
Pilklngton Library

• • Loughborough
., University

Author/Filing Title ~.~~ . .:.I A

Accession/Copy No.

Vol. No. Class Mark

- 2 ~JOV 2000

,\0, ., - -

I
040208554X

l 111111 1I1111111111111"mll 11111111111111 /

... .J~~Q "

AN INSTRUCTION SYSTOLIC ARRAY

ARCHITECTURE FOR MULTIPLE

NEURAL NETWORK TYPES

by Andrew Kane

September 1998

A doctoral thesis submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy in

Department of Computer Studies,

Loughborough University

Loughborough, Leicestershire, LE I I 3TU, UK

© by Andrew Kane, 1998

To my darling wife

Hilary

for her love, support and encouragement

;
;

' .. '.," .. " '

.,. .',.

--.. ,",. '.'

ABSTRACT

Modern electronic systems, especially sensor and imaging systems, are beginning to

incorporate their own neural network subsystems. In order for these neural systems to learn in

real-time they must be implemented using VLSI technology, with as much of the learning

processes incorporated on-chip as is possible. The majority of current VLSI implementations

literally implement a series of neural processing cells, which can be connected together in an

arbitrary fashion. Many do not perform the entire neural learning process on-chip, instead

relying on other external systems to carry out part of the computation requirements of the

algorithm.

The work presented here utilises two dimensional instruction systolic arrays in an attempt to

define a general neural architecture which is closer to the biological basis of neural networks - it

is the synapses themselves, rather than the neurons, that have dedicated processing units. A

unified architecture is described which can be programmed at the microcode level in order to

facilitate the processing of multiple neural network types.

An essential part of neural network processing is the neuron activation function, which can

range from a sequential algorithm to a discrete mathematical expression. The architecture

presented can easily carry out the sequential functions, and introduces a fast method of

mathematical approximation for the more complex functions. This can be evaluated on-chip,

thus implementing the entire neural process within a single system.

VHDL circuit descriptions for the chip have been generated, and the systolic processing

algorithms and associated microcode instruction set for three different neural paradigms have

been designed. A software simulator of the architecture has been written, giving results for

several common applications in the field.

Keywords: Systolic Array; Instruction Systolic Array; Systolic Algorithm Design; Parallel

Processing; Computer Architecture; Neural Networks; Backpropagation;

Kohonen; Counter-Propagation

ACKNOWLEDGEMENTS

I would like to acknowledge the supervision and guidance given to me over the last few years

by Professor DJ .Evans of the Department of Computer Studies at Loughborough University.

His advice over the subjects that I choose to pursue during my studies was both stimulating and

sincere, showing time and time again that he wished for me to get the very best out of my

research, as well as managing to keep me motivated and interested in my subjects in spite of

any problems that arose over my time at Loughborough. He also managed to keep me writing­

up at a reasonable rate once I had left University to enter the world of work; when your

industrial work is so unrelated to your studies it is often difficult to keep going and it is a credit

to Professor Evans that I finally managed to complete my studies.

I would like to thank Professor S. Jones of the Department of Electrical Engineering at

Loughborough University who, through the help of his staff, allowed me access to the

resources so that I was able to carry out the microelectronic circuit designs that were vital to this

work. It is only a shame that the funding was never available to actually fabricate the device

that I designed.

I would like to thank those at Jasmin Simtec Lld in Bulwell, Nottingham, for taking me on

board even though I had not completed my studies. Many people there have given me

encouragement in completing, as well as lending me the odd resource (especially time) to help

me complete my research. It has been almost 18 months since I started at Jasmin and the

studies are at an end - I hope it was worth the wait for them!

Finally, I would like to thank my wife, Hilary, for putting up with this for so long. Spending

the first year of married life with me always saying "/,Ujust do another page or two" was not

exactly the start in life together that we both anticipated. Her support in this work was

invaluable and I doubt that I could have done it without her. Now that it is complete I hope we

can go on now and begin to enjoy our lives together.

1I

CONTENTS

1.

2.

3.

INTRODUCTION . 1

I. I Introduction

1.2 Evolution of Computing Machines 3

1.2.1 What is a 'Computer' ? .. 3

I. 2.2 Historical Development of Computers 4

1.3 Evolution of VLSI Technology 9

1.3.1 Development oflntegrated Circuit Technology 9

1.3.2 VLSI Scalability Constraints 12

1.4 Parallel Computer Architectures 17

I .4. I Historical Legacies 17

1.4.2 High-Level Parallel Architecture Classification 21

1.5 Thesis Organisation 35

1.5.1 Part I - Introduction 35

1.5.2 Part 2 - Systolic Array Architecture and Algorithms 36

1.5.3 Part 3 - Software and Hardware Implementation 37

BACKGROUND TECHNOLOGY 38
2.1 VLSI Fabrication Technology 38

2.1.1 Silicon Semiconductor Technology

2.1.2 Standard p-Well Fabrication Process

2.1.3 Other Fabrication Processes

38

41

46

2.2 Digital Logic Testing Techniques 51

2.3

2.2.1 Introduction to Digital Logic Testing 51

2.2.2 Combination and Sequential Logic Test Strategies

Systolic Array Architectures

55

60

2.3.1 Introduction 60

2.3.2 Systolic Architecture Definitions

2.3.3 Linear Connected Systolic Array

2.3.4 Dense Matrix Systolic Arrays

62

65

69

ARTIFICIAL NEURAL NETWORKS 77

77

77

3.1 Neural Network Overview
3.1. I What are Neural Networks?

3.1.2 Biological and Physiological Background 78

3.1.3 Historical Perspective of Neural Networks 81

111

4.

5.

6.

3.2 Common Neural Network Learning Methodologies 84

3.2.1 Perceptron Learning 84

3.2.2 Backpropagation Learning 87

3.2.3 Kohonen Self-Organised Learning 94

3.3 Alternative Neural Network Learning Methodologies 98

3.3. I Counter Propagation Learning 98

3.3.2 Hopfield Learning 101

3.3.3 Adaptive Resonance Theory 107

IMPLEMENTATION OF NEURAL NETWORKS 113

4.1 VLSI Neural Network Systems 113

4. I. I Backpropagation in Linear Arrays 113

4.1.2 Real-Time Clustering Neural Engine 118

4.2 Neural Network Applications 123

4.2.1 Traffic Management of a Satellite Communication Network 123

4.2.2 Prediction of a Continuous Stirred Tank Reactor 130

PROPOSED ARCHITECTURAL DESIGN 136
136

136

5.1

5.2

Architectural Overview

5. I . I Array Structure

5.1.2 Instruction Systolic Array Processing 138

5. 1.3 Array I/O Requirements and Processing

5. 1.4 Data Format and Precision

5. I .5 Processing Element Structure

Neural Network Hardware Features

139

141

143

144

5.2.1 On-Chip Learning Methodology 144

5.2.2 Reconfigurable Instruction Set 145

5.2.3 Activation Function Approximation 151

5.3 Hardware Design and Implementation 159

5.3.1 Miscellaneous Circuits 159

5.3.2 Register Units. .. 164

5.3.3 Instruction Set Memory 165

5.3.4 Addition Unit 167

5.3.5 Multiplier Unit 170

SYSTOLIC NEURAL ALGORITHMS 173
173 6.1 Backpropagation Learning Algorithm

6. I . I Introduction 173

IV

7.

8.

6.2

6.1.2 Forward Pass Components

6.1.3 Reverse Pass Components

6.1.4 Update Network Weights

6. 1.5 Backpropagation Timings

Kohonen Learning Algorithm

..........................

..........................
...........................
...........................

175

178

183

184

187

6.2.1 Introduction 187

6.2.2 Forward Pass Components 188

6.2.3 Reverse Pass: t1w Calculation 191

6.2.4 Update Network Weights 192

6.2.5 Network Timings 193

6.3 Counter Propagation Learning Algorithm 196

6.3.1 Introduction 196

6.3.2 Forward Pass 198

6.3.2 Reverse Pass 199

6.3.3 Update Network Weights 200

6.3.4 Counter Propagation Timings 201

NEURAL NETWORK SOFTWARE SIMULATION 206
7. I Soft Systolic Simulator 206

7.1.1 Simulator Overview 206

7. 1.2 Simulator Data Definitions 208

7.2 Backpropagation Learning Applications 210

7.2.1 Exclusive-Or Problem 210

7.2.2 Parity Problem 212

7.2.3 Simple Pattern Recognition 215

7.3 Kohonen Application - Pattern Recognition 217

7.3.1 Problems Associated with Kohonen Learning 217

7.3.2 Simulation Strategy 218

7.3.3 Network Structure .. 218

7.3.4 Simulation Run 219

7.4 Counter Propagation Application - Pattern Recognition 220

7.4.1 Application Overview 220

7.4.2 Network Structure 220

7.3.3 Kohonen Simulation Run 221

7.3.4 Counter Propagation Simulation Run 222

SUMMARY AND FURTHER RESEARCH 223
223 8.1 Thesis Summary

v

8. I . I Increasing Computational Capacity 223

8.1.2 Hardware Implementation of Neural Networks 225

8.1.3 Practical Advantages of Study 226

8.2 Further Work .. 229

8.2.1 Increased Micro-code Capacity 229

8.2.2 Index Registers 230

8.2.3 Conditional Instructions 231

8.2.4 Multiple Processing Paths 232

8.3 Final Comments 233

A. CIRCUIT DESIGNS AND VHDL CODE 234
A. I Basic Circuit Elements 234

A.1.1 2-to-1 Multiplexor 234

A.1.2 4-to-1 Multiplexor 235

A.1.3 D-Type Flip-Flop 236

A.I.4 D-Type Flip-Flop with Reset 236

A.I.5 Half Latch 237

A.1.6 3-Input Majority Function 238

A.1.7 Negative Clock Open Latch 239

A.2 Data Storage Units 240

A. 2. I PE Input Register 240

A.2.2 PE Output Register 241

A.2.3 PE Internal Register Block 242

A.3 Instruction Set Storage 248

A.3.1 Memory ReadiWrite Generator 248

A.3.2 Opcode Lock Unit 250

A.3.3 Additional Control Signal Store 253

A.3.4 Instruction Set RAM Unit 255

A.3.5 Complete Instruction Set Store 263

A.4 Mathematical Units 265

A.4.1 ABS Unit 265

A.4.2 Result Range Limiter 266

A.4.3 General Purpose Comparator 273

A.4.4 Fixed-Point Adder Unit 275

A.4.5 Fixed Point Multiplier Unit 284

REFERENCES . 290

VI

LIST OF FIGURES

Figure 1.\

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 1.9

Figure 1.\0

Figure 1.11

Figure 1.\2

Figure 1.\3

Wafer-Scale Integration Lattice

Scaled MOS device

FJynn's Classification of Parallel Computer Architecture

Duncan's Classifications

Vector Processor Dataflow

Multiplier Pipeline

Associative Memory Schematic

Basic Concept of Systolic Arrays

Distributed Memory Architecture

Various MIMD Interconnection Topologies

Shared Memory Architecture

Shuffle-Exchange Network

MIMD/SIMD Architecture

Figure 1.14 Wavefront Array Architecture

12

13

18

22

23

23

25

26

27

28

30

31

33

34

Figure 2.1 Field Oxide Growth 39

Figure 2.2 Patteming of Si02 40

Figure 2.3 Well and ThinOx Deposition 41

Figure 2.4 Gate Definition 42

Figure 2.5 Gate Metallisation 42

Figure 2.6 Inverter Layout and Schematic 43

Figure 2.7 Parasitic Latch-Up Equivalent Circuit 44

Figure 2.8 Substrate Contacts 45

Figure 2.9 Twin-Tub Process Cross-Section 47

Figure 2.10 Selection of SOl Process Steps

Figure 2.11

Figure 2.12

Figure 2.13

Figure 2.14

Figure 2.15

Figure 2.16

Figure 2.17

Figure 2.18

Silicide Gate .. .

Second Level Metal

Trench Isolation Cross Section

3-D CM OS Cross Section

Simple Function Schematic

Reconvergent Fan-Out

Outline of Boundary Scan Structure
JTAG Device Architecture

48

49

50

50

51

56

57

59

59

Figure 2.19 Von Neuman .v. Systolic Array Architecture 61

Figure 2.20 Geometry for IPS Processors 64

VII

Figure 2.21

Figure 2.22

Figure 2.23

Figure 2.24

Figure 2.25

Figure 2.26

Figure 2.27

Figure 2.28

Figure 2.29

Figure 2.30

Figure 2.31

Figure 2.32

Figure 2.33

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Linearly Connected Systolic Array
Bi-Directional Systolic Array for Convolution :

Matrix-Vector Multiplication Problem Data

Data Connection Map for Matrix-Vector Multiplication

Initial Cycles of Matrix-Vector Multiplication

Rectangular Array for Scalar Products

Full Rectangular Array for 3x3 Scalar Products

Square Array MAC Cell Configuration

Full Square Array for 3x3 Scalar Products

Triangular System Cells

Triangular System Linear Array

Cell Topology for Gaussian Elimination

Triangularisation of a Dense Matrix (n=4)

65

66

67

67

69

70

70

71

71

73

73

75

76

Diagrammatic Representation of a Biological Neuron 78

Graded Potential Possibilities 80

Perceptron Neuron Structure 84

Exclusive-Or Threshold on the X-Y Plane 86

Backpropagation Neuron Schematic 87

Backpropagation Activation Sigmoid Function 88

Connections for Output Layer Training 91

Connections for Hidden Layer Training 92

Kohonen Neural Network Layer 94

Unit Length Vectors 95

Kohonen Weight Changes 96

Counter Propagation Network 99

Full Counter Propagation Network 100

Single Layer Recurrent Network 102

Hopfield Network State Space 103

Figure 3.16 Simplified ART Architecture 109

Figure 4.1 Feed Forward Mode 114

Figure 4.2 Feed Back Mode 114

Figure 4.3 Recall Timing Graph 115

Figure 4.4 Calculation Timing Graph 116

Figure 4.5 Update Timing Graph 117

Figure 4.6 Hardware Block Diagram for VLSI-Friendly ART-I Algorithm 121

Figure 4.7 Network System Model 124

Vlll

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Transputer Ring Network
Continuous Stirred Tank Reactor
CSTR Plant Neural Predictor
Algorithm Performance

132

133

133

135

Figure 5.1 Neural VLSI Array Architecture 137

Figure 5.2 Back Substitution using Instruction Systolic Arrays 138

Figure 5.3 Internal Datapath Timings 140

Figure 5.4 Data Format ... 141

Figure 5.5 Processing Element Schematic 143

Figure 5.6 Opcode ROM Bit-Slice 146

Figure 5.7 Sigmoidal Activation Function 151

Figure 5.8 B6zier Curve Segment 156

Figure 5.9 X-pos and t-pos Relationship 158

Figure 5. \0 Multiplexor Schematics 159

Figure 5.11 ABS Unit Schematic 160

Figure 5.12 Majority Function Schematic 160

Figure 5.\3 Result Range Limiter Schematic 161

Figure 5.14 I-Bit Comparator Schematic 162

Figure 5.15 Flip-Flop Timing Diagram 164

Figure 5.16 Latch-Based Register 164

Figure 5.17 Instruction Set Store Schematic 165

Figure 5.18 ReadlWrite Schematic 166

Figure 5.19 Opcode Lock Schematic 167

Figure 5.20 Complete Adder Unit Schematic 167

Figure 5.21

Figure 5.22

Radix-4 Adder Schematic

Carry Select Adder Block

168

168

Figure 5.23 Subtraction Control Schematic 169

Figure 5.24

Figure 5.25

Figure 5.26

Figure 5.27

Figure 5.28

Figure 6.1

Adder Overflow Schematic 170

Complete Multiplier Unit Schematic 171

Booth Multiplier Functional Overview

Basic Multiplier Schematic

171

172

Relationship Between Internal and Multiplier Data Formats 172

Algorithm for NET Value Calculation 176

Figure 6.2 Algorithm for B6zier F(NET) Approximation 178

Figure 6.3 Algorithm for Output Layer Weight Adjustments 180

Figure 6.4 Connections for Hidden Layer Training 180

ix

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Figure 6.12

Figure 6.13

Figure 6.14

Figure 6.15

Figure 6.16

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

Figure 7.5

Figure 7.6

Figure 7.7

Figure 7.8

Algorithm for False Target Generation

Algorithm for Hidden Layer Weight Adjustment

Algorithm for Weight Update
Algorithm for OUT Value Calculation

Algorithm for Minimum OUT Search

181

182

183

189

190

Algorithm for Modified OUT Generation 190

Algorithm for Weight Adjustment Calculation 191

Algorithm for Weight Update 192

Algorithm for OUT Value Calculation 198

Modified Algorithm for Kohonen Modified OUT Generation 200

Algorithm for Weight Adjustment Calculation 200

Algorithm for Weight Update 201

Opcode Definition Dialog 208

Neural Parameter Definition Dialog 209

Exclusive-Or Network 211

Exclusive-Or Training Run Progress

Parity Network

Parity Training Run Progress (whole set)

Parity Training Run Progress (limited set)

212

213

214

215

Pattern Recognition Training Set Images 215

Figure 7.9 Pattern Recognition Training Run Progress 217

Figure 7.10 Kohonen Network .. 218

Figure 7.11 Kohonen Training Run Progress 219

Figure 7.12 Counter Propagation Kohonen Layer Progress 222

Figure 7.13 Counter Propagation Grossberg Layer Progress 223

Figure Al

Figure A2

Figure A.3

2-to-1 Multiplexor

4-to-1 Multiplexor

D-Type Flip-Flop

234

235

236

Figure A.4 D-Type Flip-Flop with Instant Reset 237

Figure A.5 Half Latch .. 238

Figure A.6 3-Input Majority Function 239

Figure A.7 Negative Edge Open Latch 239

Figure A.8 PE Input Register 240

Figure A.9 PE Output Register
Figure A.I 0 Register Block Internal Register

Figure All Register Block' Active' Selector

............................

............................

241

243

245

x

Figure AI2 Register Block Storage 247

Figure AI3 Entire Internal Register Block 248

Figure AI4 Opcode Memory ReadlWrite Generator 250

Figure AI5 Opcode Lock Inner Block 251

Figure Al6 Opcode Lock Outer Block 253

Figure AI7 Control Signal Temporary Storage 254

Figure AI8 Base Memory Cell 255

Figure AI9 Constant Memory Cell 256

Figure A20 Memory Address Decoder .. 258

Figure A21 RAM Unit Bit Control Logic 260

Figure A22 Memory Cell Array 261

Figure A23 Enitre RAM Unit 263

Figure A24 Complete Instruction Set Memory 264

Figure A25 ABS Unit 266

Figure A26 Range Limit Data Stores 267

Figure A27 I-Bit Comparator '" .. 268

Figure A28 N-Bit Comparator 270

Figure A.29 Dual-Value Range Checker 270

Figure A30 Complete Result Range Checker Unit 273

Figure A.31 General Purpose Comparator Unit 274

Figure A32 Radix-4 Adder 276

Figure A.33 4-Bit Basic Adder Block 277

Figure A.34 Carry-Select Adder 4-Bit Block 279

Figure A35 Subtraction Control Unit 280

Figure A.36 Adder OverflowlUnderflow & Integrity Handler 281

Figure A.37 Complete Adder Unit 283

Figure A.38 2x2 Optimised Booth Multiplier 286

Figure A39 Multiplier Integrity Checker .. 287

Figure A.40 Complete 12x 12 Parallel Multiplier 289

LIST OF TABLES

Table l.l

Table 1.2

Table 1.3

Table 1.4

IC Complexity
Influence of first-order MOS scaling

Scaling of interconnect media

Feng's Computer System Classifications

10

14

15

21

xi

Table 3.1

Table 3.2

Table 4.1

Table 4.2

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Table 5.8

Table 5.9

Linearly Separable Functions 86

G I Calculation 110

Annealing Simulation Results

Dimensions of Test Problems

129

134

Instructions fixed in ROM 146

Possible Mathematical Operations

Comparator Data

ABS Unit Logic

Result Destinations

Summary of instruction-based control signals

Instruction Combinations

Iterative Reciprocal Calculation Errors

Initial B€zier Control Points

147

148

148

149

ISO

151

154

157

Table 5.10 Final B€zier Control Points 159

Table 5.11 Multiplexor Control 160

Table 5.12 ABS Unit Control 160

Table 5.13 Majority Function Control 161

Table 5.14 Range Limiter Multiplexor Control 161

Table 5.15

Table 5.16

Comparator Input Control Values 162

C_OUT Transfer Function 163

Table 5.17 Comparison Example 163

Table 5.18 Instruction Set Store Operations 166

Table 5.19 Possible PE Lock States 166

Table 5.20

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Table 6.5

Table 6.6

Table 6.7

Table 6.8

Table 6.9

Overflow Possibilities

Backpropagation Instruction Set

B€zier Approximation Constants

B€zier Approximation Workings

Backpropagation Example Neural Network Setups

6x6 Array Timing (using non-optimal network)

6x6 Array Timing (using optimal network)

24x24 Array Timing

Final Backpropagation Timings

Kohonen Instruction Set

170

174

177

177

184

185

186

186

186

187

Table 6.10 Kohonen Example Neural Network Setups 193

Table 6.11 6x6 Array Timing (small network) 194

XII

Table 6.12

Table 6.13

Table 6.14

6x6 Array Timing (large network)

12x 12 Array Timing (small network)

12x12 Array Timing (large network)

194

195

195

Table 6.15 Final Kohonen Timings 196

Table 6.16 Counter Propagation Instruction Set 197

Table 6.17 6x6 Array Timing (small network) 202

Table 6.18 6x6 Array Timing (large network) 202

Table 6.19 12x 12 Array Timing (small network) 203

Table 6.20

Table 6.21

12x 12 Array Timing (small network)

Final Grossberg Timings

203

203

Table 6.22 Counter Propagation Single Pattern Timings 205

Table 6.23

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Table 7.6

Table 7.7

Table 7.8

Table 7.9

Counter Propagation Batch Pattern Timings 205

Exclusive-Or Training Set 211

Exclusive-Or Training Parameters 212

Parity Training Parameters

Pattern Recognition Training Set Targets

Pattern Recognition Training Parameters

214

216

216

Kohonen Training Parameters 219

Counter Propagation Network Structure 220

Counter Propagation Kohonen Layer Training Parameters 221

Counter Propagation Grossberg Layer Training Parameters 222

Xlll

INTRODUCTION

1.1 Introduction

Modern electronic systems, especially sensor and imaging systems, are beginning to

incorporate their own neural network sub-systems. One of the major advantages of neural

networks is that they have the capacity to extract the essential characteristics of input data,

which may well contain much irrelevant data [Wass89]. This, coupled with their ability to

generalize from previous examples to new ones, makes their use in real-time image-processing

and sensor applications very attractive. However, the response times of such applications

necessitate that the neural systems be implemented in hardware rather than software, and in

order to maximize their performance application-specific integrated circuits (ASIC) would have

to be designed rather than use standard general-purpose components [MeC080].

In many existing hardware neural network systems [NayI94] [KuHw89] [Hamm91] the

processing elements (PE) within an ASIC perform the majority of the neural processing, with

each PE being mapped on to a physical neuron in the network. With a large network there can

be a tremendous number of communication channels, due to the number of connection

combinations, and managing such channels can take up a large proportion of the available

processing time. This can make the hardware implementation of neural networks either rather

slow or limited in scope, with the former being especially true if the ASIC is to be 'general

purpose' and allow conceivably any inter-neuron connection strategy.

Chapter I Introduction

There is little work [Lehm93] which focuses on using the synapses within a neuron as the main

PE's of a hardware system; such systems compute partial results on each of the synapses and

combine them all on a parallel pipeline. This is a perfect example as to the benefits of using

systolic array structures: they can utilize the inherent parallelism present in neural networks for

very few overheads and, thus, solve the communication problem through the extensive use of

concurrency [KungHT82].

Very large scale integration (VLSI) allows for many millions of transistors per le. Although

such large devices can be expensive to fabricate they actually make array processors financially

viable, as the single IC could hold a large number of individual PE's. A systems architect can

then re-cast basic algorithms into a form more suitable for processing, as well as partitioning

the algorithm in new ways in order to reduce the amount of working memory required on-chip.

This allows for a single IC to have high performance even though it consists of multiple

instances of cheap low performance units - there can often be an advantage in using

inexpensive technology in seeking high performance.

Algorithms in many areas are well understood and are not expected to be improved upon in the

near future; e.g. the fields of mathematical floating-point division and data sorting. However,

the systems architect may be limited in computational units and may have to implement

algorithms in a non-standard fashion. For instance, if the VLSI device has only fixed-point

adders and multipliers how can complex expressions such as x = in (n + J) 2 be calculated?

The architect is forced to re-engineer such expressions, devising equivalent functions based

upon the mathematical units available. These equivalent functions will be optimised for the

parallel architecture that has been designed and will often be faster and more efficiently than the

original expression would have been on a more mathematically-capable serial processor.

The work to devise a VLSI architecture suitable for real-time learning of neural networks can be

seen to be into three distinct areas; parallel architecture design, parallel algorithm design and

2

Chapter I Introduction

mathematical approximation of functions. All areas need to be worked upon with efficiency in

mind, as if one stage is inefficient then any gains from the other stages will be lost.

This introductory chapter begins with a brief overview of the evolution of computing machines,

followed by the descriptions of the advances made in IC technology. The chapter concludes

with a survey of parallel computer architectures and an outline of the structure of the thesis.

This introductory chapter, therefore, sets the technological background from which the work

presented in the remainder of the thesis was based upon.

1.2 Evolution of Computing Machines

1. 2.1 What is a 'Computer' ?

There are two fairly standard definitions of the term 'computer' [OUP90]:

J. a usually electronic device for storing and processing data (usually in binary

form), according to instructions given to it in a variable program

2. a person who computes or makes calculations

The latter definition has fallen out of use since the 1950's, when the former definition became

the only one of everyday importance. Until this time the latter definition was a common term,

especially within military circles, for people who could perform complex calculations with or

without the use of mechanical aids.

The definition given for a computer being a data processing machine makes no preconceptions

about the type of machine, nor does it attempt to qualify the type of data that it deals with - the

computer could be electronic or mechanical by design, although mechanical computers have

been made redundant through technological advances in electronics throughout this century.

Computers tend to be either analogue or digital in nature - the latter operates on continuous data

values whilst the former uses discrete data values.

3

Chapter 1 Introduction

Analogue computers can measure precisely the values of physical quantities, such as current

and temperature, which makes their use in simulator equipment desirable. Digital computers

cannot cope with exact numbers, save where only integer values are required, but their

increased speed over their analogue counterparts makes up for their deficiency in accuracy.

This lack of accuracy in digital computers has become a moot point, however, as they are

accurate to approximately ±1/2n-1
, with n ~ 64 becoming commonplace [IEEE85].

Hybrid computers have recently been developed, which incorporate both analogue and digital

components, in an attempt to make a computer both speedy and exact in it's calculations. An

example of such a VLSI device is discussed further in section 4.1.2.

1_ 2.2 Historical Development of Computers

1.2.2.1 The Early Years

Computing machines have existed for many thousands of years [BeNe71], albeit in a rather

primitive form. The simple abacus, consisting of a number of beads attached to rows of

parallel wires embedded inside a rectangular frame, allowed for the rapid calculation of the four

basic mathematical operations of addition, subtraction, multiplication and division. Indeed, it is

a tribute to the engineering genius behind the abacus in that in the hands of a skilled operator it

can still perform basic mathematics faster than a human equipped with a modern-day scientific

calculator.

It wasn't until the 17th century that more ambitious calculating machines were built, with

scientists such as Gottfried Liebniz and Blaise Pascal designing and building more and more

complex machines. Pascal's first machine (1642) was an adding machine, whilst Liebniz'

machine (circa 1671) could carry out the four basic arithmetic operations as well as extract

square roots. Babbage's difference engine (1823) was the first machine to be able to carry out

a multi-step calculation; i.e. a calculation requiring more than a single operation. It was

designed to calculate tables of functions, such as logarithms and trigonometric functions. In

the 1830' s Babbage conceived of a much more powerful computer, known as the analytical

4

Chapter 1 Introduction

engine. It was designed to be a general purpose calculating machine that was theoretically

capable of any mathematical operation known at the time; it was very unfortunate for the early

development of computers that the analytical engine was never completed, mainly due to the

inadequacies of the mechanical technology available at the time. Babbage's design included

such innovations as a punched-card reader, printed output, a memory store for 1000 50-digit

numbers and an innovative technique that has now come to be known as conditional branching.

The technological jump that came with the frantic scientific activity during World War II pushed

forward the bounds of electro-mechanical computers. The first electronic digital computer,

ENIAC (Electronic Numerical Integrator and Computer), in 1946, along with International

Business Machine's (IBM) Harvard Mark I calculator, marked the beginning of the first

generation of computer systems.

From this time the technology evolved at a rapid rate. The electronic relays that were used as

switching devices in the 1940' s became superseded in the 1950' s by vacuum tubes. The

development of the EDV AC (Electronic Discrete Variable Automatic Computer) in 1950

heralded the first stored-program computer, which marked the beginning of the use of a

machine operating system to help programmers carry out some tasks.

Despite this development of a software programming environment the costs of the hardware

were still predominant, with only rich Universities or large corporations, most notably IBM,

being able to afford the development and purchase costs. These costs seemed so prohibitive

that mM issued the now-legendary statement that it believed the world industrial market for

computers would be no more than 10 machines. With the development of the transistor by Bell

Laboratories this idea changed drastically, and their invention ushered in the second generation

of computers.

TRADIC (Transistorised Digital Computer) was built by Bell Laboratories in 1954, using 800

transistors in it's construction. Compared to it's predecessor, the vacuum tube, the transistor

5

Chapter I Introduction

was more reliable and less power-hungry, as well as being a magnitude smaller; the transistor­

based computers also did not require a team of engineers solely to replace blown switching

devices within the computer. Printed circuit boards soon followed from the introduction of

TRADIC, as did the development of magnetic core memory, both of which subsequently

appeared many machines.

The operating system environments available were also enriched greatly; instead of

programming the computers in assembly languages three high level languages were developed,

namely Fortran, Algol and Cobol. These languages greatly improved program design,

allowing programmers access to many high-level concepts such as data structures and allowed

for the automatic handling of multi-byte variables, both of which were awkward to implement

in machine code.

There were also two major advancements in architecture design [HwBr84], with the Larc

system from Sperry Rand and the IBM Stretch project. The Larc contained a dedicated IJO

processor, which operated in a parallel fashion with one or two other processing units. The

Stretch featured instruction lookahead, whereby the execution of the instruction stream is

pipelined by overlapping the execution of the current instruction with the fetch/decode/operand­

fetch of the subsequent instruction. This breakthrough was so important that it has been

implemented in virtually every computer built since this time; this topic is discussed in more

detail in section 1.4.2.1.

1. 2.2.2 Pre-VLSI Integrated Circuits

The third generation of computers began in the early 1960's, and was marked by the increasing

use of IC's in the manufacturing process. Many transistors were fabricated onto a single

device, with many hundreds of transistors being integrated together into a single 'chip'

package. Small- and medium-scale integration (SSI and MSI) computers were capable of

operating at a relative high speed and also had a relatively low cost, and these were the first

computers to be termed mainframe.

6

Chapter I Introduction

Program execution in second generation machines tended to be in batch mode, whereby many

programs were executed sequentially until they were completed. Although very popular it

became virtually redundant with the introduction of multi-programming, whereby many

program segments could be executed simultaneously by interleaving the 110 operations. Soon

after this the concept of the time-sharing operating system was born, which increased the real­

time multi-user aspect of computers. Note that batch programming has not disappeared

completely, with Digital Equipment Corporation (DEC) still supporting it in their V AX family

of computers.

Progress was made in the area of memory systems, eventually replacing the core memory with

solid state devices. Programming languages also improved, with the introduction of more

intelligent compilers to make the task of programming less error-prone. They were also

extended so that they had the capability to handle both scalar and vector data, so that languages

such as Fortran could be run efficiently in the vector-process machines that began to appear in

the early 1970's, which is when the fourth generation of computers came into being.

Around the early 1970's large-scale integration (LSI) began to take off, with LSI being used

for both logic and memory systems. High-density packaging allowed many thousands of

transistors to be in a single chip, heralding the introduction of the microprocessor, often termed

the 'computer on a chip'. Powerful vectorising compilers appeared for the next generation of

vector machines, such as the Cray-I (1976). MUlti-processor mainframe systems also started

to appear, such as the Univac 1100/80 (1976) and IBM 3601168 MP (1980).

It was this mUlti-processing capability, coupled with increased pipelining of program execution

and the reduction of price-power ratio, that made computers a commercial success. Without the

massive take-up in the data processing industries the funding for further research and

development would not have been available, as computers had long passed the stage where the

manufacturers commercial customers would accept whatever they were offered. The

computing industry at this stage had become demand-led, in that boundaries of technology

7

Chapter I Introduction

were being pushed forward because the manufacturers believed that there was a market ready

and waiting for their new products.

1. 2.2.3 VLSI and Beyond

Microchips were becoming far more complex in the 1980's. The metal and silicon tracks on

the chips were still laid out by hand, despite a computer being used. There were no automated

layout tools of any worth and the time taken to hand-craft a 1/4 million transistor chip was just

too much. In order to increase the size and complexity of computer chips some fundamental

changes had to be made in the area of computer-aided design (CAD).

There seems to be two main thrusts to VLSI design. Mead and Conway [MeC080] advocated

what is now commonly known as structured hierarchial design, accompanied by a reduced and

simplified geometric and electrical rule set. The responsibility on the designer for layout

extended right down to full-custom details. The other method, which is largely supported by

industry rather than by academia, has placed ASIC design responsibilities solely at the logic

level, using gate arrays and standard library cells. This semi-custom method does get devices

built fairly quickly, but in order to maximize the potential of the silicon surface the designer

needs to do full-custom layouts.

By utilising this structured design method, which is discussed at various levels throughout

section 2, the designer can generate chip designs holding (at current levels) up to 8x 106

transistors. The chip can have built-in self-test capabilities or external connections to other test

hardware. The chip can be tested by software simulation through complex CAD packages so

that the designer can be very sure of the chances of the chip working upon fabrication.

Transistors can be very densely packed due to designing compact bit-slices of functional units

and then replicating those slices to the required bit-widths. VLSI in itself is not new

technology, but computers created using VLSI design techniques are often known as fifth

generation computers.

8

Chapter I Introduction

The near future of computers seems to be in extracting the maximum performance from

available technology. Chips may begin to be fabricated using gallium-arsenide instead of

silicon [Hira90], which will give them the capability of operating at a speed an order of

magnitude greater than silicon-based chips. Pipelining and multi-processing will become

common even on single-user workstations, allowing them to run processes that would

normally require a mainframe computer. Increased techniques at the molecular level, such as

using transistors that can be switched with only very few electrons will reduce the physical area

required by circuitry. With increasing advances in the field of computer artificial intelligence

(AI) it is possible then computers will have the capacity for reasoning above and beyond that

programmed into them [RiKn91]; such capabilities will allow computers to adapt to their

environment as well as to be able to solve the 'hard' mundane area's of computation (from a

person's point of view) such as perception, natural language understanding (both generation

and translation) and commonsense reasoning.

However, as section 1.3 illustrates, there seems to be a visible finishing point for the

development of silicon or gallium-arsenide chips, as the scaling factors inherent in VLSI design

when the features upon the chip become smaller are seen to be limiting factors. A new

fundamental breakthrough is required in the next IS to 20 years, perhaps in optical computing

or in physical chemistry and biology, in order to keep the pace of change at the levels that are

prevalent today.

1.3 Evolution of VLSI Technology

1.3.1 Development of Integrated Circuit Technology

Integrated circuit technology has advanced greatly since the introduction of the first transistor in

the late 1940's by Bell Laboratories. The first device was implemented in germanium, and

efforts to implement a transistor in silicon came shortly afterwards. Silicon had advantageous

properties over germanium, mostly concerned with cost and switching speed, and a successful

implementation was made in the mid-1950's. The dimensions of a transistor fabricated in

silicon, known as the feature size, was around 3711m; the advancement of VLSI technology

9

Chapter I Introduction

now gives us an attainable feature size of 0.25 Ilm, with sizes of O.ISllm and lower currently

under development [Camp96] and due for general release in the very near future [TI9S].

