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ABSTRACT 

Modern electronic systems, especially sensor and imaging systems, are beginning to 

incorporate their own neural network subsystems. In order for these neural systems to learn in 

real-time they must be implemented using VLSI technology, with as much of the learning 

processes incorporated on-chip as is possible. The majority of current VLSI implementations 

literally implement a series of neural processing cells, which can be connected together in an 

arbitrary fashion. Many do not perform the entire neural learning process on-chip, instead 

relying on other external systems to carry out part of the computation requirements of the 

algorithm. 

The work presented here utilises two dimensional instruction systolic arrays in an attempt to 

define a general neural architecture which is closer to the biological basis of neural networks - it 

is the synapses themselves, rather than the neurons, that have dedicated processing units. A 

unified architecture is described which can be programmed at the microcode level in order to 

facilitate the processing of multiple neural network types. 

An essential part of neural network processing is the neuron activation function, which can 

range from a sequential algorithm to a discrete mathematical expression. The architecture 

presented can easily carry out the sequential functions, and introduces a fast method of 

mathematical approximation for the more complex functions. This can be evaluated on-chip, 

thus implementing the entire neural process within a single system. 

VHDL circuit descriptions for the chip have been generated, and the systolic processing 

algorithms and associated microcode instruction set for three different neural paradigms have 

been designed. A software simulator of the architecture has been written, giving results for 

several common applications in the field. 

Keywords: Systolic Array; Instruction Systolic Array; Systolic Algorithm Design; Parallel 

Processing; Computer Architecture; Neural Networks; Backpropagation; 

Kohonen; Counter-Propagation 
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INTRODUCTION 

1.1 Introduction 

Modern electronic systems, especially sensor and imaging systems, are beginning to 

incorporate their own neural network sub-systems. One of the major advantages of neural 

networks is that they have the capacity to extract the essential characteristics of input data, 

which may well contain much irrelevant data [Wass89]. This, coupled with their ability to 

generalize from previous examples to new ones, makes their use in real-time image-processing 

and sensor applications very attractive. However, the response times of such applications 

necessitate that the neural systems be implemented in hardware rather than software, and in 

order to maximize their performance application-specific integrated circuits (ASIC) would have 

to be designed rather than use standard general-purpose components [MeC080]. 

In many existing hardware neural network systems [NayI94] [KuHw89] [Hamm91] the 

processing elements (PE) within an ASIC perform the majority of the neural processing, with 

each PE being mapped on to a physical neuron in the network. With a large network there can 

be a tremendous number of communication channels, due to the number of connection 

combinations, and managing such channels can take up a large proportion of the available 

processing time. This can make the hardware implementation of neural networks either rather 

slow or limited in scope, with the former being especially true if the ASIC is to be 'general 

purpose' and allow conceivably any inter-neuron connection strategy. 
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There is little work [Lehm93] which focuses on using the synapses within a neuron as the main 

PE's of a hardware system; such systems compute partial results on each of the synapses and 

combine them all on a parallel pipeline. This is a perfect example as to the benefits of using 

systolic array structures: they can utilize the inherent parallelism present in neural networks for 

very few overheads and, thus, solve the communication problem through the extensive use of 

concurrency [KungHT82]. 

Very large scale integration (VLSI) allows for many millions of transistors per le. Although 

such large devices can be expensive to fabricate they actually make array processors financially 

viable, as the single IC could hold a large number of individual PE's. A systems architect can 

then re-cast basic algorithms into a form more suitable for processing, as well as partitioning 

the algorithm in new ways in order to reduce the amount of working memory required on-chip. 

This allows for a single IC to have high performance even though it consists of multiple 

instances of cheap low performance units - there can often be an advantage in using 

inexpensive technology in seeking high performance. 

Algorithms in many areas are well understood and are not expected to be improved upon in the 

near future; e.g. the fields of mathematical floating-point division and data sorting. However, 

the systems architect may be limited in computational units and may have to implement 

algorithms in a non-standard fashion. For instance, if the VLSI device has only fixed-point 

adders and multipliers how can complex expressions such as x = in (n + J ) 2 be calculated? 

The architect is forced to re-engineer such expressions, devising equivalent functions based 

upon the mathematical units available. These equivalent functions will be optimised for the 

parallel architecture that has been designed and will often be faster and more efficiently than the 

original expression would have been on a more mathematically-capable serial processor. 

The work to devise a VLSI architecture suitable for real-time learning of neural networks can be 

seen to be into three distinct areas; parallel architecture design, parallel algorithm design and 
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mathematical approximation of functions. All areas need to be worked upon with efficiency in 

mind, as if one stage is inefficient then any gains from the other stages will be lost. 

This introductory chapter begins with a brief overview of the evolution of computing machines, 

followed by the descriptions of the advances made in IC technology. The chapter concludes 

with a survey of parallel computer architectures and an outline of the structure of the thesis. 

This introductory chapter, therefore, sets the technological background from which the work 

presented in the remainder of the thesis was based upon. 

1.2 Evolution of Computing Machines 

1. 2.1 What is a 'Computer' ? 

There are two fairly standard definitions of the term 'computer' [OUP90]: 

J. a usually electronic device for storing and processing data (usually in binary 

form), according to instructions given to it in a variable program 

2. a person who computes or makes calculations 

The latter definition has fallen out of use since the 1950's, when the former definition became 

the only one of everyday importance. Until this time the latter definition was a common term, 

especially within military circles, for people who could perform complex calculations with or 

without the use of mechanical aids. 

The definition given for a computer being a data processing machine makes no preconceptions 

about the type of machine, nor does it attempt to qualify the type of data that it deals with - the 

computer could be electronic or mechanical by design, although mechanical computers have 

been made redundant through technological advances in electronics throughout this century. 

Computers tend to be either analogue or digital in nature - the latter operates on continuous data 

values whilst the former uses discrete data values. 

3 
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Analogue computers can measure precisely the values of physical quantities, such as current 

and temperature, which makes their use in simulator equipment desirable. Digital computers 

cannot cope with exact numbers, save where only integer values are required, but their 

increased speed over their analogue counterparts makes up for their deficiency in accuracy. 

This lack of accuracy in digital computers has become a moot point, however, as they are 

accurate to approximately ±1/2n-1
, with n ~ 64 becoming commonplace [IEEE85]. 

Hybrid computers have recently been developed, which incorporate both analogue and digital 

components, in an attempt to make a computer both speedy and exact in it's calculations. An 

example of such a VLSI device is discussed further in section 4.1.2. 

1_ 2.2 Historical Development of Computers 

1.2.2.1 The Early Years 

Computing machines have existed for many thousands of years [BeNe71], albeit in a rather 

primitive form. The simple abacus, consisting of a number of beads attached to rows of 

parallel wires embedded inside a rectangular frame, allowed for the rapid calculation of the four 

basic mathematical operations of addition, subtraction, multiplication and division. Indeed, it is 

a tribute to the engineering genius behind the abacus in that in the hands of a skilled operator it 

can still perform basic mathematics faster than a human equipped with a modern-day scientific 

calculator. 

It wasn't until the 17th century that more ambitious calculating machines were built, with 

scientists such as Gottfried Liebniz and Blaise Pascal designing and building more and more 

complex machines. Pascal's first machine (1642) was an adding machine, whilst Liebniz' 

machine (circa 1671) could carry out the four basic arithmetic operations as well as extract 

square roots. Babbage's difference engine (1823) was the first machine to be able to carry out 

a multi-step calculation; i.e. a calculation requiring more than a single operation. It was 

designed to calculate tables of functions, such as logarithms and trigonometric functions. In 

the 1830' s Babbage conceived of a much more powerful computer, known as the analytical 
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engine. It was designed to be a general purpose calculating machine that was theoretically 

capable of any mathematical operation known at the time; it was very unfortunate for the early 

development of computers that the analytical engine was never completed, mainly due to the 

inadequacies of the mechanical technology available at the time. Babbage's design included 

such innovations as a punched-card reader, printed output, a memory store for 1000 50-digit 

numbers and an innovative technique that has now come to be known as conditional branching. 

The technological jump that came with the frantic scientific activity during World War II pushed 

forward the bounds of electro-mechanical computers. The first electronic digital computer, 

ENIAC (Electronic Numerical Integrator and Computer), in 1946, along with International 

Business Machine's (IBM) Harvard Mark I calculator, marked the beginning of the first 

generation of computer systems. 

From this time the technology evolved at a rapid rate. The electronic relays that were used as 

switching devices in the 1940' s became superseded in the 1950' s by vacuum tubes. The 

development of the EDV AC (Electronic Discrete Variable Automatic Computer) in 1950 

heralded the first stored-program computer, which marked the beginning of the use of a 

machine operating system to help programmers carry out some tasks. 

Despite this development of a software programming environment the costs of the hardware 

were still predominant, with only rich Universities or large corporations, most notably IBM, 

being able to afford the development and purchase costs. These costs seemed so prohibitive 

that mM issued the now-legendary statement that it believed the world industrial market for 

computers would be no more than 10 machines. With the development of the transistor by Bell 

Laboratories this idea changed drastically, and their invention ushered in the second generation 

of computers. 

TRADIC (Transistorised Digital Computer) was built by Bell Laboratories in 1954, using 800 

transistors in it's construction. Compared to it's predecessor, the vacuum tube, the transistor 
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was more reliable and less power-hungry, as well as being a magnitude smaller; the transistor­

based computers also did not require a team of engineers solely to replace blown switching 

devices within the computer. Printed circuit boards soon followed from the introduction of 

TRADIC, as did the development of magnetic core memory, both of which subsequently 

appeared many machines. 

The operating system environments available were also enriched greatly; instead of 

programming the computers in assembly languages three high level languages were developed, 

namely Fortran, Algol and Cobol. These languages greatly improved program design, 

allowing programmers access to many high-level concepts such as data structures and allowed 

for the automatic handling of multi-byte variables, both of which were awkward to implement 

in machine code. 

There were also two major advancements in architecture design [HwBr84], with the Larc 

system from Sperry Rand and the IBM Stretch project. The Larc contained a dedicated IJO 

processor, which operated in a parallel fashion with one or two other processing units. The 

Stretch featured instruction lookahead, whereby the execution of the instruction stream is 

pipelined by overlapping the execution of the current instruction with the fetch/decode/operand­

fetch of the subsequent instruction. This breakthrough was so important that it has been 

implemented in virtually every computer built since this time; this topic is discussed in more 

detail in section 1.4.2.1. 

1. 2.2.2 Pre-VLSI Integrated Circuits 

The third generation of computers began in the early 1960's, and was marked by the increasing 

use of IC's in the manufacturing process. Many transistors were fabricated onto a single 

device, with many hundreds of transistors being integrated together into a single 'chip' 

package. Small- and medium-scale integration (SSI and MSI) computers were capable of 

operating at a relative high speed and also had a relatively low cost, and these were the first 

computers to be termed mainframe. 
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Program execution in second generation machines tended to be in batch mode, whereby many 

programs were executed sequentially until they were completed. Although very popular it 

became virtually redundant with the introduction of multi-programming, whereby many 

program segments could be executed simultaneously by interleaving the 110 operations. Soon 

after this the concept of the time-sharing operating system was born, which increased the real­

time multi-user aspect of computers. Note that batch programming has not disappeared 

completely, with Digital Equipment Corporation (DEC) still supporting it in their V AX family 

of computers. 

Progress was made in the area of memory systems, eventually replacing the core memory with 

solid state devices. Programming languages also improved, with the introduction of more 

intelligent compilers to make the task of programming less error-prone. They were also 

extended so that they had the capability to handle both scalar and vector data, so that languages 

such as Fortran could be run efficiently in the vector-process machines that began to appear in 

the early 1970's, which is when the fourth generation of computers came into being. 

Around the early 1970's large-scale integration (LSI) began to take off, with LSI being used 

for both logic and memory systems. High-density packaging allowed many thousands of 

transistors to be in a single chip, heralding the introduction of the microprocessor, often termed 

the 'computer on a chip'. Powerful vectorising compilers appeared for the next generation of 

vector machines, such as the Cray-I (1976). MUlti-processor mainframe systems also started 

to appear, such as the Univac 1100/80 (1976) and IBM 3601168 MP (1980). 

It was this mUlti-processing capability, coupled with increased pipelining of program execution 

and the reduction of price-power ratio, that made computers a commercial success. Without the 

massive take-up in the data processing industries the funding for further research and 

development would not have been available, as computers had long passed the stage where the 

manufacturers commercial customers would accept whatever they were offered. The 

computing industry at this stage had become demand-led, in that boundaries of technology 
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were being pushed forward because the manufacturers believed that there was a market ready 

and waiting for their new products. 

1. 2.2.3 VLSI and Beyond 

Microchips were becoming far more complex in the 1980's. The metal and silicon tracks on 

the chips were still laid out by hand, despite a computer being used. There were no automated 

layout tools of any worth and the time taken to hand-craft a 1/4 million transistor chip was just 

too much. In order to increase the size and complexity of computer chips some fundamental 

changes had to be made in the area of computer-aided design (CAD). 

There seems to be two main thrusts to VLSI design. Mead and Conway [MeC080] advocated 

what is now commonly known as structured hierarchial design, accompanied by a reduced and 

simplified geometric and electrical rule set. The responsibility on the designer for layout 

extended right down to full-custom details. The other method, which is largely supported by 

industry rather than by academia, has placed ASIC design responsibilities solely at the logic 

level, using gate arrays and standard library cells. This semi-custom method does get devices 

built fairly quickly, but in order to maximize the potential of the silicon surface the designer 

needs to do full-custom layouts. 

By utilising this structured design method, which is discussed at various levels throughout 

section 2, the designer can generate chip designs holding (at current levels) up to 8x 106 

transistors. The chip can have built-in self-test capabilities or external connections to other test 

hardware. The chip can be tested by software simulation through complex CAD packages so 

that the designer can be very sure of the chances of the chip working upon fabrication. 

Transistors can be very densely packed due to designing compact bit-slices of functional units 

and then replicating those slices to the required bit-widths. VLSI in itself is not new 

technology, but computers created using VLSI design techniques are often known as fifth 

generation computers. 
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The near future of computers seems to be in extracting the maximum performance from 

available technology. Chips may begin to be fabricated using gallium-arsenide instead of 

silicon [Hira90], which will give them the capability of operating at a speed an order of 

magnitude greater than silicon-based chips. Pipelining and multi-processing will become 

common even on single-user workstations, allowing them to run processes that would 

normally require a mainframe computer. Increased techniques at the molecular level, such as 

using transistors that can be switched with only very few electrons will reduce the physical area 

required by circuitry. With increasing advances in the field of computer artificial intelligence 

(AI) it is possible then computers will have the capacity for reasoning above and beyond that 

programmed into them [RiKn91]; such capabilities will allow computers to adapt to their 

environment as well as to be able to solve the 'hard' mundane area's of computation (from a 

person's point of view) such as perception, natural language understanding (both generation 

and translation) and commonsense reasoning. 

However, as section 1.3 illustrates, there seems to be a visible finishing point for the 

development of silicon or gallium-arsenide chips, as the scaling factors inherent in VLSI design 

when the features upon the chip become smaller are seen to be limiting factors. A new 

fundamental breakthrough is required in the next IS to 20 years, perhaps in optical computing 

or in physical chemistry and biology, in order to keep the pace of change at the levels that are 

prevalent today. 

1.3 Evolution of VLSI Technology 

1.3.1 Development of Integrated Circuit Technology 

Integrated circuit technology has advanced greatly since the introduction of the first transistor in 

the late 1940's by Bell Laboratories. The first device was implemented in germanium, and 

efforts to implement a transistor in silicon came shortly afterwards. Silicon had advantageous 

properties over germanium, mostly concerned with cost and switching speed, and a successful 

implementation was made in the mid-1950's. The dimensions of a transistor fabricated in 

silicon, known as the feature size, was around 3711m; the advancement of VLSI technology 
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now gives us an attainable feature size of 0.25 Ilm, with sizes of O.ISllm and lower currently 

under development [Camp96] and due for general release in the very near future [TI9S]. 

The so-called generations of IC technology (SSI, MSI 

and LSI) were used to approximately designate the 

complexity of the IC concerned; as IC fabrication 

technology developed it became possible to reduce the 

size of the silicon transistors and, therefore, fit more 

Table 1.1 

Generation 

SS! 

MS! 

LS! 

IC Complexity 

Complexity 

26 (64) 

211 (2048) 

216 (65,536) 

devices on to a single IC. Table 1.1 shows the approximate bounds of these IC generations; it 

should be noted that although the figures themselves are not universally accepted the idea of 

banding the IC generations in this way is deemed acceptable [BurgS4]. Complexity was also 

increasing at a rapid rate; in the mid-1970's it was calculated that le complexity doubled 

approximately every IS-24 months [Moor75]. This progression is known as 'Moore's Law' 

and still holds fairly true today, although the rate of progression is reducing. 

VLSI technology was developed towards the end of the 1970's when it became apparent that 

existing design techniques were lacking - it was becoming extremely difficult to design large 

chips (> 150,000 transistors), as computer-based testing of circuits was far from acceptable. 

The first real text on structured hierarchial design, Mead and Conway's Introduction to VLSI 

Systems [MeCoSO], required a new angle on the design of IC's that would grab the attention of 

designers - the term 'VLSI' was born. At that time it was taking teams of industrial designers 

several man-years to finish chip designs, but Mead and Conway's methods were focussed on 

helping teams of non-experts do almost as well - obviously, new design techniques were 

required. 

The impact in the success of using VLSI techniques are very apparent when you compare two 

microprocessor's that were developed around the same period: the Intel SOS6 [UffeS7] and the 

Motorola 6S000 [WhitS4]. The differences in style in the two designs was very pronounced; 

the Intel device did not have the benefits of VLSI design techniques and, thus, it's silicon 
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design looks not unlike spaghetti, with the interconnect between functional units seemingly 

placed on the silicon wherever it would fit. The Motorola device had several very regular 

structures, with the interconnects between function blocks being very ordered, and these units 

relied heavily on iterative design. There is heavy use of iteration in the Motorola device, 

whereby functional units are made up from multiple instances of identical cells. For instance, 

the ALU may be 16-bits wide, but only a single I-bit cell would have been heavily designed 

and tested; the designer would simply have cascaded 16 instances of the I-bit cell to create the 

full-blown 16-bit functional unit. 

This method of design has several advantages, as it allows large structures to be designed 

quickly; if the ALU specification was suddenly changed to 32-bits the Motorola designer would 

have very little extra work to do (save ensure that the expanded circuit still fits on the available 

silicon area). The Intel designer would have a lot of work to do; the additional circuitry would 

have to be added to the device and then extensively tested in software to ensure that some small 

feature had not been left out. 

From the early 1980' s every IC manufacturer began to adopt these VLSI structured design 

techniques, as the benefits they brought was well worth the cost of re-training their designers. 

As fabrication technology became more sophisticated, with smaller transistor sizes, lower 

activation voltages and intelligent power usage, designers using VLSI techniques were able to 

benefit from these gains very quickly. With the imposed rigidity of structured design 

techniques, along with advances in pre-fabrication design testing, VLSI can help realise chip 

designs of over 222 (4 million) transistors - today's chip designers are already planning devices 

of over 223 (8 million) transistors using VLSI techniques. 

Further, there is a design methodology known as Ultra Large Scale Integration (ULSI), which 

is often taken to be 25 times the range of VLSI [Burg84] [Shut88]. This, like VLSI before it, 

is not a technology in itself, but rather a means of identifying devices at the top end of the VLSI 

devices currently under design. ULSI is not referred to again in this thesis. 
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The next generation of IC production 

seems likely to be Wafer Scale Integration 

(WSI). In this technology the entire silicon 

wafer is used to construct a single device, 

with a large number of processing elements 

fabricated onto the wafer and then 

connected together. Wafer-scale fabrication 

of computing structures demands a high 

yield at fabrication, otherwise the wafer 

Introduction 
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Figure 1.1 Wafer-Scale Integration Lattic( 

will be full of non-functional units. Figure 1.1 [HeSn82) shows a 4-by-3Iattice of PE's, each 

interconnected with a number of others by a series of switches. Once fabricated all PE's on a 

wafer are tested, and then the good PE's are connected together. The wafer is structured so 

that the presence of the faulty PE's is masked off and only the functional PE's are used. 

It is currently feasible to fabricate over 300 processing elements per 6-inch wafer. These 

wafer-scale computers have the capability to be cheaper, faster and more reliable than their 

counterparts implemented with single-chip components. There remain many problems with 

WSI, most notably concerned with the practical problems of testing the individual PE's upon 

the wafer. Other problems, such as the difficulties of routing around faulty PE's and the 

potential of very high power consumption upon the wafer, still remain to be solved. 

With the further development of fabrication technology wafer-scale integration could prove to 

be the way forward in the design and construction of massive parallel computing structures. 

Although there are many problems associated with the technology, progress is always being 

made and this technology looks set to become very powerful in the near future. 

1. 3.2 VLSI Scalability Constraints 

One of the major advantages of using VLSI technology and the related design methodologies is 

that the basic MOS transistor is inherently scalable [MeC080) and some simple rules exist to 
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help calculate the effect of scaling on certain fabrication process parameters. By scaling the 

technology down to a smaller feature size the switching speed of the gates on the device is also 

reduced, as is the activation voltage required. This enables the VLSI chips to be run at higher 

and higher clock speeds. 

However, although it looks as if there is the possibility of scaling the feature size down to 

nano-technology levels there are some severe limitations to the technique that could limit the 

future development of VLSI; system designers are in need of new techniques. 

1.3.2.1 Scaling of MOS Transistor Dimensions 

The constant field model of first-order MOS (metal oxide silicon) scaling theory proposes 

[Denn73] [Denn74] that the characteristics of a MOS device can be maintained, with the 

preservation of basic operational characteristics, if certain critical parameters of the device are 

scaled in accordance to a set scheme. This approach has shown to be very successful when 

scaling the minimum feature size from the range of 5~m ... 1O~m to the range l~m ... 3~m. 

Although this technique does not give optimal device performance at small dimensions, it is in 

itself very powerful in providing guidelines as to the improvements that can be expected when a 

fabrication process is scaled. 

The scaling processes works by applying a 

dimension less factor Cl to the following: 

• all dimensions on the device 

• device voltages 

• substrate concentration densities 

A schematic of a simple MOS transistor is 

shown in figure 1.2 [WeEs88]; a fuller 
p- or 11' Substrate aNa(d) 

description of the general make-up of a 
Figure 1.2 Scaled MOS device 
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MOS transistor, along with the methods employed to fabricate them, is given later in section 

2.1. The basic parameters are length (L), width (W), gate oxide thickness (t ox), junction depth 

(Xj ) and substrate doping level (Na or N d)' Other factors not shown, such as depletion layer 

thickness (d), transistor threshold voltage (V t) and drain-to-source current (Ids)' are also scaled 

as a result of the device dimensions being scaled. 

The various influences ofthe a 

scaling factor are shown in 

table 1.2. Initially interesting 

factors are that as the voltage is 

scaled the electric field (E) in 

the device remains constant; 

this has the highly desirable 

effect that many non-linear 

functions remain essentially 

unchanged. As the device 

dimensions are scaled by Ila 

the circuit density scales up by 

Table 1.2 Influence of first-order MOS scaling 

PARAMETERS 

DEVICE Length: L 

PARAMETERS Width: W 

Gate oxide thickness: tox 

Junction depth: Xj 

Substrate doping: N.(ord) 

Supply voltage: V DD 

Electric field across gate oxide: E 
Depletion layer thickness: d 

Gate delay: (VCII) 

RESULTANT DC power dissipation: Ps 

INFLUENCE Dynamic power dissipation: P d 

Gate area 

Power densi ty 
Current density 

Transconductance: gm 

SCALING 
FACTOR 

1/" 

1/" 

1/" 

1/" 

" 
1/" 
I 

1/" 

1/" 
1/,,2 

1/,,2 . 

1/,,2 

" 

a2, which results in the current density scaling upwards linearly with a. To cope with this the 

metal conductors will have to be wider to supply the more densely packed structures. Also, the 

reduction in the size of the gate oxide thickness (tox) requires the fabrication process to provide 

thinner oxides with comparable yields to conventional oxide thicknesses - this is not a trivial 

problem, and often necessitates re-design of areas of a fabrication plant in order to cope with 

the new technology. 

Another characteristic from table 1.2 is that although static and dynamic power dissipation, Ps 

and P d, are both scaled by I/a2 the actual amount of power dissipated by the MOS device 

remains constant, as the circuit density has increased by a 2
. As temperature increases the gain 

of transistors is reduced (due to a reduction of electron carrier mobility) which causes the speed 
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of the circuits to fall. High temperature, high speed circuits require special consideration 

during the design phase. 

The limitation of first-order scaling is that it is a first-order approximation; a more rigorous 

analysis would provide slightly different values from those shown in table 1.2. It also gives 

the wrong impression that it is possible to scale to virtually zero dimension or zero threshold 

voltage. If circuit concentrations reach high figures (larger than IxlO19 cm-3
) the gate oxide 

actuall y breaks down before the transistor channel is formed during fabrication. 

Although scaling does reduce the device switching speeds, power consumption per transistor 

and required input voItages, scaling MOS devices cannot go on forever. There are definite 

limits on the extent of scaling, but the end of scaling silicon technology is not yet with us; there 

is still scope for improvement. 

1. 3 . 2.2 Scaling of Interconnect Layer 

Despite the obvious advantages of first-

order scaling it does have a number of 

undesirable effects; voltage drop, line 

response and current density all exhibit 

significant degradation, although in the first 

two of these the degradation is not entirely 

apparent; the scaling factors appropriate to 

interconnect media are shown in table 1.3. 

Table 1.3 Scaling of interconnect media 

PARAMETERS 

Line resistance: R 

Line response: RC 
Nonna1ized line response 

Line voltage drop: Vd 

Normalized line voltage drop 

Current density: J 

SCALING 
FACTOR 

()( 

()( 

()( 

()( 

Normalized contact voltage drop: VeN ()(2 

Both Vd and RC remain constant after first-order scaling. However, with a constant chip size 

the lengths of signal paths across the chip, as a general rule, do not scale down. This gives the 

result that voltage drops along communication paths are larger by a factor of a with respect to 

the scaled voltages. In a similar manner the line response time normalized to the scaled line 

response is also larger by a factor of a. 
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Because of these problems it is difficult for the designer to take the maximum advantage of the 

higher gate switching speeds made available through first-order scaling when signals are 

required to propagate over lengthy paths. This creates a major problem in the effective 

distribution of clocking signals. 

The fine-line metallisation brought about by first-order scaling also presents it's own problems. 

As the current density increases then the metal lines within the MOS device must carry a higher 

current. Because of this electron migration becomes a major problem, whereby the strong 

current literally chips atoms of aluminium off the metal track (thUS increasing the resistance of 

the track and exacerbating the problem), so new metallisation schemes are required to 

accommodate the higher current densities that scaling brings. 

Also, as the MOS device becomes more densely packed the average line length on a chip tends 

to increase. Unfortunately, the power dissipation of the scaled gates also decreases with 

scaling, which makes it harder for them to drive enough power down the wiring, which has a 

constant resistance through scaling. This implies that as gates are scaled down it is the 

capacitance on the interconnect that determines gate delay times rather than the gate itself. A 

good approximation of the maximum length of acceptable interconnect, from a statistical point 

of view [Keye791, is given by the expression Lmax= f{ , where A represents the overall 

silicon area of the chip. Therefore, if scaling occurs and the silicon area increases as well, as is 

often the case, then the interconnection capacitance problem is exacerbated. Due to this 

problem designers now use techniques so as to maximise local and minimise global 

connections in order to design effective VLSI circuits. In certain areas of VLSI design, such as 

the design of high-speed mathematical units, this optimal use of local connections in order to 

reduce overall circuit computation time has always been of paramount importance; the 

techniques used in these specialist areas are bound to spread to all other areas of VLSI design. 
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1.4 Parallel Computer Architectures 

Many areas of science and technology constantly demand more and more powerful 

. computational capabilities. Fields requiring vast amounts of processing power include weather 

prediction, molecular modelling and astrophysics. Although VLSI technology is getting faster 

and faster through the use of scaling techniques, scaling alone cannot meet the ever increasing 

computational requirements of certain scientific fields. 

The use of parallel processing in such areas is a sound choice for further improving computer 

perfonnance. Hwang and Briggs [HwBr84] fonnally define parallel processing as follows: 

Definition Parallel processing is an efficient form of information processing which 

emphasizes the exploitation of concurrent events in the computing process. 

Concurrency implies parallelism, simultaneity and pipe lining. Parallel events may 

occur in multiple resources during the same time interval; simultaneous events may 

occur at the same time instant; and pipe lined events may occur in overlapped time 

spans. These concurrent events are attainable in a computer system at various 

processing levels. Parallel processing demands concurrent execution of many 

programs in the computer. It is in contrast to sequential processing. It is a cost­

effective means to improve system performance through concurrent activities in the 

computer. 

Any computation ally expensive field of science that is offered computing power as defined by 

Hwang and Briggs are bound to accept it. This section describes the various classes of parallel 

architectures that have evolved over the last three decades. 

1. 4.1 Historical Legacies 

1. 4.1.1 Flynn's Classification 

Flynn's classifications of computer organizations [Flyn66] divided the basic architecture types 

up into four categories, depending on the multiplicity of instruction and data streams. An 

instruction stream is a sequence of instructions as executed by a machine; a data stream is a 

sequence of data called for by an instruction stream. The data can consist of input, partial 

results or completed calculations. The four categories are shown in figure 1.3. 
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a) SISD 

b) SIMD 

c) MISD 

d) MIMD 

Instruction Stream 

----------------------------------~ 

Instruction Stream 

, 
____ J ____ _ , , 

, 
Data Stream 

,----------------------------------, 

~ 

- __ I 

1 ______ ----------------------------------

Figure 1.3 Flynn's Classification of Parallel Computer Architecture 

The following list describes Flynn's four machine definitions: 

Introduction 

• Single Instruction Single Data (SISD) machines represent the majority of serial 

computers available today. Instructions are sequential, but may be overlapped at the 

execution stage through pipelining, as shown in figure 1.3a 

• Single Instruction Multiple Data (SIMD) machines correspond to array 

processors, with multiple processors simultaneously executing the same instruction on 
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different data. The multiple processors are supervised by a single control unit, as 

shown in figure l.3b 

• Multiple Instruction Single Data (MISD) machines contain multiple processors, 

each receiving different instructions, operating on a single data stream and it's 

derivatives - the output of one processor becomes the input to the next. A machine of 

this type is possible but no real examples of it's type exist, which FJynn attributes to the 

impractical architecture and to the specialized streamlining of data that is required. The 

schematic is shown in figure 1.3c 

• Multiple Instruction Multiple Data (MIMD) machines contain multiple 

independently operating processors attached to a shared memory system, with each 

processor being able to execute distinct instructions upon distinct data as compared to 

the other processors. The schematic is shown in figure 1.3d 

Flynn's classifications have stood the test of time very well. Although it is useful in getting a 

rough classification for an architecture, however, it is not flexible enough to be able to classify 

many of today's newer parallel architectures: vector processors, shared memory machines, 

distributed architectures, systolic arrays or wavefront arrays are all examples of these. In order 

to classify these architectures correctly we need to use a different methodology. 

1.4.1. 2 Feng's Classifications 

Realising that there were some problems associated with Flynn's classifications Tse-yun Feng 

suggested [Feng77J that in order to classify parallel architectures it would be better to use the 

degree of parallelism inherent within them. 

Feng's ideas are based around calculating the maximum degree of parallelism possible within a 

computer system (P), then further calculating the processor utilisation rate (/1) over a series of 

processor clock cycles (n. P is defined as being the maximum number of binary bits that the 
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computer system can process at anyone time. With Pi being the processor utilisation rate at 

clock cycle i, the average degree of parallelism, P avg' over a number of processor cycles can be 

given by: 

T 

LP, 
P =~ 

avg T (1.1) 

It is clear that the utilisation rate of a computer system is dependant on the application being 

executed at the time, so if the processor is being fully utilised then we have Pi = P for all i and 

J1 = I. It is clear that in general Pi ::; P; thus, we define the utilisation rate J1 as: 

P avg 
11=­P 

(1.2) 

The actual classification method takes the word-length of the computer (n) and the bit-slice 

length (m). A bit-slice is a string of bits, one from each of the words of data that the processor 

is holding/processing in any of it's arithmetic and computational pipelines. For example, the 

Texas Instruments Advanced Scientific Computer (TI-ASC) from 1972 has a word length of 

64-bits and four separate pipelines, with each pipe having eight pipeline stages. Thus, the bit­

slice length m is given by 4 x 8 = 32. These values are represented as (64, 32), and the 

maximum degree of parallelism possible is represented by the product of the word-length n by 

the bit -slice length m. 

From Feng's classification guidelines there are four types of processing methodologies: 

• Word-Serial/ Bit-Serial (WSBS; n=l, m=l) This method has often been called 

bit-serial processing, because only one-bit at any time is being processed. This slow 

process was only done in the first generation machines 

• Word-Parallel I Bit-Serial (WPBS; n=l, m>l) This is known as bit-slice 

processing, as a single m-bit slice is processed at a time 
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• Word-Serial I Bit-Parallel (WSBP; n>l, m=J) Also known as word-slice 

processing, because a single n-bit word is processed at a time 

• Word-Parallel I Bit-Parallel (WPBP; n> 1, m> 1) This is the fastest processing 

mode of the four, also known as fully parallel processing (as opposed to simply parallel 

processing in order to reduce confusion). In this mode an array of n-by-m bits are 

processed simultaneously 

Table 1.4 gives a 

number of examples 

of computer systems 

that were classified 

using Feng's 

methods. Different 

processing needs will 

require a computer in 

Table 1.4 Feng's Computer System Classifications 

MODE COMPUTER SYSTEM (n, m) 

WSPS MINIMA (I, I) 

WPBS Goodyear ST ARAN (1,256) 
n=l, m>l ICLDAP (1,4096) 
(bit-slice processing) Goodyear MPP (I, 16384) 
WSBP DEC V AX 111780 (32, I) 
n>l, m=l IBM 370/168 UP (64, I) 
(word-slice processing) Cray-I (64,1) 

WPBP Carnegie-Mellon C.mmp (16, 16) 
n>l, m>l Texas Instruments ASC (64, 32) 
(fully parallel processing) JIIiac-JV (64, 64) 

a different category. Typical small computers of today are of the WSBP type, with a single n­

bit word being processed at a time. Technology at even this level is changing fast [Taba95] 

with the advent of processors such as the latest incarnations of Motorola's PowerPC and Inte!' s 

Pentium architectures, which are becoming WPBP - as what has happened in the past, 

technology that was previously used solely for super-computers is now becoming standard at 

the lower level of personal computers. 

1. 4.2 High-Level Parallel Architecture Classification 

Feng's classifications are very well suited to describing the efficiency of the parallel processing 

structures within a computer, but do little as to describing how they are carried out. Flynn's 

classifications provide useful distinctions between the types of computer processor 

organizations available, but are riot very helpful when trying to classify many modern 

computers. Pipelined vector processors are difficult to accommodate within Flynn's 

categories, as they lack processors executing the same instruction (SIMD) and also lack the 
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basic asynchronous behaviour of MIMD, yet it clearly is a parallel architecture operating upon 

multiple tuples of data in parallel. 

Duncan proposed a rather different parallel 

framework [Dunc90] that attempts to place 

the recent architectural advancements into the 

broader context of parallel computers, in an 

attempt to classify all parallel computers 

using a single coherent framework. In order 

to do this Duncan's proposals had to satisfy 

the following set of imperatives, the results 

of which are shown in figure 1.4: 

• Architectures that incorporate 

commonplace low-level parallel 

features are excluded 

Figure 1.4 Duncan's Classifications 

• The very useful elements of Flynn's classification, namely the instruction and data 

stream categorisations, are to be retained and used a sub-classifications 

• Any architecture that intuitively merits being classed as a parallel architecture, but which 

fails to be categorised at all under Flynn's rules, is to be included 

1.4.2.1 Synchronous Architectures 

Pipelined Vector Processors 

The basic idea of a vector processor is to combine two vectors, element by element, in order to 

produce an output vector. Thus, if A, Band C are vectors with N elements then the vector 

processor performs the operation C := A .op. B. Typical operations are those which implement 

arithmetic or boo lean operators on vector data. A simplified schematic of the dataflow through 

a vector processor set up for pipelined vector multiplication is shown in figure 1.5. 
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Most vector computers have a pipelined 

structure; when one pipeline is not sufficient 

to achieve the desired performance then 

Multiport 

Memory 

Introduction 

SlreamA 
~ .. 

Stream B Pipelined Multiplier . 
System 

Stream C :=A'" B I 
designer's occasionally provide multiple 

pipelines. These mUlti-pipeline vector Figure 1.5 Vector Processor Dataflow 

processors not only support data streaming through a single pipeline, they also support a fully 

parallel mode of operation by allowing multiple pipelines to execute concurrently on 

independent streams of data. 

The pipeline theory is to divide an operation into several distinct 

stages, with the results from one stage forming the inputs to the next. 

The pipeline of stages may be linear or may contain feedback loops, 

in which case care must be taken as to when new data is provided to 

the pipeline lest it collide with partial results being fed back into 

previous stages. Figure 1.6 shows a linear pipeline for floating-pont 

multiplication (although a similar schema can be imagined for 

processor fetch/decode/execute cycles). Each stage is controlled by 

an internal clock, such that each stage is ready to accept new input 

data at each cycle. As some stages are complex they may be broken 

down into several other pipelined stages - the MUltiply Mantissas 

stage can be broken down into a series of sequential operations, 

namely produce partial products and add partial products. All stages, 

Add Exponents 

Multiply Mantissas 

Normalize 

Round Result 

Figure 1.6 
Multiplier Pipeline 

or sub-stages, should be designed so that on each and every internal cycle they are ready to 

accept new data and output the result from the previous cycle. If every stage requires 25ns of 

processing time, and there are 10 stages of processing, then the first full result will be available 

after 250ns. However, as the input data is being fed into the pipeline every clock cycle the 

second and subsequent results are available after every additional 25ns. 
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SI MD Architectures 

Under the SIMD architectures there are two sub-categories: processor array architectures and 

associative memory architectures. The former has been shown in figure 1.3b, and is simply a 

synchronous parallel computer with multiple PE's that operate in a lock-step fashion. For a 

short period of time only a single processor (the control unit) is active: it is busy initialising 

variables for the calculation and parcelling out the work to be done over the processor array, 

along with all other computational overheads that are not replicated in other processors within 

the array. 

One problem with this method is that there is a large amount of idle time within the array whilst 

the control unit is setting up the computation - as the array processors increase in both numbers 

and in power the time taken for the parallel computation becomes vanishingly small compared 

to the time taken for the control unit's initialisation. Two methods of reducing this idle time are 

to overlap the initialisation of computation two with the execution of computation one (as in the 

Illiac-IV array processor) or to overlap the addition and multiplication operations within the 

arithmetic pipeline (such as in the Cray il). Pipelines tend not to exceed 10 - 20 stages, and the 

number of processors within an array also tends not to exceed 10 - 20. There is noticeable 

inefficiency in the architecture, as the pipelines are empty for some time. Hence, at low levels 

of parallelism (such as 20 processors) the inefficiency may be tolerable compared to the extra 

expense of hardware required to keep the pipelines full. 

Associative memory (AM) architectures utilise AM instead of the normal random-access 

memory (RAM). The fundamental difference between AM and RAM is that the former is 

contents addressable, allowing the parallel access of multiple memory words. This parallel 

access is used for search and comparison purposes, allowing the controlling processor to carry 

out a search or compare operation on a large number of memory addresses in a single memory 

access cycle. 
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A basic schematic of an associative memory 

structure is shown in figure 1.7. To initiate a 

search, a vector of data is sent into the bit-control 

logic (BCL) and on into the AM. This vector is 

simultaneously passed to all words in the AM, 

and each one compares the vector with its own 

contents. This operation results in a match vector 

Introduction 

Figure 1.7 Associative Memory 
being generated inside the word-control logic Schematic 

(WCL). This vector indicates which of the words in the AM hold data identical to the input 

search vector. Individual match addresses may be calculated from the match vector and used in 

further processing, or, as is usually the case, the match vector may be manipulated and then 

sent back into the AM; a write operation on the AM may then take place, which will then only 

affect those words in the AM that previously indicated a positive result to the match operation. 

Additionally, a mask vector may also be sent into the BCL. This indicates that any write or . 
match operation should only operate on the bit columns specified in the vector; it is then 

perfectly possible to modify the same field or fields within many words of the AM, whilst 

leaving unaltered those fields within the data words that were masked out from the operation; 

i.e. the lowest three significant bits could be altered in all data words that indicated positive to a 

previous match operation, leaving the rest of the bits in the data words unaltered. Normal 

read/write operations are still possible on the AM, and it is also possible to write a value into all 

words in the AM in a single operation. 

The AM structure is used in areas where a fast look-up for data is required; the search is for 

whether an item is held in memory and, if so, where. The directory of a processor cache 

works in this fashion, with a quick check being made to see if data is held in the cache before a 

request is made to main memory. The AM is searched for a main memory address; if this 

search is successful then the location in the AM of the address data is used as an offset into 
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another piece of fast memory, where the required data is held, which tends to be 10 - 20 times 

faster than main memory. 

AM structures can also be used [Kane95] where a controlling algorithm needs to know if a 

particular result has already been generated, as well as a linked-list data structure container. 

This type of operation requires additional bits of memory to act as tag fields, which are 

manipulated by the AM mask vector. A IO-bit AM, with 8-bits for data and a two tag fields per 

data item, allows read/write/search requests to be made either of the 8-bit data or of the tag 

fields; this type of structure can be very powerful. 

Systolic Architectures 

The concept of systolic architectures was first introduced 

by Kung and Lieserson [KuLi78] as a high-performance, 

special purpose VLSI computer system. The term applies 

to certain computing structures with cellular organisations 

and pipelined dataflows that are suitable for applications 

that need to balance intensive computations with a 

demanding 110 bandwidth [KungHT80]. The architecture 

consists of a set of interconnected cells, each of which is 

capable of performing some operation - a simple 

schematic of a systolic array is illustrated in figure 1.8. 

'---+1 PE t'-----' 

a) Conventional Processor 

b) Systolic array processor 

Figure 1.8 Basic Concept of 
Systolic Arrays 

Information flows between the cells in a pipeline fashion, with only those cells at the 

boundaries of the array acting as 110 ports to the system as a whole. Data interconnections, 

save for the I/O ports, are entirely local, in that each of the PE's can communicate via direct 

physical interconnections only with neighbouring PE's. Each PE is controlled with the same 

internal clock. Between two consecutive clock cycles each PE carries out computations on the 

data that it received on the last cycle, as well as on any internally held data. Results of the 

computations are then stored internally and/or made available to neighbouring PE's, which can 
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pick them up at the beginning of the next clock cycle. This 'pulsing' of data resembles the 

pulsing movement of blood under the contractions of the heart, which are called systoles in 

physiology. This analogy was the reason to give these computer structures the attribute 

systolic [KungHT82]. Further in-depth details of systolic arrays is given in section 2.3. 

1. 4.2.2 MIMD Architectures 

The classic MIMD architecture, as shown in figure 1.3d, supports multiple processors 

executing independent instructions. The software processes executing on a MIMD architecture 

are synchronized by passing messages through the interconection network, or by data items 

stored in shared memory. The architecture is asynchronous, however, due to the decentralized 

control of hardware resources, and architectures falling under the MIMD label are not classified 

along with the synchronous architectures from section 1.4.2.1. 

Distributed Memory Architecture 

Each processor in a distributed memory architecture 

has registers, arithmetic and logic units, local memory 

and 110 drivers, each connected to a processor-to-

processor interconnection network; this scheme is 

shown in figure 1.9. No sharing of memory and 110 

is permitted in this architecture, with processors 

sharing information by passing messages via the 

Figure 1.9 

~ 

Distributed Memory 
Architecture 

interconnection network. This system supports communication through a point-to-point 

exchange of information. 

Various interconnection strategies have been proposed for this architecture, each of which suits 

a different class of parallel algorithm; each one has it's own strengths and weaknesses. 

Examples of distributed memory architectures include ring networks, the mesh, the hypercube 

and the tree, all of which are illustrated in figure 1.10. 
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The ring topology, shown in figure 

1.1 Qa, IS an interconnection 

structure in which nodes are 

connected with point-to-point 

connections between processors 

and a cyclic structure overall. A 

transmitting processor places a 

message on the loop, which is 

repeated by all intermediate 

processors until it reaches it's 

destination; the destination 

processors takes the message off of 

--------------

Introduction 

a) Ring Topology b) Mesh Topology 

o 

c) Hyper-Cuhe Topology d) Tree Topology 

Figure L10 Various MIMD Interconnection 
Topologies 

the loop by simply failing to repeat it. Although there are many ways in which to operate a ring 

a common protocol is the token ring network. In this protocol a unique message, known as a 

token, is passed around the processors in the ring. If a processor is waiting to transmit data on 

to the ring then it takes the token off the ring and transmits it's message instead, otherwise it 

just repeats the token. The destination processor for any message re-initiates the process by 

placing a token back on to the network. 

The mesh topology, shown in figure 1.IQb, is a near-neighbour mesh. It mayor may not be 

recirculating, in that boundary processors can have direct connections to other boundary 

processors on the opposite edge of the mesh. All inter-PE communications can be specified as 

a set of routing functions. Whenever a routing function is activated the source PE transmits 

data to a neighbouring PE; in order to pass data between two PE's that are not directly 

connected within the mesh the data must be passed through a number of intermediate PE's. 

The hypercube topology, shown in figure 1.1 Qc, is a parallel processor whose interconnection 

structure treats individual processors as the nodes of a multi-dimensional cube. Two 

processors are interconnected if the corresponding nodes of the cube are neighbours. The 

28 



Chapter I Introduction 

hypercube has 2n processors, each of which is labelIed with an n-bit binary tag; in figure \.IOc 

n = 4, implying a four-dimensional hypercube (or four-plane). Each neighbouring processor's 

label would only be different in a single bit position. At most a message between two 

processors requires n steps. The route taken by the message is not fixed, yet is simple to 

realise - a message from processor 0100 to 1110 is only two steps long, as their tags are 

different in two bit positions. Routing is calculated by taking the exclusive-or of the source and 

destination node, in this case 1010; this indicates that the message must traverse plane-I and 

plane-3, but the order of traversal is irrelevant. 

One of the most influential hypercube designs, the Cosmic Cube [Seit85], is a six-dimensional 

architecture, although the dimensions reflect interconnections useful for algorithmic purposes 

and does not correspond to physical dimensions. In the Cube each processor was an Intel 

8086 processor chip, with an additional Intel 8087 floating-point unit, and alI processors were 

not required to execute the same instruction concurrently; rather, instruction execution was 

independent at each processor node. 

The tree topology, shown in figure I. \Od, is an architecture that is useful where the algorithm 

suits a master/slave process distribution. If a job can be shared reasonably evenly over many 

conceptual levels than the leaf-node processors, indicated by a 2 in the figure, carry out some 

computation and pass their result up the tree. The branch nodes, indicated by a 1 in the figure, 

carry out further processing, again passing results further up the tree until eventualIy the root 

node, indicated by a 0 in the figure, completes the calculation. 

The tree topology is difficult to implement in the physical sense; however, by mapping the 

entire tree on to a reconfigurable mesh, and indicated in figure 1.10b, it is possible to build and 

implement machines that can utilise the architecture of a binary tree. Each node is mapped in 

such a way that maximises the potential of the connections available within the mesh; the mesh 

can never be 100% utilised in this fashion, as sub-branches have to be arranged so that their 

resultant leaves do not overlap. 
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Shared Memory Architecture 

Similar to the distributed memory architecture, each 

processor has registers, arithmetic and logic units 

and 110 units, each being connected to the 

processor-to-processor interconnection network; this 

scheme is shown in figure l.ll. Memory is shown 

as being separate subsystems which is shared 

IG=rrn I/O ijl 

IG.;znr~]1 
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Figure 1.11 Shared Memory 
Architecture 

amongst all processors, although each processor normally has it's own bank of local cache 

memory. Again, data is exchanged between processors via the interconnection network. The 

shared memory architecture conveniently provides a simple means for information interchange 

and synchronisation, as any two processors can communicate through a shared location. 

Shared memory computers do not have some of the problems associated with message-passing 

parallel architectures, such as message latency whilst data is forwarded around the architecture 

interconnection system by the intermediate PE's. However, other problems, such as data 

read/write access synchronisation, must be solved. 

A crossbar system of interconnect uses multiple crossbar switches to connect several memory 

units to several processors. It has a low bandwidth and is quite complex to implement, despite 

being conceptually the simplest shared memory interconnect scheme. A bus system, however, 

is much better; by replacing the interconnection network in Figure 1.11 with a multi-access bus 

we have a shared bus method of communication, with each processor and memory unit being 

connected to it. The cache memory in the processors, along with small amounts of local 

memory, shortens the effective memory cycle time as well as reducing the use of the bus; one 

processor does not slow down any others through extensive use of the bus. 

As cache/local memory solutions that reduce global bus access by 95% are easily realisable a 

simple shared memory bus system can support up to 20 processors. Systems with more 

processors, such as 1000 or more, are unlikely to be realisable without a technological 

breakthrough that gives a very high bus bandwidth at very low cost. 
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A system of interconnection that lies 

on an intermediate point in the 

spectrum of possible interconnect 

networks [Ston71], yet still provides a 

good level of performance, is the 

shuffle-exchange interconnection, as 

shown in figure 1.12. The figure 

Introduction 

Figure 1.12 Shuffle-Exchange Network 

shows processors at one side, memory units at the other and a series of combining-switch units 

in between. The combining-switch units can either pass the inputs to the outputs, pass the 

inputs to the opposite output (reversal) or pass a single input to both outputs (broadcast). 

The bandwidth is higher than the bus, but lower than the crossbar. The time-cost for access is 

O(N log N), as opposed to O(N) for the bus and O(N2) for the crossbar. The architecture also 

solves the shared-memory exclusive access problem; if access to a shared variable is saturated 

then there is, normally, no additional speed improvement no matter how many processors are 

added to the system. However, this does not wholly apply if the exclusive access can be 

accomplished in part of the switching network and in part of the memory. In the shuffle­

exchange the exclusive access is, in effect, done in parallel rather than in serial by making use 

of the facilities built into the switching mechanisms. 

In operations where global memory accesses do not conflict the shuffle-exchange network 

bandwidth can increase dramatically. It has been shown that if N processors place 

simultaneous synchronised global requests, such that processor i requests data from memory 

i+c for any constant c, the requests can be granted simultaneously without any conflict 

whatsoever [Lawr75l. Further, Lawrie went on to show that if processor i requests data from 

memory pi+c, where p is an odd number, no contention occurs provided N is a power of 2. 

Although a powerful interconnection structure for shared memory machines it is far from being 

perfect. The exclusive access conditions make it unsuitable for some problems, which 
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become unfeasible other than for small values of N. A common algorithm in parallel 

computing, the fast fourier transform (FFT), has two types of processor-to-processor 

communication; the butterfly operation, where pairs of processors exchange data and compute 

further values, and the reverse-binary operation, which transforms the order of the output data. 

It has been shown [Cvet86] that these two operations are incompatible with the shuffie­

exchange network. If the data stored within the processors such that the butterfly operation 

proceeds without conflict then the reverse-binary operation results in maximum conflict within 

the network. Conversely, if the reverse-binary operation is made conflict free then the butterfly 

operation results in maximum conflict. 

1. 4 .2.3 MIMD Paradigm 

The architectures within this section all exhibit the normal MIMD characteristics of 

asynchronous operation and the concurrent manipulation of multiple instruction and data 

streams. Each architecture has some form of organising principle that is fundamental to it's 

overall design, as well as the normal MIMD characteristics, so these architectures are classified 

separately under the heading 'MIMD Paradigm' instead of with the MIMD architectures from 

section 1.4.2.2. 

MIMD/SIMD Architectures 

This hybrid architecture is a MIMD machine that has the facility to allow selected portions of 

the architecture to be controlled in a SIMD fashion. In the MIMD/SIMD hybrid architecture 

each of the SIMD controlling units have a number of slave SIMD processors under their direct 

control. Also, each controlling unit has a MIMD operational node which passes them 

algorithms to be carried out - this structure is shown in figure l.13a. 
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The SIMD processor control/slave portion of the 

architecture is akin to a shared-resource array 

processor [HwNi80), which consists of two or 

more controlling units which share a pool of 

dynamically allocated PE's; such a system is 

shown in figure 1.13b and is also known as 

'Multiple SIMD'. To fit into the MIMD/SIMD 

architecture it is plain to see that all SIMD 

control units have a 'master' MIMD controller, 

such as that shown in figure I. 13a. 

Dataflow and Reduction Architectures 

Dataflow [Denni75) and reduction [TreI82) 
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Figure 1.13 MIMD/SIMD Architecture 

architectures share a similar operational tenet: the former enables instructions once all operands 

are available, whilst the latter enables instructions once their results are required elsewhere. 

The sequence of executed instructions is based on data dependencies, with the reduction 

architecture also known as a demand driven architecture, and these architectures are potentially 

able to exploit any inherent parallelism at the task, routine and instruction levels. Both 

architectures make use of tokens to indicate to the machine controllers what a data item is within 

the machine, with reduction machines also having 'demand' tokens, which indicate to 

instructions that their results are demanded. 

Despite the apparent advantages of these approaches there are a number of disadvantages to 

such architectures [HwBr84), which are as follows: 

• The data driven at instruction level causes excessive pipeline overhead 

• Data flow programs tend to waste memory due to the much increased code length 

• The packet/token switching network within large data-flow computers becomes cost­

prohibitive and is itself a bottleneck in the system 
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• The architectures have potential in small-scale or very large-scale parallel systems, but 

compete less favourably at other levels when compared against existing pipeline, array 

and mUltiprocessor system 

Wavefront Array Architectures 

A wavefront approach to designing cellular processor arrays was proposed by Kung et al 

[KungSY82J. Wavefront processors combines systolic data processing with an asynchronous 

dataflow, yet retain the features from systolic architectures, such as modular processors and 

regular, local interconnection networks. The major difference is that wavefront processors do 

not make much use of a global system clock: they exploit the time-delays used for 

synchronisation the systolic data pipelines and the associated asynchronous handshaking as the 

method for coordinating inter-processor data exchange. 

Using this method, as illustrated in figure 1.14, a 

processor informs it's successor in the array that it 

has completed it's computation and that a result is 

ready (1). The result is sent (3) once the successor 

indicates that it is ready to receive the data (2) and, 

in turn, sends an acknowledgement to it's 

Wave -8- Wave-A-
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1 
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predecessor to a state that the data has been Figure 1.14 Wavefront Array 

Architecture 
received (4). This operation cascades throughout 

all processors in the array (5). It is clear from figure 1.14 that processors receiving data from 

wavefront -A- will be able to start operating upon it before processors that were previously 

concerned with wavefront -A- will be able to start processing new data from wavefront -B-. 

Using this method of handshaking means that the flow of wavefront data through the array is 

very smooth; the wavefronts do not interfere with each other, as the processors holding the 

wavefront data act as the propagation controllers and cannot, by definition, propagate any data 

until the destination is ready for it. This is, in principle, a very powerful architecture, as an 
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algorithm can pass through the array as fast as the processors can handle it. There is no set 

time frame for a stage of the algorithm to be executed within a processor, such as is the case for 

the global clock in a systolic array. Once a processor has completed its computation it does not 

have to wait upon a system clock before it can start on the next calculation; it can start as soon 

as the data values required are available. 

1.5 Thesis Organisation 

This thesis is concerned with the design and specification of an instruction systolic-array 

architecture for the VLSI implementation of neural networks with real-time learning. The 

discussion can be divided into three main parts. Other sections of the thesis consist of the 

contents lists, references, some details of further work and final conclusions on the ideas put 

forward throughout this thesis. 

The first part is an introduction to the subjects that form the technological background to the 

discussion; it contains a general overview of computer evolution and architecture, as well as 

more detailed studies of VLSI technology, systolic arrays and neural networks. The second 

part consists of the major research undertaken by this thesis; it contains the overview of the 

VLSI architecture required for successful hardware implementation, as well as details of the 

systolic algorithms to carry out neural learning using three different learning methodologies. 

