0,0; data w,6,0; null ,0,0:
rep(2) null ,0,0; add ,6,10; null ,0,0:
rep(2).null ,0,0; copy ,0,0; null ,0,0:
rep(3) null ,0,0; data w,6,0:
rep(3) null ,0,0; add ,6,10:
rep(3) null ,0,0; copy ,0,0:
rep(4) null ,0,0
end

d(4,29)
{ NO. 6.7 PE }
{ Data file for parallel evaluation}
repl(3)[rep(4) none]:
n 2.0,2.0,2.0,2.0;none;none;none:
repl(7)[rep(4) none]:
n 4.0,6.0,8.0,10.0;none;none;none:
rep(4) none:
rep(4) none:
n 3.0,S.0,7.0,9.0;none;none;none:
repl(14)[rep(4) none]
end

5(4,29)
{ NO. 6.7 PE }
(Selector file for parallel evaluation}
repl(29)[1,0,0,0]
end

385