The so-called generations of IC technology (SSI, MSI

and LSI) were used to approximately designate the

complexity of the IC concerned; as IC fabrication

technology developed it became possible to reduce the

size of the silicon transistors and, therefore, fit more

Table 1.1

Generation

SS!

MS!

LS!

IC Complexity

Complexity

26 (64)

211 (2048)

216 (65,536)

devices on to a single IC. Table 1.1 shows the approximate bounds of these IC generations; it

should be noted that although the figures themselves are not universally accepted the idea of

banding the IC generations in this way is deemed acceptable [BurgS4]. Complexity was also

increasing at a rapid rate; in the mid-1970's it was calculated that le complexity doubled

approximately every IS-24 months [Moor75]. This progression is known as 'Moore's Law'

and still holds fairly true today, although the rate of progression is reducing.

VLSI technology was developed towards the end of the 1970's when it became apparent that

existing design techniques were lacking - it was becoming extremely difficult to design large

chips (> 150,000 transistors), as computer-based testing of circuits was far from acceptable.

The first real text on structured hierarchial design, Mead and Conway's Introduction to VLSI

Systems [MeCoSO], required a new angle on the design of IC's that would grab the attention of

designers - the term 'VLSI' was born. At that time it was taking teams of industrial designers

several man-years to finish chip designs, but Mead and Conway's methods were focussed on

helping teams of non-experts do almost as well - obviously, new design techniques were

required.

The impact in the success of using VLSI techniques are very apparent when you compare two

microprocessor's that were developed around the same period: the Intel SOS6 [UffeS7] and the

Motorola 6S000 [WhitS4]. The differences in style in the two designs was very pronounced;

the Intel device did not have the benefits of VLSI design techniques and, thus, it's silicon

\0

Chapter I Introduction

design looks not unlike spaghetti, with the interconnect between functional units seemingly

placed on the silicon wherever it would fit. The Motorola device had several very regular

structures, with the interconnects between function blocks being very ordered, and these units

relied heavily on iterative design. There is heavy use of iteration in the Motorola device,

whereby functional units are made up from multiple instances of identical cells. For instance,

the ALU may be 16-bits wide, but only a single I-bit cell would have been heavily designed

and tested; the designer would simply have cascaded 16 instances of the I-bit cell to create the

full-blown 16-bit functional unit.

This method of design has several advantages, as it allows large structures to be designed

quickly; if the ALU specification was suddenly changed to 32-bits the Motorola designer would

have very little extra work to do (save ensure that the expanded circuit still fits on the available

silicon area). The Intel designer would have a lot of work to do; the additional circuitry would

have to be added to the device and then extensively tested in software to ensure that some small

feature had not been left out.

From the early 1980' s every IC manufacturer began to adopt these VLSI structured design

techniques, as the benefits they brought was well worth the cost of re-training their designers.

As fabrication technology became more sophisticated, with smaller transistor sizes, lower

activation voltages and intelligent power usage, designers using VLSI techniques were able to

benefit from these gains very quickly. With the imposed rigidity of structured design

techniques, along with advances in pre-fabrication design testing, VLSI can help realise chip

designs of over 222 (4 million) transistors - today's chip designers are already planning devices

of over 223 (8 million) transistors using VLSI techniques.

Further, there is a design methodology known as Ultra Large Scale Integration (ULSI), which

is often taken to be 25 times the range of VLSI [Burg84] [Shut88]. This, like VLSI before it,

is not a technology in itself, but rather a means of identifying devices at the top end of the VLSI

devices currently under design. ULSI is not referred to again in this thesis.

11

Chapter I

The next generation of IC production

seems likely to be Wafer Scale Integration

(WSI). In this technology the entire silicon

wafer is used to construct a single device,

with a large number of processing elements

fabricated onto the wafer and then

connected together. Wafer-scale fabrication

of computing structures demands a high

yield at fabrication, otherwise the wafer

Introduction

T T I

>- PE I
I

I PE L I . I PE PE

~

PE PE PE PE~

>- PE IpE PE I lPE
'-r

I J
1 1

Figure 1.1 Wafer-Scale Integration Lattic(

will be full of non-functional units. Figure 1.1 [HeSn82) shows a 4-by-3Iattice of PE's, each

interconnected with a number of others by a series of switches. Once fabricated all PE's on a

wafer are tested, and then the good PE's are connected together. The wafer is structured so

that the presence of the faulty PE's is masked off and only the functional PE's are used.

It is currently feasible to fabricate over 300 processing elements per 6-inch wafer. These

wafer-scale computers have the capability to be cheaper, faster and more reliable than their

counterparts implemented with single-chip components. There remain many problems with

WSI, most notably concerned with the practical problems of testing the individual PE's upon

the wafer. Other problems, such as the difficulties of routing around faulty PE's and the

potential of very high power consumption upon the wafer, still remain to be solved.

With the further development of fabrication technology wafer-scale integration could prove to

be the way forward in the design and construction of massive parallel computing structures.

Although there are many problems associated with the technology, progress is always being

made and this technology looks set to become very powerful in the near future.

1. 3.2 VLSI Scalability Constraints

One of the major advantages of using VLSI technology and the related design methodologies is

that the basic MOS transistor is inherently scalable [MeC080) and some simple rules exist to

12

Chapter 1 Introduction

help calculate the effect of scaling on certain fabrication process parameters. By scaling the

technology down to a smaller feature size the switching speed of the gates on the device is also

reduced, as is the activation voltage required. This enables the VLSI chips to be run at higher

and higher clock speeds.

However, although it looks as if there is the possibility of scaling the feature size down to

nano-technology levels there are some severe limitations to the technique that could limit the

future development of VLSI; system designers are in need of new techniques.

1.3.2.1 Scaling of MOS Transistor Dimensions

The constant field model of first-order MOS (metal oxide silicon) scaling theory proposes

[Denn73] [Denn74] that the characteristics of a MOS device can be maintained, with the

preservation of basic operational characteristics, if certain critical parameters of the device are

scaled in accordance to a set scheme. This approach has shown to be very successful when

scaling the minimum feature size from the range of 5~m ... 1O~m to the range l~m ... 3~m.

Although this technique does not give optimal device performance at small dimensions, it is in

itself very powerful in providing guidelines as to the improvements that can be expected when a

fabrication process is scaled.

The scaling processes works by applying a

dimension less factor Cl to the following:

• all dimensions on the device

• device voltages

• substrate concentration densities

A schematic of a simple MOS transistor is

shown in figure 1.2 [WeEs88]; a fuller
p- or 11' Substrate aNa(d)

description of the general make-up of a
Figure 1.2 Scaled MOS device

13

Chapter I Introduction

MOS transistor, along with the methods employed to fabricate them, is given later in section

2.1. The basic parameters are length (L), width (W), gate oxide thickness (t ox), junction depth

(Xj) and substrate doping level (Na or N d)' Other factors not shown, such as depletion layer

thickness (d), transistor threshold voltage (V t) and drain-to-source current (Ids)' are also scaled

as a result of the device dimensions being scaled.

The various influences ofthe a

scaling factor are shown in

table 1.2. Initially interesting

factors are that as the voltage is

scaled the electric field (E) in

the device remains constant;

this has the highly desirable

effect that many non-linear

functions remain essentially

unchanged. As the device

dimensions are scaled by Ila

the circuit density scales up by

Table 1.2 Influence of first-order MOS scaling

PARAMETERS

DEVICE Length: L

PARAMETERS Width: W

Gate oxide thickness: tox

Junction depth: Xj

Substrate doping: N.(ord)

Supply voltage: V DD

Electric field across gate oxide: E
Depletion layer thickness: d

Gate delay: (VCII)

RESULTANT DC power dissipation: Ps

INFLUENCE Dynamic power dissipation: P d

Gate area

Power densi ty
Current density

Transconductance: gm

SCALING
FACTOR

1/"

1/"

1/"

1/"

"
1/"
I

1/"

1/"
1/,,2

1/,,2 .

1/,,2

"

a2, which results in the current density scaling upwards linearly with a. To cope with this the

metal conductors will have to be wider to supply the more densely packed structures. Also, the

reduction in the size of the gate oxide thickness (tox) requires the fabrication process to provide

thinner oxides with comparable yields to conventional oxide thicknesses - this is not a trivial

problem, and often necessitates re-design of areas of a fabrication plant in order to cope with

the new technology.

Another characteristic from table 1.2 is that although static and dynamic power dissipation, Ps

and P d, are both scaled by I/a2 the actual amount of power dissipated by the MOS device

remains constant, as the circuit density has increased by a 2
. As temperature increases the gain

of transistors is reduced (due to a reduction of electron carrier mobility) which causes the speed

14

Chapter I Introduction

of the circuits to fall. High temperature, high speed circuits require special consideration

during the design phase.

The limitation of first-order scaling is that it is a first-order approximation; a more rigorous

analysis would provide slightly different values from those shown in table 1.2. It also gives

the wrong impression that it is possible to scale to virtually zero dimension or zero threshold

voltage. If circuit concentrations reach high figures (larger than IxlO19 cm-3
) the gate oxide

actuall y breaks down before the transistor channel is formed during fabrication.

Although scaling does reduce the device switching speeds, power consumption per transistor

and required input voItages, scaling MOS devices cannot go on forever. There are definite

limits on the extent of scaling, but the end of scaling silicon technology is not yet with us; there

is still scope for improvement.

1. 3 . 2.2 Scaling of Interconnect Layer

Despite the obvious advantages of first-

order scaling it does have a number of

undesirable effects; voltage drop, line

response and current density all exhibit

significant degradation, although in the first

two of these the degradation is not entirely

apparent; the scaling factors appropriate to

interconnect media are shown in table 1.3.

Table 1.3 Scaling of interconnect media

PARAMETERS

Line resistance: R

Line response: RC
Nonna1ized line response

Line voltage drop: Vd

Normalized line voltage drop

Current density: J

SCALING
FACTOR

()(

()(

()(

()(

Normalized contact voltage drop: VeN ()(2

Both Vd and RC remain constant after first-order scaling. However, with a constant chip size

the lengths of signal paths across the chip, as a general rule, do not scale down. This gives the

result that voltage drops along communication paths are larger by a factor of a with respect to

the scaled voltages. In a similar manner the line response time normalized to the scaled line

response is also larger by a factor of a.

15

Chapter I Introduction

Because of these problems it is difficult for the designer to take the maximum advantage of the

higher gate switching speeds made available through first-order scaling when signals are

required to propagate over lengthy paths. This creates a major problem in the effective

distribution of clocking signals.

The fine-line metallisation brought about by first-order scaling also presents it's own problems.

As the current density increases then the metal lines within the MOS device must carry a higher

current. Because of this electron migration becomes a major problem, whereby the strong

current literally chips atoms of aluminium off the metal track (thUS increasing the resistance of

the track and exacerbating the problem), so new metallisation schemes are required to

accommodate the higher current densities that scaling brings.

Also, as the MOS device becomes more densely packed the average line length on a chip tends

to increase. Unfortunately, the power dissipation of the scaled gates also decreases with

scaling, which makes it harder for them to drive enough power down the wiring, which has a

constant resistance through scaling. This implies that as gates are scaled down it is the

capacitance on the interconnect that determines gate delay times rather than the gate itself. A

good approximation of the maximum length of acceptable interconnect, from a statistical point

of view [Keye791, is given by the expression Lmax= f{ , where A represents the overall

silicon area of the chip. Therefore, if scaling occurs and the silicon area increases as well, as is

often the case, then the interconnection capacitance problem is exacerbated. Due to this

problem designers now use techniques so as to maximise local and minimise global

connections in order to design effective VLSI circuits. In certain areas of VLSI design, such as

the design of high-speed mathematical units, this optimal use of local connections in order to

reduce overall circuit computation time has always been of paramount importance; the

techniques used in these specialist areas are bound to spread to all other areas of VLSI design.

16

Chapter I Introduction

1.4 Parallel Computer Architectures

Many areas of science and technology constantly demand more and more powerful

. computational capabilities. Fields requiring vast amounts of processing power include weather

prediction, molecular modelling and astrophysics. Although VLSI technology is getting faster

and faster through the use of scaling techniques, scaling alone cannot meet the ever increasing

computational requirements of certain scientific fields.

The use of parallel processing in such areas is a sound choice for further improving computer

perfonnance. Hwang and Briggs [HwBr84] fonnally define parallel processing as follows:

Definition Parallel processing is an efficient form of information processing which

emphasizes the exploitation of concurrent events in the computing process.

Concurrency implies parallelism, simultaneity and pipe lining. Parallel events may

occur in multiple resources during the same time interval; simultaneous events may

occur at the same time instant; and pipe lined events may occur in overlapped time

spans. These concurrent events are attainable in a computer system at various

processing levels. Parallel processing demands concurrent execution of many

programs in the computer. It is in contrast to sequential processing. It is a cost­

effective means to improve system performance through concurrent activities in the

computer.

Any computation ally expensive field of science that is offered computing power as defined by

Hwang and Briggs are bound to accept it. This section describes the various classes of parallel

architectures that have evolved over the last three decades.

1. 4.1 Historical Legacies

1. 4.1.1 Flynn's Classification

Flynn's classifications of computer organizations [Flyn66] divided the basic architecture types

up into four categories, depending on the multiplicity of instruction and data streams. An

instruction stream is a sequence of instructions as executed by a machine; a data stream is a

sequence of data called for by an instruction stream. The data can consist of input, partial

results or completed calculations. The four categories are shown in figure 1.3.

17

Chapter 1

a) SISD

b) SIMD

c) MISD

d) MIMD

Instruction Stream

----------------------------------~

Instruction Stream

,
____ J ____ _ , ,

,
Data Stream

,----------------------------------,

~

- __ I

1 ______ ----------------------------------

Figure 1.3 Flynn's Classification of Parallel Computer Architecture

The following list describes Flynn's four machine definitions:

Introduction

• Single Instruction Single Data (SISD) machines represent the majority of serial

computers available today. Instructions are sequential, but may be overlapped at the

execution stage through pipelining, as shown in figure 1.3a

• Single Instruction Multiple Data (SIMD) machines correspond to array

processors, with multiple processors simultaneously executing the same instruction on

18

Chapter I Introduction

different data. The multiple processors are supervised by a single control unit, as

shown in figure l.3b

• Multiple Instruction Single Data (MISD) machines contain multiple processors,

each receiving different instructions, operating on a single data stream and it's

derivatives - the output of one processor becomes the input to the next. A machine of

this type is possible but no real examples of it's type exist, which FJynn attributes to the

impractical architecture and to the specialized streamlining of data that is required. The

schematic is shown in figure 1.3c

• Multiple Instruction Multiple Data (MIMD) machines contain multiple

independently operating processors attached to a shared memory system, with each

processor being able to execute distinct instructions upon distinct data as compared to

the other processors. The schematic is shown in figure 1.3d

Flynn's classifications have stood the test of time very well. Although it is useful in getting a

rough classification for an architecture, however, it is not flexible enough to be able to classify

many of today's newer parallel architectures: vector processors, shared memory machines,

distributed architectures, systolic arrays or wavefront arrays are all examples of these. In order

to classify these architectures correctly we need to use a different methodology.

1.4.1. 2 Feng's Classifications

Realising that there were some problems associated with Flynn's classifications Tse-yun Feng

suggested [Feng77J that in order to classify parallel architectures it would be better to use the

degree of parallelism inherent within them.

Feng's ideas are based around calculating the maximum degree of parallelism possible within a

computer system (P), then further calculating the processor utilisation rate (/1) over a series of

processor clock cycles (n. P is defined as being the maximum number of binary bits that the

19

Chapter I Introduction

computer system can process at anyone time. With Pi being the processor utilisation rate at

clock cycle i, the average degree of parallelism, P avg' over a number of processor cycles can be

given by:

T

LP,
P =~

avg T (1.1)

It is clear that the utilisation rate of a computer system is dependant on the application being

executed at the time, so if the processor is being fully utilised then we have Pi = P for all i and

J1 = I. It is clear that in general Pi ::; P; thus, we define the utilisation rate J1 as:

P avg
11=­P

(1.2)

The actual classification method takes the word-length of the computer (n) and the bit-slice

length (m). A bit-slice is a string of bits, one from each of the words of data that the processor

is holding/processing in any of it's arithmetic and computational pipelines. For example, the

Texas Instruments Advanced Scientific Computer (TI-ASC) from 1972 has a word length of

64-bits and four separate pipelines, with each pipe having eight pipeline stages. Thus, the bit­

slice length m is given by 4 x 8 = 32. These values are represented as (64, 32), and the

maximum degree of parallelism possible is represented by the product of the word-length n by

the bit -slice length m.

From Feng's classification guidelines there are four types of processing methodologies:

• Word-Serial/ Bit-Serial (WSBS; n=l, m=l) This method has often been called

bit-serial processing, because only one-bit at any time is being processed. This slow

process was only done in the first generation machines

• Word-Parallel I Bit-Serial (WPBS; n=l, m>l) This is known as bit-slice

processing, as a single m-bit slice is processed at a time

20

Chapter 1 Introduction

• Word-Serial I Bit-Parallel (WSBP; n>l, m=J) Also known as word-slice

processing, because a single n-bit word is processed at a time

• Word-Parallel I Bit-Parallel (WPBP; n> 1, m> 1) This is the fastest processing

mode of the four, also known as fully parallel processing (as opposed to simply parallel

processing in order to reduce confusion). In this mode an array of n-by-m bits are

processed simultaneously

Table 1.4 gives a

number of examples

of computer systems

that were classified

using Feng's

methods. Different

processing needs will

require a computer in

Table 1.4 Feng's Computer System Classifications

MODE COMPUTER SYSTEM (n, m)

WSPS MINIMA (I, I)

WPBS Goodyear ST ARAN (1,256)
n=l, m>l ICLDAP (1,4096)
(bit-slice processing) Goodyear MPP (I, 16384)
WSBP DEC V AX 111780 (32, I)
n>l, m=l IBM 370/168 UP (64, I)
(word-slice processing) Cray-I (64,1)

WPBP Carnegie-Mellon C.mmp (16, 16)
n>l, m>l Texas Instruments ASC (64, 32)
(fully parallel processing) JIIiac-JV (64, 64)

a different category. Typical small computers of today are of the WSBP type, with a single n­

bit word being processed at a time. Technology at even this level is changing fast [Taba95]

with the advent of processors such as the latest incarnations of Motorola's PowerPC and Inte!' s

Pentium architectures, which are becoming WPBP - as what has happened in the past,

technology that was previously used solely for super-computers is now becoming standard at

the lower level of personal computers.

1. 4.2 High-Level Parallel Architecture Classification

Feng's classifications are very well suited to describing the efficiency of the parallel processing

structures within a computer, but do little as to describing how they are carried out. Flynn's

classifications provide useful distinctions between the types of computer processor

organizations available, but are riot very helpful when trying to classify many modern

computers. Pipelined vector processors are difficult to accommodate within Flynn's

categories, as they lack processors executing the same instruction (SIMD) and also lack the

21

Chapter 1 Introduction

basic asynchronous behaviour of MIMD, yet it clearly is a parallel architecture operating upon

multiple tuples of data in parallel.

Duncan proposed a rather different parallel

framework [Dunc90] that attempts to place

the recent architectural advancements into the

broader context of parallel computers, in an

attempt to classify all parallel computers

using a single coherent framework. In order

to do this Duncan's proposals had to satisfy

the following set of imperatives, the results

of which are shown in figure 1.4:

• Architectures that incorporate

commonplace low-level parallel

features are excluded

Figure 1.4 Duncan's Classifications

• The very useful elements of Flynn's classification, namely the instruction and data

stream categorisations, are to be retained and used a sub-classifications

• Any architecture that intuitively merits being classed as a parallel architecture, but which

fails to be categorised at all under Flynn's rules, is to be included

1.4.2.1 Synchronous Architectures

Pipelined Vector Processors

The basic idea of a vector processor is to combine two vectors, element by element, in order to

produce an output vector. Thus, if A, Band C are vectors with N elements then the vector

processor performs the operation C := A .op. B. Typical operations are those which implement

arithmetic or boo lean operators on vector data. A simplified schematic of the dataflow through

a vector processor set up for pipelined vector multiplication is shown in figure 1.5.

22

Chapter I

Most vector computers have a pipelined

structure; when one pipeline is not sufficient

to achieve the desired performance then

Multiport

Memory

Introduction

SlreamA
~ ..

Stream B Pipelined Multiplier .
System

Stream C :=A'" B I
designer's occasionally provide multiple

pipelines. These mUlti-pipeline vector Figure 1.5 Vector Processor Dataflow

processors not only support data streaming through a single pipeline, they also support a fully

parallel mode of operation by allowing multiple pipelines to execute concurrently on

independent streams of data.

The pipeline theory is to divide an operation into several distinct

stages, with the results from one stage forming the inputs to the next.

The pipeline of stages may be linear or may contain feedback loops,

in which case care must be taken as to when new data is provided to

the pipeline lest it collide with partial results being fed back into

previous stages. Figure 1.6 shows a linear pipeline for floating-pont

multiplication (although a similar schema can be imagined for

processor fetch/decode/execute cycles). Each stage is controlled by

an internal clock, such that each stage is ready to accept new input

data at each cycle. As some stages are complex they may be broken

down into several other pipelined stages - the MUltiply Mantissas

stage can be broken down into a series of sequential operations,

namely produce partial products and add partial products. All stages,

Add Exponents

Multiply Mantissas

Normalize

Round Result

Figure 1.6
Multiplier Pipeline

or sub-stages, should be designed so that on each and every internal cycle they are ready to

accept new data and output the result from the previous cycle. If every stage requires 25ns of

processing time, and there are 10 stages of processing, then the first full result will be available

after 250ns. However, as the input data is being fed into the pipeline every clock cycle the

second and subsequent results are available after every additional 25ns.

23

Chapter I Introduction

SI MD Architectures

Under the SIMD architectures there are two sub-categories: processor array architectures and

associative memory architectures. The former has been shown in figure 1.3b, and is simply a

synchronous parallel computer with multiple PE's that operate in a lock-step fashion. For a

short period of time only a single processor (the control unit) is active: it is busy initialising

variables for the calculation and parcelling out the work to be done over the processor array,

along with all other computational overheads that are not replicated in other processors within

the array.

One problem with this method is that there is a large amount of idle time within the array whilst

the control unit is setting up the computation - as the array processors increase in both numbers

and in power the time taken for the parallel computation becomes vanishingly small compared

to the time taken for the control unit's initialisation. Two methods of reducing this idle time are

to overlap the initialisation of computation two with the execution of computation one (as in the

Illiac-IV array processor) or to overlap the addition and multiplication operations within the

arithmetic pipeline (such as in the Cray il). Pipelines tend not to exceed 10 - 20 stages, and the

number of processors within an array also tends not to exceed 10 - 20. There is noticeable

inefficiency in the architecture, as the pipelines are empty for some time. Hence, at low levels

of parallelism (such as 20 processors) the inefficiency may be tolerable compared to the extra

expense of hardware required to keep the pipelines full.

Associative memory (AM) architectures utilise AM instead of the normal random-access

memory (RAM). The fundamental difference between AM and RAM is that the former is

contents addressable, allowing the parallel access of multiple memory words. This parallel

access is used for search and comparison purposes, allowing the controlling processor to carry

out a search or compare operation on a large number of memory addresses in a single memory

access cycle.

24

Chapter I

A basic schematic of an associative memory

structure is shown in figure 1.7. To initiate a

search, a vector of data is sent into the bit-control

logic (BCL) and on into the AM. This vector is

simultaneously passed to all words in the AM,

and each one compares the vector with its own

contents. This operation results in a match vector

Introduction

Figure 1.7 Associative Memory
being generated inside the word-control logic Schematic

(WCL). This vector indicates which of the words in the AM hold data identical to the input

search vector. Individual match addresses may be calculated from the match vector and used in

further processing, or, as is usually the case, the match vector may be manipulated and then

sent back into the AM; a write operation on the AM may then take place, which will then only

affect those words in the AM that previously indicated a positive result to the match operation.

Additionally, a mask vector may also be sent into the BCL. This indicates that any write or .
match operation should only operate on the bit columns specified in the vector; it is then

perfectly possible to modify the same field or fields within many words of the AM, whilst

leaving unaltered those fields within the data words that were masked out from the operation;

i.e. the lowest three significant bits could be altered in all data words that indicated positive to a

previous match operation, leaving the rest of the bits in the data words unaltered. Normal

read/write operations are still possible on the AM, and it is also possible to write a value into all

words in the AM in a single operation.

The AM structure is used in areas where a fast look-up for data is required; the search is for

whether an item is held in memory and, if so, where. The directory of a processor cache

works in this fashion, with a quick check being made to see if data is held in the cache before a

request is made to main memory. The AM is searched for a main memory address; if this

search is successful then the location in the AM of the address data is used as an offset into

25

Chapter I Introduction

another piece of fast memory, where the required data is held, which tends to be 10 - 20 times

faster than main memory.

AM structures can also be used [Kane95] where a controlling algorithm needs to know if a

particular result has already been generated, as well as a linked-list data structure container.

This type of operation requires additional bits of memory to act as tag fields, which are

manipulated by the AM mask vector. A IO-bit AM, with 8-bits for data and a two tag fields per

data item, allows read/write/search requests to be made either of the 8-bit data or of the tag

fields; this type of structure can be very powerful.

Systolic Architectures

The concept of systolic architectures was first introduced

by Kung and Lieserson [KuLi78] as a high-performance,

special purpose VLSI computer system. The term applies

to certain computing structures with cellular organisations

and pipelined dataflows that are suitable for applications

that need to balance intensive computations with a

demanding 110 bandwidth [KungHT80]. The architecture

consists of a set of interconnected cells, each of which is

capable of performing some operation - a simple

schematic of a systolic array is illustrated in figure 1.8.

'---+1 PE t'-----'

a) Conventional Processor

b) Systolic array processor

Figure 1.8 Basic Concept of
Systolic Arrays

Information flows between the cells in a pipeline fashion, with only those cells at the

boundaries of the array acting as 110 ports to the system as a whole. Data interconnections,

save for the I/O ports, are entirely local, in that each of the PE's can communicate via direct

physical interconnections only with neighbouring PE's. Each PE is controlled with the same

internal clock. Between two consecutive clock cycles each PE carries out computations on the

data that it received on the last cycle, as well as on any internally held data. Results of the

computations are then stored internally and/or made available to neighbouring PE's, which can

26

Chapter I Introduction

pick them up at the beginning of the next clock cycle. This 'pulsing' of data resembles the

pulsing movement of blood under the contractions of the heart, which are called systoles in

physiology. This analogy was the reason to give these computer structures the attribute

systolic [KungHT82]. Further in-depth details of systolic arrays is given in section 2.3.

1. 4.2.2 MIMD Architectures

The classic MIMD architecture, as shown in figure 1.3d, supports multiple processors

executing independent instructions. The software processes executing on a MIMD architecture

are synchronized by passing messages through the interconection network, or by data items

stored in shared memory. The architecture is asynchronous, however, due to the decentralized

control of hardware resources, and architectures falling under the MIMD label are not classified

along with the synchronous architectures from section 1.4.2.1.

Distributed Memory Architecture

Each processor in a distributed memory architecture

has registers, arithmetic and logic units, local memory

and 110 drivers, each connected to a processor-to-

processor interconnection network; this scheme is

shown in figure 1.9. No sharing of memory and 110

is permitted in this architecture, with processors

sharing information by passing messages via the

Figure 1.9

~

Distributed Memory
Architecture

interconnection network. This system supports communication through a point-to-point

exchange of information.

Various interconnection strategies have been proposed for this architecture, each of which suits

a different class of parallel algorithm; each one has it's own strengths and weaknesses.

Examples of distributed memory architectures include ring networks, the mesh, the hypercube

and the tree, all of which are illustrated in figure 1.10.

27

Chapter I

The ring topology, shown in figure

1.1 Qa, IS an interconnection

structure in which nodes are

connected with point-to-point

connections between processors

and a cyclic structure overall. A

transmitting processor places a

message on the loop, which is

repeated by all intermediate

processors until it reaches it's

destination; the destination

processors takes the message off of

Introduction

a) Ring Topology b) Mesh Topology

o

c) Hyper-Cuhe Topology d) Tree Topology

Figure L10 Various MIMD Interconnection
Topologies

the loop by simply failing to repeat it. Although there are many ways in which to operate a ring

a common protocol is the token ring network. In this protocol a unique message, known as a

token, is passed around the processors in the ring. If a processor is waiting to transmit data on

to the ring then it takes the token off the ring and transmits it's message instead, otherwise it

just repeats the token. The destination processor for any message re-initiates the process by

placing a token back on to the network.

The mesh topology, shown in figure 1.IQb, is a near-neighbour mesh. It mayor may not be

recirculating, in that boundary processors can have direct connections to other boundary

processors on the opposite edge of the mesh. All inter-PE communications can be specified as

a set of routing functions. Whenever a routing function is activated the source PE transmits

data to a neighbouring PE; in order to pass data between two PE's that are not directly

connected within the mesh the data must be passed through a number of intermediate PE's.

The hypercube topology, shown in figure 1.1 Qc, is a parallel processor whose interconnection

structure treats individual processors as the nodes of a multi-dimensional cube. Two

processors are interconnected if the corresponding nodes of the cube are neighbours. The

28

Chapter I Introduction

hypercube has 2n processors, each of which is labelIed with an n-bit binary tag; in figure \.IOc

n = 4, implying a four-dimensional hypercube (or four-plane). Each neighbouring processor's

label would only be different in a single bit position. At most a message between two

processors requires n steps. The route taken by the message is not fixed, yet is simple to

realise - a message from processor 0100 to 1110 is only two steps long, as their tags are

different in two bit positions. Routing is calculated by taking the exclusive-or of the source and

destination node, in this case 1010; this indicates that the message must traverse plane-I and

plane-3, but the order of traversal is irrelevant.

One of the most influential hypercube designs, the Cosmic Cube [Seit85], is a six-dimensional

architecture, although the dimensions reflect interconnections useful for algorithmic purposes

and does not correspond to physical dimensions. In the Cube each processor was an Intel

8086 processor chip, with an additional Intel 8087 floating-point unit, and alI processors were

not required to execute the same instruction concurrently; rather, instruction execution was

independent at each processor node.

The tree topology, shown in figure I. \Od, is an architecture that is useful where the algorithm

suits a master/slave process distribution. If a job can be shared reasonably evenly over many

conceptual levels than the leaf-node processors, indicated by a 2 in the figure, carry out some

computation and pass their result up the tree. The branch nodes, indicated by a 1 in the figure,

carry out further processing, again passing results further up the tree until eventualIy the root

node, indicated by a 0 in the figure, completes the calculation.

The tree topology is difficult to implement in the physical sense; however, by mapping the

entire tree on to a reconfigurable mesh, and indicated in figure 1.10b, it is possible to build and

implement machines that can utilise the architecture of a binary tree. Each node is mapped in

such a way that maximises the potential of the connections available within the mesh; the mesh

can never be 100% utilised in this fashion, as sub-branches have to be arranged so that their

resultant leaves do not overlap.

29

Chapter I

Shared Memory Architecture

Similar to the distributed memory architecture, each

processor has registers, arithmetic and logic units

and 110 units, each being connected to the

processor-to-processor interconnection network; this

scheme is shown in figure l.ll. Memory is shown

as being separate subsystems which is shared

IG=rrn I/O ijl

IG.;znr~]1

Introduction

~ Mem.ory I

Memory l

I--f Memory 1
'--

Figure 1.11 Shared Memory
Architecture

amongst all processors, although each processor normally has it's own bank of local cache

memory. Again, data is exchanged between processors via the interconnection network. The

shared memory architecture conveniently provides a simple means for information interchange

and synchronisation, as any two processors can communicate through a shared location.

Shared memory computers do not have some of the problems associated with message-passing

parallel architectures, such as message latency whilst data is forwarded around the architecture

interconnection system by the intermediate PE's. However, other problems, such as data

read/write access synchronisation, must be solved.

A crossbar system of interconnect uses multiple crossbar switches to connect several memory

units to several processors. It has a low bandwidth and is quite complex to implement, despite

being conceptually the simplest shared memory interconnect scheme. A bus system, however,

is much better; by replacing the interconnection network in Figure 1.11 with a multi-access bus

we have a shared bus method of communication, with each processor and memory unit being

connected to it. The cache memory in the processors, along with small amounts of local

memory, shortens the effective memory cycle time as well as reducing the use of the bus; one

processor does not slow down any others through extensive use of the bus.

As cache/local memory solutions that reduce global bus access by 95% are easily realisable a

simple shared memory bus system can support up to 20 processors. Systems with more

processors, such as 1000 or more, are unlikely to be realisable without a technological

breakthrough that gives a very high bus bandwidth at very low cost.

30

Chapter I

A system of interconnection that lies

on an intermediate point in the

spectrum of possible interconnect

networks [Ston71], yet still provides a

good level of performance, is the

shuffle-exchange interconnection, as

shown in figure 1.12. The figure

Introduction

Figure 1.12 Shuffle-Exchange Network

shows processors at one side, memory units at the other and a series of combining-switch units

in between. The combining-switch units can either pass the inputs to the outputs, pass the

inputs to the opposite output (reversal) or pass a single input to both outputs (broadcast).

The bandwidth is higher than the bus, but lower than the crossbar. The time-cost for access is

O(N log N), as opposed to O(N) for the bus and O(N2) for the crossbar. The architecture also

solves the shared-memory exclusive access problem; if access to a shared variable is saturated

then there is, normally, no additional speed improvement no matter how many processors are

added to the system. However, this does not wholly apply if the exclusive access can be

accomplished in part of the switching network and in part of the memory. In the shuffle­

exchange the exclusive access is, in effect, done in parallel rather than in serial by making use

of the facilities built into the switching mechanisms.

In operations where global memory accesses do not conflict the shuffle-exchange network

bandwidth can increase dramatically. It has been shown that if N processors place

simultaneous synchronised global requests, such that processor i requests data from memory

i+c for any constant c, the requests can be granted simultaneously without any conflict

whatsoever [Lawr75l. Further, Lawrie went on to show that if processor i requests data from

memory pi+c, where p is an odd number, no contention occurs provided N is a power of 2.

Although a powerful interconnection structure for shared memory machines it is far from being

perfect. The exclusive access conditions make it unsuitable for some problems, which

31

Chapter 1 Introduction

become unfeasible other than for small values of N. A common algorithm in parallel

computing, the fast fourier transform (FFT), has two types of processor-to-processor

communication; the butterfly operation, where pairs of processors exchange data and compute

further values, and the reverse-binary operation, which transforms the order of the output data.

It has been shown [Cvet86] that these two operations are incompatible with the shuffie­

exchange network. If the data stored within the processors such that the butterfly operation

proceeds without conflict then the reverse-binary operation results in maximum conflict within

the network. Conversely, if the reverse-binary operation is made conflict free then the butterfly

operation results in maximum conflict.

1. 4 .2.3 MIMD Paradigm

The architectures within this section all exhibit the normal MIMD characteristics of

asynchronous operation and the concurrent manipulation of multiple instruction and data

streams. Each architecture has some form of organising principle that is fundamental to it's

overall design, as well as the normal MIMD characteristics, so these architectures are classified

separately under the heading 'MIMD Paradigm' instead of with the MIMD architectures from

section 1.4.2.2.

MIMD/SIMD Architectures

This hybrid architecture is a MIMD machine that has the facility to allow selected portions of

the architecture to be controlled in a SIMD fashion. In the MIMD/SIMD hybrid architecture

each of the SIMD controlling units have a number of slave SIMD processors under their direct

control. Also, each controlling unit has a MIMD operational node which passes them

algorithms to be carried out - this structure is shown in figure l.13a.

32

Chapter I

The SIMD processor control/slave portion of the

architecture is akin to a shared-resource array

processor [HwNi80), which consists of two or

more controlling units which share a pool of

dynamically allocated PE's; such a system is

shown in figure 1.13b and is also known as

'Multiple SIMD'. To fit into the MIMD/SIMD

architecture it is plain to see that all SIMD

control units have a 'master' MIMD controller,

such as that shown in figure I. 13a.