The third part consists of the software and hardware implementations carried out on the basis of 

the work done in the second part. It consists of the software simulator of the systolic array 

architecture, along with a few sample applications to demonstrate that the algorithms have been 

successfully implemented, and the hardware designs carried out towards the end of fabricating 

a working VLSI device. 

1. 5.1 Part 1 - Introduction 

Part I forms the introductory part of the thesis and consists of Chapters I to 4 respectively. 

Chapter I gives a general introduction to the areas relating to systolic array processing, notably 

the evolution of computer architecture, the advancement of integrated circuit technology and the 
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various classifications of parallel computer architectures. Systolic arrays themselves are just 

one class of parallel computing, but it is one that is very amenable to implementation in VLSI 

technology. 

Chapter 2 contains more detailed descriptions of the areas required for hardware 

implementations of systolic arrays. Descriptions of the steps required in VLSI fabrication are 

given, along with the problems associated with the industry. The chapter goes on to give 

descriptions of computer-aided design techniques currently available, with details of on- and 

off-chip testing methodologies. The chapter concludes with further details on systolic array 

processing, along with derivations of the fundamental algorithms associated with the 

architecture. 

Chapter 3 described various neural network learning methodologies, with examples of both 

supervised and unsupervised techniques. It gives a concise history of the field, from the 

pioneering work at the beginning of this century, as well as describing the electro-chemical 

processes involved in biological neural system. Chapter 4 carries on from this with two case 

studies of recent practical applications of neural networks, along with two research-led 

applications of neural networks in VLSI devices. 

1.5.2 Part 2 - Systolic Array Architecture and Algorithms 

Part 2 forms the main theoretical part of the thesis, consisting of Chapters 5 and 6. Chapter 5 

contains details on the proposed systolic array architecture for on-chip neural network learning. 

It describes the device, firstly, in overview, outlining all of the basic requirements of the 

architecture. It then goes on to describe the reconfigurable instruction set aspect of the systolic 

array, along with the method developed for approximating any neural activation functions 

within the array. The chapter concludes with a more in-depth description of the hardware 

design features that make up the systolic array architecture. 
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Chapter 6 continues the systolic array architecture theme by describing the systolic algorithms 

developed for the architecture. There are three different neuralleaming methodologies that the 

architecture can currently support, each methodology being of a different type. Each 

component of the various algorithms is described in detail, along with timing results for one 

application on each of the three methodologies. 

1. 5.3 Part 3 - Software and Hardware Implementation 

Part 3 forms the main deliverable items of this thesis and consists of Chapter 7 and 

Appendix A. Chapter 7 describes the implementation in software of a systolic array simulator 

that closely matches the hardware and software designs from Part 2. This describes the general 

operation of the software, giving an all-round picture of what the software is capable of. It also 

gives descriptions of several application examples implemented on the simulator, in order to 

show that the designed architecture is capable of successfully carrying out neural processing. 

Appendix A contains all of the detailed circuit diagrams, and associated VHDL code, required 

to implement every aspect of the hardware designs from Chapter 5. This section is designed as 

an appendix, with higher level descriptions of each circuit in Chapter 5 referring to the actual 

implementations presented in Appendix A. 
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INTRODUCTION 

BACKGROUND 
TECHNOLOGY 

This chapter describes in more detail the various technologies that have had the largest influence 

in the design of a systolic array processor for real-time neural network learning. It begins with 

a description of the various common methods of IC fabrication, with details on the different 

methods and some common measures employed to improve the basic fabrication process. 

Methods for increasing the reliability of IC testing once devices are fabricated are given, along 

with the available techniques for digital device testing. The chapter concludes with an in-depth 

discussion on systolic array processing, with details on the various topologies commonly used 

and a look at the basic algorithms used in systolic array processing. 

2.1 VLSI Fabrication Technology 

2.1.1 Silicon Semiconductor Technology 

2.1.1.1 Silicon Wafer Generation 

In it's pure state silicon is a semiconductor, having a bulk electrical resistance somewhere 

between that of a conductor and an insulator. The resistance of silicon can be varied, over 

several orders of magnitude, by introducing impurity atoms into the crystal structure: these 

dopants can either supply free electrons or holes. Impurity elements that use electrons are 

known as acceptors, since they accept electrons already present in the crystal, leaving vacancies 

(or holes) behind them, whilst elements that introduce electrons into the crystal are known as 

donors. Silicon that has a majority of donors is known as n-type and that which contains a 

majority of acceptors is known as p-type. 
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By bringing together n-type and p-type material, where the silicon changes from n-type to p­

type, a junction is formed; by arranging these junctions into particular physical structures we 

can form various kinds of semiconductor devices. 

The basic raw material used in fabrication is the silicon wafer, which varies from 75mm to 

150mm in diameter and is less than I mm thick. The wafer is cut from an ingot of single-crystal 

silicon which has been pulled from a crucible melt of pure, molten polycrystaline silicon. Once 

the wafer is cut to the required size, usually with diamond blades, and at least one face is 

buffed and polished to a flat, scratch-free mirror surface. 

2.1.1. 2 Silicon Oxide Generation 

Many of the techniques used in the manufacture of silicon-based IC's rely on the properties of 

silicon dioxide (Si02). Therefore, the reliable manufacture of Si0 2 is extremely important to 

the entire fabrication process. The oxide is achieved by heating the wafers of silicon in some 

form of oxidising atmosphere, such as oxygen. The two most common approaches are: 

• Dry Oxidation: the oxidising atmosphere is pure oxygen, with temperatures in the 

region of 1200°C 

• Wet Oxidation: the oxidising atmosphere contains water vapour, with temperatures 

usually between 900°C and 12000 C 

It is important to note that the oxidisation process POLYSILlCQN GATE 
GATE OXIDE 

actually consumes silicon. In the standard 

fabrication process, as described in section 2.1.2, a 

layer of silicon is placed on top of the original p-type 

substrate and is then oxidised - this layer is known as 

field oxide. Since Si02 has approximately twice the Figure 2.1 Field Oxide Growth 

volume of Si, the Si02 layer grows equally in all 

directions, so the actual Si0 2 1ayer grows into the base substrate (which was initially polished 

flat). This can be seen in figure 2.1, which shows a p-type transistor in which the Si02 field 
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oxide can clearly be seen to have grown into the substrate. Note, the steps required to create 

such a transistor are covered in detail in section 2.1.2. 

2.1.1. 3 Selective Diffusion 

The placement of the acceptor and donor areas on the silicon substrate needs to be a very 

precise process, as is the placement of any associated structures. The ability of Si02 to act as a 

barrier against doping impurities is a vital factor in the placement process, which is known as 

selective diffusion. The process consists of the following stages: 

• Grow a layer of Si02 on the substrate surface 

• Open a window in the Si02 using a combination of a photoresistant layer, a glass mask 

and an ultra-violet (UV) light source 

• Remove the Si02 not subjected to UV light with a suitable etchant 

• Subject exposed silicon substrate to a dopant source 

The idea is to cover the Si02 with an acid-resistant 

coating, which is normally a photoresistant organic 

material. The UV light that passes through the glass 

mask polymerises the exposed photoresist (PR), thus 

creating the pattern of Si02 that is to remain. The 

unpolymerised PR, along with underlying Si02, can 

then be easily removed with an organic solvent. This 

process is shown in figure 2.2. 

.' SILICON ~~I'l:R 

I \I '.0;: e 5 5 S <: S. ' cc ]- Pholo",'" I i I j j I I I j j j j J 41-- Si0
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SILICON WAFER 