Dataflow and Reduction Architectures

Dataflow [Denni75) and reduction [TreI82)

Introduction

SIMD Controller Node

SIMD Slave Processor

a) MIMD/SIMD Architecture

... _----------------------, , ,

G
CUM

ll. P ~. >.
uo F::4 t
-~ , ,

._------------------------>
b) Multiple SIMD Architecture

Figure 1.13 MIMD/SIMD Architecture

architectures share a similar operational tenet: the former enables instructions once all operands

are available, whilst the latter enables instructions once their results are required elsewhere.

The sequence of executed instructions is based on data dependencies, with the reduction

architecture also known as a demand driven architecture, and these architectures are potentially

able to exploit any inherent parallelism at the task, routine and instruction levels. Both

architectures make use of tokens to indicate to the machine controllers what a data item is within

the machine, with reduction machines also having 'demand' tokens, which indicate to

instructions that their results are demanded.

Despite the apparent advantages of these approaches there are a number of disadvantages to

such architectures [HwBr84), which are as follows:

• The data driven at instruction level causes excessive pipeline overhead

• Data flow programs tend to waste memory due to the much increased code length

• The packet/token switching network within large data-flow computers becomes cost­

prohibitive and is itself a bottleneck in the system

33

Chapter I Introduction

• The architectures have potential in small-scale or very large-scale parallel systems, but

compete less favourably at other levels when compared against existing pipeline, array

and mUltiprocessor system

Wavefront Array Architectures

A wavefront approach to designing cellular processor arrays was proposed by Kung et al

[KungSY82J. Wavefront processors combines systolic data processing with an asynchronous

dataflow, yet retain the features from systolic architectures, such as modular processors and

regular, local interconnection networks. The major difference is that wavefront processors do

not make much use of a global system clock: they exploit the time-delays used for

synchronisation the systolic data pipelines and the associated asynchronous handshaking as the

method for coordinating inter-processor data exchange.

Using this method, as illustrated in figure 1.14, a

processor informs it's successor in the array that it

has completed it's computation and that a result is

ready (1). The result is sent (3) once the successor

indicates that it is ready to receive the data (2) and,

in turn, sends an acknowledgement to it's

Wave -8- Wave-A-

2

4

1

·JZf§O:--Q
predecessor to a state that the data has been Figure 1.14 Wavefront Array

Architecture
received (4). This operation cascades throughout

all processors in the array (5). It is clear from figure 1.14 that processors receiving data from

wavefront -A- will be able to start operating upon it before processors that were previously

concerned with wavefront -A- will be able to start processing new data from wavefront -B-.

Using this method of handshaking means that the flow of wavefront data through the array is

very smooth; the wavefronts do not interfere with each other, as the processors holding the

wavefront data act as the propagation controllers and cannot, by definition, propagate any data

until the destination is ready for it. This is, in principle, a very powerful architecture, as an

34

Chapter I Introduction

algorithm can pass through the array as fast as the processors can handle it. There is no set

time frame for a stage of the algorithm to be executed within a processor, such as is the case for

the global clock in a systolic array. Once a processor has completed its computation it does not

have to wait upon a system clock before it can start on the next calculation; it can start as soon

as the data values required are available.

1.5 Thesis Organisation

This thesis is concerned with the design and specification of an instruction systolic-array

architecture for the VLSI implementation of neural networks with real-time learning. The

discussion can be divided into three main parts. Other sections of the thesis consist of the

contents lists, references, some details of further work and final conclusions on the ideas put

forward throughout this thesis.

The first part is an introduction to the subjects that form the technological background to the

discussion; it contains a general overview of computer evolution and architecture, as well as

more detailed studies of VLSI technology, systolic arrays and neural networks. The second

part consists of the major research undertaken by this thesis; it contains the overview of the

VLSI architecture required for successful hardware implementation, as well as details of the

systolic algorithms to carry out neural learning using three different learning methodologies.

The third part consists of the software and hardware implementations carried out on the basis of

the work done in the second part. It consists of the software simulator of the systolic array

architecture, along with a few sample applications to demonstrate that the algorithms have been

successfully implemented, and the hardware designs carried out towards the end of fabricating

a working VLSI device.

1. 5.1 Part 1 - Introduction

Part I forms the introductory part of the thesis and consists of Chapters I to 4 respectively.

Chapter I gives a general introduction to the areas relating to systolic array processing, notably

the evolution of computer architecture, the advancement of integrated circuit technology and the

35

Chapter I Introduction

various classifications of parallel computer architectures. Systolic arrays themselves are just

one class of parallel computing, but it is one that is very amenable to implementation in VLSI

technology.

Chapter 2 contains more detailed descriptions of the areas required for hardware

implementations of systolic arrays. Descriptions of the steps required in VLSI fabrication are

given, along with the problems associated with the industry. The chapter goes on to give

descriptions of computer-aided design techniques currently available, with details of on- and

off-chip testing methodologies. The chapter concludes with further details on systolic array

processing, along with derivations of the fundamental algorithms associated with the

architecture.

Chapter 3 described various neural network learning methodologies, with examples of both

supervised and unsupervised techniques. It gives a concise history of the field, from the

pioneering work at the beginning of this century, as well as describing the electro-chemical

processes involved in biological neural system. Chapter 4 carries on from this with two case

studies of recent practical applications of neural networks, along with two research-led

applications of neural networks in VLSI devices.

1.5.2 Part 2 - Systolic Array Architecture and Algorithms

Part 2 forms the main theoretical part of the thesis, consisting of Chapters 5 and 6. Chapter 5

contains details on the proposed systolic array architecture for on-chip neural network learning.

It describes the device, firstly, in overview, outlining all of the basic requirements of the

architecture. It then goes on to describe the reconfigurable instruction set aspect of the systolic

array, along with the method developed for approximating any neural activation functions

within the array. The chapter concludes with a more in-depth description of the hardware

design features that make up the systolic array architecture.

36

Chapter I Introduction

Chapter 6 continues the systolic array architecture theme by describing the systolic algorithms

developed for the architecture. There are three different neuralleaming methodologies that the

architecture can currently support, each methodology being of a different type. Each

component of the various algorithms is described in detail, along with timing results for one

application on each of the three methodologies.

1. 5.3 Part 3 - Software and Hardware Implementation

Part 3 forms the main deliverable items of this thesis and consists of Chapter 7 and

Appendix A. Chapter 7 describes the implementation in software of a systolic array simulator

that closely matches the hardware and software designs from Part 2. This describes the general

operation of the software, giving an all-round picture of what the software is capable of. It also

gives descriptions of several application examples implemented on the simulator, in order to

show that the designed architecture is capable of successfully carrying out neural processing.

Appendix A contains all of the detailed circuit diagrams, and associated VHDL code, required

to implement every aspect of the hardware designs from Chapter 5. This section is designed as

an appendix, with higher level descriptions of each circuit in Chapter 5 referring to the actual

implementations presented in Appendix A.

37

l

INTRODUCTION

BACKGROUND
TECHNOLOGY

This chapter describes in more detail the various technologies that have had the largest influence

in the design of a systolic array processor for real-time neural network learning. It begins with

a description of the various common methods of IC fabrication, with details on the different

methods and some common measures employed to improve the basic fabrication process.

Methods for increasing the reliability of IC testing once devices are fabricated are given, along

with the available techniques for digital device testing. The chapter concludes with an in-depth

discussion on systolic array processing, with details on the various topologies commonly used

and a look at the basic algorithms used in systolic array processing.

2.1 VLSI Fabrication Technology

2.1.1 Silicon Semiconductor Technology

2.1.1.1 Silicon Wafer Generation

In it's pure state silicon is a semiconductor, having a bulk electrical resistance somewhere

between that of a conductor and an insulator. The resistance of silicon can be varied, over

several orders of magnitude, by introducing impurity atoms into the crystal structure: these

dopants can either supply free electrons or holes. Impurity elements that use electrons are

known as acceptors, since they accept electrons already present in the crystal, leaving vacancies

(or holes) behind them, whilst elements that introduce electrons into the crystal are known as

donors. Silicon that has a majority of donors is known as n-type and that which contains a

majority of acceptors is known as p-type.

38

Chapter 2 Background Technology

By bringing together n-type and p-type material, where the silicon changes from n-type to p­

type, a junction is formed; by arranging these junctions into particular physical structures we

can form various kinds of semiconductor devices.

The basic raw material used in fabrication is the silicon wafer, which varies from 75mm to

150mm in diameter and is less than I mm thick. The wafer is cut from an ingot of single-crystal

silicon which has been pulled from a crucible melt of pure, molten polycrystaline silicon. Once

the wafer is cut to the required size, usually with diamond blades, and at least one face is

buffed and polished to a flat, scratch-free mirror surface.

2.1.1. 2 Silicon Oxide Generation

Many of the techniques used in the manufacture of silicon-based IC's rely on the properties of

silicon dioxide (Si02). Therefore, the reliable manufacture of Si0 2 is extremely important to

the entire fabrication process. The oxide is achieved by heating the wafers of silicon in some

form of oxidising atmosphere, such as oxygen. The two most common approaches are:

• Dry Oxidation: the oxidising atmosphere is pure oxygen, with temperatures in the

region of 1200°C

• Wet Oxidation: the oxidising atmosphere contains water vapour, with temperatures

usually between 900°C and 12000 C

It is important to note that the oxidisation process POLYSILlCQN GATE
GATE OXIDE

actually consumes silicon. In the standard

fabrication process, as described in section 2.1.2, a

layer of silicon is placed on top of the original p-type

substrate and is then oxidised - this layer is known as

field oxide. Since Si02 has approximately twice the Figure 2.1 Field Oxide Growth

volume of Si, the Si02 layer grows equally in all

directions, so the actual Si0 2 1ayer grows into the base substrate (which was initially polished

flat). This can be seen in figure 2.1, which shows a p-type transistor in which the Si02 field

39

Chapter 2 Background Technology

oxide can clearly be seen to have grown into the substrate. Note, the steps required to create

such a transistor are covered in detail in section 2.1.2.

2.1.1. 3 Selective Diffusion

The placement of the acceptor and donor areas on the silicon substrate needs to be a very

precise process, as is the placement of any associated structures. The ability of Si02 to act as a

barrier against doping impurities is a vital factor in the placement process, which is known as

selective diffusion. The process consists of the following stages:

• Grow a layer of Si02 on the substrate surface

• Open a window in the Si02 using a combination of a photoresistant layer, a glass mask

and an ultra-violet (UV) light source

• Remove the Si02 not subjected to UV light with a suitable etchant

• Subject exposed silicon substrate to a dopant source

The idea is to cover the Si02 with an acid-resistant

coating, which is normally a photoresistant organic

material. The UV light that passes through the glass

mask polymerises the exposed photoresist (PR), thus

creating the pattern of Si02 that is to remain. The

unpolymerised PR, along with underlying Si02, can

then be easily removed with an organic solvent. This

process is shown in figure 2.2.

.' SILICON ~~I'l:R

I \I '.0;: e 5 5 S <: S. ' cc]- Pholo",'" I i I j j I I I j j j j J 41-- Si0
2

SILICON WAFER

.. _ UVLighl

~~~~~~~~~;I +-- Glass Mask +-- Mask Pattern. 

f 
' .... ' ... ' \ \ , \ .'.' , , SS 1- Pholo,,"" - I I I I I I I I I I I I I • -4-- Si0

2 

SILICON WAFER • 

LI_'_I_S_:L_:C_~_N_' _~_A_FE_R_l--.J +-- Si0

2 

The main problem associated with using PR's in Figure 2.2 Patterning of SiG 

conjunction with UV light sources is that there is a sizeable amount of diffraction around the 

edges of the pattern masks. The tolerances of the process has limited the line width of around 

1.0Ilm. However, during recent years advances have been made in the field of electron beam 

lithography (EBL). This is a good technique for pattern generation, allowing line widths 

40 



Chapter 2 Background Technology 

down to O.5Jlm and beyond with good definition. The disadvantages of EBL are that new 

plant equipment is required and that a large amount of time is required to access all points on 

the silicon wafer. Fabrication plants are extremely expensive; manufacturers are reluctant to 

replace such expensive equipment and research into improving the definition of selective 

diffusion is still going on. 

2.1.2 Standard p-Well Fabrication Process 

The p-well fabrication process is fairly well-defined. It starts by taking a moderately doped n­

type substrate, creates the p-wells to place n-type devices on and then builds the p-type devices 

on top of the native n-type substrate. Each of the stages of the process are described in this 

section [WeEs88]; an overhead view of the mask for each stage is shown along with an 

, idealised plan view of the resultant physical structure of the substrate. The example used 

throughout this section is the simple CMOS inverter structure. 

2.1. 2.1 Wells and ThinOx Deposition 

Figure 2.3 shows the first two stages (.) P·T,bM~k 
/ Field Oxide 

of the p-well process. The first mask 1I11111111UII' 1fT 

p-Well . I, 
n-SUS'STR'ATE' < 

. 
(a) defines the p-well within the base 

substrate. Once the field oxide is 

deposited on to the substrate a small 
(b) Thin Oxide Mask 

section is etched away. The exposed 
p-Well 

substrate is then doped with a p-type n-SUBSTltATE 

source, creating a p-type well within Figure 2.3 Well and ThinOx Deposition 

the n-type substrate. 

Using the second mask (b) areas of the field oxide are selectively stripped away down to the 

substrate surface. A very thin layer of Si02, known as thin oxide, is then grown on those 

areas. It is these two thin oxide regions that will form the n- and p-type diffusions for the 

transistor source/drain regions. 

41 



Chapter 2 Background Technology 

2.1.2.2 Gate Definition 

Figure 2.4 shows the next three stages ~i'",':: M:::~::::k..",._ 

of the p-well process. The first mask 

(a) defines the surface area to be 

covered in polysilicon 1, with the 

pattern required for a CMOS inverter 

being an inverted 'U'. 

The second mask (b) is used to indicate 

the thin oxide areas that are to be doped 

with a p+ source. These areas will 

become p+ diffusion area, which 

p-Wcll 

n-SUBS'ffiATE 

poWe!! 

n-SUBSTRATE 

(c) p-Plus Mask (-ve) 

p-W.:II 

II-SUBSTRATE 

Figure 2.4 Gate Definition provide self-aligning source and drain 

p-Plus -vc 

areas with the polysilicon that divides the two diffusion regions. A p + diffusion region inside 

an n-substrate allows the construction of a p-type transistor. 

The third mask (c) shows a similar process, but which creates an n-diffusion region within the 

p-well. The mask used is the complement of the mask from step Cb). These areas of n+ 

diffusion within a p-well, along with the separating section of polysilicon, allows the 

construction of n-type transistors. 

2.1. 2.3 Metallisation 

Figure 2.5 shows two of the final three 

stages of the p-well process. The first 

mask Ca) defines the areas required for 

contact cuts, which allows metal tracks 

(a) Cun1.aCt Mask -- -- --- -- --

n-SUBSlRATE 

(b) MetllMask 

to make contact with the n+ and p+ gate e''''·S'''UB'''S'''TR'''ATE'-''-____ _ 

areas. Figure 2.5 Gate Metallisation 

1 Although this shows a polysilicon gate process it should be noted that CMOS devices originally implemented gates 
with aluminium. This technology was the basis for the majority of the CMOS circuits in the 1970' 5 

42 



Chapter 2 Background Technology 

A layer of Si02 is first grown on to the silicon, and then several patches of gate oxide are 

etched away as far as the silicon surface. This process leaves all of the n+ and p+ regions 

exposed, paving the way for the next step. 

The second mask (b) shows a layer of metal being added to selective parts of the device. The 

left and right channels are for the power and ground (V DD and V ss) connections for the 

inverter, whilst the central channel is for collection of the output signal. The inverter input is 

driven onto the polysilicon connection. 

The final stage of this process, which is not 

shown, is that once all devices have been 

created on the silicon wafer the chip 

packaging bonding pads are etched, in order 

to allow for the external VO wire bonds to 

be attached to the final fabricated chip. The 

full layout for the CMOS inverter, along 

with its standard schematic, is shown in 

figure 2.6. 

2 _1. 2.4 Associated Problems 

p-Well 
Thinoxide 

p-Plu, 
Aluminium 

Contact !I 
Polysilicon rL.d 

IN 

1 l 

OUT 

Figure 2.6 Inverter Layout and Schematic 
In order to achieve low threshold voltages 

-----either-deep_weILdiffusions_or high well resistivity are required. The latter can accentuate a 

problem known as latch-up, whilst deeper diffusions increase the silicon area due to larger 

spacings being required between the n- and p-type transistors. The required thresholds are 

achieved by making the well concentrations one order of magnitude higher than the base 

substrate doping density. Unfortunately, n-type transistors within the p-well suffer from 

excessive source/drain capacitance, thus slowing down their switching speeds. Despite the 

advances made by using CM OS technology n-type transistors are, in general, inferior to those 

that could be built on their native substrate; i.e. with no well present. Thus, n-type transistor 

43 



Chapter 2 

-- l 

Background Technology 

circuits in CMOS will tend to be slower than their counterparts manufactured using the older 

nMOS process and performance degradation in some CMOS circuits should be expected by any 

VLSI designer. 

As stated by Weste and Eshraghian [WeEs88) " ... if every silver lining has a cloud then the 

cloud that has plagued CMOS is a parasitic circuit effect called 'latch-up'" (p.58). This is the 

result of shorting the V DD or V ss lines which may result, if luck is on the designer's side, in 

only system failure but tends to result the complete self-destruction of the CMOS device. 

Estreich and Dutton [EsDu82) describe the latch-up effect 

very well. They state that, effectively, there are two 

parasitic bipolar transistors inherent in the n-substrate and 

p-well, each of which has a gain factor associated with it. 

voo 

p·SOURCE 

The first transistor (T I) has a collector-base-emitter of p- n·SUBSTRATE e---c 

type transistor source, the n-substrate and the p-well itself 

(pnp transistor), whilst the second transistor (T 2) is n-

substrate, p-well and the n-type transistor source within 

the p-well (npn transistor). The equivalent circuit for this 

is shown in figure 2.7. 

There are two areas of resistance within the circuit: one in 

T, '1---41 p.WELL 

n.SOURCE e---........J 

vss 

Figure 2.7 Parasitic Latch-Up 
Equivalent Circuit 

_____ the_n:substrate (lis) and one in the p-well (Rw)· The larger these resistances are then the more 

susceptible the device will be to latch-up, so the process engineers need to devise methods to 

keep these resistances low. A different method of reducing the chances of latch-up is to reduce 

the gain of the bipolar transistors, but this is not as easy as reducing the values of Rs and Rw. 

A simple method to keep the resistances low is to use multiple additional substrate contacts, 

which effectively short out the resistors. 

44 



Chapter 2 Background Technology 

A modified inverter cross section, incorporating two 

substrate contacts, is shown in figure 2.8. The n­

substrate is connected to the positive supply VDD 

through a V DD substrate contact, whilst the p-well is 

connected to the negative supply V ss through a V ss 

substrate contact. The contacts themselves are formed 

V DD Vss 

Vss Contact 

Figure 2.8 Substrate Contacts 

when the areas for p-type and n-type transistors are being doped, as described in section 

2.1.2.2, with additional p+ and n+ diffusion areas being implanted into the p-well and n­

substrate respectively. Additional contact cuts are also made, with a further metallic connection 

made between the relevant power input and the substrate contact. 

With current process technology the possibility of latch-up occurring has been reduced to the 

point whereby the designer does not have to be concerned about it, so long as the design 

contains liberal substrate contacts. The definition of 'liberal' is not hard and fast, as it is 

usually acquired from designers who have made successful designs on a particular fabrication 

process. Although it is possible to synthesise the parasitic effects, and thus calculate the 

required spread of substrate contacts, it is a difficult (i.e. time-consuming) task. 

However, it is possible to reduce the likelihood of latch-up to a great degree by following a 

small set of rules: 

• 

• 

• 

• 

Every well must have a substrate contact of the appropriate type 

Every substrate contact must be directly connected to the power supply by metal 

Place a substrate contact for every 5 - 10 transistors in the design 

Place substrate contacts as close as possible to the source connection of a transistor 

connected to a power line - this reduces Rs and Rw 

• For the conservative a substrate contact should be placed for every power connection 

45 

. -----, 



Chapter 2 Background Technology 

• At the chip layout stage pack n-transistors towards V ss and p-transistors towards V DD 

The most likely point for latch-up to occur is at the VO structures, as the current flow at those 

points is large. This can cause quite large parasitics to be present and abnormal voltage levels 

may be encountered. Although these structures can be created by the designer by fOllowing 

another set of rules [WeEs88] [EsDu82] the simplest method is to use only proven VO 

structures that have been designed by experts who fully understand the fabrication process 

being used at a detailed level. 

2.1 .3 Other Fabrication Processes 

2.1.3.1 n-Well Process 

Before the introduction of the CM OS p-well fabrication process the dominant fabrication 

technique was the nMOS process. Many manufacturers had spent vast sums of money to built 

plant based on nMOS, and the thought of such plant becoming obsolete overnight was not a 

pleasant one. An advantage of the n-well process is that it can be fabricated on the same plant 

equipment as conventional nMOS; because of this the n-well process is often retrofitted to the 

existing nMOS lines [Ohzo80]. 

The n-well process is very similar to the p-well process, except that the substrate is p-type, the 

n-type transistors are directly on the substrate and the p-type transistors are fabricated within a' 

separate n-well within the substrate. Like the p-well process the n-well creates non-optimum 

transistors, but of the opposite type; p-type transistors perform relatively poorly compared to 

their n-type counterparts. However, CM0Saesigns are oeginnihgtb-incorporate-more-notype-­

transistors rather than p-well, so the disadvantages of having non-optimum p-type transistors is 

partially offset. The n-well process technology is, therefore, very suited to the 'mostly n-type' 

CMOS designs and provide distinct performance advantages over the p-well process. 

2.1.3. 2 Twin-Tub Process 

In both the p-well and n-well process only one type of transistor has near-optimum operational 

characteristics. The twin-tub process attempts to optimise both types of transistor separately, 

46 



Chapter 2 Background Technology 

making it possible to modify threshold voltages and other parameters of both n- and p-type 

transistors independently [Parr80]. 

The process begins with either an n + or p + substrate which has a lightly doped epitaxiallayer 

placed on top of it, which is used to protect against latch-up. The object of having the epitaxial 

layer is so that highly pure silicon layers can be grown, each with a controlled thickness and 

accurate doping levels. 

The process sequence is similar to that for p-well, save 

for the actual formation of the twin -tubs where both n-

wells and p-wells are created. The finished cross-

section for a standard inverter is shown in figure 2.9. 

Substrate contacts are still used in the process, as the 

epitaxiallayer does not eliminate latch-up altogether. 

p-WeU 

Epilaxiai Layer 

n-SUBSTRATE 

Figure 2.9 Twin-Tub Process 
Cross-Section 

The two wells are defined and implanted individually, which is followed by the formation of 

field oxide and gate oxide. At this stage the thresholds of future p-type transistors are modified 

by further implants into the relevant sections of gate oxide within the n-well. Polysilicon is 

then deposited as required, and the substrate contact p+ and n+ regions within the wells are 

implanted. Finally, contact cuts are made, the device is metallised and then finished off by the 

cutting the areas for I/O bonding pads. 

2.1. 3.3 Silicon on Insulator Process 

The silicon on insulator CMOS process (SOl) has several potential advantages over the 

traditional CMOS processes [MaSi641: higher circuit density, no latch-up problems and lower 

parasitic capacitances. There are various mask and doping steps required to form n-type and p­

type devices, but the extra steps involved in standard CM OS processes to create additional 

implanted wells simply do not exist with this technology. 

47 



Chapter 2 Background Technology 

Snapshots of several stages of the SOl fabrication process 

are shown in figure 2.10. Initially, a layer of thin very 

lightly doped silicon is grown over an insulator, such as 

sapphire or magnesium aluminate spine!. The silicon is 

then etched away, except for the where a diffusion area is 

required. This forms a number of n - islands on the 

insulator surface, and is shown in figure 2.1 Oa. 

The actual diffusion areas are created by masking one 

island with photoresist and then implanting a dopant into 

(n) I n" 

IINSUMTOR 

(b) 

~ 

the other. This creates lightly doped p-type and n-type (d) 

diffusion regions, with boron being used for the p-channel 
---1 1J.Ill,LlJ4.-J\~ 

and phosphorus used for the n-channel devices; this is 

shown in figure 2.1 Ob. 

n" 

Phosphorous 
Implant 

~ ~ ~ 
n' 

Boron 
Implant 

~ 

+--- n-DEVICE-----+ <ot- p-DEVICE-------+-

Figure 2_10 Selection of SOl 
After the poly silicon is placed over the diffusion areas, Process Steps 

using standard CMOS techniques, the diffusion areas are changed into n-p-n or p-n-p 

transistor islands. Photoresist masks off one island and the polysilicon masks off the base 

diffusion areas to create the junction. Again, phosphorus and boron are used to create n-type 

and p-type areas respectively, and this is shown in figure 2. IOc . 

. ----_To_finish_ofLthe_SDCJJrocess a layer of (lhosphorus glass, or some other insulator, is then 

deposited over the entire structure. Contact cuts are then etched from the top insulator and 

metallisation then occurs. This is shown in figure 2.l0d, where the n-type and p-type 

transistors are also labelled. 

Despite the advantages that the SOl process has over the other CM OS techniques outlined in 

this section there are some disadvantages. The single-crystal sapphire or spinal substrates are 

much more expensive than silicon and, because of this, the processing techniques themselves 

48 



Chapter 2 Background Technology 

are less advanced than bulk silicon processes. The device gains are smaller than those 

associated with CMOS devices, so the 110 structures have to be quite large to be able to cope 

with these. Although SOl has the potential to be the fastest and most reliable process 

technology for CMOS fabrication it is also the most expensive; it's take-up by manufacturers 

has been, therefore, less than enthusiastic. 

2.1.3.4 Process Enhancements for CMOS 

There are a number of process enhancements to the standard Silicide PolysiIicon 

CMOS process that increases the routability of designs and 

decrease resistance between devices. The simplest method of 

reducing the resistance of circuits [Chow83] is to reduce the 

resistance of the polysilicon lines by combining it with some 

refractory metal. Chow outlines four different approaches to 

this problem, two of which are shown in figure 2.11, each of 

which uses a different type of gate material. Each approach 

uses a standard substrate or well, with appropriately doped 

diffusion regions for the transistor being created. The gate Figure 2.11 Silicide Gate 

and field oxide shown is, as always, Si02. 

The first approach replaces the standard polysilicon gate with a sandwich of silicide upon 

polysilicon. The silicide is a mechanically strong structure; tantalum silicide is also stable 

-----throughout.standard.CMOS.process stages and can also be retrofitted onto existing process 

lines. This approach is called the polyside approach. The second approach shown uses what 

is called a molybdenum gate, which is a sandwich of silicide and metal; this is called a heart of 

moly structure. The benefit of all of Chow's methods is that they reduce the overall 

interconnect resistance, which allows the gate material to be used over reasonably long 

distances; an additional benefit is that it can achieved with minimum disturbance to any existing 

CM OS process line, as it does not require any additional masks. 

49 



Chapter 2 

A simple approach to increase the overall 

routability of circuits is to use a second layer 

of metal. Additional layers of metal, as a 

rule, have a courser pitch due to the topology 

of the silicon surface being more varied. 

Connections between first level and second 

Background Technology 

2nd level Metal 

n·SUBSTRATE 

Intermediate 
Isolation Layer 

level metal (metal-I and metal-2) is achieved Figure 2.12 Second Level Metal 

by a via contact, as shown in figure 2.12. If further connection is required to either diffusion 

or polysilicon then a separation between the via and the contact cut is not normally required, 

even though it is shown in figure 2.12, but in less advanced or underdeveloped processes a 

separation gap may be needed. Such as gap would require an intermediate connection between 

metal-2 and the polysilicon or diffusion region; such connections are normally made using 

metal-I. If. a separation gap is not required then the via can be made directly over the contact 

cut, giving a direct connection to the underlying layers. 

A novel method for preventing latch-up [IEDM83] [Yama83] 

is to introduce deep trenches of Si02 into the base substrate 

material. This methodology improves the n-to-p spacing of 

transistors, thus reducing the chances of latch-up occurring. 

The trenches are placed between n-type and p-type 

transistors, thus separating completely an injected well from 

Figure 2.13 Trench Isolation 
Cross Section 

____ ---'oth_er substrate material on the horizontal plane; a cross-section for this process in shown in 

figure 2.13. In practice, however, a p+ substrate with injected n+ diffusion regions will have a 

p- epitaxiallayer at around the level of the bottom of the trenches, with additional p+ diffusion 

regions above the epitaxiallayer wherever n-type transistors are required. 

50 



Chapter 2 Background Technology 

One other innovation in the field is the use of 3-

dimensional structures in the fabrication 

process. The ideas behind this are to increase 

the performance and to reduce the overall area 

by utilising the vertical dimension [GiLe801 

[Kawa831. The SOl process modification 

proposed by Kawasura et al in shown figure F' 2 14 3 D CMOS C os S t' Igure. - r s ec IOn 

2.14. It places transistors in the vertical plane 

within the phosphorus glass layer, with the vertical transistor being formed using n-p-n or p-n-

p techniques. It is mounted within a different gate oxide from Si02, otherwise parasitic circuit 

effects can occur between two areas of identical and active gate oxide; these transistors use 

silicon nitride (Si 3N4) instead. However, although this technique seems to have a good future 

ahead of it the fact that it requires the SOl process as a base means that it is still prohibitively 

expensive for all bar experimental uses. 

2.2 Digital Logic Testing Techniques 

2.2.1 Introduction to Digital Logic Testing 

2.2.1.1 The Need For Test Strategies 

As outlined in section I the technology of VLSI design is advancing at a rapid rate. This 

advancement, however, has led to many problems in the field of digital logic testing. Such 

problems have been around since digital logic devices first came into existence, but the growing 

num15erofcircuits-placed-on-individual-chips-has-exacerbated-them.-The-increase-in.circuit.size __ .. 

and complexity has, in turn, led to little or no increase in the number of I/O pins on the device, 

which creates a further bottleneck for digital testing; more logic must be tested with the same 

number of I/O pins, thus making it much more difficult to actually test the chip. 

Testing is assuming a larger proportion of the total product cost as a result of the growing 

circuit complexity, which is ironic when you consider that the software design tools that make 

it possible to cram more circuits on to a single chip at a reduced physical fabrication cost are, 

51 



Chapter 2 Background Technology 

effectively, increasing the cost of circuit test. New testing strategies are emerging to cope, but 

the design of these is adding to the overall time required to get a product out of the door and 

into the marketplace. Manufacturers must balance the consequences of releasing a product that 

is not fully tested into the market; the time-lead gained over competitors through early release 

can be terribly expensive should the product suffer wholesale failure, with the return of large 

quantities of defective products. 

The scale of the problems involved in testing complex components can be seen in that it was 

quoted ..... that 30% of the cost of production is spent on the testing of some LSI circuits. " 

[Wate82]. As device complexity increased over the years so did the scale of the problem: 

..... the cost of testing can exceed 60% of the total device costs." [AmMu88]. 

The field of digital logic testing is a very volatile and dynamic field. As new design techniques 

and architectures are introduced the corresponding testing environment needs to evolve further 

in order to efficiently test the new designs. Existing test methodologies also need to be refined 

just to try and increase their efficiency and to reduce their overall cost. Section 2.2 describes a 

number of different test strategies and their usefulness but it is in no way an exhaustive list of 

available techniques, which is beyond the scope of this section. 

2.2.1.2 What is a Test? 

The idea behind testing any device is to construct an experiment to either confirm or deny a 

___ particulachypothesis or to distinguish between two conflicting hypotheses. A number of 

stimuli are applied to the device and the resultant responses are evaluated. By knowing in 

advance what the correct responses ought to be the test engineer can determine whether or not 

the device is working correctly. 

When working with digital devices the test stimuli are known as test vectors. They are 

normally applied to the device at the input pins. The responses are observed either at the output 

pins or, in some test configurations, from certain test points within the device; results can be 

52 



Chapter 2 Background Technology 

gathered in the latter case from either probes inserted into the device or from using built-in test 

circuitry which can route certain internal signals to the output pins if the device is currently 

under test. The results are compared against known good values, either by recording results 

from a known good device or from a computer simulation of the device. 

A problem with digital testing is that if a test response indicates that the circuit has an error then 

all that implies is that their are one or more errors on the circuit concerned with the given test. 

Further testing is normally required in order to identify which fault on the device caused the 

error response. This process is accomplished by using what are known as fault models and is, 

essentially, the same in that test vectors are simulated against a fault-aware computer model of 

the device. The model is modified to contain a particular fault, or set of faults, and output 

responses between the fault model and the faulty digital device are compared; a duplicate or 

approximate response indicates that the digital device contains the faults simulated within the 

current fault model. 

If the digital device responds correctly to all test vectors then we cannot conclude that it is fault­

free; the best that can ever be said is that it does not contain any faults that the test engineer has 

tested for. It may well contain other faults for which no effective test vector had been applied. 

Even if the computer models used in simulation are extremely accurate they will not uncover 

defects unless effective stimuli have been applied. 

---~2-;-2-.h-3-The-Economics_oLTesting ____________________ _ 

It should be possible to test every individual circuit on a digital device with every possible 

combination of test vectors. However, time and cost constraints mean that is simply not 

possible to test a product so that the final customer can be 100% certain of receiving a fully 

functional device. The test engineer has to find an answer to the following question: "How 

much testing is enough?". If a faulty product is returned then the designer incurs the cost of 

replacement, as well as suffering a loss of good will, which is a vital commodity in the 

marketplace. 

53 



Chapter 2 Background Technology 

Additional testing also requires additional cost, from the development of the test plan and also 

for the application of the test on to the actual devices - these test costs must be minimised as 

much as possible. Test costs are reduced so that at a reduced level of test, i.e. non-lOO% test 

coverage, the cost of any additional testing exceeds the savings gained through the reduced 

service and replacement of faulty products. Obviously, exceptions must be made for devices 

which are placed in safety-critical systems, whereby the manufacturers must only' release 

perfect products to its clients. 

It is far easier to spend more on testing if the product is to be a large-volume consumer product, 

where the test costs can be amortised over a large number of units. In this case a thorough and 

efficient test is worth creating, as it can reduce the amount of time spent testing each unit. In 

low-volume products testing can take up a disproportionately large amount of the overall cost 

and it may not be possible to justify such extensive testing. However, in safety-critical 

applications such additional costs for testing just have to be borne. 

The economics of testing imply that we want to test for the faults that are most likely to occur. 

The test engineer must know which faults occur and how frequently they occur. By knowing 

these facts the effectiveness of a test can be measured. It is then required to get an estimate of 

the defect level (DL) of the device, which is the fraction of devices shipped that are still 

defective. This is done using the following equation [WiBr81]: 

DL= 1- y(l-n (2.1 ) 

This uses the yield level of the fabrication process (Y) and the test effectiveness (T). If it is 

possible to test for all defects (T= I) or if the fabrication process yields no defective units (Y=I) 

then the overall defect level equals zero - this perfect situation almost never happens. 

Equation 2.1 can be restated to express the test fraction T in terms of the yield and defect level: 

T=I 
10g(1- DL) 

10g(Y) (2.2) 

S4 



Chapter 2 Background Technology 

This allows the test engineer to enter the known yield level of the fabrication process along with 

the desired defect level, thus giving the test effectiveness level required in order to meet the 

requirements. By increasing the yield level we reduce the required test effectiveness level, so 

simply by improving the fabrication process the test engineer can reduce the task of testing the 

device. 

Another important aspect of the economics of testing is the cost of locating and replacing a 

defective unit. In the case of digital devices it is vital that faulty devices are found and replaced 

as early as possible; this is an acknowledgement of the so-called power-of-ten rule, whereby 

the costs increase by an order of magnitude at each stage of integration. If it costs N to detect a 

faulty chip at incoming inspection then it will cost IOxN if the chip escapes the inspection stage 

and survives to be soldered on to a circuit board. Again, if it not detected at the board-test stage 

then it may cost IOOxN if the defect is not detected until the board is placed in a complete 

system. If a defective system makes it as far as a customer the cost becomes incredible. There 

is a large economic incentive, therefore, for the test strategy to find defects as early as possible. 

2.2.2 Combination and Sequential Logic Test Strategies 

2.2.2.1 Stuck-At Fault Model 

The two most common defects in digital electronics are shorts and opens; the former is where a 

connection exists where one should not exist and the latter is a lack of connection between two 

points. The application of test vectors can test the functionality of the device, but the time 

______ r"'eguired for such test can be too high; an n inp~! device requires 2n test vectors, so with n=40 

at 10 million test vectors per second we still require over 30 hours to test the circuit. 

Additionally, if the circuit contains any sequential logic then there is no assurance that such a 

technique will test every function. 

Eldred took the approach that instead of testing every function capable by the device you should 

instead test the hardware itself [Eldr591. The common faults are modelled using a computer 

simulator, whereby input stimuli are used that could differentiate between fault-free and faulty 

55 



Chapter 2 Background Technology 

circuits. This has the advantages that not only can the effectiveness of the test strategy be 

evaluated but groups of tests can be assigned to specific defects so that if a test pattern returns a 

faulty result it is pinpointing a specific component or set of components. 

The stuck-at fault model checks for the inputs and outputs of digital logic gates that are either 

shorted or left open. An n-input combinational circuit can implement 2,n different logic 

functions. In order to verify with 100% accuracy that a particular circuit implements the 

desired function requires all 2" input patterns to be applied - this could take an inordinate 

amount of time. 

Figure 2.15 shows the standard logic symbol circuit : ==C)---=--d D-e 
for the simple function e= a' b + c. If the output 

c 

of the NAND gate (signal d) is stuck-at-I then, Figure 2.15 Simple Function 
Schematic 

regardless of the second input to the NOR gate 

(signal c), it is simply not possible to drive the output of the NOR gate (signal e) to logic-I; so 

long as there is one logic-I input to a NOR gate the output will always be logic-O. It can be 

seen from this example that each circuit can have a number of possible of stuck-at faults - the 

simple circuit in figure 2.15 has a total of 10 possible stuck-at faults, consisting of a stuck-at-O 

and a stuck-at-I fault for each and every signal in the circuit (inputs, outputs and intermediate). 

2.2.2.2 Sensitised Path Fault Model 

A test can be define<QLePr92] as compri'sing-of-a-set-of-input-values;-together-with-the-­

resulting true and faulty output values. A sensitised path is where the fault can be controlled 

from the circuit inputs and the result is observable at the output. By testing for d stuck-at-I 

(d/l), which results in the output e/O regardless of the inputs, the path a-b-d-e is sensitised to 

the test. However, the faulty result e/O also covers other faults along the sensitised path, 

namely alO and blO. Hence, a single successful test can cover a number of different faults. 

56 



Chapter 2 Background Technology 

There is a requirement, therefore, for an efficient method of generating test patterns. A general 

procedure for this can be expressed as follows: 

Prepare fault list 

Repeat 

Select a fault from the fault list 

Generate a test 

Check the fault coverage for the test 

Delete these faults from the fault list 

Until a satisfactory fault cover is obtained 

In an ideal situation an acceptable fault coverage level is 100%, but a figure of between 90%-

95% is often deemed acceptable. This method only really works where the internal structure of 

the device being tested is known but, as in many commercial devices, this information is not 

always available to the end-user. In these cases a number of sequential tests would be required 

in order to determine if a fault has occurred; i.e. a status register could be checked by loading it 

with specific data, carrying out some arithmetic operation on it and reading it back. The biggest 

problem with this method of testing is that it is difficult to determine whether or not an adequate 

fault cover level has been established. 

2.2.2.3 D-Algorithm Fault Model 

An additional problem with the stuck-at fault model ,-------1 

arises when a single output has multiple paths, as b _--'-----. 
h c 

-----shown-in-figure-2 .. 16.-Here,-reconvergent.fan-out~ ___ _ 
d ---------j 

exists between the first and last NAND gate, which 
Figure 2.16 Reconvergent Fan-Out 

means that it is not possible to construct a viable 

sensitive path in order to test for elJ; this is due to the fact that the point of failure on signal e 

fans out to another element of circuitry and, as it reconverges with the test path later regardless 

of whether the chosen sensitive path encompasses! or g, the effect of the original fault may be 

masked. 

57 



Chapter 2 Background Technology 

The answer to this problem is to simultaneously sensitise all possible paths from a point of 

failure to the circuit outputs. This approach, known as n-dimensional sensitisation, is as 

follows [Roth66]: 

(i) D-Drive: For each pass through the circuit all possible paths from a chosen fault site to 

all outputs are generated simultaneously, cancelling any convergent fan-out paths that 

may occur 

(ii) Consistency Operation: Using a backward-trace procedure, the primary input 

conditions required to generate the static inputs for the D-Drive are derived 

The procedures described above are based upon what is known as the calculus of D-cubes, 

which allows a formal mathematical model of a network (including fault conditions) to be set 

up. However, a full description of this method is beyond the scope of this section. 

2.2.2.4 Boundary Scan Testing 

The D-algorithm has withstood the test of time and is accepted as a good method of testing 

circuits; the method has even been extended so that it can cope with feedback loops within 

circuits that are inherent in any sequential circuit design [PuR071]. However, as the 

complexity of VLSI devices increase it has become impossible, to all practical purposes, to 

generate test sequences that would test the complete system within the VLSI device - it became 

inevitable that circuits would have to be designed and placed on the device in such a way so that 

testing of individual circuits could take place. 

The development of a procedure known as the scan-path technique slowly evolved that required 

a system to be partitioned in such a way that all bi-stable devices can be tested separately from 

the normal combinational logic, which could be tested using normal methods. The bi-stable 

devices were organised as a single long shift register, which specially designed logic on-chip 

could shift-in test values and shift-out test results whilst holding the device in a pause mode. 

In 1985 a consortium of European and US companies established the Joint Test Action Group 

(JT AG). This was done with the aim of standardising a design-for-test hardware structure 

58 



Chapter 2 Background Technology 

which was suitable for board-level testing, which, in itself, required new test strategies to be 

developed. The final report from the JT AG Committee, issued in 1989, was formally adopted 

as an IEEE standard [IEEE89j. 

The JT AG boundary scan technique 

places what is known as a boundary 

scan cell in series with each functional 

component pin. This cell is a multi-

function circuit that can either shift-in 

or shift-out values to and from each T"t Data In Test Data Out 
Figure 2.17 Outline of Boundary Scan Structure 

pin, or can be placed in a transparent-

mode in order to allow the device to operate normally. Figure 2.17 shows the outline structure 

of a board containing two devices: device (a) contains the required test logic but device (b) does 

not, and must be supplemented by external buffers containing the boundary scan cells. Not 

shown on figure 2.17 is that all devices on a board also contain a common Test Mode Select 

input and a Test Clock input. 

The internal structure of a device that contains 

the boundary scan test logic is shown in figure 

2.18. All devices that comply with the IEEE 

1149.1 standard must contain the following 

components: 

i) boundary scan register chain 

ii) instruction register 

iii) bypass register 

iv) test access port controller 

The contents of the instruction register are 

Device 
Inputs 

-.\l---J 

Test 
Data --lI---I 

In 

·······-···L~~;] 

TMS TCK 
decoded in order to provide the control signals Figure 2.18 JT AG Device Architecture 

Device 
Outputs 

Test D,,,, 
Qut 

59 



Chapter 2 Background Technology 

that activate the various test facilities on-board the device. The bypass register allows the 

internal scan-path to be bypassed, which removes the device entirely from the board scan path -

this has the side effect of shortening the overall length of the scan path and simplifies test 

access to the remaining devices on the board. The test access controller is a sequential circuit 

that is controlled and clocked by the TMS and TCK signals respectively. It generates the control 

signals for both the instruction and the data register. 

Although the application of boundary scan techniques appears complex it provides a structured, 

high-level and now widely-accepted standard for design-for-test methodology at the system 

level. 

2.3 Systolic Array Architectures 

2.3.1 Introduction 

2.3.1.1 Architecture Background 

The study of systolic arrays involves a combination of skills from the realms of both Computer 

Science and Electronic Engineering. They were first proposed by Kung and Leiserson 

[KuLi78] as a method of implementing a simple parallel processing system, which would 

consist of a nearest-neighbour connected array of fairly simplistic processors or cells. A simple 

definition is that a systolic array is a network of processors which rhythmically compute and 

pass data through the system. This transfer of data from processor to processor, rather than 

from main memory to processor, allows for a high degree of pipelining and synchronised 

multi-processing, thus avoiding the classic memory access bottleneck-that commonly occurs in 

normal Von Neumann machines. 

Kung also stated [KungHT82] that computational tasks can classified into two distinct families: 

compute-bound and VO-bound. If, in a computation, the total number of operations is larger 

than the total number of VO operations then the computation is compute-bound, otherwise it is 

VO-bound. For instance, matrix-multiplication is compute-bound, whereas matrix-addition is 

VO-bound. Speeding up VO-bound computations is difficult using current technologies, as it 

60 



Chapter 2 Background Technology 

requires an increase in memory bandwidth. Compute-bound computations, however, can be 

speeded up through the use of systolic arrays, which can give a higher computation throughput 

without increasing memory bandwidth. The basic configuration of a systolic array compared to 

a normal Von Neumann machine is shown in figure 2.19, which clearly shows the potential 

increase in computational throughput by using systolic arrays . 

.----~: Memory :1<1 .... 1--, Memory 

.....J 11--_---' L...-_"P~I P.E. I 

Figure 2.19 Von Neuman .v. Systolic Array Architecture 

These arrays allow for the implementation of high-performance parallel algorithms, using VLSI 

technology to provide inexpensive implementation. Such systems can also be implemented on 

a software-based system, although such a system would have lower performance figures when 

compared against a direct VLSI implementation. The major benefit of a VLSI implementation 

over a software implementation is clearly in the throughput of data that a VLSI device could 

achieve, but such a solution, however, may be difficult to turn into a generic systolic system -

interconnections within VLSI devices can be very expensive in terms of silicon area, more so 

than the processing elements themselves [Ston90j. Although much slower a software solution 

allows for easier research into connection strategies suited for specific applications. 

2.3.1.2 Soft-SystoIic Research - A Brief History 

The field of systolic processing first came about after 1978, with the publication of the paper by 

Kung and Leiserson. The driving force behind all research at that time was the idea of using 

VLSI techniques to produce low cost devices that could be used for computationally intensive 

tasks, such as those in signal and image processing. The performance of such devices was not 

measured in the normal sense of algorithm performance, but in the data throughput obtainable 

between a host computer and the systolic VLSI device. 

61 



Chapter 2 Background Technology 

Parallel machines existed long before the advent of VLSI - these machines, however, tended to 

have a prohibitively high cost of manufacture. One of the major benefits of using VLSI 

techniques [MeC080] is that a device with simple and regular interconnections could allow for 

cheap implementations and high densities - this implies both high performance and a low 

overhead for support components. Hence, most parallel machine designers were interested in 

designing parallel algorithms that had simple and regular data-flows, such that they could easily 

be implemented in hardware using VLSI techniques. 

Unfortunately, VLSI implementation has its own problems. Interconnections between 

individual units within a VLSI device has, as mentioned previously, a high price - the larger the 

number of units on a device the larger the price. As well as data communication links multiple 

power, ground and system clock signals need to be distributed to every unit, with the arrival of 

the system clock to each unit being synchronised. Chip area is also a limiting factor, thus 

reducing the number of active processing units per device [Micz87] - a small device has a 

statistically smaller chance of containing a flaw due to the VLSI fabrication process than a large 

device, as it is a VLSI design rule of thumb that 50% of working ASIC's do not work in target 

systems first time [AmbI92]. Because of this general instability of the fabrication process few 

systolic designs have been implemented in silicon, with most systolic work dealing with 

theoretical systolic algorithms implemented in software simulators - a list of devices from the 

early 1980's can be found in [Megs92] and a collection of simulation works in [Evan91]. 

2.3.2 Systolic Architecture Definitions 

2.3.2.1 What is a Systolic Array ? 

There are a number of definitions of systolic arrays within the literature [KuLi78] [KungSY84] 

[Ullm84]. For the sake of clarity during further discussion we have adopted the definitions 

found in [KungSY88]. A systolic array can be defined as a computing network possessing the 

following features: 

• Synchrony The data elements are rhythmically computed, via a global clock, and 

passed through the network 

62 



Chapter 2 Background Technology 

• Modularity and regularity The array consists of modular processing units with 

homogenous interconnections, whereby the network may be extended indefinitely 

• Spatial locality and temporal locality The array manifests a locally-communicative 

interconnection structure, i.e. spatial locality. There is at least one unit-time delay 

allotted so that signal transactions from one node to the next can be completed, i.e. 

temporal locality 

• Pipelinability (i.e. O(M) execution-time speedup) The array exhibits a linear rate 

pipelinability, i.e. it should achieve an O(M) speedup, in terms of processing rate, 

where M is the number of PE's. The efficiency of the array is measured by a speedup 

factor, T s / T p, where T s is the processing time within a single processor and T p is the 

processing time within the array processor 

2.3.2.2 Properties of Systolic Arrays 

The major factors affecting the adoption of systolic array architectures are as follows: simple 

and regular design, concurrency and communication, and balancing computation with I/O 

[KungHT82j. 

As has already been mentioned one of the most efficient ways at exploiting the power of VLSI 

design is to use a regular and simple design and replicating it wherever possible. Great savings 

in design and testing can be achieved by using this technique. Another advantage is that simple 

and regular designs are more likely to be modular and will probably be adjustable to various 

performance targets and goals. 

The use of concurrency is dependant upon the underlying algorithms employed by the system, 

as the use of concurrency is a major factor in the potential speedup of computer systems. Inter­

PE communication becomes significant as the number of PE's increase, as in VLSI design it is 

the routing costs that dominate the power, time and silicon area required to implement any 

computation [MeC080j. 

63 



Chapter 2 Background Technology 

The ultimate performance goal of an array processor system is to have a computation rate that 

balances the available I/O bandwidth. Systolic arrays processors are typically attached to some 

host system, through which it receives data and outputs results. With a low-bandwidth 

system, which is typical of today's technology, an array processor must carry out multiple 

calculations per I/O access. This requires data items for computations to remain within the 

array processor for a number of internal clock cycles. Therefore, I/O bandwidth not only 

affects the speed of external data transfers but also the amount of on-board local memory that 

the array processor requires. 

This problem of I/O is accentuated when we have a large dimension problem being calculated 

on a small array. This inevitably requires the problem to be decomposed, the partitioning of 

which is in itself a non-trivial task. Hence, the decomposition methods used and the decisions 

on how to use buffer memory to minimize I/O problems are critical to the practical 

implementation of an array processor system. 

2.3.2.3 Inner Product Step Processor 

The so-called inner product step (lPS) is the single 

operation most common to all processors within the c. 

processor array. It is a very simple operation, and is B 

given by C' -C+ A x B Such an expression implies 

co 

A 

c 

B 

8 

c 

that each processor must contain at least three Figure 2.20 Geometry for IPS 

registers, denoted Ra' Rb and Rc respectively. Each 
Processors 

B 

register will require two connections, one for both input and output, and a schematic for the 

geometries for both rectangular and hexagonal elements is shown in figure 2.20. The first type 

of geometry, the square processor, is used for matrix-vector multiplication and for the solution 

of triangular linear systems, whilst the second type of geometry, the hexagonal processor, is 

used for matrix-matrix multiplication and LV-decomposition [MeC080j. 

64 



Chapter 2 

2.3.3 Linear Connected Systolic Array 

IPS cells in a linear topology are arranged 

in a linear array of processing units, as 

shown in figure 2.21, using instance of 

Background Technology 

the 'square' geometry shown in figure Figure 2.21 Linearly Connected Systolic Array 

2.20. All processing units receive external data to form their' A' data, with the units at either 

end of the linear array receiving external data to form the 'B' and 'C' - internal 'B' and 'C' data 

is generated by the processing elements and then passed to adjoining elements. 

Each of the processors in the systolic array operate in discrete time units. During that time unit 

each processor shall input values into its three registers (Ra' Rb and Rc) and calculate the new 

value for Rc' This new value shall be made ready for output on the following time unit. All 

output values are latched, such that the changing of an output does not affect the input of any 

other processor during a single time unit. 

This type of processing unit has a very modest hardware demand in VLSI terms - the units 

themselves are uniform, the inter-process connections are regular between adjacent units and 

there are very few external connections. The construction of a VLSI device containing an array 

of such processors should prove to be very cost effective. 

2.3.3.1 Convolution Problem 

Perhaps the simplest algorithm for a linear systolic array is one to perform basic mathematical 

convolution - it is also convenient in that it shows many of the features of systolic designs. 

This problem can be stated simply: compute the recurrence 

Yi= W I' Xi + W 2' Xi+1 + ... +W n' X i+ n_ 1 (2.5) 

for i = I ... n given the sequence w"w 2 ' •.• , wk and XI. x2 • ••• , xn ' where nand k are positive 

integers - the w; values are often referred to as weights. There are many different ways to 

65 



Chapter 2 Background Technology 

construct a systolic array to perform this task, but only a single variation is looked at with the 

configuration shown in figure 2.22, although there are other examples [KungHT821. 

This design consists of four 

X3~ ~X2W2 ~ W3 ~XJw:J~ cells, each with two inputs Wl 

and two outputs - the x 

Y;:~ ~ ::w 
values move to the right, the 

Xout := xin 

W Your: = Yin + wXin 

y values move to the left and 

the w values (weights) are 
Figure 2.22 Bi-Directional Systolic Array for Convolution 

pre-Ioaded into their respective cell where they remain for the duration of the calculation. The 

definition for each cell, along with the input-output relationship and calculations performed, is 

shown in figure 2.22. 

The algorithm works in a series of cycles. During such a cycle data is transferred along the 

arcs on the array - this will involve either inter-cell transfer or I/O from the entire array. Data 

values for x are input to the array on alternate cycles, with result values y also being output by 

the array on alternate cycles. Note, valid values for both input and output do not occur on the 

same cycle, with zero being input to the array if an x value is not scheduled for input and the y 

values output on nonscheduled cycles are just ignored. On every cycle, however, a zero value 

is input on the right side of the array to form initial values for the cell summation calculation. 

All cells in the array are assumed to operate in parallel, with some form of synchronous timing 

method being adopted throughout the entire array (although asynchronous timing is possible). 

2.3.3. 2 Matrix-Vector Multiplication Problem 

Kung and Leiserson (1978) proposed that a simple linear array such as that shown in figure 

2.22 is sufficient for a large number of important algorithms, one of which is the commonly 

used matrix-vector multiplication algorithm, which occurs abundantly in neural network 

applications. 

66 



Chapter 2 Background Technology 

The basic problem [MeC080] is that we wish to multiply a matrix denoted A = (ai) by a vector 

denoted x = (x J. ... , xnl - the result formed is denoted Y = (y J' ... , Y nl. This result can be 

formed by calculating the following recurrence: 

(2.6) 

Figure 2.23 shows an example set of data. f- p -7 

The matrix A is an n-by-n band matrix with a i all a l2 0 XI YI 

q a 21 a 22 a 23 X 2 y, 
band width w = p + q - 1. The recurrence t a 31 a 32 a 33 a 34 X3 Y3 

a 42 a 43 a 44 a 4S x 4 Y 4 
equations above can easily be calculated by a S3 a S4 ass a S6 Xs Ys 

sending the x and y values through w linearly 0 a 64 a 6S a 66 X6 Y6 

A 
connected processors, with each processor 

x y 

Figure 2.23 Matrix-Vector Multiplication 
being pre-loaded with the correct 'weight' 

value aij from the matrix for the calculation to be performed. 

The key to the whole process is 

the spatial location of all data at 

each step of the systolic 

process. The connections 

between all of the cells, along 

with the direction of all data 

transfers, is shown in figure x,_ 

Problem Data 

a" 
~3 "., 

a" 

a" a" 

Figure 2.24 Data Connection Map for Matrix-Vector 
2.24. All Yi values, which are Multiplication 

initially set to zero, move to the left, while the Xi values are moving to the right and the a
ij 

values are moving down - all moves are synchronised by use of a single global clock signal. 

Due to the arrangement of the data values it turns out that each Yi term is able to accumulate all 

of its product terms before it leaves the linear array of processors. Note that in the example 

67 



Chapter 2 Background Technology 

shown in figure 2.24 the first product term is created in the second processor, and that all 

unspecified values are assumed to be zero. 

During any particular cycle alternating processors are idle - the effective Yi values within them 

are zero, as are the aij values. Hence the cell performs no useful operation during that cycle. It 

can be surmised, therefore, that it may well be possible to reduce the number of processors 

required for this operation on a band matrix with band width w from w to w12. 

As mentioned previously the synchronisation of the data transfers is of vital importance, as is 

the rendezvous in the cells of the correct data at the correct time. Each IPS cell has three 

registers, which hold the values for A ij , Xi and Yi respectively, and all are initialised to zero. All 

cells are numbered by integers from left to right, starting from I. Each step of the operation 

consists of just two operations, but for odd numbered time steps only odd numbered cells are 

active, and vice versa. 

The basic algorithm can be stated as follows: 

Operation #1 - Shift Register Values 

• Ra receiving a new element from the band in matrix A 

• Rx receiving the contents of register Rx from the left neighbouring node, with Rx in the 

first processor receiving a new component from the vector X 

• Ry receives the contents of register Ry from the right neighbouring node, with Ry in the 

first processor outputting its value and Ry in the W,h processor receiving a zero value 

Operation #2 - Multiply & Add 

• 

The operation of the algorithm over a series of operations can be seen in figure 2.25. 

68 



Chapter 2 Background Technology 

It can easily be seen that the 

three shift components of 

operation #1 can all be done 

simultaneously and that the 

completion of both operations 

constitutes a single cycle of the 

systolic algorithm. The figure 

show the traversal of the data 

values during the initial cycles, 

along with the cumulative 

values inside the y registers in 

each processor. Gi ven that the 

bandwidth of any matrix A is 
Figure 2.25 Initial Cycles of Matrix-Vector Multiplication 

denoted by w it can be seen 

that after w cycles the components of the product y = Ax will start shifting out of the left-most 

processor - the rate of output is one valid data item per 2 cycles. Hence it can be seen that all n 

product values can be output in 2n + w cycles, which is a large improvement on the O(wn) time 

requirement of a sequential algorithm implemented on a uni-processor system. 

2.3.4 Dense Matrix Systolic Arrays 

Two-dimensional systolic arrays have provided the mechanism to carry out computations on 

two dense matrices. Both rectangular and triangular arrays are feasible, both for the 

computation of matrix products and solving systems of linear equations. Both methods are 

efficient in their use of execution time, being far more attractive than the normal linear array. 

2.3.4.1 Rectangular Array : Matrix-Matrix Multiplication 

The product of two matrices of order n is nothing more than n2 scalar products, each consisting 

of n terms. Thus, when calculating C=A.B, the element c // is derived from the scalar product 

69 



Chapter 2 Background Technology 

of the first row of A and the first column of B. There are two simple solutions to this problem: 

the rectangular array and the square array. 

For the rectangular array [KuLe80] this can be achieved 

using multiple instances of the standard multiply-and­

accumulate (MAC) cells, as shown in figure 2.20. For 

n =3 three MAC cells are required to do the job, as 

shown in figure 2.26. This will calculate a single scalar 

product. By placing two identical networks to the right 

of figure 2.26 the array can also compute the scalar 

products of the first row of A and all three rows of 8, Figure 2.26 Rectangular Array 

giving cI2 and cJ3. By pipelining the computation, 
for Scalar Products 

sending the other rows of A after the first, the array can calculate c22, c23 and c33' 

The final elements of C, namely C
33 

C21' c31 and c32' require two more c32 c23 

c
31 c22 cI3 

copies of figure 2.26 to be added c21 c12 

to the left of the array. As in c" 

algorithms for the linear array a 

delay needs to be introduced into 

the network between every pair of 

consecutive elements. The final 

systolic array matrix for this 
Figure 2.27 Full Rectangular Array for 3x3 Scalar 

operation is shown in figure 2.27. Products 

This type of systolic array can carry out a matrix-matrix multiplication of two n-by-n matrices 

in 4n-3 cycles. There are a total of 2n-l scalar product arrays, with the processor matrix for the 

operation being (2n-l) x n cells in size. 

70 



Chapter 2 Background Technology 

Implementation in a square array requires a different version of the standard MAC cell, which 

calculates the scalar product in a completely different manner. The same calculation occurs as 

in the original MAC cell, but the flow of data is different. 

The MAC cell for required for this operation is shown in 

figure 2.28. The accumulated components for C remain 

within the cell, with components of A and B being 

passed through the cell. After a number of internal 

accumulations the cell holds the final value for a single 

component of C inside an internal register, ready for 

further computations or for output from the systolic 

b 

t 

'V 
a13 al2 an ~ 

b31 

b21 

bU 

t 
Cll 

array. 
Figure 2.28 Square Array MAC 

Cell Configuration 

The systolic array required to compute the 

scalar product of two n-by-n matrices 

consists of n 2 cells [PrVu80j. It takes 

precisely 3n-2 time steps for the scalar 

product computation to complete; the full 

systolic array for this operation is shown 

in figure 2.29. The one drawback with the 

square array method is that the results of 

the computation reside within the internal 

registers of the processors. It is not 

possible to output all n2 components of C 

b3l 
b2l 

a]3 a l2 all ~ 

b33 
b32 b23 
b22 b]3 

bl2 • 

• • 

t 

Figure 2.29 Full Square Array for 3x3 Scalar 
in a single cycle, as only the MAC cells at Products 

the edge of the systolic array have any external I/O capability. Additional processing is 

required to gain access to the final values of C. 

71 



Chapter 2 Background Technology 

The simplest solution to this problem [QuR089] is to add some control structures to the cells so 

that once an accumulation in any cell has completed it is instructed to pass the contents of the 

internal register holding the component of C to the cell on it's right. Another solution, which is 

especially useful for systems that repeatedly require access to the data within C [KaEv96], is to 

simply hold the result matrix C within the cells, accessing it as and when desired by whatever 

computation is required by the systolic array. This type of solution requires additional internal 

registers in the cells to hold results of short-term and long-term calculations. It has the benefit, 

however, of drastically reducing 110 costs when dealing with the matrix C. 

2.3.4.2 Triangular Arrays : Solution of Linear Systems 

A common problem to be solved with triangular arrays is the solution of linear systems such as 

Ax= b, where the matrix A and the vectors x and b both have the order n. With A being a 

lower triangular matrix then the solution vector to the system, x=(X 1,X 2, ... ,x.), can be 

computed with the recursive equations 

(2.7) 

for all I ,; k ,; i-I. A systolic array similar to that used for the calculation of matrix-vector 

products can be used to solve this system, but with cells relating to the upper triangular portion 

of the matrix A being deleted from the array. 

The array has two types of cell [KuLi80]: the standard square multiply-and-accumulate MAC 

cells, and additional 'round' cells at the edge of the array which calculate the final components 

of the solution vector x using a subtraction/division operation instead of an 

addition/multiplication operation. 

72 



Chapter 2 

These additional round cells also re-route the calculation back 

into the array, in order to allow further processing to be carried 

out. The operation of the round processor is shown in figure 

2.30. The components of x pass through the array to 

accumulate the partial products with the array components a and 

then the round cells at the edge of the linear array computes the 

final value for the component x. The entire linear array for the 

process, with n=4 is shown in figure 2.31. 

In the case of solving a linear system 

where the matrix is not of a lower 

triangular type then some additional 

computations are required. 

Given the linear system Ax=b, where 

A is a dense matrix system of order n 
x • 

3 

a
41 

a
42 

Background Technology 

a 

t 
(b-X)/a~ 

~(b-X)/a 

a 

Figure 2.30 
Triangular System Cells 

a22 

all 

Figure 2.31 Triangular System Linear Array 
then in order to solve it on the linear 

array shown in figure 2.31 the system has to be transformed into the following equivalent 

triangular system: 

Tx=b' (2.8) 

The translation from the dense-matrix array to the triangular array is a complex process and is 

covered in the extensive literature on the subject [GeKu81) [Ahme82) [Cosn86a); the remainder 

of this section will briefly describe the methods and architecture proposed by Gentleman and 

Kung [GeKu81). 

The translation to the equivalent system show in equation 2.8 is done with the help of a 

triangularisation schema which is applied to matrix A augmented on the right hand side with b, 

73 



Chapter 2 Background Technology 

using either Gaussian or Givens elimination matrices. The system matrix is reset for the 

processes to be A - (A,b), giving a matrix of size n x (n+ 1). 

This schema can be represented as follows: 

fork = 1 to n-l 

for i = k+ 1 to n 

(
row k) (row k) 