.. .. .. .. .. .. _ UVLighl 

~~~~~~~~~;I +-- Glass Mask +-- Mask Pattern. 

f 
' .... ' ... ' \ \ , \ .'.' , , SS 1- Pholo,,"" - I I I I I I I I I I I I I • -4-- Si0
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SILICON WAFER • 

LI_'_I_S_:L_:C_~_N_' _~_A_FE_R_l--.J +-- Si0

2 

The main problem associated with using PR's in Figure 2.2 Patterning of SiG 

conjunction with UV light sources is that there is a sizeable amount of diffraction around the 

edges of the pattern masks. The tolerances of the process has limited the line width of around 

1.0Ilm. However, during recent years advances have been made in the field of electron beam 

lithography (EBL). This is a good technique for pattern generation, allowing line widths 

40 



Chapter 2 Background Technology 

down to O.5Jlm and beyond with good definition. The disadvantages of EBL are that new 

plant equipment is required and that a large amount of time is required to access all points on 

the silicon wafer. Fabrication plants are extremely expensive; manufacturers are reluctant to 

replace such expensive equipment and research into improving the definition of selective 

diffusion is still going on. 

2.1.2 Standard p-Well Fabrication Process 

The p-well fabrication process is fairly well-defined. It starts by taking a moderately doped n­

type substrate, creates the p-wells to place n-type devices on and then builds the p-type devices 

on top of the native n-type substrate. Each of the stages of the process are described in this 

section [WeEs88]; an overhead view of the mask for each stage is shown along with an 

, idealised plan view of the resultant physical structure of the substrate. The example used 

throughout this section is the simple CMOS inverter structure. 

2.1. 2.1 Wells and ThinOx Deposition 

Figure 2.3 shows the first two stages (.) P·T,bM~k 
/ Field Oxide 

of the p-well process. The first mask 1I11111111UII' 1fT 

p-Well . I, 
n-SUS'STR'ATE' < 

. 
(a) defines the p-well within the base 

substrate. Once the field oxide is 

deposited on to the substrate a small 
(b) Thin Oxide Mask 

section is etched away. The exposed 
p-Well 

substrate is then doped with a p-type n-SUBSTltATE 

source, creating a p-type well within Figure 2.3 Well and ThinOx Deposition 

the n-type substrate. 

Using the second mask (b) areas of the field oxide are selectively stripped away down to the 

substrate surface. A very thin layer of Si02, known as thin oxide, is then grown on those 

areas. It is these two thin oxide regions that will form the n- and p-type diffusions for the 

transistor source/drain regions. 
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2.1.2.2 Gate Definition 

Figure 2.4 shows the next three stages ~i'",':: M:::~::::k..",._ 

of the p-well process. The first mask 

(a) defines the surface area to be 

covered in polysilicon 1, with the 

pattern required for a CMOS inverter 

being an inverted 'U'. 

The second mask (b) is used to indicate 

the thin oxide areas that are to be doped 

with a p+ source. These areas will 

become p+ diffusion area, which 

p-Wcll 

n-SUBS'ffiATE 

poWe!! 

n-SUBSTRATE 

(c) p-Plus Mask (-ve) 

p-W.:II 

II-SUBSTRATE 

Figure 2.4 Gate Definition provide self-aligning source and drain 

p-Plus -vc 

areas with the polysilicon that divides the two diffusion regions. A p + diffusion region inside 

an n-substrate allows the construction of a p-type transistor. 

The third mask (c) shows a similar process, but which creates an n-diffusion region within the 

p-well. The mask used is the complement of the mask from step Cb). These areas of n+ 

diffusion within a p-well, along with the separating section of polysilicon, allows the 

construction of n-type transistors. 

2.1. 2.3 Metallisation 

Figure 2.5 shows two of the final three 

stages of the p-well process. The first 

mask Ca) defines the areas required for 

contact cuts, which allows metal tracks 

(a) Cun1.aCt Mask -- -- --- -- --

n-SUBSlRATE 

(b) MetllMask 

to make contact with the n+ and p+ gate e''''·S'''UB'''S'''TR'''ATE'-''-____ _ 

areas. Figure 2.5 Gate Metallisation 

1 Although this shows a polysilicon gate process it should be noted that CMOS devices originally implemented gates 
with aluminium. This technology was the basis for the majority of the CMOS circuits in the 1970' 5 
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A layer of Si02 is first grown on to the silicon, and then several patches of gate oxide are 

etched away as far as the silicon surface. This process leaves all of the n+ and p+ regions 

exposed, paving the way for the next step. 

The second mask (b) shows a layer of metal being added to selective parts of the device. The 

left and right channels are for the power and ground (V DD and V ss) connections for the 

inverter, whilst the central channel is for collection of the output signal. The inverter input is 

driven onto the polysilicon connection. 

The final stage of this process, which is not 

shown, is that once all devices have been 

created on the silicon wafer the chip 

packaging bonding pads are etched, in order 

to allow for the external VO wire bonds to 

be attached to the final fabricated chip. The 

full layout for the CMOS inverter, along 

with its standard schematic, is shown in 

figure 2.6. 

2 _1. 2.4 Associated Problems 

p-Well 
Thinoxide 

p-Plu, 
Aluminium 

Contact !I 
Polysilicon rL.d 

IN 

1 l 

OUT 

Figure 2.6 Inverter Layout and Schematic 
In order to achieve low threshold voltages 

-----either-deep_weILdiffusions_or high well resistivity are required. The latter can accentuate a 

problem known as latch-up, whilst deeper diffusions increase the silicon area due to larger 

spacings being required between the n- and p-type transistors. The required thresholds are 

achieved by making the well concentrations one order of magnitude higher than the base 

substrate doping density. Unfortunately, n-type transistors within the p-well suffer from 

excessive source/drain capacitance, thus slowing down their switching speeds. Despite the 

advances made by using CM OS technology n-type transistors are, in general, inferior to those 

that could be built on their native substrate; i.e. with no well present. Thus, n-type transistor 
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circuits in CMOS will tend to be slower than their counterparts manufactured using the older 

nMOS process and performance degradation in some CMOS circuits should be expected by any 

VLSI designer. 

As stated by Weste and Eshraghian [WeEs88) " ... if every silver lining has a cloud then the 

cloud that has plagued CMOS is a parasitic circuit effect called 'latch-up'" (p.58). This is the 

result of shorting the V DD or V ss lines which may result, if luck is on the designer's side, in 

only system failure but tends to result the complete self-destruction of the CMOS device. 

Estreich and Dutton [EsDu82) describe the latch-up effect 

very well. They state that, effectively, there are two 

parasitic bipolar transistors inherent in the n-substrate and 

p-well, each of which has a gain factor associated with it. 

voo 

p·SOURCE 

The first transistor (T I) has a collector-base-emitter of p- n·SUBSTRATE e---c 

type transistor source, the n-substrate and the p-well itself 

(pnp transistor), whilst the second transistor (T 2) is n-

substrate, p-well and the n-type transistor source within 

the p-well (npn transistor). The equivalent circuit for this 

is shown in figure 2.7. 

There are two areas of resistance within the circuit: one in 

T, '1---41 p.WELL 

n.SOURCE e---........J 

vss 

Figure 2.7 Parasitic Latch-Up 
Equivalent Circuit 

_____ the_n:substrate (lis) and one in the p-well (Rw)· The larger these resistances are then the more 

susceptible the device will be to latch-up, so the process engineers need to devise methods to 

keep these resistances low. A different method of reducing the chances of latch-up is to reduce 

the gain of the bipolar transistors, but this is not as easy as reducing the values of Rs and Rw. 

A simple method to keep the resistances low is to use multiple additional substrate contacts, 

which effectively short out the resistors. 
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A modified inverter cross section, incorporating two 

substrate contacts, is shown in figure 2.8. The n­

substrate is connected to the positive supply VDD 

through a V DD substrate contact, whilst the p-well is 

connected to the negative supply V ss through a V ss 

substrate contact. The contacts themselves are formed 

V DD Vss 

Vss Contact 

Figure 2.8 Substrate Contacts 

when the areas for p-type and n-type transistors are being doped, as described in section 

2.1.2.2, with additional p+ and n+ diffusion areas being implanted into the p-well and n­

substrate respectively. Additional contact cuts are also made, with a further metallic connection 

made between the relevant power input and the substrate contact. 

With current process technology the possibility of latch-up occurring has been reduced to the 

point whereby the designer does not have to be concerned about it, so long as the design 

contains liberal substrate contacts. The definition of 'liberal' is not hard and fast, as it is 

usually acquired from designers who have made successful designs on a particular fabrication 

process. Although it is possible to synthesise the parasitic effects, and thus calculate the 

required spread of substrate contacts, it is a difficult (i.e. time-consuming) task. 

However, it is possible to reduce the likelihood of latch-up to a great degree by following a 

small set of rules: 

• 

• 

• 

• 

Every well must have a substrate contact of the appropriate type 

Every substrate contact must be directly connected to the power supply by metal 

Place a substrate contact for every 5 - 10 transistors in the design 

Place substrate contacts as close as possible to the source connection of a transistor 

connected to a power line - this reduces Rs and Rw 

• For the conservative a substrate contact should be placed for every power connection 
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• At the chip layout stage pack n-transistors towards V ss and p-transistors towards V DD 

The most likely point for latch-up to occur is at the VO structures, as the current flow at those 

points is large. This can cause quite large parasitics to be present and abnormal voltage levels 

may be encountered. Although these structures can be created by the designer by fOllowing 

another set of rules [WeEs88] [EsDu82] the simplest method is to use only proven VO 

structures that have been designed by experts who fully understand the fabrication process 

being used at a detailed level. 

2.1 .3 Other Fabrication Processes 

2.1.3.1 n-Well Process 

Before the introduction of the CM OS p-well fabrication process the dominant fabrication 

technique was the nMOS process. Many manufacturers had spent vast sums of money to built 

plant based on nMOS, and the thought of such plant becoming obsolete overnight was not a 

pleasant one. An advantage of the n-well process is that it can be fabricated on the same plant 

equipment as conventional nMOS; because of this the n-well process is often retrofitted to the 

existing nMOS lines [Ohzo80]. 

The n-well process is very similar to the p-well process, except that the substrate is p-type, the 

n-type transistors are directly on the substrate and the p-type transistors are fabricated within a' 

separate n-well within the substrate. Like the p-well process the n-well creates non-optimum 

transistors, but of the opposite type; p-type transistors perform relatively poorly compared to 

their n-type counterparts. However, CM0Saesigns are oeginnihgtb-incorporate-more-notype-­

transistors rather than p-well, so the disadvantages of having non-optimum p-type transistors is 

partially offset. The n-well process technology is, therefore, very suited to the 'mostly n-type' 

CMOS designs and provide distinct performance advantages over the p-well process. 

2.1.3. 2 Twin-Tub Process 

In both the p-well and n-well process only one type of transistor has near-optimum operational 

characteristics. The twin-tub process attempts to optimise both types of transistor separately, 

46 



Chapter 2 Background Technology 

making it possible to modify threshold voltages and other parameters of both n- and p-type 

transistors independently [Parr80]. 

The process begins with either an n + or p + substrate which has a lightly doped epitaxiallayer 

placed on top of it, which is used to protect against latch-up. The object of having the epitaxial 

layer is so that highly pure silicon layers can be grown, each with a controlled thickness and 

accurate doping levels. 

The process sequence is similar to that for p-well, save 

for the actual formation of the twin -tubs where both n-

wells and p-wells are created. The finished cross-

section for a standard inverter is shown in figure 2.9. 

Substrate contacts are still used in the process, as the 

epitaxiallayer does not eliminate latch-up altogether. 

p-WeU 

Epilaxiai Layer 

n-SUBSTRATE 

Figure 2.9 Twin-Tub Process 
Cross-Section 

The two wells are defined and implanted individually, which is followed by the formation of 

field oxide and gate oxide. At this stage the thresholds of future p-type transistors are modified 

by further implants into the relevant sections of gate oxide within the n-well. Polysilicon is 

then deposited as required, and the substrate contact p+ and n+ regions within the wells are 

implanted. Finally, contact cuts are made, the device is metallised and then finished off by the 

cutting the areas for I/O bonding pads. 

2.1. 3.3 Silicon on Insulator Process 

The silicon on insulator CMOS process (SOl) has several potential advantages over the 

traditional CMOS processes [MaSi641: higher circuit density, no latch-up problems and lower 

parasitic capacitances. There are various mask and doping steps required to form n-type and p­

type devices, but the extra steps involved in standard CM OS processes to create additional 

implanted wells simply do not exist with this technology. 
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Snapshots of several stages of the SOl fabrication process 

are shown in figure 2.10. Initially, a layer of thin very 

lightly doped silicon is grown over an insulator, such as 

sapphire or magnesium aluminate spine!. The silicon is 

then etched away, except for the where a diffusion area is 

required. This forms a number of n - islands on the 

insulator surface, and is shown in figure 2.1 Oa. 

The actual diffusion areas are created by masking one 

island with photoresist and then implanting a dopant into 

(n) I n" 

IINSUMTOR 

(b) 

~ 

the other. This creates lightly doped p-type and n-type (d) 

diffusion regions, with boron being used for the p-channel 
---1 1J.Ill,LlJ4.-J\~ 

and phosphorus used for the n-channel devices; this is 

shown in figure 2.1 Ob. 

n" 

Phosphorous 
Implant 

~ ~ ~ 
n' 

Boron 
Implant 

~ 

+--- n-DEVICE-----+ <ot- p-DEVICE-------+-

Figure 2_10 Selection of SOl 
After the poly silicon is placed over the diffusion areas, Process Steps 

using standard CMOS techniques, the diffusion areas are changed into n-p-n or p-n-p 

transistor islands. Photoresist masks off one island and the polysilicon masks off the base 

diffusion areas to create the junction. Again, phosphorus and boron are used to create n-type 

and p-type areas respectively, and this is shown in figure 2. IOc . 

. ----_To_finish_ofLthe_SDCJJrocess a layer of (lhosphorus glass, or some other insulator, is then 

deposited over the entire structure. Contact cuts are then etched from the top insulator and 

metallisation then occurs. This is shown in figure 2.l0d, where the n-type and p-type 

transistors are also labelled. 

Despite the advantages that the SOl process has over the other CM OS techniques outlined in 

this section there are some disadvantages. The single-crystal sapphire or spinal substrates are 

much more expensive than silicon and, because of this, the processing techniques themselves 
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are less advanced than bulk silicon processes. The device gains are smaller than those 

associated with CMOS devices, so the 110 structures have to be quite large to be able to cope 

with these. Although SOl has the potential to be the fastest and most reliable process 

technology for CMOS fabrication it is also the most expensive; it's take-up by manufacturers 

has been, therefore, less than enthusiastic. 

2.1.3.4 Process Enhancements for CMOS 

There are a number of process enhancements to the standard Silicide PolysiIicon 

CMOS process that increases the routability of designs and 

decrease resistance between devices. The simplest method of 

reducing the resistance of circuits [Chow83] is to reduce the 

resistance of the polysilicon lines by combining it with some 

refractory metal. Chow outlines four different approaches to 

this problem, two of which are shown in figure 2.11, each of 

which uses a different type of gate material. Each approach 

uses a standard substrate or well, with appropriately doped 

diffusion regions for the transistor being created. The gate Figure 2.11 Silicide Gate 

and field oxide shown is, as always, Si02. 

The first approach replaces the standard polysilicon gate with a sandwich of silicide upon 

polysilicon. The silicide is a mechanically strong structure; tantalum silicide is also stable 

-----throughout.standard.CMOS.process stages and can also be retrofitted onto existing process 

lines. This approach is called the polyside approach. The second approach shown uses what 

is called a molybdenum gate, which is a sandwich of silicide and metal; this is called a heart of 

moly structure. The benefit of all of Chow's methods is that they reduce the overall 

interconnect resistance, which allows the gate material to be used over reasonably long 

distances; an additional benefit is that it can achieved with minimum disturbance to any existing 

CM OS process line, as it does not require any additional masks. 
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A simple approach to increase the overall 

routability of circuits is to use a second layer 

of metal. Additional layers of metal, as a 

rule, have a courser pitch due to the topology 

of the silicon surface being more varied. 

Connections between first level and second 

Background Technology 

2nd level Metal 

n·SUBSTRATE 

Intermediate 
Isolation Layer 

level metal (metal-I and metal-2) is achieved Figure 2.12 Second Level Metal 

by a via contact, as shown in figure 2.12. If further connection is required to either diffusion 

or polysilicon then a separation between the via and the contact cut is not normally required, 

even though it is shown in figure 2.12, but in less advanced or underdeveloped processes a 

separation gap may be needed. Such as gap would require an intermediate connection between 

metal-2 and the polysilicon or diffusion region; such connections are normally made using 

metal-I. If. a separation gap is not required then the via can be made directly over the contact 

cut, giving a direct connection to the underlying layers. 

A novel method for preventing latch-up [IEDM83] [Yama83] 

is to introduce deep trenches of Si02 into the base substrate 

material. This methodology improves the n-to-p spacing of 

transistors, thus reducing the chances of latch-up occurring. 

The trenches are placed between n-type and p-type 

transistors, thus separating completely an injected well from 

Figure 2.13 Trench Isolation 
Cross Section 

____ ---'oth_er substrate material on the horizontal plane; a cross-section for this process in shown in 

figure 2.13. In practice, however, a p+ substrate with injected n+ diffusion regions will have a 

p- epitaxiallayer at around the level of the bottom of the trenches, with additional p+ diffusion 

regions above the epitaxiallayer wherever n-type transistors are required. 
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One other innovation in the field is the use of 3-

dimensional structures in the fabrication 

process. The ideas behind this are to increase 

the performance and to reduce the overall area 

by utilising the vertical dimension [GiLe801 

[Kawa831. The SOl process modification 

proposed by Kawasura et al in shown figure F' 2 14 3 D CMOS C os S t' Igure. - r s ec IOn 

2.14. It places transistors in the vertical plane 

within the phosphorus glass layer, with the vertical transistor being formed using n-p-n or p-n-

p techniques. It is mounted within a different gate oxide from Si02, otherwise parasitic circuit 

effects can occur between two areas of identical and active gate oxide; these transistors use 

silicon nitride (Si 3N4) instead. However, although this technique seems to have a good future 

ahead of it the fact that it requires the SOl process as a base means that it is still prohibitively 

expensive for all bar experimental uses. 

2.2 Digital Logic Testing Techniques 

2.2.1 Introduction to Digital Logic Testing 

2.2.1.1 The Need For Test Strategies 

As outlined in section I the technology of VLSI design is advancing at a rapid rate. This 

advancement, however, has led to many problems in the field of digital logic testing. Such 

problems have been around since digital logic devices first came into existence, but the growing 

num15erofcircuits-placed-on-individual-chips-has-exacerbated-them.-The-increase-in.circuit.size __ .. 

and complexity has, in turn, led to little or no increase in the number of I/O pins on the device, 

which creates a further bottleneck for digital testing; more logic must be tested with the same 

number of I/O pins, thus making it much more difficult to actually test the chip. 

Testing is assuming a larger proportion of the total product cost as a result of the growing 

circuit complexity, which is ironic when you consider that the software design tools that make 

it possible to cram more circuits on to a single chip at a reduced physical fabrication cost are, 
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effectively, increasing the cost of circuit test. New testing strategies are emerging to cope, but 

the design of these is adding to the overall time required to get a product out of the door and 

into the marketplace. Manufacturers must balance the consequences of releasing a product that 

is not fully tested into the market; the time-lead gained over competitors through early release 

can be terribly expensive should the product suffer wholesale failure, with the return of large 

quantities of defective products. 

The scale of the problems involved in testing complex components can be seen in that it was 

quoted ..... that 30% of the cost of production is spent on the testing of some LSI circuits. " 

[Wate82]. As device complexity increased over the years so did the scale of the problem: 

..... the cost of testing can exceed 60% of the total device costs." [AmMu88]. 

The field of digital logic testing is a very volatile and dynamic field. As new design techniques 

and architectures are introduced the corresponding testing environment needs to evolve further 

in order to efficiently test the new designs. Existing test methodologies also need to be refined 

just to try and increase their efficiency and to reduce their overall cost. Section 2.2 describes a 

number of different test strategies and their usefulness but it is in no way an exhaustive list of 

available techniques, which is beyond the scope of this section. 

2.2.1.2 What is a Test? 

The idea behind testing any device is to construct an experiment to either confirm or deny a 

___ particulachypothesis or to distinguish between two conflicting hypotheses. A number of 

stimuli are applied to the device and the resultant responses are evaluated. By knowing in 

advance what the correct responses ought to be the test engineer can determine whether or not 

the device is working correctly. 

When working with digital devices the test stimuli are known as test vectors. They are 

normally applied to the device at the input pins. The responses are observed either at the output 

pins or, in some test configurations, from certain test points within the device; results can be 

52 



Chapter 2 Background Technology 

gathered in the latter case from either probes inserted into the device or from using built-in test 

circuitry which can route certain internal signals to the output pins if the device is currently 

under test. The results are compared against known good values, either by recording results 

from a known good device or from a computer simulation of the device. 

A problem with digital testing is that if a test response indicates that the circuit has an error then 

all that implies is that their are one or more errors on the circuit concerned with the given test. 

Further testing is normally required in order to identify which fault on the device caused the 

error response. This process is accomplished by using what are known as fault models and is, 

essentially, the same in that test vectors are simulated against a fault-aware computer model of 

the device. The model is modified to contain a particular fault, or set of faults, and output 

responses between the fault model and the faulty digital device are compared; a duplicate or 

approximate response indicates that the digital device contains the faults simulated within the 

current fault model. 

If the digital device responds correctly to all test vectors then we cannot conclude that it is fault­

free; the best that can ever be said is that it does not contain any faults that the test engineer has 

tested for. It may well contain other faults for which no effective test vector had been applied. 

Even if the computer models used in simulation are extremely accurate they will not uncover 

defects unless effective stimuli have been applied. 

---~2-;-2-.h-3-The-Economics_oLTesting ____________________ _ 

It should be possible to test every individual circuit on a digital device with every possible 

combination of test vectors. However, time and cost constraints mean that is simply not 

possible to test a product so that the final customer can be 100% certain of receiving a fully 

functional device. The test engineer has to find an answer to the following question: "How 

much testing is enough?". If a faulty product is returned then the designer incurs the cost of 

replacement, as well as suffering a loss of good will, which is a vital commodity in the 

marketplace. 
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Additional testing also requires additional cost, from the development of the test plan and also 

for the application of the test on to the actual devices - these test costs must be minimised as 

much as possible. Test costs are reduced so that at a reduced level of test, i.e. non-lOO% test 

coverage, the cost of any additional testing exceeds the savings gained through the reduced 

service and replacement of faulty products. Obviously, exceptions must be made for devices 

which are placed in safety-critical systems, whereby the manufacturers must only' release 

perfect products to its clients. 

It is far easier to spend more on testing if the product is to be a large-volume consumer product, 

where the test costs can be amortised over a large number of units. In this case a thorough and 

efficient test is worth creating, as it can reduce the amount of time spent testing each unit. In 

low-volume products testing can take up a disproportionately large amount of the overall cost 

and it may not be possible to justify such extensive testing. However, in safety-critical 

applications such additional costs for testing just have to be borne. 

The economics of testing imply that we want to test for the faults that are most likely to occur. 

The test engineer must know which faults occur and how frequently they occur. By knowing 

these facts the effectiveness of a test can be measured. It is then required to get an estimate of 

the defect level (DL) of the device, which is the fraction of devices shipped that are still 

defective. This is done using the following equation [WiBr81]: 

DL= 1- y(l-n (2.1 ) 

This uses the yield level of the fabrication process (Y) and the test effectiveness (T). If it is 

possible to test for all defects (T= I) or if the fabrication process yields no defective units (Y=I) 

then the overall defect level equals zero - this perfect situation almost never happens. 

Equation 2.1 can be restated to express the test fraction T in terms of the yield and defect level: 

T=I 
10g(1- DL) 

10g(Y) (2.2) 
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This allows the test engineer to enter the known yield level of the fabrication process along with 

the desired defect level, thus giving the test effectiveness level required in order to meet the 

requirements. By increasing the yield level we reduce the required test effectiveness level, so 

simply by improving the fabrication process the test engineer can reduce the task of testing the 

device. 

Another important aspect of the economics of testing is the cost of locating and replacing a 

defective unit. In the case of digital devices it is vital that faulty devices are found and replaced 

as early as possible; this is an acknowledgement of the so-called power-of-ten rule, whereby 

the costs increase by an order of magnitude at each stage of integration. If it costs N to detect a 

faulty chip at incoming inspection then it will cost IOxN if the chip escapes the inspection stage 

and survives to be soldered on to a circuit board. Again, if it not detected at the board-test stage 

then it may cost IOOxN if the defect is not detected until the board is placed in a complete 

system. If a defective system makes it as far as a customer the cost becomes incredible. There 

is a large economic incentive, therefore, for the test strategy to find defects as early as possible. 

2.2.2 Combination and Sequential Logic Test Strategies 

2.2.2.1 Stuck-At Fault Model 

The two most common defects in digital electronics are shorts and opens; the former is where a 

connection exists where one should not exist and the latter is a lack of connection between two 

points. The application of test vectors can test the functionality of the device, but the time 

______ r"'eguired for such test can be too high; an n inp~! device requires 2n test vectors, so with n=40 

at 10 million test vectors per second we still require over 30 hours to test the circuit. 

Additionally, if the circuit contains any sequential logic then there is no assurance that such a 

technique will test every function. 

Eldred took the approach that instead of testing every function capable by the device you should 

instead test the hardware itself [Eldr591. The common faults are modelled using a computer 

simulator, whereby input stimuli are used that could differentiate between fault-free and faulty 
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circuits. This has the advantages that not only can the effectiveness of the test strategy be 

evaluated but groups of tests can be assigned to specific defects so that if a test pattern returns a 

faulty result it is pinpointing a specific component or set of components. 

The stuck-at fault model checks for the inputs and outputs of digital logic gates that are either 

shorted or left open. An n-input combinational circuit can implement 2,n different logic 

functions. In order to verify with 100% accuracy that a particular circuit implements the 

desired function requires all 2" input patterns to be applied - this could take an inordinate 

amount of time. 

Figure 2.15 shows the standard logic symbol circuit : ==C)---=--d D-e 
for the simple function e= a' b + c. If the output 

c 

of the NAND gate (signal d) is stuck-at-I then, Figure 2.15 Simple Function 
Schematic 

regardless of the second input to the NOR gate 

(signal c), it is simply not possible to drive the output of the NOR gate (signal e) to logic-I; so 

long as there is one logic-I input to a NOR gate the output will always be logic-O. It can be 

seen from this example that each circuit can have a number of possible of stuck-at faults - the 

simple circuit in figure 2.15 has a total of 10 possible stuck-at faults, consisting of a stuck-at-O 

and a stuck-at-I fault for each and every signal in the circuit (inputs, outputs and intermediate). 

2.2.2.2 Sensitised Path Fault Model 

A test can be define<QLePr92] as compri'sing-of-a-set-of-input-values;-together-with-the-­

resulting true and faulty output values. A sensitised path is where the fault can be controlled 

from the circuit inputs and the result is observable at the output. By testing for d stuck-at-I 

(d/l), which results in the output e/O regardless of the inputs, the path a-b-d-e is sensitised to 

the test. However, the faulty result e/O also covers other faults along the sensitised path, 

namely alO and blO. Hence, a single successful test can cover a number of different faults. 
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There is a requirement, therefore, for an efficient method of generating test patterns. A general 

procedure for this can be expressed as follows: 

Prepare fault list 

Repeat 

Select a fault from the fault list 

Generate a test 

Check the fault coverage for the test 

Delete these faults from the fault list 

Until a satisfactory fault cover is obtained 

In an ideal situation an acceptable fault coverage level is 100%, but a figure of between 90%-

95% is often deemed acceptable. This method only really works where the internal structure of 

the device being tested is known but, as in many commercial devices, this information is not 

always available to the end-user. In these cases a number of sequential tests would be required 

in order to determine if a fault has occurred; i.e. a status register could be checked by loading it 

with specific data, carrying out some arithmetic operation on it and reading it back. The biggest 

problem with this method of testing is that it is difficult to determine whether or not an adequate 

fault cover level has been established. 

2.2.2.3 D-Algorithm Fault Model 

An additional problem with the stuck-at fault model ,-------1 

arises when a single output has multiple paths, as b _--'-----. 
h c 

-----shown-in-figure-2 .. 16.-Here,-reconvergent.fan-out~ ___ _ 
d ---------j 

exists between the first and last NAND gate, which 
Figure 2.16 Reconvergent Fan-Out 

means that it is not possible to construct a viable 

sensitive path in order to test for elJ; this is due to the fact that the point of failure on signal e 

fans out to another element of circuitry and, as it reconverges with the test path later regardless 

of whether the chosen sensitive path encompasses! or g, the effect of the original fault may be 

masked. 
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The answer to this problem is to simultaneously sensitise all possible paths from a point of 

failure to the circuit outputs. This approach, known as n-dimensional sensitisation, is as 

follows [Roth66]: 

(i) D-Drive: For each pass through the circuit all possible paths from a chosen fault site to 

all outputs are generated simultaneously, cancelling any convergent fan-out paths that 

may occur 

(ii) Consistency Operation: Using a backward-trace procedure, the primary input 

conditions required to generate the static inputs for the D-Drive are derived 

The procedures described above are based upon what is known as the calculus of D-cubes, 

which allows a formal mathematical model of a network (including fault conditions) to be set 

up. However, a full description of this method is beyond the scope of this section. 

2.2.2.4 Boundary Scan Testing 

The D-algorithm has withstood the test of time and is accepted as a good method of testing 

circuits; the method has even been extended so that it can cope with feedback loops within 

circuits that are inherent in any sequential circuit design [PuR071]. However, as the 

complexity of VLSI devices increase it has become impossible, to all practical purposes, to 

generate test sequences that would test the complete system within the VLSI device - it became 

inevitable that circuits would have to be designed and placed on the device in such a way so that 

testing of individual circuits could take place. 

The development of a procedure known as the scan-path technique slowly evolved that required 

a system to be partitioned in such a way that all bi-stable devices can be tested separately from 

the normal combinational logic, which could be tested using normal methods. The bi-stable 

devices were organised as a single long shift register, which specially designed logic on-chip 

could shift-in test values and shift-out test results whilst holding the device in a pause mode. 

In 1985 a consortium of European and US companies established the Joint Test Action Group 

(JT AG). This was done with the aim of standardising a design-for-test hardware structure 
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which was suitable for board-level testing, which, in itself, required new test strategies to be 

developed. The final report from the JT AG Committee, issued in 1989, was formally adopted 

as an IEEE standard [IEEE89j. 

The JT AG boundary scan technique 

places what is known as a boundary 

scan cell in series with each functional 

component pin. This cell is a multi-

function circuit that can either shift-in 

or shift-out values to and from each T"t Data In Test Data Out 
Figure 2.17 Outline of Boundary Scan Structure 

pin, or can be placed in a transparent-

mode in order to allow the device to operate normally. Figure 2.17 shows the outline structure 

of a board containing two devices: device (a) contains the required test logic but device (b) does 

not, and must be supplemented by external buffers containing the boundary scan cells. Not 

shown on figure 2.17 is that all devices on a board also contain a common Test Mode Select 

input and a Test Clock input. 

The internal structure of a device that contains 

the boundary scan test logic is shown in figure 

2.18. All devices that comply with the IEEE 

1149.1 standard must contain the following 

components: 

i) boundary scan register chain 

ii) instruction register 

iii) bypass register 

iv) test access port controller 

The contents of the instruction register are 

Device 
Inputs 

-.\l---J 

Test 
Data --lI---I 

In 

·······-···L~~;] 

TMS TCK 
decoded in order to provide the control signals Figure 2.18 JT AG Device Architecture 

Device 
Outputs 

Test D,,,, 
Qut 
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that activate the various test facilities on-board the device. The bypass register allows the 

internal scan-path to be bypassed, which removes the device entirely from the board scan path -

this has the side effect of shortening the overall length of the scan path and simplifies test 

access to the remaining devices on the board. The test access controller is a sequential circuit 

that is controlled and clocked by the TMS and TCK signals respectively. It generates the control 

signals for both the instruction and the data register. 

Although the application of boundary scan techniques appears complex it provides a structured, 

high-level and now widely-accepted standard for design-for-test methodology at the system 

level. 

2.3 Systolic Array Architectures 

2.3.1 Introduction 

2.3.1.1 Architecture Background 

The study of systolic arrays involves a combination of skills from the realms of both Computer 

Science and Electronic Engineering. They were first proposed by Kung and Leiserson 

[KuLi78] as a method of implementing a simple parallel processing system, which would 

consist of a nearest-neighbour connected array of fairly simplistic processors or cells. A simple 

definition is that a systolic array is a network of processors which rhythmically compute and 

pass data through the system. This transfer of data from processor to processor, rather than 

from main memory to processor, allows for a high degree of pipelining and synchronised 

multi-processing, thus avoiding the classic memory access bottleneck-that commonly occurs in 

normal Von Neumann machines. 

Kung also stated [KungHT82] that computational tasks can classified into two distinct families: 

compute-bound and VO-bound. If, in a computation, the total number of operations is larger 

than the total number of VO operations then the computation is compute-bound, otherwise it is 

VO-bound. For instance, matrix-multiplication is compute-bound, whereas matrix-addition is 

VO-bound. Speeding up VO-bound computations is difficult using current technologies, as it 
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requires an increase in memory bandwidth. Compute-bound computations, however, can be 

speeded up through the use of systolic arrays, which can give a higher computation throughput 

without increasing memory bandwidth. The basic configuration of a systolic array compared to 

a normal Von Neumann machine is shown in figure 2.19, which clearly shows the potential 

increase in computational throughput by using systolic arrays . 

.----~: Memory :1<1 .... 1--, Memory 

.....J 11--_---' L...-_"P~I P.E. I 

Figure 2.19 Von Neuman .v. Systolic Array Architecture 

These arrays allow for the implementation of high-performance parallel algorithms, using VLSI 

technology to provide inexpensive implementation. Such systems can also be implemented on 

a software-based system, although such a system would have lower performance figures when 

compared against a direct VLSI implementation. The major benefit of a VLSI implementation 

over a software implementation is clearly in the throughput of data that a VLSI device could 

achieve, but such a solution, however, may be difficult to turn into a generic systolic system -

interconnections within VLSI devices can be very expensive in terms of silicon area, more so 

than the processing elements themselves [Ston90j. Although much slower a software solution 

allows for easier research into connection strategies suited for specific applications. 

2.3.1.2 Soft-SystoIic Research - A Brief History 

The field of systolic processing first came about after 1978, with the publication of the paper by 

Kung and Leiserson. The driving force behind all research at that time was the idea of using 

VLSI techniques to produce low cost devices that could be used for computationally intensive 

tasks, such as those in signal and image processing. The performance of such devices was not 

measured in the normal sense of algorithm performance, but in the data throughput obtainable 

between a host computer and the systolic VLSI device. 

61 



Chapter 2 Background Technology 

Parallel machines existed long before the advent of VLSI - these machines, however, tended to 

have a prohibitively high cost of manufacture. One of the major benefits of using VLSI 

techniques [MeC080] is that a device with simple and regular interconnections could allow for 

cheap implementations and high densities - this implies both high performance and a low 

overhead for support components. Hence, most parallel machine designers were interested in 

designing parallel algorithms that had simple and regular data-flows, such that they could easily 

be implemented in hardware using VLSI techniques. 

Unfortunately, VLSI implementation has its own problems. Interconnections between 

individual units within a VLSI device has, as mentioned previously, a high price - the larger the 

number of units on a device the larger the price. As well as data communication links multiple 

power, ground and system clock signals need to be distributed to every unit, with the arrival of 

the system clock to each unit being synchronised. Chip area is also a limiting factor, thus 

reducing the number of active processing units per device [Micz87] - a small device has a 

statistically smaller chance of containing a flaw due to the VLSI fabrication process than a large 

device, as it is a VLSI design rule of thumb that 50% of working ASIC's do not work in target 

systems first time [AmbI92]. Because of this general instability of the fabrication process few 

systolic designs have been implemented in silicon, with most systolic work dealing with 

theoretical systolic algorithms implemented in software simulators - a list of devices from the 

early 1980's can be found in [Megs92] and a collection of simulation works in [Evan91]. 

2.3.2 Systolic Architecture Definitions 

2.3.2.1 What is a Systolic Array ? 

There are a number of definitions of systolic arrays within the literature [KuLi78] [KungSY84] 

[Ullm84]. For the sake of clarity during further discussion we have adopted the definitions 

found in [KungSY88]. A systolic array can be defined as a computing network possessing the 

following features: 

• Synchrony The data elements are rhythmically computed, via a global clock, and 

passed through the network 
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• Modularity and regularity The array consists of modular processing units with 

homogenous interconnections, whereby the network may be extended indefinitely 

• Spatial locality and temporal locality The array manifests a locally-communicative 

interconnection structure, i.e. spatial locality. There is at least one unit-time delay 

allotted so that signal transactions from one node to the next can be completed, i.e. 

temporal locality 

• Pipelinability (i.e. O(M) execution-time speedup) The array exhibits a linear rate 

pipelinability, i.e. it should achieve an O(M) speedup, in terms of processing rate, 

where M is the number of PE's. The efficiency of the array is measured by a speedup 

factor, T s / T p, where T s is the processing time within a single processor and T p is the 

processing time within the array processor 

2.3.2.2 Properties of Systolic Arrays 

The major factors affecting the adoption of systolic array architectures are as follows: simple 

and regular design, concurrency and communication, and balancing computation with I/O 

[KungHT82j. 

As has already been mentioned one of the most efficient ways at exploiting the power of VLSI 

design is to use a regular and simple design and replicating it wherever possible. Great savings 

in design and testing can be achieved by using this technique. Another advantage is that simple 

and regular designs are more likely to be modular and will probably be adjustable to various 

performance targets and goals. 

The use of concurrency is dependant upon the underlying algorithms employed by the system, 

as the use of concurrency is a major factor in the potential speedup of computer systems. Inter­

PE communication becomes significant as the number of PE's increase, as in VLSI design it is 

the routing costs that dominate the power, time and silicon area required to implement any 

computation [MeC080j. 
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The ultimate performance goal of an array processor system is to have a computation rate that 

balances the available I/O bandwidth. Systolic arrays processors are typically attached to some 

host system, through which it receives data and outputs results. With a low-bandwidth 

system, which is typical of today's technology, an array processor must carry out multiple 

calculations per I/O access. This requires data items for computations to remain within the 

array processor for a number of internal clock cycles. Therefore, I/O bandwidth not only 

affects the speed of external data transfers but also the amount of on-board local memory that 

the array processor requires. 

This problem of I/O is accentuated when we have a large dimension problem being calculated 

on a small array. This inevitably requires the problem to be decomposed, the partitioning of 

which is in itself a non-trivial task. Hence, the decomposition methods used and the decisions 

on how to use buffer memory to minimize I/O problems are critical to the practical 

implementation of an array processor system. 

2.3.2.3 Inner Product Step Processor 

The so-called inner product step (lPS) is the single 

operation most common to all processors within the c. 

processor array. It is a very simple operation, and is B 

given by C' -C+ A x B Such an expression implies 

co 

A 

c 

B 

8 

c 

that each processor must contain at least three Figure 2.20 Geometry for IPS 

registers, denoted Ra' Rb and Rc respectively. Each 
Processors 

B 

register will require two connections, one for both input and output, and a schematic for the 

geometries for both rectangular and hexagonal elements is shown in figure 2.20. The first type 

of geometry, the square processor, is used for matrix-vector multiplication and for the solution 

of triangular linear systems, whilst the second type of geometry, the hexagonal processor, is 

used for matrix-matrix multiplication and LV-decomposition [MeC080j. 
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2.3.3 Linear Connected Systolic Array 

IPS cells in a linear topology are arranged 

in a linear array of processing units, as 

shown in figure 2.21, using instance of 

Background Technology 

the 'square' geometry shown in figure Figure 2.21 Linearly Connected Systolic Array 

2.20. All processing units receive external data to form their' A' data, with the units at either 

end of the linear array receiving external data to form the 'B' and 'C' - internal 'B' and 'C' data 

is generated by the processing elements and then passed to adjoining elements. 

Each of the processors in the systolic array operate in discrete time units. During that time unit 

each processor shall input values into its three registers (Ra' Rb and Rc) and calculate the new 

value for Rc' This new value shall be made ready for output on the following time unit. All 

output values are latched, such that the changing of an output does not affect the input of any 

other processor during a single time unit. 

This type of processing unit has a very modest hardware demand in VLSI terms - the units 

themselves are uniform, the inter-process connections are regular between adjacent units and 

there are very few external connections. The construction of a VLSI device containing an array 

of such processors should prove to be very cost effective. 

2.3.3.1 Convolution Problem 

Perhaps the simplest algorithm for a linear systolic array is one to perform basic mathematical 

convolution - it is also convenient in that it shows many of the features of systolic designs. 

This problem can be stated simply: compute the recurrence 

Yi= W I' Xi + W 2' Xi+1 + ... +W n' X i+ n_ 1 (2.5) 

for i = I ... n given the sequence w"w 2 ' •.• , wk and XI. x2 • ••• , xn ' where nand k are positive 

integers - the w; values are often referred to as weights. There are many different ways to 
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construct a systolic array to perform this task, but only a single variation is looked at with the 

configuration shown in figure 2.22, although there are other examples [KungHT821. 

This design consists of four 

X3~ ~X2W2 ~ W3 ~XJw:J~ cells, each with two inputs Wl 

and two outputs - the x 

Y;:~ ~ ::w 
values move to the right, the 

Xout := xin 

W Your: = Yin + wXin 

y values move to the left and 

the w values (weights) are 
Figure 2.22 Bi-Directional Systolic Array for Convolution 

pre-Ioaded into their respective cell where they remain for the duration of the calculation. The 

definition for each cell, along with the input-output relationship and calculations performed, is 

shown in figure 2.22. 

The algorithm works in a series of cycles. During such a cycle data is transferred along the 

arcs on the array - this will involve either inter-cell transfer or I/O from the entire array. Data 

values for x are input to the array on alternate cycles, with result values y also being output by 

the array on alternate cycles. Note, valid values for both input and output do not occur on the 

same cycle, with zero being input to the array if an x value is not scheduled for input and the y 

values output on nonscheduled cycles are just ignored. On every cycle, however, a zero value 

is input on the right side of the array to form initial values for the cell summation calculation. 

All cells in the array are assumed to operate in parallel, with some form of synchronous timing 

method being adopted throughout the entire array (although asynchronous timing is possible). 

2.3.3. 2 Matrix-Vector Multiplication Problem 

Kung and Leiserson (1978) proposed that a simple linear array such as that shown in figure 

2.22 is sufficient for a large number of important algorithms, one of which is the commonly 

used matrix-vector multiplication algorithm, which occurs abundantly in neural network 

applications. 
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The basic problem [MeC080] is that we wish to multiply a matrix denoted A = (ai) by a vector 

denoted x = (x J. ... , xnl - the result formed is denoted Y = (y J' ... , Y nl. This result can be 

formed by calculating the following recurrence: 

(2.6) 

Figure 2.23 shows an example set of data. f- p -7 

The matrix A is an n-by-n band matrix with a i all a l2 0 XI YI 

q a 21 a 22 a 23 X 2 y, 
band width w = p + q - 1. The recurrence t a 31 a 32 a 33 a 34 X3 Y3 

a 42 a 43 a 44 a 4S x 4 Y 4 
equations above can easily be calculated by a S3 a S4 ass a S6 Xs Ys 

sending the x and y values through w linearly 0 a 64 a 6S a 66 X6 Y6 

A 
connected processors, with each processor 

x y 

Figure 2.23 Matrix-Vector Multiplication 
being pre-loaded with the correct 'weight' 

value aij from the matrix for the calculation to be performed. 

The key to the whole process is 

the spatial location of all data at 

each step of the systolic 

process. The connections 

between all of the cells, along 

with the direction of all data 

transfers, is shown in figure x,_ 

Problem Data 

a" 
~3 "., 

a" 

a" a" 

Figure 2.24 Data Connection Map for Matrix-Vector 
2.24. All Yi values, which are Multiplication 

initially set to zero, move to the left, while the Xi values are moving to the right and the a
ij 

values are moving down - all moves are synchronised by use of a single global clock signal. 

Due to the arrangement of the data values it turns out that each Yi term is able to accumulate all 

of its product terms before it leaves the linear array of processors. Note that in the example 
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shown in figure 2.24 the first product term is created in the second processor, and that all 

unspecified values are assumed to be zero. 

During any particular cycle alternating processors are idle - the effective Yi values within them 

are zero, as are the aij values. Hence the cell performs no useful operation during that cycle. It 

can be surmised, therefore, that it may well be possible to reduce the number of processors 

required for this operation on a band matrix with band width w from w to w12. 

As mentioned previously the synchronisation of the data transfers is of vital importance, as is 

the rendezvous in the cells of the correct data at the correct time. Each IPS cell has three 

registers, which hold the values for A ij , Xi and Yi respectively, and all are initialised to zero. All 

cells are numbered by integers from left to right, starting from I. Each step of the operation 

consists of just two operations, but for odd numbered time steps only odd numbered cells are 

active, and vice versa. 

The basic algorithm can be stated as follows: 

Operation #1 - Shift Register Values 

• Ra receiving a new element from the band in matrix A 

• Rx receiving the contents of register Rx from the left neighbouring node, with Rx in the 

first processor receiving a new component from the vector X 

• Ry receives the contents of register Ry from the right neighbouring node, with Ry in the 

first processor outputting its value and Ry in the W,h processor receiving a zero value 

Operation #2 - Multiply & Add 

• 

The operation of the algorithm over a series of operations can be seen in figure 2.25. 
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It can easily be seen that the 

three shift components of 

operation #1 can all be done 

simultaneously and that the 

completion of both operations 

constitutes a single cycle of the 

systolic algorithm. The figure 

show the traversal of the data 

values during the initial cycles, 

along with the cumulative 

values inside the y registers in 

each processor. Gi ven that the 

bandwidth of any matrix A is 
Figure 2.25 Initial Cycles of Matrix-Vector Multiplication 

denoted by w it can be seen 

that after w cycles the components of the product y = Ax will start shifting out of the left-most 

processor - the rate of output is one valid data item per 2 cycles. Hence it can be seen that all n 

product values can be output in 2n + w cycles, which is a large improvement on the O(wn) time 

requirement of a sequential algorithm implemented on a uni-processor system. 

2.3.4 Dense Matrix Systolic Arrays 

Two-dimensional systolic arrays have provided the mechanism to carry out computations on 

two dense matrices. Both rectangular and triangular arrays are feasible, both for the 

computation of matrix products and solving systems of linear equations. Both methods are 

efficient in their use of execution time, being far more attractive than the normal linear array. 

2.3.4.1 Rectangular Array : Matrix-Matrix Multiplication 

The product of two matrices of order n is nothing more than n2 scalar products, each consisting 

of n terms. Thus, when calculating C=A.B, the element c // is derived from the scalar product 
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of the first row of A and the first column of B. There are two simple solutions to this problem: 

the rectangular array and the square array. 

For the rectangular array [KuLe80] this can be achieved 

using multiple instances of the standard multiply-and­

accumulate (MAC) cells, as shown in figure 2.20. For 

n =3 three MAC cells are required to do the job, as 

shown in figure 2.26. This will calculate a single scalar 

product. By placing two identical networks to the right 

of figure 2.26 the array can also compute the scalar 

products of the first row of A and all three rows of 8, Figure 2.26 Rectangular Array 

giving cI2 and cJ3. By pipelining the computation, 
for Scalar Products 

sending the other rows of A after the first, the array can calculate c22, c23 and c33' 

The final elements of C, namely C
33 

C21' c31 and c32' require two more c32 c23 

c
31 c22 cI3 

copies of figure 2.26 to be added c21 c12 

to the left of the array. As in c" 

algorithms for the linear array a 

delay needs to be introduced into 

the network between every pair of 

consecutive elements. The final 

systolic array matrix for this 
Figure 2.27 Full Rectangular Array for 3x3 Scalar 

operation is shown in figure 2.27. Products 

This type of systolic array can carry out a matrix-matrix multiplication of two n-by-n matrices 

in 4n-3 cycles. There are a total of 2n-l scalar product arrays, with the processor matrix for the 

operation being (2n-l) x n cells in size. 
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Implementation in a square array requires a different version of the standard MAC cell, which 

calculates the scalar product in a completely different manner. The same calculation occurs as 

in the original MAC cell, but the flow of data is different. 

The MAC cell for required for this operation is shown in 

figure 2.28. The accumulated components for C remain 

within the cell, with components of A and B being 

passed through the cell. After a number of internal 

accumulations the cell holds the final value for a single 

component of C inside an internal register, ready for 

further computations or for output from the systolic 

b 

t 

'V 
a13 al2 an ~ 

b31 

b21 

bU 

t 
Cll 

array. 
Figure 2.28 Square Array MAC 

Cell Configuration 

The systolic array required to compute the 

scalar product of two n-by-n matrices 

consists of n 2 cells [PrVu80j. It takes 

precisely 3n-2 time steps for the scalar 

product computation to complete; the full 

systolic array for this operation is shown 

in figure 2.29. The one drawback with the 

square array method is that the results of 

the computation reside within the internal 

registers of the processors. It is not 

possible to output all n2 components of C 

b3l 
b2l 

a]3 a l2 all ~ 

b33 
b32 b23 
b22 b]3 

bl2 • 

• • 

t 

Figure 2.29 Full Square Array for 3x3 Scalar 
in a single cycle, as only the MAC cells at Products 

the edge of the systolic array have any external I/O capability. Additional processing is 

required to gain access to the final values of C. 
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The simplest solution to this problem [QuR089] is to add some control structures to the cells so 

that once an accumulation in any cell has completed it is instructed to pass the contents of the 

internal register holding the component of C to the cell on it's right. Another solution, which is 

especially useful for systems that repeatedly require access to the data within C [KaEv96], is to 

simply hold the result matrix C within the cells, accessing it as and when desired by whatever 

computation is required by the systolic array. This type of solution requires additional internal 

registers in the cells to hold results of short-term and long-term calculations. It has the benefit, 

however, of drastically reducing 110 costs when dealing with the matrix C. 

2.3.4.2 Triangular Arrays : Solution of Linear Systems 

A common problem to be solved with triangular arrays is the solution of linear systems such as 

Ax= b, where the matrix A and the vectors x and b both have the order n. With A being a 

lower triangular matrix then the solution vector to the system, x=(X 1,X 2, ... ,x.), can be 

computed with the recursive equations 

(2.7) 

for all I ,; k ,; i-I. A systolic array similar to that used for the calculation of matrix-vector 

products can be used to solve this system, but with cells relating to the upper triangular portion 

of the matrix A being deleted from the array. 

The array has two types of cell [KuLi80]: the standard square multiply-and-accumulate MAC 

cells, and additional 'round' cells at the edge of the array which calculate the final components 

of the solution vector x using a subtraction/division operation instead of an 

addition/multiplication operation. 
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These additional round cells also re-route the calculation back 

into the array, in order to allow further processing to be carried 

out. The operation of the round processor is shown in figure 

2.30. The components of x pass through the array to 

accumulate the partial products with the array components a and 

then the round cells at the edge of the linear array computes the 

final value for the component x. The entire linear array for the 

process, with n=4 is shown in figure 2.31. 

In the case of solving a linear system 

where the matrix is not of a lower 

triangular type then some additional 

computations are required. 

Given the linear system Ax=b, where 

A is a dense matrix system of order n 
x • 

3 

a
41 

a
42 

Background Technology 

a 

t 
(b-X)/a~ 

~(b-X)/a 

a 

Figure 2.30 
Triangular System Cells 

a22 

all 

Figure 2.31 Triangular System Linear Array 
then in order to solve it on the linear 

array shown in figure 2.31 the system has to be transformed into the following equivalent 

triangular system: 

Tx=b' (2.8) 

The translation from the dense-matrix array to the triangular array is a complex process and is 

covered in the extensive literature on the subject [GeKu81) [Ahme82) [Cosn86a); the remainder 

of this section will briefly describe the methods and architecture proposed by Gentleman and 

Kung [GeKu81). 

The translation to the equivalent system show in equation 2.8 is done with the help of a 

triangularisation schema which is applied to matrix A augmented on the right hand side with b, 
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using either Gaussian or Givens elimination matrices. The system matrix is reset for the 

processes to be A - (A,b), giving a matrix of size n x (n+ 1). 

This schema can be represented as follows: 

fork = 1 to n-l 

for i = k+ 1 to n 

(
row k) (row k) 
row i =M,,' row i 

The matrix Mik is chosen in a way so as to zero the coefficient in position (i,k). At step k the 

row k is known as the pivot row, and is combined with all lower rows to zero all elements in 

the kth column which are below the diagonal. Thus, after step n-l the resultant system is 

triangular. The method for choosing the matrix also depends on the properties of the original 

system matrix A. The method is not allowed to introduce any pivoting techniques, as that 

would destroy the regularity of the systolic array. 

The Gaussian method is used for positive or diagonal matrices, whilst in the more general case 

orthogonal factorisation matrices (called Givens matrices) are used: 

Gaussian Matrix (2.9) 

Givens Matrix l cose Sine) 
M,,= 

- sine cose ( 
a'k ) where e= arctan -' 
a'k 

(2.10) 

A rather useful compromise solution [Sore85] is to modify the Gaussian method, using a 

technique known as neighbour pivoting: if the ratio la;d'lakkl < 1 then the matrix is generated 

as given in equation 2.9; if not then the rows i and k are exchanged before the combination 

factor is applied, thus modifying the task of generating the matrix to the following: 
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(2.11) 

An important point using this technique is to only generate combinations of those rows whose 

coefficients are of absolute value less than one, which was proven by Sorenson [SoreS5) to be 

mathematically stable. 

Gentleman and Kung [GeKuSl) used a triangular 

array of processors connected orthogonally, 

containing ,. I:+J) + n processors, using a combination 

ain 

t 
of two different types of cell. Each processor carries 

(b. , perm) ~ Cb , perm) 
In y out 

out two distinct operations: an initialisation process 

and a computation process. During the initialisation 

process all internal registers in the processor are set to 

zero. The two cells required for Gaussian elimination Figure 2.32Cell Topology for 
Gaussian Elimination 

with neighbour pivots is shown in figure 2.32 and 

their respective programs are shown below. 

Round Cell 

case init 
{ 
TRUE: r:= ain; 

init := false; 
break; 

FALSE: if I ain I ;0; Irl 
then aout . - -ainl r; 

perm := false; 
else aout .- -r/ ain; 

r := ain; 
perm := true; 

endif; 
break 

} 

Square Cell 

case init 
{ 
TRUE: r:= ain; 

init .- false; 
break; 

FALSE: if perm 
then aout .- r+ain' bin; 

r := ain; 
bout .- bin; 

else a out .- ain+r. bin; 
bout 

endif; 
.- bin; 

break; 
} 
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The full array used for this process is 

shown in figure 2.33. Details of the 

algorithm and intermediate register 

values are not given here, but an 

informal description of such things can 

be found in [QuR0891. 

At the end of the algorithm the values 

for T and b' are held within the systolic 

array, and some arbitrary method of 

emptying the array is needed. The 

actual contents of the array are as 

follows: 

t" t12 tl3 t'4 b', 

t22 t" t24 b~ 

t33 t34 b~ 

t44 b~ 

Background Technology 

b4 

a44 
b3 

a43 a34 b2 

a42 a33 a24 bl 

a41 a32 a23 a l4 • 

a31 a22 a13 • • 

a21 a12 • • • 

all • • • • 

t 
0-

Figure 2.33 Triangularisation of a Dense 
Matrix (n=4) 

Once the triangular system has been generated there remains the task of solving the triangular 

system. Although this can be done on the linear array described earlier in this section the row-

wise output format of the triangularisation process is incompatible with the diagonal-wise input 

of the linear array. 

There exist methods, however, that solve the triangular system on-the-fly [Cosn86b 1 using a 

slightly different array to that shown in figure 2.33, thereby making the solution of dense 

matrix linear systems a relatively simple process for a systolic array architecture. 
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INTRODUCTION 

ARTIFICIAL 
NEURAL 
NETWORKS 

This chapter presents a description of the field of neural network systems. It begins with a 

discussion of neural networks themselves, with biological information and details of the early 

attempts to create artificial neural networks. It goes on to describe several of the more common 

learning algorithms in use today, giving examples of both supervised and unsupervised 

learning. The chapter concludes by describing some of the less common algorithms, which 

normally have more specialised uses and are not normally used for everyday problems. 

3.1 Neural Network Overview 

3.1.1 What are Neural Networks ? 

Neural networks systems are biologically inspired, meaning that they are composed of elements 

that perform in a manner that are analogous to the most elementary functions of the biological 

neuron. These elements are organised in a manner that may (or, probably, may not) be related 

to the anatomy of the human brain. Despite the fact that the resemblance to real neurons is, at 

best, only superficial they still manage to exhibit a surprising number of the brain's 

characteristics: they can learn from experience, they can abstract the essential characteristics 

from an input data set that may contain irrelevant data (such as random or periodic noise) and 

they have the capacity to generalise from previous known inputs to new unknown information. 

More than any other factor it is probably the learning capability of neural networks that has 

been responsible for the interest that the field has received. The networks has the ability to 
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modify their behaviour; by responding to an environment, which is normally a set of input 

vectors, the network can self-adjust in order to produce consistent results. There are many 

different algorithms available that dictate how the networks modify their behaviour; they are 

known as training algorithms, and each of these have their own strengths and weaknesses. 

Thus, with the idea of a neural network system being an adaptable machine we can use the 

following definition of a neural network [Hayk94J: 

A neural network is a massively parallel distributed processor that has a natural propensity for 

storing experiential knowledge and making it available for use. It resembles the brain in two 

respects: 

I. Knowledge is acquired by the network through a learning process 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

knowledge 

3.1.2 Biological and Physiological Background 

The basic unit of the nervous system is the 

individual nerve cell or neuron [Vand86], 

which occur in a variety of sizes and 

shapes. Nevertheless, as shown in figure 

3.1, most of them consist of four basic 

parts: the cell body, the dendrites, the axon 

and the axon terminals. The dendrites form 

Dendrites 

InitiaJ Segmem 

Axon Terminals 

Figure 3.1 Diagrammatic Representation of a 
a series of highly branched outgrowths Biological Neuron 

from the cell body. The dendrites and the cell body are the sites of most of the specialised 

junctions where signals are received from other neurons. The dendrites, in effect, increase the 

surface area of the cell body membrane, thus increasing the room available for incoming signals 

from other neurons. 
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The axon, or nerve fibre, extends from the cell body. The first part of the axon, along with the 

part of the cell body where the axon is joined, is known as the initial segment. It is here that 

the electric signals are initiated in many neurons, where they then propagate away from the cell 

body. The axon may give off branches, known as collaterals, along it's course and, near their 

ends, the main axon and associated collaterals undergo considerable branching. Each branch 

ends in an axon terminal, and it is these terminals that are responsible for transmitting signals, 

which are electro-chemical in nature, from the neuron to the cells contacted at the axon 

terminals. Note that not all neurons behave in this manner - this is just an illustration of a 

general case. 

The axon can be treated as a cylinder, with a difference in electro-chemical potential between 

the outside and the inside. The normal level of approximately -70mv is the resting potential. 

Whenever a local change in potential occurs a current will flow between that region and an 

adjacent region which is at it's resting potential. Current will always flow between two points 

if there is a difference in potential and there is a conducting material in between. 

The local current is carried by ions such as potassium (K+), sodium (Na +) and chlorine (Cr). 

The flow is much like water flowing through a leaky hose - charge is lost as the current flows 

along the axon membrane, because the membrane is permeable to the ions that carry the electro­

chemical charge. The result of this is that the current magnitude will decrease with distance 

away from the initial site of the potential charge. 

These potentials can also be summed, either temporally or spatially - figure 3.2 illustrates this 

point, showing membrane potentials (Em) and various stimuli ("). The three graphs show that 

potentials can vary in strength (i), that they are conducted in a decremental fashion over the 

length of the axon (ii) and that they can be summed in two different ways (iii). Note, although 

it is not shown on figure 3.2 potentials can be lower than the resting potential; increases 

towards and above Omv are known as depolarisations whilst those that reduce the potential are 

known as hyper-polarisations. These potentials are known as graded potentials. 
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The other type of potential is an action 

potential, which allows for transmission of 

signals over much greater distances, 

although only a few cells can operate in 

this manner. If the potential is raised 

above a certain threshold, normally within 

10-1 Smv of the resting potential, then a 

very rapid alteration in the membrane 

potential will occur, typically lasting only 

I ms. The membrane potential may change 

from -70mv to +30mv before it re-

polarises back to it's original resting 

potential value of -70mv. 

Em (i) 

-7Omvl--/ 

Em (ii) 

-7Omvl--/ 

Em (iii) 

-7Omv 

" weak stimulus 

measured al 
stimulation point 

TemperaJ 
Summation 

AA AA AA 

Artificial Neural Networks 

1\ strong stimulus 

measured 1 mm from 
stimulation point 

Spatial 
Summation 

"A AB "A+B 

Figure 3.2 Graded Potential Possibilities 

The output of any cell that can support action potentials is an all-or-nothing-response [Dam86] 

and, as such, cannot be summed. Once the depolarisation of the membrane crosses the 

threshold the output is constant for a particular type of cell; it is independent of the initiating 

event. Once the action potential finishes the membrane drops below the resting potential and 

there is a slight time-lag before the resting potential is regained; further action potentials cannot 

occur during this time. 

Between the source and destination of potentials there is a structure known as a synapse, which 

acts as a chemical transmitter. Thus, the pre-synaptic cell generates a wave and the post-

synaptic cell receives a wave. The synapse also alters the potential depending on whether or 

not it is an excitory or inhibitory synapse. Each synapse in a group which share post-synaptic 

cells can have different accentuation or attenuation levels. Although not drawn in figure 3.1 

each axon terminal attaches to the pre-synaptic side of a synapse and the beginning of each 

dendrite attaches to the post-synaptic side. 
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In summary, each neuron cell body has a number of dendrites which act as inputs to the cell by 

carrying an electro-chemical charge, which can be either an action or a graded potential. Each 

of the potentials are scaled by a value dependant on the type of synapse that the relevant 

dendrite is attached to. If the resultant summed signal over all of the dendritic inputs is above a 

set threshold value for the neuron cell body then the cell will fire an action potential of around 

30mv down its axon, else it will remain at its resting potential level of -70mv. It is this basic 

model that the majority of artificial neural networks are based on. 

3.1.3 Historical Perspective of Neural Networks 

3.1. 3.1 Early Artificial Neural Network Research 

The struggle to understand the brain owes much to the pioneering work of Ram6n y Cajal 

[Ram611] who introduced the idea of neurons being the primary constituents of the brain. The 

brain is a highly complex, non-linear parallel computer, which has the capability of organising 

neurons in order to perform certain computations, such as pattern recognition or motor control. 

However, the brain performs such operations many magnitudes faster than even the most 

powerful of today's computers. Shepherd and Koch estimated [ShK090] that there is 

somewhere in the order of 10 billion neurons in the human cortex, with around 60 trillion 

associated synapses or connections. Neural network research has some way to go before such 

a parallel neural machine can be constructed. 

It was not until the 1940's that the first real workable paper was published by McCulloch and 

Pitts [McPi43]. This paper presented the first sophisticated study of what they termed neuro­

logical networks. In their work they combined the new ideas of linear threshold decision 

elements, finite state machines and some representations of various forms of memory and 

behaviour. 

It was from their ideas that the field of cybernetics emerged which attempted to combine the 

essential concepts from fields such as biology, psychology, engineering and mathematics. In 

this field researchers attempted to find network architectures which could perform some 
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specific functions, although this goal was later dropped in favour of the idea of creating a 

machine that had the capability to learn. 

3.1. 3.2 Hebbian Learning 

Unfortunately, the concept of learning is not very well defined, and practical neural network 

research had to wait for the psychologists to come up with a model for human learning. 

Donald Hebb proposed a learning law [Hebb49] that became the starting point for artificial 

neural network training algorithms. In essence, Hebb proposed that a synapse connecting two 

neurons is strengthened whenever those two neurons fire. This may be thought of as 

strengthening a synapse according to the correlation between the excitation levels of the two 

neurons that it connects. For this reason so-called Hebbian learning is sometimes called 

correlation learning. The idea can be expressed as follows: 

where 

Wij[t] = the synaptic strength from neuron i to neuronj prior to adjustment 

W;j[t+ I] = the synaptic strength from neuron i to neuronj after adjustment 

a = the learning rate coefficient 

NET; = the excitation of the source neuron 

NETj = the excitation of the destination neuron 

(3.1) 

Hebb's idea managed to answer the question of how learning could take place without a 

teacher. In this system learning takes place on a local level, involving only two neurons and a 

single synapse; no other feedback systems are required for the neural patterns to develop. 

Many successes were obtained using this method, but some patterns just could not be learned. 

there have been numerous extensions to this training algorithm and many more training 

algorithms have since been developed, most of which owe a great debt to Hebb's work. In 

particular, Rosenblatt [Rose621, Widrow [Widr59], Widrow and Hoff [WiH060] and many 

others developed supervised learning algorithms, producing networks that learned a broader 
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range of input patterns, and at higher learning rates, than could be accomplished by using 

simple Hebbian learning. 

Progress in the 1950's and 1960's was rapid. A number of different researchers combined 

biological and physiological in sights to produce artificial neural networks, which were initially 

implemented in electronic circuits. These successes produced a burst of activity and optimism, 

witb researchers such as Marvin Minsky, Bernard Widrow and Frank Rosenblatt all developing 

artificial neural networks consisting of a single layer of neurons. It seemed that the key to 

intelligence had been found; perhaps all one had to do in order to produce a mechanical human 

brain was to construct an artificial neural network with enough neural cells. It did not take long 

to dispel this belief. 

3.1. 3.3 Minsky's Perceptron 

It is well known that in order for a machine to recognise the pattern X then it must possess, at 

least potentially, the capability to represent X. The model commonly used for this in the 

1960' s was the perceptron model. Like tbe model previously proposed by Hebb the perceptron 

model simply could not represent certain things; if a failure occurred during tbe training process 

it seemed that neither prolonging the training experiments nor building a larger network would 

be of any help. The moral of this seemed simple - you cannot learn enough simply by studying 

learning itself; you also have to understand the nature of what it is you are trying to learn. 

In tbe landmark book Perceptrons [MiPa69] tbe authors proved that single-layer artificial neural 

networks were theoretically incapable of solving many problems, including the function 

performed by the simple exclusive-or logic gate. They were also not very optimistic about the 

future: they could not see how the benefits of single-layer networks could be carried forward to 

multi-layer networks, stating that "Perhaps some poweiful convergence theorem will be 

discovered, or some profound reason for the failure to produce an interesting 'learning 

theorem' for the multi-layered machine will be found . .. (pp 232). 
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Unfortunately, the conclusions of Minsky and Papert were unassailable. Discouraged 

researchers left the field for areas of greater promise and, more importantly, greater funding. 

Government agencies redirected their funding and the field of artificial neural networks lapsed 

into obscurity for nearly two decades. The dedicated few who continued, such as Stephen 

Grossberg or Teuvo Kohonen, were often underfunded and unappreciated. They found it 

difficult to find publishers, which is why work published during the 1970's and early 1980's is 

found scattered amongst a wide range of journals. Gradually a new theorem emerged, upon 

which the more powerful multi-layered networks of today are being built upon - these networks 

now routinely solve the problems that Minsky and Papert proposed in Perceptrons. 

It can be said that Minsky' s excellent work led to an unfortunate recess in the progress in the 

field. There is also no doubt, however, that the field was dogged by unsupported optimism 

and an inadequate theoretical basis. Perhaps the shock provided by Perceptrons allowed a 

period for the necessary maturation of the field. 

3.2 Common Neural Network Learning Methodologies 

3.2.1 Perceptron Learning 

The first real practical work on neural networks [McPi43j was based around the simple L 

model: an artificial neuron receives a number of inputs x, each scaled by an associated 

weighting factor w, and if the sum of these scaled inputs x. w exceeds a set threshold value then 

the neuron fires (outputting a logic-I) else it remains inactive (outputting a logic-O). Networks 

utilising this type of structure usually consist of a number of such neural units, each arranged 

as a single layer and connected to the same set of inputs, became known as perceptrons. 

3.2.1.1 Neuron Configuration 

A typical perceptron neuron has thIe
t 

Xx 21 j3WwWn: ~ ~ I __ "~~I'~;I _ OUT 

structure as shown in figure 3.3. ----------: ,£..J ~ ... : -.J ! 
shows a number of inputs being scaled 

xn 
by some fac tor, fo llowed by a Figure 3.3 Perceptron Neuron Structure 
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summation of all scaled values, the result of which is fed into a threshold unit which determines 

whether or not the neuron fires. The output of the neuron is either a logic-O or a logic-I. 

3.2.1. 2 Learning Algorithm 

The learning process for perceptrons was originally defined by Rosenblatt [Rose62]. It is a 

supervised learning process, meaning that for every input pattern to be learned there is a 

predetermined output pattern. The training algorithm uses this a priori knowledge to guide the 

weight adjustment process within the network. The training process is as follows: 

I. Apply an input pattern and calculate the output Y 

2. a) If the output is correct (i.e. as expected) then go to step I 

b) If the output is incorrect, and is zero, add each input to the corresponding weight 

(c) If the output is incorrect, and is one, subtract each input from the corresponding weight 

3. Go to step I 

If the network can deduce the correct output of an input pattern then nothing is changed. If the 

output is incorrect then the weights are adjusted in such a manner as to reduce the error; 

weights are increased or decreased in an attempt to force the neuron to fire or not to fire given a 

particular input pattern. 

In a finite number of steps the network will learn how to separate a number of different input 

patterns. The training process itself is global; the network learns all of the patterns 

simultaneously. This raises the question that there may be an optimum order in which to 

present the input patterns to the network training algorithm, so that the number of training 

iterations required in order to learn all patterns is reduced. Unfortunately, there is little theory 

to guide this determination. 

3.2.1. 3 Linear Separability 

The major problem with perceptron-based networks, as was correctly deduced by Minsky and 

Papert in the 1960's [MiPa69), is that of linear inseparability. A perceptron network, like any 

other neural network architecture, can learn any set of input patterns so long as it has the 
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capacity to represent such patterns internally. However, perceptron networks cannot represent 

all functions; in fact, as the number of inputs to the network increases the proportion of 

representable functions amongst the functions available decreases at an exponential rate. 

The simplest problem that a perceptron simply 

cannot learn is the exclusive-or function. This 

function accepts two binary inputs x and y, 

outputting a logic-I if and only if both inputs are 

different, otherwise the output is logic-O. 

Perceptron representation of a two-input function 

can be visualised by plotting all possible outputs on 

a graph, as shown in figure 3.4. The threshold 

function is, effectively, a line that bisects the graph; 

t 
Y 

0 

Figure 

BI Al • 
XW, + YW2= THRESHOLD 

Ao Bo 

X---. 

3.4 Exclusive-Or Threshold 
on the X-Y Plane 

if the summation unit in the neuron produces a value on one side of the bisecting line then the 

neuron will fire, otherwise it will not. The setting of the threshold function is such that the 

bisecting line isolates the logic-I outputs from the logic-O outputs. It takes no more than a 

cursory glance at the graph in figure 3.4 to realise that there is no possible way in which a 

single bisecting line can isolate the exclusive-or logic-I outputs (Ba and B I) from the logic-O 

outputs (Aa and AI); no combination of w/ or w2 can produce such a line. A perceptron neural 

network cannot represent, and therefore cannot learn, the exclusive-or function. 

As the number of inputs to the network increases the 

situation gets worse. For a three-input function the 

separation is performed by a flat plane cutting through the 

resulting three-dimensional input space. For an n-input 

function, where n>3, visualisation breaks down and one 

must mentally generalize a space of n dimensions divided by 

some hyperplane. The actual number of representable 

functions is well known [Wind60] and shown in table 3.1. 

Table 3.1 
Linearly Separable Functions 

n 

I 
2 
3 
4 
5 
6 

2"2" 

4 
16 

256 
65,536 

4.3x109 

1.8xl019 

Separable 
Functions 

4 
14 

104 
1,882 

94,572 
5,028,134 
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As table 3.1 shows the probability of any randomly selected function being linearly separable 

becomes vanishingly small with even a modest number of variables. For this reason single­

layer perceptron networks are normally limited to simple problems. In order for more complex 

functions to be learned the network was required to consist of mUltiple layers, being a simple 

cascade of multiple single-layer networks. An associated training methodology was required 

that was able to cope with training neurons that did not receive inputs from the input training set 

but rather received the outputs of neurons in the previous layer. At the time of Minsky and 

Papert's work in the late 1960's such a training algorithm simply did not exist. 

3.2.2 Backpropagation Learning 

The invention of backpropagation a heralded the first theoretically sound algorithm for training 

multi-layered neural networks. It led to the resurgence of interest in the field after many years 

or near eclipse. Despite it having a number of limitations it dramatically increased the range of 

problems to which artificial neural networks could be applied. 

The history of the invention of backpropagation is quite novel, having been 'discovered' on at 

least three separate occasions. Rummelhart et al believed that they had published the first clear 

and concise description of the algorithm [Rumm86]. It was soon after this that Parker was 

shown to have anticipated this work [Park82], whilst Werbos was found to have described the 

method earlier still [Werb74]. If Rummelhart et al and Parker had been aware of Werbos's 

much earlier work then they could have saved themselves a great deal of effort! 

3.2.2.1 Neuron Configuration 

The basic configuration for a 
XI 

neuron is similar to that for a 

perceptron network, and is shown X 2 

in figure 3.5. A set of inputs x is 

applied to the neuron, either being 

external inputs or outputs from 

x, 

Figure 

- .... OUT 

NET 

3.5 Backpropagation Neuron Schematic 
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neurons in previous layers of the network. Each of these is multiplied by a weight wand the 

results are summed to form the value NET; this value must be calculated for every neuron in the 

network. After NET is calculated a function F is applied to it, producing the value OUT. 

The activation function F required for backpropagation has the requirement that it must be 

differentiable everywhere. The standard function used is 

F(NET)=OUT 

=1I(I+e-') 
(3.2) 

and is called a sigmoid function. This sigmoid compresses the range of NET so that OUT lies 

somewhere in the range of 0 ... 1. It also has the very desirable feature in that it has a very 

simple derivative, which is used during the backpropagation algorithm 

oOUT 

oNET 
OUT· (1- OUT) 

This sigmoid also manages to introduce 

some form of automatic gain control. For 

small values of NET (i.e. NET near zero) the 

gradient of the sigmoid is steep, thus 

producing high gain. For larger values of 

NET the gain decreases, which allows large 

input signals to be accommodated in the 

(3.3) 

NET 

Figure 3.6 Backpropagation Activation 
network without causing saturations whilst Sigmoid Function 

allowing smaller signals to pass through with an excessive amount of attenuation. The 

activation function F is shown in figure 3.6. 

3.2.2.2 Learning Algorithm Overview 

As in the perceptron network backpropagation networks are trained with sets of training pairs: 

each pair consists of an input vector and a desired output or target vector. A whole group of 
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training pairs is called a training set. Before starting the training process all weights in the 

network are initialised to small random values, which prevents initially large weights from 

saturating the network. Also, if the weights are initialised to the same value (such as zero) and 

the network requires unequal weights in order to represent the training set then the network will 

not learn. 

The basic steps required by the backpropagation learning algorithm are as follows: 

I. Select the next training pair from training set and apply it to the network 

2. Calculate the output of the network 

3. Calculate the error between the network output and the desired target output associated 

with the training pair 

4. Adjust the weights in the network in such a way that minimises the error 

5. Repeat steps 1 .. .4 for each training pair until the error for the entire training set reaches 

an acceptably low value 

This is a supervised learning process. Steps I and 2 are the manner in which the network will 

ultimately be used; inputs are applied to the network and then the outputs are calculated. These 

steps can also be considered to be the forward pass of the training process, in that inputs are 

being passed through the network. In step 3 the error for the input data is calculated and, in 

step 4, this is passed back through the network in order to adjust the network weights. These 

two steps can be considered to be the reverse pass of the training process, as data is being 

passed from the output layer of the network back through the previous layers. 

In the forward pass an input-target vector pair X and T come from the training set. An input 

vector X is applied to the network and an output vector 0 is produced. The calculation is done 

on a layer by layer basis beginning with the first layer of the network, which normally accepts 

inputs solely consisting of components of the input vector X. Each neuron has a NET value 

calculated for it and then the activation function then squashes this value to form OUT. Once 

all neurons in a layer have had this calculation performed the entire set of output values is used 
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as inputs to the second and subsequent layers. This is repeated layer by layer until the final set 

of network outputs is produced. 

This process can be stated very succinctly in vector form. The weights between neurons can be 

considered to be the matrix W, with the weight between neuron 8 in layer 2 to neuron 5 in layer 

3 being designated wS2.53, The NET vector N may be expressed as the product of X and W, 

giving the expression N = XW. The activation function F is then applied to N in order to 

produce the output vector O. Therefore, for any given layer the following expression applies: 

O=F(XW) (3.4) 

Simply, in order to calculate the output of the network equation 3.4 must be applied to each 

layer in the network, from input to output, with the output vector from one layer forming the 

input vector to the next. 

It should be noted, however, that this applies only to fully-connected networks; it is perfectly 

feasible with the backpropagation \earning algorithm to have input data applied to neurons in 

layers other than the first, and outputs from one layer can form inputs to neurons in more than 

one subsequent layer. Outputs in neurons in any layer can form components of the final 

network output vector. All descriptions of the backpropagation algorithm throughout this 

section make the assumption that the network is fully connected. 

3.2.2.3 Layered Training Process 

The reverse pass of the network can be split into two distinct sections; adjusting the weights in 

neurons in the output layer and adjusting the weights in the neurons in all other layers; non­

output layers are referred to henceforth as hidden layers. Neurons in the output layer of the 

network have an associated target vector, so this layer is fairly straightforward to train. The 

hidden layers, however, require some form of target that is generated from the error values of 

neurons in layers closer to the output layer; these neurons are much harder to train. 
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Before a weight adjustment can be calculated for any neuron a pre-calculation is required that is 

different for the output and hidden layers; once this pre-calculation has been made then the 

remainder of the adjustment process, which is common to all layers, can then be applied. 

(i) Output Layer Pre-Calculations 

In order to adjust all the weights between neuron p in 

hidden layer j with neuron q in the output layer k a value 

known as the neuron 0 value needs to be generated. This 

is done by subtracting the output for neuron q from the 

target output for the input pattern, which gives the error 

for neuron q for the current input value. The connections 

between neurons and weights for this operation can be 

seen in figure 3.7. 

Hidden 
Layer 

(j) OUT. 

Output 
Layer 

(k) 

Figure 3.7 Connections for 
Output Layer 

This error value is then multiplied by the derivative of the Training 

neuron activation function, thus giving the required 0 value. This is used to adjust all weights 

for one particular neuron, in this case neuron q in output layer k. In summary, o-generation for 

output layer neurons is as follows: 

/iqk = OUT qk • ( 1- OUT qk) . (Targetqk - OUT qk) (3.5) 

(ii) Hidden Layer Pre-Calculations 

It can be seen that &-generation for non-output layer neurons cannot be done in this manner, as 

there is no available target value for the input pattern currently being learned; the target value is 

for the entire network and, thus, only applies to neurons in the output layer. Equation 3.5 

needs modifying for neurons in hidden layers as follows: 

(3.6) 
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The &-values from the output layers are used to generate the &-values in the hidden layers. They 

act as an error indicator, attempting to get neurons in the hidden layers to reduce the error 

produced in the output layer neurons. 

The weights connecting neurons in the Previous 
Layer 

hidden layer to those in the output layer (i) 

can be seen to act in reverse at this 

point; during the forward pass they 

propagate the 0 UT signals from 

neurons in the preceding layer, scaling 

them as they go, whilst in the reverse 

pass they propagate /i-values from 

Figure 3.8 Connections for Hidden Layer 
neurons in subsequent layers, also Training 

scaling them as they go. The neuron 

Output 
Layer 

(k) 

and weight connections for training neurons in the hidden layers can be seen in figure 3.8. 

(iii) Weight Modification 

Once a neuron has it's /i-value, regardless of what layer it is in, the training process is identical. 

Two further equations are required by the training process: one to calculate the weight 

adjustment for each connection in the neuron and one to actually modify the weight. These 

equations are as follows: 

(3.7) 

(3.8) 

where 

w pj,qdn] = value of weight from neuron p in layer j to neuron q in layer k before any 

weight adjustment has taken place 
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Wpj,qk[n+ I] = value of weight from neuron p in layer j to neuron q in layer k after the weight 

adjustment has taken place 

tJ.w pj,qk = value of the impending weight adjustment between the two neurons 

0qk = the 0 value for neuron q in layer k 

11 = training rate coefficient, typically in the range 0.01 to 1.00 

OUT pj = the value of OUT for neuron p in layer j 

This process of applying either equation 3.5 or 3.6 to every neuron in the network, followed 

by equations 3.7 and 3.8 for every inter-neuron weight connection in the network, is carried 

out for every input-target pair in the training set until the errors are acceptably low. Note, the 

values for 0 UT in the hidden layer when the first network layer is being updated are, 

effectively, the input values from the training set. 

3.2.2.5 Enhancements to the Learning Algorithm 

There are many additions that can be made to the standard backpropagation algorithm in order 

to make it more efficient. A very simple improvement is the addition of a trainable neuron bias. 

This permits more rapid convergence by offsetting the activation function, giving a similar 

effect to adjusting the threshold in a perceptron neuron. It is achieved by connecting an 

additional trainable weight to each neuron that has a permanently wired logic-I input. It is 

trained in an identical manner to other weights and can significantly reduce convergence times. 

Many researchers [Rumm86] [SeR087] have described methods of momentum, whereby 

previous weight changes affect future weight changes. They both add terms to the weight 

adjustment equations 3.7 and 3.8 that add a proportion of the previous weight adjustment to the 

current one. Although the methods differ they both help the algorithm to follow narrow gullies 

in the error space rather than crossing rapidly from side to side. These methods work well on 

some problems but, unfortunately, have little or even a negative effect on others. 
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Another powerful convergence speed-up [StHu87] takes into account the fact that the standard 

range of inputs 0 ... 1 is not optimum. The weight adjustment .6.wpj,qk is proportional to the 

output level of the source neuron output OUT pj' In a binary system the OUT pj value of zero 

results in no weight modifications, implying that half of the weights will not be modified! By 

changing the input range to ±1I2, and by adding a bias to the activation function of -112, 

convergence times can be reduced by between 30% and 50%. 

Although a very powerful algorithm the backpropagation method of neural network training has 

it's share of problems. Close examination of the convergence proof by Rummelhart et al 

[Rumm86] shows that infinitesimally small weight adjustments are assumed, which implies 

that the training time is infinite. It is necessary to select a training rate step size 11, but there is 

little theory to guide the network designer. A small training rate can result in convergence 

taking impractical lengths of time, whilst a large training rate may result in permanent instability 

in the network, with the network being unable to learn the problem being presented to it. 

3.2.3 Kohonen Self-Organised Learning 

3.2.3.1 Network and Neuron Configuration 

The Kohonen unsupervised learning methodology is 

effectively a "winner takes all" network. For a given 

input vector one, and only one, neuron in the network 

will fire, with all other neurons remaining dormant. 

The layout for a layer of Kohonen neurons is shown 

in figure 3.9. 

As in the backpropagation network there is a set of 

Input 
Layer 

Kohonen 
Layer 

NET2 

NET 
" 

Figure 3.9 Kohonen Neural 
neurons associated with each neuron in the network. Network Layer 

In figure 3.9 the neuron K J has weights W J/, w21,'" wmJ. which makes up the weight 

vector W,. These weights connect the input data vector X to the neurons. where the NET 

. output is based upon the weighted sum of the input vector. This may be expressed as follows: 
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NETj=L(Wmj'Xml (3.9) 
m 

Once the NET values for each neuron have been evaluated then the neuron with the highest 

value is declared the "winner"; it sets it's output value to logic-I and all other neurons in the 

layer have their output value set to logic-O. It is, therefore, difficult to predict in advance which 

specific Kohonen neuron will fire for a particular input pattern. Indeed it is unnecessary to 

know this information in advance, as the main requirement of the training process is to separate 

dissimilar input vectors. 

3.2.3.2 Input Vector and Weight Initialisation 

It is beneficial to normalize all of the input vectors for a given training run. This is easily done 

by dividing each component of the input vector by the vector's length, which is the square root 

of the sum of the squares of all components. The vector length is given by: 

Equation 3.10 converts the input vector into a vector pointing in 

the same direction in n-dimensional space but of unit length. 

With vectors of 2-dimensions it can be seen that all normalised 

vectors terminate on a circle of radius one; this can be seen in 

figure 3.10. With vectors of 3-dimensions the vectors terminate 

on the inner surface of a sphere. This idea can be extended to an 

(3.10) 

arbitrary number of dimensions, where the vectors terminate on Figure 3.10 Unit Length 
Vectors 

the surface of an n-dimensional hyper-sphere. 

With the input vectors normalised the initially random weights within the network should also 

be normalised. The idea behind the training process, as is described later in this section, is to 

have weight vectors equal to normalised input vectors. If the weights are normalised before the 

training process begins then they start off closer to their desired values. If weight vectors are 

not normalised then some neurons in the network may never get the opportunity to fire, 
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effectively wasting some capacity in the network. Also, the neurons that remain 'operational' 

may not have the capability to discern between the various categories of input vectors. 

3.2.3.3 Learning Algorithm 

During the training process an input vector is applied and its dot product with the weight 

vectors in each neuron are calculated and the neuron with the highest dot product being declared 

the winner and firing. The winning neuron is the one whose weight vector most matches the 

input vector. This neuron then has its weight vector slightly adjusted so that it is even more 

like the input vector. The change is proportional to the difference between the weight vector 

and the input vector. 

The equation used during the training process to adjust the weights is as follows: 

W rrw= W old+ a (x- W Old) (3.11) 

where 

wold = value of the weight before adjustment 

W new = value of the weight after adjustment 

a = training rate coefficient (may vary during training process) 

The training rate coefficient a usually starts out at around 0.7 and may be gradually reduced 

during the training process. 

In a geometric fashion firstly the vector X - Wold (a) is 

calculated by generating a vector from the end of Wold (c) to the 

end of X (d). This is then scaled by a, which is always less 

than one, producing a change vector 0 (b). The new vector 

W new (e) is then formed from the point of origin in the n­

dimensional input space to the end of the change vector o. This 

series of steps is shown in figure 3.11. 
Figure 3.11 
Kohonen Weight Changes 
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3.2.3.4 Enhancements to the Learning Algorithm 

The simple act of randomising the weights within a Kohonen network can cause the training 

process some trouble. Once randomised the weights are uniformly distributed around the n­

dimensional hyper-sphere. However, if the density of weight vectors is too low or too high for 

the given distribution of input vectors then either no neurons may be mapped to particular 

inputs or more than one may be. 

The most desirable solution to this problem is to distribute the weight vectors in relation to the 

density of the input vectors. This has the effect of placing the correct number of weight vectors 

in the vicinity of the input vectors. Although this is impractical to implement directly there are 

several techniques available that approximate the effects. 

A good method [Wass89j is the convex combination method which sets all weights in the 

network to the same value: I1 {n, where n is the is the dimensionality of the hyper-sphere. 

This has the feature of normalising the weights to unit length. Each component of the input 

vectors is also scaled before input to the network in the following manner: 

x: = a . x; + {( 11 {n) . (1- a )} (3.12) 

The scaling factor a is initially set to a small value, which causes all input vectors to have a 

length close to l/-JO and also coincident to the weight vectors. As the network is trained the 

scaling factor a is gradually increased to I. This allows the input vectors to separate and 

resume their original values. The weight vectors, in turn, follow one or a small group of input 

vectors and, at the end of the training process, produces the desired pattern of outputs across 

the network. This method works well but is slow, as the weight vectors are being adjusted to a 

set of moving input vectors. 

An interesting method [Desi88j is to add a conscience to each neuron. If a winning neuron has 

been winning more than its fair share of input vectors (approximately \lm, where m is the 

number of neurons in the Kohonen network) then it temporarily raises a threshold value 
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internal to the neuron, thus reducing its chance of winning. This then allows other neurons in 

the network to have the opportunity to train. 

The problem of weight distribution within a Kohonen network is still a cause for concern, as it 

can seriously affect the accuracy of the resultant trained network. Unfortunately, the 

effectiveness ofthe various solutions is most certainly problem dependent and no hard and fast 

rule exists that works for all problems. 

Another method of training proposed by Kohonen involves allowing more than one neuron to 

fire for a given input pattern. The normal training method, with only one neuron firing, is 

known as accreditive mode, whilst having more than one neuron firing is known as 

interpolative mode. The interpolative mode allows a group of neurons to fire. Their outputs 

are again normalised to unit length, which is done by dividing each NET value by the square 

root of the sum of the squares of all NET values; all neurons not in the firing group have their 

outputs set to zero. The benefits of this method is that in accreditive mode the accuracy of the 

network is limited in that the output of the network is a function of just a single neuron in the 

network. In interpolative mode, more complex mappings are possible, thus producing more 

accurate results, but no conclusive evidence on when to use this method yet exists. 

3.3 Alternative Neural Network Learning Methodologies 

3.3.1 Counter Propagation Learning 

The counter propagation network was initially developed by Hecht-Nielsen [Hech87] in an 

attempt to provide solutions for neural network problems that could not tolerate the long 

training times that were required under the backpropagation network architecture. It has the 

ability to reduce training times by 99%,but the training algorithm is not as general as 

backpropagation and cannot be used on all problems. 
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3.3.1.1 Network and Neuron Configuration 

It is a combination of two different 

network training architectures: the 

unsupervised self-organizing map of 

Kohonen, as described in section 

3.1.2.3, and the Outstar network of 

Grossberg [Gros69]. Used together 

Input 
Layer 

Artificial Neural Networks 

Kohonen 
Layer 

Grossberg 
Layer 

in this fashion they produce a 
Figure 3.12 Counter Propagation Network 

training architecture that possesses 

properties that is not available in either one alone. The outputs of the Kohonen network layer 

are used as input to the Grossberg layer. The network is fully connected, in that the output of 

every Kohonen neuron is an input to every Grossberg neuron, but note that the sizes of the 

Kohonen and Grossberg layers do not have to be the same. The topology of the network is 

shown in figure 3.12. 

In operational mode the counter propagation network is very simple. An input vector X is 

presented to the Kohonen layer. Each neuron outputs a results vector K, whereby only one 

component of K contains non-zero data. This vector is presented to each of the neurons in the 

Grossberg layer, via the relevant weight vector V associated with the neuron, and each neuron 

forms its own OUT value as follows: 

(3.13) 

or simply Y=KV. Note that as only one element of K is non-zero the calculation is actually 

very simple; the action taken by the Grossberg neurons is to simply pass the value of the 

weight connected to the non-zero element of K to its output. 

3.3.1. 2 Grossberg Layer Training 

The Grossberg layer is equally simple to use during the training phase. An input vector is 

applied and the Grossberg neuron outputs are calculated. Weights are then only adjusted if 

99 



Chapter 3 Artificial Neural Networks 

they are connected to the non-zero Kohonen layer output. The adjustment is proportional to the 

difference between the Grossberg weight and the desired output of the Grossberg neuron to 

which it connects. This is as follows: 

now old A k ( Old) V np =Vnp +p' n' Yp-V np (3.14) 

where 

kn = output of Kohonen neuron n 

y p = component p of the vector of desired outputs 

~ = training rate (initially 0.1 then gradually reduced during training) 

V np = weight between Kohonen and Grossberg layer neuron 

It is clear from the training methods employed for both layers that the weights of the Grossberg 

layer will converge to the average values of the desired outputs whilst the weights of the 

Kohonen layer converge to the average values of the inputs. The Kohonen layer training is 

unsupervised whilst the Grossberg layer training is supervised. The effect is that the Kohonen 

layer produces outputs at indeterminate positions, which are then mapped by the Grossberg 

layer to the desired outputs. 

x 

Y 

Kohonen 
Layer 

Figure 3.13 Full Counter Propagation Network 

Grossberg 
Layer 

X' 

Y' 
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One of the most powerful aspects of the counter propagation network is that it can be used for 

vector mapping; it can generate functions of input data as well as generate inverse functions. 

Figure 3.13 shows a full counter propagation network, which has the input and output vectors 

split into two sections; X and Y as input vector tuples and X' and Y' as desired output 

vectors. Dividing tbe input and output vectors like this has no effect on tbe training algorithm, 

as they are indistinguishable from a single vector. Note that the desired outputs X' and Y' are 

identical to tbe input vectors - the network trains to recognise itself. 

After successful training the network can perform identity mappings; applying an X and Y 

vector on the network inputs will result in the same values appearing at the outputs. Although 

not very useful in itself it becomes particularly interesting when one realises that by applying 

only the X vector to the network, leaving the Y vector as zero, the network will still produce 

the relevant X' and Y' output vectors. This is, effectively, a function mapping from X to Y', 

with the network approximating the function. Additionally, if the inverse function exists then 

applying Y to the network, setting X to zero, will produce X'. This powerful mapping ability 

is the main strengtb in the counter propagation network. 

3.3.2 Hopfield Learning 

3.3.2.1 Recurrent Networks 

One of the major features in the networks discussed up until this point is that they are all non­

recurrent; there are no feedbacks from the outputs of the network back to the inputs. Without 

any feedback the networks are unconditionally stable in that they can never enter a mode in 

which the output wanders from state to state, never actually producing a usable output. 

However, this comes at a price; non-recurrent networks have a limited repertoire of behaviour 

when compared against recurrent networks. 

Once an output has been routed back on to the network inputs a new output is calculated. and 

then fed back in again to modify tbe output. This process is repeated again and again and, in a 
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stable network, successive outputs differ in value by less and less until the output remains 

constant. 

It was the problem of stability that held back research, as it was not possible to predict which 

networks would become stable and which would remain, effectively, in a state of chaos. It 

wasn't until the work of Cohen and Grossberg [CoGr83] that a network theorem emerged that 

defined a subset of recurrent networks whose outputs eventually reached some stable state. 

Other important contributions to the field have been made by Hopfield, whose work was so 

influential that certain network configurations have become known as Hopfield Networks. 

3.3.2.2 Network and Neuron Configuration 

A Hopfield recurrent network has a 

layer of neurons, each of which accepts 

an input value from the training set. 

Each neuron also accepts the previous 

outputs of all neurons, scaled by some 

weighting factor. Each neuron goes on 

to produce a weighted sum of the 

recurrent inputs plus the input of the 

training set and then applies some 

Input 
Layer 

Hopfield 
1Nl Layer 

Figure 3.14Single Layer Recurrent Network 
activation function F in order to 

produce an 0 UT signal. This operation, save for the recurrent aspect, is similar to other 

networks discussed so far. Figure 3.14 shows a recurrent network consisting of two layers, 

with the dashed weight lines indicating weights fixed at zero. 

In Hopfield's early work [Hopf8Z] the activation function F was a simple threshold function, 

such as that found in the perceptron networks. The OUT value of a neuron is set to one if the 

weighted sum of the OUT values of all other neurons, along with the current input value, is 
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greater than a preset threshold value T; the OUT is set to zero otherwise. This is calculated as 

follows: 

NETj=INj+ L (w'j 'OUT,) 
i;tj 

The operation of this network can be visualised quite 

easily. Figure 3.15a shows the case for a 2-neuron 

system, which gives rise to four system states (00, 01, 

-A-

0\ 11 

D 
10, 11), each of which labels a vertex of a square. IX) 10 

Figure 3.15b shows the case for a 4-neuron system, 

(3.15) 

-B-

000 

which gives rise to eight system states, each of which Figure 3.15 Hopfield Network 

labels a vertex on a cube. This can be generalised to n-
State Space 

neurons, where an n-bit binary number labels a vertex on an n-dimensional hypercube. When 

a new input vector is applied, the network moves from state to state until it stabilises. The 

stable state is determined by the inputs, the weights and the threshold. If the input vector is 

only partially complete then the network will stabilise on the state closest to the desired state. 

3.3.2.3 Learning Algorithm 

The method of finding a stable state can be expressed mathematically. If a function could be 

found that always decreases whenever the network changes state then, eventually, such a 

function must reach a minimum value and then remain constant; at this point the network would 

be classed as stable. Such a function is called a Liapunov function and works as follows: 

E=-~ L L (w 'j . OUT, . OUTj)- L (Ij 'OUTj)- L (Tj · OUTj) Vi" j (3.16) 
i j 

where 

E = artificial network energy value 
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wij = weight between output of neuron i and the input to neuronj 

OUTj = output of neuronj 

Ij = external input to neuron j 

Tj = threshold of neuron j 

It has been shown [CoGr83] that recurrent networks are stable if the weight matrix W between 

layers in the network is symmetrical with zeros on the leading diagonal, hence the \ti;tj term in 

equation 3.16. The change in energy E due to the change in the state ofneuronj is: 

8E=- 80UTj ' [L (w ij' OUT i )+ I j - Tj ] 
i .. j (3.17) 

There are three different possibilities regarding the change in the state of a neuron: 

(i) 

(ii) 

This causes the term in brackets to be positive, implying that the output 

of neuronj must either change in a positive direction or remain constant, as given in 

equation 3.15. This means that BOUTj can only be positive or zero and that BE must be 

negative. Hence, network energy must remain constant or decrease 

In this case BOUTj can only be negative or zero, implying again that BE 

must be negati ve. Hence, network energy must remain constant or decrease 

(iii) NE1j = 1j In this case BOUTj can only be zero implying again that BE must also be 

zero. Hence, network energy remains constant 

It is because the energy function shows this continuous downward trend that eventually the 

network must find a minimum value and stop. This type of network is, by definition, stable. 
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3.3.2.4 Continuous Systems and Associative Memories 

Hopfield continued this work into continuous systems [HopfS4]. A common shape for the 

activation function F is an s-shaped sigmoid function, similar to that used in the 

backpropagation network learning algorithm. The function used by Hopfield is 

(3.IS) 

where).. is a coefficient that determines the steepness of the sigmoid function. As in the binary 

system stability is ensured if the weight matrix is symmetrical. The energy function is 

conceptually similar to the discrete case, so is not discussed in any more detail here. However, 

if the value of ).. is large then a continuous system operates much like a discrete binary system, 

with the network stabilising near a vertex of the hypercube, with outputs being close to either 

zero or one. As).. is reduced the stable points move away from the vertices, disappearing one 

by one as ).. approaches zero. 

It is possible to make the continuous model of the Hopfield network to act as an associative 

memory in a similar fashion to the Kohonen networks. In order to do this on a recurrent 

network the weights must be selected to produce energy minima as the correct vertices of the 

hypercube. The outputs in this model lie in the range -I. .. + I, which correspond to the binary 

values I and 0 respectively. The memories themselves are encoded as binary vectors and 

stored in the weights according to the following equation: 

m 

W;j= L (OUT" 'OUTjd ) (3.19) 
d=1 

where 

m = number of desired memories (output vector set size) 

d = index number of a desired memory (output vector) 

OUTid = component i of output vector d 
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In order to perfonn as an associative memory the outputs of the network have to be forced to 

the values of the input vector, even if the input vector is only partially complete. The input 

vector is them removed from the network inputs, which allows the system to "relax" and find 

it's nearest deep minimum value. However, as the network follows the local slope of the 

energy function it is possible for the network to become stuck in a localised minimum point and 

not find the best overall solution. 

3.3.2.5 Hopfield Networks and the BoItzmann Machine 

Hopfield networks tend to stabilize to local minimum of the energy function rather than to a 

global minimum, as outlined in the previous section. It is possible to solve this problem 

through the use of a class of networks know as Boltzmann machines. These networks have 

neurons that change in a statistical rather than a deterministic fashion, and there is a close 

analogy between these methods and in the way in which metal in annealed; these methods are 

often known referred to as simulated annealing [Kirk83]. 

A metal is annealed by heating it to a high temperature, above it's melting point, and then letting 

it cool gradually. The laws of thennodynamics state that at such high temperatures the atoms 

within the metal possess very high energies and can move about freely, randomly assuming 

every possible configuration. As the temperature is reduced, however, these energies decrease 

until the system has settled into some minimum energy configuration; the system energy global 

minimum is reached once the cooling process is complete. 

The Boltzmann probability factor determines the probability distribution of system energies at a 

given temperature. This distribution is defined approximately as follows: 

(3.20) 

where 

E = system energy 
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peEl = probability of system being in a state with energy E 

k = Boltzmann's constant 

T = temperature (degrees Kelvin) 

The state-change rules for the continuous network must be changed so that they act statistically 

rather than deterministically. This is done by using the amount by which a neuron NET output 

exceeds it's threshold value T as the probability of a weight change occurring, as defined by 

Ei= NETi- 6 i 

P i= I/( I +exp (-~E,)) 
(3.21) 

where 

E j = the network energy 

NETj = the NET output of neuron i 

<l>j = the threshold of neuron i 

T = the artificial temperature of the system 

During operation the artificial temperature T is set to a high value and the neurons are clamped 

to some state as determined by an input vector. The network then attempts to seek a minimum 

energy state using the following two steps: 

(i) For each neuron with a probability equal to Pj, set state to one, else set state to zero 

(ii) Gradually reduce artificial temperature T and then repeat step (i) until a minimum energy 

state is reached 

3.3.3 Adaptive Resonance Theory 

In a real world environment the human brain is exposed to a constantly changing world; it may 

never be presented with an identical set of sensory inputs twice in a lifetime. Under such 

circumstances networks which have a fixed training set, such as backpropagation, simply 
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would not be able to cope; it would often learn nothing In such a situation, constantly 

modifying it's weights to no avail. 

The adaptive resonance theory, or ART, is the result of research into the problem of temporal 

instability [CaGr87] [Gros87]. ART networks maintain the idea of plasticity, in that they have 

the capacity to learn new patterns whilst preventing the modification of patterns that have 

already been learned. Although the theory can be difficult to understand the ART networks 

have generated a great deal of interest in networks of this type. Details of the complex 

mathematics behind the ART networks is beyond the scope of this discussion, so this section 

will concentrate solely on the fundamental ideas of the network, along with descriptions of the 

three major phases of the network: recognition, comparison and search. 

3.3.3.1 The Architecture of ART 

There are two forms of the ART paradigm; ART I accepts only binary input data whilst ART2 

is more general in that it can accept both binary and continuous inputs [CaGr87b]. For the sake 

of brevity only ART! is discussed in this section, being referred to as simply ART for the 

duration of this section. 

The ART network is, basically, a vector classifier that accepts an input vector and then 

classifies it into one of a number of categories, depending upon which of the patterns stored 

within the network that it most closely resembles. A new category is created if the input pattern 

does not resemble any of the stored patterns, whilst if a match is made within a specified 

vigilance tolerance then the stored pattern is modified (or trained) so that it is more like the input 

pattern. 

Under no circumstances are any stored patterns ever modified if they do not match the input 

pattern within the vigilance tolerance; the only way in which a stored pattern can be changed is 

if the input pattern resembles it closely. 
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A simplified version of the architecture is 
+I~~+ E G2 

shown in figure 3.16. The network 

consists of two layers of neurons, denoted 

comparison and recognition respectively. Vigilance 

The other units provide some control 
L-r~~ 

functions that are required for training and 

classification within the network. 
Figure 3.16 Simplified ART Architecture 

The comparison layer receives a binary input vector X and initially passes a copy through to the 

recognition layer as C. The vector R is received from the recognition layer, which modifies the 

vector C. Each neuron in this layer receives three inputs: a component Xi from X, a feedback 

signal Pj (weighted sum of all components of R) and the input from the Gain-l unit G1. Each 

neuron also has a binary weight vector T which connects the feedback vector R to the neuron 

(T => top-down). In order for a neuron to output a one then at least two of the inputs must also 

be one, otherwise the neuron will output a zero. The gain signal G I is initially set to one and R 

is set to zero, meaning that in the first step X is effectively copied onto the output vector C. 

However, C changes over time as the feedback vector R from the recognition layer takes 

effect. 

The task of the recognition layer is to classify the input vector. Each of the neurons in the layer 

has a weight vector B (B => bottom-up) and accepts the input vector C. Only the neuron 

whose weight vector best matches the input vector will output a one, with all other neurons in 

the layer outputting a zero. The weight vector B essentially constitutes a stored pattern; this is 

an idealised pattern, which represents a category, but the components are continuous numbers 

and not binary. Each neuron carries out a dot product between Band C, with the neuron 

having the largest result being declared the winner. The recognition layer also operates a lateral 

inhibition network, ensuring that only one neuron in the recognition layer fires at anyone time. 

It operates on a winner-takes-all basis, with outputs of all neurons being connected to 
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themselves (via a positive weight) and to all other neurons in the layer (via a negative weight). 

This enables neurons with large outputs to inhibit the output of other neurons in the layer. 

Gain-l is used just to ensure that the comparison layer Table 3.2 G I Calculation 

initialises correctly by passing on a copy of X to the 

recognition layer as C. G J is set to one if any component of 

X is one and all components of R are zero, otherwise G J is 

set to zero. The logic for this is shown in table 3.2. 

Or of R Or of X G 1 

o 
o 
1 
1 

o 
1 
o 
1 

o 
1 
o 
o 

Gain-2 is used to enable or disable the neurons in the recognition layer; if it is zero then the 

layer is effectively disabled. The actual value of G2 is one if and only if any component of 

input vector X is one; i.e. it is the logical-or of all members of X. 

The reset unit takes in X and C as inputs and measures the similarity between them. If they 

differ by more than the vigilance parameter then a reset signal is sent to disable the firing 

neuron in the recognition layer. It works by calculating the ratio of the number of ones in C to 

the number of ones in X; if this ratio is below the level of the vigilance parameter then the reset 

signal is sent to the recognition layer. 

3.3.3.2 Recognition Phase 

At the beginning of the recognition phase no input vector is applied; X is zero across all 

components. G2 is set to zero as a result, disabling all neurons in the recognition layer and 

causing the initial value of R to be set to zero. This primes all neurons in the recognition layer, 

giving all an equal chance of success once the input vector is applied to the network. 

The input vector X is then applied, which must have at least one non-zero component in order 

to set G J and G2 to one. This primes all neurons in the comparison layer, forcing the vector C 

to initially be an exact duplicate of the input vector X. 
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A dot product is them formed for all neurons in the recognition layer between C and the weight 

vector B associated with the neuron. The neuron with the largest dot product, which is 

determined through the lateral inhibition network within the recognition layer, is the one whose 

weight vector B best matches C. This neuron outputs a one, whilst all other neurons in the 

recognition layer output a zero. The outputs from all neurons in the layer form the vector R, 

which has only a single non-zero component corresponding to the winning neuron. 

3.3 .3.3 Comparison Phase 

The comparison phase starts once the recognition layer passes it an R with a single non-zero 

component. As R is input to each neuron in the comparison layer it can be seen that component 

Ri is fanned out to every neuron in the layer. Therefore, neuron j in the recognition layer 

receives an input Pj = t ij . Ri' which is equal to either zero or ~j (which itself can only have the 

values zero or one). This vector P is a representation of the closest stored pattern in the 

recognition layer. 

As R is no longer all-zero G 1 is inhibited and set to zero. Thus, only neurons in the 

comparison layer that receive simultaneous ones from both X and Pj will fire. The feedback 

from the recognition layer to the comparison layer forces components of C to zero where the 

original input X does not match the stored pattern; i.e. where X and P do not match. 

In the case where there are few matches between X and P few neurons in the comparison layer 

will fire, resulting in C having many non-zero constituents. This implies that the 'matched' 

pattern being fed to the comparison layer by P is not correct and that the neuron in the 

recognition layer which holds this matched pattern should be inhibited. This process is carried 

out by the reset block, which compares X and C to check for a degree of similarity within a 

specified tolerance level. This action will force the output of the winning neuron in the 

recognition layer to zero, disabling that neuron for the remainder of the current classification. 
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3.3.3.4 Search Phase and Performance Issues 

If the reset signal does not activate then the network has found a match and the classification 

process is complete. If the reset signal activates then other stored patterns within the network 

need to be searched in order to find a better match. The act of inhibiting the firing neuron in the 

recognition layer causes all components of R to be reset to zero, G 1 goes to one and the input 

pattern X is again effectively copied to C. Also, during the recognition phase, a different 

neuron in the recognition layer will win and be able to fire, causing a different pattern P to be 

presented to neurons in the comparison layer. This process repeats until one of the following 

two events occur: 

(i) a stored pattern is found that matches X within the limits specified by the vigilance 

parameter. A training cycle is then entered that modifies the relevant weight vectors T 

and B associated with the firing neuron in the recognition layer 

(ii) all patterns stored in the recognition layer have been tried and none match the input 

vector X. At this stage all neurons in the recognition layer have been inhibited. In this 

case a previously unused neuron in the recognition layer is assigned the pattern, with 

associated weight vectors B and T set up accordingly 

The network effectively performs a sequential search through all of the stored patterns in the 

network. This can be a very time consuming process on a normal serial digital computer, so 

simulations can take a large amount of time. However, on an analogue computer, or on a 

parallel digital computer, all of the dot-products calculated in the recognition phase can be 

performed simultaneously, resulting in a very rapid search. 

Another drawback with implementation on a serial digital computer is with the lateral inhibition 

network in the recognition layer. During the time when a neuron wins the battle for the right to 

fire all neurons are involved in simultaneous calculations, requiring global broadcast 

communications with all other neurons in the layer. Again, implementation on a parallel digital 

computer or, even better, on an analog computer, substantially reduces the time required. 
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This chapter describes some proposals for the VLSI implementation of neural networks, 

covering both digital and analogue logic designs. Each section describes the chip architecture 

and the implementation of neural networks on the VLSI system. The chapter continues with 

details on some recent practical examples of neural network applications, with the discussion 

being based on the application rather than on the network. 

4.1 VLSI Neural Network Systems 

4.1.1 Backpropagation in Linear Arrays 

4.1.1.1 Background Information 

This research [Nayl94Jlooked into the feasibility of implementing neural networks in hardware 

for the purpose of image processing. It is based upon an existing linear systolic array chip 

design known as HANNIBAL [Myer91], developed in cooperation by British Te1ecom and 

Loughborough University. 

Rather than modify the existing HANNIBAL design the work concentrated on mapping the 

backpropagation learning algorithm on to the chip. Although the chip itself had already been 

fabricated the work simulated an array of HANNIBAL devices on a SUN Sparc workstation, 

rather than being based upon designing a circuit board containing an array of such devices. 
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4.1.1. 2 Chip Architecture and Neural Mapping 

The HANNmAL architecture is a linear systolic array, consisting of four PE's per device, that 

theoretically may be cascaded to any length. Each PE within the device has 256 words of 16-

bit local memory, as well as a 32-bit fixed-point mUltiplier and adder. 

The PE has the capability of carrying out a standard multiply-and-accumulate (MAC) operation 

in a single clock cycle. The internal databus is 16·bit wide, and may be operated in a feed 

forward or feed back mode; this reversal of the data pipe proves to be useful during the back 

propagation of errors through the network. The neurons in the hidden and output layers of a 

network are mapped on to the PE's in HANNmAL on a I; I basis. 

The data pipe is divided into two separate8-bit 

streams, with the upper stream holding the input 
Global clock & control signals 

data to the neurons the lower stream holding the Figure 4.1 Feed Forward Mode 

outputs for the neurons; this scheme shown in figure 4.1. In this figure a network with an 

output layer of two neurons and a hidden layer of three neurons can be mapped directly onto 

the device, with neurons 1-3 being mapped on to hidden layer PE's 1-3, and neurons 4-5 being 

mapped on to output layer PE's 1-2. 

Input data is piped directly into the input layer PE's, with subsequent results being held in the 

PE's until processing in the layer has finished. Once all results are ready they are sent out of 

the PE's and routed back into the PE's used to represent the output layer; this method prevents 

output data from the hidden layer PE's being overwritten by results from the output layer PE's. 

The feed back mode is shown in figure 4.2. The 

data pipe is con figured as a single 16·bit stream, 

passing data to all PE's in the linear array. This Figure 4.2 Feed Back Mode 

D •• 

'" 

mode of operation is only required when the network is in training mode and the errors 

produced during training are propagated back through the network. 
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4.1.1.3 Implementation of 8ackpropagatioo 

The neural network implementation 00 the HANNmAL architecture requires the device to be in 

one of several modes. A controller within each PE is provided with control information that 

enables it to execute the algorithm almost autonomously, with an external array controller 

handling the infrequent mode changes and all data 110 synchronisation and storage. 

Stage #1 : Network Recall 

Network recall utilises the feed forward mode of the data pipe. The activation value of any 

neuron in the network is given by a non-linear function of the sum of its weighted synaptic 

inputs, as is standard in the backpropagation algorithm. 

The array controller sets the linear array into an 

activation mode. The process-time graph in figure 

4.3 shows, cycle by cycle, the processes that are 

occurring within each PE in the network for a single 

2-element input vector. Waiting cycles are shown as 

blank spaces, with layer indices on inputs only being 

shown at the top and bottom of the figure and not on 

each parameter. 

In operation PE I receives the first element of the 

input vector on the first clock cycle, performs a MAC 

operation and passes the input vector element to PE 

2. This is repeated for all PE's in the layer for all 

~ 
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elements of the input vector. 
Figure 4.3 Recall Timing Graph 

Once a PE has 

completed the calculation of it's activation value it waits for all other PE's in the layer to 

complete. After another cycle of delay, all activation values are transferred onto the lower 8-

bits of the data pipe. Data is then redirected from the output of PE 3 in the hidden layer to the 
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input of PE I in the output layer, and the above operation is repeated so that the activation 

values for PE's in the output layer can be calculated. 

Stage #2 : Network Learning 

The neural learning process on the HANNIBAL device consists of three distinct stages: 

forward propagation of the activation values, error backpropagation and modification of the 

weight values. The first step is identical to the recall stage previously described, except that the 

activation values for the output layer neurons are not clocked out of the device; they are used 

internally during the second stage of error backpropagation. 

The second phase of error backpropagation requires the device to be put into calculation mode 

by the array controller. The error values for each neuron for the given input pattern are 

calculated, with a different algorithm being used for output layer and hidden layer neurons. 

The equations used are equivalent to equations 3.5 and 3.6 given previously in section 3.2.2.3 

and are defined as follows for the output layer and hidden layer respectively: 

(4.1 ) 

I-I 
OI=AI·(I-AI).~ (0 1+' 'W'.+') 

J J J61 IJ (4.2) 
i=O 

where 

E = expected output value 

i = index of PE in layer above current layer 

T = number of PE's in layer above current layer 

The process-time graph for these calculations is shown in 

figure 4.4. Whereas the calculation in equation 4.1 is fairly 

simple for the output layer the calculation for the hidden 

layers, given in equation 4.2, is a more complex vector-matrix 

operation. 
Figure 4.4 Calculation 

Timing Graph 
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Before the operation commences the value A{(l-A/) is precalulated by each PE, which is not 

shown in figure 4.4. The components of the expected output vector E are clocked into the 

appropriate PE's in the output layer. Error values 01 2 and ol are then calculated and stored 

within the PE. These error values are then passed back to PE's in the hidden layer in order to 

calculate the error values for the hidden layer, as shown in equation 4.2. Note that this graph 

only shows the process for a single hidden layer; if additional hidden layers existed then the 

algorithm shown in equation 4.2 would be repeated until the error values for all neurons in all 

hidden layers had been calculated. 

The third phase of the network learning stage requires the HANNIBAL device to be put into 

update mode by the array controller. In this phase the error values are used to calculate the 

weight adjustments that have to be made to all weights in the network, as well as to update the 

trainable neuron bias values present in each neuron. The calculation to be performed is 

equivalent to equations 3.7 and 3.8 and is as follows: 

Note, for the trainable bias value the neuron 

input Ak
l
-

I is always hard-wired to + 1. The 

process-time graph for this phase is shown in 

figure 4.5. The process is based upon a two 

cycle read/modify operation; this begins with the 

neuron biases, which are the simplest values to 

modify, as they do not require any input vectors 

or activation values for the calculation. 

Equation 4.3 shows that for the weight 

.£ 
u » 
u 
-'" u 
0 
0 
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(4.3) 

Layer and PE 

[=1 [=2 
232 

A' , 

A' , 

adjustments the original input vectors need to be Figure 4.5 Update Timing Graph 

presented to the linear array again. The input vectors are presented to the input layer PE's, 

where the weight are adjusted, and then the activation values and input vectors are fed forward 
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towards the output layer. The pipeline structure allows these transfers to be made in parallel. 

The two-cycle requirements of this operation is because the PE requires one clock cycle to read 

the data values and calculate the weight adjustment, with a second cycle being required to write 