row i =M,,' row i 

The matrix Mik is chosen in a way so as to zero the coefficient in position (i,k). At step k the 

row k is known as the pivot row, and is combined with all lower rows to zero all elements in 

the kth column which are below the diagonal. Thus, after step n-l the resultant system is 

triangular. The method for choosing the matrix also depends on the properties of the original 

system matrix A. The method is not allowed to introduce any pivoting techniques, as that 

would destroy the regularity of the systolic array. 

The Gaussian method is used for positive or diagonal matrices, whilst in the more general case 

orthogonal factorisation matrices (called Givens matrices) are used: 

Gaussian Matrix (2.9) 

Givens Matrix l cose Sine) 
M,,= 

- sine cose ( 
a'k ) where e= arctan -' 
a'k 

(2.10) 

A rather useful compromise solution [Sore85] is to modify the Gaussian method, using a 

technique known as neighbour pivoting: if the ratio la;d'lakkl < 1 then the matrix is generated 

as given in equation 2.9; if not then the rows i and k are exchanged before the combination 

factor is applied, thus modifying the task of generating the matrix to the following: 

74 



Chapter 2 Background Technology 

(2.11) 

An important point using this technique is to only generate combinations of those rows whose 

coefficients are of absolute value less than one, which was proven by Sorenson [SoreS5) to be 

mathematically stable. 

Gentleman and Kung [GeKuSl) used a triangular 

array of processors connected orthogonally, 

containing ,. I:+J) + n processors, using a combination 

ain 

t 
of two different types of cell. Each processor carries 

(b. , perm) ~ Cb , perm) 
In y out 

out two distinct operations: an initialisation process 

and a computation process. During the initialisation 

process all internal registers in the processor are set to 

zero. The two cells required for Gaussian elimination Figure 2.32Cell Topology for 
Gaussian Elimination 

with neighbour pivots is shown in figure 2.32 and 

their respective programs are shown below. 

Round Cell 

case init 
{ 
TRUE: r:= ain; 

init := false; 
break; 

FALSE: if I ain I ;0; Irl 
then aout . - -ainl r; 

perm := false; 
else aout .- -r/ ain; 

r := ain; 
perm := true; 

endif; 
break 

} 

Square Cell 

case init 
{ 
TRUE: r:= ain; 

init .- false; 
break; 

FALSE: if perm 
then aout .- r+ain' bin; 

r := ain; 
bout .- bin; 

else a out .- ain+r. bin; 
bout 

endif; 
.- bin; 

break; 
} 

75 



Chapter 2 

The full array used for this process is 

shown in figure 2.33. Details of the 

algorithm and intermediate register 

values are not given here, but an 

informal description of such things can 

be found in [QuR0891. 

At the end of the algorithm the values 

for T and b' are held within the systolic 

array, and some arbitrary method of 

emptying the array is needed. The 

actual contents of the array are as 

follows: 

t" t12 tl3 t'4 b', 

t22 t" t24 b~ 

t33 t34 b~ 

t44 b~ 

Background Technology 

b4 

a44 
b3 

a43 a34 b2 

a42 a33 a24 bl 

a41 a32 a23 a l4 • 

a31 a22 a13 • • 

a21 a12 • • • 

all • • • • 

t 
0-

Figure 2.33 Triangularisation of a Dense 
Matrix (n=4) 

Once the triangular system has been generated there remains the task of solving the triangular 

system. Although this can be done on the linear array described earlier in this section the row-

wise output format of the triangularisation process is incompatible with the diagonal-wise input 

of the linear array. 

There exist methods, however, that solve the triangular system on-the-fly [Cosn86b 1 using a 

slightly different array to that shown in figure 2.33, thereby making the solution of dense 

matrix linear systems a relatively simple process for a systolic array architecture. 

76 



INTRODUCTION 

ARTIFICIAL 
NEURAL 
NETWORKS 

This chapter presents a description of the field of neural network systems. It begins with a 

discussion of neural networks themselves, with biological information and details of the early 

attempts to create artificial neural networks. It goes on to describe several of the more common 

learning algorithms in use today, giving examples of both supervised and unsupervised 

learning. The chapter concludes by describing some of the less common algorithms, which 

normally have more specialised uses and are not normally used for everyday problems. 

3.1 Neural Network Overview 

3.1.1 What are Neural Networks ? 

Neural networks systems are biologically inspired, meaning that they are composed of elements 

that perform in a manner that are analogous to the most elementary functions of the biological 

neuron. These elements are organised in a manner that may (or, probably, may not) be related 

to the anatomy of the human brain. Despite the fact that the resemblance to real neurons is, at 

best, only superficial they still manage to exhibit a surprising number of the brain's 

characteristics: they can learn from experience, they can abstract the essential characteristics 

from an input data set that may contain irrelevant data (such as random or periodic noise) and 

they have the capacity to generalise from previous known inputs to new unknown information. 

More than any other factor it is probably the learning capability of neural networks that has 

been responsible for the interest that the field has received. The networks has the ability to 

77 



Chapter 3 Artificial Neural Networks 

modify their behaviour; by responding to an environment, which is normally a set of input 

vectors, the network can self-adjust in order to produce consistent results. There are many 

different algorithms available that dictate how the networks modify their behaviour; they are 

known as training algorithms, and each of these have their own strengths and weaknesses. 

Thus, with the idea of a neural network system being an adaptable machine we can use the 

following definition of a neural network [Hayk94J: 

A neural network is a massively parallel distributed processor that has a natural propensity for 

storing experiential knowledge and making it available for use. It resembles the brain in two 

respects: 

I. Knowledge is acquired by the network through a learning process 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

knowledge 

3.1.2 Biological and Physiological Background 

The basic unit of the nervous system is the 

individual nerve cell or neuron [Vand86], 

which occur in a variety of sizes and 

shapes. Nevertheless, as shown in figure 

3.1, most of them consist of four basic 

parts: the cell body, the dendrites, the axon 

and the axon terminals. The dendrites form 

Dendrites 

InitiaJ Segmem 

Axon Terminals 

Figure 3.1 Diagrammatic Representation of a 
a series of highly branched outgrowths Biological Neuron 

from the cell body. The dendrites and the cell body are the sites of most of the specialised 

junctions where signals are received from other neurons. The dendrites, in effect, increase the 

surface area of the cell body membrane, thus increasing the room available for incoming signals 

from other neurons. 

78 



Chapter 3 Artificial Neural Networks 

The axon, or nerve fibre, extends from the cell body. The first part of the axon, along with the 

part of the cell body where the axon is joined, is known as the initial segment. It is here that 

the electric signals are initiated in many neurons, where they then propagate away from the cell 

body. The axon may give off branches, known as collaterals, along it's course and, near their 

ends, the main axon and associated collaterals undergo considerable branching. Each branch 

ends in an axon terminal, and it is these terminals that are responsible for transmitting signals, 

which are electro-chemical in nature, from the neuron to the cells contacted at the axon 

terminals. Note that not all neurons behave in this manner - this is just an illustration of a 

general case. 

The axon can be treated as a cylinder, with a difference in electro-chemical potential between 

the outside and the inside. The normal level of approximately -70mv is the resting potential. 

Whenever a local change in potential occurs a current will flow between that region and an 

adjacent region which is at it's resting potential. Current will always flow between two points 

if there is a difference in potential and there is a conducting material in between. 

The local current is carried by ions such as potassium (K+), sodium (Na +) and chlorine (Cr). 

The flow is much like water flowing through a leaky hose - charge is lost as the current flows 

along the axon membrane, because the membrane is permeable to the ions that carry the electro­

chemical charge. The result of this is that the current magnitude will decrease with distance 

away from the initial site of the potential charge. 

These potentials can also be summed, either temporally or spatially - figure 3.2 illustrates this 

point, showing membrane potentials (Em) and various stimuli ("). The three graphs show that 

potentials can vary in strength (i), that they are conducted in a decremental fashion over the 

length of the axon (ii) and that they can be summed in two different ways (iii). Note, although 

it is not shown on figure 3.2 potentials can be lower than the resting potential; increases 

towards and above Omv are known as depolarisations whilst those that reduce the potential are 

known as hyper-polarisations. These potentials are known as graded potentials. 

79 



Chapter 3 

The other type of potential is an action 

potential, which allows for transmission of 

signals over much greater distances, 

although only a few cells can operate in 

this manner. If the potential is raised 

above a certain threshold, normally within 

10-1 Smv of the resting potential, then a 

very rapid alteration in the membrane 

potential will occur, typically lasting only 

I ms. The membrane potential may change 

from -70mv to +30mv before it re-

polarises back to it's original resting 

potential value of -70mv. 

Em (i) 

-7Omvl--/ 

Em (ii) 

-7Omvl--/ 

Em (iii) 

-7Omv 

" weak stimulus 

measured al 
stimulation point 

TemperaJ 
Summation 

AA AA AA 

Artificial Neural Networks 

1\ strong stimulus 

measured 1 mm from 
stimulation point 

Spatial 
Summation 

"A AB "A+B 

Figure 3.2 Graded Potential Possibilities 

The output of any cell that can support action potentials is an all-or-nothing-response [Dam86] 

and, as such, cannot be summed. Once the depolarisation of the membrane crosses the 

threshold the output is constant for a particular type of cell; it is independent of the initiating 

event. Once the action potential finishes the membrane drops below the resting potential and 

there is a slight time-lag before the resting potential is regained; further action potentials cannot 

occur during this time. 

Between the source and destination of potentials there is a structure known as a synapse, which 

acts as a chemical transmitter. Thus, the pre-synaptic cell generates a wave and the post-

synaptic cell receives a wave. The synapse also alters the potential depending on whether or 

not it is an excitory or inhibitory synapse. Each synapse in a group which share post-synaptic 

cells can have different accentuation or attenuation levels. Although not drawn in figure 3.1 

each axon terminal attaches to the pre-synaptic side of a synapse and the beginning of each 

dendrite attaches to the post-synaptic side. 

80 



Chapter 3 . Artificial Neural Networks 

In summary, each neuron cell body has a number of dendrites which act as inputs to the cell by 

carrying an electro-chemical charge, which can be either an action or a graded potential. Each 

of the potentials are scaled by a value dependant on the type of synapse that the relevant 

dendrite is attached to. If the resultant summed signal over all of the dendritic inputs is above a 

set threshold value for the neuron cell body then the cell will fire an action potential of around 

30mv down its axon, else it will remain at its resting potential level of -70mv. It is this basic 

model that the majority of artificial neural networks are based on. 

3.1.3 Historical Perspective of Neural Networks 

3.1. 3.1 Early Artificial Neural Network Research 

The struggle to understand the brain owes much to the pioneering work of Ram6n y Cajal 

[Ram611] who introduced the idea of neurons being the primary constituents of the brain. The 

brain is a highly complex, non-linear parallel computer, which has the capability of organising 

neurons in order to perform certain computations, such as pattern recognition or motor control. 

However, the brain performs such operations many magnitudes faster than even the most 

powerful of today's computers. Shepherd and Koch estimated [ShK090] that there is 

somewhere in the order of 10 billion neurons in the human cortex, with around 60 trillion 

associated synapses or connections. Neural network research has some way to go before such 

a parallel neural machine can be constructed. 

It was not until the 1940's that the first real workable paper was published by McCulloch and 

Pitts [McPi43]. This paper presented the first sophisticated study of what they termed neuro­

logical networks. In their work they combined the new ideas of linear threshold decision 

elements, finite state machines and some representations of various forms of memory and 

behaviour. 

It was from their ideas that the field of cybernetics emerged which attempted to combine the 

essential concepts from fields such as biology, psychology, engineering and mathematics. In 

this field researchers attempted to find network architectures which could perform some 

81 



Chapter 3 Artificial Neural Networks 

specific functions, although this goal was later dropped in favour of the idea of creating a 

machine that had the capability to learn. 

3.1. 3.2 Hebbian Learning 

Unfortunately, the concept of learning is not very well defined, and practical neural network 

research had to wait for the psychologists to come up with a model for human learning. 

Donald Hebb proposed a learning law [Hebb49] that became the starting point for artificial 

neural network training algorithms. In essence, Hebb proposed that a synapse connecting two 

neurons is strengthened whenever those two neurons fire. This may be thought of as 

strengthening a synapse according to the correlation between the excitation levels of the two 

neurons that it connects. For this reason so-called Hebbian learning is sometimes called 

correlation learning. The idea can be expressed as follows: 

where 

Wij[t] = the synaptic strength from neuron i to neuronj prior to adjustment 

W;j[t+ I] = the synaptic strength from neuron i to neuronj after adjustment 

a = the learning rate coefficient 

NET; = the excitation of the source neuron 

NETj = the excitation of the destination neuron 

(3.1) 

Hebb's idea managed to answer the question of how learning could take place without a 

teacher. In this system learning takes place on a local level, involving only two neurons and a 

single synapse; no other feedback systems are required for the neural patterns to develop. 

Many successes were obtained using this method, but some patterns just could not be learned. 

there have been numerous extensions to this training algorithm and many more training 

algorithms have since been developed, most of which owe a great debt to Hebb's work. In 

particular, Rosenblatt [Rose621, Widrow [Widr59], Widrow and Hoff [WiH060] and many 

others developed supervised learning algorithms, producing networks that learned a broader 

82 



Chapter 3 Artificial Neural Networks 

range of input patterns, and at higher learning rates, than could be accomplished by using 

simple Hebbian learning. 

Progress in the 1950's and 1960's was rapid. A number of different researchers combined 

biological and physiological in sights to produce artificial neural networks, which were initially 

implemented in electronic circuits. These successes produced a burst of activity and optimism, 

witb researchers such as Marvin Minsky, Bernard Widrow and Frank Rosenblatt all developing 

artificial neural networks consisting of a single layer of neurons. It seemed that the key to 

intelligence had been found; perhaps all one had to do in order to produce a mechanical human 

brain was to construct an artificial neural network with enough neural cells. It did not take long 

to dispel this belief. 

3.1. 3.3 Minsky's Perceptron 

It is well known that in order for a machine to recognise the pattern X then it must possess, at 

least potentially, the capability to represent X. The model commonly used for this in the 

1960' s was the perceptron model. Like tbe model previously proposed by Hebb the perceptron 

model simply could not represent certain things; if a failure occurred during tbe training process 

it seemed that neither prolonging the training experiments nor building a larger network would 

be of any help. The moral of this seemed simple - you cannot learn enough simply by studying 

learning itself; you also have to understand the nature of what it is you are trying to learn. 

In tbe landmark book Perceptrons [MiPa69] tbe authors proved that single-layer artificial neural 

networks were theoretically incapable of solving many problems, including the function 

performed by the simple exclusive-or logic gate. They were also not very optimistic about the 

future: they could not see how the benefits of single-layer networks could be carried forward to 

multi-layer networks, stating that "Perhaps some poweiful convergence theorem will be 

discovered, or some profound reason for the failure to produce an interesting 'learning 

theorem' for the multi-layered machine will be found . .. (pp 232). 

83 



Chapter 3 Artificial Neural Networks 

Unfortunately, the conclusions of Minsky and Papert were unassailable. Discouraged 

researchers left the field for areas of greater promise and, more importantly, greater funding. 

Government agencies redirected their funding and the field of artificial neural networks lapsed 

into obscurity for nearly two decades. The dedicated few who continued, such as Stephen 

Grossberg or Teuvo Kohonen, were often underfunded and unappreciated. They found it 

difficult to find publishers, which is why work published during the 1970's and early 1980's is 

found scattered amongst a wide range of journals. Gradually a new theorem emerged, upon 

which the more powerful multi-layered networks of today are being built upon - these networks 

now routinely solve the problems that Minsky and Papert proposed in Perceptrons. 

It can be said that Minsky' s excellent work led to an unfortunate recess in the progress in the 

field. There is also no doubt, however, that the field was dogged by unsupported optimism 

and an inadequate theoretical basis. Perhaps the shock provided by Perceptrons allowed a 

period for the necessary maturation of the field. 

3.2 Common Neural Network Learning Methodologies 

3.2.1 Perceptron Learning 

The first real practical work on neural networks [McPi43j was based around the simple L 

model: an artificial neuron receives a number of inputs x, each scaled by an associated 

weighting factor w, and if the sum of these scaled inputs x. w exceeds a set threshold value then 

the neuron fires (outputting a logic-I) else it remains inactive (outputting a logic-O). Networks 

utilising this type of structure usually consist of a number of such neural units, each arranged 

as a single layer and connected to the same set of inputs, became known as perceptrons. 

3.2.1.1 Neuron Configuration 

A typical perceptron neuron has thIe
t 

Xx 21 j3WwWn: ~ ~ I __ "~~I'~;I _ OUT 

structure as shown in figure 3.3. ----------: ,£..J ~ ... : -.J ! 
shows a number of inputs being scaled 

xn 
by some fac tor, fo llowed by a Figure 3.3 Perceptron Neuron Structure 

84 



Chapter 3 Artificial Neural Networks 

summation of all scaled values, the result of which is fed into a threshold unit which determines 

whether or not the neuron fires. The output of the neuron is either a logic-O or a logic-I. 

3.2.1. 2 Learning Algorithm 

The learning process for perceptrons was originally defined by Rosenblatt [Rose62]. It is a 

supervised learning process, meaning that for every input pattern to be learned there is a 

predetermined output pattern. The training algorithm uses this a priori knowledge to guide the 

weight adjustment process within the network. The training process is as follows: 

I. Apply an input pattern and calculate the output Y 

2. a) If the output is correct (i.e. as expected) then go to step I 

b) If the output is incorrect, and is zero, add each input to the corresponding weight 

(c) If the output is incorrect, and is one, subtract each input from the corresponding weight 

3. Go to step I 

If the network can deduce the correct output of an input pattern then nothing is changed. If the 

output is incorrect then the weights are adjusted in such a manner as to reduce the error; 

weights are increased or decreased in an attempt to force the neuron to fire or not to fire given a 

particular input pattern. 

In a finite number of steps the network will learn how to separate a number of different input 

patterns. The training process itself is global; the network learns all of the patterns 

simultaneously. This raises the question that there may be an optimum order in which to 

present the input patterns to the network training algorithm, so that the number of training 

iterations required in order to learn all patterns is reduced. Unfortunately, there is little theory 

to guide this determination. 

3.2.1. 3 Linear Separability 

The major problem with perceptron-based networks, as was correctly deduced by Minsky and 

Papert in the 1960's [MiPa69), is that of linear inseparability. A perceptron network, like any 

other neural network architecture, can learn any set of input patterns so long as it has the 

85 



Chapter 3 Artificial Neural Networks 

capacity to represent such patterns internally. However, perceptron networks cannot represent 

all functions; in fact, as the number of inputs to the network increases the proportion of 

representable functions amongst the functions available decreases at an exponential rate. 

The simplest problem that a perceptron simply 

cannot learn is the exclusive-or function. This 

function accepts two binary inputs x and y, 

outputting a logic-I if and only if both inputs are 

different, otherwise the output is logic-O. 

Perceptron representation of a two-input function 

can be visualised by plotting all possible outputs on 

a graph, as shown in figure 3.4. The threshold 

function is, effectively, a line that bisects the graph; 

t 
Y 

0 

Figure 

BI Al • 
XW, + YW2= THRESHOLD 

Ao Bo 

X---. 

3.4 Exclusive-Or Threshold 
on the X-Y Plane 

if the summation unit in the neuron produces a value on one side of the bisecting line then the 

neuron will fire, otherwise it will not. The setting of the threshold function is such that the 

bisecting line isolates the logic-I outputs from the logic-O outputs. It takes no more than a 

cursory glance at the graph in figure 3.4 to realise that there is no possible way in which a 

single bisecting line can isolate the exclusive-or logic-I outputs (Ba and B I) from the logic-O 

outputs (Aa and AI); no combination of w/ or w2 can produce such a line. A perceptron neural 

network cannot represent, and therefore cannot learn, the exclusive-or function. 

As the number of inputs to the network increases the 

situation gets worse. For a three-input function the 

separation is performed by a flat plane cutting through the 

resulting three-dimensional input space. For an n-input 

function, where n>3, visualisation breaks down and one 

must mentally generalize a space of n dimensions divided by 

some hyperplane. The actual number of representable 

functions is well known [Wind60] and shown in table 3.1. 

Table 3.1 
Linearly Separable Functions 

n 

I 
2 
3 
4 
5 
6 

2"2" 

4 
16 

256 
65,536 

4.3x109 

1.8xl019 

Separable 
Functions 

4 
14 

104 
1,882 

94,572 
5,028,134 

86 



Chapter 3 Artificial Neural Networks 

As table 3.1 shows the probability of any randomly selected function being linearly separable 

becomes vanishingly small with even a modest number of variables. For this reason single­

layer perceptron networks are normally limited to simple problems. In order for more complex 

functions to be learned the network was required to consist of mUltiple layers, being a simple 

cascade of multiple single-layer networks. An associated training methodology was required 

that was able to cope with training neurons that did not receive inputs from the input training set 

but rather received the outputs of neurons in the previous layer. At the time of Minsky and 

Papert's work in the late 1960's such a training algorithm simply did not exist. 

3.2.2 Backpropagation Learning 

The invention of backpropagation a heralded the first theoretically sound algorithm for training 

multi-layered neural networks. It led to the resurgence of interest in the field after many years 

or near eclipse. Despite it having a number of limitations it dramatically increased the range of 

problems to which artificial neural networks could be applied. 

The history of the invention of backpropagation is quite novel, having been 'discovered' on at 

least three separate occasions. Rummelhart et al believed that they had published the first clear 

and concise description of the algorithm [Rumm86]. It was soon after this that Parker was 

shown to have anticipated this work [Park82], whilst Werbos was found to have described the 

method earlier still [Werb74]. If Rummelhart et al and Parker had been aware of Werbos's 

much earlier work then they could have saved themselves a great deal of effort! 

3.2.2.1 Neuron Configuration 

The basic configuration for a 
XI 

neuron is similar to that for a 

perceptron network, and is shown X 2 

in figure 3.5. A set of inputs x is 

applied to the neuron, either being 

external inputs or outputs from 

x, 

Figure 

- .... OUT 

NET 

3.5 Backpropagation Neuron Schematic 

87 



Chapter 3 Artificial Neural Networks 

neurons in previous layers of the network. Each of these is multiplied by a weight wand the 

results are summed to form the value NET; this value must be calculated for every neuron in the 

network. After NET is calculated a function F is applied to it, producing the value OUT. 

The activation function F required for backpropagation has the requirement that it must be 

differentiable everywhere. The standard function used is 

F(NET)=OUT 

=1I(I+e-') 
(3.2) 

and is called a sigmoid function. This sigmoid compresses the range of NET so that OUT lies 

somewhere in the range of 0 ... 1. It also has the very desirable feature in that it has a very 

simple derivative, which is used during the backpropagation algorithm 

oOUT 

oNET 
OUT· (1- OUT) 

This sigmoid also manages to introduce 

some form of automatic gain control. For 

small values of NET (i.e. NET near zero) the 

gradient of the sigmoid is steep, thus 

producing high gain. For larger values of 

NET the gain decreases, which allows large 

input signals to be accommodated in the 

(3.3) 

NET 

Figure 3.6 Backpropagation Activation 
network without causing saturations whilst Sigmoid Function 

allowing smaller signals to pass through with an excessive amount of attenuation. The 

activation function F is shown in figure 3.6. 

3.2.2.2 Learning Algorithm Overview 

As in the perceptron network backpropagation networks are trained with sets of training pairs: 

each pair consists of an input vector and a desired output or target vector. A whole group of 

88 



Chapter 3 Artificial Neural Networks 

training pairs is called a training set. Before starting the training process all weights in the 

network are initialised to small random values, which prevents initially large weights from 

saturating the network. Also, if the weights are initialised to the same value (such as zero) and 

the network requires unequal weights in order to represent the training set then the network will 

not learn. 

The basic steps required by the backpropagation learning algorithm are as follows: 

I. Select the next training pair from training set and apply it to the network 

2. Calculate the output of the network 

3. Calculate the error between the network output and the desired target output associated 

with the training pair 

4. Adjust the weights in the network in such a way that minimises the error 

5. Repeat steps 1 .. .4 for each training pair until the error for the entire training set reaches 

an acceptably low value 

This is a supervised learning process. Steps I and 2 are the manner in which the network will 

ultimately be used; inputs are applied to the network and then the outputs are calculated. These 

steps can also be considered to be the forward pass of the training process, in that inputs are 

being passed through the network. In step 3 the error for the input data is calculated and, in 

step 4, this is passed back through the network in order to adjust the network weights. These 

two steps can be considered to be the reverse pass of the training process, as data is being 

passed from the output layer of the network back through the previous layers. 

In the forward pass an input-target vector pair X and T come from the training set. An input 

vector X is applied to the network and an output vector 0 is produced. The calculation is done 

on a layer by layer basis beginning with the first layer of the network, which normally accepts 

inputs solely consisting of components of the input vector X. Each neuron has a NET value 

calculated for it and then the activation function then squashes this value to form OUT. Once 

all neurons in a layer have had this calculation performed the entire set of output values is used 

89 



Chapter 3 Artificial Neural Networks 

as inputs to the second and subsequent layers. This is repeated layer by layer until the final set 

of network outputs is produced. 

This process can be stated very succinctly in vector form. The weights between neurons can be 

considered to be the matrix W, with the weight between neuron 8 in layer 2 to neuron 5 in layer 

3 being designated wS2.53, The NET vector N may be expressed as the product of X and W, 

giving the expression N = XW. The activation function F is then applied to N in order to 

produce the output vector O. Therefore, for any given layer the following expression applies: 

O=F(XW) (3.4) 

Simply, in order to calculate the output of the network equation 3.4 must be applied to each 

layer in the network, from input to output, with the output vector from one layer forming the 

input vector to the next. 

It should be noted, however, that this applies only to fully-connected networks; it is perfectly 

feasible with the backpropagation \earning algorithm to have input data applied to neurons in 

layers other than the first, and outputs from one layer can form inputs to neurons in more than 

one subsequent layer. Outputs in neurons in any layer can form components of the final 

network output vector. All descriptions of the backpropagation algorithm throughout this 

section make the assumption that the network is fully connected. 

3.2.2.3 Layered Training Process 

The reverse pass of the network can be split into two distinct sections; adjusting the weights in 

neurons in the output layer and adjusting the weights in the neurons in all other layers; non­

output layers are referred to henceforth as hidden layers. Neurons in the output layer of the 

network have an associated target vector, so this layer is fairly straightforward to train. The 

hidden layers, however, require some form of target that is generated from the error values of 

neurons in layers closer to the output layer; these neurons are much harder to train. 

90 



Chapter 3 Artificial Neural Networks 

Before a weight adjustment can be calculated for any neuron a pre-calculation is required that is 

different for the output and hidden layers; once this pre-calculation has been made then the 

remainder of the adjustment process, which is common to all layers, can then be applied. 

(i) Output Layer Pre-Calculations 

In order to adjust all the weights between neuron p in 

hidden layer j with neuron q in the output layer k a value 

known as the neuron 0 value needs to be generated. This 

is done by subtracting the output for neuron q from the 

target output for the input pattern, which gives the error 

for neuron q for the current input value. The connections 

between neurons and weights for this operation can be 

seen in figure 3.7. 

Hidden 
Layer 

(j) OUT. 

Output 
Layer 

(k) 

Figure 3.7 Connections for 
Output Layer 

This error value is then multiplied by the derivative of the Training 

neuron activation function, thus giving the required 0 value. This is used to adjust all weights 

for one particular neuron, in this case neuron q in output layer k. In summary, o-generation for 

output layer neurons is as follows: 

/iqk = OUT qk • ( 1- OUT qk) . (Targetqk - OUT qk) (3.5) 

(ii) Hidden Layer Pre-Calculations 

It can be seen that &-generation for non-output layer neurons cannot be done in this manner, as 

there is no available target value for the input pattern currently being learned; the target value is 

for the entire network and, thus, only applies to neurons in the output layer. Equation 3.5 

needs modifying for neurons in hidden layers as follows: 

(3.6) 

91 



Chapter 3 Artificial Neural Networks 

The &-values from the output layers are used to generate the &-values in the hidden layers. They 

act as an error indicator, attempting to get neurons in the hidden layers to reduce the error 

produced in the output layer neurons. 

The weights connecting neurons in the Previous 
Layer 

hidden layer to those in the output layer (i) 

can be seen to act in reverse at this 

point; during the forward pass they 

propagate the 0 UT signals from 

neurons in the preceding layer, scaling 

them as they go, whilst in the reverse 

pass they propagate /i-values from 

Figure 3.8 Connections for Hidden Layer 
neurons in subsequent layers, also Training 

scaling them as they go. The neuron 

Output 
Layer 

(k) 

and weight connections for training neurons in the hidden layers can be seen in figure 3.8. 

(iii) Weight Modification 

Once a neuron has it's /i-value, regardless of what layer it is in, the training process is identical. 

Two further equations are required by the training process: one to calculate the weight 

adjustment for each connection in the neuron and one to actually modify the weight. These 

equations are as follows: 

(3.7) 

(3.8) 

where 

w pj,qdn] = value of weight from neuron p in layer j to neuron q in layer k before any 

weight adjustment has taken place 

92 



Chapter 3 Artificial Neural Networks 

Wpj,qk[n+ I] = value of weight from neuron p in layer j to neuron q in layer k after the weight 

adjustment has taken place 

tJ.w pj,qk = value of the impending weight adjustment between the two neurons 

0qk = the 0 value for neuron q in layer k 

11 = training rate coefficient, typically in the range 0.01 to 1.00 

OUT pj = the value of OUT for neuron p in layer j 

This process of applying either equation 3.5 or 3.6 to every neuron in the network, followed 

by equations 3.7 and 3.8 for every inter-neuron weight connection in the network, is carried 

out for every input-target pair in the training set until the errors are acceptably low. Note, the 

values for 0 UT in the hidden layer when the first network layer is being updated are, 

effectively, the input values from the training set. 

3.2.2.5 Enhancements to the Learning Algorithm 

There are many additions that can be made to the standard backpropagation algorithm in order 

to make it more efficient. A very simple improvement is the addition of a trainable neuron bias. 

This permits more rapid convergence by offsetting the activation function, giving a similar 

effect to adjusting the threshold in a perceptron neuron. It is achieved by connecting an 

additional trainable weight to each neuron that has a permanently wired logic-I input. It is 

trained in an identical manner to other weights and can significantly reduce convergence times. 

Many researchers [Rumm86] [SeR087] have described methods of momentum, whereby 

previous weight changes affect future weight changes. They both add terms to the weight 

adjustment equations 3.7 and 3.8 that add a proportion of the previous weight adjustment to the 

current one. Although the methods differ they both help the algorithm to follow narrow gullies 

in the error space rather than crossing rapidly from side to side. These methods work well on 

some problems but, unfortunately, have little or even a negative effect on others. 

93 



Chapter 3 Artificial Neural Networks 

Another powerful convergence speed-up [StHu87] takes into account the fact that the standard 

range of inputs 0 ... 1 is not optimum. The weight adjustment .6.wpj,qk is proportional to the 

output level of the source neuron output OUT pj' In a binary system the OUT pj value of zero 

results in no weight modifications, implying that half of the weights will not be modified! By 

changing the input range to ±1I2, and by adding a bias to the activation function of -112, 

convergence times can be reduced by between 30% and 50%. 

Although a very powerful algorithm the backpropagation method of neural network training has 

it's share of problems. Close examination of the convergence proof by Rummelhart et al 

[Rumm86] shows that infinitesimally small weight adjustments are assumed, which implies 

that the training time is infinite. It is necessary to select a training rate step size 11, but there is 

little theory to guide the network designer. A small training rate can result in convergence 

taking impractical lengths of time, whilst a large training rate may result in permanent instability 

in the network, with the network being unable to learn the problem being presented to it. 

3.2.3 Kohonen Self-Organised Learning 

3.2.3.1 Network and Neuron Configuration 

The Kohonen unsupervised learning methodology is 

effectively a "winner takes all" network. For a given 

input vector one, and only one, neuron in the network 

will fire, with all other neurons remaining dormant. 

The layout for a layer of Kohonen neurons is shown 

in figure 3.9. 

As in the backpropagation network there is a set of 

Input 
Layer 

Kohonen 
Layer 

NET2 

NET 
" 

Figure 3.9 Kohonen Neural 
neurons associated with each neuron in the network. Network Layer 

In figure 3.9 the neuron K J has weights W J/, w21,'" wmJ. which makes up the weight 

vector W,. These weights connect the input data vector X to the neurons. where the NET 

. output is based upon the weighted sum of the input vector. This may be expressed as follows: 

94 



Chapter 3 Artificial Neural Networks 

NETj=L(Wmj'Xml (3.9) 
m 

Once the NET values for each neuron have been evaluated then the neuron with the highest 

value is declared the "winner"; it sets it's output value to logic-I and all other neurons in the 

layer have their output value set to logic-O. It is, therefore, difficult to predict in advance which 

specific Kohonen neuron will fire for a particular input pattern. Indeed it is unnecessary to 

know this information in advance, as the main requirement of the training process is to separate 

dissimilar input vectors. 

3.2.3.2 Input Vector and Weight Initialisation 

It is beneficial to normalize all of the input vectors for a given training run. This is easily done 

by dividing each component of the input vector by the vector's length, which is the square root 

of the sum of the squares of all components. The vector length is given by: 

Equation 3.10 converts the input vector into a vector pointing in 

the same direction in n-dimensional space but of unit length. 

With vectors of 2-dimensions it can be seen that all normalised 

vectors terminate on a circle of radius one; this can be seen in 

figure 3.10. With vectors of 3-dimensions the vectors terminate 

on the inner surface of a sphere. This idea can be extended to an 

(3.10) 

arbitrary number of dimensions, where the vectors terminate on Figure 3.10 Unit Length 
Vectors 

the surface of an n-dimensional hyper-sphere. 

With the input vectors normalised the initially random weights within the network should also 

be normalised. The idea behind the training process, as is described later in this section, is to 

have weight vectors equal to normalised input vectors. If the weights are normalised before the 

training process begins then they start off closer to their desired values. If weight vectors are 

not normalised then some neurons in the network may never get the opportunity to fire, 

95 



Chapter 3 Artificial Neural Networks 

effectively wasting some capacity in the network. Also, the neurons that remain 'operational' 

may not have the capability to discern between the various categories of input vectors. 

3.2.3.3 Learning Algorithm 

During the training process an input vector is applied and its dot product with the weight 

vectors in each neuron are calculated and the neuron with the highest dot product being declared 

the winner and firing. The winning neuron is the one whose weight vector most matches the 

input vector. This neuron then has its weight vector slightly adjusted so that it is even more 

like the input vector. The change is proportional to the difference between the weight vector 

and the input vector. 

The equation used during the training process to adjust the weights is as follows: 

W rrw= W old+ a (x- W Old) (3.11) 

where 

wold = value of the weight before adjustment 

W new = value of the weight after adjustment 

a = training rate coefficient (may vary during training process) 

The training rate coefficient a usually starts out at around 0.7 and may be gradually reduced 

during the training process. 

In a geometric fashion firstly the vector X - Wold (a) is 

calculated by generating a vector from the end of Wold (c) to the 

end of X (d). This is then scaled by a, which is always less 

than one, producing a change vector 0 (b). The new vector 

W new (e) is then formed from the point of origin in the n­

dimensional input space to the end of the change vector o. This 

series of steps is shown in figure 3.11. 
Figure 3.11 
Kohonen Weight Changes 

96 



Chapter 3 Artificial Neural Networks 

3.2.3.4 Enhancements to the Learning Algorithm 

The simple act of randomising the weights within a Kohonen network can cause the training 

process some trouble. Once randomised the weights are uniformly distributed around the n­

dimensional hyper-sphere. However, if the density of weight vectors is too low or too high for 

the given distribution of input vectors then either no neurons may be mapped to particular 

inputs or more than one may be. 

The most desirable solution to this problem is to distribute the weight vectors in relation to the 

density of the input vectors. This has the effect of placing the correct number of weight vectors 

in the vicinity of the input vectors. Although this is impractical to implement directly there are 

several techniques available that approximate the effects. 

A good method [Wass89j is the convex combination method which sets all weights in the 

network to the same value: I1 {n, where n is the is the dimensionality of the hyper-sphere. 

This has the feature of normalising the weights to unit length. Each component of the input 

vectors is also scaled before input to the network in the following manner: 

x: = a . x; + {( 11 {n) . (1- a )} (3.12) 

The scaling factor a is initially set to a small value, which causes all input vectors to have a 

length close to l/-JO and also coincident to the weight vectors. As the network is trained the 

scaling factor a is gradually increased to I. This allows the input vectors to separate and 

resume their original values. The weight vectors, in turn, follow one or a small group of input 

vectors and, at the end of the training process, produces the desired pattern of outputs across 

the network. This method works well but is slow, as the weight vectors are being adjusted to a 

set of moving input vectors. 

An interesting method [Desi88j is to add a conscience to each neuron. If a winning neuron has 

been winning more than its fair share of input vectors (approximately \lm, where m is the 

number of neurons in the Kohonen network) then it temporarily raises a threshold value 

97 



Chapter 3 Artificial Neural Networks 

internal to the neuron, thus reducing its chance of winning. This then allows other neurons in 

the network to have the opportunity to train. 

The problem of weight distribution within a Kohonen network is still a cause for concern, as it 

can seriously affect the accuracy of the resultant trained network. Unfortunately, the 

effectiveness ofthe various solutions is most certainly problem dependent and no hard and fast 

rule exists that works for all problems. 

Another method of training proposed by Kohonen involves allowing more than one neuron to 

fire for a given input pattern. The normal training method, with only one neuron firing, is 

known as accreditive mode, whilst having more than one neuron firing is known as 

interpolative mode. The interpolative mode allows a group of neurons to fire. Their outputs 

are again normalised to unit length, which is done by dividing each NET value by the square 

root of the sum of the squares of all NET values; all neurons not in the firing group have their 

outputs set to zero. The benefits of this method is that in accreditive mode the accuracy of the 

network is limited in that the output of the network is a function of just a single neuron in the 

network. In interpolative mode, more complex mappings are possible, thus producing more 

accurate results, but no conclusive evidence on when to use this method yet exists. 

3.3 Alternative Neural Network Learning Methodologies 

3.3.1 Counter Propagation Learning 

The counter propagation network was initially developed by Hecht-Nielsen [Hech87] in an 

attempt to provide solutions for neural network problems that could not tolerate the long 

training times that were required under the backpropagation network architecture. It has the 

ability to reduce training times by 99%,but the training algorithm is not as general as 

backpropagation and cannot be used on all problems. 

98 



Chapter 3 

3.3.1.1 Network and Neuron Configuration 

It is a combination of two different 

network training architectures: the 

unsupervised self-organizing map of 

Kohonen, as described in section 

3.1.2.3, and the Outstar network of 

Grossberg [Gros69]. Used together 

Input 
Layer 

Artificial Neural Networks 

Kohonen 
Layer 

Grossberg 
Layer 

in this fashion they produce a 
Figure 3.12 Counter Propagation Network 

training architecture that possesses 

properties that is not available in either one alone. The outputs of the Kohonen network layer 

are used as input to the Grossberg layer. The network is fully connected, in that the output of 

every Kohonen neuron is an input to every Grossberg neuron, but note that the sizes of the 

Kohonen and Grossberg layers do not have to be the same. The topology of the network is 

shown in figure 3.12. 

In operational mode the counter propagation network is very simple. An input vector X is 

presented to the Kohonen layer. Each neuron outputs a results vector K, whereby only one 

component of K contains non-zero data. This vector is presented to each of the neurons in the 

Grossberg layer, via the relevant weight vector V associated with the neuron, and each neuron 

forms its own OUT value as follows: 

(3.13) 

or simply Y=KV. Note that as only one element of K is non-zero the calculation is actually 

very simple; the action taken by the Grossberg neurons is to simply pass the value of the 

weight connected to the non-zero element of K to its output. 

3.3.1. 2 Grossberg Layer Training 

The Grossberg layer is equally simple to use during the training phase. An input vector is 

applied and the Grossberg neuron outputs are calculated. Weights are then only adjusted if 

99 



Chapter 3 Artificial Neural Networks 

they are connected to the non-zero Kohonen layer output. The adjustment is proportional to the 

difference between the Grossberg weight and the desired output of the Grossberg neuron to 

which it connects. This is as follows: 

now old A k ( Old) V np =Vnp +p' n' Yp-V np (3.14) 

where 

kn = output of Kohonen neuron n 

y p = component p of the vector of desired outputs 

~ = training rate (initially 0.1 then gradually reduced during training) 

V np = weight between Kohonen and Grossberg layer neuron 

It is clear from the training methods employed for both layers that the weights of the Grossberg 

layer will converge to the average values of the desired outputs whilst the weights of the 

Kohonen layer converge to the average values of the inputs. The Kohonen layer training is 

unsupervised whilst the Grossberg layer training is supervised. The effect is that the Kohonen 

layer produces outputs at indeterminate positions, which are then mapped by the Grossberg 

layer to the desired outputs. 

x 

Y 

Kohonen 
Layer 

Figure 3.13 Full Counter Propagation Network 

Grossberg 
Layer 

X' 

Y' 

100 



Chapter 3 Artificial Neural Networks 

One of the most powerful aspects of the counter propagation network is that it can be used for 

vector mapping; it can generate functions of input data as well as generate inverse functions. 

Figure 3.13 shows a full counter propagation network, which has the input and output vectors 

split into two sections; X and Y as input vector tuples and X' and Y' as desired output 

vectors. Dividing tbe input and output vectors like this has no effect on tbe training algorithm, 

as they are indistinguishable from a single vector. Note that the desired outputs X' and Y' are 

identical to tbe input vectors - the network trains to recognise itself. 

After successful training the network can perform identity mappings; applying an X and Y 

vector on the network inputs will result in the same values appearing at the outputs. Although 

not very useful in itself it becomes particularly interesting when one realises that by applying 

only the X vector to the network, leaving the Y vector as zero, the network will still produce 

the relevant X' and Y' output vectors. This is, effectively, a function mapping from X to Y', 

with the network approximating the function. Additionally, if the inverse function exists then 

applying Y to the network, setting X to zero, will produce X'. This powerful mapping ability 

is the main strengtb in the counter propagation network. 

3.3.2 Hopfield Learning 

3.3.2.1 Recurrent Networks 

One of the major features in the networks discussed up until this point is that they are all non­

recurrent; there are no feedbacks from the outputs of the network back to the inputs. Without 

any feedback the networks are unconditionally stable in that they can never enter a mode in 

which the output wanders from state to state, never actually producing a usable output. 

However, this comes at a price; non-recurrent networks have a limited repertoire of behaviour 

when compared against recurrent networks. 

Once an output has been routed back on to the network inputs a new output is calculated. and 

then fed back in again to modify tbe output. This process is repeated again and again and, in a 

101 



Chapter 3 Artificial Neural Networks 

stable network, successive outputs differ in value by less and less until the output remains 

constant. 

It was the problem of stability that held back research, as it was not possible to predict which 

networks would become stable and which would remain, effectively, in a state of chaos. It 

wasn't until the work of Cohen and Grossberg [CoGr83] that a network theorem emerged that 

defined a subset of recurrent networks whose outputs eventually reached some stable state. 

Other important contributions to the field have been made by Hopfield, whose work was so 

influential that certain network configurations have become known as Hopfield Networks. 

3.3.2.2 Network and Neuron Configuration 

A Hopfield recurrent network has a 

layer of neurons, each of which accepts 

an input value from the training set. 

Each neuron also accepts the previous 

outputs of all neurons, scaled by some 

weighting factor. Each neuron goes on 

to produce a weighted sum of the 

recurrent inputs plus the input of the 

training set and then applies some 

Input 
Layer 

Hopfield 
1Nl Layer 

Figure 3.14Single Layer Recurrent Network 
activation function F in order to 

produce an 0 UT signal. This operation, save for the recurrent aspect, is similar to other 

networks discussed so far. Figure 3.14 shows a recurrent network consisting of two layers, 

with the dashed weight lines indicating weights fixed at zero. 

In Hopfield's early work [Hopf8Z] the activation function F was a simple threshold function, 

such as that found in the perceptron networks. The OUT value of a neuron is set to one if the 

weighted sum of the OUT values of all other neurons, along with the current input value, is 

IOZ 



Chapter 3 Artificial Neural Networks 

greater than a preset threshold value T; the OUT is set to zero otherwise. This is calculated as 

follows: 

NETj=INj+ L (w'j 'OUT,) 
i;tj 

The operation of this network can be visualised quite 

easily. Figure 3.15a shows the case for a 2-neuron 

system, which gives rise to four system states (00, 01, 

-A-

0\ 11 

D 
10, 11), each of which labels a vertex of a square. IX) 10 

Figure 3.15b shows the case for a 4-neuron system, 

(3.15) 

-B-

000 

which gives rise to eight system states, each of which Figure 3.15 Hopfield Network 

labels a vertex on a cube. This can be generalised to n-
State Space 

neurons, where an n-bit binary number labels a vertex on an n-dimensional hypercube. When 

a new input vector is applied, the network moves from state to state until it stabilises. The 

stable state is determined by the inputs, the weights and the threshold. If the input vector is 

only partially complete then the network will stabilise on the state closest to the desired state. 

3.3.2.3 Learning Algorithm 

The method of finding a stable state can be expressed mathematically. If a function could be 

found that always decreases whenever the network changes state then, eventually, such a 

function must reach a minimum value and then remain constant; at this point the network would 

be classed as stable. Such a function is called a Liapunov function and works as follows: 

E=-~ L L (w 'j . OUT, . OUTj)- L (Ij 'OUTj)- L (Tj · OUTj) Vi" j (3.16) 
i j 

where 

E = artificial network energy value 

103 



Chapter 3 Artificial Neural Networks 

wij = weight between output of neuron i and the input to neuronj 

OUTj = output of neuronj 

Ij = external input to neuron j 

Tj = threshold of neuron j 

It has been shown [CoGr83] that recurrent networks are stable if the weight matrix W between 

layers in the network is symmetrical with zeros on the leading diagonal, hence the \ti;tj term in 

equation 3.16. The change in energy E due to the change in the state ofneuronj is: 

8E=- 80UTj ' [L (w ij' OUT i )+ I j - Tj ] 
i .. j (3.17) 

There are three different possibilities regarding the change in the state of a neuron: 

(i) 

(ii) 

This causes the term in brackets to be positive, implying that the output 

of neuronj must either change in a positive direction or remain constant, as given in 

equation 3.15. This means that BOUTj can only be positive or zero and that BE must be 

negative. Hence, network energy must remain constant or decrease 

In this case BOUTj can only be negative or zero, implying again that BE 

must be negati ve. Hence, network energy must remain constant or decrease 

(iii) NE1j = 1j In this case BOUTj can only be zero implying again that BE must also be 

zero. Hence, network energy remains constant 

It is because the energy function shows this continuous downward trend that eventually the 

network must find a minimum value and stop. This type of network is, by definition, stable. 

104 



Chapter 3 Artificial Neural Networks 

3.3.2.4 Continuous Systems and Associative Memories 

Hopfield continued this work into continuous systems [HopfS4]. A common shape for the 

activation function F is an s-shaped sigmoid function, similar to that used in the 

backpropagation network learning algorithm. The function used by Hopfield is 

(3.IS) 

where).. is a coefficient that determines the steepness of the sigmoid function. As in the binary 

system stability is ensured if the weight matrix is symmetrical. The energy function is 

conceptually similar to the discrete case, so is not discussed in any more detail here. However, 

if the value of ).. is large then a continuous system operates much like a discrete binary system, 

with the network stabilising near a vertex of the hypercube, with outputs being close to either 

zero or one. As).. is reduced the stable points move away from the vertices, disappearing one 

by one as ).. approaches zero. 

It is possible to make the continuous model of the Hopfield network to act as an associative 

memory in a similar fashion to the Kohonen networks. In order to do this on a recurrent 

network the weights must be selected to produce energy minima as the correct vertices of the 

hypercube. The outputs in this model lie in the range -I. .. + I, which correspond to the binary 

values I and 0 respectively. The memories themselves are encoded as binary vectors and 

stored in the weights according to the following equation: 

m 

W;j= L (OUT" 'OUTjd ) (3.19) 
d=1 

where 

m = number of desired memories (output vector set size) 

d = index number of a desired memory (output vector) 

OUTid = component i of output vector d 

105 



Chapter 3 Artificial Neural Networks 

In order to perfonn as an associative memory the outputs of the network have to be forced to 

the values of the input vector, even if the input vector is only partially complete. The input 

vector is them removed from the network inputs, which allows the system to "relax" and find 

it's nearest deep minimum value. However, as the network follows the local slope of the 

energy function it is possible for the network to become stuck in a localised minimum point and 

not find the best overall solution. 

3.3.2.5 Hopfield Networks and the BoItzmann Machine 

Hopfield networks tend to stabilize to local minimum of the energy function rather than to a 

global minimum, as outlined in the previous section. It is possible to solve this problem 

through the use of a class of networks know as Boltzmann machines. These networks have 

neurons that change in a statistical rather than a deterministic fashion, and there is a close 

analogy between these methods and in the way in which metal in annealed; these methods are 

often known referred to as simulated annealing [Kirk83]. 

A metal is annealed by heating it to a high temperature, above it's melting point, and then letting 

it cool gradually. The laws of thennodynamics state that at such high temperatures the atoms 

within the metal possess very high energies and can move about freely, randomly assuming 

every possible configuration. As the temperature is reduced, however, these energies decrease 

until the system has settled into some minimum energy configuration; the system energy global 

minimum is reached once the cooling process is complete. 

The Boltzmann probability factor determines the probability distribution of system energies at a 

given temperature. This distribution is defined approximately as follows: 

(3.20) 

where 

E = system energy 

106 



Chapter 3 Artificial Neural Networks 

peEl = probability of system being in a state with energy E 

k = Boltzmann's constant 

T = temperature (degrees Kelvin) 

The state-change rules for the continuous network must be changed so that they act statistically 

rather than deterministically. This is done by using the amount by which a neuron NET output 

exceeds it's threshold value T as the probability of a weight change occurring, as defined by 

Ei= NETi- 6 i 

P i= I/( I +exp (-~E,)) 
(3.21) 

where 

E j = the network energy 

NETj = the NET output of neuron i 

<l>j = the threshold of neuron i 

T = the artificial temperature of the system 

During operation the artificial temperature T is set to a high value and the neurons are clamped 

to some state as determined by an input vector. The network then attempts to seek a minimum 

energy state using the following two steps: 

(i) For each neuron with a probability equal to Pj, set state to one, else set state to zero 

(ii) Gradually reduce artificial temperature T and then repeat step (i) until a minimum energy 

state is reached 

3.3.3 Adaptive Resonance Theory 

In a real world environment the human brain is exposed to a constantly changing world; it may 

never be presented with an identical set of sensory inputs twice in a lifetime. Under such 

circumstances networks which have a fixed training set, such as backpropagation, simply 

107 



Chapter 3 Artificial Neural Networks 

would not be able to cope; it would often learn nothing In such a situation, constantly 

modifying it's weights to no avail. 

The adaptive resonance theory, or ART, is the result of research into the problem of temporal 

instability [CaGr87] [Gros87]. ART networks maintain the idea of plasticity, in that they have 

the capacity to learn new patterns whilst preventing the modification of patterns that have 

already been learned. Although the theory can be difficult to understand the ART networks 

have generated a great deal of interest in networks of this type. Details of the complex 

mathematics behind the ART networks is beyond the scope of this discussion, so this section 

will concentrate solely on the fundamental ideas of the network, along with descriptions of the 

three major phases of the network: recognition, comparison and search. 

3.3.3.1 The Architecture of ART 

There are two forms of the ART paradigm; ART I accepts only binary input data whilst ART2 

is more general in that it can accept both binary and continuous inputs [CaGr87b]. For the sake 

of brevity only ART! is discussed in this section, being referred to as simply ART for the 

duration of this section. 

The ART network is, basically, a vector classifier that accepts an input vector and then 

classifies it into one of a number of categories, depending upon which of the patterns stored 

within the network that it most closely resembles. A new category is created if the input pattern 

does not resemble any of the stored patterns, whilst if a match is made within a specified 

vigilance tolerance then the stored pattern is modified (or trained) so that it is more like the input 

pattern. 

Under no circumstances are any stored patterns ever modified if they do not match the input 

pattern within the vigilance tolerance; the only way in which a stored pattern can be changed is 

if the input pattern resembles it closely. 

108 



Chapter 3 Artificial Neural Networks 

A simplified version of the architecture is 
+I~~+ E G2 

shown in figure 3.16. The network 

consists of two layers of neurons, denoted 

comparison and recognition respectively. Vigilance 

The other units provide some control 
L-r~~ 

functions that are required for training and 

classification within the network. 
Figure 3.16 Simplified ART Architecture 

The comparison layer receives a binary input vector X and initially passes a copy through to the 

recognition layer as C. The vector R is received from the recognition layer, which modifies the 

vector C. Each neuron in this layer receives three inputs: a component Xi from X, a feedback 

signal Pj (weighted sum of all components of R) and the input from the Gain-l unit G1. Each 

neuron also has a binary weight vector T which connects the feedback vector R to the neuron 

(T => top-down). In order for a neuron to output a one then at least two of the inputs must also 