the modified weight value back to local memory. 

4.1.2 Real-Time Clustering Neural Engine 

4.1.2.1 Background Information 

The project to implement a clustering device in hardware [SeLi96] was based upon a desire to 

cluster in real-time, being able to cluster together patterns at their speed of arrival on the 

microchip. It was also to overcome the problem that is associated with many existing 

clustering algorithms [Pa089] [Rodt93] in that they often need to be trained off-line in order to 

build up the categories. 

The work also attempts to modify the clustering algorithm, based upon the ART -I model 

[CaGr87a], in order to make it more VLSI-friendly; this should produce a more efficient 

hardware design for the final circuit. In many places the algorithm was simplified, at a cost of 

possible performance degradation, for the sole reason of making it possible to implement the 

algorithm in VLSI form. These simplifications were always hardware-oriented. 

4.1.2.2 VLSI-Friendly ART-l Algorithm 

In their original work on ART, Carpenter and Grossberg introduced two different types of 

architectures for the neural memory using time domain non-linear differential equations: short 

term memory (STM) and long-term memory (LTM). This gave rise to three different levels of 

possible ART-I implementation: 

(i) Full Model Implementation, with both STM and LTM equation realised 

(ii) STM Steady State Implementation, with LTM equations realised and STM governed by 

some non-linear algebraiC equations, requiring STM events to be artificially sequenced 
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(iii) Fast Learning Implementation, where both LTM and STM events are artificially 

sequenced 

The computational overheads decrease with each model and hence it is the preferred choice for 

implementation in VLSI form. 

From a hardware point of view lone of the first issues that comes into consideration is that 

there are two sets of weights within the network: recognition (bottom up) layer weights B, 

which are continuous, and comparison (top down) layer weights T, which are binary. The 

physical implementation of B presents the first difficulty, as these weights require either an 

analog or digital memory of sufficient precision such that the digital discretisation of the 

weights does not affect the system. The original work on ART stated that T effectively stored 

copies of binary input patterns, with B being a scaled continuous representation of the same 

data; therefore, B is a normalized version of T. Also, bottom-up weights B may take any real 

value in the range G ... K, whereK= L-~+n for L>I [CaGr87aj. 

It would be physically desirable to implement only the binary-valued weight set T, then let the 

hardware do the normalization of the bottom-up weights B during the computation of C. In 

this way the two sets of weights can be replaced by a single binary valued set Z, with the 

calculation of C modified to take into account the normalization effect of the original bottom-up 

weights. The calculation for C, after modification by the bottom-up weights B, can be 

translated to the following: 

[
= L~(~X,)) 

L-I+LltJ ., 
(4.4) L-I +C Bj 

This rather minor implementation modification results in a much more VLSI friendly algorithm, 

although it still requires a division operation for each node in the recognition layer. It would be 

very desirable to remove this operation completely. In previous work [SeLi95j the authors 

I The notation used in this section is taken from section 3.3.3.1 and not from [SeLi96] 
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showed that this division operation can be replaced by a subtraction operation, whilst 

preserving all of the computational properties of the ART -I algorithm; although the observed 

behaviour is different for some sequences of patterns with respect to ART-I the overall 

clustering behaviour is still equivalent. This further modification is as follows: 

(4.5) 

where LA and LB are positive parameters that play the roles of L in equation 4.4, save that 

LA> LB' The constant parameter LM > 0 is required to ensure that Cj ~ 0 for all possible 

values of T Aj and T Bj' This additional hardware simplification is very important, as it provides 

the potential for a significant performance improvement, as well as making the algorithm even 

more VLSI friendly. 

4.1. 2.3 VLSI Implementation 

The device is designed to communicate with the outside world via digital UO structures, 

allowing it to act with an asynchronous digital nature. However, the internal circuitry consists 

of current -mode analog microelectronics. 

There are five different operations that the analog circuitry has to perform: 

(i) Generation of the terms Cj : as the terms Zjj and Ij are binary then binary multiplication, 

addition and subtraction is required 

(ii) A winner-take-all (WT A) operation to select the maximum Cj 

(iii) Comparison of the vigilance factor with the winning element of C 

(iv) De-selection of the terms of the winning element C if it lies outside the vigilance 

tolerance 

(v) Update of the weights 

The first three operations require a certain amount of precision, whilst the last two operations 

are not precision dependent. 
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A possible hardware schematic diagram for a circuit that could obtain precision between 1-2% 

for 100-pixel binary input patterns is shown in figure 4.6. This shows an 18x I 00 array of 

synapses (Sl,l" ,SlS,100)' a Ix lOO array of controlled current sources (CC l . 00 CC 100)' two 18-

element vectors of current mirrors (CMAl °o .CMA lS and CMB l°o.CMBlS)' an 18-element 

vector of current comparators (COM loo, COM IS)' an 18-input WT A device, two 18-output 

current mirrors (CMM and CMC) and an adjustable current mirror (p). The registers R loo' R lS 

and the final NOR output are optional units. Note that the output from the WTA network, 

Y";' ... Y IS are also used as inputs to the array of synapses, but has been omitted from the figure. 

Other omitted signals are RESET and LEARN (inputs to the synapse array) and ER (input to 

WT A circuit). 

Figure 4.6 Hardware Block Diagram for VLSI-Friendly ART -I Algorithm 

Further breakdown of the circuit units is not necessary, but full details are given in the original 

work [SeLi96]. 

4.1.2.4 Implementation of ART-l 

Each synapse in the array receives two input signals, Yi and Xi' two global control signals, 

RESET and LEARN, holds the value Zij and generates two output currents: 

N ;=LA ,z;j' X;- LB' Zu 

N;=LA 'Z;j' X; 
(4.6) 
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All synapses on row i share the same N j and N'j line into which the generated currents are 

injected. Nj is sent to current mirror CMA j and N'j is sent to current mirror CMB j. The initial 

current on the Nj lines is set to L M, which is replicated 18 times by current mirror CMM; the 

actual value for LM is arbitrary so long as it ensures that the terms of Cj are positive. 

Each element of the controlled current source CCj shares the same output node N", which is 

the generated current 

(4.7) 

This reaches the input of the adjustable gain control p current mirror, and is later replicated 18 

times by the current mirror CMC onto the output lines of each CMB j. The current on these 

lines, which is the input to COMj, is then set to be: 

(4.8) 

The comparator compares this value with zero; if the current is positive then the output falls, 

whilst if the current is negative then the output rises. This current is sent to the input Cj of the 

WTA, along with the input i j (which is a mirrored copy of C j from the synapse array). If Cj is 

high then the input ij will not compete for the winning node in the ART-I network. 

Conversely, a low Cj implies that the input i j (or Cj) will compete for the winning node. The 

outputs of the WTA, yj, are all high, except for that node which wins the winning node 

contest, which has a low yj. 

A problem with this approach is that with a number of uncommitted rows in the synapse, 

which is bound to happen even after a number of patterns have been learned and stored, there is 

a chance that these rows will generate currents equal to or greater than the node that ought to 

win. In order to avoid these problems a number of D-type registers [Roth92] may be added to 

the circuit. These registers are initially set to logic-I, so that the WT A inputs s2 ... sl8 are high. 
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These inputs have the same effect as the ci inputs: if si is high then Ci does not compete, but if 

si is low then it enters the WT A competition. 

Initially, only C7.c I will compete. As soon as Yi rises (i.e. goes to zero) the input of RI is 

transmitted to its output, making s2 equal zero. Now both c2,C2 and C;-,C2 will compete for 

the winning node. As soon as c2.C2 wins then the input of R2 is transmitted to its output, 

making s3 equal zero, and the process continues. 

This method ensures that only those synapse rows that have previously won, implying that 

they hold a stored pattern, and one additional uncommitted row, which can hold any new 

uncategorisable patterns, can compete in the learning process, with all other uncommitted 

synapse rows effectively masked out of the process. Once all synapse rows are involved in the 

competition then the output signal FULL indicates that all synapse rows are storing a category. 

The register process is enabled and disabled via the ER input on the WT A. 

4.2 Neural Network Applications 

4.2.1 Traffic Management of a Satellite Communication Network 

4.2.1.1 Background Information 

Satellites, from their geostationary orbits 22 300 miles above the earth, can view over one third 

of the earth and can instantly connect any two points within their coverage [Camp87]. This, 

coupled with their record of high reliability, makes them the most attractive multiple access 

communication medium. 

It is known that, for circuit-switched networks, that a non-hierarchial switching methodology 

performs better than hierarchial static switching [Schw87]. It has also been shown that by 

reserving some portion of network capacity, in order to have alternate routing possibilities, 

overcomes instability in the network at high load levels [Akin84]. 
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There are many routing algorithms available to telecommunication companies, but this project 

[Ansa96] proposes a new traffic management scheme to improve the efficiency of a circuit­

switched satellite communications network of the geostationary orbital type. It uses simulated 

mean field annealing (MFA), a neural network technique [Hayk94], to carry out the proposed 

management scheme. It includes the idea of dynamically adapting the networks as well as 

dynamically routing each message arrival. This allows the network itself to change due to 

traffic conditions, thus improving the level of service, and also to continually organise itself to 

minimize the cost for varying traffic conditions. 

4.2.1. 2 Traffic Management Scheme 

A satellite communications network can be viewed as a mesh topology, with each node 

representing either a satellite or an earth-based ground station. Each link between nodes may 

have any number of circuits, but the total capacity of the network is fixed. Traffic is generated 

by Poisson-based random sources characterized by two parameters: the average rate of message 

generation and the average length of a message. The satellite communications system acts as a 

server system, providing a transmission service to the generated traffic. 

A system model of the proposed scheme is shown in figure 

4.7. The object of the scheme is to dynamically route each 

call, as traffic conditions change from time to time, thus 

maximizing the throughput of the network. This requires 

four different functional modules: map generation, router, Router 

controller and arbitrator. Figure 4.7 Network System 
Model 

a) Map Generator 

This unit generates a map of the best configuration for the prevalent traffic conditions. Such 

maps differ by two parameters C and R; the former denotes the link capacities of the network 

and the latter denotes the number of circuits that can be used for alternately routed calls. 

Therefore, in a particular link j, there are Cj - rj circuits reserved for direct calls; this calculated 
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parameter is referred to as the reservation parameter. The generator also takes as inputs the 

current status of the network, the total capacity of the network and the average arrival rates of 

each origin-destination (O-D) pair. 

With this information in hand an optimization technique is used to try and find an optimal map 

which will minimize the rate of unconnectable calls, known as the block rate. Two different 

techniques are employed in the task: simulated annealing and MF A. 

b) Router 

The router performs dynamic routing for every call arriving on the network as follows: 

• If the direct link has an idle circuit then the arriving call is routed onto it 

• If no direct link is free then a randomly selected alternate route is tried; this will be 

blocked if either or both links in that particular O-D pair is in a reserved state (i.e. at 

least r circuits in the link are busy) 

• If direct and alternate routing fail then the call is blocked and lost from the network 

This simple routing algorithm requires little computation, thus reducing the processing delay of 

each call. 

c) Controller 

The task of the controller is to keep track of the state and performance of the network. It 

decides whether or not a new map is necessary based upon several parameters, the most 

important of which are the arrival rates of the O-D pairs and the load balance of the network. 

The load imbalance d is calculated by the following set of equations: 

~=F/C 

(4.9) 
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where 

F = total flow of the network 

C = total capacity of the network 

The controller calculates the amount by which the network's current load balance deviates from 

that of a fully balanced network; this measure is taken to be the indication of premature 

saturation of the network. The actual threshold value for this imbalance at which the controller 

deems the current map to be inefficient, denoted d" is defined as: 

d=OI·.t1 ( . (4.10) 

When d is larger than d, the network is considered to be inefficient and the controller calls up 

the map generator module to request a better map for the current traffic conditions. Problems 

arise, however, when d, is small and close to zero. In this case even a very small deviation 

from the ideal cannot be tolerated and the map generation process is called up too frequently; 

this may not be cost effective in the long run. Hence, the parameter d is only updated after a 

number of network status updates, so that any generated map remains in operation for a 

minimum number of network status updates; in the proposed traffic management scheme d is 

updated after 10 network status updates, with up to 100 network status updates being used in 

judging the overall pattern to the network traffic. 

d) Arbitrator 

The arbitrator decides whether or not using a modified map will actually be beneficial to the 

network performance; thus, it is used as a cost -saving measure. As the routing of calls must be 

uninterrupted, and the optimisation of such must be done in real time, there may be some 

instances where a map con figured from the most recent network experiences may not actually 

reflect the optimal performance for present traffic conditions. This process can be eliminated, 

to a certain extent, by properly choosing both d, and the update rate for d. 
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4.2.1. 3 Map Generation Using Simulated Annealing 

The average probability of a call being blocked by the network, H, must be minimized in order 

to increase the performance of the network. This probability depends upon the capacity of a 

link and on the number of circuits that can be used by alternately routed calls in the link. These 

two independent variables, c and r, make the solution space of such a problem very large; 

selection of the optimal\y configured map from the solution space is computationally time 

consuming, and some optimization technique must be applied in order to find the required map. 

One powerful neural network-based technique, as described in section 3.3.2.5, is referred to as 

simulated annealing. 

The idea of simulated annealing is to reduce the system energy and to find a state of minimum 

energy. For the map generation process the energy cost function is simply the total block rate 

of the network. The cost function for any link s can be written as follows: 

E(s)= If (C, R) (4.11 ) 

The artificial temperature of a simulated annealing network is reduce over time during the 

optimisation process. This cooling schedule is specific to each application and requires four 

parameters to be defined [GeGe84]. 

• 

• 

Initial Temperature is defined so that virtually all transitions are accepted (but not all) 

Stopping Criterion is based on the argument that the execution of the algorithm can be 

terminated if the improvement in cost achieved through continuation is small; hence, if 

two consecutively generated maps do not vary significantly in cost then the algorithm is 

terminated and the first map is considered to be near-optimal 

• Number of Transitions at Each Temperature is defined as being the level at which the 

generation of new states ceases and the current temperature value is modified. This is 

down after either a certain number of accepted states have been generated or after the 

generation of a specific number of new states. Due to the experimental nature of the 

project many different levels of accepted or new state-based rules were used 
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• Temperature Updating Rule: the difference in two step temperatures, and their relative 

costs, are required in determining the rule for decreasing the temperature. The rule is 

related to the capacity of the network, CP, and is given in equation 4.12, where a is a 

constant andj is the iteration index (which is linearly incremented) 

CP 
T=a' InU) (4.12) 

The final requirement of the simulated annealing process is to define some form of 

neighbourhood structure for the neural network. This work defined three different structures, 

each of which was used during the simulation study. 

Case J) Varying Reservation Parameter of the Link: any link has c circuits, with any number of 

circuits in the link being reserved in the range [0, cl. When looking for a neighbour a random 

number in this range is chosen and assigned as the reservation parameter for that link 

Case 2) Varying Link Capacities Only: one link is chosen at random and has a random circuit 

deducted from it. This circuit is then added to another link that will benefit from the extra 

capacity. For reasons of practicality each link is also assigned an upper and lower bound 

capacity of circuits 

Case 3) Varying Both Link Capacity and Reservation: as this has the potential to have a large 

number of combinations a similar control measure to that in case #2 is used 

4.2.1. 4 Map Generation Using Mean Field Annealing 

Although simulated annealing is a powerful optimization technique it is very computationally 

expensive, especially when the problem search space is large. MFA is a trade-off between 

performance and computational complexity, and can be used effectively to minimize the call 

blocking probability. Full details of the theory ofMFA are not given here but information and 

further references can be found in the literature [Pete87l [PeHa89l. 
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Two operations from the simulated annealing algorithm are still required in MF A: the operation 

to reduce the temperature and the process to search for the optimal solution at each temperature. 

In MFA, however, the relaxation process is replaced by a search for the mean value of the 

solution; the equilibrium can be reached faster by using the mean and, thus, the MFA algorithm 

speeds up the computational process. The same three different cases of map generation from 

simulated annealing are considered during the MFA process. 

The energy function for the network is based on an energy function by Hopfield and Tank 

[HoTa85] with two constraint terms, with each map generation case having a slightly different 

function. The base cost of the function is based around the energy costs of direct blocking, 

alternate blocking, the probability of alternately routing a call and the probability of an 

alternately routed call being blocked given the number of circuits available in the link. Full 

derivations of the base cost and constraint terms of the energy function, as well as the 

derivation of the mean field equations, are given in [Ansa96]. 

4.2.1. 5 Performance and Conclusions 

Many different simulations were carried out during this study, using both simulated annealing 

and MFA methods of optimization. The first set of simulations set out to show the effects of 

having a permanently static map; no matter what proportion of circuits were reserved for 

alternately routed calls, the network would go into a state of near-overload at high loads (-87% 

throughput) despite some capacity remaining in the network. 

By varying the reservation T bl a e 41A . r nnea mg S' I' Imu atJOn Results 

parameter per link, yet retaining Varying SA MFA SA MFA 
Parameter Time Time Thru Thru 

the same circuit capacity, Reservation 264.5 12.3 91% 90% 
Capacity 412.4 16.7 93% 92% 

optimization by both methods 

proved to be beneficial by a few points, with simulated annealing giving slightly better results. 

Varying the link capacities proved to be even better, giving greater network throughput. Again, 

simulated annealing proved to be better than MFA, but the computation times required were 
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prohibitive. Table 4.1 shows the computation times (in arbitrary time units) and throughput 

levels for both cases and both optimization techniques. 

From the simulation results it can be verified that by implementing a control scheme where 

some portion of the link capacity is reserved for direct calls the performance of the network can 

be improved. It also manages to avoid instability in overloaded traffic conditions and improves 

the throughput of the network. 

The MFA algorithm fine-tunes the network configuration and improves the network 

performance. Even though the results of the more common simulated annealing optimization 

technique are better the computation times for MFA are at less than 5% of those for simulated 

annealing. Therefore, mean field annealing is the optimization method of choice. 

4.2.2 Prediction of a Continuous Stirred Tank Reactor 

4.2.2.1 Background Information 

An important area of neural computing research is the investigation into the parallelisation of 

neural network training algorithms and their implementation onto existing parallel computer 

architectures. Two possibly fruitful architectures are special purpose systems based upon 

transputers [DeBI90] and the linking together of workstations using PVM [Begu93]. 

The development of a 5-step ahead neural predictor for a continuous stirred tank reactor 

(CSTR) [McIr95], a typical piece of non-linear equipment in a chemical plant, is used as a case 

study for the efficiency of a parallel implementation of a multi-layer perceptron neural network. 

It is used to assess the performance of the parallel algorithms developed for both the transputer 

and PVM systems. 

4.2.2.2 Hardware Implementations 

PVM (Parallel Virtual Machine) is a software package that allows parallel programs to be run 

on a heterogeneous network of UNIX computers. It consists primarily of two parts: 
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• a daemon process that resides on all machines making up the virtual machine 

• PVM library containing call able 'C' language functions for all functions regarding 

message passing, process spawning, task coordination and modify the virtual machine 

Communication between machines on the network is slow when compared against that of 

dedicated concurrent processing hardware, and is also variable depending upon network and 

machine load. Because of this parallel programs running under PVM are only beneficial when 

the problem granularity is very high, thus allowing the speed and size of local processing 

power to be fully exploited. 

Implementation on a PVM-based system is fairly straightforward once the parallel processing 

algorithms have been developed. The network of machines is set up and a central control 

process sends out remote processing calls to each machine as required. Although the setup can 

be (and should be) optimised by the user, there little work is required to get the algorithms up 

and running; many of the communication problems associated with such a heterogeneous 

system are handled by PVM and the machine networking protocols being used. 

A transputer network, on the other hand, is a dedicated programming architecture that offers 

very high speed communication between adjacent processors, with each processor on the 

network having a direct serial connection to at most four other processors. This is dissimilar to 

the PVM architecture, which, by means of the inherent network protocols, allows direct 

communication between all processors on the network. Consequently, a suitable network for 

the transputers needs to be developed for each application; typical configurations include the 

tree, pipeline, ring and rectangular array. For the chemical plant application the most favoured 

architectures are the ring and the pipeline, which are best suited to neural algorithms. 
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A ring architecture was chosen over a pipeline, as 
Transputer Ring 

it allows the last transputer in the network to be j 
connected back to the first transputer; a schematic 

for the network is shown in figure 4.8. A ring 

network allows a unidirectional flow of data, 

which can be advantageous. 

Figure 4.8 Transputer Ring Network 

The structure of the parallelised algorithms devised in [McIr95] gives the following 

communication timing: 

T =n·1: ·(2·N +N )+1: ·(N +N ) ewe W C (4.13) 

where 

n = number of parallel processes 

'r = transmission time per floating-point value 

N c = number of function evaluations during neural algorithm 

Nw = number of weights in the network 

Once the transputer ring host controller has placed data on the network it does not have to wait 

until it has gone to the last transputer on the ring network. This reduces the communication 

time Tc in equation 4.13 by (n- 1) . Nw· 'r. 

4.2.2.3 Neural Network Implementation of CSTR Predictor 

The Continuous Stirred Tank Reactor is a highly non-linear plant and, as such, is a useful 

example for testing neural networks. The predicted system is a single-inputlsingle-output 

system: the input is the flow rate of a coolant qJt) and the output is the concentration of a 

product compound e(t). The delay between the tank and the product output is approximately 

30 seconds. The reaction within the system is exothermic, which raises the temperature and 
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hence reduces the reaction rate. The coolant allows the manipulation of the temperature, hence 

allowing the product concentration to be controlled. 

A schematic of such a system is shown 

in figure 4.9. Although there are many 

parameters involved in the operation of 

the plant these and the related control 

equations are omitted from the figure. 

feed 

coolant 

measured 

product 
output 

A general non-linear k-step ahead 

prediction model takes the form 
Figure 4.9 Continuous Stirred Tank Reactor 

9 (t+ k)=F {u(t+k-l), ... ,u (t- m),y (t), ... ,y (t-n)} (4.14) 

where 

y(t ... t-n) = past n outputs of the CSTR plant 

u(t-l ... t-m) = past m controls of the CSTR plant 

u(t ... t+k-l) = future k controls of the CSTR plant 

F = non-linear function mapping CSTR plant variables to predicted output 

The function of the neural network is to approximate the 

mapping F. For control purposes it would be useful to be 

able to predict across the range of the 30 second delay, 

using a sample time of 0.1 minutes results in as-step 

ahead predictor. Assuming the CSTR plant is of order 

five or less then the desired predictive model is shown in 

figure 4.10. Figure 4.10 CSTR Plant Neural 
Predictor 
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4.2.2.4 Performance and Conclusions 

The multi-layer perceptron, with layer sizes of 20-20-1 respectively, was trained using the full 

memory (FM) BFGS algorithm [McKe90], with 800 training vectors. The trained network 

was then tested by comparing the predictor output, delayed by five time units, with the actual 

output of the CSTR plant. The network performed very well, with over a 95% correlation 

between the predicted and actual output at all times. 

Parallel versions of the FM algorithm, along with the limited memory (LM) BFGS algorithm 

[Gill92], were implemented for both the PVM system and a transputer system; the PVM 

network consisted of up to nine idle Sun workstations and the transputer ring consisted of up to 

six processors. 

Table 4.2 shows the test problems Table 4.2 Dimensions of Test Problems 

used on the target parallel Name Problem MLP Training Nw 
Structure Set Size 

architectures. The result graphs are Test I CSTR 20,5, I 800 III 

shown in figure 4.11. From the Test 2 CSTR 20, 10, I 800 221 
Test 3 CSTR 20,20, I 800 441 

graphs it can be seen that the Test 4 y=(x-2)(x+ I) I, 5, 1 25 16 

transputer implementation performs 
Test 5 y=(x-2)(x+l) 1, 10, I 25 31 

much better than those running under 

PVM. This is mainly a reflection of the difference in speed in inter-processor communication, 

with PVM being around 20 times slower than the transputers. 

The number of training vectors and, to a lesser extent, the number of weights Nw determine the 

achievable speed-up for a given problem. On the PVM system the algorithms performed 

reasonably well for the CSTR problem where the training set is large but performs terribly 

where the training set is small. Thus, a PVM implementation of neural networks should only 

be considered for large problems. 
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The speed-ups achievable for the CSTR problem on the transputer system approach the 

theoretical maximum for the number of processors involved. Performance is also reasonable 

for small problems, although far from optimal. Test 3 of the FM algorithm failed completely 

due to insufficient memory, showing that a PVM-based solution for such a large problem is a 

feasible alternative system architecture to the transputer network. 
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PROPOSED 
ARCHITECTURAL 
DESIGN 

This section introduces the architecture for an instruction systolic array processor, optimised 

for on-chip learning of artificial neural networks. It goes on to give detailed descriptions of the 

processing elements within the array processor, with high-level circuit diagrams for each of the 

functional units. The section concludes with details of the instruction processing methodology 

used by the array processor, with high-level circuit diagrams for the functional units. 

5.1 Architectural Overview 

5.1.1 Array Structure 

There are many different possibilities for the implementation of VLSI chips that attempt off­

and on-line learning for neural networks [TreI89]. With the digital devices the implementation 

method is normally to dedicate processing elements to being neurons in the network, with each 

neuron having the circuitry required to carry out a matrix-vector product operation. The neuron 

circuit is also responsible for holding, normally in local memory, the set of weights associated 

with it within the network. 

As the kernel of the majority of artificial neural network computations is the matrix-vector 

product it was decided to design an architecture which took advantage of this fact, yet was still 

able to carry out neural network learning for a variety of network training methodologies 

[KaEv96]. Each element of the matrix-vector product can be seen to be the result of a neuron 

136 



Chapter 5 Proposed Architectural Design 

input scaled by a synaptic weighting value. By dedicating an individual PE to the processing 

required for an individual synapse, but also allowing the PE to perform other arbitrary 

mathematical calculations, a system can be designed that can perform both synaptic and neural 

computations. 

The basic array structure, as shown in 

figure 5.1, is similar to some 

previous work [Lehm93], but the 

similarity ends there; the internal 

workings of the PE's are vastly 

different. The direction of data 

traversal is indicated with arrows 

Standard Cell 

Diagonal Cell 

Figure 5.1 Neural VLSI Array Architecture joining input and output connections 

between neighbouring PE's. The actual array size used for this work is a 6-by-6 array but, for 

the sake of clarity, figure 5.1 only shows a 4-by-4 array. 

Each PE is joined to each of it's four neighbouring PE's with an input and output connection, 

although there are some exceptions depending on the PE's location in the array: west- and 

north-edge PE's wrap the relevant connections out back onto themselves, east-edge PE's 

connect directly to the array I/O controller. South-edge PE's have no southerly neighbour 

connections at all, implying data output to the south from a south-edge PE is effectively lost. 

Any data transmitted to the north from a south-edge PE is meaningless, as there is no 

corresponding southerly input - this is illustrated in figure 5.1 by light-shaded data arrows. 

Each PE can carry out some computation, with the results being made available on the east or 

south output of a PE, overwriting any data originally input from the west or north of the PE. 

Leading diagonal PE's copy the east-west input data, on to their south-north output, effectively 

routing the external I/O data to the array north-south data path (after a short delay). 
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5.1.2 Instruction Systolic Array Processing 

Section 2.3 described the architecture of the systolic array. as well as describing several of the 

more common algorithms associated with it. It may be desirable, however, to have a procedure 

that requires more than one type of operation; PE's within the systolic array have an option as 

to what type of operation they can carry out in any given clock cycle. The option to be realised 

is determined by an instruction tag that is input to the cell along with a data item. Using this 

technique individual PE's within a systolic array can carry out a number of different operations; 

a systolic array in which instruction flows are involved as well as data flows as known as 

instruction systolic arrays [Kund86]. 

In an instruction systolic array the instruction and data streams can be considered within a 

common framework. Both streams are input to a PE, with values on the output data stream 

possibly being replaced as a result of some computation, and both streams are then propagated 

by the PE throughout the rest of the systolic array. The instructions are actually considered as 

data which is first processed by the PE, in that each cell first analyses what kind of instruction 

it has received - processing proceeds according to the result of this analysis. 

An example of an instruction systolic 

array algorithm, back substitution in 

triangular linear systems of algebraic 

equations [Petk891, is shown in figure 

5.2. A sequence of instructions is 

input to the right-most PE of the array 

and passed to the left on successive 

clock cycles. Data is passed into the 
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array along with the instruction and Figure 5.2 Back Substitution using Instruction 

also on the top input to each PE. In 
Systolic Arrays 

this case, the sequence of instructions consists of one division instruction followed by a 
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number of inner product step instructions. In any given clock period each PE executes one 

single instruction out of the many that they are capable of processing. 

In any implementation of instruction systolic arrays the PE's might be rather powerful 

processing nodes, with considerable local program and data storage with little or no direct 

connections to the host computer. In such a system the array itself must synchronise the inter­

PE exchange of data and instructions, which may lead to more complex PE's. However, such 

a system also has the capability to be a very powerful parallel array processor. 

5.1. 3 Array 110 Requirements and Processing 

There are two types of PE in the array, both being identical save for one feature. PE's on the 

leading diagonal of the array have their south -> north data connection (SN) shorted, with data 

from the east .... west data connection (EW) being copied onto it. Data on the north .... south 

connection (NS) and west .... east connection (WE) are identical in both types of PE. This 

method allows data to be sent from the 110 controller on the EW datapath to be fed, after a certain 

time delay, to the WE and NS datapaths using the array west-and north-edge PE wrap-around 

feature. When data enters a PE on it's NS datapath then an operation is carried out within the 

PE. Note that 'data' here implies a numeric data item and an instruction operation code, which 

is decoded within the PE and acted upon. 

One major difference between this architecture and that normally associated with two­

dimensional systolic array processors [KungSY88] is that external data 110 exists solely on one 

edge of the array. Normally, at least two edges of the array are used for data input, with a third 

edge used for the collection of result output values. By only using a single edge of the array 

for both input and output, letting the array itself to distribute the data to the relevant PE's, only 

a fairly simple 110 controller is required [Lehm93]. The controller only has to concern itself 

with a single two-way communication channel. 
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During a normal run of an 

algorithm data is passed in on 

the east edge of the array, and 

this data proceeds westwards 

over several cycles until data 

reaches the diagonal cells, 
t= I t=2 

where a copy is then placed on IS! East --> West data 

the SN datapath. As in other IS! South --> North data 

t= 3 t=4 

~ West -+ Ea.st data collides with 
North --+ South data and 
processing occurs within PE 

systoIic designs the east-edge Figure 5.3 Internal Datapath Timings 

input data is staggered in a diagonal fashion, and this entire process is illustrated in figure 5.3. 

Data that reaches the west or north edges of the array is redirected onto the WE and NS datapaths 

of the respective PE's. Whenever a PE finds data on it's NS datapath it extracts the operation 

code from the data, decodes it and then carries out the appropriate instruction data as required. 

This system allows the operation codes and data to be embedded into a single data stream. 

A matrix-vector multiplication is straightforward to show as an example operation, as it can be 

done within the array using a single replicated instruction. Assume that each PE has been set 

up to process the instruction [MVMj as 

[MVMI call NS * REG -> WE' 

[MVMI other (NS * REG) + WE -> WE' 

where REG denotes the contents of a private register within each PE. The register within each 

PE initially holds a value from a matrix, and an input vector is sent into the array. The PE's 

process the instructions, once they receive them, by multiplying the contents of the internal 

register with the data on the NS datapath; if the PE is not on column I (the west edge of the 

array) then it also adds any value on the WE datapath to the result of the multiplication I. The 

final result is placed on the PE's WE datapath, ready to be output on the next cycle. 

By having two versions of the same instruction in the array the 110 controller does have to concern itself with the 
awkward task of ensuring that PE's in the first column of the array receive a zero on their WE input, in order to start 
the accumulation process, at the same time as the [MVM) instruction arrives on their NS input 
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It can be seen that each PE in the array calculates a partial result and passes it along it's WE 

datapath to the PE on it's east edge, where it is used in future calculations. After 2n cycles 

(where n is the dimensionality of the array) the first row of the array outputs a result, with other 

rows outputting their results on subsequent cycles; each component of the result vector is 

output from the array after 3n clock cycles. 

The instructions and data arc sent to the array in a staggered fashion, and most algorithms 

presented in this thesis follow this pattern. It allows each row in the array to act as an n-stage 

pipeline, with each PE calculating partial results for use by the PE on it's east side. If an 

additional vector is input to the array immediately following the first the result of this second 

matrix-vector multiplication is available on the cycle after the first result is output. This allows 

for y matrix-vector multiplications, all utilising the same matrix, to be processed in only 

3n+y-1 cycles; this method of pipelining is vital to the overall speed of the array and is utilised 

to the maximum extent possible. 

5.1. 4 Data Format and Precision 

There are a number of mathematical and storage units +/- Integer Fraction 

within each PE, all of which are described in detail in ijH 1 1 1 HIiUI~1I!Ipij;jI&'~:II~;ilrrl': >1 
11 10 ......•••. 7 6 ....•••.••..•.........• 0 

section 5.2. They consist of a fixed-point adder, a Figure 5.4 Data Format 

fixed-point multiplier and a bank of local memory registers. Each of these units are 12-bits in 

size and arranged in a standard representational format; the nominal representation of a number 

is shown in figure 5.4. 

Due to the fairly low precision used in the data representation a system to capture errors will 

need to be implemented. With a 12-bit fixed-point multiplier of the format shown in figure 5.4 

the generated result will be 23-bits in size, with the integer and fractional parts of the result 

being 8- and 14-bits in size respectively. The fractional part will need to be reduced down to 

just 7-bits, and the integer part will need to be checked for overflow or underflow; there are 

problems associated with both of these schemes. 
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Truncating the fractional part of the result gives a maximum absolute error of 11128. By using 

the bit-value in the 11256 position of the fractional result [Man082] it is possible to correctly 

round the fractional result up or down by 11128, thus reducing the maximum absolute error to 

1/256; a 'I' in the 11256 position indicates that rounding up is required. This method cannot be 

employed, however, as it would require either an extra adder unit per PE or the extension of the 

execution time for instructions by an additional cycle in order to re-use the existing adder. The 

former option is undesirable, as although a single adder is not very large the systolic array is 

designed to consist of an array of 6-by-6 PE's, so the addition of a single large circuit in each 

PE is quite expensive in terms of circuit area. The latter option is also undesirable, as the 

systolic array is being designed so that every instruction is processed in a single cycle; this 

option would practically double the execution time of every algorithm. The method of 

truncation, therefore, is a straight cut-off and loss of all bit values less than 11128. 

In a normal serial processor all mathematical operations have an error flag associated with them 

in order to indicate events such as underflow, overflow or division-by-zero. Although this is a 

tried and tested method it cannot be used in the systolic array. If the first PE in a row indicates 

that an operation resulted in overflow then the result being fed to the next PE in the row is 

garbage. Such a result cannot be operated upon at all by subsequent PE's, as it cannot be 

assured how much the result is in error; subsequent processors should effectively ignore such 

data values. 

Hence, each mathematical unit in a PE will output an integrity flag along with any result, in 

order to indicate if it is safe to use the data associated with it. The units will also replace the 

generated result value with a number representing the maximum or minimum representable 

value. The mathematical units will inspect the integrity flags associated with each input value; 

if either flag is set then it is safe to assume that any result generated by the unit will also be in 

error, even if the result is technically correct2
. This method, known as saturation, is fairly 

2 If an overflowed-maximum value is added to an underflowed-minimum value then the actual result is -1/128. Such a 
value cannot be used, however, as it cannot be guaranteed that one of the inputs was not meant to be of greater value 
by several magnitudes. Hence, such results must also be flagged as being in error at all times 
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. common amongst pipe lined processors, where saturated additions and multiplications are 

necessary in order for an intermediate result to hold on to some integrity. The only exception to 

this technique is that the correct sign for the multiplication result is always used, whereas with 

an addition operation the sign of the input in error is used for the result (or an arbitrary choice if 

both are in error). 

5.1.5 Processing Element Structure 

Figure 5.5 shows a schematic 

diagram of an individual PE within 

the array. It shows the four main 

data paths, although associated 

input registers and output buffers 

are omitted for the sake of clarity. 

It shows two calculation units, a 

data comparator, a result range 

limiter and an internal register 

storage block. An instruction 
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Figure 5.5 Processing Element Schematic 
opcode memory block is shown, 

NS 

~ 

~ .. 
EW 

containing fast static memory cells and the circuitry necessary to re-program the memory; note 

that for the sake of clarity no control signals from the instruction memory to other units are 

shown in figure 5.5. A number of multiplexors are also shown, which route data to the correct 

area of the PE during instruction execution. The internal data routing unit is simply a large area 

of interconnect, arranged so as to connect each possible data bus to the relevant input to the PE 

functional units. 

The multiplexor in the lower-left area of the schematic is used to redirect data from the EW 

databus onto the SN databus. If the PE is on the leading diagonal of the array then this circuit is 

present, otherwise it is removed completely, allowing the original SN input to be passed on 

unmolested to other PE's in the array. 
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5.2 Neural Network Hardware Features 

5.2.1 On-Chip Learning Methodology 

Of particular interest to the neural network training algorithms is the internal register block 

within each PE. This holds four 12-bit words of data, and each word can be addressed 

individually by using an active switch within the block. It has been shown [Pa089) that the 

backpropagation network requires at most only three layers of neurons to represent any 

arbitrary function. As this algorithm has been proven to converge and learn any function that 

the network can represent [Rumm86) any implementation of backpropagation only has to 

provide three layers of neurons in order to operate correctly. Although more layers can be 

added Pao's work showed that this isn't necessary. 

The proposed architecture sets aside three register slots per PE in order to store a network 

weighting value. As each PE represents a synapse rather than an entire neuron these register 

weights can be seen to represent the weighting factor between one neuron output and another 

neuron synaptic input. By activating all layer-l registers within the PE all weights for neurons 

in that layer are visible to the processing routines; weights for neurons in other layers are still 

held within the PE but are not directly accessible3. This method allows all weights for all 

neurons in the network to be held on-chip at all times, thus dramatically reducing the 

communication overheads typically associated with hardware implementations of neural 

networks that hold the weights off-chip in a separate data store. 

Another benefit from the on-chip learning methodology, besides the decrease in required 110 

bandwidth, is that any other operations that require weight values in the calculations do not 

need to load the values on to the chip: they are already present in the PE's. The flowing nature 

of systolic algorithms means that as the weight values remain fixed within the PE's themselves 

instruction opcodes can pick up the values as the instructions flow through the array. 

3 PE's in the array have their own private active register indicator· it is not a global value, but the routines used in the 
neural network algorithms tend to set all PE's to have the same active register indicator 
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The fourth register within the PE is used as a general purpose register on non-neural 

operations. It is loaded with constant values required during a pass of an algorithm, or perhaps 

as an accumulator of partial results. This allows other mathematical operations to be carried out 

with having to remove the weight values from the array, as there is still some spare local 

memory capacity within each PE. 

5.2.2 Reconfigurable Instruction Set 

5.2.2.1 Implementation Overview 

The normal method of decoding instructions within a PE is to use a small programmable logic 

array [WeEs88], with the control signals resulting from an instruction being hard-wired into it. 

This results in a function similar to a ROM device. However, it has the problem that the effects 

of instructions cannot be varied at a later date, so any instructions implemented would have to 

be very general in nature or optimised for a specific algorithm. 

The preferred method for the instruction set decoding is to use a small block of fast static RAM 

inside each PE. This will hold the relevant control information for the number of instructions 

required. The RAM address range is to be limited to just 4-bits, giving a capacity for 16 unique 

instructions, giving a system bus width of l6-bits (including l2-bits for data accompanying the 

instruction opcode). Each PE in the array should hold the same instruction set for a single 

algorithm, although if an algorithm requires more than 16 instructions then the PE's could be 

programmed with slightly different instruction sets; i.e. if instruction [0110] is only required 

in the first row of the array then it need not be duplicated in the PE's in other rows, which are 

free to carry out a different task when executing instruction [0110] (although different 

implementations of the same opcode should be conceptually similar) 

The opcode number itself is used as the address for the RAM, with data being read from or 

written to it as required. Each opcode has an associate mnemonic code, which is used as an aid 

in designing and interpreting the algorithms. 
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5.2.2.2 Fixed Instructions 

There are a number of instructions that are DATA ACTION 

fundamental to the operation of the array 

processor and need to be hard-wired into the 1 
instruction set. These cannot be overwritten 

Vss 
with any other data and can be treated as constant 

values. This part of the static RAM is actually Figure 5.6 Opcode ROM Bit-Slice 

implemented as a ROM circuit: all write operations to these instructions stores are ignored, but 

read operations are carried out as normal, as the individual cells within the memory still 

conform to the protocols required by the reset of the memory unit. A schematic layout of such 

cells is given in figure 5.6, which shows the layout for a hard-wired logic-I (a logic-O has the 

V DD and V ss connections reversed). A full description of the operation of the RAM and ROM 

units of the instruction set memory is given in section 5.3 along with descriptions of the other 

hardware elements of the architecture. A list of the instruction opcodes that are fixed in ROM 

are gi ven in table 5.1. 

Table 5.1 Instructions fixed in ROM 

Ope ode 

[0000] 

[000 1] 

[0010] 

[0011] 

[PASS] 

Mnemonic 

[PASS] 

[SWITCH] 

[LOCK] 
[PROG] 

Description 

No processing occurs, but data passed in all directions 

Switches currently active register within specified PE 

Sets lock status of specified PE 

Programs a new instruction into the apcade memory 
Also used to set values in result range limiter 

a simple no-operation instruction; no processing occurs and all input data is 

propagated to the respective outputs 

[SWITCH] sets the currently active register within the PE to that specified by the data on the WE 

input stream. This value can be in the range O ... 3 

[LOCK] locks the instruction that appears on the subsequent clock cycle on the address input 

into a local memory buffer area, but only if the PE is on the row specified by the 

value on WE - this can be in the range 0 ... 5. Locked instructions are processed on 

every cycle within that PE regardless of the instruction present on the NS datapath 

until another [LOCK] instruction is received for a PE in that same row 
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[PROG] nothing occurs until the subsequent clock cycle: the instruction then present on NS 

is programmed with the data associated with it in the opcode memory, thus re­

programming that instruction. If the instruction to be re-programmed is a 

[SWITCH] or [LOCK] then nothing happens; if the instruction is [PASS] or [PROG J 

then the result range limiter (as described in section 5.3) are set up instead 

As well as the specialised functions carried out by the ROM-fixed instructions all of them 

process an effective [PASS] on all other input data. Unfortunately, the 12-bits of data 

accompanying an opcode is not sufficient to handle all of the control signals required for an 

instruction. On the clock cycle that the [PROG] instruction is received the data that resides in 

NS[O:9] is stored in a temporary register. On the subsequent clock cycle this IO-bits of stored 

data is used along with the entirety of the new NS data in order to program the instruction 

control signals. Hence, the PE requires 22-bits of control signals per instructions, implying 

that the instruction memory unit is l6x22-bits in size. 

5.2.2.3 Internal PE Control Signals 

Table 5.2 shows all of the mathematical Table 5.2 Possible Mathematical Operations 

operations are possible within a PE4, all 

of which have been implemented in order 

to give the array processor a useful 

instruction set. All of the five active data 

MULTIPLIER 

REG * NS 

WE*NS 

WE*REG 

REG * ADDER 

WE'ADDER 

ADDER 

MULT+WE 

MULT+ REG 

WE + REG 

WE+NS 

MULT+NS 

REG + NS 

WE Output 

WE Input 

Comparator 

AdIec 

Multiplier 

areas can be operated on in any ADDER' NS 
--------~------~------

combination; an addition can follow a 

multiplication in the context of a single instruction (and vice versa). The inputs to the adder and 

multiplier can accept any combination of inputs, although the arithmetic units cannot feed their 

outputs back onto their inputs. Input selection is done via several 4-to-1 multiplexors, each of 

which require 2-bits of control data. The adder can also act as a subtractor, requiring a single 

additional control signal to switch between addition and subtraction mode. Hence the 

arithmetic units require a total of 9-bits of control data. 

4 The table does not show where an arithmetic unit uses the same input variable on both input ports 
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There are four possible values to be output from the PE, as indicated in table 5.2, and this is 

implemented using an-additional 4-to-1 multiplexor. This requires 2-bits of control data. 

Although a compound instruction such as NE' (REG+WE) implies that the value to be output is 

the result from the multiplication this must be made explicit to the PE, as there is no way of 

telling directly which value to output. The multiplexors simply open up pathways for the data 

within the PE; there is no inherent intelligence as to which pathway is routed to the WE output of 

the PE. Hence, the result to be output must be specified. 

The comparator unit carries out three different Table 5.3 Comparator Data 

functions, all of which are listed in table 5.3. 

All of these functions operate on pairs of 

data, and a list of all possibilities are also 

shown in table 5.3. Two control signals are 

Function 

Equality (x,y) 

Maximum (x,y) 

Minimum (x,y) 

Upper Input 

NS Input 

WE Input 

Register 

Adder 

Lower Input 

Multiplier 

WE Input 

Register 

Adder 

required for the comparator unit to put it into either equality mode or comparator mode; 

comparator mode is split into two further functions, allowing the unit to return either the 

maximum or minimum number from its two inputs. 

In order to implement an ABS function, whereby the absolute positive value of some input is 

returned, it is required to multiply the input value by 1.0 or -1.0, depending on whether or not 

the input is positive or negative. This method takes advantage of the simple fact that a 

multiplication of two numbers with the same sign always results in a positive number. 

The lower input to the multiplier contains an ABS Table 5.4 ABS Unit Logic 

unit, which requires two control signals. The first Input Sign Control ABS Out 

signal enables the unit and the second instructs it +ve I 1.0 
+ve 0 -1.0 

as to what operation to carry out; the options are -Ye -1.0 
-ye 

ABS (x) and -ABS (xl. If the unit is not enabled 
0 1.0 

then the second input to the multiplier passes through unchanged. If the unit is enabled then the 

ABS unit replaces the second value by ±I.O, depending on the operation required. The relation 
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between the operation control signal and the output of the unit is shown in table 5.4. Note that 

this operation changes the sign of the value on the first multiplier input value depending on the 

sign of the data value on the second input; the sign change can be on the basis of a different 

value, although it is more usual to base a sign change using the same value as that on the first 

input. 

There are four different combinations of destination for the chosen Table 5.5 

result value, and these options are shown in table 5.5. Regardless of 

the current instruction the result is always sent to the WE output. 

Results can also be copied to the NS output, in order to propagate a 

Result Destinations 

Destination 

WE 

WE,NS 

WE, REGISTER 

result to PE's in other rows. The result can also be stored in the WE, NS, REGISTER 

currently active register within the PE. This can be done even if the 

currently active register was a source of data for the current instruction, as the registers are 

designed to be read from and written to safely in the same clock cycle - this is discussed further 

in section 5.3. Two control signals are required for this process, as separate signals are used to 

copy the result to the NS output and also into the currently active register. 

Section 5.1.4 stated that the accuracy of data in the system is ±11l28. The neural 

approximation function used in backpropagation, as shown in equation 3.2, has this result 

given an input of approximately ±4.844. Hence, any input values outside of this range to the 

activation function will give the result of 0.0 or 1.0; this is to be avoided, as the result of the 

function can never equal these values (a result of 0.0 is particularly unwanted). The overflow 

units described in section 5.1.4 can be modified to accept an additional pair of 

maximum/minimum numbers, which can be loaded in via a [PROG 1 instruction. A single 

control signal is required to indicate to the mathematic units which set of numbers to use: the 

system maximum/minimum numbers or a set relevant to a particular function, such as ±4.844 

in the case of the sigmoid activation neural function. 
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Table 5.6 Summary of instruction-based control signals 

Unit Signals 

Adder Control 

Adder (Upper Input) 2 

Adder (Lower Input) 2 

Multiplier (Upper Input) 2 

Multiplier (Lower Input) 2 

Comparator Control 2 

Comparator (Upper Input) 2 

Comparator (Lower Input) 2 

Result Selector 2 

ABS Unit 2 

Result Destinations 2 

Result Range Limit 

Value Implication 

o Addition operation (Upper + Lower) 
Subtraction operation (Upper - Lower) 

00 VVEinputdam 
01 NS input data 
10 Currently active register 
II Multiplier unit output 

as above as above 

00 VVEinputdam 
01 NS input data 
\0 Currently active register 
11 Adder unit output 

as above as above 

00 Return maximum value 
01 Return minimum value 
I x Equality operation 

00 NS input data 
01 VVE input data 
\0 Currently active register 
11 Adder unit output 

00 Multiplier unit output 
01 VVE input dam 
\0 Currently active register 
11 Adder unit output 

00 VVE input data 
01 Comparator output 
\0 Adder unit output 
11 Multiplier unit output 

Ox ABS unit disabled 
10 Negative ABS(x) result required 
11 Positive ABS(x) result required 

00 WE output only 
o I WE output and NS output 
\0 WE output and currently active register 
11 WE output, NS output and currently actuve register 

o Use standard maximum/minimum overflow values 
Use user-defined limiting values 

Table 5.6 gives a full summary of the control signals present within the PE. This gives rise to 

a large number of possible mathematical instruction combinations, and these combinations are 

given in table 5.7. There are a total of 11 basic mathematical operations, given that 2ax is 

equivalent to 2xy. Other instructions can be made equivalent by variable substitution, but are 

otherwise distinct (2x " x+y if x = y). These 11 instructions can have any combination of WE, 
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NS and REGISTER as the x, y and a variables, and can have the final output re-directed to several 

different locations. 

An instruction consisting Table 5.7 Instruction Combinations 

of just an addition or Main Input Type Single Op Combined #1 Combined #2 

multiplication operation, ADDERx+y x+y a(x + y) (x + y)2 

MULTIPLIER x'y xy a + xy 2xy 

all of which are shown in ADDERx+x 2x 2ax 4x2 

MULTIPLIER x'x x2 a +x2 2x2 
the Single Op column in 

table 5.7, uses either two input variables x and y or uses a single variable x as both inputs to 

the operation. An instruction consisting of an addition and a multiplication (in any order) can 

either introduce a third variable a into the second operation (shown as Combined #1 in table 

5.7), or use the result of the first operation as both inputs in the second (shown as Combined 

#2 in table 5.7). 

Note that as the adder can also act as a subtractor, the applicable range of these II basic 

operations is quite extensive, especially as none of them make reference to either the basic 

comparator or the result range limiter, which increases the operation range even further. 

5.2.3 Activation Function Approximation 

5.2.3.1 Standard Approximation Methods 

Many of the feed-forward networks, including OUT 

Backpropagation, use a non-linear activation function 

to evaluate the output value of a neuron. This function 

takes in some value NET, which is the sum of the 

products of the inputs to the neuron and the associated 
NET 

weights, and performs the operation OUT = F(NET) 
Figure 5.7 

on it. The sigmoidal activation function used in Sigmoidal Activation Function 

backpropagation, shown in figure 5.7, was first given in equation 3.2 and is defined as: 

(5.1) 
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Each PE in the processor array contains a single fixed-point multiplier and adder. The 

activation function cannot be calculated in a single PE nor, due to the nature of the exponential 

function, can be calculated exactly; hence, some form of function approximation must be used. 

A number of PE's can be used in the approximation algorithm in order to chain together a 

number of related calculations. 

The approximation of equation 5.1 can be divided up into two separate operations; the 

calculation of the exponential followed the calculation of its reciprocal. This method is 

preferable to approximating the whole function at once, as such a complex function may be 

hard to implement in a simple fashion. Using Taylor's formula [Swok88] the initial 

approximation of the exponential can be calculated as 

2 3 n 
x X X x 

e '" I +x+-2 +-3' + ... +-, . n. 
(5.2) 

which can be implemented on the processor array fairly easily. An algorithm that requires just 

a single pass of the array is devisable to solve equation 5.2 with terms up to x7 when using a 

6x6 array of processors - this is reasonably accurate for an approximation of the function. 

Problems arise, however, when the reciprocal of 1 +c is carried out. The standard method for 

approximating the reciprocal function is the iterative calculation 

(5.3) 

where xi -7 1 I N. This requires a good approximation for the initial value for x b which must 

lie in the range 0 .. . 2IN. With this initial approximation in hand the iterative algorithm 

converges to a good value for x within four iterations, but this is not guaranteed - it is 

dependant on the accuracy of the initial value for x. A single iteration of the algorithm can be 

done with a single pass through the array, so a total of six or seven passes to calculate the 

activation function seems quite feasible. The attractiveness grows with the realisation that the 

activation functions for all neurons within a single layer of the neural network can be carried 

out in parallel. 
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The success of the reciprocal approximation is based entirely on the closeness of the initial 

value for x to the desired solution. Not much processing time can be devoted to this task, but 

so long as the value falls within the range 0 .. . 21N then it should be acceptable for use. Given 

the data precision inherent in the processor array, as discussed in section 5.1.4, a good initial 

approximation has been found to be given by the following method: 

(i) Find top set bit in N; ie if 2y+1 > N ~ 2Y then top set bit is 2Y 

(ii) Reset all bits in N to 0, save top set bit which is left as I 

(iii) Reverse all bit values to form fraction; ie 4 becomes 1/4 

The value from this action always lies in the range 1IN. .. 2IN. However, as only 7-bits of 

accuracy is used for the fractional part of the data the iterative routine to calculate the reciprocal 

introduces and error which results in intermediate values in the calculation being occasionally 

'lost'. Values internal to a PE will be set to zero as a result of a calculation. This results in x, 

being set to 0 at some stage, implying that the final result for IIx being set to O. As well as a 

few values between x=l and x=95 having this problem all values of x>96 do it at some stage of 

the algorithm, even when the number of passes is restricted to four. 

Examples of execution of the algorithm are shown in table 5.8 for 645 x 555. Data in the 

shaded cells are too small to be representable in only 7 bits of data and result in a value of zero. 

Such zero-results always happen on the first iteration of the algorithm, which led to the 

conclusion that an iterative method for calculating the reciprocal cannot be used, given the level 

of data precision within the processor array. 
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Table 5.8 Iterative Reci£rocal Calculation Errors 

X l/X 21X Est Pass 1 Pass 2 Pass 3 Pass 4 Error 

55 0.01818 0.03125 0.00879 0.01333 0.01689 0.01809 0.00009 

56 0.01786 0.03125 0.00781 0.01221 0.01607 0.01768 0.00018 

57 0.01754 0.03125 0.00684 0.01101 0.01511 0.01721 0.00034 

58 0.01724 0.03125 0.00586 0.00973 0.01397 0.01662 0.00062 

59 0.01695 0.03125 0.00488 0.00836 0.01260 0.01583 0.00112 

60 0.01667 0.03125 0.00391 0.00690 0.01094 0.01470 0.00197 

61 0.01639 0.03125 0.00293 0.00534 0.00893 0.01300 0.00339 

62 0.01613 0.03125 0.00195 0.00367 0.00650 I 0.01039 0.00574 

63 0.01587 0.03125 0.00098 0.00189 0.00356 0.00632 I 0.00955 

64 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00000 

Hastings [Hast55] has shown an alternative method for generating approximations to 

functions. This method is based loosely on Chebyshev polynomials, and tends to be a simple 

sum of products: various power terms of x are multiplied with pre-deterrnined weights, then 

summed with or without other weighting factors, then possibly having another function applied 

to it. Hastings' approximation for e-x is 

e-x_--------~--------

(I +a1x+a,x'+a3x3r 
(5.4) 

(a,=.2507213 a,=.0293732 a,=.0038278 ) 

which also shows the values of the three weighting factors. The maximum absolute error for. 

this approximation is given as 0.0002, but this can be further reduced by increasing the number 

of terms in x used in the approximation and by modifying the associated weights. This 

increase in accuracy comes at the cost of an increase in required processing power. 

Dispensing with the problem of implementing the final reciprocal operation it can be seen that 

some of the numbers involved in this approximation require a large amount of accuracy. The 

weights require more accuracy than the processor array can supply, although this just results in 

the maximum error increasing; the resulting error is unacceptable, as it can be seen that a 3 

cannot be represented at all, thus nullifying the effects of x3
. Also, the small value of the 

summation is taken to the fourth power, which will again lose a large degree of accuracy. 
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Although the Hastings method is not directly applicable to the required function approximation 

the basic idea of finding a simple polynomial expression that approximates the function is still 

very appealing. The only restriction is that the intermediate values within the expression do not 

become either too large or too small for the PE's to cope with. 

5.2.3.2 Other VLSI Approximation Methods 

In an analog device the non-linear sigmoidal activation function is easy to implement, as it can 

be based on the non-linearity of a simple device, such as a transistor or diode. However, the 

shape of the sigmoid cannot be controlled in any way, as it is dependant on a physical device. 

Also, difficulties can arise in the calculation of the derivative of the activation function which, 

as outlined in section 3.2.2.1, is required for the learning phase of the backpropagation 

learning algorithm. 

Digital solutions to the sigmoidal activation function fall into two main trends: by using look-up 

tables and ROM tables [Nigr9l) and by summing a truncated Taylor series expansion. This 

second trend can be sub-divided into two additional sub-classes: 

(i) sum of steps approximation [Beiu92) 

(ii) piece-wise linear approximation [AISt91) [Myer89) 

although there are a few dedicated approximation methods specifically for the solution of the 

sigmoidal activation function [Pesu90). Examination of the literature shows that the look-up 

table approach falls short of the goal of having a good performing algorithm in a small silicon 

area; this performance/price goal is often an important practical consideration when it comes to 

develop such approximations in hardware. The approach of having some form of Taylor-series 

expansion, i.e. a polynomial based expression, is superior to such look-up table methods. The 

methods presented, however, either require additional hardware in each PE, which would be 

particularly expensive, or the algorithms assume large-precision floating-point mathematical 