be one, otherwise the neuron will output a zero. The gain signal G I is initially set to one and R 

is set to zero, meaning that in the first step X is effectively copied onto the output vector C. 

However, C changes over time as the feedback vector R from the recognition layer takes 

effect. 

The task of the recognition layer is to classify the input vector. Each of the neurons in the layer 

has a weight vector B (B => bottom-up) and accepts the input vector C. Only the neuron 

whose weight vector best matches the input vector will output a one, with all other neurons in 

the layer outputting a zero. The weight vector B essentially constitutes a stored pattern; this is 

an idealised pattern, which represents a category, but the components are continuous numbers 

and not binary. Each neuron carries out a dot product between Band C, with the neuron 

having the largest result being declared the winner. The recognition layer also operates a lateral 

inhibition network, ensuring that only one neuron in the recognition layer fires at anyone time. 

It operates on a winner-takes-all basis, with outputs of all neurons being connected to 

109 



Chapter 3 Artificial Neural Networks 

themselves (via a positive weight) and to all other neurons in the layer (via a negative weight). 

This enables neurons with large outputs to inhibit the output of other neurons in the layer. 

Gain-l is used just to ensure that the comparison layer Table 3.2 G I Calculation 

initialises correctly by passing on a copy of X to the 

recognition layer as C. G J is set to one if any component of 

X is one and all components of R are zero, otherwise G J is 

set to zero. The logic for this is shown in table 3.2. 

Or of R Or of X G 1 

o 
o 
1 
1 

o 
1 
o 
1 

o 
1 
o 
o 

Gain-2 is used to enable or disable the neurons in the recognition layer; if it is zero then the 

layer is effectively disabled. The actual value of G2 is one if and only if any component of 

input vector X is one; i.e. it is the logical-or of all members of X. 

The reset unit takes in X and C as inputs and measures the similarity between them. If they 

differ by more than the vigilance parameter then a reset signal is sent to disable the firing 

neuron in the recognition layer. It works by calculating the ratio of the number of ones in C to 

the number of ones in X; if this ratio is below the level of the vigilance parameter then the reset 

signal is sent to the recognition layer. 

3.3.3.2 Recognition Phase 

At the beginning of the recognition phase no input vector is applied; X is zero across all 

components. G2 is set to zero as a result, disabling all neurons in the recognition layer and 

causing the initial value of R to be set to zero. This primes all neurons in the recognition layer, 

giving all an equal chance of success once the input vector is applied to the network. 

The input vector X is then applied, which must have at least one non-zero component in order 

to set G J and G2 to one. This primes all neurons in the comparison layer, forcing the vector C 

to initially be an exact duplicate of the input vector X. 

110 



Chapter 3 Artificial Neural Networks 

A dot product is them formed for all neurons in the recognition layer between C and the weight 

vector B associated with the neuron. The neuron with the largest dot product, which is 

determined through the lateral inhibition network within the recognition layer, is the one whose 

weight vector B best matches C. This neuron outputs a one, whilst all other neurons in the 

recognition layer output a zero. The outputs from all neurons in the layer form the vector R, 

which has only a single non-zero component corresponding to the winning neuron. 

3.3 .3.3 Comparison Phase 

The comparison phase starts once the recognition layer passes it an R with a single non-zero 

component. As R is input to each neuron in the comparison layer it can be seen that component 

Ri is fanned out to every neuron in the layer. Therefore, neuron j in the recognition layer 

receives an input Pj = t ij . Ri' which is equal to either zero or ~j (which itself can only have the 

values zero or one). This vector P is a representation of the closest stored pattern in the 

recognition layer. 

As R is no longer all-zero G 1 is inhibited and set to zero. Thus, only neurons in the 

comparison layer that receive simultaneous ones from both X and Pj will fire. The feedback 

from the recognition layer to the comparison layer forces components of C to zero where the 

original input X does not match the stored pattern; i.e. where X and P do not match. 

In the case where there are few matches between X and P few neurons in the comparison layer 

will fire, resulting in C having many non-zero constituents. This implies that the 'matched' 

pattern being fed to the comparison layer by P is not correct and that the neuron in the 

recognition layer which holds this matched pattern should be inhibited. This process is carried 

out by the reset block, which compares X and C to check for a degree of similarity within a 

specified tolerance level. This action will force the output of the winning neuron in the 

recognition layer to zero, disabling that neuron for the remainder of the current classification. 

III 



Chapter 3 Artificial Neural Networks 

3.3.3.4 Search Phase and Performance Issues 

If the reset signal does not activate then the network has found a match and the classification 

process is complete. If the reset signal activates then other stored patterns within the network 

need to be searched in order to find a better match. The act of inhibiting the firing neuron in the 

recognition layer causes all components of R to be reset to zero, G 1 goes to one and the input 

pattern X is again effectively copied to C. Also, during the recognition phase, a different 

neuron in the recognition layer will win and be able to fire, causing a different pattern P to be 

presented to neurons in the comparison layer. This process repeats until one of the following 

two events occur: 

(i) a stored pattern is found that matches X within the limits specified by the vigilance 

parameter. A training cycle is then entered that modifies the relevant weight vectors T 

and B associated with the firing neuron in the recognition layer 

(ii) all patterns stored in the recognition layer have been tried and none match the input 

vector X. At this stage all neurons in the recognition layer have been inhibited. In this 

case a previously unused neuron in the recognition layer is assigned the pattern, with 

associated weight vectors B and T set up accordingly 

The network effectively performs a sequential search through all of the stored patterns in the 

network. This can be a very time consuming process on a normal serial digital computer, so 

simulations can take a large amount of time. However, on an analogue computer, or on a 

parallel digital computer, all of the dot-products calculated in the recognition phase can be 

performed simultaneously, resulting in a very rapid search. 

Another drawback with implementation on a serial digital computer is with the lateral inhibition 

network in the recognition layer. During the time when a neuron wins the battle for the right to 

fire all neurons are involved in simultaneous calculations, requiring global broadcast 

communications with all other neurons in the layer. Again, implementation on a parallel digital 

computer or, even better, on an analog computer, substantially reduces the time required. 

112 



INTRODUCTION 

IMPLEMENT A TION 
OF NEURAL 
NETWORKS 

This chapter describes some proposals for the VLSI implementation of neural networks, 

covering both digital and analogue logic designs. Each section describes the chip architecture 

and the implementation of neural networks on the VLSI system. The chapter continues with 

details on some recent practical examples of neural network applications, with the discussion 

being based on the application rather than on the network. 

4.1 VLSI Neural Network Systems 

4.1.1 Backpropagation in Linear Arrays 

4.1.1.1 Background Information 

This research [Nayl94Jlooked into the feasibility of implementing neural networks in hardware 

for the purpose of image processing. It is based upon an existing linear systolic array chip 

design known as HANNIBAL [Myer91], developed in cooperation by British Te1ecom and 

Loughborough University. 

Rather than modify the existing HANNIBAL design the work concentrated on mapping the 

backpropagation learning algorithm on to the chip. Although the chip itself had already been 

fabricated the work simulated an array of HANNIBAL devices on a SUN Sparc workstation, 

rather than being based upon designing a circuit board containing an array of such devices. 

113 



Chapter 4 Implementation of Neural Networks 

4.1.1. 2 Chip Architecture and Neural Mapping 

The HANNmAL architecture is a linear systolic array, consisting of four PE's per device, that 

theoretically may be cascaded to any length. Each PE within the device has 256 words of 16-

bit local memory, as well as a 32-bit fixed-point mUltiplier and adder. 

The PE has the capability of carrying out a standard multiply-and-accumulate (MAC) operation 

in a single clock cycle. The internal databus is 16·bit wide, and may be operated in a feed 

forward or feed back mode; this reversal of the data pipe proves to be useful during the back 

propagation of errors through the network. The neurons in the hidden and output layers of a 

network are mapped on to the PE's in HANNmAL on a I; I basis. 

The data pipe is divided into two separate8-bit 

streams, with the upper stream holding the input 
Global clock & control signals 

data to the neurons the lower stream holding the Figure 4.1 Feed Forward Mode 

outputs for the neurons; this scheme shown in figure 4.1. In this figure a network with an 

output layer of two neurons and a hidden layer of three neurons can be mapped directly onto 

the device, with neurons 1-3 being mapped on to hidden layer PE's 1-3, and neurons 4-5 being 

mapped on to output layer PE's 1-2. 

Input data is piped directly into the input layer PE's, with subsequent results being held in the 

PE's until processing in the layer has finished. Once all results are ready they are sent out of 

the PE's and routed back into the PE's used to represent the output layer; this method prevents 

output data from the hidden layer PE's being overwritten by results from the output layer PE's. 

The feed back mode is shown in figure 4.2. The 

data pipe is con figured as a single 16·bit stream, 

passing data to all PE's in the linear array. This Figure 4.2 Feed Back Mode 

D •• 

'" 

mode of operation is only required when the network is in training mode and the errors 

produced during training are propagated back through the network. 

114 



Chapter 4 Implementation of Neural Networks 

4.1.1.3 Implementation of 8ackpropagatioo 

The neural network implementation 00 the HANNmAL architecture requires the device to be in 

one of several modes. A controller within each PE is provided with control information that 

enables it to execute the algorithm almost autonomously, with an external array controller 

handling the infrequent mode changes and all data 110 synchronisation and storage. 

Stage #1 : Network Recall 

Network recall utilises the feed forward mode of the data pipe. The activation value of any 

neuron in the network is given by a non-linear function of the sum of its weighted synaptic 

inputs, as is standard in the backpropagation algorithm. 

The array controller sets the linear array into an 

activation mode. The process-time graph in figure 

4.3 shows, cycle by cycle, the processes that are 

occurring within each PE in the network for a single 

2-element input vector. Waiting cycles are shown as 

blank spaces, with layer indices on inputs only being 

shown at the top and bottom of the figure and not on 

each parameter. 

In operation PE I receives the first element of the 

input vector on the first clock cycle, performs a MAC 

operation and passes the input vector element to PE 

2. This is repeated for all PE's in the layer for all 

~ 

U ,., 
u 
-" u 
0 

0 

Layer and PE 

1=1 1=2 
2 3 I 2 

2 

3 

4 

5 

6 PE 

7 

8 

9 

10 

11 

12 

13 

14 A' , 

elements of the input vector. 
Figure 4.3 Recall Timing Graph 

Once a PE has 

completed the calculation of it's activation value it waits for all other PE's in the layer to 

complete. After another cycle of delay, all activation values are transferred onto the lower 8-

bits of the data pipe. Data is then redirected from the output of PE 3 in the hidden layer to the 

115 



Chapter 4 Implementation of Neural Networks 

input of PE I in the output layer, and the above operation is repeated so that the activation 

values for PE's in the output layer can be calculated. 

Stage #2 : Network Learning 

The neural learning process on the HANNIBAL device consists of three distinct stages: 

forward propagation of the activation values, error backpropagation and modification of the 

weight values. The first step is identical to the recall stage previously described, except that the 

activation values for the output layer neurons are not clocked out of the device; they are used 

internally during the second stage of error backpropagation. 

The second phase of error backpropagation requires the device to be put into calculation mode 

by the array controller. The error values for each neuron for the given input pattern are 

calculated, with a different algorithm being used for output layer and hidden layer neurons. 

The equations used are equivalent to equations 3.5 and 3.6 given previously in section 3.2.2.3 

and are defined as follows for the output layer and hidden layer respectively: 

(4.1 ) 

I-I 
OI=AI·(I-AI).~ (0 1+' 'W'.+') 

J J J61 IJ (4.2) 
i=O 

where 

E = expected output value 

i = index of PE in layer above current layer 

T = number of PE's in layer above current layer 

The process-time graph for these calculations is shown in 

figure 4.4. Whereas the calculation in equation 4.1 is fairly 

simple for the output layer the calculation for the hidden 

layers, given in equation 4.2, is a more complex vector-matrix 

operation. 
Figure 4.4 Calculation 

Timing Graph 

116 



Chapter 4 Implementation of Neural Networks 

Before the operation commences the value A{(l-A/) is precalulated by each PE, which is not 

shown in figure 4.4. The components of the expected output vector E are clocked into the 

appropriate PE's in the output layer. Error values 01 2 and ol are then calculated and stored 

within the PE. These error values are then passed back to PE's in the hidden layer in order to 

calculate the error values for the hidden layer, as shown in equation 4.2. Note that this graph 

only shows the process for a single hidden layer; if additional hidden layers existed then the 

algorithm shown in equation 4.2 would be repeated until the error values for all neurons in all 

hidden layers had been calculated. 

The third phase of the network learning stage requires the HANNIBAL device to be put into 

update mode by the array controller. In this phase the error values are used to calculate the 

weight adjustments that have to be made to all weights in the network, as well as to update the 

trainable neuron bias values present in each neuron. The calculation to be performed is 

equivalent to equations 3.7 and 3.8 and is as follows: 

Note, for the trainable bias value the neuron 

input Ak
l
-

I is always hard-wired to + 1. The 

process-time graph for this phase is shown in 

figure 4.5. The process is based upon a two 

cycle read/modify operation; this begins with the 

neuron biases, which are the simplest values to 

modify, as they do not require any input vectors 

or activation values for the calculation. 

Equation 4.3 shows that for the weight 

.£ 
u » 
u 
-'" u 
0 
0 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(4.3) 

Layer and PE 

[=1 [=2 
232 

A' , 

A' , 

adjustments the original input vectors need to be Figure 4.5 Update Timing Graph 

presented to the linear array again. The input vectors are presented to the input layer PE's, 

where the weight are adjusted, and then the activation values and input vectors are fed forward 

117 



Chapter 4 Implementation of Neural Networks 

towards the output layer. The pipeline structure allows these transfers to be made in parallel. 

The two-cycle requirements of this operation is because the PE requires one clock cycle to read 

the data values and calculate the weight adjustment, with a second cycle being required to write 

the modified weight value back to local memory. 

4.1.2 Real-Time Clustering Neural Engine 

4.1.2.1 Background Information 

The project to implement a clustering device in hardware [SeLi96] was based upon a desire to 

cluster in real-time, being able to cluster together patterns at their speed of arrival on the 

microchip. It was also to overcome the problem that is associated with many existing 

clustering algorithms [Pa089] [Rodt93] in that they often need to be trained off-line in order to 

build up the categories. 

The work also attempts to modify the clustering algorithm, based upon the ART -I model 

[CaGr87a], in order to make it more VLSI-friendly; this should produce a more efficient 

hardware design for the final circuit. In many places the algorithm was simplified, at a cost of 

possible performance degradation, for the sole reason of making it possible to implement the 

algorithm in VLSI form. These simplifications were always hardware-oriented. 

4.1.2.2 VLSI-Friendly ART-l Algorithm 

In their original work on ART, Carpenter and Grossberg introduced two different types of 

architectures for the neural memory using time domain non-linear differential equations: short 

term memory (STM) and long-term memory (LTM). This gave rise to three different levels of 

possible ART-I implementation: 

(i) Full Model Implementation, with both STM and LTM equation realised 

(ii) STM Steady State Implementation, with LTM equations realised and STM governed by 

some non-linear algebraiC equations, requiring STM events to be artificially sequenced 

118 



Chapter 4 Implementation of Neural Networks 

(iii) Fast Learning Implementation, where both LTM and STM events are artificially 

sequenced 

The computational overheads decrease with each model and hence it is the preferred choice for 

implementation in VLSI form. 

From a hardware point of view lone of the first issues that comes into consideration is that 

there are two sets of weights within the network: recognition (bottom up) layer weights B, 

which are continuous, and comparison (top down) layer weights T, which are binary. The 

physical implementation of B presents the first difficulty, as these weights require either an 

analog or digital memory of sufficient precision such that the digital discretisation of the 

weights does not affect the system. The original work on ART stated that T effectively stored 

copies of binary input patterns, with B being a scaled continuous representation of the same 

data; therefore, B is a normalized version of T. Also, bottom-up weights B may take any real 

value in the range G ... K, whereK= L-~+n for L>I [CaGr87aj. 

It would be physically desirable to implement only the binary-valued weight set T, then let the 

hardware do the normalization of the bottom-up weights B during the computation of C. In 

this way the two sets of weights can be replaced by a single binary valued set Z, with the 

calculation of C modified to take into account the normalization effect of the original bottom-up 

weights. The calculation for C, after modification by the bottom-up weights B, can be 

translated to the following: 

[
= L~(~X,)) 

L-I+LltJ ., 
(4.4) L-I +C Bj 

This rather minor implementation modification results in a much more VLSI friendly algorithm, 

although it still requires a division operation for each node in the recognition layer. It would be 

very desirable to remove this operation completely. In previous work [SeLi95j the authors 

I The notation used in this section is taken from section 3.3.3.1 and not from [SeLi96] 

119 



Chapter 4 Implementation of Neural Networks 

showed that this division operation can be replaced by a subtraction operation, whilst 

preserving all of the computational properties of the ART -I algorithm; although the observed 

behaviour is different for some sequences of patterns with respect to ART-I the overall 

clustering behaviour is still equivalent. This further modification is as follows: 

(4.5) 

where LA and LB are positive parameters that play the roles of L in equation 4.4, save that 

LA> LB' The constant parameter LM > 0 is required to ensure that Cj ~ 0 for all possible 

values of T Aj and T Bj' This additional hardware simplification is very important, as it provides 

the potential for a significant performance improvement, as well as making the algorithm even 

more VLSI friendly. 

4.1. 2.3 VLSI Implementation 

The device is designed to communicate with the outside world via digital UO structures, 

allowing it to act with an asynchronous digital nature. However, the internal circuitry consists 

of current -mode analog microelectronics. 

There are five different operations that the analog circuitry has to perform: 

(i) Generation of the terms Cj : as the terms Zjj and Ij are binary then binary multiplication, 

addition and subtraction is required 

(ii) A winner-take-all (WT A) operation to select the maximum Cj 

(iii) Comparison of the vigilance factor with the winning element of C 

(iv) De-selection of the terms of the winning element C if it lies outside the vigilance 

tolerance 

(v) Update of the weights 

The first three operations require a certain amount of precision, whilst the last two operations 

are not precision dependent. 

120 



Chapter 4 Implementation of Neural Networks 

A possible hardware schematic diagram for a circuit that could obtain precision between 1-2% 

for 100-pixel binary input patterns is shown in figure 4.6. This shows an 18x I 00 array of 

synapses (Sl,l" ,SlS,100)' a Ix lOO array of controlled current sources (CC l . 00 CC 100)' two 18-

element vectors of current mirrors (CMAl °o .CMA lS and CMB l°o.CMBlS)' an 18-element 

vector of current comparators (COM loo, COM IS)' an 18-input WT A device, two 18-output 

current mirrors (CMM and CMC) and an adjustable current mirror (p). The registers R loo' R lS 

and the final NOR output are optional units. Note that the output from the WTA network, 

Y";' ... Y IS are also used as inputs to the array of synapses, but has been omitted from the figure. 

Other omitted signals are RESET and LEARN (inputs to the synapse array) and ER (input to 

WT A circuit). 

Figure 4.6 Hardware Block Diagram for VLSI-Friendly ART -I Algorithm 

Further breakdown of the circuit units is not necessary, but full details are given in the original 

work [SeLi96]. 

4.1.2.4 Implementation of ART-l 

Each synapse in the array receives two input signals, Yi and Xi' two global control signals, 

RESET and LEARN, holds the value Zij and generates two output currents: 

N ;=LA ,z;j' X;- LB' Zu 

N;=LA 'Z;j' X; 
(4.6) 

121 



Chapter 4 Implementation of Neural Networks 

All synapses on row i share the same N j and N'j line into which the generated currents are 

injected. Nj is sent to current mirror CMA j and N'j is sent to current mirror CMB j. The initial 

current on the Nj lines is set to L M, which is replicated 18 times by current mirror CMM; the 

actual value for LM is arbitrary so long as it ensures that the terms of Cj are positive. 

Each element of the controlled current source CCj shares the same output node N", which is 

the generated current 

(4.7) 

This reaches the input of the adjustable gain control p current mirror, and is later replicated 18 

times by the current mirror CMC onto the output lines of each CMB j. The current on these 

lines, which is the input to COMj, is then set to be: 

(4.8) 

The comparator compares this value with zero; if the current is positive then the output falls, 

whilst if the current is negative then the output rises. This current is sent to the input Cj of the 

WTA, along with the input i j (which is a mirrored copy of C j from the synapse array). If Cj is 

high then the input ij will not compete for the winning node in the ART-I network. 

Conversely, a low Cj implies that the input i j (or Cj) will compete for the winning node. The 

outputs of the WTA, yj, are all high, except for that node which wins the winning node 

contest, which has a low yj. 

A problem with this approach is that with a number of uncommitted rows in the synapse, 

which is bound to happen even after a number of patterns have been learned and stored, there is 

a chance that these rows will generate currents equal to or greater than the node that ought to 

win. In order to avoid these problems a number of D-type registers [Roth92] may be added to 

the circuit. These registers are initially set to logic-I, so that the WT A inputs s2 ... sl8 are high. 

122 



Chapter 4 Implementation of Neural Networks 

These inputs have the same effect as the ci inputs: if si is high then Ci does not compete, but if 

si is low then it enters the WT A competition. 

Initially, only C7.c I will compete. As soon as Yi rises (i.e. goes to zero) the input of RI is 

transmitted to its output, making s2 equal zero. Now both c2,C2 and C;-,C2 will compete for 

the winning node. As soon as c2.C2 wins then the input of R2 is transmitted to its output, 

making s3 equal zero, and the process continues. 

This method ensures that only those synapse rows that have previously won, implying that 

they hold a stored pattern, and one additional uncommitted row, which can hold any new 

uncategorisable patterns, can compete in the learning process, with all other uncommitted 

synapse rows effectively masked out of the process. Once all synapse rows are involved in the 

competition then the output signal FULL indicates that all synapse rows are storing a category. 

The register process is enabled and disabled via the ER input on the WT A. 

4.2 Neural Network Applications 

4.2.1 Traffic Management of a Satellite Communication Network 

4.2.1.1 Background Information 

Satellites, from their geostationary orbits 22 300 miles above the earth, can view over one third 

of the earth and can instantly connect any two points within their coverage [Camp87]. This, 

coupled with their record of high reliability, makes them the most attractive multiple access 

communication medium. 

It is known that, for circuit-switched networks, that a non-hierarchial switching methodology 

performs better than hierarchial static switching [Schw87]. It has also been shown that by 

reserving some portion of network capacity, in order to have alternate routing possibilities, 

overcomes instability in the network at high load levels [Akin84]. 

123 



Chapter 4 Implementation of Neural Networks 

There are many routing algorithms available to telecommunication companies, but this project 

[Ansa96] proposes a new traffic management scheme to improve the efficiency of a circuit­

switched satellite communications network of the geostationary orbital type. It uses simulated 

mean field annealing (MFA), a neural network technique [Hayk94], to carry out the proposed 

management scheme. It includes the idea of dynamically adapting the networks as well as 

dynamically routing each message arrival. This allows the network itself to change due to 

traffic conditions, thus improving the level of service, and also to continually organise itself to 

minimize the cost for varying traffic conditions. 

4.2.1. 2 Traffic Management Scheme 

A satellite communications network can be viewed as a mesh topology, with each node 

representing either a satellite or an earth-based ground station. Each link between nodes may 

have any number of circuits, but the total capacity of the network is fixed. Traffic is generated 

by Poisson-based random sources characterized by two parameters: the average rate of message 

generation and the average length of a message. The satellite communications system acts as a 

server system, providing a transmission service to the generated traffic. 

A system model of the proposed scheme is shown in figure 

4.7. The object of the scheme is to dynamically route each 

call, as traffic conditions change from time to time, thus 

maximizing the throughput of the network. This requires 

four different functional modules: map generation, router, Router 

controller and arbitrator. Figure 4.7 Network System 
Model 

a) Map Generator 

This unit generates a map of the best configuration for the prevalent traffic conditions. Such 

maps differ by two parameters C and R; the former denotes the link capacities of the network 

and the latter denotes the number of circuits that can be used for alternately routed calls. 

Therefore, in a particular link j, there are Cj - rj circuits reserved for direct calls; this calculated 

124 



Chapter 4 Implementation of Neural Networks 

parameter is referred to as the reservation parameter. The generator also takes as inputs the 

current status of the network, the total capacity of the network and the average arrival rates of 

each origin-destination (O-D) pair. 

With this information in hand an optimization technique is used to try and find an optimal map 

which will minimize the rate of unconnectable calls, known as the block rate. Two different 

techniques are employed in the task: simulated annealing and MF A. 

b) Router 

The router performs dynamic routing for every call arriving on the network as follows: 

• If the direct link has an idle circuit then the arriving call is routed onto it 

• If no direct link is free then a randomly selected alternate route is tried; this will be 

blocked if either or both links in that particular O-D pair is in a reserved state (i.e. at 

least r circuits in the link are busy) 

• If direct and alternate routing fail then the call is blocked and lost from the network 

This simple routing algorithm requires little computation, thus reducing the processing delay of 

each call. 

c) Controller 

The task of the controller is to keep track of the state and performance of the network. It 

decides whether or not a new map is necessary based upon several parameters, the most 

important of which are the arrival rates of the O-D pairs and the load balance of the network. 

The load imbalance d is calculated by the following set of equations: 

~=F/C 

(4.9) 

125 

-



Chapter 4 Implementation of Neural Networks 

where 

F = total flow of the network 

C = total capacity of the network 

The controller calculates the amount by which the network's current load balance deviates from 

that of a fully balanced network; this measure is taken to be the indication of premature 

saturation of the network. The actual threshold value for this imbalance at which the controller 

deems the current map to be inefficient, denoted d" is defined as: 

d=OI·.t1 ( . (4.10) 

When d is larger than d, the network is considered to be inefficient and the controller calls up 

the map generator module to request a better map for the current traffic conditions. Problems 

arise, however, when d, is small and close to zero. In this case even a very small deviation 

from the ideal cannot be tolerated and the map generation process is called up too frequently; 

this may not be cost effective in the long run. Hence, the parameter d is only updated after a 

number of network status updates, so that any generated map remains in operation for a 

minimum number of network status updates; in the proposed traffic management scheme d is 

updated after 10 network status updates, with up to 100 network status updates being used in 

judging the overall pattern to the network traffic. 

d) Arbitrator 

The arbitrator decides whether or not using a modified map will actually be beneficial to the 

network performance; thus, it is used as a cost -saving measure. As the routing of calls must be 

uninterrupted, and the optimisation of such must be done in real time, there may be some 

instances where a map con figured from the most recent network experiences may not actually 

reflect the optimal performance for present traffic conditions. This process can be eliminated, 

to a certain extent, by properly choosing both d, and the update rate for d. 

126 



Chapter 4 Implementation of Neural Networks 

4.2.1. 3 Map Generation Using Simulated Annealing 

The average probability of a call being blocked by the network, H, must be minimized in order 

to increase the performance of the network. This probability depends upon the capacity of a 

link and on the number of circuits that can be used by alternately routed calls in the link. These 

two independent variables, c and r, make the solution space of such a problem very large; 

selection of the optimal\y configured map from the solution space is computationally time 

consuming, and some optimization technique must be applied in order to find the required map. 

One powerful neural network-based technique, as described in section 3.3.2.5, is referred to as 

simulated annealing. 

The idea of simulated annealing is to reduce the system energy and to find a state of minimum 

energy. For the map generation process the energy cost function is simply the total block rate 

of the network. The cost function for any link s can be written as follows: 

E(s)= If (C, R) (4.11 ) 

The artificial temperature of a simulated annealing network is reduce over time during the 

optimisation process. This cooling schedule is specific to each application and requires four 

parameters to be defined [GeGe84]. 

• 

• 

Initial Temperature is defined so that virtually all transitions are accepted (but not all) 

Stopping Criterion is based on the argument that the execution of the algorithm can be 

terminated if the improvement in cost achieved through continuation is small; hence, if 

two consecutively generated maps do not vary significantly in cost then the algorithm is 

terminated and the first map is considered to be near-optimal 

• Number of Transitions at Each Temperature is defined as being the level at which the 

generation of new states ceases and the current temperature value is modified. This is 

down after either a certain number of accepted states have been generated or after the 

generation of a specific number of new states. Due to the experimental nature of the 

project many different levels of accepted or new state-based rules were used 

127 



Chapter 4 Implementation of Neural Networks 

• Temperature Updating Rule: the difference in two step temperatures, and their relative 

costs, are required in determining the rule for decreasing the temperature. The rule is 

related to the capacity of the network, CP, and is given in equation 4.12, where a is a 

constant andj is the iteration index (which is linearly incremented) 

CP 
T=a' InU) (4.12) 

The final requirement of the simulated annealing process is to define some form of 

neighbourhood structure for the neural network. This work defined three different structures, 

each of which was used during the simulation study. 

Case J) Varying Reservation Parameter of the Link: any link has c circuits, with any number of 

circuits in the link being reserved in the range [0, cl. When looking for a neighbour a random 

number in this range is chosen and assigned as the reservation parameter for that link 

Case 2) Varying Link Capacities Only: one link is chosen at random and has a random circuit 

deducted from it. This circuit is then added to another link that will benefit from the extra 

capacity. For reasons of practicality each link is also assigned an upper and lower bound 

capacity of circuits 

Case 3) Varying Both Link Capacity and Reservation: as this has the potential to have a large 

number of combinations a similar control measure to that in case #2 is used 

4.2.1. 4 Map Generation Using Mean Field Annealing 

Although simulated annealing is a powerful optimization technique it is very computationally 

expensive, especially when the problem search space is large. MFA is a trade-off between 

performance and computational complexity, and can be used effectively to minimize the call 

blocking probability. Full details of the theory ofMFA are not given here but information and 

further references can be found in the literature [Pete87l [PeHa89l. 

128 



Chapter 4 Implementation of Neural Networks 

Two operations from the simulated annealing algorithm are still required in MF A: the operation 

to reduce the temperature and the process to search for the optimal solution at each temperature. 

In MFA, however, the relaxation process is replaced by a search for the mean value of the 

solution; the equilibrium can be reached faster by using the mean and, thus, the MFA algorithm 

speeds up the computational process. The same three different cases of map generation from 

simulated annealing are considered during the MFA process. 

The energy function for the network is based on an energy function by Hopfield and Tank 

[HoTa85] with two constraint terms, with each map generation case having a slightly different 

function. The base cost of the function is based around the energy costs of direct blocking, 

alternate blocking, the probability of alternately routing a call and the probability of an 

alternately routed call being blocked given the number of circuits available in the link. Full 

derivations of the base cost and constraint terms of the energy function, as well as the 

derivation of the mean field equations, are given in [Ansa96]. 

4.2.1. 5 Performance and Conclusions 

Many different simulations were carried out during this study, using both simulated annealing 

and MFA methods of optimization. The first set of simulations set out to show the effects of 

having a permanently static map; no matter what proportion of circuits were reserved for 

alternately routed calls, the network would go into a state of near-overload at high loads (-87% 

throughput) despite some capacity remaining in the network. 

By varying the reservation T bl a e 41A . r nnea mg S' I' Imu atJOn Results 

parameter per link, yet retaining Varying SA MFA SA MFA 
Parameter Time Time Thru Thru 

the same circuit capacity, Reservation 264.5 12.3 91% 90% 
Capacity 412.4 16.7 93% 92% 

optimization by both methods 

proved to be beneficial by a few points, with simulated annealing giving slightly better results. 

Varying the link capacities proved to be even better, giving greater network throughput. Again, 

simulated annealing proved to be better than MFA, but the computation times required were 

129 



Chapter 4 Implementation of Neural Networks 

prohibitive. Table 4.1 shows the computation times (in arbitrary time units) and throughput 

levels for both cases and both optimization techniques. 

From the simulation results it can be verified that by implementing a control scheme where 

some portion of the link capacity is reserved for direct calls the performance of the network can 

be improved. It also manages to avoid instability in overloaded traffic conditions and improves 

the throughput of the network. 

The MFA algorithm fine-tunes the network configuration and improves the network 

performance. Even though the results of the more common simulated annealing optimization 

technique are better the computation times for MFA are at less than 5% of those for simulated 

annealing. Therefore, mean field annealing is the optimization method of choice. 

4.2.2 Prediction of a Continuous Stirred Tank Reactor 

4.2.2.1 Background Information 

An important area of neural computing research is the investigation into the parallelisation of 

neural network training algorithms and their implementation onto existing parallel computer 

architectures. Two possibly fruitful architectures are special purpose systems based upon 

transputers [DeBI90] and the linking together of workstations using PVM [Begu93]. 

The development of a 5-step ahead neural predictor for a continuous stirred tank reactor 

(CSTR) [McIr95], a typical piece of non-linear equipment in a chemical plant, is used as a case 

study for the efficiency of a parallel implementation of a multi-layer perceptron neural network. 

It is used to assess the performance of the parallel algorithms developed for both the transputer 

and PVM systems. 

4.2.2.2 Hardware Implementations 

PVM (Parallel Virtual Machine) is a software package that allows parallel programs to be run 

on a heterogeneous network of UNIX computers. It consists primarily of two parts: 

130 



Chapter 4 Implementation of Neural Networks 

• a daemon process that resides on all machines making up the virtual machine 

• PVM library containing call able 'C' language functions for all functions regarding 

message passing, process spawning, task coordination and modify the virtual machine 

Communication between machines on the network is slow when compared against that of 

dedicated concurrent processing hardware, and is also variable depending upon network and 

machine load. Because of this parallel programs running under PVM are only beneficial when 

the problem granularity is very high, thus allowing the speed and size of local processing 

power to be fully exploited. 

Implementation on a PVM-based system is fairly straightforward once the parallel processing 

algorithms have been developed. The network of machines is set up and a central control 

process sends out remote processing calls to each machine as required. Although the setup can 

be (and should be) optimised by the user, there little work is required to get the algorithms up 

and running; many of the communication problems associated with such a heterogeneous 

system are handled by PVM and the machine networking protocols being used. 

A transputer network, on the other hand, is a dedicated programming architecture that offers 

very high speed communication between adjacent processors, with each processor on the 

network having a direct serial connection to at most four other processors. This is dissimilar to 

the PVM architecture, which, by means of the inherent network protocols, allows direct 

communication between all processors on the network. Consequently, a suitable network for 

the transputers needs to be developed for each application; typical configurations include the 

tree, pipeline, ring and rectangular array. For the chemical plant application the most favoured 

architectures are the ring and the pipeline, which are best suited to neural algorithms. 

131 



Chapter 4 Implementation of Neural Networks 

A ring architecture was chosen over a pipeline, as 
Transputer Ring 

it allows the last transputer in the network to be j 
connected back to the first transputer; a schematic 

for the network is shown in figure 4.8. A ring 

network allows a unidirectional flow of data, 

which can be advantageous. 

Figure 4.8 Transputer Ring Network 

The structure of the parallelised algorithms devised in [McIr95] gives the following 

communication timing: 

T =n·1: ·(2·N +N )+1: ·(N +N ) ewe W C (4.13) 

where 

n = number of parallel processes 

'r = transmission time per floating-point value 

N c = number of function evaluations during neural algorithm 

Nw = number of weights in the network 

Once the transputer ring host controller has placed data on the network it does not have to wait 

until it has gone to the last transputer on the ring network. This reduces the communication 

time Tc in equation 4.13 by (n- 1) . Nw· 'r. 

4.2.2.3 Neural Network Implementation of CSTR Predictor 

The Continuous Stirred Tank Reactor is a highly non-linear plant and, as such, is a useful 

example for testing neural networks. The predicted system is a single-inputlsingle-output 

system: the input is the flow rate of a coolant qJt) and the output is the concentration of a 

product compound e(t). The delay between the tank and the product output is approximately 

30 seconds. The reaction within the system is exothermic, which raises the temperature and 

132 



Chapter 4 Implementation of Neural Networks 

hence reduces the reaction rate. The coolant allows the manipulation of the temperature, hence 

allowing the product concentration to be controlled. 

A schematic of such a system is shown 

in figure 4.9. Although there are many 

parameters involved in the operation of 

the plant these and the related control 

equations are omitted from the figure. 

feed 

coolant 

measured 

product 
output 

A general non-linear k-step ahead 

prediction model takes the form 
Figure 4.9 Continuous Stirred Tank Reactor 

9 (t+ k)=F {u(t+k-l), ... ,u (t- m),y (t), ... ,y (t-n)} (4.14) 

where 

y(t ... t-n) = past n outputs of the CSTR plant 

u(t-l ... t-m) = past m controls of the CSTR plant 

u(t ... t+k-l) = future k controls of the CSTR plant 

F = non-linear function mapping CSTR plant variables to predicted output 

The function of the neural network is to approximate the 

mapping F. For control purposes it would be useful to be 

able to predict across the range of the 30 second delay, 

using a sample time of 0.1 minutes results in as-step 

ahead predictor. Assuming the CSTR plant is of order 

five or less then the desired predictive model is shown in 

figure 4.10. Figure 4.10 CSTR Plant Neural 
Predictor 

133 



Chapter 4 Implementation of Neural Networks 

4.2.2.4 Performance and Conclusions 

The multi-layer perceptron, with layer sizes of 20-20-1 respectively, was trained using the full 

memory (FM) BFGS algorithm [McKe90], with 800 training vectors. The trained network 

was then tested by comparing the predictor output, delayed by five time units, with the actual 

output of the CSTR plant. The network performed very well, with over a 95% correlation 

between the predicted and actual output at all times. 

Parallel versions of the FM algorithm, along with the limited memory (LM) BFGS algorithm 

[Gill92], were implemented for both the PVM system and a transputer system; the PVM 

network consisted of up to nine idle Sun workstations and the transputer ring consisted of up to 

six processors. 

Table 4.2 shows the test problems Table 4.2 Dimensions of Test Problems 

used on the target parallel Name Problem MLP Training Nw 
Structure Set Size 

architectures. The result graphs are Test I CSTR 20,5, I 800 III 

shown in figure 4.11. From the Test 2 CSTR 20, 10, I 800 221 
Test 3 CSTR 20,20, I 800 441 

graphs it can be seen that the Test 4 y=(x-2)(x+ I) I, 5, 1 25 16 

transputer implementation performs 
Test 5 y=(x-2)(x+l) 1, 10, I 25 31 

much better than those running under 

PVM. This is mainly a reflection of the difference in speed in inter-processor communication, 

with PVM being around 20 times slower than the transputers. 

The number of training vectors and, to a lesser extent, the number of weights Nw determine the 

achievable speed-up for a given problem. On the PVM system the algorithms performed 

reasonably well for the CSTR problem where the training set is large but performs terribly 

where the training set is small. Thus, a PVM implementation of neural networks should only 

be considered for large problems. 

134 



Chapter 4 

Plrnonmonce of LM on PVM 

r.:::::::i:::::::::r:::::T:::::;::::::::;::::l=:; ... ;:-;; ... ;:: .. ~ Te~t I 

: • Test 3 .. : ........ : ....... . 
··f········}······_-

o.~ E··:· S::=!:=::1:~~~~~§~2i~Test 5 

1 4 6 

Number of parallc:1 pwccssors (11) 

Number of parallel pruce..~sors (n) 

Performance of LM on Trllll$putel1ll 

Figure 4.11 Algorithm Performance 

Implementation of Neural Networks 

,..~.-~p.~~~.nn~~=;.~.r~L~M~._.~~~~~~~~n~~~T~U 
6 11213 

~ : ::::::r::::t:::l:::::L:::t:::::r:::::r::::::.:::r::···· T~" 
i : ::::::'::::'··::::::::j.:: .. l ... :::r:::t::::r:::r:::: Tw, 

I ·····1······1··--·'1'·····1·····"1'···_-)······1····_-1"-····T······ 
11 

1 4 

Number of panllel processors (n) 

Performance of FM on Transpukn 
S.s~~~=;='~~~=";""~-~, 

o.s '--'--'_-'--1.._'--'----''--'---''--' 
1 4 6 

Number ofpara.llel processors (n) 

The speed-ups achievable for the CSTR problem on the transputer system approach the 

theoretical maximum for the number of processors involved. Performance is also reasonable 

for small problems, although far from optimal. Test 3 of the FM algorithm failed completely 

due to insufficient memory, showing that a PVM-based solution for such a large problem is a 

feasible alternative system architecture to the transputer network. 

135 



INTRODUCTION 

PROPOSED 
ARCHITECTURAL 
DESIGN 

This section introduces the architecture for an instruction systolic array processor, optimised 

for on-chip learning of artificial neural networks. It goes on to give detailed descriptions of the 

processing elements within the array processor, with high-level circuit diagrams for each of the 

functional units. The section concludes with details of the instruction processing methodology 

used by the array processor, with high-level circuit diagrams for the functional units. 

5.1 Architectural Overview 

5.1.1 Array Structure 

There are many different possibilities for the implementation of VLSI chips that attempt off­

and on-line learning for neural networks [TreI89]. With the digital devices the implementation 

method is normally to dedicate processing elements to being neurons in the network, with each 

neuron having the circuitry required to carry out a matrix-vector product operation. The neuron 

circuit is also responsible for holding, normally in local memory, the set of weights associated 

with it within the network. 

As the kernel of the majority of artificial neural network computations is the matrix-vector 

product it was decided to design an architecture which took advantage of this fact, yet was still 

able to carry out neural network learning for a variety of network training methodologies 

[KaEv96]. Each element of the matrix-vector product can be seen to be the result of a neuron 

136 



Chapter 5 Proposed Architectural Design 

input scaled by a synaptic weighting value. By dedicating an individual PE to the processing 

required for an individual synapse, but also allowing the PE to perform other arbitrary 

mathematical calculations, a system can be designed that can perform both synaptic and neural 

computations. 

The basic array structure, as shown in 

figure 5.1, is similar to some 

previous work [Lehm93], but the 

similarity ends there; the internal 

workings of the PE's are vastly 

different. The direction of data 

traversal is indicated with arrows 

Standard Cell 

Diagonal Cell 

Figure 5.1 Neural VLSI Array Architecture joining input and output connections 

between neighbouring PE's. The actual array size used for this work is a 6-by-6 array but, for 

the sake of clarity, figure 5.1 only shows a 4-by-4 array. 

Each PE is joined to each of it's four neighbouring PE's with an input and output connection, 

although there are some exceptions depending on the PE's location in the array: west- and 

north-edge PE's wrap the relevant connections out back onto themselves, east-edge PE's 

connect directly to the array I/O controller. South-edge PE's have no southerly neighbour 

connections at all, implying data output to the south from a south-edge PE is effectively lost. 

Any data transmitted to the north from a south-edge PE is meaningless, as there is no 

corresponding southerly input - this is illustrated in figure 5.1 by light-shaded data arrows. 

Each PE can carry out some computation, with the results being made available on the east or 

south output of a PE, overwriting any data originally input from the west or north of the PE. 

Leading diagonal PE's copy the east-west input data, on to their south-north output, effectively 

routing the external I/O data to the array north-south data path (after a short delay). 

137 



Chapter 5 Proposed Architectural Design 

5.1.2 Instruction Systolic Array Processing 

Section 2.3 described the architecture of the systolic array. as well as describing several of the 

more common algorithms associated with it. It may be desirable, however, to have a procedure 

that requires more than one type of operation; PE's within the systolic array have an option as 

to what type of operation they can carry out in any given clock cycle. The option to be realised 

is determined by an instruction tag that is input to the cell along with a data item. Using this 

technique individual PE's within a systolic array can carry out a number of different operations; 

a systolic array in which instruction flows are involved as well as data flows as known as 

instruction systolic arrays [Kund86]. 

In an instruction systolic array the instruction and data streams can be considered within a 

common framework. Both streams are input to a PE, with values on the output data stream 

possibly being replaced as a result of some computation, and both streams are then propagated 

by the PE throughout the rest of the systolic array. The instructions are actually considered as 

data which is first processed by the PE, in that each cell first analyses what kind of instruction 

it has received - processing proceeds according to the result of this analysis. 

An example of an instruction systolic 

array algorithm, back substitution in 

triangular linear systems of algebraic 

equations [Petk891, is shown in figure 

5.2. A sequence of instructions is 

input to the right-most PE of the array 

and passed to the left on successive 

clock cycles. Data is passed into the 

• 

• 

• 

• 
• 

a l2 

a
22 

• 
• 

• 
• 

a
l3 

a
23 

a
l4 

~3 a
24 

• a
34 

• 

b4 b
3 

b
2 

b
l 

div sips sip.v sips 

array along with the instruction and Figure 5.2 Back Substitution using Instruction 

also on the top input to each PE. In 
Systolic Arrays 

this case, the sequence of instructions consists of one division instruction followed by a 

138 



Chapter 5 Proposed Architectural Design 

number of inner product step instructions. In any given clock period each PE executes one 

single instruction out of the many that they are capable of processing. 

In any implementation of instruction systolic arrays the PE's might be rather powerful 

processing nodes, with considerable local program and data storage with little or no direct 

connections to the host computer. In such a system the array itself must synchronise the inter­

PE exchange of data and instructions, which may lead to more complex PE's. However, such 

a system also has the capability to be a very powerful parallel array processor. 

5.1. 3 Array 110 Requirements and Processing 

There are two types of PE in the array, both being identical save for one feature. PE's on the 

leading diagonal of the array have their south -> north data connection (SN) shorted, with data 

from the east .... west data connection (EW) being copied onto it. Data on the north .... south 

connection (NS) and west .... east connection (WE) are identical in both types of PE. This 

method allows data to be sent from the 110 controller on the EW datapath to be fed, after a certain 

time delay, to the WE and NS datapaths using the array west-and north-edge PE wrap-around 

feature. When data enters a PE on it's NS datapath then an operation is carried out within the 

PE. Note that 'data' here implies a numeric data item and an instruction operation code, which 

is decoded within the PE and acted upon. 

One major difference between this architecture and that normally associated with two­

dimensional systolic array processors [KungSY88] is that external data 110 exists solely on one 

edge of the array. Normally, at least two edges of the array are used for data input, with a third 

edge used for the collection of result output values. By only using a single edge of the array 

for both input and output, letting the array itself to distribute the data to the relevant PE's, only 

a fairly simple 110 controller is required [Lehm93]. The controller only has to concern itself 

with a single two-way communication channel. 

139 



Chapter 5 Proposed Architectural Design 

During a normal run of an 

algorithm data is passed in on 

the east edge of the array, and 

this data proceeds westwards 

over several cycles until data 

reaches the diagonal cells, 
t= I t=2 

where a copy is then placed on IS! East --> West data 

the SN datapath. As in other IS! South --> North data 

t= 3 t=4 

~ West -+ Ea.st data collides with 
North --+ South data and 
processing occurs within PE 

systoIic designs the east-edge Figure 5.3 Internal Datapath Timings 

input data is staggered in a diagonal fashion, and this entire process is illustrated in figure 5.3. 

Data that reaches the west or north edges of the array is redirected onto the WE and NS datapaths 

of the respective PE's. Whenever a PE finds data on it's NS datapath it extracts the operation 

code from the data, decodes it and then carries out the appropriate instruction data as required. 

This system allows the operation codes and data to be embedded into a single data stream. 

A matrix-vector multiplication is straightforward to show as an example operation, as it can be 

done within the array using a single replicated instruction. Assume that each PE has been set 

up to process the instruction [MVMj as 

[MVMI call NS * REG -> WE' 

[MVMI other (NS * REG) + WE -> WE' 

where REG denotes the contents of a private register within each PE. The register within each 

PE initially holds a value from a matrix, and an input vector is sent into the array. The PE's 

process the instructions, once they receive them, by multiplying the contents of the internal 

register with the data on the NS datapath; if the PE is not on column I (the west edge of the 

array) then it also adds any value on the WE datapath to the result of the multiplication I. The 

final result is placed on the PE's WE datapath, ready to be output on the next cycle. 

By having two versions of the same instruction in the array the 110 controller does have to concern itself with the 
awkward task of ensuring that PE's in the first column of the array receive a zero on their WE input, in order to start 
the accumulation process, at the same time as the [MVM) instruction arrives on their NS input 

140 



------ -------------

Chapter 5 Proposed Architectural Design 

It can be seen that each PE in the array calculates a partial result and passes it along it's WE 

datapath to the PE on it's east edge, where it is used in future calculations. After 2n cycles 

(where n is the dimensionality of the array) the first row of the array outputs a result, with other 

rows outputting their results on subsequent cycles; each component of the result vector is 

output from the array after 3n clock cycles. 

The instructions and data arc sent to the array in a staggered fashion, and most algorithms 

presented in this thesis follow this pattern. It allows each row in the array to act as an n-stage 

pipeline, with each PE calculating partial results for use by the PE on it's east side. If an 

additional vector is input to the array immediately following the first the result of this second 

matrix-vector multiplication is available on the cycle after the first result is output. This allows 

for y matrix-vector multiplications, all utilising the same matrix, to be processed in only 

3n+y-1 cycles; this method of pipelining is vital to the overall speed of the array and is utilised 

to the maximum extent possible. 

5.1. 4 Data Format and Precision 

There are a number of mathematical and storage units +/- Integer Fraction 

within each PE, all of which are described in detail in ijH 1 1 1 HIiUI~1I!Ipij;jI&'~:II~;ilrrl': >1 
11 10 ......•••. 7 6 ....•••.••..•.........• 0 

section 5.2. They consist of a fixed-point adder, a Figure 5.4 Data Format 

fixed-point multiplier and a bank of local memory registers. Each of these units are 12-bits in 

size and arranged in a standard representational format; the nominal representation of a number 

is shown in figure 5.4. 

Due to the fairly low precision used in the data representation a system to capture errors will 

need to be implemented. With a 12-bit fixed-point multiplier of the format shown in figure 5.4 

the generated result will be 23-bits in size, with the integer and fractional parts of the result 

being 8- and 14-bits in size respectively. The fractional part will need to be reduced down to 

just 7-bits, and the integer part will need to be checked for overflow or underflow; there are 

problems associated with both of these schemes. 

141 



Chapter 5 Proposed Architectural Design 

Truncating the fractional part of the result gives a maximum absolute error of 11128. By using 

the bit-value in the 11256 position of the fractional result [Man082] it is possible to correctly 

round the fractional result up or down by 11128, thus reducing the maximum absolute error to 

1/256; a 'I' in the 11256 position indicates that rounding up is required. This method cannot be 

employed, however, as it would require either an extra adder unit per PE or the extension of the 

execution time for instructions by an additional cycle in order to re-use the existing adder. The 

former option is undesirable, as although a single adder is not very large the systolic array is 

designed to consist of an array of 6-by-6 PE's, so the addition of a single large circuit in each 

PE is quite expensive in terms of circuit area. The latter option is also undesirable, as the 

systolic array is being designed so that every instruction is processed in a single cycle; this 

option would practically double the execution time of every algorithm. The method of 

truncation, therefore, is a straight cut-off and loss of all bit values less than 11128. 

In a normal serial processor all mathematical operations have an error flag associated with them 

in order to indicate events such as underflow, overflow or division-by-zero. Although this is a 

tried and tested method it cannot be used in the systolic array. If the first PE in a row indicates 

that an operation resulted in overflow then the result being fed to the next PE in the row is 

garbage. Such a result cannot be operated upon at all by subsequent PE's, as it cannot be 

assured how much the result is in error; subsequent processors should effectively ignore such 

data values. 

Hence, each mathematical unit in a PE will output an integrity flag along with any result, in 

order to indicate if it is safe to use the data associated with it. The units will also replace the 

generated result value with a number representing the maximum or minimum representable 

value. The mathematical units will inspect the integrity flags associated with each input value; 

if either flag is set then it is safe to assume that any result generated by the unit will also be in 

error, even if the result is technically correct2
. This method, known as saturation, is fairly 

2 If an overflowed-maximum value is added to an underflowed-minimum value then the actual result is -1/128. Such a 
value cannot be used, however, as it cannot be guaranteed that one of the inputs was not meant to be of greater value 
by several magnitudes. Hence, such results must also be flagged as being in error at all times 

142 



Chapter 5 Proposed Architectural Design 

. common amongst pipe lined processors, where saturated additions and multiplications are 

necessary in order for an intermediate result to hold on to some integrity. The only exception to 

this technique is that the correct sign for the multiplication result is always used, whereas with 

an addition operation the sign of the input in error is used for the result (or an arbitrary choice if 

both are in error). 

5.1.5 Processing Element Structure 

Figure 5.5 shows a schematic 

diagram of an individual PE within 

the array. It shows the four main 

data paths, although associated 

input registers and output buffers 

are omitted for the sake of clarity. 

It shows two calculation units, a 

data comparator, a result range 

limiter and an internal register 

storage block. An instruction 

\\E 

tt 
ISN 

T_~ 
:::~I ]~ 

I-~ 
COMPARATOR ~ -I 

r-;.~ -:--
ir~ ADDER f.-

.. t§ ~ •. 
00 

~r~ ~~ 
~~~ 0:;;; 

; I :l MULTIPLIER
~

r-;.~

REGISTERS I'

...

Figure 5.5 Processing Element Schematic
opcode memory block is shown,

NS

~

~ ..
EW

containing fast static memory cells and the circuitry necessary to re-program the memory; note

that for the sake of clarity no control signals from the instruction memory to other units are

shown in figure 5.5. A number of multiplexors are also shown, which route data to the correct

area of the PE during instruction execution. The internal data routing unit is simply a large area

of interconnect, arranged so as to connect each possible data bus to the relevant input to the PE

functional units.

The multiplexor in the lower-left area of the schematic is used to redirect data from the EW

databus onto the SN databus. If the PE is on the leading diagonal of the array then this circuit is

present, otherwise it is removed completely, allowing the original SN input to be passed on

unmolested to other PE's in the array.

143

Chapter 5 Proposed Architectural Design

5.2 Neural Network Hardware Features

5.2.1 On-Chip Learning Methodology

Of particular interest to the neural network training algorithms is the internal register block

within each PE. This holds four 12-bit words of data, and each word can be addressed

individually by using an active switch within the block. It has been shown [Pa089) that the

backpropagation network requires at most only three layers of neurons to represent any

arbitrary function. As this algorithm has been proven to converge and learn any function that

the network can represent [Rumm86) any implementation of backpropagation only has to

provide three layers of neurons in order to operate correctly. Although more layers can be

added Pao's work showed that this isn't necessary.

The proposed architecture sets aside three register slots per PE in order to store a network

weighting value. As each PE represents a synapse rather than an entire neuron these register

weights can be seen to represent the weighting factor between one neuron output and another

neuron synaptic input. By activating all layer-l registers within the PE all weights for neurons

in that layer are visible to the processing routines; weights for neurons in other layers are still

held within the PE but are not directly accessible3. This method allows all weights for all

neurons in the network to be held on-chip at all times, thus dramatically reducing the

communication overheads typically associated with hardware implementations of neural

networks that hold the weights off-chip in a separate data store.

Another benefit from the on-chip learning methodology, besides the decrease in required 110

bandwidth, is that any other operations that require weight values in the calculations do not

need to load the values on to the chip: they are already present in the PE's. The flowing nature

of systolic algorithms means that as the weight values remain fixed within the PE's themselves

instruction opcodes can pick up the values as the instructions flow through the array.

3 PE's in the array have their own private active register indicator· it is not a global value, but the routines used in the
neural network algorithms tend to set all PE's to have the same active register indicator

144

Chapter 5 Proposed Architectural Design

The fourth register within the PE is used as a general purpose register on non-neural

operations. It is loaded with constant values required during a pass of an algorithm, or perhaps

as an accumulator of partial results. This allows other mathematical operations to be carried out

with having to remove the weight values from the array, as there is still some spare local

memory capacity within each PE.

5.2.2 Reconfigurable Instruction Set

5.2.2.1 Implementation Overview

The normal method of decoding instructions within a PE is to use a small programmable logic

array [WeEs88], with the control signals resulting from an instruction being hard-wired into it.

This results in a function similar to a ROM device. However, it has the problem that the effects

of instructions cannot be varied at a later date, so any instructions implemented would have to

be very general in nature or optimised for a specific algorithm.

The preferred method for the instruction set decoding is to use a small block of fast static RAM

inside each PE. This will hold the relevant control information for the number of instructions

required. The RAM address range is to be limited to just 4-bits, giving a capacity for 16 unique

instructions, giving a system bus width of l6-bits (including l2-bits for data accompanying the

instruction opcode). Each PE in the array should hold the same instruction set for a single

algorithm, although if an algorithm requires more than 16 instructions then the PE's could be

programmed with slightly different instruction sets; i.e. if instruction [0110] is only required

in the first row of the array then it need not be duplicated in the PE's in other rows, which are

free to carry out a different task when executing instruction [0110] (although different

implementations of the same opcode should be conceptually similar)

The opcode number itself is used as the address for the RAM, with data being read from or

written to it as required. Each opcode has an associate mnemonic code, which is used as an aid

in designing and interpreting the algorithms.

145

Chapter 5 Proposed Architectural Design

5.2.2.2 Fixed Instructions

There are a number of instructions that are DATA ACTION

fundamental to the operation of the array

processor and need to be hard-wired into the 1
instruction set. These cannot be overwritten

Vss
with any other data and can be treated as constant

values. This part of the static RAM is actually Figure 5.6 Opcode ROM Bit-Slice

implemented as a ROM circuit: all write operations to these instructions stores are ignored, but

read operations are carried out as normal, as the individual cells within the memory still

conform to the protocols required by the reset of the memory unit. A schematic layout of such

cells is given in figure 5.6, which shows the layout for a hard-wired logic-I (a logic-O has the

V DD and V ss connections reversed). A full description of the operation of the RAM and ROM

units of the instruction set memory is given in section 5.3 along with descriptions of the other

hardware elements of the architecture. A list of the instruction opcodes that are fixed in ROM

are gi ven in table 5.1.

Table 5.1 Instructions fixed in ROM

Ope ode

[0000]

[000 1]

[0010]

[0011]

[PASS]

Mnemonic

[PASS]

[SWITCH]

[LOCK]
[PROG]

Description

No processing occurs, but data passed in all directions

Switches currently active register within specified PE

Sets lock status of specified PE

Programs a new instruction into the apcade memory
Also used to set values in result range limiter

a simple no-operation instruction; no processing occurs and all input data is

propagated to the respective outputs

[SWITCH] sets the currently active register within the PE to that specified by the data on the WE

input stream. This value can be in the range O ... 3

[LOCK] locks the instruction that appears on the subsequent clock cycle on the address input

into a local memory buffer area, but only if the PE is on the row specified by the

value on WE - this can be in the range 0 ... 5. Locked instructions are processed on

every cycle within that PE regardless of the instruction present on the NS datapath

until another [LOCK] instruction is received for a PE in that same row

146

Chapter 5 Proposed Architectural Design

[PROG] nothing occurs until the subsequent clock cycle: the instruction then present on NS

is programmed with the data associated with it in the opcode memory, thus re­

programming that instruction. If the instruction to be re-programmed is a

[SWITCH] or [LOCK] then nothing happens; if the instruction is [PASS] or [PROG J

then the result range limiter (as described in section 5.3) are set up instead

As well as the specialised functions carried out by the ROM-fixed instructions all of them

process an effective [PASS] on all other input data. Unfortunately, the 12-bits of data

accompanying an opcode is not sufficient to handle all of the control signals required for an

instruction. On the clock cycle that the [PROG] instruction is received the data that resides in

NS[O:9] is stored in a temporary register. On the subsequent clock cycle this IO-bits of stored

data is used along with the entirety of the new NS data in order to program the instruction

control signals. Hence, the PE requires 22-bits of control signals per instructions, implying

that the instruction memory unit is l6x22-bits in size.

5.2.2.3 Internal PE Control Signals

Table 5.2 shows all of the mathematical Table 5.2 Possible Mathematical Operations

operations are possible within a PE4, all

of which have been implemented in order

to give the array processor a useful

instruction set. All of the five active data

MULTIPLIER

REG * NS

WE*NS

WE*REG

REG * ADDER

WE'ADDER

ADDER

MULT+WE

MULT+ REG

WE + REG

WE+NS

MULT+NS

REG + NS

WE Output

WE Input

Comparator

AdIec

Multiplier

areas can be operated on in any ADDER' NS
--------~------~------

combination; an addition can follow a

multiplication in the context of a single instruction (and vice versa). The inputs to the adder and

multiplier can accept any combination of inputs, although the arithmetic units cannot feed their

outputs back onto their inputs. Input selection is done via several 4-to-1 multiplexors, each of

which require 2-bits of control data. The adder can also act as a subtractor, requiring a single

additional control signal to switch between addition and subtraction mode. Hence the

arithmetic units require a total of 9-bits of control data.

4 The table does not show where an arithmetic unit uses the same input variable on both input ports

147

Chapter 5 Proposed Architectural Design

There are four possible values to be output from the PE, as indicated in table 5.2, and this is

implemented using an-additional 4-to-1 multiplexor. This requires 2-bits of control data.

Although a compound instruction such as NE' (REG+WE) implies that the value to be output is

the result from the multiplication this must be made explicit to the PE, as there is no way of

telling directly which value to output. The multiplexors simply open up pathways for the data

within the PE; there is no inherent intelligence as to which pathway is routed to the WE output of

the PE. Hence, the result to be output must be specified.

The comparator unit carries out three different Table 5.3 Comparator Data

functions, all of which are listed in table 5.3.

All of these functions operate on pairs of

data, and a list of all possibilities are also

shown in table 5.3. Two control signals are

Function

Equality (x,y)

Maximum (x,y)

Minimum (x,y)

Upper Input

NS Input

WE Input

Register

Adder

Lower Input

Multiplier

WE Input

Register

Adder

required for the comparator unit to put it into either equality mode or comparator mode;

comparator mode is split into two further functions, allowing the unit to return either the

maximum or minimum number from its two inputs.

In order to implement an ABS function, whereby the absolute positive value of some input is

returned, it is required to multiply the input value by 1.0 or -1.0, depending on whether or not

the input is positive or negative. This method takes advantage of the simple fact that a

multiplication of two numbers with the same sign always results in a positive number.