capability in the target hardware system. Although these methods are successful in their 

approximation they are not particulary suitable for implementation in a systolic array. 
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5.2.3.3 The Bezier Curve 

The Bezier form [Bezi70] of the cubic polynomial 

curve segment plots the intermediate points between a 

start point Po and an end point P 3' using the set 

tangent vectors between those points and two further 

points PI and P2; this is shown in figure 5.8. Note 

that these two additional points in the figure do not lie 

on the curve itself, although it is possible for them to 

Proposed Architectural Design 

Figure 5.8 Bezier Curve Segment 

do so. The Bezier curve interpolates between the start and end points and approximates 

between the other two points using a set of expressions known as Bemstein polynomials, 

which act as weighting functions for the curve. The derivation of the Bemstein polynomials is 

not given here but can be found in a more concise and readable form in [Watt89], with the 

relationships between this formulation and other cubics in [Fole90]. 

Figure 5.8 shows that a single Bezier curve segment can represent a simple curve with two 

inflexions along its length. The backpropagation neural activation function F(NET) has such a 

curve, so if it is possible to find a Bezier representation of the curve then there exists a good 

approximation of the function that requires just the evaluation of a polynomial expression. The 

calculation required to find the x- or y-coordinate of a point on a Bezier curve is simply a four­

element vector-product, which is easily realisable on the systolic array. The equation required 

is given by 

B (t) = ( I - t)3 . Po + 3t ( 1 - t) 2 . P I + 3t2 
( 1 - t) . P 2 + t3 . P 3 

(5.5) 

or in vector notation 

-I 3 -3 Po 

B (t)=[t' t' t 1] 
3 -6 3 0 PI 

-3 3 0 0 P 2 
(5.6) 

0 0 0 P3 
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One of the properties of the Bezier curve is that neither an x- or y-coordinate is supplied to the 

polynomial expressions, rather a location is specified that is a percentage along the curve's 

length between Po and P 3' The expressions return either the x- or y-coordinate, depending on 

whether the x- or y-coordinates of the control points are used in the calculation; i.e. to calculate 

the x-coordinate for a point along the curve then the (-position along the curve is supplied along 

with the x-coordinate of all four control points. 

The output of the backpropagation activation function F(NET) lies in the range 0 ... 1, although 

neither limit is ever actually reached. As the minimum representable value with a PE is 11128 

all values for the input to F(NET) that produce smaller results than 11128 (or larger than 

1271128) should be modified so that they produce these limiting results. Hence, the inputs to 

F(NET) should be restricted to ±4.844. Section 5.2.2.3 described the result range limiter unit 

within the PE, which can easily be programmed with these limits in order to accomplish this 

range restriction on the calculation of the NET input to the activation function. 

5.2.3.4 Activation Function Approximation 

Table 5.9 As the inputs to the F(NET) function have a fixed range of 

±4.844 then they can be translated directly to the range 0 ... 1 
Initial Bezier Control Points 

Control X-Pos Y-Pos 
required by the Bezier curve expressions. By taking the 

Po 0.0000 0.0078 

result on the curve at these limits as the start and end point on PI 0.6000 0.0000 

the Bezier curve then a first approximation to the curve can be P2 0.4000 1.0000 

P3 1.0000 0.9922 
evaluated. The control points for this initial approximation 

are shown in table 5.9. The maximum error for any point on the curve is 11210, which is 

smaller than the minimum representable value within the systolic array. Because of this low 

error the given curve can be deemed to be a good approximation of the activation function 

F(NET). 
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The data that is to be supplied to the function 

approximation must be translated from the ............................... 

range ±4.844 to the range 0 ... 1 along the 

~ .. ~ .. ~ .................... . - ~-po. 

---- I-pO. 

curve. However, this cannot be done 

perfectly accurately, as the x·coordinate 

represents points on the linear x.axis, whilst Figure 5.9 X-pos and t·pos Relationship 

the required (·pos values are positions actually on the polynomial curve a certain percentage 

between the control points Po and P3; a t·pos value of 1.0 represents the final point on the 

curve at the P 3 control point. This difference in scaling, along a 20 segment curve, is shown in 

figure 5.9. 

Once the data has been simply scaled from ±4.844 to 0 ... 1 it has to be squashed so that it lies 

closer to the required t·pos value. This squashing function must be done in a single pass of the 

processor array, as it is a very common operation in the backpropagation learning algorithm 

and is likely to be executed fairly frequently. The expressions 

'd d' 1 ml . ISt=X- 2 

end.dist = + -ABS (mid.dist) 

(.pos =x + mid.dist * end.dist 

(5.7) 

manage to scale the x·values in this manner. However, values for x ~ 0 are not decreased by 

enough and x ~ I are not increased by enough - the maximum error for translation using this 

method is approximately 1154. Because of this a 'magic' scaling factor must be introduced, so 

that the correction factor applied to each x·value is increased in magnitude. By modifying the 

squashing expressions to 

magic = 1.21 

t. pos = x + magic * mid.dist * end.dist 
(5.8) 

we can achieve a maximum translation error of approximately 1/121. 
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Using these modified x-values with the previously discussed Table 5.10 

Bezier curve approximation, using the control points in table 

5.9, we get a maximum approximation error of 1I8!. By 

moving the control points slightly, to those shown in table 

5.10, we reduce the maximum error to just 11118: 

approximately 10% of the values are in error, with the error 

being just the least significant bit of the data. 

Final Bezier Control Points 

Control X-Pos Y-Pos 

Po 0.0000 0.0078 

PI 0.6000 -0.0159 

P2 0.4000 1.0159 

P3 1.0000 0.9922 

For a fast method of approximating the F(NET) activation function these errors are acceptable, 

and much more accurate than any linear approximation method. The algorithm can be 

implemented directly on the systolic array without the need for any additional circuitry, and can 

also be executed in a single pass of the array. Although slightly less accurate than some of the 

existing Taylor-series based approximations it has the benefit of being implementable at no 

extra cost in terms of hardware. 

5.3 Hardware Design and Implementation 

5.3.1 Miscellaneous Circuits 

5.3.1.1 Signal Multiplexors 

There are several occasions where a functional unit in the PE 

needs to choose between a number of different input values, 

usually one from two or one from four. Figure 5.10 shows 

schematic diagrams for both of these units, which are 

described In more detail in sections A.I.I and A.I.2 

respectively. 

The units work by selecting between the signals using the 

SEL[O:11. 

A-m B_ ~ _OUT 
c_ .... 
D_ ..,j. 

Figure 5.10 Multiplexor 
input control signal SE L or SEL [0: 1]. All inputs are Schematics 

connected to the single output line OUT, with a transmission 

gate assigned to each input. The control signal(s) enable just one of the transmission gates in 
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the multiplexor, thus driving just a single input onto the 

output and blocking all other input signals. The 

Table 5.11 Multi£lexor Control 

SEL OUT SEL(2) OUT 

control signal logic for the two multiplexors is shown 0 

in table 5.11. 

5.3.1.2 ABS Control Unit 

The mUltiplier unit is used to provide 

an arithmetic ABS function, by 

driving ± 1.0 onto the second 

'2 DATAIO:ll) _ ~ 

CONTROL I 0 : 1) _ ~ 

A 00 A 

B 01 B 

10 C 

11 D 

MOD_DATA[O:l1) 

multiplier input in order to ensure Figure 5.11 ABS Unit Schematic 

that after multiplication with the first input the result is of a specified sign. The result can be 

forced to be either positive or negative in this fashion. Figure 5.11 shows the schematic 

diagram for this unit, which is described in more detail in section A.4.1. 

The ABS unit does not carry out the ABS Table 5.12 ABS Unit Control 

calculation, rather it ensures that the multiplier DA TAIl I) CONTROL[O) MOD_DATA 

receives the correct inputs. Assertion of 

CONTROL [1] activates the unit. CONTROL [0] 

and the sign of the input DATA (which lies on 

DATA [11 J) are used to determine the output of 

o 
o 

o 
1 

o 

-1.0 
+1.0 

+1.0 
-1.0 

the unit, which is either + 1.0 or -1.0. If the sign of the input DATA is already of the required 

sign then the output is + 1.0, implying that the multiplier does not alter the sign of its other 

input. If the sign of the input DATA is incorrect then the output is -1.0, implying that the 

multiplier alters the sign of its other input. The control signal 

logic for the ABS control unit is shown in table 5.12. 

5.3.1. 3 Majority Function 

Certain functions on the PE require calculation of some form of 

majority function, whereby the assertion of at least two from three 

A ~ .-r.. 
B 

C 

o ---. RES 
';' 
::E 

Figure 5.12 
Majority Function 
Schematic 
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inputs results in a positive input. Figure 5.12 shows the schematic diagram for this unit. which 

is described in more detail in section A.I.6. 

The unit itself is fairly simple, consisting of a few Table 5.13 
Majority Function Control 

combinational logic gates. The control signal logic for the 

majority function is shown in table 5.13. 

5.3.1. 4 Result Range Limiter 

The output of the PE can be made to be restricted within a 

certain range, which can be specified for each individual PE 

within the processor array. These ranges can be programmed 

A 

0 

0 

0 

0 

B 

0 

0 

1 

0 

0 

C RES 

0 0 

0 

0 0 

1 

0 0 

1 

0 

1 

by any algorithm that is currently being processed. It works by using a set of parallel 

comparators, which compare the result output for the PE with the pre-programmed ranges, and 

replacing the result with the relevant range limit if the result lies outside this range. 

Figure 5.13 shows a schematic 

diagram for this unit, which is 

described in more detail in 

section A.4.2. The unit operates 

in two modes; program and 

CLOCK 

WRITE_OP 

ADDR[O:3] 

NS [0: 11] 

WE[O:11] 

• 
• 
• 
• 

I 
"v 

lj 
~O 
Cl: 

ACTIVE ------'+ 
limit. In program mode the Figure 5.13 Result Range Limiter Schematic 

limits are programmed by using 

a combination of WRITE_OP and ADDR [0: 3 J, with ADDR of [0011 J resulting in the maximum 

limit being stored and [0000 J in the minimum limit 

being stored - these limits should be present on Table 5.14 Range Limiter 
Multi lexor Control 

NS [0: 11J. 

In limit mode, whereby ACTIVE is asserted, the input on 

WE [ 0 : 11 J, which is the result of any instruction 

CTRL[l] CTRL[l] WE_NEW 

o 
o 

o 
1 

o 

WE 

MIN 

MAX 

WE 
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processed on the PE, is compared with the two limits currently stored within the unit. A set of 

multiplexors are used to select the correct value to place on WE_NEW depending on the results of 

the two comparisons. If no limit was exceeded (or both were, due to incorrect programming of 

the limiting values) then the original WE is passed on to WE_NEW, otherwise the limiting value 

that was exceeded is passed on to WE_NEW. The two comparators produce an internal signal 

CTRL (0 : 1] , with CTRL (0] being the result of the lower-limit comparator. The control signal 

logic for the mUltiplexed output selected is shown in table 5.14. 

The actual comparators themselves are 
A 

more complex. They are parallel in 
B ---. 

nature, using a bit-slice technique 

whereby only a single instance of the 
Figure 5.14 I-Bit Comparator Schematic 

comparator needs to be designed, with 

an n-bit comparator being just n cascaded instances of a I-bit comparator. The I-bit and n-bit 

comparators are described in more detail in sections A.4.2.2 and AA.2.3 respectively. The 

single bit comparator schematic is shown in figure 5.14. 

The comparator takes in two signals, A and E, and a pair Table 5.15 Comparator Input 
Control Values 

of control signals C_IN (0: 1]. This control input 
Cond CIN[l] CIN[O] 

indicates whether or not d priori information exists as to A<B 

the relative sizes of A and E, as indicated in table 5.15. By A=B 1 0 

A>B 0 0 
using this information, and the values of A and E, the 

output control signals C_OUT (0: 1] indicate the relative sizes of A and E; the implications of 

C_OUT are identical to those of C_IN. For the comparison of two I-bit numbers, or for the 

comparison of the least significant bits of larger numbers, the C_IN value is 10, indicating that 

the A and E inputs are assumed to be equal until proved otherwise. 
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The transfer function from C_IN to C_OUT is easily Table 5.16 C OUT Transfer Function 

realised, and table 5.16 shows the relevant A B COUT[t] C_OUT[O] 

derivations. It clearly shows that if the inputs for 0 0 C_IN[I] C_IN[O] 

0 1 B B 

A and B are identical then the control inputs are 0 B B 

C IN[I] C_IN[O] 
passed directly to the outputs. Hence, for a 2-bit 

number, the C_IN for the most significant bit comparison is the C_OUT for the least significant 

bit comparison. 

If a comparison reveals an equality then the comparison result Table 5.17 
Comparison Example 

from the previous bit comparison is passed on. For example, 
A BC_OUT 

comparing 0110 with 1100 leads to a chain of C_OUT values from 

each step of the comparison operation, as shown in table 5.17. It 

shows that although it is the most significant bits that have the 

most effect on the result, if the most significant bits are equal then 

... 0 

.. 10 

... 0 

.. 00 

A=B 

A>B 

.110 .100 A>B 

0110 1100 A<B 

the results of comparisons with bits of lower significance have an effect on the final result. 

The comparators cannot handle the comparison of sign bits, as taken at face value the sign bit 

value for negative numbers (1) is larger than that for positive numbers (0). Hence, comparison 

of the sign bits needs to be done separately. However, if the sign bits are different then the 

result of the comparison of the entirety of A and B can be deduced from the result of the 

comparison of the sign bits. 

5.3.1. 5 General Purpose Comparator 

The general purpose comparator provides the facility to carry out comparison and equality 

functions on any two different internal data values, and is based on the comparison unit 

described in section 5.3.1.4. The equality function returns either 1.0 or 0.0, depending on 

whether or not the inputs are equal. The comparison function has two sub-functions: 

maximum and minimum. Given two inputs the unit can return either the maximum value or the 

minimum value. This unit is described in more detail in section A.4.3. 
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5.3.2 Register Units 

5.3.2.1 Flip-Flop Registers 

Flip-flop registers store data on the inputs on the 

transition of the clock from one period to the 

next; changes to the inputs outside of this 

transition time have no effect on the value stored 

D 

CLK 

Q 

- - -- ----------
Proposed Architectural Design 

1 

1 

Figure 5.15 Flip-Flop Timing Diagram 
within the flip-flop. This type of register is used 

for the PE input registers, as described in section A.2.1. In these registers the data present on 

the four PE inputs upon the transition from a negative to positive clock (on the rising edge) is 

stored and used within the PE throughout the clock cycle, regardless of any changes to the 

inputs. The timing relationship between the input D, the output Q and the clock period CLK is 

shown in figure 5.15. 

5.3.2.2 Half-Latch Registers 

Half-latch registers store data on their inputs during the entirety of a clock period, normally 

when an additional LOAD input has also been asserted. Changing the input during the high 

clock edge also changes the value stored, but does not affect the output of the register until the 

following clock period. This type of register is used for the PE output registers and the internal 

register block, as described in sections A.2.2 and A.2.3.I, where the values on the inputs are 

valid up until the transition to the next clock cycle. Hence, values on the input are stored on the 

negative period of the clock cycle, then 

made available at the register outputs a) 

throughout the next clock cycle. 

The basic half-latch circuit is shown in 

figure 5.16a, which shows a simple 

transmission gate, inverter and 

capacitor. When the clock is high and b) 

stable (CHS) the value on D is transferred 

D_-l< 

CHS 

~-.Q 

D 

CLS 

CHS 

Figure 5.16 Latch-Based Register 
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to s. This is then inverted and output at Q at all times. The value S is stored at C for a 

reasonable length of time, but will begin to dissipate beyond acceptable values after 

approximately lOOns [WeEs88]5. Cascading two half-latches together creates a self-restoring 

I-bit temporary storage area, and this is shown in figure 5.16b. By driving in a new data 

signal when the half-latch transmission gates are closed, which is when the clock is low and 

stable (CLS), then a new value can be stored on s. This value is not propagated to the output Q 

until the next clock cycle, as this action requires the clock to be high and stable. Note, CLS is 

often combined with a separate LOAD signal, so the value stored within the register can remain 

unaltered indefinitely. 

5.3.3 Instruction Set Memory 

5.3.3.1 RAMIROM Instruction Store 

The RAMIROM section of the instruction set memory is a fairly standard piece of memory. It 

contains 12 words of 22-bit RAM and 4 words of 22-bit ROM. All words can be read from the 

memory and the contents of the RAM can be re-programmed at any time. The circuitry for all 

sections of the instruction store can be found in section A.3.4. 

A schematic of the instruction store is 

shown in figure 5.17. It works like 
DATA[22] _I ~ 

WRITE _ ~~ CONTROL [22] 
ADDR[4] -L-______ ~. 

any standard RAM unit, in that it 
Figure 5.17 Instruction Set Store Schematic 

contains a number of static RAM or 

ROM cells. A 4-bit address is placed on ADDR and the WRITE flag is set to indicate that a read or 

write operation is required. On a read operation the values from the specified word in memory 

is driven onto the CONTROL output. On a write operation the values on DATA are stored in the 

specified word in memory, although if this word is one of those implemented in ROM rather 

than RAM then the write operation has no discernable effect. 

5 When using a 5v system - as the voltage is scaled down, along with the width of the aluminium tracks on the device, 
then so does the time taken for a driven signal to dissipate beyond usable levels 
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There are just three operations possible Table 5.18 Instruction Set Store 0 erations 

in the instruction set memory unit, WRITE ADDR Effect 

which are summarised in table 5.18. It o xx Values at (ADDR) ..... CONTROL 

shows that a read operation is valid for 

any memory address, but only valid on 

0000-0011 No effect - invalid address range 

0100-1111 Values on DATA ..... (ADDR) 

a write operation for a limited range of memory addresses. 

5.3.3.2 ReadlWrite Memory Controller 

In normal operational circumstances the memory is CLOCK 

read from at all times. When a [PROG I operation is 
RESET _ 

recei ved then on the next clock cycle the memory is 
OPCODE [4)_ 

written to. By generating the read-write flag based 

Figure 5.18 ReadlWrite Schematic on the current operation, and then delaying it for a 

clock cycle using a pair of half-latches, it will arrive at the instruction set store at the correct 

time. This circuit is described further in section A.3.I, which also shows that upon receipt of a 

system reset signal the read-write signal is forced to indicate a read operation for the current and 

subsequent cycles. A schematic of the circuit block is shown in figure 5.18. 

5.3.3.3 Instruction Lock/Unlock Unit 

The lock circuitry within the instruction set Table 5.19 Possible PE Lock States 

memory is used to lock an opcode into a PE RESET Opcode State Next State 

so that it is processed on every clock cycle I [any] [any] Unlock 

0 [LOCK] Unlock StoreOp 
regardless of any other opcode input. There 0 [LOCK] Lock Unlock 

are a number of possible lock states, which 
0 [LOCK] StoreOp Unlock 

0 [other] Unlock Unlock 

are summarised in table 5.18. Note that each 0 [other] Lock Lock 

0 
PE has a row number hard-wired into it, and 

[other] StoreOp Lock 

a [LOCKI operation is only considered to be valid within a PE if the data on NS matches this 

hard-wired value. This allows individual PE's anywhere in the processor array to be locked 

and unlocked by a processing algorithm. Each lock state implies the following: 
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Unlock PE input opcode on NS datapath processed nonnally 

StoreOp 

Lock 

As Unlock, except that the current opcode is also stored in a local register 

The opcode stored in the local register during the StoreOp state is executed 

until another [LOCK] opcode is input to the PE 

When a PE has an opcode locked in to its local register the current input opcode on the NS 

datapath is not processed. It is, however, passed through the PE to neighbouring PE's as if it 

had been processed. 

This allows for powerful systolic algorithms to be designed, but with individual PE's in the 

processor array carrying out some constant task oblivious to the operations going around it. 

A schematic of the lock circuitry is 

shown in figure 5.19 and more 

detailed circuits are given in section 

A.3.2. Depending on the lock 

status the multiplexor selects either 

CLOCK --__ --l---~ 

RESET 

IP [3] 

OPCODE[4] 

the OPCODE data or the register data Figure 5.19 Opcode Lock Schematic 

::\ ADDR[4] 

as the instruction store memory address. Data is only written into the register during a StoreOp 

state. The state machine unit handles the transition from state to state, and the value on IP is 

used to indicate which row of the processor array any [LOCK] operation is destined for. 

5.3.4 Addition Unit 

5.3.4.1 Addition Unit Overview 

The entire adder unit takes in two 12-bit 

numbers, their associated integrity flags 

and a control signal to indicate whether the 

operation to carry out is addition or 

ADDI-------,. 

A_INT 

B_INT 

A[O: 11] 

B[O:l1] 

~ 

~ 

~ 

~ 

~'El 1;;> 
8~ 

RES [0: 11] 

INTEG 

subtraction. The output from the adder is Figure 5.20 Complete Adder Unit Schematic 

the result of the addition or subtraction operation, along with an associated integrity flag to 
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indicate the correctness of the result. This unit is described in section A.4.4, and a schematic 

of the entire unit is shown in figure 5.20. 

5.3.4.2 Radix-4 Adder 

A basic half-adder unit adds two I-bit values, taking into account a carry-in signal, and 

produces two outputs, a sum and a carry-out. A simple n-bit adder cascades many such 

devices together, with the carry-out from one unit being the carry-in for the next. Although 

such an adder works perfectly well it is fairly slow in operation; the delay from the generation 

of the first carry-out to the final carry-out is very long, being of O(n). Such a basic adder unit 

is unacceptable for use in the systolic processor array. 

A standard radix-4 adder speeds up the process in two 

ways. Firstly, this method prioritises the calculation of B [ 0 : 1] _ 

the carry-out over the calculation of the sum, which 

reduces the overall carry propagation time within the Figure 5.21 Radix-4 Adder 
Schematic 

adder. Secondly, by adding a pair of 2-bit values at 

once the time taken to produce the adder sum is approximately halved. The overall time 

requirement of a radix-4 adder is O(Vn). The radix-4 adder is described further in section 

A.4.3.1, and a schematic of the circuit is shown in figure 5.21. 

5.3.4.3 Carry Select Adder 

A method of implementing 1 

a fast adder IS to use a 

carry -s elect adder 
A[O,3] 

[Uya84J. This increases B [0, 3]-t~l-...r---,.se~.w 

the silicon area required for 

the adder, but drastically 

L--...!j' ~ 
~:>; 1---+ SUM[O,3] 

f="",--,j ;;; 

reduces the number of gate Figure 5.22 Carry Select Adder Block 

delays required to go from initial carry-in to final carry-out. It uses blocks of 4-bit adders, 
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which are simply a pair of cascaded radix-4 adders. After evaluation of the first 4-bit addition 

the carry-out is used as' a carry-in to the next 4-bit block. However, this next block is 

implemented twice, each with a different hard-wired carry-in value. The carry-out of this first 

block then selects which of the next two blocks has their sums and carry-outs propagated to the 

next pair of 4-bit adders. This scheme is shown in figure 5.22. 

The full 12-bit adder consists of a single 4-bit adder (for bits 0 ... 3) and two 4-bit carry select 

blocks (for bits 4 ... 7 and 8 ... 11). Each adder and carry select block generates their sum and 

carry values in parallel, all being available after 4 gate delays. Each block requires an additional 

gate delay in order to propagate the carry values to the next block, which selects the correct sum 

outputs for one of the bit ranges. As there are two carry select blocks this carry propagation 

requires just two additional gate delays, resulting in a total of just six gate delays for the 

complete 12-bit addition operation. 

5.3.4.4 Subtractor Control 

It is possible for the main adder unit to carry out the 

operation A-B instead of A+B, which is a featured 

often utilised in some of the neural training 

algorithm stages. It can be done by simply inverting 

B[O: 11] __ ~ 

ADD_SUB __ j C IN 

Figure 5.23 Subtraction Control 
the sign of the adder input B. This is achieved using Schematic 

standard two's complement techniques by inverting all of the bits of the value B and then 

adding one to the result. However, instead of adding one to the result (which requires an 

adder) it is sufficient to set the initial carry-in to the addition operation to one instead of zero, 

which has the effect of adding one to the result. This control unit are described further in 

section A.4.4.4, and a schematic of the circuit is shown in figure 5.23. 

5.3.4.5 Overflow/Underflow Unit 

Addition overflow/underflow has to be handled within the adder unit. As well as the simple 

arithmetic errors the unit must also cope with the integrity status of the original inputs to the 
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adder. The circuits used to implement this unit are described further in section A.4.4.5, and a 

schematic of this is shown in figure 5.23. 

If the integrity of any adder input has RES_IN [0: 11] ____ ~ 

failed, as indicated by A_INT and 

B_INT, then the adder output is 

automatically set to the value of the 

A_INT ~ ~ 

B_INT----+J b 
A_SIGN ~~ 
B_SIGN < 

Figure 5.24 Adder Overflow Schematic 
failed input6 and the integrity state is set 

accordingly; the result of the addition RES_IN is simply discarded. 

The overflow/underflow state of the addition can be inferred Table 5.20 
Overflow Possibilities 

from the signs of the input, A_SIGN and B_SIGN, and the sign 
A B RES 

of the result, RES_IN [11]. Possible addition overflow results +ye +ye +ye 

are shown in table 5.20. If the two adder input values are of +ye +ye -ye 

+ye -ye +ye 

different sign then it is simply not possible for the addition to +ye -ye -ye 

overflow or underflow; overflow and underflow only occurs 
-ye +ye +ye 

-ye +ye -ye 

in the input signs are identical but the adder result sign is -ye -ye +ye 

-ye -ye -ye 
different. In these cases the result is replaced by the maximum 

or minimum representable value and the integrity flag is set to indicate failure. 

5.3.5 Multiplier Unit 

5.3.5.1 Multiplier Unit Overview 

OK? 

V 
x 

V 
V 
V 
V 
x 
V 

An efficient implementation of a parallel multiplier normally some modified version of the 

standard Booth algorithm [Boot51]. Such a circuit tends to occupy the largest block on a VLSI 

device, especially if the design cannot include any pipelining due to the requirement of the 

multiplication operation being executed in a single machine cycle. The selection of the Booth 

algorithm was made because it is fairly simple, which means that a good VHDL synthesis 

optimisation tool is able to reduce a behaviourial model VHDL routine into a fairly efficient 

6 This can be deduced from the sign of the value, allowing the setting of the maximum or minimum representable value 
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silicon design. However, due to the sheer physical size of a 12-bit parallel multiplier the 

example circuit shown in section A.4.5.1 gives a 12-bit VHDL code module but only shows an 

optimised 2-bit circuit. 

The entire multiplier unit takes in two 12-bit eLK ____ ~ 

numbers, their associated integrity flags and a 

clock signal to indicate to begin the 

multiplication operation. The output from the 
Figure 5.25 Complete Multiplier Unit 

multiplier is the result of the multiplication Schematic 

operation, along with an associated integrity flag to indicate the correctness of the result. This 

unit is described in section A.4.4, and a schematic of the entire unit is shown in figure 5.25. 

5.3.5.2 Booth Multiplier Scheme 

A graphical synopsis of the Booth multiplier scheme 

[NaJ097J is shown in figure 5.26. The operations of 

the multiplier can be summarised as follows: 

i) Clear P, load inputs A and B into the registers 

ii) 

AX [n+1. .1] and B, setting AX [0] to logic-O 

Examine AX [1] and AX [0] and carry out an 
Figure 

operation based upon it: on 00 or 11 do nothing 

.. I" 0 

I, 'B(n) 
1 

t 
B(n) 

5.26 Booth Multiplier 
Functional Overview 

(add 0 to p), on 01 perform P=P+B, on 10 perform P=P-B. Ignore any errors in the 

addition/subtraction operation 

iii) Arithmetically shift right the concatenation of P and AX (thus preserving the sign of p) 

iv) Repeat from step (ii) for each bit in the original A input 

v) The final result can be extracted from both P and AX - concatenate P and AX together and then 

discard the most significant and least significant bits of the combined value. 
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The basic 12-bit multiplier unit, which does not 

include any integrity checking of the inputs, is 

shown in schematic form in figure 5.27. It shows 

two 12-bit inputs A and B, a clocking input eLK and 

a 23-bit output RESULT. 

5.3.5.3 Multiplier Integrity Checking 

Proposed Architectural Design 

CLK---""I 

A[O: 11] 

B[O: 11] 

v 

~ Jl SUM [ 0 : 22 ] 

$~ 
~::;: 

Figure 5.27 Basic Multiplier Schematic 

As is standard in ari thmetic theory a parallel Internal Format 

12-bit multiplier will produce a 23-bit result in 

raw form; it is up to the implementation to take 

the result and produce a usable value from it. 
I I 

The internal number format used within the F'ig~~~"5:i8"R~iati~~~h'ip'B~t~~~'~'j~t~;;';~i 

systolic array architecture is given in section 
and Multiplier Data Formats 

5.104. The difference in format between these standard internal numbers and the results 

generated by the multiplier is shown in figure 5.28. This shows that the effective width of both 

the integer and fractional part of the number is doubled in size by the multiplier unit, with the 

shaded bands indicating where equivalent number representations lie within both the internal 

format and the multiplier output format (the sign bit is always equivalent). 

The multiplier output must be restricted to the ranges laid down in section 5.1.4. The fractional 

part of the result can be handled very simply - only the top seven bits of the fractional part of 

the multiplier result is used, with the rest being discarded. For the integer part a check on the 

top four bits is made; if any of these are logic-D (if the result is positive) of logic-l (if the result 

is negative) then the result is out of the internal representable range. In this case the result is 

modified to either the minimum or maximum representable value and the integrity flag 

associated with the output is set to indicate the overflow error. 
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SYSTOLIC NEURAL 
ALGORITHMS 

INTRODUCTION 

This section describes the three neural network training algorithms that have been implemented 

in the systolic array processor. It describes the individual stages of each algorithm, along with 

any requirements for constant data values within the PE registers, as well as details of any 

instructions that are 'locked' into a PE for perpetual execution during a single stage of an 

algorithm. Dataflow diagrams within the systolic array for each stage of each algorithm, 

showing the implications of each calculation and the implied direction of the execution flow, as 

well as showing timing information for each stage of each algorithm. 

6.1 Backpropagation Learning Algorithm 

6.1.1 Introduction 

6.1.1.1 Backpropagation Instruction Set 

The backpropagation algorithm requires all 12 available instruction slots in order to be 

implemented on the systolic array processor. All instructions use the default result truncation 

range of the system maximum and minimum numbers, except for the (MVMJ operation on the 

right-most column of PE's, which uses the range ±4.844. Most of the instructions do not have 

an obvious mnemonic, so they have them based on the arithmetic unit using both external 

inputs, the arithmetic unit concerned and the other input to the second arithmetic input (if there 

is one). Hence, the mnemonic (NW. ADD. R J implies the operation (NS+WE) *REGISTER, 

although the redirection of the final result is not implied in the mnemonic. 
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Table 6.1 Backpropagation Instruction Set 

Opcode Mnemonic Description 

[0100] [MVM] col J NS * REGiSTER .... WE' 
[MVM] other - WE + (NS * REGISTER) .... WE' 

[0101] [V.MVM] row J WE * REGISTER .... WE' & NS' 
[V.MVM] other NS + (WE * REGISTER) .... WE' & NS' 

[0110] [N.NABS.R] NEG.ABS(NS) + REGISTER .... WE' 

[0111] [NR.ADD] NS + REGISTER .... WE' 

[1000] [NW.MVL] NS * WE .... WE' & NS' 

[1001] [NW.ADD.R] (NS + WE) • REGISTER .... WE' & NS' 

[1010] [NW.MVL.R] (NS • WE) + REGISTER .... WE' & NS' 

[1011] [NW.MUL.R2] (NS * WE) + REGISTER .... WE' & REGISTER' 

[1100] [WR.MVL] WE • REGiSTER .... WE' 

[1101] [WR.ADD.NJ (WE + REGISTER) • NS .... WE' & NS' 

[1110] [LOAD] WE .... WE' & REGISTER' 

[1111] [MAT-ADD] REGISTER + WE .... WE' & REGISTER' 

Table 6.1 shows the complete programmable instruction set for the backpropagation neural 

learning algorithm. Note that some instructions, such as the matrix-vector multiplication 

operation [MVM], have multiple definitions depending upon which row or column the PE is in 

the systolic array. This feature is used where results of some operation have to be accumulated 

across a row or column; this ensures that the first PE in the row or column begins the 

accumulation process, with other PE's in the row or column picking up previous partial results 

and including them in their own internal calculations. 

6.1.1. 2 Algorithm Summary 

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and 

weight update. The forward pass concerns itself with generating the output values for each 

neuron in the network for a particular input pattern. It contains two components: 

i) Generate NET Value for Neurons 

Carries out a simple matrix-vector multiplication operation using the weight matrix and an input 

vector, producing a series of neuron NET values (as described by equation 3.4) 
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ii) Bizier Approximation 

Converts individual OUT values to a Bezier t-score (as described by equations 5.7 and 5.8), 

then approximates the neural activation function for the backpropagation learning algorithm 

using the converted OUT value (as described by equation 5.6) 

The reverse pass modifies the weights in the neurons in response to the difference between the 

actual neuron outputs and the desired neuron outputs. It contains three components: 

i) Output Layer: F'(NET), 8 and .1w Calculation 

Calculates weight updates for each output layer neuron weight and input-vector combination (as 

described by equations 3.3, 3.5 and 3.7) 

ii) Hidden Layer: False Target for 8 Generation 

Calculates a false target vector for use in the training of hidden layer neurons (as described 

within equation 3.6) 

iii) Hidden Layer: F'(NET), 8 and .1w Calculation 

Calculates weight updates for each hidden layer neuron weight and input-vector combination 

(as described by equations 3.3, 3.6 and 3.7) 

The weight-update pass updates the weights held in the PE internal register blocks with the 

adjustment values that have been calculated; this is based on equation 3.8. 

6.1. 2 Forward Pass Components 

6.1.2.1 Generate NET Value for Neurons 

This operation is a simple matrix-vector multiplication. The correct register set for the network 

layer being processed is selected and all processors are unlocked. An input vector is presented 

to the array and each PE performs the operation [MVM], with PE's in the first column of the 

array starting off the accumulation process. The internal values, such as W2 3, are the contents 

of the internal registers representing the layer of the network currently being processed. The 

subscript denotes neuron/input, with PE's in a single row representing a single neuron. Each 

row of the array, each of which represents an individual neuron in the network layer, generates 

a single NET value for the given input vector. The algorithm process is shown in figure 6.1. 

175 



Chapter 6 Systolic Neural Algorithms 

[NEl'd ~ [MVM][V tl 

[NET)} +- [ 1 ---- [ J ---- [MVMHV3] 

[NET,[ __ [) ---- [ ) ---- [ ) ---- [MVM][V,) 

[NET,} __ [ ) ---- [ ) ---- [ ) ---- [ ) ---- [MVM][V,) 

[NET6/ +- [ ) ---- [ I ---- [ I ---- [ ] ---- [ I ---- [MVM)[V6] 

Figure 6.1 Algorithm for NET Value Calculation 

The array is not always utilised at 100% efficiency for every algorithm). Active PE's in the 

array have a highlighted border (although in figure 6.1 all PE's are active). Result redirections 

also have this highlight to indicate the flow of results; in figure 6.1 all WE datapaths carry a 

partial result value, but no NS datapaths do so. Partial results calculated within a PE are 

described with the PE, as are any locked instruction (although there are no locked instructions 

in figure 6.1). 

Note that in figure 6.1 the input algorithm is entered in a staggered fashion. All algorithms 

work in this manner, as this allows results from PE's in one column to be used in PE's in the 

next column on the next clock cycle with the next instruction in the algorithm. Multiple 

algorithms can be entered into the array on successive clock cycles; the delays shown in 

figure 6.1 are present just to show the staggered nature of the algorithm input into the array. 

The results generated by a single algorithm are staggered in an identical, but reversed, manner 

to the inputs, although figure 6.1 does not show this for the sake of clarity. PE's in the final 

column of the array will output a result on the clock cycle following the PE in the previous row; 

the first row will output its first result after 12 clock cycles, with results on successive 

instances of the same algorithm appearing on successive clock cycles. Hence, the generation of 

results from algorithms tend to have an initial delay, but are then generated on successive clock 

cycles. 

All algorithms shown throughout section 6 assume that the systolic array has a dimension of 6x6. and that the neural 
network being utilised on-chip has no layer larger than six 
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6.1. 2.2 Bezier Approximation 

This algorithm carries out two separate tasks: conversion of a neuron NET value to a Bezier t­

score and then the Bezier approximation of F(NET) based upon this t-score. PE's in the first 

three rows in the array carry out the first operation (based upon equations 5.7 and 5.8), with 

the next two rows carrying out the approximation (based upon equation 5.6). 

There is a large number of pre-Ioaded constant values and Table 6.2 
Bezier A roximation Constants 

locked instructions present in this algorithm. All of the 

pre-Ioaded data required for this algorithm is shown in 

table 6.2. The entire algorithm, along with all dependent 

data and instructions, is shown in figure 6.2, with locked 

instructions and pre-Ioaded data indicated through a 

different typeface and a shaded background. 

Token 

a 
MAX-NUM 

a 

b 

c 

d 

The conversion of a neuron NET value to a Bezier t-score Table 6.3 

Value 

1 I 9.6875 

4.84375 

-3Po + 3PI 

-3Po - 6PI + 3P2 

-Po + 3PI - 3P2 + PJ 

PI - 1 

shown in figure 6.2 does not use the nomenclature 
Bezier A roximation Workings 

Figure 6.2 Equation 5.7 

specified by equation 5.7. The value u is a modified 

version of x, scaled to the range 0.0 ... 1.0 from ±4.844. 

The modified workings to the Bezier approximations are 

given in table 6.3. 

u 

u' 

u" 

c ... ) 

nla 

mid.dis! 

magic * mid.dist 

end.dis! 

The final calculation of the modified t-score is carried out using the following equation: 

t.pos=u+u" . (~-ABS (u')) (6.1) 

Processing of the approximation within the array has no relation to the position of the neuron in 

the network that produced the NET value. The neural weight values are not used at all in this 

process, with the algorithms using the fourth (or alternate) register within each PE instead. 
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4- [NR.ADDIINET] 

4- [ ] ---- [N.NABS.RlIa] 

4- [ ] ---- [ ] ---- [NW.AOD.RIIO.O] 

4- [ ] ---- [ ] ---- [ ] ---- [NW.MULIIO.O] 

(OUT] 4- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [NW.MULlIo.o] 

4- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [WR.ADD.NlIl.O] 

Figure 6.2 Algorithm for Bezier F(NET) Approximation 

Some PE's obviously create a result, such as that in PE (1,2) (column/row order), but as the 

value is not used anywhere within the array the PE border is not highlighted, indicating 

effective inactivity. If a PE output is not used then it is simply output into an inactive PE, such 

as the WE output for the third PE on the top row of the array, which is denoted PE(3, I). 

6.1. 3 Reverse Pass Components 

6.1.3.1 Output Layer: F'(NET), 0 and Aw Calculation 

There are two different versions of the reverse pass algorithm: one for the output layer and one 

for the hidden layers. The difference in the two is in the calculation of the neuron 1\ value. The 

output layer version is simple, requiring a single calculation, whilst the hidden layer version is 

more complex, requiring a matrix-vector operation. The entire reverse pass, excluding the 

actual weight update process, can be completed in a single pass for the output layer neurons 

and in two passes for the hidden layer neurons. The three variables that have to be calculated 

for the output layer are 

where 

F' ( NET) = OUT ( I - OUT ) 

o=F' (NET)' (Target- OUT) 

Aw=n ·o·OUT • I source 

T] = training rate coefficient, typically in the range 0.01 ... 1.00 

(6.2) 
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Target = desired output for neuron / input-vector pair 

Perhaps the most important of these three variables is 0, as the hidden layer neurons use the 

output layer neurons 0 values in order to calculate their own 0 values. This algorithm outputs 

both the weight adjustment with respect to the current neuron / input-vector pair, as well as 

outputting the Ii value for the neuron. This is not dependent on any weights, so the 0 is the 

same for all weights in a particular neuron and is repeatedly calculated when each weight 

adjustment within a neuron is calculated. 

As batch processing is more efficient than pattern-by-pattern processing a single weight will 

have the adjustments calculated for each input pattern summed within the array. Once the 

summation is complete the L1w output will contain the sum of all modifications, which means 

that only a single update per weight is required regardless of the number of input patterns the 

neural network is attempting to learn or classify. In order to facilitate this the PE that sums the 

various L1w values for a particular weight, PE (4,3) in the array, initially loads its alternate 

register with 0.0. The adjustments are added to this alternate register and, when all adjustments 

have been calculated, the final L1w value for the weight in question is output from the array. 

The accumulation PE will require 0.0 to be loaded in at the beginning of processing for every 

weight in every neuron. If momentum is required [Rumm86] [SeR087] then PE (4,3) should 

be loaded with its own L1w from the previous training pass, scaled by the momentum 

coefficient u. This will offset the cumulative weight update by a value proportional to the 

previous weight update. 

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.3, 

with locked instructions and pre-loaded data also indicated. Row #2 of the array outputs the 

neuron 0 value, which is the same for all weight/input-pattern combinations within a single 

neuron, and row #3 outputs the current accumulation of weight adjustments that has been 

calculated; once the last adjustment is accumulated then the output from this row is the total 

calculated adjustment. 
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+- [MVM][OUT] 

o +-[) ._-- (PASSUTargetJ 

rAw +- [ ] ---- [ ] ---- [WR.ADD.N][OUT] 

+- [] ---- [ ] ---- [ ] ---- [PASS][OUT."",J 

+- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [PASS][O.O] 

+- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [ ] ---- [PASS][O.O] 

Figure 6.3 Algorithm for Output Layer Weight Adjustments 

As the [PASS] instruction causes no additional processing within a PE no outputs are ever 

indicated, except when a previous PE result is being passed through a number of PE's for use 

either later in the algorithm, as indicated by PE (2,1), or for eventual output from the array, as 

indicated by PE (3,2). An additional indication is required when an instruction causes the 

result to be stored in the currently active PE register, as indicated in PE (4,3). 

6.1. 3.2 Hidden Layer: False Target Calculation 

Neurons in the hidden layers of the network have 

no specified target value to train for, so the value 

Previous 
Layer 

(i) 

w 

in equation 6.2 (Target-OUT) must have some OUT, 

equivalent value calculated before any weight 

adjustments can be ascertained. The standard 

method for the Backpropagation algorithm, as 

described in section 3.2.2.4, is to use the li-values 
Figure 6.4 

of the neurons in the following layer, along with Connections for Hidden Layer Training 

the weight values that connect those neurons to the current hidden layer neuron. This is shown 

graphically in figure 6.4 2. Once the li-value is calculated the weight adjustments for the hidden 

layer neuron can be carried out in a similar fashion to the output layer neurons. 

The calculation required for neuron p in hidden layer j is show in equation 6.3: 

2 Originally shown in section 3 as figure 3.8 
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n 

False.Target~j = L (1) q,k • W pj.qk) (6.3) 
q=l 

where 

0q,k = o-value for neuron q in hidden layer k 

W pj,qk = weight connection neuron p in hidden layer j to neuron q in output layer k 

Due to the design of the architecture of the array all weights from neuron p in hidden layer j to 

all neurons in output layer k lie in the same column of PE's and are in the PE internal register 

set associated with layer k. Hence, equation 6.3 can be calculated by switching in this register 

set and carrying out a simple vector product operation. 

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.5, 

indicating that no locked instructions or pre-Ioaded data is required. 

+- [ ) - - - - [PASSj[O",) 

+- [ ) ---- [ ) ---- [V.MVM)[O, .• ) 

+- [ ) ---- [ ) ---- [ ) ---- [PASSj[O, .• ) 

+- [) ---- [ ) ---- [ ) ---- [ ) ---- [PASSj[O",) 

Tu'8" +- [ ) ---- [ ) ---- [) ---- [ ) ---- [ ) ---- [PASSj[O, .• ) 

Figure 6.5 Algorithm for False Target Generation 

Figure 6.5 shows the calculation of the false target for neuron #3 in hidden layer j. Output 

layer k is six neurons in size, so all rows of the array are used and the false target value is 

generated on row #6 of the array. If the output layer k consisted of only four neurons then 

only four rows of the array would have been used, with the fifth and sixth operations in the 

algorithm becoming [PASS J [0 _ 0 J, and the false target would have been generated on row #4. 
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To calculate the false target for a different neuron in hidden layer j the algorithm is modified so 

that the [V. MVM] instruction lies on the same instruction row as the neuron; i.e. for neuron #3 

in hidden layer j the [V. MVM] instruction appears as instruction 3 in the algorithm, thus utilising 

all weights in output layer k associated with that hidden layer neuron, all of which lie in column 

#3 of the array. All other operations in the algorithm are [PASS] operations, but the placement 

of the o-values for the output layer k always remains as shown in figure 6.5. 

One pass of this algorithm is made per neuron in hidden layer j using the same output layer k 0-

values. The algorithm changes for each neuron only by the shifting of the [v. MVM] instruction, 

as well as resetting any instructions to [PASS] [0.0] as necessary due to a difference in sizes 

between layersj and k. As neuron o-values are input-pattern independent this process only has 

to be carried out once per neuron in any of the hidden layers in the network. 

6.1.3.3 Hidden Layer: F'(NET), 8 and Aw Calculation 

This process is virtually identical to the that used for neurons in the output layer, as described 

in section 6.1.3.1, except that all references to (Target-OUT) are replaced by False.Target. 

+- [MYMllOlIT] 

o +- I J - - - - [PASSJ[FaIse.Targetj 

L~W +- [ I .... [] .... [WR.ADD.NllOUT] 

+- [ I •.•. [] .... [ ] •••• [PASSllOUT~.,.] 

+- [I .... [] ..•• [] •••. [ ] ..•• [PASSllO.OI 

+- [ I •••• [ ] •••• [ ] ...• [ ] .... [ ] .... [PASSllO.O] 

Figure 6.6 Algorithm for Hidden Layer Weight Adjustment 

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.6, 

with locked instructions and pre-loaded data also indicated; note that these are slightly different 

to those required for the output layer, as shown in figure 6.3. Row #2 of the array outputs the 

neuron 0 value, which is the same for all weight/input-pattern combinations within a single 

182 



Chapter 6 Systolic Neural Algorithms 

neuron, and row #3 outputs the current accumulation of weight adjustments that has been 

calculated; once the last adjustment is accumulated then the output from this row is the total 

calculated adjustment. 

6.1.4 Update Network Weights 

The weights held in the register blocks within the PE's must be updated at the end of each 

training pass. As there are three registers set aside for neural network weights, one for each of 

the three possible layers, a [SWITCH] operation must precede any attempt to update the 

weights. Figure 6.7 shows the majority of the algorithm required to update the weights in a 

network layer consisting of six neurons, although for the sake of clarity the operations [PASS] 

and [MAT-ADD] have been truncated to [PI and [MA] respectively. 

+- [J ---- [] ---- [ ] ---- [ 1 ---- ( 1 ---- [MAIIAw6.J [PIlt.wt..,J 

Figure 6.7 Algorithm for Weight Update 

The weight updates are fed into the array rotated 90· clockwise, each of which are contained 

within a [PASS] instruction. They are arranged so that all weight update values are present in 

the correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having 

the updates correctly placed on subsequent cycles. The [MAT-ADD] operations are placed so 

that when all PE's in row #1 of the array contain the correct weight adjustment value then the 

current operation within them is [MAT-ADD]; at this point the weights are updated across the 

entire row simultaneously. On the next cycle the block of [MAT-ADD] instructions are passed to 

row #2 of the array, where the weights in that row are updated. This is repeated until all 

weights in the neural network layer are updated. In order to update all weights in the network 
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this algorithm is simply repeated once per layer of neurons in the network, each pass of which 

is preceded with a [SWITCH) command to each column of the array in order to activate the 

correct internal register within the PE register block. 

6.1. 5 Backpropagation Timings 

Timings for a number of backpropagation neural Table 6.4 Backpropagation Example 
Neural Network Setups 

networks have been evaluated, with the networks 
6 x 6 24 x 24 

being chosen to reflect performance rather than any Layer 1 4 6 24 

particular application. Two networks were chosen Layer 2 3 5 20 

Layer 3 2 3 12 
to be implemented on a standard 6-by-6 array Patterns 25 125 500 

processor, one being a small network and one 

utilising the array more efficiently. The third and final test network assumes an array 

processors of size 24x24 PE's has been generated, either by fabricating a VLSI device of that 

size or by using a technique such as wafer-scale integration to connect together multiple smaller 

devices. The setup information for these test networks is given in table 6.4. 

Throughout these example network timings sufficient start and end delays have been allocated 

to each algorithm in order to ensure that all results from one algorithm have been output before 

the next algorithm is initiated. Time overheads of the system control hardware have not been 

taken into account, which may be a non-trivial figure, as the controller has to collate results and 

prepare them for future use. However, no algorithm requires its own output values as its 

input, and any variable data required in an algorithm is fixed into the same position in the 

algorithm; i.e. the output layer !i-value and 6.w calculation in section 6.1.3.1 uses the output 

layer neuron OUT values in instruction rows #1 and #3 of the algorithm at all times, and there 

are no cycles of the algorithm where OUT is present on any other instruction rows or where 

OUT is not present on rows #1 and #3. 

The timing charts show the number of cycles required for each particular algorithm for each 

particular network. They show the time required to setup an algorithm, the time required for 
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the first result to be made available and the time required for each additional result. Note that in 

the first algorithm, the generation of neural NET values, has a different timing requirement for 

the output of the first result per layer of the network. This is because an n-neuron layer only 

requires n rows of the array in order to output all NET values, as each row in the array contains 

weights for one neuron in each layer. Therefore, the timing for this element is averaged over 

all three layers, which is why it is shown to sometimes take a non-whole number of cycles in 

order to carry out the task. The timing for each additional weight update follows the same 

pattern, as each layer requires a slightly different execution time. The final value for total 

cycles required is the value required over all three layers of each network. 

The algorithm names have been truncated as follows: 

NET = Generation of neural NET values 

OUT = Generation of OUT values through approximation of F(NET) function 

HLn-a = Hidden layer-n generation of false target values 

HLn-b = Hidden layer-n generation of 0- and !'J.w values 

OL = Output layer generation of 0- and !'J.w values 

Update = Update of weights in network 

T bl 65 6 6 A a e . x rray T . ( . tmmg usmg non-optima networ k) 

Direction Forward Pass Reverse Pass Update 

Algorithm NET OUT HLl-a HLl-b HL2-a HL2-b OL Update 

Setup 1 22 9 11 9 11 13 11 
First 15 16 15 15 14 15 15 8 

Additional 1 1 2 1 2 1 1 4.5 

Cycles Req' d I 120 336 I 30 425 27 325 177 25 

Table 6.5 shows timings for a three layer neural network consisting of four, three and two 

neurons respectively, with a training set size of 25 patterns. Each training pass takes a total of 

1,468 clock cycles, with 456 clock cycles for the forward pass and 1,012 clock cycles for the 

reverse pass and associated weight updates. 
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T bl 66 6 6A a e . x T' ( . k) rray ImIng USIng optIma networ 

Direction Forward Pass Reverse Pass Update 

Algorithm NET OUT HLI-a HLI-b HU-a HU-b OL Update 

Setup 1 22 9 11 9 11 13 11 

First 16.67 16 18 15 17 15 15 12 

Additional 1 1 2 1 2 1 1 6.5 

Cycles Req' d I 425 1864 37 4525 34 3775 1902 36 

Table 6.6 shows timings for a three layer neural network consisting of six, five and three 

neurons respecti vely, with a training set size of 125 patterns. Each training pass takes a total of 

12,598 clock cycles, with 2,289 clock cycles for the forward pass and 10,309 clock cycles for 

the reverse pass and associated weight updates. 

T bl 6 7 24 24 AT' a e . x rray ImIng 

Direction Forward Pass Reverse Pass Update 

Algorithm NET OUT HLI-a HLI-b HL2-a HU-b OL Update . 

Setup 1 22 27 11 27 11 31 29 

First 66.67 16 72 15 68 15 15 48 

Additional 1 1 2 1 2 1 1 17 

Cycles Req'd 1700 7035 I 145 72025 133 60025 30045 III 

Table 6.7 shows timings for a three layer neural network consisting of 24,20 and 12 neurons 

respectively, with a training set size of 500 patterns. Each training pass takes a total of 

171,219 clock cycles, with 8,735 clock cycles for the forward pass and 162,484 clock cycles 

for the reverse pass and associated weight updates. 

These timing figures give rise to Table 6.8 Final Back ro agation Timings 

the figures shown in table 6.8, WU I Sec Act I Sec Cycles I Act 

which show the number of 4-3-2 Network 

6-5-3 Network 

11.57 x 106 

16.06 x 106 

weight update calculations per 24-20-12 Network 75.16 x 106 

second during a training run, at 

9.86 x 106 

15.28 x 106 

64.12 x 106 

2.026 

1.308 

0.311 

a nominal clock speed of 20MHz. Table 6.8 also shows the total number of neuron activations 

per second during a forward pass (i.e. when the system is in recognition mode), as well as the 

number of clock cycles required per neuron activation. 
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6.2 Kohonen Learning Algorithm 

6.2.1 Introduction 

6.2.1.1 Kohonen Instruction Set 

The Kohonen algorithm requires 8 instruction slots in order to be implemented on the systolic 

array processor. All instructions use the default result truncation range of the system maximum 

and minimum numbers. Instruction mnemonics are defined in a similar way to those for the 

backpropagation algorithm, as described in section 6.1.1.1. 

Table 6.9 Kohonen Instruction Set 

Opcode Mnemonic Description 

[0100] [MVM] col J NS • REGISTER -t WE' 
[MVM] other WE + (NS • REGISTER) -t WE' 

[0101] [LOAD] WE -t WE' & REGISTER' 

[0110] [MIN] MIN (NS, REG) -t WE', NS' & REGISTER' 

[0111] [EQUAL] EQ (NS, REG) -t WE' & NS' 

[1000] [SCALE] NS • REGISTER -t WE' 

[1001] [MULT] WE • REGISTER -t WE' 

[1010] [ADD] NS + REGISTER -t WE' 

[1011] [REG-ADD] NS + REGISTER -t WE' & REGISTER' 

Tab]e 6.9 shows the complete programmable instruction set for the Kohonen neural learning 

algorithm. As in the backpropagation learning algorithm some instructions have multiple 

definitions depending upon which row or column the PE is in the systolic array. 

6.2.1. 2 Algorithm Summary 

In order to ease implementation all weights stored in the network have their signs reversed. All 

equations are modified in order to take this fact into account. Hence, all references to 

maximum and minimum values from section 3.2.3 have been swapped. 

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and 

weight update. The forward pass concerns itself with generating the output values for each 

neuron in the network for a particular input pattern. It contains three components: 
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iJ Generate OUT Value for Neurons 

Carries out a simple matrix-vector multiplication operation using the weight matrix and an input 

vector, producing a series of neuron OUT values (as described by equation 3.9) 

iiJ Search for Minimum OUT Value 

Checks each of the OUT values generated and finds the smallest value, which represents the 

winning neuron value, as described in section 3.2.3.1. 

iiiJ Modify OUT Values to 1.0/0.0 

Changes each of the OUT values to either 1.0 or 0.0, depending on whether the OUT value 

equals the minimum OUT value or not, as described in section 3.2.3.1. 

The reverse pass calculates the weight update L1w in the winning neuron. Only the neuron that 

won the forward pass has it's weights modified, with other modifications being set to 0.0; this 

is based on equation 3.11. 

The weight-update pass updates the weights held in the PE internal register blocks with the 

adjustment values that were calculated in the reverse pass; this is based on equation 3.11. 

6.2.2 Forward Pass Components 

6.2.2.1 Generate OUT Value for Neurons 

This operation is a simple matrix-vector multiplication. An input vector is presented to the 

array and each PE performs the operation [MVM], with PE's in the first column of the array 

starting off the accumulation process. The internal values, such as W23, are the contents of the 

internal registers representing the weights in the network. The subscript denotes neuron/input, 

with PE's in a single row representing a single neuron. Processors in the right-most column 

do not contain weight values and are not used in this algorithm. Each row of the array, each of 

which represents an individual neuron in the network layer, generates a single OUT value for 

the given input vector. The algorithm process is shown in figure 6.8. 
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{OUT,} +- [MVM][V,] 

{OUT,{ +- [ I ---- [MVM][V,I 

{OUT,! +- [ I ---- [ I ---- IMVM][V,I 

{OUT,! +-1 I ---- 1 I ---- 1 I ---- [MVMIIV,I 

{OUT,! +- [ I ---- 1 I ---- 1 I ---- 1 I ---- [MVMIIV,I 

{OUT,! +-1 I ---- [ I ---- 1 I ---- 1 I ---- 1 I ---- [PASSIIO.OI 

Figure 6.8 Algorithm for OUT Value Calculation 

PE's in the second-last column of the array will output a result on the clock cycle following the 

PE in the previous row; the first row will output its first result after 12 clock cycles, with 

results on successive instances of the same algorithm appearing on successive clock cycles. 

6.2.2.2 Search for Minimum OUT Value 

This operation is a data search operation. It scans through each of the generated OUT values 

and finds the smallest one, whieh represents the output of the winning neuron. Note that due 

to the fact that the signs of the weights are reversed the minimum OUT is searched for rather 

than the maximum. A linear search through an output vector is made in the top-right PE, which 

is initialised to the maximum representable number before the algorithm begins. Each of the 

OUT values from the output vector are applied in turn, and if a value is less than that stored in 

the PE then it is written into the internal register, thus becoming the minimum value. This 

algorithm has no discernable outputs, although the minimum OUT value is left stored in the 

top-right PE in the array. The algorithm process is shown in figure 6.9 

6.2.2.3 Modify OUT Values 

This operation modifies all OUT values, as well as producing training rate a values that are 

specific to each neuron - these a values are required when calculating the weight updates in the 

reverse pass. It scans through each of the generated OUT values and checks them against the 

stored minimum OUT value. If an OUT value equals the stored minimum value then it replaced 

with the value 1.0, else it is replaced by the value 0.0. This is carried out in the top-right PE in 
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the array. The PE directly underneath this, which has the operation [SCALE} locked into it and 

the training rate parameter -a stored within it, takes these new OUT values and produces either 

0.0 or -a as a result. This new value is then used later in calculation of the weight updates, 

acting as the a x value for the neuron with the corresponding OUT value. The algorithm 

process is shown in figure 6.10. 

+- [PASS][O.O] 

__ [ ] ------- [PASSIIO.O] 

__ [ ] ------- [] ------- [PASSIIO.O] 

__ [] ------- [] ------- [] ------- [PASS][O.O] 

__ [] ------- [] ------- [ ] ------- [] ------- [PASSIIO.O] 

__ [ ] ------- [] ------- [ ] ------- [] ------- [] ------- [MINIIOUT.] 

Figure 6.9 Algorithm for Minimum OUT Search 

Mod OUTx +- [PASS][O.O] 

-".. __ [ ] - - - - [PASSIIO.O] 

__ [ ] ---- [] ---- [PASSIIO.O] 

__ [ ] ---- [ ] ---- [ ] ---- [PASSIIO_O] 

__ [ ] ---- [ ] ---- [ ] ---- [ ] ---- [PASSIIO.O] 

-- [ ] ---- [ ] ---- [ ] ---- [ I ---- [ ] ---- [EQUALIIOUT.] 

Figure 6.10 Algorithm for Modified OUT Generation 

The two algorithms shown in figures 6.9 and 6.10 are designed to be run back-to-back with no 

intermediate delay_The stored value in the top-right PE in the second algorithm is generated by 

the first algorithm and does not have to be loaded in by the second. Also, the locked 

information for Ux generation in the second algorithm could be loaded in during the setup phase 

of the first; the results for this operation can just be ignored during the run of the first algorithm 

and read off as required during the second algorithm. 
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6.2.3 Reverse Pass: ~ w Calculation 

This operation calculates the individual weight adjustments required per neuron for the current 

input pattern. The calculation required is 

(6.4) 

where 

ax = training rate for neuron x 

V n = n-th component of input vector 

W x.n = n-th weight in neuron x 

The <Xx value is either a or 0.0, depending on whether or not neuron x was the winning 

neuron. As the weights held in the array are of the incorrect sign the actual calculation carried 

out by this step of the algorithm is 

-~w x,n=- a x (V n +W x.n) (6.5) 

Every weight in the array has an adjustment calculated, although weights that are not associated 

with the winning neuron have an adjustment value of 0.0. The algorithm process is shown in 

figure 6.11. 

-.6.wLn .....-- [ADDJ[Vd 

- AW2,n +- [ADDIIV,) ...... [PIIO) 

-.6.WJ,II +- [ADDIIV,) ...... [PIIO) ...... [PIIO) 

-.6.W4.a +- [ADDIIV,) ...... [PIIO) ...... [PIIO) ...... [PIIO) 

-.6.ws.n +- [ADDIIV,) ...... [PIIO) •..... [PIIO) ....•. [PIIO) ...... [PIIO) 

-.6.W6.11 +- [PASSIIO.O) ...... [PIIO) ...... [PIIO) .•...• [PIIO) .. _--- [PIIO) ...... [PIIO) 

Figure 6.11 Algorithm for Weight Adjustment Calculation 
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The input algorithm to figure 6.11 is entered in a vertical fashion rather than staggered. This is 

so that every PE in a single row receives the (ADD) instruction, along with the associated input 

vector component, on the same clock cycle. This allows adjustments for all five weights in a 

neuron to be passed along to the right-most column one by one, in order to be scaled by the 

relevant training parameter (Ix. Hence, each row outputs five results, one for each weight in 

the neuron. 

Although all non-winning neuron weight adjustments are 0.0 this method requires no additional 

processing time over calculating just the winning neuron weight adjustments. No complex 

control is required, as the most time consuming element of this algorithm is the setting up of the 

locked instructions and the storing of the training parameters in the right-most column of PE's. 

6.2.4 Update Network Weights 

The weights held in the register blocks within the PE's must be updated at the end of each 

training pass. Figure 6.12 shows the majority of the algorithm required to update the weights 

in a network layer consisting of six neurons, although for the sake of clarity the operations 

[PASS) and (REG-ADD) have been truncated to [P) and [RA) respectively . 

...- [ ] ---- [ ) ---- {] ---- [ ] ---- (RA](.1wljl [PIl6wS,.4J IPIIAw~JI 

.- ( 1 ---- [ J ---- I ] ---- [ ) -.-- [ ] ---- [PIIltowul [Pl~w6,-4J 

Figure 6.12 Algorithm for Weight Update 

The weight updates are fed into the array rows in reverse order, each of which are contained 

within a (PASS) instruction. They are arranged so that the weight updates are present in the 

correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having the 
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updates correctly placed on subsequent cycles. The [REG-ADD] operations are placed so that 

when all PE's in row #1 of the array contain the correct weight adjustment value then the 

current operation within them is [REG-ADD]; this is identical to the method used to update the 

weights in a backpropagation network, as described in section 6.1.4. 

6.2.5 Network Timings 

Timings for several Kohonen neural networks Table 6.10 Kohonen Example Neural 
Network Setups 

have been evaluated, with the networks being 
6 x 6 12 x 12 

chosen to reflect performance rather than any 
Neurons 6 12 12 12 

particular application. Two networks were Inputs 5 5 5 11 

Patterns 25 25 25 125 
chosen to be implemented on a single 6-by-6 

array of processors, both with neurons accepting five inputs; one holds the neural weights in 

one internal register whilst the other utilises two internal registers per PE in order to double the 

effective number of neurons. Two other networks assumes that a number of array processors 

have been connected together in order to form a 12-by-12 array of PE's. One of these larger 

networks emulates the larger of the two 6-by-6 array networks, whilst one uses a larger 

network architecture. The setup information for these test networks is given in table 6.10. 

The network timings are arranged in the same manner as those for the backpropagation 

algorithm in that sufficient start and end delays exist at each stage of the algorithm. Although 

the Kohonen neural training algorithm is unsupervised there is still a training mode, which is 

where weights are adjusted in response to input patterns. Because of this the timing charts 

show two versions of the forward pass elements of the algorithm. In training mode the 

patterns are trained one by one, whereas in operational mode the patterns can be applied in 

batches and thereby reduce the effective time for a classification to be made. 

The algorithm names have been truncated as follows: 

OUT = Generation of neural OUT values 

MIN = Search for minimum OUT value 
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WIN = Modify OUT values to 1.0 or 0.0 

Llw = Calculate weight update for winning neuron 

UPD = Update weights in network 

T bl 6 11 6 6 Arr T . ( a e . x ay Immg sma 11 networ k) 

Mode Training Mode Operational Mode 

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN 

Setup 1 8 - 4 - 1 8 -
First 18 7 9 18 12 18 7 8 

Additional - 1 1 - - 1 1 1 

Cycles Req'd 475 500 350 550 300 43 500 325 

Table 6.11 shows timings for a network consisting of six neurons, with five inputs per 

neurons and a training set size of 25 patterns. A training pass for 25 patterns takes 2,175 

cycles, with the forward recognition pass taking 1,325 cycles. In operational mode, where 

recognition is done using batches of patterns, the recognition pass takes only 868 cycles. 

T bl 6 12 6 6 Arr T . (\ a e . x ay Immg k) arge networ 

Mode Training Mode Operational Mode 

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN 

Setup 1 8 - 4 - 1 8 -
First 20 7 9 20 15 20 7 8 

Additional - 1 1 - - 4 1 1 

Cycles Req'd 525 650 500 600 375 117 650 475 

Table 6.12 shows timings for a network consisting of twelve neurons, with five inputs per 

neurons and a training set size of 25 patterns. A training pass for 25 patterns takes 2,650 

cycles, with the forward recognition pass taking 1,675 cycles. In operational mode, where 

recognition is done using batches of patterns, the recognition pass takes only 1,242 cycles. 

Table 6.13 shows timings for a network consisting of twelve neurons, with five inputs per 

neurons and a training set size of 25 patterns. This is identical to the previous network, except 

that it is implemented on a 12-by-12 array of processors rather than using two layers of internal 

registers per PE on a 6-by-6 array of processors. A training pass for 25 patterns takes 3,775 

194 



Chapter 6 SystoIic Neural Algorithms 

cycles, with the forward recognition pass taking 2,075 cycles. In operational mode, where 

recognition is done using batches of patterns, the recognition pass takes only 646 cycles. 

Note, the algorithms for finding the minimum OUT value and for modifying the OUT values to 

1.0 or 0.0 can be split over two 6-by-6 array processors in operational mode, each processing 

half of the batch of input patterns. 

Table 6.13 12x12 Arrav Timing (small network) 

Mode Training Mode Operational Mode 

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN 

Setup 1 8 - 4 - 1 8 -
First 36 7 9 36 28 36 7 8 
Additional - 1 1 - - 1 1 1 

Cycles Req' d 925 650 500 1000 700 61 338 247 

Table 6.14 12x 12 Array Timing (large network) 

Mode Training Mode Operational Mode 

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN 

Setup 1 8 - 4 - 1 8 -
First 36 7 9 36 36 36 7 8 
Additional - 1 1 - - 1 1 1 
Cycles Req'd 4625 3250 2500 5000 4500 161 1638 1197 

Table 6.14 shows timings for a network consisting of twelve neurons, with eleven inputs per 

neurons and a training set size of 125 patterns. A training pass for 125 patterns takes 19,875 . 

cycles, with the forward recognition pass taking 10,375 cycles. In operational mode, where 

recognition is done using batches of patterns, the recognition pass takes only 2,996 cycles. 

Again, the algorithms for finding the minimum OUT value and for modifying the OUT values 

have been speeded up by splitting the input patterns over two 6-by-6 array processors whilst 

the system is in operational mode. 

These timing figures give rise to the figures shown in table 6.15, which shows the number of 

patterns that the network can train per second and the rates of neuron activation during both 

training mode and operational mode. 
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Table 6.15 Final Kohonen Timin s 

Patterns I Sec Train·Act I Sec Op·Act I Sec 

6x6 (small) 2.29 x 105 2.26 x 106 3.45 x 106 

6x6 (large) 1.88 x 105 3.58 x 106 4.83 x 106 

12xl2 (small) 1.32 x 105 2.89 x 106 9.28 x 106 

12xl2 (large) 1.25 x 105 2.89 x 106 10.01 x 106 

The timings in table 6.15 assume a nominal clock speed of 20MHz. It is interesting to note that 

it is faster to train a twelve neuron / five input network on a 6-by-6 array and then use it on a 

12-by-12 array. This is due to the more efficient use of pipelining in the smaller array when 

just a single pattern is being processed in training mode. When a batch of patterns require 

processing in operational mode the larger array has a lower additional pattern overhead than the 

smaller, which more than cancels out this increase, as the figures in table 6.15 show. 

The number of neural activations in training mode is independent of the number of neural 

inputs if the number of neurons in the network remains constant, as in the two 12-by-12 array 

examples. This is due to the inputs to the neurons being presented to the PE array in columns 

from left to right in the array. The time taken for a one-input neuron vector product to reach the 

array 110 controller on the right-most edge is not affected if, on the way, additional products for 

additional neural inputs are also accumulated. Hence, a one-input neuron will present it's 

output from the array in the same number of clock cycles as a 12-input neuron. 

6.3 Counter Propagation Learning Algorithm 

6.3.1 Introduction 

6.3.1.1 Counter Propagation Instruction Set 

The counter propagation algorithm requires 8 instruction slots in order to be implemented on 

the systolic array processor. All instructions use the default result truncation range of the 

system maximum and minimum numbers. Instruction mnemonics are defined in a similar way 

to those for the backpropagation algorithm, as described in section 6.1.1.1. 
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Table 6.16 shows the complete programmable instruction set for the counter propagation neural 

learning algorithm. As in the backpropagation learning algorithm some instructions have 

multiple definitions depending upon which row or column the PE is in the systolic array. This 

instruction set is identical to that required for the Kohonen learning algorithm. This is not 

surprising, as one half of the counter-propagation is a direct implementation of the Kohonen 

learning algorithm, with the other half being the Grossberg outstar. The Grossberg training 

algorithms, as shown in section 3.3.1.2, are remarkably similar to those used in the Kohonen 

networks, so no additional instructions over and above the Kohonen instructions are required. 

Table 6.16 Counter Propagation Instruction Set 

Opcode Mnemonic Description 

[0100] [MVM] coil NS • REGISTER -'> WE' 
[MVM] other WE + (NS • REGISTER) -'> WE' 

[0101] [LOAD] WE -'> WE' & REGISTER' 

[0110] [M1N] MIN (NS, REO) -'> WE', NS' & REGISTER' 

[Olll] [EQUAL] EQ (NS, REO) -'> WE' & NS' 

[1000] [SCALE] NS • REGISTER -'> WE' 

[1001] [MULll WE • REGISTER -'> WE' 

[1010] [ADD] NS + REGISTER -'> WE' 

[lOll] [REO-ADD] NS + REGISTER -'> WE' & REGISTER' 

6.3.1. 2 Algorithm Summary 

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and 

weight update. The forward pass concerns itself with generating the output values for each 

neuron in the network for a particular input pattern, which themselves are outputs from the 

Kohonen layer of neurons. This pass is just a simple matrix-vector multiplication operation 

using the Grossberg weight matrix and the input vector, producing a series of neuron OUT 

values (as described by equation 3.13). As only a single input is non-zero, due to only a single 

output from the Kohonen layer being non-zero, this algorithm results in all Grossberg neuron 

weights connected to a non-zero input to be passed directly to the Grossberg neuron outputs. 
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The reverse pass calculates the weight update L1w for all neurons in the network, although only 

those neurons connected to the non-zero input are actually modified, and this operation is based 

upon equation 3.14. These updates take into account the target value for the input to the 

Grossberg layer, which is required due to the Grossberg network being a supervised learning 

neural model. The weight-update pass updates the weights held in the PE internal register 

blocks with the adjustment values that were calculated in the reverse pass; this also is based on 

equation 3.14. 

6.3.2 Forward Pass 

This operation is a simple matrix-vector multiplication. An input vector is presented to the 

array and each PE performs the operation [MVM], with PE's in the first column of the array 

starting off the accumulation process. The internal values, such as WZ,3' are the contents of the 

internal registers representing the weights in the network. The subscript denotes neuron/input, 

with PE's in a single row representing a single neuron. Processors in the right-most column 

do not contain weight values and are not used in this algorithm. Each row of the array, each of 

which represents an individual neuron in the network layer, generates a single OUT value for 

the given input vector. The algorithm process is shown in figure 6.13. 

[OUTd +- (MVM][Kd 

{OUT,/ +- [ I .... [MVM][K,] 

lOUT,! +- [I .... [ I .... [MVM][K,I 

{OUT,/ +- [ I .... [ I .... [ I •••• [MVM][K.I 

{OUT,/ +- [ I .... [I .... [ I .... [ I .... [MVM][K,] 

{OUTo! +- [ ] .... [ ] .... [ ] .... [ I .... [ I .... [PASS][O.O] 

Figure 6.13 Algorithm for OUT Value Calculation 

The PE's in the second-last column of the array will output a result on the clock cycle following 

the PE in the previous row; the first row will output its first result after 12 clock cycles, with 

results on successive instances of the same algorithm appearing on successive clock cycles. 
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6.3.2 Reverse Pass 

This operation calculates the individual weight adjustment required per neuron for the current 

input pattern. As only a single component of the input to each Grossberg neuron is non-zero 

the calculation is not relevant for most weights in the network. The calculation required is 

where 

f3 = training rate 

y x = target vector for Grossberg neuron x 

Kn = output of Kohonen neuron n 

(6.6) 

Only those weights attached to the winning Kohonen neuron are modified, so a method of 

extracting 

(6.7) 

for just one weight per Grossberg neuron needs to be devised; i.e. a conditional [PASS] I 

[ADD] operation must be created. 

The Kohonen layer has to be trained before the Grossberg layer, as otherwise the Grossberg 

neurons do not receive the same input/target pair and may never train. Hence, during the 

training of the Grossberg neurons only the forward pass of the Kohonen algorithm is required. 

When the Kohonen OUT values are being modified to 1.0 or 0.0, as described in 

section 6.2.2.3, a value known as ax is calculated for use later in the reverse training pass. 

This is not required for training the Grossberg neurons, but the processing required for the 

production ofax can be used to calculate the instruction opcode required in each column of 

PE's in order to carry out equation 6.7. Each column in the array is required to process either 

[ADD] or [PASS], depending on the value of Kn' Hence, in the PE where the ax value is 

normally carried out in the Kohonen forward pass the instruction [MULTI is locked and the data 
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value 9.0 is stored. The integer result from this calculation is the opcode value for the [ADD] or 

[PASS] instruction, which is then used in the associated column of weights in the Grossberg 

layer. This simulates multiplying by Kn and the operation can be seen in figure 6.14. 

Mod OUTx ~ [PASSIIO.O] 

OPCODE, __ [ ) •••. [PASS)[O.O) 

__ [ ) ••.. [ ) •..• [PASS)[O.O) 

-- [ ) .... [ ) ...• [ ) .... [PASS)[O.O) 

__ [ ) .... [ ) ...• [ ) .... [ ) ...• [PASS)[O.O) 

__ [ ) •••• [ ) •.•• [ ] ••.. [ ] ...• [ ) •••• [EQUAL)[OUT,) 

Figure 6.14 Modified Algorithm for Kohonen Modified OUT Generation 

With the correct opcodes evaluated the rest of equation 6.6 can be easily calculated, and is 

shown in figure 6.15, where it is assumed that the second neuron in the Kohonen network was 

the winning neuron (hence the location of the [ADD] and [PASS] opcodes). 

-.6.w2,n ....- [1 .--. [OPCOD~][-Y2J 

-6w,.. _[] .... [) -- .. [) .. -- [OPCODE,)[·Y,] 

-6w,. - [ ] .... [) .. -- [ ) .. -- [ ] .... [OPCODE,)['Y,) 

-6wo.. -[] .... [) .. -- [) .. -- [] .... [] .. -- [PASS)[O.O) 

Figure 6.15 Algorithm for Weight Adjustment Calculation 

6.3.3 Update Network Weights 

The weights held in the register blocks within the PE's must be updated at the end of each 

training pass. Figure 6.16 shows the majority of the algorithm required to update the weights 

in a network layer consisting of six neurons, although for the sake of clarity the operations 

[PASS] and [REG-ADDJ have been truncated to [PI and [RA] respectively. 
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4-[ I . _ .. (PIID."'u1 IP][t.W 2 .• 1 IPIIl!.wul (RA][AWl,21 [Pllaw!.ll 11 

4-[ I ---- [ I - - - - (PIlAw).,) [PIIAwuJ (RAIItr. .... ).)1 [PIIAwJ.l.1 [PIIAw),!1 

4-[ [ ---- [ I -- -- [ I ---- [PIIAw.,sl (RAII"'w4,.l [PJ[.t\.wul [P][Awu1 

4-[ I - .-- [ I ---- [ I -- -- [ I - - - - IRAII.4wu1 (PIIAw,.,J (PIIAw,.,1 

<4- ( ) ---- i J ---- i J ---- i J ---- I J ---- [PIIAw6.!I1 ]PIIAw6.,t1 

Figure 6.16 Algorithm for Weight Update 

The weight updates are fed into the array rows in reverse order, each of which are contained 

within a [PASS I instruction. They are arranged so that the weight updates are present in the 

correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having the 

updates correctly placed on subsequent cycles. The [REG-ADDI operations are placed so that 

when all PE's in row #1 of the array contain the correct weight adjustment value then the 

current operation within them is [REG-ADDI; this is identical to the method used to update the 

weights in a backpropagation network, as described in section 6.1.4. 

6.3.4 Counter Propagation Timings 

6.3.4.1 Introduction 

All timings for the counter propagation network have been evaluated using the same parameters 

as for the Kohonen networks used in section 6.2.5. This setup information has been shown 

previously in table 6.10, using two networks on a 6-by-6 array of PE's and two networks on a 

12-by-12 array of PE's. This allows for timings for just the Grossberg layer to be evaluated as 

well as for the counter propagation network as a whole, which also uses the timings for the 

Kohonen networks. 

6.3.4.2 Grossberg Layer Timings 

Network timings for the Grossberg network layer are arranged in the same manner as those for 

the backpropagation algorithm in that sufficient start and end delays exist at each stage of the 
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algorithm. The timing charts show two versions of the forward pass element of the algorithm; 

in training mode the patterns are trained one by one, whereas in operational mode the patterns 

can be applied in batches and thereby reduce the effective time for a classification to be made. 

The algorithm names have been truncated as follows: 

OUT = Generation of neural OUT values 

Llw = Calculate weight updates for all neurons 

UPD = Update weights in network 

Table 6.17 shows the timings for a Table 6 17 6x6 Array Timing (small network) . 
network consisting of six neurons, 

with five inputs per neuron and a 

training set size of 25 patterns. A 

training pass for 25 patterns takes 

1,325 cycles, with the forward 

Mode 

Algorithm 

Setup 

First 

Additional 

Cycles Req' d 

Training Mode 

OUT Llw 

I 4 
18 18 

- -
475 550 

Op Mode 

UPD OUT 

- -
12 18 

- I 

300 42 

recognition pass taking 475 cycles. In operational mode, where recognition is done using 

batches of patterns, the recognition pass takes only 42 cycles. 

Table 6.18 shows the timings for a Table 6 18 6x6 Array Timing (large network) . 
network consisting of twelve neurons, 

with five inputs per neuron and a 

training set size of 25 patterns. A 

training pass for 25 patterns takes 

1,500 cycles, with the forward 

Mode 

Algorithm 

Setup 

First 

Additional 

Cycles Req'd 

Training Mode 

OUT Llw 

I 4 

20 20 

- -
525 600 

Op Mode 

UPD OUT 

- I 

15 20 

- 4 

375 117 

recognition pass taking 525 cycles. In operational mode, where recognition is done using 

batches of patterns, the recognition pass takes only 117 cycles. 
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Table 6.19 shows the timings for a Table 6.19 12x12 Array Timing (small network) 

network consisting of twel ve neurons, Mode Training Mode Op Mode 

with five inputs per neuron and a Algorithm OUT Llw UPD OUT 

Setup 1 4 - 1 

training set size of 25 patterns. This First 36 36 28 36 

is identical to the previous network, 
Additional - - - 1 

Cycles Req' d 925 1000 700 61 

except that it is implemented on a 12-

by-12 array of processors rather than using two layers of internal registers per PE on a 6-by-6 

array of processors. A training pass for 25 patterns takes 2,625 cycles, with the forward 

recognition pass taking 925 cycles. In operational mode, where recognition is done using 

batches of patterns, the recognition pass takes only 61 cycles. 

Table 6.20 shows the timings for a Table 6.20 12x12 Array Timing (small network) 

network consisting of twel ve neurons, 

with eleven inputs per neuron and a 

training set size of 125 patterns. A 

training pass for 125 patterns takes 

14,125 cycles, with the forward 

Mode 

Algorithm 

Setup 

First 

Additional 

Cycles Req'd 

Training Mode 

OUT Llw 

1 4 

36 36 

- -

4625 5000 

Op Mode 

UPD OUT 

- I 

36 36 

- I 

4500 161 

recognition pass taking 4,625 cycles. In operational mode, where recognition is done using 

batches of patterns, the recognition pass takes only 161 cycles. 

Table 6.21 

Patterns I Sec Train-Act I Sec Op-Act I Sec 

6x6 (small) 3.77 x 105 2.26 x 106 71.42 x 106 

6x6 (large) 3.33 x 105 11.42 x 106 51.28 x 106 

12xl2 (small) 1.90 x 105 6.48 x 106 98.36 x 106 

12xl2 (large) 1.76 x 105 6.48 x 106 186.33 x 106 

These timing figures give rise to the figures shown in table 6.21, which shows the number of 

patterns that the network can train per second and the rates of neuron activation during both 

training mode and operational mode. 
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During training the Grossberg layer timings are of roughly the magnitude as those for the 

Kohonen layer; the pattern throughput per second is no more than double and the number of 

neuron activations per second is slightly more than triple. 

In operational mode, however, the Grossberg layer excels. Neuron activations in the Kohonen 

layer requires three steps, two of which do not use pipelining to any degree and slow the 

process down drastically. In the Grossberg layer the neuron activations only require a simple 

matrix-vector multiplication, which is an area in which systolic arrays have always had an 

impressive record, and give the network layer an impressive turn of speed. 

6.3.4.3 Counter Propagation Timings 

It is not feasible to produce combined learning times for the full counter propagation network. 

The Kohonen and Grossberg layers of the network train independently, and the Kohonen layer 

must be fully trained before Grossberg layer training can commence. This is due to the fact that 

the input pattern set for the Grossberg layer is the output from a fully trained Kohonen neural 

network, and it is simply not possible to train the Grossberg layer until it can be presented with 

a coherent and consistent input set from a trained Kohonen layer. 

Combined times for the counter propagation network in operational mode are possible, as only 

the forward pass elements of both networks are utilised. The timings have used the same four 

network configurations that have been used throughout sections 6.2 and 6.3. Timings have 

been given for two operational environments: one for pattern processing, where one pattern is 

processed at a time, and one for batch processing, where a number of patterns are processes 

simultaneously. 

Table 6.22 shows the times for a counter propagation network when used in single pattern 

processing mode. It shows the times required for each pattern in the training set to be 

processed, along with the number of patterns that can be processed and the number of neurons 

that can be activated per second at a nominal clock speed of 20MHz. Clearly, the times are 
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affected by the reduction in pipelining available due to only single patterns being presented to 

the network at anyone time. This greatly affects networks implemented on the larger l2-by-12 

array of PE's, as the time lag between input and output is quite excessive. It is because of the 

increased latency of the l2-by-12 networks that leads to a l2-neuron 5-input network being 

more efficient in single pattern mode when implemented on a 6-by-6 array of processors. 

The times in table 6.22 also show that when two networks have an identical number of 

neurons, albeit with a different number of inputs, the processing time required per input pattern 

is identical. This shows that there is no additional cost when adding network inputs to a 

network, so long as the number of inputs is less than the number of neurons. 

T bl 622 C a e . ounter P ropagatlOn mg e S· I P attern T· lmmgs 

Kohonen Grossberg Totals Pat! I Sec Act I Sec 

6x6 (small) 1325 475 1800 2.77 x 105 1.60 x 106 

6x6 (large) 1675 525 2200 2.27 x 105 2.72 x 106 

12x12 (small) 2075 925 3000 1.66 x 105 2.00 x 106 

12x12 (large) 10375 4625 15000 1.66 x 105 2.00 x 106 

Table 6.23 shows the times for a counter propagation network when used in batch pattern 

processing mode. It shows the same information as table 6.22, but for the network in batch 

processing mode instead of pattern processing .. These timings show that the increased use of 

pipelining within the networks, by virtue of processing a batch of patterns together instead of 

just one, have increased the overall efficiency of the networks. 

T bl 623 C a e . ounter P ropagatlOn B hP atc attern T· lmmgs 

Kohonen Grossberg Totals Pat! I Sec Act I Sec 

6x6 (small) 868 42 910 5.49 x 105 3.29 x 106 

6x6 (large) 1242 117 1359 3.67 x 105 4.41 x 106 

12x 12 (small) 646 91 737 6.78 x 105 8.14 x 106 

12xl2 (large) 2996 161 3157 7.96 x 105 9.50 x 106 
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INTRODUCTION 

NEURAL NETWORK 
SOFTWARE 
SIMULATION 

This section describes the soft systolic system written to simulate the systolic array processor. 

The software system itself is described, along with details of the various options available 

within the software. It goes on to describe several test applications that were developed for the 

simulator, with applications available for each of the neural learning algorithms developed in 

section 6. These applications were chosen to demonstrate that the systolic array processor and 

neural algorithms described in sections 5 and 6 were capable of carrying out some of the 

standard neural learning procedures, rather than advanced applications of neural network use in 

the real world. 

7.1 Soft Systolic Simulator 

7.1.1 Simulator Overview 

The soft systolic simulator was written in the 'C++' programming language on an Intel 

Pentium computer running the Microsoft Windows95 operating system. The code was 

developed using the Microsoft Developer Studio environment using Visual C++ V5. The 

simulator will run on any Windows95 or WindowsNT Intel-based computer. It consists of 

several thousand lines of program code, split into several distinct segments: human-computer 

interaction, data acquisition/generation and neural simulation. 
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The software allows the user to set up a set of program instruction codes to use in any 

simulation run, which consists of 12 instructions capable of carrying out any of the operations 

specified in section 5. An additional two alternate instructions, depending on tbe placement of 

a PE in the array, can be set up per opcode slot. 

A project for simulation can be set up for any of the three neural learning methodologies 

supported, with training parameters relevant to the network specified by the user on-screen. 

Data files containing training vectors, and any associated target vectors for supervised learning 

neural networks, are imported into the simulator and then used in a simulation run. 

The simulator can be used in three different modes. The simplest mode, known as direct 

mode, takes a set of neural data, as specified above, and uses it as the basis for a simulation 

run. The user has very little control over the simulation run, bar being able to pause or stop the 

run if convergence looks unlikely (or likely to take too long). In step mode the user can 

process a single pass of the training algorithm, visualising the outputs of the network in a 

separate window. In detailed mode a virtual representation of the array is displayed, with 

details of tbe opcode being processed and the results of the opcode being displayed for each PE 

in the array. The user can step through each single clock cycle of the process, seeing all 

instruction results on-screen at all times. The user is able to switch between the three modes at 

any time, so long as the simulation run has been paused. 

The results generated by any training run are simply text files usable in any computer 

spreadsheet package, witb values relating to the network convergence criteria being arranged so 

that the user can create any representational graph required within the spreadsheet package 

itself. All network weights are also saved from tbe simulator, so that they can be used at a later 

date in a fully trained network that is being used in operational mode rather than training mode. 
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7.1.2 Simulator Data Definitions 

7.1. 2.1 Instruction Set Definitions 

The opcodes for each supported neural learning 

methodology can be set up using the single 

screen shown in figure 7. 1. It shows the various 

options available for each individual instruction. 

The user can select which instruction is displayed 

by clicking on the relevant tab-mark at the top of 

the display - this will bring forward the selected 

instruction dialog box into the display. All 

possible options described in table 5.7 are 

implementable in each dialog, although only two 

alternate opcode definitions per instruction are 

Neural Network Software Simulation 
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.. ~ L.. 

a . l' 

Figure 7.1 Opcode Definition Dialog 

possible. The dialog shows that it is a fairly straightforward process to set up an instruction. 

Some controls are marked as being inactive, such as the sign of the ABS Unit operation, and 

are only activated when other enabling controls are selected. The user is also able to modify the 

name of the instruction in this dialog, and there is a constant [xxxx} marker by the instruction 

name to remind the user of the actual opcode number that they are editing. 

The simulator supports three different instruction sets, one for each of the supported learning 

methodologies, each of which is fully modifiable by the user. Each set of opcodes is stored in 

a separate data fIle, which is loaded in by the application automatically. The user may freely 

modify these instruction sets and save them for later use, but they are not able to overwrite the 

default instruction sets for each of the three neural learning methods. The user may select to 

save the current instruction set via a menu selection; if there is an un-saved modified instruction 

set in memory then the application will prompt the user to save it whenever it is about to be 

destroyed (such as when the application terminates). 
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7.1. 2. 2 Neural Parameter Definitions 

In order to carry out a simulation the user must select a the type of neural network that they 

wish to use and then configure it for the systolic application that they have in mind. The user id 

able to modify the training pammeters for all three neuml network types independent of any 

systolic application that is loaded (if any), and this allows the simulator to be used as a geneml 

purpose instruction set editor. 

A single tab-marked display is 

used modify the pammeters of 

each of the three neural network 

types. This allows the user to 

modify all of the supported 

tmining pammeters for each of '~~~~i~;I~i;~~~~~I~ the three network architectures, ~ 

although it should be noted that 

this display does not have any Figure 7.2 Neural Parameter Definition Lll",lUg 

knowledge of the neural tmining sets themselves. The dialog for the backpropagation network 

is shown in figure 7.2. The user is able to specify the network tmining mtes, the error bounds' 

for the neuml tmining process and dictate the number of neurons in the hidden layers. It should 

be noted that the number of neurons in the output layer cannot be specified through this dialog;, 

as this value is directly dependant on the number of elements in the target output vectorS 

defmed in the neural tmining sets. 

For the Kohonen and counter propagation networks a similar scheme is implemented, with the 

physical layout of their dialog boxes being modified from that shown in figure 7.2 due to the 

differences in the nature of the tmining algorithms. The fourth tab-mark on this display is used 

to select the file locations for the instruction sets, both the default ones for each neural, 
, " 

architecture and any others defined by the user. This allows them to load in any previously 

stored instruction set, as well as to locate a default instruction set. 
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7.1.2.3 Neural Text File Definition 

Each systolic application has an associated text data file, which contains information regarding 

training set data and the types of network that it is valid for. The format for this data file is as 

follows: 

<string> 
<int> 
<int> 

<int> 
<int> <int> 

<float> .... . 
<float> .... . 

<float> 

<float> ..... 

Title of neural network (may be left blank) 
Type of valid neural networks 
Number of training patterns in the set 
Number of distinct training patterns in the set 
Number of inputs / required outputs per pattern 
All inputs for pattern 1 
All required outputs for pattern 1 

All inputs for pattern N 
All required outputs for pattern N 

It is clear that the back- and counter propagation networks can share common training files, as 

they are both supervised networks. As the Kohonen algorithm is unsupervised it would not 

expect any required output values in the text files; hence, any required output data is treated as 

an additional input pattern. The Kohonen and counter propagation networks both use the 

distinct patterns value in order to guess at the number of neurons required in the Kohonen 

layers of both networks; if the value is 0 then the simulator makes it equal to the number of 

patterns in the training set. 

7.2 Backpropagation Learning Applications 

7.2.1 Exclusive-Or Problem 

7.2.1.1 Application Overview 

The exclusive-or problem is the one that almost halted research for 20 years into the field of 

artificial neural networks. In their landmark book Perceptrons [MiPa69] the authors, proved 

that single-layer artificial neural networks were theoretically incapable of solving many 

problems, including the function performed by the simple exclusive-or logic gate. They also 

were not very optimistic about the future: 

The Perceptron has shown itself worthy of study despite (and even because of!) 

it's severe limitations. It has many features that attract attention: its linearity, it's 

intriguing learning theorem and it's clear paradigmatic simplicity as a kind of 

210 



Chapter 7 Neural Network Software Simulation 

parallel computation. There is no reason to suppose that any of these virtues 

carry over to many-layered version. Nevertheless, we consider it to be an 

important research problem to elucidate (or reject) our intuitive judgement that 

the extension is sterile. 

Perhaps some powerful convergence theorem will be discovered, or some 

profound reason for the failure to produce an interesting 'learning theorem' for 

the multi-layered machine will be found. 

(pp 231-232) 

Unfortunately, Minsky and Paperts conclusions were unassailable. Discouraged researchers 

left the field for areas of greater promise and, more importantly, greater funding. The 

breakthrough in the field was to produce a learning algorithm that could train a multi-layer 

network, which is now known as the backpropagation learning algorithm. A very simple test 

of any backpropagation system is the exclusive-or network, as this is the type of linearly 

inseparable application that backpropagation was intended to solve. 

7.2.1. 2 Network Structure 

The architecture of the network to be used is shown in 
INPUTS 

figure 7.3. It shows just two layers of neurons, with 

two neurons in the hidden layer and a single neuron in 

the output layer. This is acceptable as a solution for the 

exclusive-or problem [LippS7], where only a simple 

HIDDEN 
LAYER 

W I 2. I • 

W,,,, 

OUTPUT 
LAYER 

convex open or closed region is required to Figure 7.3 Exclusive-Or Network 

discriminate between the training set input patterns. 

The training set used is a continuous Table 7.1 Exclusive-Or Training Set 

version of the binary exclusive-or Pattern Input A Input B Target 

problem, but with the values optimised 
13/128 13/128 13/128 

2 13/128 115/128 115/128 
for the mathematical accuracy available in 3 115/128 13/128 115/128 

the array processor. Normally, the 4 115/128 115/128 13/128 

continuous values 0.1 and 0.9 are used 
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instead of the binary values for 0 and I. The nearest equivalences for these values in the array 

processor are 13/128 (0:1015625) and 115/128 (0.8984375) respectively. The complete training 

set is given in table 7.1. 

7.2.1. 3 Simulation Run 

Table 7.2 shows all of the training parameters used in the Table 7.2 

simulation run, along with the number of clock cycles 
Exclusi ve-Or Training 

required per iteration. The network trained after 814 

iterations, with a maximum pattern error of 11/128 and a 

maximum system error of 21/ 128, These are acceptable 

errors for the given application, as it allows for full 

differentiation between all of the target output vectors. A 

graph showing the reduction in the pattern error over the 

training run is shown in figure 7.4. 
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Parameters 

Parameter 

Training Rate 

Momentum 

Max Iterations 

Max System Error 

Max Pattern Error 

Cycles / Iteration 

o 
o 
~ 

o ~ o 
o 
M 

o ~ 
o 0 

Iterations 

Figure 7.4 Exclusive-Or Training Run Progress 

7.2.2 Parity Problem 

7.2.2.1 Application Overview 

Value 

96/128 

OFF 

2,500 

26/ 128 

13/128 

317 

(0.75) 

(-0.2) 

(-0.1) 

A common approach when looking for problems to test the backpropagation algorithm is to 

find one which both Minsky and Papert deemed to be a 'hard' problem for a multi-layer 
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perceptron to be able to learn. A classical example amongst such problems is the so-called 

parity problem, in which a network outputs a logic-I if the total number of logic-I inputs to the 

network is odd and logic-O if the total number of logic-I inputs is even (or zero). 

7.2.2.2 Network Structure 

The simplest network that can show this 

example [AIM090] consists of just two layers: a 

single neuron in the output layer and n neurons 

in the only hidden layer, where n is the number 

of inputs to the network. The architecture of the 

network used for this problem is shown in 

figure 7.5. The object of the training process is 

to have the neurons in the hidden layer to learn 

INPUTS 

to recognise the number of inputs that are set to Figure 

logic-I independent of the inputs that are actually 

HIDDEN 
LAYER 

OUTPUT 
LAYER 

set to logic-I; i.e. neuron I in the hidden layer can recognise if one input is logic-I, neuron 2 

can recognise if two inputs are logic-I, and so on. The single output layer neuron just has to 

distinguish between n numbers, discerning whether any particular number is odd or even. 

This application used the value n = 6 for the training run, as processing a neural layer of six 

neurons is the most optimal setup for the 6-by-6 array processor. This gives rise to 2n input 

patterns, each with six components, representing all possible 6-bit binary values; for the sake 

of brevity these input patterns are not listed here. As in the exclusive-or simulation the binary 

inputs 0 and I have been replaced by the closest representable equivalences of the dynamic 

values 0.1 and 0.9, as described in section 7.2.1.2. This method could easily be extended for 

much larger n, although this would dramatically increase the processing time required for each 

additional neuron in the hidden layer, as it doubles the possible number of input pattern 

variations. 
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7.2.2.3 Simulation Run 

Table 7.3 shows all of the training parameters used in the Table 7.3 
Parity Training Parameters 

simulation run. Two separate training runs were carried 
Parameter Value 

out: one containing the entire training set and one 
Training Rate 77/128 (-0.6) 

containing a random selection of 80% of the training set. Momentum 32/128 (0.25) 

This was to see if the neural network was able to 
Max Iterations 10,000 

Max System Error 32 / 128 (0.25) 

generalise the principle behind the parity problem, given Max Pattern Error 19/128 (-0.15) 

the limited mathematical precision available on the array Cycles I Iteration 2,243 (100%) 
1,847 (80%) 

processor. The number of cycles per iteration required 

when using the entire set and when using the reduced set are both shown in table 7.3. 

When using the complete training set the network trained after 6,833 iterations, with a 

maximum pattern error of 19/128 and a maximum system error of 27/128, These errors are 

sufficient, given that the inputs are meant to be equivalent to binary values. A graph showing 

the reduction in the pattern error over the training run is shown in figure 7.6. 

1.2 

... 0.8 
e 
,:; 
c 0.6 

~ 
m 
a. 0.4 

0.2 

0 

Figure 

0 0 
0 0 
~ .. 

7.6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
~ :: '" '" '" '" "' '" ;;; .. ~ 0 '" '" '" '" '" '" '" .. .. .. 

iterations 

Parity Training Run Progress (whole set) 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

'" '" "' '" ;:; .. ~ .. "' "' "' '" '" 

When using 51 of the 64 members of the training set the network trained after 4,822 iterations, 

with a maximum pattern error of 16/128 and a maximum system error of 32/128 , Again, these 
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final error values are sufficient for the problem. A graph showing the reduction in the pattern 

error over the training run is shown in figure 7.7. 
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Figure 7.7 Parity Training Run Progress (limited set) 

7 . 2.3 Simple Pattern Recognition Problem 

7.2.3.1 Application Overview 

0 0 0 0 0 0 
0 0 0 0 0 0 
N on '" ;;; .. ... 
on on on <0 '" 

One common use of the backpropagation learning algorithm is in the field of pattern recognition 

and feature extraction. The network is trained on certain known data, normally taken from a 

near-perfect source, and used in an environment where the input data may be far from perfect; 

an example of this is in a text recognition neural network that has learnt to recognise the 

alphabet but has to deal with character images from an imperfect source, such as a fax machine. 

7.2.3.2 Network Structure 

The network is to be trained on representations 

of the numeric characters 0 to 9 inclusive. Data 

for the characters is extracted from a 5-by-3 

grid of pixels, each of which is either black 

(on) or white (off). The entire training set is 

shown in figure 7.8. This method of using a Figure 7.8 Pattern Recognition Training 

grid of pixels, with the normalised characters 
Set Images 
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projected onto it, has been used successfully in many applications. Burr used this method to 

recognise series of characters which, when used in conjunction with a dictionary filtering 

program, led to recognition of complete English words at an accuracy level of 99.7% [BurrS7]. 

The network structure for this problem can be Table 7.4 Pattern Recognition Training 

done in several ways. A simple method is to 

have a single hidden layer, with the number of 

neurons equal to the number of constituent 

parts of each input vector, and an output layer 

with enough neurons to implement some pre-

defined encoding strategy. For this application 

the hidden layer requires 15 units and the 

output layer requires six units - one to indicate 

Pattern 

'0' 

'I' 

'2' 

'3' 

'4' 

'5' 

'6' 

'7' 

'8' 

'9' 

Set Targets 

Range 

0.1 0.9 0.1 

0.1 0.1 0.9 

0.1 0.1 0.1 

0.1 0.1 0.1 

0.1 0.1 0.1 

0.9 0.9 0.1 

0.9 0.1 0.9 

0.9 0.1 0.1 

0.9 0.1 0.1 

0.9 0.1 0.1 

Indices 

0.1 0.1 0.1 

0.1 0.1 0.1 

0.9 0.1 0.1 

0.1 0.9 0.1 

0.1 0.1 0.9 

0.1 0.1 0.1 

0.1 0.1 0.1 

0.9 0.1 0.1 

0.1 0.9 0.1 

0.1 0.1 0.9 

the input is in either the range 0 .. .4 or 5 ... 9 and five more to indicate which of the five values 

in the recognised range matches the input. Table 7.4 shows the target data values for each 

input pattern (0.9 and 0.1 are shown in the table instead of their nearest representable 

equivalents for the sake of clarity). 

7.2.3.3 Simulation Run 

Table 7.4 shows all of the training parameters used in the Table 7.5 Pattern Recognition 
Training Parameters 

simulation run, along with the number of clock cycles 

required per iteration. The network trained after 11,617 

iterations, with a maximum pattern error of 13/128 and a 

maximum system error of 17/128, These are acceptable 

errors for the given application, as it allows for full 

differentiation between all of the target output vectors. A 

Parameter 

Training Rate 

Momentum 

Max Iterations 

Max System Error 

Max Pattern Error 

Cycles / Iteration 

Value 

96/128 (0.75) 

32/128 (0.25) 

25,000 

19/128 (-0.15) 

13/128 (-0.1) 

14,317 

graph showing the reducing pattern error over the training run is shown in figure 7.9. 
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Figure 7.9 Pattern Recognition Training Run Progress 
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Although this is a fairly trivial example of the backpropagation learning algorithm it does show 

that the architecture and algorithms designed for the backpropagation learning methodology are 

able to successfully cope with such a common problem. 

7.3 Kohonen Application - Pattern Recognition 

7.3.1 Problems Associated with Kohonen Learning 

The most useful property of the Kohonen network is that it has the ability to extract the 

statistical properties of the input data set. Kohonen showed [Koh088] that in a fully trained 

network the probability of a randomly selected input vector being closest to any given weight 

vector is J Ik, where k is the number of Kohonen neurons. This, of course, is the optimal 

distribution of the weights on the hypersphere; this also assumes that all weight vectors are in 

use, which is a situation that can be difficult to realise. 

As described in section 3.2.3.4 it is desirable to distribute weight vectors about the hypersphere 

according to the density of the input vectors that must be separated. As this is impractical to 

implement directly, requiring the placing of more weight vectors near a high density region of 

the input space, approximation techniques must be used. 
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The solution used in this pattern recognition application is to randomise all of the weight 

vectors and then normalise them. This will uniformly distribute the weight vectors around the 

hypersphere, but is unlikely to give an near-optimal distribution for reasons that have already 

been discussed. All input vectors are also normalised, which should help alleviate the 

problems caused by non-optimal hypersphere placement of the weight vectors. The 

randomisation and normalisation processes are not done on the systolic array processor, and 

should be carried out by the host computer before any neural processing is initiated. 

7.3.2 Simulation Strategy 

Due to the problems with weight distribution it was realised that the network may fail to train 

simply due to unfortunate initial values within the network. Therefore, several training runs 

were made with different initial values until a trained network was obtained, and it is this 

successful network that is discussed throughout the rest of section 7.3. 

In order to test for convergence each of the input patterns in the training set are passed through 

the network and the winning neurons for each input are noted. Convergence is deemed to 

occur when each input pattern results in a different neuron firing. 

7.3.3 Network Structure 

The network structure for this application consists of a 

single layer of Kohonen neurons (n = 10), and this is 

shown in figure 7.10. It was anticipated that the 

weights within each neuron would align themselves to a 

single input pattern, firing only when that input pattern 

is present on the inputs to the neuron; this means that the 

network has to contain one neuron per input pattern. 

INPUTS KOHONEN 
LAYER 

OUT, 

OUT 

No neurons within the network are wasted, as each has OUT, 

an input pattern that they are expected to train upon. Figure 
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The input patterns are identical to those specified in section 7.2.3.2, although these inputs do 

not have an associated target vector. The values of the inputs themselves have been 

normalised, which converts each input into a unit vector pointing in the same direction as the 

original vector, using equation 3. 10. 

7.3.4 Simulation Run 

Table 7.6 shows all of the training parameters used in the Table 7.6 Kohonen Training 
Parameters 

simulation run, along with the number of clock cycles 

required per iteration. The network trained after 3, 121 

iterations, which occurred after a number of failed 

training runs; note, this failure is a problem inherent in 

Parameter 

Training Rate 

Max Iterations 

Cycles 1 Iteration 

Value 

90/128 (-0.7) 

10,000 

2, 190 

the Kohonen learning algorithm rather that a problem with the systolic simulator. 

• 

\ I 
t-- - '-- 1 

\ i 

• 
7 

- P..,tt...-n3 
- P.ttwn" 
-P.tt.mS 
- P.tt.rn6 
- P.t1KT11 

• 
." l. 
• - P.tttom8 
2 

/ / 
P ...... , 

\ 

Figure 7.11 Kohonen Training Run Progress 

A graph showing which neurons win for each input pattern is shown in figure 7. 11. It shows 

how each neuron changes it's internal weights over the training run, with some neurons 

winning for multiple input patterns. At certain times during the training run some neurons do 

not win for any of the input patterns. During the course of the training run the network settles 

down, with each neuron in the network winning for just a single input pattern in the training 

set. At this point the network is deemed to have converged. 
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7.4 Counter Propagation Application - Pattern Recognition 

7.4.1 Application Overview 

The idea behind the counter propagation application is to be generate a network that is capable 

of differentiating between a series of images, each of which is allocated an index value. Upon 

presentation of this index value to the network (when the network is in operational mode rather 

than training mode) the actual image bitmap for the appropriate image is output. This identity 

mapping feature of the counter propagation network was previously discussed in more detail in 

section 3.3.1.2. 

Although this bears a strong resemblance to the Kohonen application discussed in section 7.3 

the Kohonen part of the network is different, as it has to take into account the index value 

inputs. Therefore, the Kohonen layer of the counter propagation network cannot use the 

weights from the Kohonen network from section 7.3. 

7.4 .2 etwork Structure 

The index value for the ten input patterns is just a simple binary 

code in the range 0 ... 9. This will require four additional inputs to 

each of the neurons in the Kohonen layer, which will still consist 

of ten neurons. The Grossberg layer will require the same 

number of neurons as there are inputs to the Kohonen layer, as 

this is a requirement of the identity mapping process. The entire 

Table 7.7 
Counter Propagation 
Network Structure 

Parameter Size 

Network Inputs 

Kohonen Neurons 

Grossberg Neurons 

19 

10 

19 

network details required for the counter propagation application is shown in table 7.7, which 

has not been shown in a figure for the sake of clarity; a detailed diagram of the layout of a 

counter propagation network was given in figure 3.13. 

The input patterns are identical to those specified in section 7.2.3.2, with the addition of the 

four index inputs. The values of the input vectors themselves have been normalised, which 

converts each input into a unit vector pointing in the same direction as the original vector, using 

equation 3.10. 
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7.3.3 Kohonen Simulation Run 

Table 7.8 shows all of the training parameters used in the 

simulation run, along with the number of clock cycles 

Table 7.8 
Counter Propagation Kohonen 
Layer Training Parameters 

required per iteration. It also shows the number of Parameter Value 
------------~~-------90/128 (-0.7) 

training iterations aUowed before a test for convergence is 

made. The network trained after 5,117 iterations, which 

occurred after a number of failed training runs. 
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Figure 7.12 Counter Propagation Kohonen Layer Progress 

10,000 

2,790 

A graph showing which neurons win for each input pattern is shown in figure 7.12. It shows 

how each neuron changes it's internal weights over the training run, with some neurons 

winning for multiple input patterns. Note that although the problem is similar to the that 

described in section 7.2 the neuron-pattern mapping shown in figure 7.12 is different from that 

shown in figure 7.11 However, the progress of the training run is fairly similar with regards to 

multiple-pattern winning neurons, which shows that the addition of some index variable inputs 

did not significantly alter the problem with respect to the Kohonen network. Indeed, it is stiU 

patterns 8 and 9 that are the last to converge, which indicates that the basic nature of the 

problem has remained unchanged. 
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7.3.4 Counter Propagation Simulation Run 

Table 7.9 shows all the training parameters used in the Table 7.9 

simulation run, along with the number of clock cycles 

required per iteration. The training rate is gradually 

reduced over the training process, and this application 

Counter Propagation Grossberg 
Layer Training Parameters 

reduced it every 500 iterations of the training algorithm; 

each rate reduction was by 1/128' The network finally 

trained after 7,718 iterations, with a maximum pattern 

error of 13/128 and maximum system error of 28/128, At 

the point of convergence the training rate was equal to 6/128, 

Parameter 

Training Rate 

Max System Error 

Max Pattern Error 

Max Iterations 

Rate Reduction 

Reduce By 

Cycles / Iteration 

Value 

13/128 (-0.1) 

32/128 (0.25) 

13/128 (-0.1 ) 

10,000 

1,000 iterations 

1/128 (-0.01) 

2,210 

The inputs to the Grossberg layer each have an associated target vector, which is the input to 

the Kohonen layer that created the Grossberg layer input. Before the training process for the 

Grossberg layer can begin a mapping between each Kohonen input to Grossberg input must be 

made in order to know what the target vector is for each neuron in the Grossberg layer. This is 

due to the unsupervised nature of the Kohonen algorithm, as there is no way to determine in 

advance of training which neuron in the Kohonen layer will win for each input vector. A 

graph showing the reducing pattern error over the training run is shown in figure 7.13. 
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o 
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Q. 0.4 
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Figure 7.13 Counter Propagation Grossberg Layer Progress 
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INTRODUCTION 

SUMMARY AND 
FURTHER 
RESEARCH 

This thesis has introduced a number of new systolic algorithms for neural network learning, 

under the framework of being suitable for implementation on a custom designed two­

dimensional systolic array processor. This final chapter summarises the work that has been 

presented in this thesis, discussing the more important aspects of the work in more detail. It 

concludes by briefly discussing some areas where further research and expansion on this work 

could prove fruitful. 

8.1 Thesis Summary 

The work presented in this thesis has previously been summarised in section 1.5 on a chapter 

by chapter basis. However, a re-iteration of this will help to highlight the achievements made 

during the course of this study. A different partitioning scheme is used throughout section 8.1 

as compared to section 1.5, which may show the success of the work in a slightly different 

light. 

8.1.1 Increasing Computational Capacity 

Chapter 1 gave a general overview on the history of the field of computing, with special 

reference to the field of parallel architectures, whilst Chapter 2 described the techniques behind 

various fabrication methodologies, with the associated methods for testing digital logic, and 

also discussed systolic array architectures in more detail. 
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These two sections showed that there are, basically, two ways in which computer performance 

can be improved in terms of computational capacity. The first, and most costly, is to increase 

the efficiency of the VLSI fabrication process, by increasing circuit density, reducing feature 

sizes and minimising switching time. Although it seems that the ever-increasing performance 

of VLSI must eventually end, due to the inherent difficulties with the silicon process, mM have 

recently introduced [mM-98] a copper-tracked fabrication process, as opposed to aluminium­

tracked, which has drastically reduced switching times for little additional fabrication cost; this 

does not take into account the massive non-recurrent research expenditure and the cost of re­

tooling fabrication plants in order to cope with this fundamental change. Although silicon 

techniques are reaching the frontiers of their capacity there is still plenty of life left in the 

technique. 

The other method for increasing computational capacity is to use some form of parallel 

architecture that employs multiple processing units working simultaneously on a single task. 

This may involve exploiting pipelining, utilising multiple identical PE's in a MIMD array or 

having a client-server approach based around a multiple-SIMD architecture where PE's are 

allocated to multiple tasks on demand; a mixture of these techniques is not unusual on the same 

device, with the TMS320C8x family of digital signal processing chips from Texas Instruments 

being configurable in several different parallel methodologies [TI-95]. 

In order to maximize the computational capacity of any device the design would have to keep 

track of current fabrication technology in order to maximize the exploitation of silicon, as well 

as embrace parallelism as much as possible; the chip architecture presented in this thesis 

encompasses both of these areas. The parallel array architecture used provides a reconfigurable 

array that allows MIMD, multiple-SIMD and isolated SIMD paradigms. The use of a re­

programmable instruction systolic architecture keeps the instruction set per PE very small and 

efficient, with all instructions completing within a single cycle. By choosing to implement all 

of the silicon design in VHDL the design is, effectively, fabrication process independent - all 

that is required is to keep pace with advances in silicon (or other) fabrication is that a fabrication 
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process has an efficient VHDL compiler for the design to be implemented on. VHDL compiler 

libraries are now released in much the same way that full- and semi-custom silicon CAD 

packages release libraries for new fabrication processes. Although some re-design work may 

be required in order to fully optimize a VHDL design for a particular process this is not as time 

consuming as re-designing the whole system. Because of this a VHDL design can always be 

implemented using the most up-to-date fabrication methodologies. 

8.1.2 Hardware Implementation of Neural Networks 

Chapter 3 gave a general history and overview of the neural network learning methodologies, 

discussing various algorithms and some aspects of the biological neural system upon which all 

of the field is based upon. Chapter 4 went on to describe some practical implementations of 

neural networks, both in software and hardware VLSI systems. 

These two sections describe the wide variety of possible implementations of neural networks, 

some of which bear more of a resemblance to current models of the biological nervous system 

than others. The learning algorithms can be split into two distinct camps: supervised and 

unsupervised. Both types have their own relative advantages and disadvantages, both in terms 

of functionality and reliability. For example, although the back-propagation algorithm can be 

proven to be able to distinguish between all members of a training set it relies on infinitesimally 

small adjustments to the neural weights between passes. This is obviously impractical, so 

larger steps must be made in order to make an implementation possible; this, however, leads to 

the possibility of the learning process entering a state of paralysis, being unable to learn beyond 

a certain point. Unfortunately, this learning algorithm is by far the most frequently occurring in 

industry, mainly due to its simplicity - implementations of it are all too often far from perfect. 

It would seem that for a closed system, where the neural network must operate in a real-time 

environment and modify its behaviour to suit, an unsupervised network would be the way 

forward. In an embedded system the network would be able to recognise when its 

environment had changed substantially and would be able to re-learn (or update) its 
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environment. This would require some external network supervision and the use of a data 

dictionary in order to recognise when the environment had changed, but the network itself 

would be entirely responsible for the learning process. Unfortunately, unsupervised learning 

algorithms are not suited to all problems, and the level of suitability can only be discovered 

through experimentation. 

One consideration that must be taken into account when designing a neural network system is 

speed: software is slow, hardware is fast. Unfortunately, hardware solutions tend to be fixed 

to a specific learning methodology and also have practical limits on the number of artificial 

neurons that they contain. Software solutions can be extended to, modified or just plain 

replaced as time goes by, but a standard hardware solution cannot be modified at all. 

However, the speed of a hardware system is often without comparison; whilst a software 

system may be able to carry out a particular computation in a few mill i-seconds, a logically 

equivalent hardware system could carry it out in micro-seconds. Some compromise between 

hardware and software must be sought. 

A MIMD parallel architecture implemented in hardware using VHDL, with each PE in the 

device having re-programmable micro-code, would allow a software neural network to be 

implemented in high-speed hardware. With the PE's being optimised for matrix-vector 

multiplications the neural algorithms will be able to take full advantage of the performance of its 

hardware environment whilst retaining the flexibility of a software-based system. 

8.1. 3 Practical Advantages of Study 

A number of practical advantages in the field of hardware-based neural networks have been 

gained through the work presented in this study. The choice of architecture for the neural 

networks in itself as described in the previous two sections is a major benefit in its own right, 

as it could allow low-cost high-performance hardware neural networks, so will not be 

discussed in any more detail here. However, the other major benefits of this study will now be 

looked at in a little more detail. 
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i) Reprogrammable Instruction Sets 

The micro-code within each of the PE's on the systolic array device can be re-programmed to 

suit any particular task, be it neural network based or otherwise. This vastly increases the 

scope of the architecture as it is not fixed to just a single learning paradigm - many different 

training methods can be employed on a single hardware device. 

The novel feature of allowing each PE to be uniquely programmable, in that each PE can have 

an entirely different micro-code set from any other PE in the device, further enhances this re­

programmability, as the restriction of allowing only 16 instructions per PE is greatly alleviated. 

In this manner more complex algorithms could be implemented on the architecture, even though 

they may require many more than 16 unique instructions. 

ii) Multiple Result Outputs 

The result from an operation within any PE can be sent in many directions; to the PE to the 

east, to the south, to the local registers or to a combination of the three. This allows the 

intelligent routing of partial results around the systolic array, implying that part of the array can 

be used as the main processing path for an operation yet other PE's within the array can be 

utilised in calculating partial results that may be required later in a calculation. 

As each row and column of PE's within the systolic array can be processing at any given clock 

cycle it is possible for every row of the array to output a result to the outside world on every 

clock cycle. This allows for multiple calculations to be carried out at any time, albeit with the 

restriction that they most likely have to share some common data. This facility to have a single 

instruction/data input stream generate multiple results further increases the processing capacity 

for the architecture. Unfortunately, the problem with all such parallel architectures remains, in 

that in order to take full advantage of this type of mUlti-processing the software designer must 

pay close attention whilst implementing any algorithm so that it fully utilises such features. 
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iii) Single Cycle Multiply-and-Accumulate 

One of the most common operations for many neural network learning paradigms is the matrix-

vector multiplication operation. This consists of a repeated multiply-and-accumulate 

instructions (MAC) for each element of the result vector, and this operation is one of the most 

highly suited to implementation in a systolic array. 

As it was likely to be an integral part to any hardware implementation of a neural network the 

systolic array architecture described in this study was designed s!lch that a MAC operation 

could be carried out simultaneously in every PE in just a single clock cycle. Although the 

architecture is far from unique in this respect it was fundamental in the design of the 

architecture, as without a single cycle MAC operation the architecture may not have been 

viable. 

iv) Function Unit Configurability 

The three functional units within each PE, the comparator, the adder and the multiplier, had few 

restrictions on the source of either of their two inputs or of the destination for their result 

output; i.e. an instruction could use any of the functional units in practically any combination. 

This increases the flexibility of each of the 16 operations possible within each of the PE's, as 

each operation can be made fairly complex with respect to the calculation carried out and on the 

destination of the result. 

Both the multiplier and the adder contain in-built saturation of the results, whereby any result 

generated is replaced by either the maximum or minimum value representable within a PE if the 

result has overflowed or underflowed. Results can be further restricted between a range of two 

numbers, programmable on a PE-by-PE basis, and this limit can be enabled or disabled per 

instruction. Provision of both saturation and conditional range limiting allows an algorithm to 

keep close track of a calculation and ensure that limiting values are never exceeded. 
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v) Program Independent Operation 

Although implicit in the architecture of a systolic array device a software program running on 

the architecture requires no external controlling influence regarding the internal operation of the 

program. The external controller provides only data values and an algorithm, and the algorithm 

itself is fixed in advance; the non-existence of internal loops, as is normal in systolic arrays, 

implies that such control is not required. Hence, the complexity of the external controller does 

not have to be too advanced. 

8.2 Further Work 

There are a number of enhancements to the architecture presented in this study that could 

increase the complexity of problems that the device is able to handle. These enhancements, 

although potentially fruitful, were not fully investigated in this study as they were considered 

secondary in importance to finding an architecture that suited the soft-systolic implementation 

of neural networks. However, if any work were carried out in the future that might lead to the 

fabrication of a VLSI device then these ideas should be investigated more fully, as their 

incorporation into the architecture presented here would increase the commercial viability of any 

devices produced. 

The first of these, the increase in capacity of the on-board PE micro-code, is a benefit in its 

own right. However, the other enhancements proposed in this section would not be possible 

unless this increase was made. Hence, although the increase itself is not a great technology 

feat, it is discussed first in order to show other benefits that would arise from it. 

8.2.1 Increased Micro-code Capacity 

It would be advantageous to increase both the depth and breadth of the capacity of the PE 

micro-code. This would increase the complexity of the existing instructions, as well as 

increase the number of instructions as a whole. 
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One of the main reasons for not carrying out this work at this stage is that the current functional 

units within a PE do not require a more complex instruction word, nor do the neural systolic 

algorithms require any more complexity. Another reason is that with 12-bits of data and 4-bits 

of instruction code the input and output for each row of the systolic array was 16-bits - this was 

very convenient in the design of the neural systolic algorithms, and also served to keep the 

number of external device I/O pins to a manageable number. 

Other neural network training methodologies that may benefit from hardware implementation, 

such as the Hopfield network or the ART paradigms, are more complex than those 

implemented in this work. Practical implementations would probably require a larger and more 

varied instruction set than that implemented here. 

The field of signal processing, which now encompasses the fields of audio and visual 

processing, also benefits from hardware implementations. Some of the popular algorithms, 

such as the discrete cosine transforms used in many image compression techniques, are 

possible on the systolic architecture, but are only really plausible when using one dimension of 

data; such techniques require two-dimensional data as input and these would not be possible on 

the architecture unless the micro-code was increased in both depth and breadth. 

8.2.2 Index Registers 

The four registers within each of the PE's can be used for either instruction source data or 

result destination data. Only a single register is ever active during one clock cycle, but this 

register can be read from and written to in the same cycle. During the operations used in the 

systolic algorithms that have been developed there has only been the need to access a single 

register per clock cycle, with the active register being selected via the [SWITCH] operation. 

However, this operation has the drawback in that all PE's in the same column process this 

operation. 
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Hence, it may beneficial to any algorithms developed in the future for the systolic architecture 

to include the facility to allow an instruction op-code to specify both the source and destination 

register that it requires. This may be hard-wired into the micro-code itself, such that a 

particular instruction always uses the same source and destination register pair. It could also be 

linked in to a set of mUltiplexors and temporary store so that the result of the previous 

instruction selects the register pair for the next instruction. 

As well as allowing for the implementation of more complex algorithms this enhancement to the 

systolic architecture would also speed up some existing algorithms - they would not have to be 

liberally sprinkled with [SWITCH) instructions. Although this may only save one cycle per 

pass of an algorithm stage these savings will build up, eventually amounting to a saving of a 

few percent. 

8.2.3 Conditional Instructions 

In the systolic architecture all instructions are processed as the PE receives them on its North­

South input (unless it is locked). There is no capacity for having any functional units within 

the PE operate only if a value is less than, greater than, equal to or not equal to any particular 

value, as is possible in more conventional processors. 

It would be advantageous to some algorithms to conditionally transform some operations to 

[PASS) instructions dependant on some other PE input condition. This could be linked directly 

to the comparator unit, so that an addition (and result storage) only occurred if some externally 

requested condition were met. It may also be possible to split an instruction so that a choice 

between two operations occurred; i.e. a multiply if the condition was met and an addition if the 

condition was not met. 

Conditional instructions, however, introduce an element of uncertainty into the systolic 

architecture and into the algorithms that run on it. The external device controller would no 

longer be absolutely certain how long a particular stage of an algorithm will take to execute if it 
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included conditional instructions. Care would need to be taken with the external controller, as 

it may have to modify its instruction stream in order to react to a conditional instruction, 

whereas without conditional instructions the external controller does not have to react to any 

results in this manner. However, as long as sufficient care is taken at the algorithm design 

stage the use of conditional instructions could prove very beneficial to some algorithms, and 

this could lead to extremely powerful algorithms being implemented in relatively inexpensive 

VLSI devices. 

8.2.4 Multiple Processing Paths 

The functional units within each PE are, effectively, independent of one another, although they 

all share a common final output port. There is no technical reason why the results from the 

functional units cannot be diverted along different output paths; e.g. the adder result goes to the 

West-East port, the multiplier result goes to the North-South port and the comparator result 

goes into some destination index register. 

This complicates the internal PE architecture and the micro-code by a large degree, although the 

bulk of the re-design effort would be in the internal data routing, multiplexing and control 

rather than in the functional units themselves (which would remain virtually untouched). Other. 

internal units, such as the result range limiter, may have to be duplicated around each functional 

unit rather than act as a shared common resource. 

This enhancement would vastly increase the computational power of the systolic architecture, 

but it would greatly complicate the algorithm design process. The combination of conditional 

instructions linked with mUltiple processing paths would make the timing calculations for an 

algorithm stage rather complex and, unfortunately, extremely critical. However, the rather 

large amount of effort required to implement this is likely to be justified given the improvement 

in raw processing power that it would produce. 
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8.3 Final Comments 

Since the development of the digital computer the technology associated with it has evolved at 

an extremely rapid rate. However, although performance has improved tremendously in the 

last fifty years the demands of the end-user have increased also. Engineers, scientists and 

researchers are constantly striving to both improve computing performance whilst still reducing 

the overall cost of the computer system. 

Systolic array architectures are a very powerful approach to exploiting massive parallelism with 

an absolute minimum of communication overheads. Due to their regularity of structure and 

heavy use of local communication, they are very amenable to VLSI implementation. 

Drawbacks with such implementations, notably the prohibitive cost and the inflexibility of 

some fixed hardware solutions, have led to systolic arrays VLSI implementations to be few and 

far between. By using VHDL as the target hardware description language, and testing a design 

before final fabrication using inexpensive field-programmable gate array devices, the cost 

aspect has become less of a burden. Also, by having a systolic array that is completely re­

programmable the systolic designs can be made extremely flexible. 

This thesis has shown that systolic arrays are capable of handling computationally intensive 

applications and that they are a powerful form of massively parallel processing. It also has 

shown that the field of artificial neural networks can benefit hugely from implementation in 

hardware. The work presented in this thesis has shown that systolic arrays can be adapted to 

implement neural networks very effectively. When this implementation is in a re­

programmable VLSI device its performance surpasses any software system and is on a par 

with, if not superior to, any other fixed hardware implementation of an equivalent neural 

algorithm. 
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AND VHDL CODE 

A.l Basic Circuit Elements 

A .1.1 2-to-l Multiplexor 

This is a data selector. It takes in two separate I-bit data values, A 

and B, and outputs one of the them on the output line OUT after a 

short delay. The signal to be output is chosen based on the value 

of the third input SEL. As the circuit is not clocked in any way it's 

output is dependent on changes on all three input signals. The 

VHDL code for this circuit is shown below, and a schematic of the 

circuit itself is shown in figure A.1. 

SEL: MUX switch 
-- A,B: Input values 
-- OUT: Output value 

entity MUX_2 is 
port (SEL: in BIT; 

A, B: in BIT; 
OUT: out BIT); 

end MUX_2; 

architecture MUX_UNIT_2 of MUX_2 is 
begin 

process (SEL, A, B) 
variable TEMP: BIT; 

begin 
case SEL is 

when '0' => TEMP := A; 
when '1' => TEMP := Bi 

end casei 
OUT <= TEMP after 500 ps; 

end process; 

SEL 

~ 
A_ 

B 

::E _MUX 
..... 
N 

SEL SEL 

A --+-GH--, 

B--H~t---' 

Figure A.l 
2-to-1 Multiplexor 

OUT 
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A.1. 2 4-to-l Multiplexor 

This is a data selector. It takes in four separate I-bit data values, A, B, C and D, and outputs one 

of the them on the output line OUT after a short delay. The signal to be output is chosen based 

on the value of the fifth input SEL (0: 1). As the circuit is not clocked in any way it's output is 

dependent on changes on all five input signals. The VHDL code for this circuit is shown 

below, and a schematic of the circuit itself is shown in figure A.2. 

A-+Cr+---+-Cr+--, 

D-+CJ-+---+-CH---' 

Figure A.2 4-to-1 Multiplexor 

SEL(2): UX switches 
-- A,B,C/D: Input values 
-- OUT: Output value 

SEL[O:ll. 

OUT A~ B_ Sl _OUT 
C .... 
D ..;. 

entity MUX_4 is 
port (SEL: in BIT_VECTOR(O to 1); 

A, a , C, D: in BIT; 
OUT: out BIT); 

end MUX_4; 

architecture MUX_UNIT_4 of MUX_4 is 
process (SEL, A, B, c, D) 

variable TEMP: BIT; 
begin 

case SEL is 
when "QO" 
when "01" 
when \\10" 
when "11" 

end casei 
OUT <= TEMP 

end process; 
end MUX_UNIT_ 4; 

=> TEMP 
=> TEMP 
=> TEMP 
=> TEMP 

after 1 

:= A; 
.- B; 
:= C; 
:= D; 

nSi 
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A.1.3 D-Type Flip-Flop 

This is a I-bit data store. Upon a CLOCK event if the CLOCK is high then the data on the input 

data D is read and stored in the internal store Q after a short propagation delay. The value stored 

in Q is always available at the output of the flip-flop. The circuitry within the shaded area is a 

standard S-R flip-flop. The VHDL code for this circuit is shown below, and a schematic of the 

circuit itself is shown in figure A.3 - note that the simple VHDL code, which is the standard 

definition of a D-type flip-flop, belies the complexity of the circuit. 

D 

CLOCK 

Figure A.3 D-Type Flip-Flop 

CLOCK: System clock 
-- D: Input data 
-- Q: Output data 

entity D_FLIP_FLOP is 
port (CLOCK, D: in BIT; 

out BIT) Q: 

architecture SYNC_DFF of D_FLIP_FLOP is 
process (CLOCK) 
begin 

if ((CLOCK ~ '1') and CLOCK'EVENT) then 
Q <= D after 2 ns; 

end if; 
end process; 

end SYNC_DFF; 

A. 1. 4 D-Type Flip-Flop with Reset 

CLOCK I 
v 

D_ t: • -Q 

Q 
Q 

This is a I-bit data store. Upon a CLOCK event if the CLOCK is high then some data is stored in 

the internal store Q; if the input RESET is not set then the data from the input D is stored after a 

short propagation delay, else a logic-O is stored after an even shorter delay (as the value is 

sourced directly from the power supplies) - in an S-R flip flop the input pair "01" guarantees 

the output to be zero regardless of it's previous value. The value stored in Q is always available 
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at the output of the flip-flop. The VHDL code for this circuit is shown below, and a schematic 

of the circuit itself is shown in figure AA. 

RESET 

D 

CLOCK-+~ __ ~2-/ 

Figure A.4 D-Type Flip-Flop with Instant Reset 

CLOCK: System clock 
RESET: Hard reset 
D: Input data 
Q: Output data 

entity D_FLIP_FLOP_RES is 
port (CLOCK: in BIT; 

RESET, D: in BIT; 
Q: out BIT) 

end D_FLIP_FLOP_RES; 

architecture SYNC_DFF_R of D_FLIP_FLOP is 
process (CLOCK) 
begin 

if ((CLOCK = '1') and CLOCK'EVENT) then 
if (RESET = '0') then 

Q <= D after 2 ns; 
else 

Q <= 0 after 500 ps; 
end if; 

end if; 
end process; 

end SYNC_DFF_R; 

A.1. 5 Half Latch 

CLOCK 

RESET_ ~ 

~ 
Q 

D_ 

This is a pseudo- I-bit data store. Any data on the input line D is stored in the internal value S 

so long as the CLOCK signal is both high and stable (as indicated by the internal signal CHS). 

The process is dependent on a change in either D or CLOCK. The negation of the stored value S 

is made available at the circuit output Q at all times. The VHDL code for this circuit is shown 

below, and a schematic of the circuit itself is shown in figure A.S. Note, this circuit does not 
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take into account power leakage at the CLOCK----, 

capacitor C - as long as the clock phase in 

use is regular and has a period of lOOns or 

less then the effect of the leakage should be 

negligible. 

D 

CLOCK: Clock phase 
-- D: Input data 

Output data 

D -l~~~ S [>>----.~ Q 

CHS lc -- Q: 

entity HALF_LATCH is 
port (CLOCK, D: in BIT; 

Figure A.S 

Q: out BIT) 
end HALF_LATCH; 

architecture TRANSP_HALF LATCH of HALF_LATCH is 
process (CLOCK, D) 

signal S: BIT; 
begin 

if (( CLOCK = '1') AND CLOCK' STABLE) then 
S <= D after 500 ps; 

end if; 
Q <= not S after 500 ps; 

end process; 
end TRANSP_HALF_LATCH; 

A.1.6 3-Input Majority Function 

T 
Half Latch 

This circuit takes three binary inputs, A, Band C, producing a single value RES. If at least two 

inputs are set high then RES is also high, whereas if at most one input is set high then RES is set 

low. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is 

shown in figure A.6. 

-- A,B,C: Input Values 
-- RES: Output Value 

entity MAJORITY is 
port (A,B,C: in BIT, 

out BIT); RES: 
end MAJORITY; 

architecture MAJORITY_3 of MAJORITY is 
component NAND2 
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port (A, B: in BIT; RES: out BIT); 
end component; 
component OR2 

port (A, B: in BIT; RES: out BIT); 
end component; 
signal Tl,T2,T3: BIT; 

begin 
Nl: NAND2(A, B, Tl); 
01: OR2(A, B, T2); 
N2: NAND2(C, T2, T3); 
N3: NAND2(T1, T3, RES); 

end MAJORITY_3; 

A T1 

B 

T2 

C 
T3 

Figure A.6 3-Input Majority Function 

A.1. 7 Negative Clock Open Latch 

RES 

Circuit Designs & VHDL Code 

A-. .... ... 
·C 

B-' 0 -.RES 
'(i 

C-. ~ 

This is a I-bit data store. Throughout the stable negative edge of the CLOCK input (as indicated 

by the internal signal CLS) the data present on the input D is stored within the cell. The contents 

of the store are always available at the output Q, although newly stored inputs are not output 

until the following clock cycles (implying that read/write in a single cycle is possible) Upon the 

stable positive edge of the CLOCK input (as indicated by the internal signal CHS) the data within 

the cell cannot be altered and is cycled around the circuit. The VHDL code for this circuit is 

shown below, and a schematic of the circuit 

. itself is shown in figure A.7. 

CLOCK: System Clock 
-- D: 
-- Q: 

Input data 
Output data 

entity NEG_OPEN_LATCH is 
port (CLOCK, D: in BIT; 

Q: out BIT) 
end NEG_OPEN_LATCH; 

architecture NEG_LATCH of 
NEG_OPEN_LATCH is 

process (CLOCK, D) 

CLOCK 

CLS 

CHS 

Figure A.7 

D 

"><>--+ Q 

CHS 

Negative Edge Open 
Latch 
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begin 
if (CLOCK'STABLE) then 

if (CLOCK = '0') then 
S <= D after 500 PS; 

else 
S <= Q after 500 PS; 

end if; 
end if; 
Q <= S after 1 ns; 

end process; 
end NEG_LATCH; 

A.2 Data Storage Units 

A . 2 .1 PE Input Register 

This is a l6-bit data storage register. It is used to hold the operation code and data input to the 

PE from all four cell edges. It stores the data on the input IP on the rising edge of the clock in 

a series of D-type flip-flops. This data is made available at all times on the output OP. The 

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in 

figure A.S. 

CLOCK 

:; 
IP[O:15)_ .s _OP[O:15) 

~ 

IP[O:15) --.-------~-------­

CLOCK--~--~----~~~----

(0) (1) 
OP[O:15) ----~~~~~~--~ 

Figure A.S 

CLOCK: 
-- IP(16): 
-- OP(16): 

PE Input Register 

System clock 
Input data 

Output data 

entity PE_INPUT_REG is 

(15) 

generic (START: INTEGER := 0; STOP: INTEGER := 15); 
port (CLOCK: in BIT; 

IP: in BIT_VECTOR (START to STOP); 
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oP: out BIT_VECTOR (START to STOP)); 

architecture OP_INPUT_REG of PE_INPUT_REG is 
component D_FLIP_FLOP 

port (CLOCK, D: in IT; Q: out BIT); 
end component; 

begin 
process (CLOCK) 
begin 

INST_ALL: for K in START to STOP generate 
DFF: D_FLIP_FLOP port map (CLOCK, IP(K), OP(K)); 

end generate INST_ALL; 
end process; 

end OP_INPUT_REG; 

A.2.2 PE Output Register 

This is a l6-bit data storage register. It is used to hold an operation code and a data value to be 

output from the PE from all four cell edges. It stores the data on the input I P throughout the 

negative edge of the clock in a series of negative edge open latches - these are used instead of 

the D-type flip-flops of the input register as the output of this register is the input to the other, 

so the date on the output OP must be stable before the rising edge of the clock. This data is 

made available at all times on the output OP. The process is dependent on the value of CLOCK as 

well as the value of IP. The VHDL code for this circuit is shown below, and a schematic of 

the circuit itself is shown in figure A.9. 

CLOCK 

IP[O:15] ! _OP[O:15] 

[f 

IP[O:15] 

CLOCK--+---'---~~~~----

[0 ) [ 1) 

OP[O:15] --------~~------~ 

Figure A.9 PE Output Register 

(15) 
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CLOCK: System clock 
-- IP(16): Input data 
-- OP(16): Output data 

entity PE_OUTPUT_REG is 
generic (START: INTEGER := 0; STOP: INTEGER := 15); 
port (CLOCK: in BIT; 

IP: in BIT_VECTOR (START to STOP); 
OP: out BIT_VECTOR (START to STOP»; 

end PE_OUTPUT_REG; 

architecture OP_OUTPUT_REG of PE_OUTPUT_REG is 
component NEG_OPEN_LATCH 

port (CLOCK, D: in BIT; Q: out BIT); 
end component; 

begin 
.process (CLOCK, IP) 
begin 

INST_ALL: for K in START to STOP generate 
DFF: NEG_OPEN_LATCH port map (CLOCK, IP(K), OP(K»; 

end generate INST_ALL; 
end process; 

end OP_OUTPUT_REG; 

A.2.3 PE Internal Register Block 

A. 2 .3.1 Register Unit 

This is a 12-bit data storage register. It is used to hold a data value within the PE for use in the 

execution of any current or future instructions. It uses a series of negative-edge latches to store 

data on the input IP internally when the CLOCK is low and the LOAD signal is high. The data 

within the register is available at all times on the output OP. The process is dependent on the 

value of CLOCK as well as the value of IF; it is not dependent on LOAD as this signal is stable 

throughout a clock cycle, changing only at the beginning of a clock cycle in response to a new 

instruction code. The VHDL code for this circuit is shown below, and a schematic of the 

circuit itself is shown in figure A.IO. 

CLOCK: System clock 
-- IP(12): Input data 
-- OP(12): Output data 

entity INTERNAL_REG is 
generic (START: INTEGER := 0; STOP 
port (CLOCK: in BIT; 

LOAD: in BIT 

INTEGER : = 11); 
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IP: in BIT_VECTOR (START to STOP); 
OP: out BIT_VECTOR (START to STOP)); 

end INTERNAL_REG; 

architecture PE_INTERNAL_REG of INTERNAL_REG is 
component NEG_OPEN_LATCH 

port (CLOCK, D: in BIT; Q: out BIT); 
end component; 
signal MOD_CLOCK: BIT; 

begin 
process (CLOCK, IP) 
begin 

MOD_CLOCK <= (not CLOCK) nand LOAD after 1 ns; 
wait on MOD_CLOCK; 
INST_ALL: for K in START to STOP generate 

DFF: NEG_OPEN_LATCH port map (MOD_CLOCK, IP(K), OP(K)); 
end generate INST_ALL; 

end proceSSi 
end PE_INTERNAL_REG; 

LOAD --~ 

CLOCK 

Figure A.tO 

CLOCK 

LOAD_ I 
IP[O:l1]_ j _OP[O: 11] 

IP[O:l_l~]+-______ ~ ______ __ 

(0) [1) 
OP[O:ll] ----------~------~ 

Register Block Internal Register 

A. 2.3.2 Active Register Selector 

(11) 

This is an internal control signal generator and data store. The selector holds a 2-bit value to 

indicate which of the four internal registers is currently active; the load signals on the registers 

and an output multiplexor block takes data from the selector. Data on I P is stored in the 

internal registers whenever a [SWITCH) instruction is received by the PE. The outputs from the 

regusters are available on OP at all times. These signals are later sent directly to the multiplexor 

block without any further processing. They are also combined with the LOAD input to ensure 

that only the active register receives any external LOAD instruction. The VHDL code for this 
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circuit is shown below (minus the combinational logic for the generation of the internal signal 

SWITCH_OP), and a schematic of the circuit itself is shown in figure A.ll. 

CLOCK: 
IP[2] : 
LOAD: 
OPCODE[4] : 
MUX[2] : 

System Clock 
Current input data 
RegLoad-Op received 
Current Opcode 
Output MUX signals 

INT_LD[4]: Load output signals 

entity REG_SELECT is 
port (CLOCK: in BIT; 

LOAD: in BIT; 
IP: in BIT_VECTOR (0 
OPCODE: in BIT_VECTOR (0 
MUX: out BIT_VECTOR (0 
INT_LD: out BIT_VECTOR (0 

end REG_SELECT; 

to 1) ; 
to 3) ; 
to 1) ; 
to 3»; 

architecture PE_REG SELECT of REG SELECT 
component INTERNAL_REG 

generic (START, STOP: INTEGER) 
port (CLOCK, LOAD: in BIT: IP: in BIT_VECTOR (START to STOP); 

10: out BIT_VECTOR(START to STOP»; 
end component; 
component MUX_2 

port (SEL, A, B: in BIT; OUT: out BIT); 
end componenti 
signal SELECT: BIT_VECTOR (0 to 1); 
signal T1, T2,. SWITCH_OP: BIT; 

begin 

-- See if current opcode is [SWITCH] 

T1 <= (not OPCODE(O» nor OPCODE(l); 
T2 <= OPCODE(2) nor OPCODE(3); 
SWITCH_OP <= T1 and T2; 

-- Store new 'reg-no' in register 

LTC: INTERNAL_REG generic map (0, 1) 
port map (CLOCK, SWITCH_OP, lP, SELECT); 

-- Generate reg-block load signals 

MXO: MUX -
MX1: MUX -
MX2: MUX_ 
MX3: MUX -

2 port 
2 port 
2 port 
2 port 

map 
map 
map 
map 

(LOAD,O,SELECT(O) nor SELECT(l), INT_LD(O»; 
(LOAD,O,SELECT(O) nor not(SELECT(l), INT_LD(l»; 
(LOAD,O,not(SELECT(O» nor SELECT(l) , INT_LD(2»; 
(LOAD,O,SELECT(O) and SELECT(l) , INT_LD(3»; 

-- Copy output of flip-flops to multiplexor block 
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MUX(O) <= SELECT(O); 
MUX(!) <= SELECT(!); 

end PE_REG_SELECT; 

CLOCK 

MUX[O:l] 

MUX[O:l] 

Figure A.ll Register Block 'Active' Selector 

A.2.3.3 Main Register Block 

Circuit Designs & VHDL Code 

CLOCK 

This is a multiple storage unit with a multiplexed output. The internal PE register block 

consists of four 12-bit register units, as shown in figure A.IO. Each register unit receives 

identical copies of the input data lP, but with individual instances of lNT_LD, as only one 

register unit is designated as being 'active'. The 12-bit outputs from each of the register units 

are fed into 12 instances of a 4-to-1 multiplexor, arranged and controlled such that the 12-bit 

output from the register unit that is currently active is forwarded on out of the register block. 

The output OP( 12) from the multiplexor block is available at all times. The VHDL code for this 

circuit is shown below, and a schematic of the circuit itself is shown in figure A.12. 
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CLOCK: System clock 
IP(12) : Input data to be stored 
INT_LD(4) : 
SEL (2) : 

Load signal for active register 
MUX control signal 

OP(12) : Output of active register 

entity REG_STORAGE is 
port (CLOCK: in BIT; 

IP: in BIT_VECTOR (0 
BIT_VECTOR (0 INT_LD: in 

SEL: in BIT_VECTOR (0 

out BIT_VECTOR(O OP: 
end REG_STORAGE; 

to 11) ; 

to 3) ; 
to 1) ; 
to 11)) ; 

architecture PE_REG_STORAGE of REG_STORAGE 
component INTERNAL_REG 

generic (START, STOP: INTEGER); 
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP); 

OP: out BIT_VECTOR(START to STOP)); 
end componenti 
component MUX_4 

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT: out BIT); 
end component; 
type BLOCK_ADDR is array (0 to 3, 0 to 11) of BIT; 
signal REG_OUT: BLOCK_ADDR: 

begin 

-- Generate the register block 

REG_BLK: for K in 0 to 3 generate 
RG1: INTERNAL_REG generic map (0, 3) 

port map (CLOCK, INT_LD(K), lP, REG_OUT(K)); 
end generate REG_BLK; 

-- Multiplex the output 

GEN MUX: for K in 0 to 11 generate 
MX1: MUX_4 port map (SEL, REG_OUT(O) (K), REG_OUT(l) (K), 

REG_OUT(2) (K), REG_OUT(3) (K), OP(K)); 
end generate GEN_MUX; 

end PE REG_STORAGE; 
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SEL[O:l) 

OP[O:l1) 

"'1~"_'L~DI~Ol~--~-INT_LD[0:3) 

r----<H-- I P [ 0 : 11) 
IP 

<l-<H-+-CLOCK 

CLOCK 

SEL [0: 1)_ " 

INT_LD[O: 3)_ I 
IP[O:l1)_ 9 

Figure A.12 Register Block Storage 

A.2.3.4 Complete Register Block 

OP[O:l1) 

This is the entire register storage block within a single PE. It links together the units described 

in both sections A.2.3.2 and A.2.3.3. It adds no additional functionality, save for providing a 

single external interface for all signals. The VHDL code for this circuit is shown below, and a 

schematic of the circuit itself is shown in figure A.13. 

CLOCK: 
LOAD: 
OPCODE [4] : 
IP[12]: 
OP[12]: 

System Clock 
Data load required 
Switch-Op being processed 
Input data/switch index 
Output of active register 

entity REGISTER_BLOCK is 
port (CLOCK: in BIT; 

LOAD: in BIT; 
OPCODE: in BIT_VECTOR (0 to 3) ; 

IP: in BIT_VECTOR (0 to 11) ; 

OP: out BIT_VECTOR (0 to 11) ) ; 

end REGISTER_BLOCK; 
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OPCODE[0:3] LOAD 

.., 
" '" ~ 

'" '" 

2 

OPCODE [0 : 3] ~ ~ LOAD 

Register 
Block 

OP[O:l1] 

1 

~ 0 ' .., 
12 
r---+-- IP [0: 11] 

SEL INT_LO 

<1---<-- CLOCK 

OP [0: 11] 

Figure A.13 Entire Internal Register Block 

architecture PE_REGISTER_BLOCK 
component REG_SELECT 

port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(O to 1), 

IP[O:l1] 

CLOCK 

OPCODE: in BIT_VECTOR(O to 3); MUX: out BIT_VECTOR(O to 1); 
INT_LD: out BIT_VECTOR(O to 3»; 

end component; 
component REG_STORAGE 

port (CLOCK: in BIT; IP: in BIT_VECTOR(O to 11); 
INT_LD: in BIT_VECTOR(O to 3); SEL in BIT_VECTOR(O to 1); 
OP: out BIT_VECTOR(O to 11»; 

end component; 
signal MUX_SEL: BIT_VECTOR (0 to 1); 
signal LD_SIG: BIT_VECTOR (0 to 3); 

begin 
UPPER: REG_SELECT port map (CLOCK, LOAD, IP(O to 1), OPCODE, MUX_SEL, 

LD_SIG) ; 
LOWER: REG_STORAGE port map (CLOCK, lP, LD_SIG, MUX_SEL, OP); 

end PE_REGISTER_BLOCK; 

A.3 Instruction Set Storage 

A.3.1 Memory Read/Write Generator 

This is a control signal generator. It takes in the binary value for an instruction operation and 

generates the correct read/write signal for the static memory that holds the instruction set data. 

On a RESET the unit outputs a logic-O (read) regardless of the other input data for the current 

and subsequent clock cycle. If the operation is a [PROG 1 instruction then the a read is generated 

on the current clock cycle, with a logic-I ( write) being generated on the subsequent clock cycle. 

Any other instruction results in a read being generated on the subsequent clock cycle. The 
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VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in 

figure A.14. 

CLOCK: 
RESET: 

System clock 
System reset 

OPCODE: Current instruction 
WRITE_OP: Write operation 

entity MEM_RW is 
port (CLOCK, RESET: in BIT; 

OPCODE: 
WRITE_OP: 

end MEM_RW; 

in BIT_VECTOR(O to 3); 
out BIT); 

architecture MEM_RW_CONTROL of MEM_RW is 
component NAND2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component OR2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component NOR2 

port (A, B: in BIT; RES: out BIT); 
end component: 
component HALF_LATCH 

port (CLOCK, D: in BIT; Q: out BIT); 
end componenti 
component MUX_2 

port (SEL, A, B: in BIT; OUT: out BIT) ; 
end component; 
signal GEN_VAL, NEXT_OP, T1, T2: BIT; 
signal L1_OUT, L2_0UT, L3 IN: BIT; 

begin 

-- Check for [PROG] 1[0011] & RESET 

NA1: NAND2 port map (OPCODE(O) , OPCODE(l) , T1); 
OR2: OR2 port map (OPCODE(2) , OPCODE(3) , T2); 
NR1: NOR2 port map (T1, T2, GEN_VAL); 
MX1: MUX_2 port map (RESET, GEN_VAL, 0, NEXT_OP) 

-- Send result into LATCH chain 

LT1: LATCH port map (NEXT_OP, CLOCK, L1_OUT); 
LT2: LATCH port map (L1_OUT, not CLOCK, L2_0UT); 
MX2: MUX_2 port map (RESET, L2_0UT, 0, L3_IN); 
LT3: LATCH port map (L3_IN, CLOCK, WRITE_OP); 

end MEM_RW_CONTROL; 
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OPCODEo 
OPCODE, 
OPCODE, 
OPCODE, 

Figure A.14 

RESET ~ 
CLOC~ 

WRITE OP 
OPCODE[4] ~ -

,------------..------- RESET 

r---~---~---~---CLOCK 

..c: .... 

.:i Ll_O .:i 
~ " ..l ..l 

S S 

Opcode Memory ReadIWrite Generator 

A.3.2 Opcode Lock Unit 

A.3. 2.1 Inner Block Circuit 

This is the inner section of the opcode memory lock-status controller. It keeps track of the 

current state of the lock circuitry: locked, locking or unlocked. Depending on the input OPCODE 

and the current status of the circuitry, as given by the two negative-edge latches, the status is 

changed to a different value. Note, no circuitry for the generation of REG_ROW is given: this 

simply indicates if the data on IP is identical to the row of the PE in the processor array. This 

is done by a single multi-input NOR gate with some inverted inputs - PE's in each row of the 

array, therefore, it has a different set of inputs to the NOR gate. The VHDL code for the 

generation of REG_ROW for a PE in row #3 of the array is given. The VHDL code for this 

circuit is shown below, and a schematic of the circuit itself is shown in figure A. 14. 

CLOCK: System clock 
RESET: 
OPCODE[4]: 
NS [3] : 
LOCK_SIG: 

System reset signal 
Current PE ope ode 
Current NS data input 
Output Lock signal 

entity LOCK_INNER is 
port [CLOCK: in BIT; 

RESET: in BIT; 
OPCODE: in BIT_VECTOR (0 
NS: in BIT_VECTOR (0 
LOCK_SIG out BIT) ; 

end LOCK_INNER; 

to 3) ; 

to 2) ; 
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Figure A.IS Opcode Lock Inner Block 

architecture OP_LOCK_INNER of LOCK_INNER is 
component NAND2 

port (A, B: in BIT; OUTPUT: out BIT); 
end component; 
component AND2 

port (A, B: in BIT; OUTPUT: out BIT); 
end component; 
component NOR3 

port (A, B, C: in BIT; OUTPUT: out BIT); 
end component; 
component NOR2 

port (A, B: in BIT; OUTPUT: out BIT); 
end component; 
component NOR 

port (A, B: in BIT; OUTPUT: out BIT); 
end component; 
component MUX_2 

port (SEL, A, B: in BIT; OUT out BIT); 
end component; 
component NEG_OPEN_LATCH 

port (CLOCK, D: in BIT; Q: out BIT); 
end component; 
signal T1, T2, T3: BIT; 
signal REG_ROW, REC_OP, PRE_LOCK: BIT; 
signal LOCK_, SO, Sl: BIT; 
signal NEW_SO, NEW_S1: BIT; 

begin 

NS[3] g 

-- Work out if a LOCK has happened for this row 

OR1: OR2 port map (OPCODE(O), OPCODE(l) , T1); 
NA1: NAND2 port map (OPCODE(2) , OPCODE(3) , T2); 
NR1: NOR2 port map (T1, T2, REC_OP); 
NR2: NOR3 port map (NS(2), not NS(l), not NS(O), REG_ROW); 
NA2: NAND2 port map (REC_OP, REG_ROW, PRE_LOCK); 

-- Override PRE_LOCK during RESET if req'd 
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-- Keep the latches up to date 

RG1: NEG_OPEN_LATCH port map (CLOCK, NEW_SO, SO); 
RG2: NEG_OPEN_LATCH port map (CLOCK, NEW_S1, Sl); 

-- Modify the two latches to indicate current state 

NA3: NAND2 port map (SO, not Sl, T3); 
NA4: NAND2 port map (LOCK_, T3, NEW_S1); 
NR3: NOR3 port map (not SO, LOCK_, NEW_S1); 
LOCK_SIG_ <= SO; 

end OP_LOCK_INNER; 

A.3.2.2 Outer Block Circuit 

This is the outer section of the opcode memory lock-status controller. This unit stores an 

opcode in a set of registers on the cycle after a [LOCK] instruction is processed (during the 

locking state). It also routes either this stored opcode or that present on the OPCODE input to the 

control signal memory unit; the relevant control signals are then read from or written to that 

address. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is 

shown in figure A.16. 

CLOCK: System clock 
RESET: 
OPCODE[4] : 

System reset signal 
Current PE ope ode 
Current NS data input 
RAM address location 

NS[3] : 
ADDR[4] : 

entity LOCK_OUTER is 
port (CLOCK, RESET: in BIT; 

OPCODE: in BIT_VECTOR(O to 3); 
NS: in BIT_VECTOR(O to 2); 
MEMADDR: out BIT_VECTOR(O to 3)); 

end LOCK_OUTER; 

architecture OP_LOCK_OUTER of LOCK_OUTER is 
component LOCK_INNER 

port (OPCODE: in BIT_VECTOR(O to 3); 
CLOCK, RESET: in BIT; NS: in BIT_VECTOR(O to 2); 
LOCK_CTRL: out BIT); 

end component; 
component INTERNAL_REG 

generic (START, STOP: INTEGER); 
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP); 

OP: out BIT_VECTOR(START to STOP)); 
end component; 
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Figure A.16 Opcode Lock Outer Block 

component MUX_2 

r-:~ .. 
Q , ~ 
i 
~ OUT ... 

A N 
~ 

'---

port (SEL, A, B: in BIT; OUT: out BIT); 
end component; 
signal REG_OP: BIT_VECTOR(O to 3); 
signal LOCK_SIG: BIT; 

begin 

-- Ensure correct address in register block 

ADDR[ 41 

CL: LOCK_INNER port map (OPCODE, CLOCK, RESET, NS, LOCK_SIG); 
ST: INTERNAL_REG generic map (0, 3) 

port map (CLOCK, LOCK_SIG, OPCODE, REG_OP); 

-- Send correct address to RAM unit 

MX: for K in 0 to 3 generate 
GEN: MUX_2 port map (LOCK_SIG, REG_OP(K), OPCODE(K), MEMADDR(K)); 

end generate MX.; 
end OP_LOCK_OUTER; 

A. 3.3 Additional Control Signal Store 

This is a data storage area. Section 5.2.2.2 stated that a temporary IO-bit register is required 

when programming the instruction set: this data accompanies the [PROG I instruction and is 

combined with all data on the NS datapath on the following clock cycle in order to create the full 

IS-bit word of control signals. This is accomplished via three negative edge latches, which 

store data on NS whenever a WRITE_OP is not occurring. This data is always made available at 

the circuit output, so that when a WRITE_OP does occur the data on NS on the previous clock 
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cycle is forwarded to the instruction set memory along with the data currently on NS [12]. The 

VHDL code for this circuit is shown below. and a schematic of the circuit itself is shown in 

figure A.17. 

NS[lO] 
_TEMP[lO] 

NS[O:9]----~~----------._-------­

CLOCK 
WRITE_OP 

NS(Oj ~ TEMP[O] 

l 
~ TEMP{l] 

NS(!] 

l 

Figure A.I7 Control Signal Temporary Storage 

CLOCK: System clock 
WRITE_OP: Current RAM R/W mode 
NS: 
TEMP: 

Current NS data input 
Stored temp data 

entity TEMP_REG is 
port (CLOCK, WRITE_OP: in BIT; 

NS: in BIT_VECTOR(O to 9); 
TEMP: out BIT_VECTOR(O to 9)); 

end TEMP_REG; 

architecture OP_TEMP REG of TEMP REG is 
component NEG_OPEN_LATCH 

port (CLOCK, D: in BIT; Q: out BIT); 
end component; 
signal INT_CLK: BIT; 

begin 

-- Simple and straightforward register block 

INT_CLK <= CLOCK nor WRITE_OP; 
REG_BLK: for K in 0 to 9 generate 

NS[9j 

..c: 
] TEMP [9] 

l 
TEMP[O:9] 

LCH1: NEG_OPEN_LATCH port map (INT_CLK, NS[K], TEMP[K]); 
end generate REG_BLK; 

end OP_TEMP_REG; 

254 



Appendix A 

A.3.4 Instruction Set RAM Unit 

A.3.4.1 Base Memory Storage Cell 

This is a data storage unit. It is a standard 6-transistor 

static memory cell. The outside two transistors restrict 

access to the cell via the ACCESS input. The pair of 

back-to-back inverters hold the data value. If the values 

on DATA and DATA_ are different then they are written 

into the cell memory upon a memory access. If the 

values on DATA and DATA_ are both logic-l then the 

memory is being read from. The inverters within the 

cell then pull one of either DATA or DATA_ down to 

logic-D, such that they match the values stored internally 
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ACCESS_ f"'l 
::; - DATA_ 

DATA ACCESS 

1 o 1 
0_ 

Figure A.IS Base Memory Cell 

at D and D_. Values of logic-D on both DATA and DATA_ are invalid for a memory access. The 

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in 

figure A.IS. 

DATA: Input/output data 
-- DATA_: Negative input/output data 
-- ACCESS: Memory operation in progress 

entity BASE_MEMORY is 
port (DATA: buffer BIT; 

DATA_: buffer BIT; 
ACCESS: in BIT); 

end BASE_MEMORY; 

architecture OP_BASE_MEM of BASE_MEMORY is 
signal D, D_: BIT; 

begin 
process (ACCESS, DATA) 
begin 

-- Memory access event 

if (ACCESS = '1') then 

-- Write Memory 

if (DATA = DATA_) then 
D <= DATA after 500 ps; 
D_ <= DATA_ after 500 ps; 
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-- Read Memory 

else if «DATA = '1') and (DATA_ = '1')) then 
DATA <= D after 1 ns; 
DATA_ <= D_ after 1 ns; 

end if 
end if; 

end process; 

-- Keep the memory cycling 

D <= not D_ after 500 ps; 
D_ <= not D after 500 ps; 

end OP_BASE_MEM; 

A.3.4.2 Fixed Instruction Memory Cells 

This is a constant data storage cell. It functions in a similar way to the base memory cell except 

that no write operations are possible, implying that ACCESS is only granted on read operations. 

Instead of having a pair of back-to-back inverters the cell has a direct connection to Vro and v ss' 

the order of which depends on the generic input DATA_VAL: if DATA_VAL is logic-O then the· 

shaded power connections are used and the non-shaded power connections are not used. If 

DATA_VAL is logic-I then the converse is true. The VHDL code for this circuit is shown below, 

and a schematic of the circuit itself is shown in figure A.19. 

DATA: 
DATA_: 

Output data 
Negative utput data ACCESS_ 0 

ACCESS: Read operation in progress 00=: DATA 

=: DATA_ 
DATA_VAL: Type of constant cell 

entity CONST_MEM is 
generic (DATA_VAL: BIT); 
port (ACCESS: in BIT; 

DATA: out BIT; 
DATA_: out BIT); 

end CONST_MEM; 

architecture OP_CONST_MEM of CONST_MEM is 
begin 

process (ACCESS) 
begin 

-- Read Memory only valid op 

DATA ACCESS 

1 
v" 

Figure A.19 
Constant Memory Cell 

if «ACCESS = '1') and (DATA = '1') and (DATA_ 
DATA <= DATA_VAL after 1 ns; 

'1')) then 
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DATA_ <= (not DATA_VAL) after 1 ns; 
end if; 

end process; 
end OP_CONST_MEM; 

A . 3.4.3 Memory Address Decoder 

This is a data selector unit. The signal ADDR indicates which of the 16 memory locations are to 

be accessed. The decoder unit then outputs 16 ACCESS signals. one per word of memory, 

indicating whether or not memory cells in a particular word allow data to be read to or written 

from them. When a read operation is in progress, as indicated by WRITE_OP, only one of the 

ACCESS signals are non-zero. During a write operation one or none of the ACCESS signals are 

non-zero; writing to the four fixed memory words, from (0000] to (0011] respectively, is 

meaningless and if such an operation is attempted then all of the ACCESS signals are set to zero 

via the multiplexors. The circuitry to decode addresses (0000], (0001], (0010] and (1111] 

is shown in figure A.20; each one simply identifies if the location in ADDR is a particular 

number, shown inside the gate, outputting a logic-I if so. This is done with a mixture of NOR 

gates, AND gates and INVERTERS, and circuits to decode the other addresses are similar to 

those shown. The VHDL code for this circuit is shown below, and a schematic of the circuit 

itself is shown in figure A.20. 

ADDR: Memory location required 
-- WRITE_OP: Write operation required 
-- ACCESS: Word select lines 

entity ADDR_DECODER is 
port (WRITE OP: in BIT; 

ADDR: in BIT_VECTOR(O to 3); 
ACCESS: out BIT_VECTOR(O to 15)); 

end ADDR_DECODER; 

architecture OP_ADDR_DEC of ADDR_DECODER is 
begin 

process (ADDR, WRITE_OP) 
variable TEMP_LINES: BIT_VECTOR(O to 15); 

begin 

-- Blank all access lines initially 

TEMP_LINES := (others => '0'); 
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Figure A.20 Memory Address Decoder 

--------

-- Mark the correct one 
--------

case ADDR is 
when "0000" => TEMP_LINES [0] ::;;: 1; 
when "0001" => TEMP_LINES [1] := 1; 
when "0010" => TEMP_LINES [2] := 1; 
when "0011" => TEMP_LINES [3] := 1; 
when "0100" => TEMP_LINES [4] .- 1; 
when "0101" => TEMP_LINES [5] :;; 1; 
when "0110" => TEMP_LINES [ 6] := 1; 
when "0111/1 => TEMP_LINES [7] :::;; 1; 
when "1000" => TEMP_LINES [8] := 1; 
when "1001" => TEMP_LINES [9] := 1; 
when "1010" => TEMP_LINES [10 ] .- 1; 
when "1011" => TEMP_LINES [11] := 1; 
when "1100" => TEMP_LINES [12] :; 1; 
when "1101" => TEMP_LINES [13] := 1; 
when "1110" => TEMP_LINES [14] := 1; 
when "1111" => TEMP_LINES [15] := 1; 

end case; 
--------

-- Make exception for writing to fixed ops 
--------

if ((ADDR[3] = '0') and (ADDR[2] '0') and (WRITE_OP = '1'» then 
TEMP_LINES := (0 to 3 => '0'); 

end if; 

-- Copy them all across 

ACCESS <= TEMP_LINES; 
end process: 
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A. 3.4.4 Bit Control Logic Driver 

This is a control generation unit. It ensures that the correct signal is on the DATA and DATA_ 

lines for each bit-column in the memory; bits at the same position in different words share the 

same DATA and DATA_ values, but at most one bit cell in this column is activated via it's ACCESS 

value. On a write operation the data from NS and TEMP is driven onto DATA, with the 

complement placed on DATA_. On a read operation both DATA and DATA_ have logic-l placed 

on them. The VHDL code for this circuit is shown below, and a schematic of the circuit itself 

is shown in figure A.21. 

NS: 
TEMP: 
WRITE_OP: 
DATA: 

Current NS data 
Previously stored NS data 
Type of operation required 
Data for the bit columns 

DATA_: More data for the bit columns 

entity MEM_BCL is 
port (NS: 

TEMP: 
WRITE_OP: 
DATA: 
DATA_: 

end MEM_BCL; 

in BIT_VECTOR (0 to 
in BIT_VECTOR (0 to 
in BIT; 
buffer BIT_VECTOR (0 
buffer BIT_VECTOR(O 

architecture OP_MEM_BCL of MEM_BCL is 
component MUX_2 

11) ; 

9) ; 

to 
to 

21) ; 
21) ) ; 

port map (SEL, A, B: in BIT; OUT out BIT); 
end component MUX_2i 

begin 
process (WRITE_OP, NS, TEMP) 
begin 

-- Generate NS related lines first 

GEN NS: for K in 0 to 11 generate 
MX1: UX_2 port map (WRITE_OP, 1, NS[K] , DATA[K]); 
MX2: MUX_2 port map (WRITE_OP, 1, (not NS[K]), DATA_[K]); 

end generate GEN_NS; 

-- Then generate old TEMP lines 

GEN_TEMP: for K in 0 to 9 generate 
MX3: MUX_2 port map (WRITE_OP, 1, TEMP[K], DATA[K+12]); 
MX4: MUX_2 port map (WRITE_OP, 1, (not TEMP[K]), DATA_[K+12]); 

end generate GEN_TEMP; 
end process; 
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Figure A.21 RAM Unit Bit Control Logic 

A.3.4.S Instruction Memory Block 

This is a data storage unit. It holds an array of base memory storage cells, which share 

common data 110 lines amongst the bit columns. ReadfWrite control is handled by the DATA 

and DATA_ lines, which is also where any output data is placed by the memory cells. Word 

selection is handled by the ACCESS signals, which activate a single row of cells within the 

array. The first four words of memory are ROM-based for the fixed instructions, whilst the 

rest are RAM-based for the programmable instructions. The VHDL code for this circuit is 

shown below, and a schematic of the circuit itself is shown in figure A.22. 

DATA: Bit-control data and data I/O 
-- DATA_: Bit control data and data I/O 
-- ACCESS: Word control data 

entity MEM_BLOCK is 
port (ACCESS: in BIT_VECTOR(O to 15) 

DATA: buffer BIT_VECTOR(O to 21), 
DATA_: buffer BIT_VECTOR(O to 21)), 

end MEM_BLOCK, 
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Figure A.22 Memory Cell Array 

architecture OP_MEM_BLOCK of MEM_BLOCK is 
component BASE_MEM 

port (DATA, DATA_: buffer BIT; ACCESS: in BIT); 
end component; 
component CONST_MEM 

generic (DATA_VAL: BIT); 
port (ACCESS: in BIT; DATA, DATA_: buffer BIT); 

end component i 
begin 

-- Simple large array of elements 

GEN_BLK1: for K in 0 to 21 generate 

-- Fixed instructions 

GEN_BLK2: for L in 0 to 3 generate 
MEM: CONST_MEM generic map (0) 

port map (DATA[K), DATA_[K), ACCESS[L); 
end generate GEN_BLK2; 

-- Programmable instructions 
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GEN_BLK3: for L in 4 to 15 generate 
MEM: BASE_MEM port map (DATA[K], DATA_[K], ACCESS[L]); 

end generate GEN_BLK3; 
end generate GEN_BLK1; 

end MEM_BLOCK; 

A.3.4.6 Complete Memory Block 

This is the entire memory block, consisting of the memory array block, address decoders and 

bit-control logic. No logic in addition to that already described in section A.3.4 exists in this 

circuit. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is 

shown in figure A.23. 

NS: Current NS data 
TEMP: Previous NS data 
WRITE_OP: Memory operation 
ADDR: Memory address (OPCODE) required 
DATA: Memory I/O data 
DATA_ : Memory 

entity RAM_UNIT is 
port (NS: 

TEMP: 
WRITE_OP: 
ADDR: 
DATA: 
DATA_: 

end RAM_UNIT; 

I/O data 

in BIT_VECTOR (0 to 
in BIT_VECTOR (0 to 
in BIT; 
in BIT_VECTOR (0 to 
buffer BIT_VECTOR (0 
buffer BIT_VECTOR(O 

architecture OP_RAM UNIT of RAM UNIT 
component MEM_BLOCK 

11) ; 
9) ; 

3) ; 
to 21) ; 
to 21) ) ; 

port (ACCESS: in BIT_VECTOR(O to 15); 
DATA, DATA_: buffer BIT_VECTOR(O to 21)); 

end component; 
component ADDR_DECODER 
port (WRITE_OP: in BIT; ADDR: in BIT_VECTOR(O to 3); 

ACCESS: out BIT_VECTOR(O to 15)); 
end component; 
component MEM_BCL 

port (NS in BIT_VECTOR(O to 11); TEMP: in BIT_VECTOR(O to 2); 
WRITE_OP: in BIT; DATA, DATA_:buffer BIT_VECTOR(O to 21)); 

end component; 
signal WORD_ACCESS: BIT_VECTOR(O to 15); 

begin 

-- Simply link everything together 

COMP1: MEM BCL port map (NS, TEMP, WRITE_OP, DATA, DATA_); 
COMP2: ADDR_DECODER port map (NS, ADDR, WORD_ACCESS); 
COMP3: MEM_BLOCK: port map (WORD_ACCESS, DATA, DATA_); 

end OP_RAM_UNIT; 
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This is a data storage unit. It contains all of the units required for the entire instruction set 

memory unit, including read/write control, opcode locking, physical memory array and 

temporary data storage. It adds no additional functionality other than that already described. 

The VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown 

in figure A.24. 

CLOCK: System clock 
OPCODE: Current opcode 
RESET: System reset signal 
NS: Current NS input data 
WRITE_OP: Memory operation 
CTRL[22]: Control signal outputs 

entity OPCODE_MEMORY is 
port (CLOCK, RESET: in BIT; 

OPCODE: in BIT_VECTOR(O 
NS: in BIT_VECTOR (0 
WRITE_OP: out BIT; 
CTRL: out BIT_VECTOR (0 

end OPCODE_MEMORY; 

to 3); 
to 11); 

to 21)); 

architecture OP INSTR_SET of OPCODE_MEMORY is 
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component RAM_UNIT 
port (NS: in BIT_VECTOR(O to 11); TEMP: in BIT_VECTOR(O to 3); 

WRITE_OP: in BIT; ADDR: in BIT_VECTOR(O to 3); 
DATA, DATA_: buffer BIT_VECTOR(O to 21)); 

end component: 
component TEMP_REG 
port (CLOCK, WRITE_OP: in BIT; NS: in BIT_VECTOR(O to 9); 

TEMP: out BIT_VECTOR(O to 9)); 
end component; 
component LOCK_OUTER 
port (OPCODE: in BIT_VECTOR(O to 3); CLOCK, RESET: in BIT; 

MEMADDR: out BIT_VECTOR(O to 3)); 
end component; 
component MEM_RW is 
port (CLOCK, RESET: in BIT; OPCODE: in BIT_VECTOR[O to 3]; 

WRITE_OP: out BIT); 
end component: 
signal MEMORY_WRITE: BIT; 
signal MEM_ADDR: BIT_VECTOR(O to 3); 
signal TEMP_NS: BIT_VECTOR(O to 9); 
signal PX, NX: BIT_VECTOR(O to 21); 

begin 

-- Simply map everything together 

COM1: MEM_RW port map (CLOCK, RESET, OPCODE, MEMORY_WRITE); 
COM2: LOCK_OUTER port map (OPCODE, CLOCK, RESET, MEM_ADDR); 
COM3: TEMP_REG port map (CLOCK, MEMORY_WRITE, NS[O to 9], TEMP_NS); 
COM4: RAM_UNIT port map (NS, TEMP_NS, MEMORY_WRITE, MEM_ADDR, PX, NX); 
WRITE_OP <= MEMORY_WRITE; 
CTRL <= PX; 

end OP_INSTR_SET; 
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A.4 Mathematical Units 

A.4.1 ABS Unit 

This is a subsidiary unit to the multiplier. It modifies one of the inputs to the multiplier to be 

±1.0, such that the other input to the multiplier is of a specified sign after the mUltiplication. 

The values and implications of the signal CONTROL were specified in table 5.5. If the unit is not 

active (CONTROL[lJ) then the input DATA is allowed to pass through unaltered. If the unit is 

active then the sign of this input (DATA [11]) and CONTROL [0] determines whether or not DATA 

is replaced by either + 1.0 or -1.0. The final output of the unit is placed in MOD_DATA. Note, 

the binary representations within the PE for values +1.0 and -1.0 are 000010000000 and 

111110000000 respectively. The VHDL code for this circuit is shown overleaf, and a 

schematic of the circuit itself is shown in figure A.25. 

CONTROL: Unit control signals 
-- DATA: Input data 
-- MOD_DATA: Output data 

entity ABS_UNIT is 
port (CONTROL: in BIT_VECTOR(O to 1); 

DATA: in BIT_VECTOR(START to STOP) ; 
MOD_DATA: out BIT_VECTOR(START to STOP»; 

end ABS_UNIT; 

architecture MULT_ABS UNIT of ABS UNIT is 
component MUX_2 

port (SEL, A, B: in BIT; OUT: out BIT); 
end component; 
signal SELECT: BIT; 

begin 

-- Generate MUX's that are the same regardless of input sign 

BLK1: for K in 0 to 6 generate 
MX1: MUX_2 port map (CONTROL [1] , DATA[K], 0, MOD_DATA[K]); 

end generate BLK1; 
BLK2: MUX_2 port map (CONTROL [1] , DATA[?], 1, MOD_DATA[?]); 

-- Generate sign-dependent MUX's 

SELECT <= CONTROL[O] xor DATA[ll]; 
BLK3: for K in 8 to 11 generate 

MX2: MUX_2 port map (CONTROL [1] , DATA[K], SELECT, MOD_DATA[K]); 
end generate BLK3; 

end MULT_ABS_UNIT; 
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A.4.2 Result Range Limiter 

A.4.2.1 Range Limit Programmer 

This is a data storage unit. It stores and continually outputs a pair of l2-bit values, LIM_MAX 

and LIM_MIN. These are stored within two l2-bit register blocks. The upper block, used to 

store LIM_MAX, has the value NS stored if a write operation is in progress CWRITE_OP) and the 

value on ADDR is (0011]. If the value on ADDR is (0000] then the data on NS is stored in the 

lower register block, which holds LIM_MIN, during a write operation. The VHDL code for this 

circuit is shown below, and a schematic of the circuit itself is shown in figure A.26. 

CLOCK: System clock 
NS: Data to be stored 
ADDR: Indicates which limit is on NS 
WRITE_OP: Data on NS is to be stored 
LIM_MAX: Current maximum limit 
LIM_MIN: Current minimum limit 

entity LIMIT_STORE is 
port (CLOCK: in BIT; 

NS: in BIT_VECTOR (0 to 
ADDR: in BIT_VECTOR (0 to 
WRITE_OP: in BIT; 
LIM_MAX: out BIT_VECTOR(O to 
LIM_MIN: out BIT_VECTOR(O to 

end LIMIT_STORE; 

11) ; 

3) ; 

11) ; 
11)) ; 

architecture RL_LIMIT_STORE of LIMIT_STORE is 
component AND2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component NOR2 
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port (A, B: in BIT; RES: out BIT); 
end component; 
component INTERNAL_REG 

generic (START, STOP: INTEGER); 
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP); 

OP: out BIT_VECTOR(START to STOP»; 
end component; 
signal Tl, T2, T3, T4: BIT; 
signal LOAD_HIGH, LOAD_LOW: BIT; 

begin 

-- Generate control signals 

ANl: AND2 port map (ADDR[l) , ADDR [0) , 
NRl: NOR2 port map (ADDR[3), ADDR[2) , 
NR2: NOR2 port map (ADDR [l) , ADDR[O) , 
AN2: AND2 port map (T2, WRITE_OP, T4) ; 

Tl) ; 
T2) ; 
T3) ; 

AN3: AND2 port map (Tl, T4, LOAD_HIGH) ; 
AN4: AND2 port map (T4, TS, LOAD_LOW) ; 

-- Instantiate both register blocks 

RBl: INTERNAL_REG port map (CLOCK, LOAD_HIGH, NS, LIM_MAX); 
RB2: INTERNAL_REG port map (CLOCK, LOAD_LOW, NS, LIM_MIN); 

end RL_LIMIT_STORE; 

CLOCK 

NS [0: 11]-

ADDR[0:3] 

NS [0 : 11]----------;:~~~===4___, 
LOAD_HIGH 

ADDR[O] 
ADDR[l] 

ADDR[2] 
ADDR[3] 

ADDR[O] 
ADDR[l] 

Figure A.26 

Tl 

T4 

Range Limit Data Stores 

CLOCK 

CLOCK 
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A.4.2.2 Single Bit Data Comparator 

This is a control signal generator. This is a bit-slice circuit, designed to be implemented with a 

cascade of multiple instances. It takes in two I-bit values, A and B, along with a pair of control 

signals, C_IN, and indicates via C_OUT whether A=B, A>B or A<B by setting C_OUT to [10], 

[00] or [11] respectively. The VHDL code for this circuit is shown below, and a schematic 

of the circuit itself is shown in figure A.27. 

A 
B 

B 

A-. 

B-. 

SEL 

~.sr- OUT 

'/' 

0' 

!; 
0 

I 
U 

Figure A.27 I -Bit Comparator 

A: First input value 
B: Second input value 
C_IN: Initial state of n-bit comparison 
C_OUT: Comparison result 

entity BIT_COMPARE is 
port (A, B: in BIT; 

C_IN: in 
C_OUT: out 

end BIT_COMPARE; 

BIT_VECTOR (0 to 1); 
BIT_VECTOR (0 to 1» 

architecture RL_BIT_COMPARE of BIT_COMPARE is 
component MUX_2 

port (SEL, A, B: in BIT; OUT out BIT); 
end component; 
signal DIFF: BIT; 

begin 
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-- simple multiplex~r function 

DIFF <= A xor B; 
GEN: for K in 0 to 1 generate 

MUX: MUX_2 port map (DIFF, C_IN[Kj, B, C_OUT[Kj); 
end generate GEN; 

end RL_BIT_COMPARE; 

A.4.2.3 n-Bit Comparator 

This is a control signal generator. It compares two n-bit data words, indicating which of the 

two are the largest (or if they are equal). Multiple instances of the I-Bit Comparator are used, 

with the C_OUT output of one being the C_IN input to the next. The final C_OUT value indicates 

the relative sizes of the two n-bit data words. The VHDL code for this circuit is shown below 

and a schematic of the circuit, instantiated as an I I-bit comparator, is shown in figure A.28. 

A: 
-- B: 

First input 
Second input 

-- COMP: Comparator result 

entity WORD_COMPARE is 
generic (START: INTEGER := 0; STOP: INTEGER := 10); 
port (A: in BIT_VECTOR(START to STOP); 

B: in BIT_VECTOR(START to STOP); 
COMP: out BIT_VECTOR(O to 1»; 

end WORD_COMPARE; 

architecture RL_WORD_COMPARE of WORD_COMPARE is 
component BIT_COMPARE 

port (A, B: in BIT; C_IN: in BIT_VECTOR(O to 1); 
C_OUT: out BIT_VECTOR(O to 1» 

end component; 
signal C_INT: array [START to STOPj of BIT_VECTOR(O to 1); 

begin 

-- Starting values 

C_INT[STARTj <= "la"; 

-- Simply cascade lots of I-bit comparators 

CASC: for K in START to (STOP-1) generate 
CMP: BIT_COMPARE port map (A[Kj, B[Kj, C_INT[K], C_INT[K+1j); 

end generate CASC; 
FIN: BIT_COMPARE port map (A[STOPj, B[STOPj, C_INT[STOPj, COMP); 

end RL_WORD_COMPARE; 
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Figure A.28 N-Bit Comparator 

A.4.2.4 Result Range Checker 

Circuit Designs & VHDL Code 

A/lO] 

B(10) 1 COMP[O: 1] 

This is a data interrogation unit. It takes in a 12-bit input NS and compares it with two other 

inputs HIGH and LOW. The unit uses a mixture of I-bit and n-bit comparators to see if the NS 

input is greater than HIGH or less than LOW. This is indicated via the 2-bit control output CTRL. 

The VHDL code for this circuit is shown overleaf, and a schematic of the circuit itself is shown 

in figure A.29. 
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WE: Data input 
HIGH: Upper limiting value 
LOW: Lower limiting value 
CTRL: Check result output 

entity RANGE_CHECK is 
port (WE: in BIT_VECTOR(O 

HIGH: in BIT_VECTOR (0 
LOW: in BIT_VECTOR (0 
CTRL: out BIT_VECTOR (0 

end RANGE_CHECK; 

to 11) ; 

to 11) ; 

to 11) ; 

to 1»; 

architecture RL_RANGE_CHECK of RANGE_CHECK is 
component WORD_COMPARE 

generic (START, STOP: INTEGER); 
port (A, B: in BIT_VECTOR(START to STOP); 

COMP: out BIT_VECTOR(O to 1»; 
end component; 
component BIT_COMPARE 

port (A, B: in BIT; C_IN: in BIT_VECTOR(O to 1); 
C_OUT: out BIT_VECTOR(O to 1» 

component BIT_COMPARE 
end component; 
signal MAX_NUM, MAX_SIGN: BIT_VECTOR(O to 1); 
signal MIN_NUM, MIN_SIGN: BIT_VECTOR(O to 1); 

begin 

-- Maximum value check 

MX1: BIT_COMPARE port map (WE[ll], HIGH[ll], 10, MAX_SIGN); 
MX2: WORD_COMPARE port map (WE[0:10], HIGH[0:10], MAX_NUM); 
CTRL[l] <= MAX_SIGN[l] nand MAX_NUM[l] ; 

-- Minimum value check 

MN1: BIT_COMPARE port map (WE[ll], LOW[ll], 10, MIN_SIGN); 
MN2: WORD_COMPARE port map (WE[0:10], LOW[0:10], MIN_NUM); 
CTRL[O] <= MIN_SIGN[O] or MIN_NUM[O]; 

end RL_RANGE_CHECK; 

A.4.2.S Complete Result Range Checker 

This is a data integrity checker. It combines the Range Programmer and Range Checker, along 

with a separate multiplexor, to determine if the data currently on the WE datapath lies within a 

specified range; if it is outside this range then the value on WE is replaced by the relevant range 

limit. The whole unit is activated through the assertion of the ACTIVE input. Note, that if the 

input on WE is both greater than the upper limit and less than the lower limit then the chosen 

value is WE, as such a situation implies that the range limits have been incorrectly specified. 
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The VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown 

in figure A.30. 

CLOCK: System Clock 
ACTIVE: 
WRITE_OP: 
WE: 

Unit activation input 
Memory operation required 
Current WE data 

NS: Current NS data 
ADDR: Current ope ode 
NEW_WE: New WE data after check 

entity RESULT_RANGE_CHECKER is 
port (CLOCK: in BIT; 

ACTIVE: in BIT; 
WRITE_OP: in BIT; 
NS: in BIT_VECTOR (0 to 
WE: in BIT_VECTOR (0 to 
ADDR: in BIT_VECTOR (0 to 
NEW_WE: out BIT_VECTOR (0 to 

end RESULT_RANGE_CHECKER; 

11) ; 

11) ; 

3) ; 

11) ) ; 

architecture RL_RESULT_CHECKER of RESULT_RANGE_CHECKER is 
component RANGE_CHECK 

port (WE, HIGH, LOW: in BIT_VECTOR(O to 11); 
CTRL: out BIT_VECTOR(O to 1)); 

end component; 
component LIMIT_STORE 

port (CLOCK: in BIT; NS: in BIT_VECTOR(O to 11); 
ADDR: in BIT_VECTOR(O to 3); WRITE_OP: in BIT; 
LIM_MAX, LIM_MIN: out BIT_VECTOR(O to 11)); 

end component: 
component MUX_4 

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT: out BIT); 
end component; 
signal MAX_VAL, MIN_VAL: BIT_VECTOR(O to 11); 
signal CHECK_RES, MUX_CTRL: BIT_VECTOR(O to 1); 

begin 

-- Map inputs to functional units 

PRG: LIMIT_STORE port map (CLOCK, NS, ADDR, WRITE_OP, MAX_VAL, MIN_VAL); 
CHK: RANGE_CHECK port map (WE, MAX_VAL, MIN_VAL, CHECK_RES); 

-- Put everything through multiplexor 

MUX_CTRL[Oj <= ACTIVE and CHECK_RES[Oj; 
MUX_CTRL[lj <= ACTIVE and CHECK_RES[lj; 
BLK: for K in 0 to 11 generate 

MPX: MUX_4 port map (MUX_CTRL, WE[Kj, MIN_VAL[Kj, MAX_VAL[Kj, WE[Kj, 
NEW_WE [Kj ) ; 

end generate BLK; . 
Oend RL_RESULT_CHECKER; 
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This is a data comparator. It takes in two l2-bit data items, A and B, and performs some 

comparison operation on them. The unit can carry out either an equality check, indicated by the 

input EQUALITY, or can choose the maximum or minimum of the two inputs, as indicated by 

the input MAXIMUM. A comparison operation is automatically done when an equality operation 

is not required. During an equality check the 12-bit output of the unit, COMP _RES, contains 

either 1.0 or 0.0 depending upon a positive or negative result to the check. During a 

comparison operation the maximum or minimum of the two inputs, depending on the 

comparison required, is copied onto the COMP_RES output. The VHDL code for this circuit is 

shown below, and a schematic of the circuit itself is shown in figure A.3I. 

A[12] : 
B [12] : 
EQUALITY: 
MAXIMUM: 
COMP_RES (12) , 

First input input 
Second data input 
Equality/Comparison switch 
Comparison value required 
Result of comparison operation 
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Figure A.31 General Purpose Comparator Unit 

entity GP_COMPARATOR is 
port (A, B: in BIT_VECTOR(O to 11); 

EQUALITY: in BIT; 
MAXIMUM: in BIT; 
COMP_RES: out BIT_VECTOR(O to 11» 

end GP_COMPARATOR; 

architecture GP_DATA_COMPARATOR of GP COMPARATOR is 
component WORD_COMPARE 

generic (START, STOP: INTEGER); 
port (A, B: in BIT_VECTOR(START to STOP); 

COMP: out BIT_VECTOR(O to 1»; 
end component; 
component MUX_4 

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT out: BIT); 
end component; 
component OR2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component AND2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component XOR2 

port (A, B: in BIT; RES: out BIT); 
end component i 
signal A2, B2: BIT_VECTOR(O to 11); 
signal CTRL: BIT_VECTOR(O to 11); 
signal MUX_SEL: BIT_VECTOR(O to 1); 
signal T1, T2, T3, T4: BIT; 

begin 

-- Get copies of inputs with inverted signs 

A2[0 to 10] <= A[O to 10]; 
A2[11] <= not A[ll]; 
B2[0 to 10] <= B[O to 10]; 
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B2[11] <= not B[ll]; 

-- Feed these into the comparator 

CMP: WORD_COMPARE generic map (0, 11) port map (A2, B2, CTRL); 

-- Work out which result to use 

MUX_SEL[l] <= EQUALITY; 
XR1: XOR2 port map (CTRL[O] , CTRL[l] , T1); 
XR2: XOR2 port map (CTRL[O] , MAXIMUM, T2), 
AN1: AND2 port map (T1, EQUALITY, T3); 
AN2: AND2 port map (T2, not EQUALITY, T4); 
OR1: OR2 port map (T3, T4, MUX_SEL[O]); 

-- Then use it 

RES1: for K in ° to 6 generate 
MUX_4 port map (MUX_SEL, B[K], A[K], 0, 0, COMP_RES[K]), 

end generate RESli 
RES2: MUX_4 port map (MUX_SEL, B[7], A[7], 0, 1, COMP_RES[7]); 
RES3: for K in 8 to 11 generate 

MUX_4 port map (MUX_SEL, B[K], A[K], 0, 0, COMP_RES[K]); 
end generate RES3; 

end GP_DATA_COMPARATOR; 

A.4.4 Fixed-Point Adder Unit 

A.4.4.1 Radix-4 Adder Unit 

This is a standard radix-4 adder. It adds a pair of 2-bit inputs, A and B, taking into account the 

value of any carry-in, as indicated by eIN, The result of the addition, along with the resultant 

carry-out, is made available at SUM and C_OUT respectively, The VHDL code for this circuit is 

shown overleaf, and a schematic of the circuit itself is shown in figure A.32. 

A: 
B: 
C_IN: 
C_OUT: 
SUM: 

First input 
Second input 
Carry-in to calculation 
Carry-out of calculation 
Result of calculation 

entity RADIX_4 is 
port (A: in BIT_VECTOR (0 to 

B: in BIT_VECTOR (0 to 
C_ IN: in BIT; 
C - OUT: out BIT; 
SUM: out BIT_VECTOR(O to 

end RADIX_4; 

1) , 
1) , 

1) ; 
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Figure A.32 Radix-4 Adder 

architecture BASIC_RADIX_4 of RADIX_4 is 
component XOR2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component NAND2 

port (A, B: in BIT; RES: out BIT); 
end component; 
component MAJORITY 

port (A, B, C: in BIT; RES: out BIT); 
end component; 
component MUX_2 

port (SEL, A, B: in BIT; OUT: out BIT); 
end component; 
signal XO, Xl, MAJOR: BIT; 
signal C_INTERNAL, C_SELECT: BIT; 

begin 

-- Generate SUM[2) 

XRl: XOR2 port map (A[O), B[O), XO); 
XR2: XOR2 port map (A[l), B[l), Xl); 
MXl: MUX_2 port map (XO, B[O), C_IN, C_INTERNAL); 
XR3: XOR2 port map (XO, C_IN, SUM[O); 
XR4: XOR2 port map (Xl, C_INTERNAL, SUM[l); 

-- Generate C_OUT 

MAJ: MAJORITY port map (A[l), B[l), B[O), MAJOR); 
NAl: NAND2 port map (XO, Xl, C_SELECT); 
MX2: MUX_2 port map (C_SELECT, MAJOR, C_IN, C_OUT); 
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A . 4 .4.2 Adder Block Pair 

This is a 4-bit adder. By cascading together two Radix-4 adders allows creation of a 4-bit 

adder, which is a useful circuit in the generation of the full 12-bit carry-select adder. It simply 

joins two instances of a radix-4 adder together, with no further intermediate circuitry. The 

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in 

figure A.33. 

A: First input 
B: Second input 
C_IN: Carry-in to calculation 
C_OUT: Carry-out of calculation 
SUM: Result of calculation 

entity ADDER_PAIR is 
port (A: in BIT_VECTOR(O to 3); 

B: in BIT_VECTOR (0 to 3); 

C_ IN: in BIT; 
C _OUT: out BIT; 
SUM: out BIT_VECTOR (0 to 3)); 

end ADDER_PAIR; 

architecture ADDER_4 of ADDER_PAIR is 
component RADIX_4 
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port (A, B: in BIT_VECTOR(O to 1); C_IN: in BIT; C_OUT: out BIT; 
SUM: out BIT_VECTOR(O to 1)); 

end component; 
signal C_PROP: BIT; 

begin 

-- Simply join two of them together 

AD1: RADIX_4 port map (A[O to 1], B[O to 1], C_IN, C_PROP, SUM[O to 1]); 
AD2: RADIX_4 port map (A[2 to 3], B[2 to 3], C_PROP, C_OUT,SUM[2 to 3]); 

end ADDER_4; 

A.4.4.3 Carry-Select Adder Block 

This is a section of a 4-bit carry-select adder. It consists of two instances of the Adder Block 

Pair, with one given C_IN = 0 and the other C_IN = 1. The blocks add the same A and B data 

values. The block sum and carry outputs SUM and CARRY are selected depending on the value of 

C_IN for the entire block. The VHDL code for this circuit is shown below, and a schematic of 

the circuit itself is shown in figure A.34. 

A: First input 
B: Second input 
C_IN: Carry-in to block 
C_OUT: Carry-out of block 
SUM: Result of calculation 

entity CARRY_SELECT is 
port (A: in BIT_VECTOR (0 

B: in BIT_VECTOR(O 
C - IN: in BIT; 
C_OUT: out BIT; 
SUM: out BIT_VECTOR(O 

end CARRY_SELECT; 

to 3) ; 
to 3) ; 

to 3)) ; 

architecture BLOCK_CARRY SELECT of CARRY SELECT is 
component ADDER_PAIR 

port (A, B: in BIT_VECTOR(O to 3); C_IN: in BIT; C_OUT: out BIT; 
SUM: out BIT_VECTOR(O to 3)); 

end component; 
component MUX_2 

port (SEL, A, B: in BIT; OUT out BIT); 
end component; 
signal C_LO, C_HI: BIT; 
signal SUM_LO, SUM_HI: BIT_VECTOR(O to 3); 

begin 

-- Setup a pair of adders with opposite C_IN 

AD1: ADDER_PAIR port map (A, B, 0, C_LO, SUM_LO); 
AD2: ADDER_PAIR port map (A, B, 1, C_HI, SUM_HI); 
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-- Output the correct C_OUT and SUM with multiplexors 

CAR: MUX_2 port map (C_IN, C_LO, C_HI, C_OUT); 
BLK: for K in 0 to 3 generate 

SUM: MUX_2 port map (C_IN, SUM_LO[K], SUM_HI[K], SUM[K]); 
end generate BLK; 

end BLOCK_CARRY_SELECT; 

A[O:3] 

A[O:3]_ ~ 

B[O:3]_ :!l! 
C_IN 
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4·BitAdder 
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4·BitAdder SEL . )( 

L---"l ~ ~ 1---_ SUM [ 0 : 3 ] 
SUM_!-:LO:-;"[""O ,"'",:-[ --:lA N 

Figure A.34 Carry-Select Adder 4-Bit Block 

A.4.4.4 Subtraction Control Unit 

This is a control generator and data selector unit. It takes in the second input to the adder unit, 

B, and produces either a copy of it or the inverse of it in the output B_. This is done on the 

basis of the input ADD_SUB, which determines the operation carried out by the adder unit (I => 

addition). The initial carry-in to the adder unit, C_IN, is also generat~d; if a subtraction 

operation is required then it is set to logic-I, otherwise it is set to logic-O. The VHDL code for 

this circuit is shown below, and a schematic of the circuit itself is shown in figure A.35. 
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Figure A.35 Subtraction Control Unit 

B: Second input to the adder unit 
B_: Modified second input to the adder 
ADD_SUB, Required adder operation 
C_IN: Initial carry-in to the adder 

entity SUBTRACT_CONTROL is 
port (B, in BIT_VECTOR(O to 11); 

in BIT; 
out BIT_VECTOR(O to 11); 

C_IN' out BIT); 
end SUBTRACT_CONTROL; 

architecture ADD_SUB_CONTROL of SUBTRACT_CONTROL is 
component MUX_2 

port (SEL, in BIT; A, B, in BIT; OUT, out BIT); 
end componenti 
signal B_INT, BIT_VECTOR(O to 11); 

begin 

-- Invert all of B 

SGN: for K in 0 to 11 generate 
B_INTIK) <= not B(K); 

end generate SGN; 

-- Select correct B or B_INT 

BLK, for K in 0 to 11 generate 
MX: MUX_2 port map (ADD_SUB, B_INTIK), BIK), B_IK»; 

end generate BLK; 

-- Finally, do the carry 

C_IN <= not ADD_SUB; 
end ADD_SUB_CONTROL 
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A. 4.4.5 Overflow/Underflow and Integrity Handler 

This is a data selector unit. This unit will output either the addition result or the 

maximum/minimum representable number. This is done using the integrity flags for both 

inputs (A_INT and B_INT), the sign values of both inputs (A_SIGN and B_SIGN) and the sign 

value of the result of the addition (RES [11 n. The results of various pieces of combinational 

logic are used to drive the selectors of a set of 4-10-1 Mulliplexors, which selects the correct 

output. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is 

shown in figure A.36. 

RES_IN[O:11J---------.
1 

A_INT---.r1~~ 'U r-_RES_OUT[O:l1j 
B_INT------+I "'! 
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B_SIGN < 

A_SIGN 
B_SIGN 

L. _______ RES_IN [11] 

MA)( MIN o 1 
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12x 4-10-1 Mulliplexor 

Figure A.36 Adder OverflowlUnderflow & Integrity Handler 

A_INT: Integrity status of adder input 
B - INT: Integrity status of adder input 
A_SIGN: Sign value of adder input A 
B _SIGN: Sign value of adder input B 
RES_IN: Result of the addition 
RES_OUT: Output of unit 
INT_OUT: Integrity of the unit output 

entity ADDER_OVERFLOW is 
port (A INT: in BIT; 

B INT: -
A_ SIGN: 
B_SIGN: 
RES IN: 

in 
in 
in 
in 

BIT; 
BIT; 
BIT; 
BIT_VECTOR(O to 11); 

A 
B 
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RES_OUT: out BIT_VECTOR(O to 11); 
INT_OUT: out BIT); 

end ADDER_OVERFLOW; 

architecture ADDITION_OVERFLOW of ADDER_OVERFLOW is 
component MUX_4 

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; 
OUT: out BIT); 

end component; 
component NAND2 

port (A, B: in BIT; RES out BIT); 
end component; 
component AND2 

port lA, B: in BIT; RES out BIT); 
end component i 
component NOR2 

port lA, B: in BIT; RES out BIT); 
end component; 
component OR2 

port lA, B: in BIT; RES out BIT); 
end component; 
signal A_OVR_, B_OVR_, A_UND_, B_UND_: BIT; 
signal INT_OVR, INT_UND, RES_OVR, RES_UND: BIT; 
signal ALL_POS, ALL_NEG_: BIT; 
signal SELECT: BIT_VECTOR(O to 1); 

begin 

-- Check for overflow possibilities 

NA1: NAND2 port map IA-INT, not lA_SIGN) , A_OVR_l; 
NA2: NAND2 port map (B_INT, notIB_SIGN), B_OVR_); 
NR1: NOR2 port map IA_OVR_, B_OVR_, INT_OVR); 
NR2: NOR2 port map (A_SIGN, B_SIGN, ALL_POS); 
AN1: AND2 port map (ALL_POS, RES[ll], RES_OVR); 
OR1: OR2 port map (INT_OVR, RES_OVR, SELECT[O]); 

-- Check for underflow possibilities 

NA3: NAND2 port map (A_INT, A_SIGN, A_UND_); 
NA4: NAND2 port map IB_INT, B_SIGN, B_UND_); 
NR3: NOR2 port map (A_UND_, B_UND_, INT_UND); 
NA4: NAND2 port map (A_SIGN, B_SIGN, ALL_NEG_); 
NR4: NOR2 port map (ALL_NEG_, RES[ll], RES_UND); 
OR2: OR2 port map (INT_UND, RES_UND, SELECT[l]); 

-- Now select an integrity and a result sign/value 

MX1: MUX_4 port map (SELECT, 0, 1, 1, 1, INT_OUT); 
MX2: MUX_4 port map (SELECT, RES_IN[ll] , 0, 1, 0, RES_OUT[ll]); 
SEL: for K in ° to 10 generate 

MX3: MUX_4 port map (SELECT, RES_IN[K], 1, 0, 1, RES_OUT[K]); 
end generate SEL; 

end ADDITION_OVERFLOW; 
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A.4.4.6 Complete Adder Unit 

This is the entire 12-bit fixed-point adder unit. It takes in two 12-bit numbers, A and B, and 

their respective integrity flags, A_INT and B_INT, and produces a 12-bit output RES and an 

associated integrity flag INTEG. The operation carried out is A+B, unless the input ADD is logic-

0, in which case the operation is A-B. The integrity circuit can be bypassed entirely by setting 

the input RAW to logic-I; this ignores the bypass function (and sets INTEG to logic-O), but means 

that the VHDL compiler would not have to generate the unit at all if this input was a constant 

logic-I at the instantiation of the adder unit. The VHDL code for this circuit is shown below, 

and a schematic of the circuit itself is shown in figure A.37. 

A 
DDl lB[O,lll 

I Subtractor I 
c _'N S[o: 11] 

TEMP[O:11] 

A[O,ll I 

" r:: 
~T~ ..- '" q t ~ ... . 
5(0=3) ~ ~ 5[4:1) :g ~ 

~ "l 
-< 
"l ~ C_IN ....:!.... C_IN '--

Figure A.37 Complete Adder Unit 

A: 
B: 
ADD: 
RAW: 
A_INT: 
B_INT: 

Adder input A 
Adder input B 
Indicates if op is subtraction 
Pay no attention to integrity 
Integrity status of input A 
Integrity status of input B 

RES: Final result of A+B operation 

ADD----.. 

- t;!! i---RES[O, 
B INT -

~j A[O,lll _INTEG 

A INT _. 
111 

B[O,lll 

A(ll] ,,-SIGN 
~ 

S [11] B SIGN 

~i -- -- j'" ~~ 
. r ~ . 

5[8:11] :g ISUM'" 

RES[O:11: 

INTEG 

-< 10;-
~ 

C_IN -

INTEG: Integrity status of adder output 

entity WHOLE_ADDER is 
port (A: in BIT_VECTOR (0 to 11) ; 

B: in BIT_VECTOR (0 to 11) ; 

ADD: in BIT; 
RAW: in BIT; 
A_ INT: in BIT; 
B - INT: in BIT; 
RES: out BIT_VECTOR(O to 11) ; 

INTEG: out BIT) ; 
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end WHOLE_ADDER; 

architecture WHOLE_ADDER_UNIT of WHOLE_ADDER is 
component ADDER_OVERFLOW 

port (A_INT. B_INT. A_SIGN. B_SIGN: in BIT; 
RES_IN: in BIT_VECTOR(O to 11); 
RES_OUT: out BIT_VECTOR(O to 11); INT_OUT: out BIT); 

end component; 
component SUBTRACT_CONTROL is 

port (B: in BIT_VECTOR(O to 11); ADD_SUB: in BIT; 
B_: out BIT_VECTOR(O to 11); C_IN: out BIT); 

end component; 
component CARRY_SELECT 

port (A. B: in BIT_VECTOR(O to 3); C_IN: in BIT; 
C_OUT: out BIT; SUM: out BIT_VECTOR(O to 3»; 

end component; 
component ADDER_PAIR 
port (A. B: in BIT_VECTOR(O to 3); C_IN: in BIT; 

C_OUT: out BIT; SUM: out BIT_VECTOR(O to 3»; 
end component; 
signal TEMP: BIT_VECTOR(O to 11); 
signal S: BIT_VECTOR(O to 11); 
signal C_IN. Cl. C2. C3: BIT; 

begin 

-- Sort out carry-in and subtraction control 

Sl: SUBTRACT_CONTROL port map (B. ADD. S. C_IN); 

-- Feed all of the adder units 

A1: ADDER_PAIR port map (A[O to 3]. S[O to 3]. C_IN. Cl. TEMP[O to 3]); 
A2: CARRY_SELECT port map (A[4 to 7]. S[4 to 7J. Cl. C2. TEMP[4 to 7]); 
A3: CARRY_SELECT port map (A(8 to 11J. S(8 to ll].C2.C3. TEMP(8 to 11J); 

-- Sort out the correct output and integrity 

if (RAW; "1") then 
OVR: ADDER_OVERFLOW port map (A_INT. B_INT. A(llJ. S(ll]. TEMP. 

else 
RES :; TEMP; 
INTEG :; "0"; 

end if; 
end WHOLE_ADDER_UNIT; 

RES. INTEG); 

A. 4. S Fixed Point Multiplier Unit 

A.4.S.1 Modified Booth's Multiplier 

Unlike the majority of the VHDL units the multiplier is described purely in behavioural terms 

rather than in structural terms. A full description of an optimised mUltiplier circuit would take 

many pages of VHDL (and many pages of circuit layout). The VHDL code below gives a 

284 



---------

Appendix A Circuit Designs & VHDL Code 

generic multi-bit multiplier description, but the schematic shown in figure A.38 shows an 

optimised circuit for a 2-bit multiplier [NaJo97J based upon the same algorithm 

A: Multiplier input A 
B: Multiplier input B 
RES: Result of A * B operation 
CLK: Clock input 

entity BOOTH_MU LT is 
port (A: in BIT_VECTOR (0 to 

B: in BIT_VECTOR (0 to 
CLK: in BIT; 
RES: out BIT_VECTOR (0 to 

end BOOTH_MULT; 

11) ; 
11) ; 

22) ) ; 

architecture BOOTH_MULT UNIT of BOOTH MULT is 
component WHOLE_ADDER 

port (A, B: in BIT_VECTOR(O to 11); ADD, RAW, A_INT, B_INT: in BIT; 
RES: out BIT_VECTOR(O to 11); INTEG: out BIT); 

end component 

-- Reverse variable ranges (so later arithmetic shift makes sense) 

BIT_VECTOR ( 11 downto 
BIT_VECTOR (12 downto 
BIT_VECTOR (24 downto 

variable P: 
variable AX: 
variable s: 
variable ACTION: 
variable COUNT: 

BIT_VECTOR(l downto 
INTEGER range A; 

signal IGNORE: BIT; 
begin 

Wait until low edge of clock 
-- (i.e. until inputs valid) 
-- and initialise circuit 

wait until (CLK = '0'); 
P := (others => 0); 
AX := A'reverse_range & '0'; 
COUNT := 0; 

-- Do algorithm for each bit in 'A' 

BOOTH: loop 

0) ; same size as 
0) ; size is 'A' 
0) ; size is 'P' 

0) ; 

-- Work out if we add, subtract or do nothing 

case AX(l downto 0) is 
when "01" => 

when "10" => 

when others => 

end casei 

ACTION 
ACTION 
ACTION 

:= "11"; 
:= "10"; 
.- "00"; 

addition required 
subtraction required 
no action required 

-- Do addition/subtraction as required (ignoring integrity) 

'A' 
+ 1 
+ 'AX' 

285 



Appendix A Circuit Designs & VHDL Code 

if ACTION (1) = "1" then 
ADD1: WHOLE_ADDER (P'reverse_range, B'reverse_range, 

ACTION(O) , 1, 0, 0, P, IGNORE); 
end if; 

-- Shift internal values for next cycle 

S := P & AX; 
S := ARITH_SHIFT_RIGHT(S, 1); 
P := S(24 downto 13); 
AX := S(AX'range); 

-- Finished ? 

COUNT := COUNT + 1; 
exit BOOTH when COUNT A'length; 

end loop; 

-- Assign final result 

RES <= S(23 downto 1) 'reverse_range; 
end BOOTH_MULT_UNIT; 

eLK 

~ 

~ 
B[O] 

A[l] 
r v-

1 1 ~ 

--} 
A[O] 

B[l] 

contatenate P and AX 
shift right (keeping sign) 
reassign P 
reassign AX 

-+ 
, "5 Q 

Oi -+ 
...l 

-
+ 

D ~ f4 
...l 

-

4-
~ 

I 
~ 

, "5 f4 Oi 
.,...... ...l 

---
Figure A.38 2x2 Optimised Booth MUltiplier 

SUM[l] 

SUM[O] 

SUM[2] 
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A. 4.5.2 Result Integrity Handler 

Due to the number format used within the ISA processor the 23-bit output from the basic 

multiplier is defined as a sign bit (22). eight integer bits {21..14} and 14 fractional bits 

{\3 .. D}. A valid 12-bit number must be extracted from this and an integrity rating assigned to 

it - this rating is based upon the two input vectors A and B, the result RES and the integrity flags 

associated with A and B. The VHDL for this circuit is shown below, and a schematic of the 

circuit itself is shown in figure A.39. 

MAX MIN 

Figure A.39 Multiplier Integrity Checker 

A_INT: Integrity state of multiplier input A 
B_INT: Integrity state of multiplier input B 
RES_IN: Full Result of the multiplication 
RES_OUT: Output of unit 
INT_OUT: Integrity of the unit output 

entity MULT_INTEGRITY is 
port (A_INT: in BIT; 

B_INT: in BIT; 
RES_IN: in BIT_VECTOR(O to 22); 
RES_OUT: out BIT_VECTOR(O to 11); 
INT_OUT: out BIT); 

end MULT_INTEGRITY; 

architecture MULT_INTEGRITY_UNIT of MULT_INTEGRITY is 
component MUX_4 

A...INT 

B_INT 

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; 

'" I 
H 

;'l 
t 
H 

;'l 

o 
.... .... 

:0 

'" '" I 
H 
Z 
0 .. 
'" '" 
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OUT: out BIT); 
end component; 
component XOR2 

port lA, B: in BIT; RES out BIT); 
end component; 
component NOR3 

port lA, B, C: in BIT; RES out BIT); 
end component; 
component OR3 

port lA, B, C: in BIT; RES out BIT); 
end component,' 
signal Sl, S2, S3: BIT; 
signal SAME: BIT; 
signal SEL: BIT_VECTORIO to 1); 

begin 

-- See if any upper bits are different 

XR1: XOR2 
XR2: XOR2 
XR3: XOR2 
NR1: NOR3 

port 
port 
port 
port 

map 
map 
map 
map 

IRES_IN[21] , RES_IN[20] , Sl); 
IRES_IN[19] , RES_IN[18] , S2); 
IRES_IN[21], RES_IN[18] , S3); 
IS1, S2, S3, SAME); 

-- Map 23-bit to 12-bit and set integrity 

INT_RES[11] <= RES_INT[22]; 
INT_RES[O to 10] <= RES_INT[7 to 17]; 
OR1: OR3 port map InotISAME) , A_INT, B_INT, INT_OUT); 

-- Now select a valid (max/rnin/res/res) result 

SEL: for K in ° to 10 generate 
MX1: MUX_4 port map ISEL, 1, 0, INT_RES[K], INT_RES[K], RES_OUT[K]); 

end generate SELi 
RES_OUT [11] <= INT_RES[ll]; 

end MULT_INTEGRITY_UNIT; 

A.4.S.3 Complete Multiplier Unit 

This is the entire 12-bit fixed-point multiplier unit. It takes in two 12-bit numbers, A and B, 

along with their associated integrity values A_INT and B_INT, and produces a 12-bit output RES 

and an associated integrity value INTEG. The VHDL code for this circuit is shown below, and 

a schematic of the circuit itself is shown in figure A.40. 
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CLK 

A[O: 11J 

B[O:l1] 

v 

if 

CLK 

A[O: 11] 

B[O:l1] 

A_INT 

B_INT 

SUM[O:22] 

RES_IN [0: 22 

.l!b 
it 
;:;:.5 

v 

::l.l! ':"i 
~;:;: 

-
'---

Figure A.40 Complete l2xl2 Parallel Multiplier 

A: 
B: 
A_INT: 
B_INT: 
RES: 
INTEG: 
CLK: 

Multiplier input A 
Multiplier input B 
Integrity of input A 
Integrity of input B 
Result of A * B operation 
Integrity of result 
Clock input 

entity WHOLE_MULT is 
port (A: in BIT _VECTOR (0 to 

B: in BIT_VECTOR (0 to 
A_INT: in BIT; 
B_INT: in BIT; 
CLK: in BIT; 
RES: out BIT_VECTOR (0 to 
INTEG: out BIT) ; 

end WHOLE_MULT; 

11J; 
11J; 

11) ; 

architecture WHOLE_MULT UNIT of WHOLE MULT is 
component BOOTH_MU LT 

~ 

port (A, B: in BIT_VECTOR(O to 11); CLK: in BIT; 
RES: out BIT_VECTOR(O to 22)); 

end component 
component MULT_INTEGRITY is 
port (A_INT, B_INT: in BIT; RES IN: in BIT_VECTOR(O to 22); 

RES_OUT: out BIT_VECTOR(O to 11); INT_OUT: out BIT); 
end component; 
signal TEMP_RES: BIT_VECTOR(O to 22); 

begin 

-- Simple mapping of two components 

PT1: BOOTH_MULT port map (A, B, CLK, TEMP_RES); 
PT2: MULT_INTEGRITY port map (A_INT, B_INT, TEMP_RES, RES, INTEG); 

end WHOLE_MULT_UNIT; 
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