The lower input to the multiplier contains an ABS Table 5.4 ABS Unit Logic

unit, which requires two control signals. The first Input Sign Control ABS Out

signal enables the unit and the second instructs it +ve I 1.0
+ve 0 -1.0

as to what operation to carry out; the options are -Ye -1.0
-ye

ABS (x) and -ABS (xl. If the unit is not enabled
0 1.0

then the second input to the multiplier passes through unchanged. If the unit is enabled then the

ABS unit replaces the second value by ±I.O, depending on the operation required. The relation

148

Chapter 5 Proposed Architectural Design

between the operation control signal and the output of the unit is shown in table 5.4. Note that

this operation changes the sign of the value on the first multiplier input value depending on the

sign of the data value on the second input; the sign change can be on the basis of a different

value, although it is more usual to base a sign change using the same value as that on the first

input.

There are four different combinations of destination for the chosen Table 5.5

result value, and these options are shown in table 5.5. Regardless of

the current instruction the result is always sent to the WE output.

Results can also be copied to the NS output, in order to propagate a

Result Destinations

Destination

WE

WE,NS

WE, REGISTER

result to PE's in other rows. The result can also be stored in the WE, NS, REGISTER

currently active register within the PE. This can be done even if the

currently active register was a source of data for the current instruction, as the registers are

designed to be read from and written to safely in the same clock cycle - this is discussed further

in section 5.3. Two control signals are required for this process, as separate signals are used to

copy the result to the NS output and also into the currently active register.

Section 5.1.4 stated that the accuracy of data in the system is ±11l28. The neural

approximation function used in backpropagation, as shown in equation 3.2, has this result

given an input of approximately ±4.844. Hence, any input values outside of this range to the

activation function will give the result of 0.0 or 1.0; this is to be avoided, as the result of the

function can never equal these values (a result of 0.0 is particularly unwanted). The overflow

units described in section 5.1.4 can be modified to accept an additional pair of

maximum/minimum numbers, which can be loaded in via a [PROG 1 instruction. A single

control signal is required to indicate to the mathematic units which set of numbers to use: the

system maximum/minimum numbers or a set relevant to a particular function, such as ±4.844

in the case of the sigmoid activation neural function.

149

Chapter 5 Proposed Architectural Design

Table 5.6 Summary of instruction-based control signals

Unit Signals

Adder Control

Adder (Upper Input) 2

Adder (Lower Input) 2

Multiplier (Upper Input) 2

Multiplier (Lower Input) 2

Comparator Control 2

Comparator (Upper Input) 2

Comparator (Lower Input) 2

Result Selector 2

ABS Unit 2

Result Destinations 2

Result Range Limit

Value Implication

o Addition operation (Upper + Lower)
Subtraction operation (Upper - Lower)

00 VVEinputdam
01 NS input data
10 Currently active register
II Multiplier unit output

as above as above

00 VVEinputdam
01 NS input data
\0 Currently active register
11 Adder unit output

as above as above

00 Return maximum value
01 Return minimum value
I x Equality operation

00 NS input data
01 VVE input data
\0 Currently active register
11 Adder unit output

00 Multiplier unit output
01 VVE input dam
\0 Currently active register
11 Adder unit output

00 VVE input data
01 Comparator output
\0 Adder unit output
11 Multiplier unit output

Ox ABS unit disabled
10 Negative ABS(x) result required
11 Positive ABS(x) result required

00 WE output only
o I WE output and NS output
\0 WE output and currently active register
11 WE output, NS output and currently actuve register

o Use standard maximum/minimum overflow values
Use user-defined limiting values

Table 5.6 gives a full summary of the control signals present within the PE. This gives rise to

a large number of possible mathematical instruction combinations, and these combinations are

given in table 5.7. There are a total of 11 basic mathematical operations, given that 2ax is

equivalent to 2xy. Other instructions can be made equivalent by variable substitution, but are

otherwise distinct (2x " x+y if x = y). These 11 instructions can have any combination of WE,

150

Chapter 5 Proposed Architectural Design

NS and REGISTER as the x, y and a variables, and can have the final output re-directed to several

different locations.

An instruction consisting Table 5.7 Instruction Combinations

of just an addition or Main Input Type Single Op Combined #1 Combined #2

multiplication operation, ADDERx+y x+y a(x + y) (x + y)2

MULTIPLIER x'y xy a + xy 2xy

all of which are shown in ADDERx+x 2x 2ax 4x2

MULTIPLIER x'x x2 a +x2 2x2
the Single Op column in

table 5.7, uses either two input variables x and y or uses a single variable x as both inputs to

the operation. An instruction consisting of an addition and a multiplication (in any order) can

either introduce a third variable a into the second operation (shown as Combined #1 in table

5.7), or use the result of the first operation as both inputs in the second (shown as Combined

#2 in table 5.7).

Note that as the adder can also act as a subtractor, the applicable range of these II basic

operations is quite extensive, especially as none of them make reference to either the basic

comparator or the result range limiter, which increases the operation range even further.

5.2.3 Activation Function Approximation

5.2.3.1 Standard Approximation Methods

Many of the feed-forward networks, including OUT

Backpropagation, use a non-linear activation function

to evaluate the output value of a neuron. This function

takes in some value NET, which is the sum of the

products of the inputs to the neuron and the associated
NET

weights, and performs the operation OUT = F(NET)
Figure 5.7

on it. The sigmoidal activation function used in Sigmoidal Activation Function

backpropagation, shown in figure 5.7, was first given in equation 3.2 and is defined as:

(5.1)

IS I

Chapter 5 Proposed Architectural Design

Each PE in the processor array contains a single fixed-point multiplier and adder. The

activation function cannot be calculated in a single PE nor, due to the nature of the exponential

function, can be calculated exactly; hence, some form of function approximation must be used.

A number of PE's can be used in the approximation algorithm in order to chain together a

number of related calculations.

The approximation of equation 5.1 can be divided up into two separate operations; the

calculation of the exponential followed the calculation of its reciprocal. This method is

preferable to approximating the whole function at once, as such a complex function may be

hard to implement in a simple fashion. Using Taylor's formula [Swok88] the initial

approximation of the exponential can be calculated as

2 3 n
x X X x

e '" I +x+-2 +-3' + ... +-, . n.
(5.2)

which can be implemented on the processor array fairly easily. An algorithm that requires just

a single pass of the array is devisable to solve equation 5.2 with terms up to x7 when using a

6x6 array of processors - this is reasonably accurate for an approximation of the function.

Problems arise, however, when the reciprocal of 1 +c is carried out. The standard method for

approximating the reciprocal function is the iterative calculation

(5.3)

where xi -7 1 I N. This requires a good approximation for the initial value for x b which must

lie in the range 0 .. . 2IN. With this initial approximation in hand the iterative algorithm

converges to a good value for x within four iterations, but this is not guaranteed - it is

dependant on the accuracy of the initial value for x. A single iteration of the algorithm can be

done with a single pass through the array, so a total of six or seven passes to calculate the

activation function seems quite feasible. The attractiveness grows with the realisation that the

activation functions for all neurons within a single layer of the neural network can be carried

out in parallel.

152

Chapter 5 Proposed Architectural Design

The success of the reciprocal approximation is based entirely on the closeness of the initial

value for x to the desired solution. Not much processing time can be devoted to this task, but

so long as the value falls within the range 0 .. . 21N then it should be acceptable for use. Given

the data precision inherent in the processor array, as discussed in section 5.1.4, a good initial

approximation has been found to be given by the following method:

(i) Find top set bit in N; ie if 2y+1 > N ~ 2Y then top set bit is 2Y

(ii) Reset all bits in N to 0, save top set bit which is left as I

(iii) Reverse all bit values to form fraction; ie 4 becomes 1/4

The value from this action always lies in the range 1IN. .. 2IN. However, as only 7-bits of

accuracy is used for the fractional part of the data the iterative routine to calculate the reciprocal

introduces and error which results in intermediate values in the calculation being occasionally

'lost'. Values internal to a PE will be set to zero as a result of a calculation. This results in x,

being set to 0 at some stage, implying that the final result for IIx being set to O. As well as a

few values between x=l and x=95 having this problem all values of x>96 do it at some stage of

the algorithm, even when the number of passes is restricted to four.

Examples of execution of the algorithm are shown in table 5.8 for 645 x 555. Data in the

shaded cells are too small to be representable in only 7 bits of data and result in a value of zero.

Such zero-results always happen on the first iteration of the algorithm, which led to the

conclusion that an iterative method for calculating the reciprocal cannot be used, given the level

of data precision within the processor array.

153

Chapter 5 Proposed Architectural Design

Table 5.8 Iterative Reci£rocal Calculation Errors

X l/X 21X Est Pass 1 Pass 2 Pass 3 Pass 4 Error

55 0.01818 0.03125 0.00879 0.01333 0.01689 0.01809 0.00009

56 0.01786 0.03125 0.00781 0.01221 0.01607 0.01768 0.00018

57 0.01754 0.03125 0.00684 0.01101 0.01511 0.01721 0.00034

58 0.01724 0.03125 0.00586 0.00973 0.01397 0.01662 0.00062

59 0.01695 0.03125 0.00488 0.00836 0.01260 0.01583 0.00112

60 0.01667 0.03125 0.00391 0.00690 0.01094 0.01470 0.00197

61 0.01639 0.03125 0.00293 0.00534 0.00893 0.01300 0.00339

62 0.01613 0.03125 0.00195 0.00367 0.00650 I 0.01039 0.00574

63 0.01587 0.03125 0.00098 0.00189 0.00356 0.00632 I 0.00955

64 0.01563 0.01563 0.01563 0.01563 0.01563 0.01563 0.00000

Hastings [Hast55] has shown an alternative method for generating approximations to

functions. This method is based loosely on Chebyshev polynomials, and tends to be a simple

sum of products: various power terms of x are multiplied with pre-deterrnined weights, then

summed with or without other weighting factors, then possibly having another function applied

to it. Hastings' approximation for e-x is

e-x_--------~--------

(I +a1x+a,x'+a3x3r
(5.4)

(a,=.2507213 a,=.0293732 a,=.0038278)

which also shows the values of the three weighting factors. The maximum absolute error for.

this approximation is given as 0.0002, but this can be further reduced by increasing the number

of terms in x used in the approximation and by modifying the associated weights. This

increase in accuracy comes at the cost of an increase in required processing power.

Dispensing with the problem of implementing the final reciprocal operation it can be seen that

some of the numbers involved in this approximation require a large amount of accuracy. The

weights require more accuracy than the processor array can supply, although this just results in

the maximum error increasing; the resulting error is unacceptable, as it can be seen that a 3

cannot be represented at all, thus nullifying the effects of x3
. Also, the small value of the

summation is taken to the fourth power, which will again lose a large degree of accuracy.

154

Chapter 5 Proposed Architectural Design

Although the Hastings method is not directly applicable to the required function approximation

the basic idea of finding a simple polynomial expression that approximates the function is still

very appealing. The only restriction is that the intermediate values within the expression do not

become either too large or too small for the PE's to cope with.

5.2.3.2 Other VLSI Approximation Methods

In an analog device the non-linear sigmoidal activation function is easy to implement, as it can

be based on the non-linearity of a simple device, such as a transistor or diode. However, the

shape of the sigmoid cannot be controlled in any way, as it is dependant on a physical device.

Also, difficulties can arise in the calculation of the derivative of the activation function which,

as outlined in section 3.2.2.1, is required for the learning phase of the backpropagation

learning algorithm.

Digital solutions to the sigmoidal activation function fall into two main trends: by using look-up

tables and ROM tables [Nigr9l) and by summing a truncated Taylor series expansion. This

second trend can be sub-divided into two additional sub-classes:

(i) sum of steps approximation [Beiu92)

(ii) piece-wise linear approximation [AISt91) [Myer89)

although there are a few dedicated approximation methods specifically for the solution of the

sigmoidal activation function [Pesu90). Examination of the literature shows that the look-up

table approach falls short of the goal of having a good performing algorithm in a small silicon

area; this performance/price goal is often an important practical consideration when it comes to

develop such approximations in hardware. The approach of having some form of Taylor-series

expansion, i.e. a polynomial based expression, is superior to such look-up table methods. The

methods presented, however, either require additional hardware in each PE, which would be

particularly expensive, or the algorithms assume large-precision floating-point mathematical

capability in the target hardware system. Although these methods are successful in their

approximation they are not particulary suitable for implementation in a systolic array.

155

Chapter 5

5.2.3.3 The Bezier Curve

The Bezier form [Bezi70] of the cubic polynomial

curve segment plots the intermediate points between a

start point Po and an end point P 3' using the set

tangent vectors between those points and two further

points PI and P2; this is shown in figure 5.8. Note

that these two additional points in the figure do not lie

on the curve itself, although it is possible for them to

Proposed Architectural Design

Figure 5.8 Bezier Curve Segment

do so. The Bezier curve interpolates between the start and end points and approximates

between the other two points using a set of expressions known as Bemstein polynomials,

which act as weighting functions for the curve. The derivation of the Bemstein polynomials is

not given here but can be found in a more concise and readable form in [Watt89], with the

relationships between this formulation and other cubics in [Fole90].

Figure 5.8 shows that a single Bezier curve segment can represent a simple curve with two

inflexions along its length. The backpropagation neural activation function F(NET) has such a

curve, so if it is possible to find a Bezier representation of the curve then there exists a good

approximation of the function that requires just the evaluation of a polynomial expression. The

calculation required to find the x- or y-coordinate of a point on a Bezier curve is simply a four­

element vector-product, which is easily realisable on the systolic array. The equation required

is given by

B (t) = (I - t)3 . Po + 3t (1 - t) 2 . P I + 3t2
(1 - t) . P 2 + t3 . P 3

(5.5)

or in vector notation

-I 3 -3 Po

B (t)=[t' t' t 1]
3 -6 3 0 PI

-3 3 0 0 P 2
(5.6)

0 0 0 P3

156

Chapter 5 Proposed Architectural Design

One of the properties of the Bezier curve is that neither an x- or y-coordinate is supplied to the

polynomial expressions, rather a location is specified that is a percentage along the curve's

length between Po and P 3' The expressions return either the x- or y-coordinate, depending on

whether the x- or y-coordinates of the control points are used in the calculation; i.e. to calculate

the x-coordinate for a point along the curve then the (-position along the curve is supplied along

with the x-coordinate of all four control points.

The output of the backpropagation activation function F(NET) lies in the range 0 ... 1, although

neither limit is ever actually reached. As the minimum representable value with a PE is 11128

all values for the input to F(NET) that produce smaller results than 11128 (or larger than

1271128) should be modified so that they produce these limiting results. Hence, the inputs to

F(NET) should be restricted to ±4.844. Section 5.2.2.3 described the result range limiter unit

within the PE, which can easily be programmed with these limits in order to accomplish this

range restriction on the calculation of the NET input to the activation function.

5.2.3.4 Activation Function Approximation

Table 5.9 As the inputs to the F(NET) function have a fixed range of

±4.844 then they can be translated directly to the range 0 ... 1
Initial Bezier Control Points

Control X-Pos Y-Pos
required by the Bezier curve expressions. By taking the

Po 0.0000 0.0078

result on the curve at these limits as the start and end point on PI 0.6000 0.0000

the Bezier curve then a first approximation to the curve can be P2 0.4000 1.0000

P3 1.0000 0.9922
evaluated. The control points for this initial approximation

are shown in table 5.9. The maximum error for any point on the curve is 11210, which is

smaller than the minimum representable value within the systolic array. Because of this low

error the given curve can be deemed to be a good approximation of the activation function

F(NET).

157

Chapter 5 Proposed Architectural Design

The data that is to be supplied to the function

approximation must be translated from the

range ±4.844 to the range 0 ... 1 along the

~ .. ~ .. ~ - ~-po.

---- I-pO.

curve. However, this cannot be done

perfectly accurately, as the x·coordinate

represents points on the linear x.axis, whilst Figure 5.9 X-pos and t·pos Relationship

the required (·pos values are positions actually on the polynomial curve a certain percentage

between the control points Po and P3; a t·pos value of 1.0 represents the final point on the

curve at the P 3 control point. This difference in scaling, along a 20 segment curve, is shown in

figure 5.9.

Once the data has been simply scaled from ±4.844 to 0 ... 1 it has to be squashed so that it lies

closer to the required t·pos value. This squashing function must be done in a single pass of the

processor array, as it is a very common operation in the backpropagation learning algorithm

and is likely to be executed fairly frequently. The expressions

'd d' 1 ml . ISt=X- 2

end.dist = + -ABS (mid.dist)

(.pos =x + mid.dist * end.dist

(5.7)

manage to scale the x·values in this manner. However, values for x ~ 0 are not decreased by

enough and x ~ I are not increased by enough - the maximum error for translation using this

method is approximately 1154. Because of this a 'magic' scaling factor must be introduced, so

that the correction factor applied to each x·value is increased in magnitude. By modifying the

squashing expressions to

magic = 1.21

t. pos = x + magic * mid.dist * end.dist
(5.8)

we can achieve a maximum translation error of approximately 1/121.

158

Chapter 5 Proposed Architectural Design

Using these modified x-values with the previously discussed Table 5.10

Bezier curve approximation, using the control points in table

5.9, we get a maximum approximation error of 1I8!. By

moving the control points slightly, to those shown in table

5.10, we reduce the maximum error to just 11118:

approximately 10% of the values are in error, with the error

being just the least significant bit of the data.

Final Bezier Control Points

Control X-Pos Y-Pos

Po 0.0000 0.0078

PI 0.6000 -0.0159

P2 0.4000 1.0159

P3 1.0000 0.9922

For a fast method of approximating the F(NET) activation function these errors are acceptable,

and much more accurate than any linear approximation method. The algorithm can be

implemented directly on the systolic array without the need for any additional circuitry, and can

also be executed in a single pass of the array. Although slightly less accurate than some of the

existing Taylor-series based approximations it has the benefit of being implementable at no

extra cost in terms of hardware.

5.3 Hardware Design and Implementation

5.3.1 Miscellaneous Circuits

5.3.1.1 Signal Multiplexors

There are several occasions where a functional unit in the PE

needs to choose between a number of different input values,

usually one from two or one from four. Figure 5.10 shows

schematic diagrams for both of these units, which are

described In more detail in sections A.I.I and A.I.2

respectively.

The units work by selecting between the signals using the

SEL[O:11.

A-m B_ ~ _OUT
c_
D_ ..,j.

Figure 5.10 Multiplexor
input control signal SE L or SEL [0: 1]. All inputs are Schematics

connected to the single output line OUT, with a transmission

gate assigned to each input. The control signal(s) enable just one of the transmission gates in

159

Chapter 5 Proposed Architectural Design

the multiplexor, thus driving just a single input onto the

output and blocking all other input signals. The

Table 5.11 Multi£lexor Control

SEL OUT SEL(2) OUT

control signal logic for the two multiplexors is shown 0

in table 5.11.

5.3.1.2 ABS Control Unit

The mUltiplier unit is used to provide

an arithmetic ABS function, by

driving ± 1.0 onto the second

'2 DATAIO:ll) _ ~

CONTROL I 0 : 1) _ ~

A 00 A

B 01 B

10 C

11 D

MOD_DATA[O:l1)

multiplier input in order to ensure Figure 5.11 ABS Unit Schematic

that after multiplication with the first input the result is of a specified sign. The result can be

forced to be either positive or negative in this fashion. Figure 5.11 shows the schematic

diagram for this unit, which is described in more detail in section A.4.1.

The ABS unit does not carry out the ABS Table 5.12 ABS Unit Control

calculation, rather it ensures that the multiplier DA TAIl I) CONTROL[O) MOD_DATA

receives the correct inputs. Assertion of

CONTROL [1] activates the unit. CONTROL [0]

and the sign of the input DATA (which lies on

DATA [11 J) are used to determine the output of

o
o

o
1

o

-1.0
+1.0

+1.0
-1.0

the unit, which is either + 1.0 or -1.0. If the sign of the input DATA is already of the required

sign then the output is + 1.0, implying that the multiplier does not alter the sign of its other

input. If the sign of the input DATA is incorrect then the output is -1.0, implying that the

multiplier alters the sign of its other input. The control signal

logic for the ABS control unit is shown in table 5.12.

5.3.1. 3 Majority Function

Certain functions on the PE require calculation of some form of

majority function, whereby the assertion of at least two from three

A ~ .-r..
B

C

o ---. RES
';'
::E

Figure 5.12
Majority Function
Schematic

160

Chapter 5 Proposed Architectural Design

inputs results in a positive input. Figure 5.12 shows the schematic diagram for this unit. which

is described in more detail in section A.I.6.

The unit itself is fairly simple, consisting of a few Table 5.13
Majority Function Control

combinational logic gates. The control signal logic for the

majority function is shown in table 5.13.

5.3.1. 4 Result Range Limiter

The output of the PE can be made to be restricted within a

certain range, which can be specified for each individual PE

within the processor array. These ranges can be programmed

A

0

0

0

0

B

0

0

1

0

0

C RES

0 0

0

0 0

1

0 0

1

0

1

by any algorithm that is currently being processed. It works by using a set of parallel

comparators, which compare the result output for the PE with the pre-programmed ranges, and

replacing the result with the relevant range limit if the result lies outside this range.

Figure 5.13 shows a schematic

diagram for this unit, which is

described in more detail in

section A.4.2. The unit operates

in two modes; program and

CLOCK

WRITE_OP

ADDR[O:3]

NS [0: 11]

WE[O:11]

•
•
•
•

I
"v

lj
~O
Cl:

ACTIVE ------'+
limit. In program mode the Figure 5.13 Result Range Limiter Schematic

limits are programmed by using

a combination of WRITE_OP and ADDR [0: 3 J, with ADDR of [0011 J resulting in the maximum

limit being stored and [0000 J in the minimum limit

being stored - these limits should be present on Table 5.14 Range Limiter
Multi lexor Control

NS [0: 11J.

In limit mode, whereby ACTIVE is asserted, the input on

WE [0 : 11 J, which is the result of any instruction

CTRL[l] CTRL[l] WE_NEW

o
o

o
1

o

WE

MIN

MAX

WE

161

Chapter 5 Proposed Architectural Design

processed on the PE, is compared with the two limits currently stored within the unit. A set of

multiplexors are used to select the correct value to place on WE_NEW depending on the results of

the two comparisons. If no limit was exceeded (or both were, due to incorrect programming of

the limiting values) then the original WE is passed on to WE_NEW, otherwise the limiting value

that was exceeded is passed on to WE_NEW. The two comparators produce an internal signal

CTRL (0 : 1] , with CTRL (0] being the result of the lower-limit comparator. The control signal

logic for the mUltiplexed output selected is shown in table 5.14.

The actual comparators themselves are
A

more complex. They are parallel in
B ---.

nature, using a bit-slice technique

whereby only a single instance of the
Figure 5.14 I-Bit Comparator Schematic

comparator needs to be designed, with

an n-bit comparator being just n cascaded instances of a I-bit comparator. The I-bit and n-bit

comparators are described in more detail in sections A.4.2.2 and AA.2.3 respectively. The

single bit comparator schematic is shown in figure 5.14.

The comparator takes in two signals, A and E, and a pair Table 5.15 Comparator Input
Control Values

of control signals C_IN (0: 1]. This control input
Cond CIN[l] CIN[O]

indicates whether or not d priori information exists as to A<B

the relative sizes of A and E, as indicated in table 5.15. By A=B 1 0

A>B 0 0
using this information, and the values of A and E, the

output control signals C_OUT (0: 1] indicate the relative sizes of A and E; the implications of

C_OUT are identical to those of C_IN. For the comparison of two I-bit numbers, or for the

comparison of the least significant bits of larger numbers, the C_IN value is 10, indicating that

the A and E inputs are assumed to be equal until proved otherwise.

162

Chapter 5 Proposed Architectural Design

The transfer function from C_IN to C_OUT is easily Table 5.16 C OUT Transfer Function

realised, and table 5.16 shows the relevant A B COUT[t] C_OUT[O]

derivations. It clearly shows that if the inputs for 0 0 C_IN[I] C_IN[O]

0 1 B B

A and B are identical then the control inputs are 0 B B

C IN[I] C_IN[O]
passed directly to the outputs. Hence, for a 2-bit

number, the C_IN for the most significant bit comparison is the C_OUT for the least significant

bit comparison.

If a comparison reveals an equality then the comparison result Table 5.17
Comparison Example

from the previous bit comparison is passed on. For example,
A BC_OUT

comparing 0110 with 1100 leads to a chain of C_OUT values from

each step of the comparison operation, as shown in table 5.17. It

shows that although it is the most significant bits that have the

most effect on the result, if the most significant bits are equal then

... 0

.. 10

... 0

.. 00

A=B

A>B

.110 .100 A>B

0110 1100 A<B

the results of comparisons with bits of lower significance have an effect on the final result.

The comparators cannot handle the comparison of sign bits, as taken at face value the sign bit

value for negative numbers (1) is larger than that for positive numbers (0). Hence, comparison

of the sign bits needs to be done separately. However, if the sign bits are different then the

result of the comparison of the entirety of A and B can be deduced from the result of the

comparison of the sign bits.

5.3.1. 5 General Purpose Comparator

The general purpose comparator provides the facility to carry out comparison and equality

functions on any two different internal data values, and is based on the comparison unit

described in section 5.3.1.4. The equality function returns either 1.0 or 0.0, depending on

whether or not the inputs are equal. The comparison function has two sub-functions:

maximum and minimum. Given two inputs the unit can return either the maximum value or the

minimum value. This unit is described in more detail in section A.4.3.

163

Chapter 5

5.3.2 Register Units

5.3.2.1 Flip-Flop Registers

Flip-flop registers store data on the inputs on the

transition of the clock from one period to the

next; changes to the inputs outside of this

transition time have no effect on the value stored

D

CLK

Q

- - -- ----------
Proposed Architectural Design

1

1

Figure 5.15 Flip-Flop Timing Diagram
within the flip-flop. This type of register is used

for the PE input registers, as described in section A.2.1. In these registers the data present on

the four PE inputs upon the transition from a negative to positive clock (on the rising edge) is

stored and used within the PE throughout the clock cycle, regardless of any changes to the

inputs. The timing relationship between the input D, the output Q and the clock period CLK is

shown in figure 5.15.

5.3.2.2 Half-Latch Registers

Half-latch registers store data on their inputs during the entirety of a clock period, normally

when an additional LOAD input has also been asserted. Changing the input during the high

clock edge also changes the value stored, but does not affect the output of the register until the

following clock period. This type of register is used for the PE output registers and the internal

register block, as described in sections A.2.2 and A.2.3.I, where the values on the inputs are

valid up until the transition to the next clock cycle. Hence, values on the input are stored on the

negative period of the clock cycle, then

made available at the register outputs a)

throughout the next clock cycle.

The basic half-latch circuit is shown in

figure 5.16a, which shows a simple

transmission gate, inverter and

capacitor. When the clock is high and b)

stable (CHS) the value on D is transferred

D_-l<

CHS

~-.Q

D

CLS

CHS

Figure 5.16 Latch-Based Register

164

Chapter 5 Proposed Architectural Design

to s. This is then inverted and output at Q at all times. The value S is stored at C for a

reasonable length of time, but will begin to dissipate beyond acceptable values after

approximately lOOns [WeEs88]5. Cascading two half-latches together creates a self-restoring

I-bit temporary storage area, and this is shown in figure 5.16b. By driving in a new data

signal when the half-latch transmission gates are closed, which is when the clock is low and

stable (CLS), then a new value can be stored on s. This value is not propagated to the output Q

until the next clock cycle, as this action requires the clock to be high and stable. Note, CLS is

often combined with a separate LOAD signal, so the value stored within the register can remain

unaltered indefinitely.

5.3.3 Instruction Set Memory

5.3.3.1 RAMIROM Instruction Store

The RAMIROM section of the instruction set memory is a fairly standard piece of memory. It

contains 12 words of 22-bit RAM and 4 words of 22-bit ROM. All words can be read from the

memory and the contents of the RAM can be re-programmed at any time. The circuitry for all

sections of the instruction store can be found in section A.3.4.

A schematic of the instruction store is

shown in figure 5.17. It works like
DATA[22] _I ~

WRITE _ ~~ CONTROL [22]
ADDR[4] -L-______ ~.

any standard RAM unit, in that it
Figure 5.17 Instruction Set Store Schematic

contains a number of static RAM or

ROM cells. A 4-bit address is placed on ADDR and the WRITE flag is set to indicate that a read or

write operation is required. On a read operation the values from the specified word in memory

is driven onto the CONTROL output. On a write operation the values on DATA are stored in the

specified word in memory, although if this word is one of those implemented in ROM rather

than RAM then the write operation has no discernable effect.

5 When using a 5v system - as the voltage is scaled down, along with the width of the aluminium tracks on the device,
then so does the time taken for a driven signal to dissipate beyond usable levels

165

Chapter 5 Proposed Architectural Design

There are just three operations possible Table 5.18 Instruction Set Store 0 erations

in the instruction set memory unit, WRITE ADDR Effect

which are summarised in table 5.18. It o xx Values at (ADDR) CONTROL

shows that a read operation is valid for

any memory address, but only valid on

0000-0011 No effect - invalid address range

0100-1111 Values on DATA (ADDR)

a write operation for a limited range of memory addresses.

5.3.3.2 ReadlWrite Memory Controller

In normal operational circumstances the memory is CLOCK

read from at all times. When a [PROG I operation is
RESET _

recei ved then on the next clock cycle the memory is
OPCODE [4)_

written to. By generating the read-write flag based

Figure 5.18 ReadlWrite Schematic on the current operation, and then delaying it for a

clock cycle using a pair of half-latches, it will arrive at the instruction set store at the correct

time. This circuit is described further in section A.3.I, which also shows that upon receipt of a

system reset signal the read-write signal is forced to indicate a read operation for the current and

subsequent cycles. A schematic of the circuit block is shown in figure 5.18.

5.3.3.3 Instruction Lock/Unlock Unit

The lock circuitry within the instruction set Table 5.19 Possible PE Lock States

memory is used to lock an opcode into a PE RESET Opcode State Next State

so that it is processed on every clock cycle I [any] [any] Unlock

0 [LOCK] Unlock StoreOp
regardless of any other opcode input. There 0 [LOCK] Lock Unlock

are a number of possible lock states, which
0 [LOCK] StoreOp Unlock

0 [other] Unlock Unlock

are summarised in table 5.18. Note that each 0 [other] Lock Lock

0
PE has a row number hard-wired into it, and

[other] StoreOp Lock

a [LOCKI operation is only considered to be valid within a PE if the data on NS matches this

hard-wired value. This allows individual PE's anywhere in the processor array to be locked

and unlocked by a processing algorithm. Each lock state implies the following:

166

Chapter 5 Proposed Architectural Design

Unlock PE input opcode on NS datapath processed nonnally

StoreOp

Lock

As Unlock, except that the current opcode is also stored in a local register

The opcode stored in the local register during the StoreOp state is executed

until another [LOCK] opcode is input to the PE

When a PE has an opcode locked in to its local register the current input opcode on the NS

datapath is not processed. It is, however, passed through the PE to neighbouring PE's as if it

had been processed.

This allows for powerful systolic algorithms to be designed, but with individual PE's in the

processor array carrying out some constant task oblivious to the operations going around it.

A schematic of the lock circuitry is

shown in figure 5.19 and more

detailed circuits are given in section

A.3.2. Depending on the lock

status the multiplexor selects either

CLOCK --__ --l---~

RESET

IP [3]

OPCODE[4]

the OPCODE data or the register data Figure 5.19 Opcode Lock Schematic

::\ ADDR[4]

as the instruction store memory address. Data is only written into the register during a StoreOp

state. The state machine unit handles the transition from state to state, and the value on IP is

used to indicate which row of the processor array any [LOCK] operation is destined for.

5.3.4 Addition Unit

5.3.4.1 Addition Unit Overview

The entire adder unit takes in two 12-bit

numbers, their associated integrity flags

and a control signal to indicate whether the

operation to carry out is addition or

ADDI-------,.

A_INT

B_INT

A[O: 11]

B[O:l1]

~

~

~

~

~'El 1;;>
8~

RES [0: 11]

INTEG

subtraction. The output from the adder is Figure 5.20 Complete Adder Unit Schematic

the result of the addition or subtraction operation, along with an associated integrity flag to

167

Chapter 5 Proposed Architectural Design

indicate the correctness of the result. This unit is described in section A.4.4, and a schematic

of the entire unit is shown in figure 5.20.

5.3.4.2 Radix-4 Adder

A basic half-adder unit adds two I-bit values, taking into account a carry-in signal, and

produces two outputs, a sum and a carry-out. A simple n-bit adder cascades many such

devices together, with the carry-out from one unit being the carry-in for the next. Although

such an adder works perfectly well it is fairly slow in operation; the delay from the generation

of the first carry-out to the final carry-out is very long, being of O(n). Such a basic adder unit

is unacceptable for use in the systolic processor array.

A standard radix-4 adder speeds up the process in two

ways. Firstly, this method prioritises the calculation of B [0 : 1] _

the carry-out over the calculation of the sum, which

reduces the overall carry propagation time within the Figure 5.21 Radix-4 Adder
Schematic

adder. Secondly, by adding a pair of 2-bit values at

once the time taken to produce the adder sum is approximately halved. The overall time

requirement of a radix-4 adder is O(Vn). The radix-4 adder is described further in section

A.4.3.1, and a schematic of the circuit is shown in figure 5.21.

5.3.4.3 Carry Select Adder

A method of implementing 1

a fast adder IS to use a

carry -s elect adder
A[O,3]

[Uya84J. This increases B [0, 3]-t~l-...r---,.se~.w

the silicon area required for

the adder, but drastically

L--...!j' ~
~:>; 1---+ SUM[O,3]

f="",--,j ;;;

reduces the number of gate Figure 5.22 Carry Select Adder Block

delays required to go from initial carry-in to final carry-out. It uses blocks of 4-bit adders,

168

Chapter 5 Proposed Architectural Design

which are simply a pair of cascaded radix-4 adders. After evaluation of the first 4-bit addition

the carry-out is used as' a carry-in to the next 4-bit block. However, this next block is

implemented twice, each with a different hard-wired carry-in value. The carry-out of this first

block then selects which of the next two blocks has their sums and carry-outs propagated to the

next pair of 4-bit adders. This scheme is shown in figure 5.22.

The full 12-bit adder consists of a single 4-bit adder (for bits 0 ... 3) and two 4-bit carry select

blocks (for bits 4 ... 7 and 8 ... 11). Each adder and carry select block generates their sum and

carry values in parallel, all being available after 4 gate delays. Each block requires an additional

gate delay in order to propagate the carry values to the next block, which selects the correct sum

outputs for one of the bit ranges. As there are two carry select blocks this carry propagation

requires just two additional gate delays, resulting in a total of just six gate delays for the

complete 12-bit addition operation.

5.3.4.4 Subtractor Control

It is possible for the main adder unit to carry out the

operation A-B instead of A+B, which is a featured

often utilised in some of the neural training

algorithm stages. It can be done by simply inverting

B[O: 11] __ ~

ADD_SUB __ j C IN

Figure 5.23 Subtraction Control
the sign of the adder input B. This is achieved using Schematic

standard two's complement techniques by inverting all of the bits of the value B and then

adding one to the result. However, instead of adding one to the result (which requires an

adder) it is sufficient to set the initial carry-in to the addition operation to one instead of zero,

which has the effect of adding one to the result. This control unit are described further in

section A.4.4.4, and a schematic of the circuit is shown in figure 5.23.

5.3.4.5 Overflow/Underflow Unit

Addition overflow/underflow has to be handled within the adder unit. As well as the simple

arithmetic errors the unit must also cope with the integrity status of the original inputs to the

169

Chapter 5 Proposed Architectural Design

adder. The circuits used to implement this unit are described further in section A.4.4.5, and a

schematic of this is shown in figure 5.23.

If the integrity of any adder input has RES_IN [0: 11] ____ ~

failed, as indicated by A_INT and

B_INT, then the adder output is

automatically set to the value of the

A_INT ~ ~

B_INT----+J b
A_SIGN ~~
B_SIGN <

Figure 5.24 Adder Overflow Schematic
failed input6 and the integrity state is set

accordingly; the result of the addition RES_IN is simply discarded.

The overflow/underflow state of the addition can be inferred Table 5.20
Overflow Possibilities

from the signs of the input, A_SIGN and B_SIGN, and the sign
A B RES

of the result, RES_IN [11]. Possible addition overflow results +ye +ye +ye

are shown in table 5.20. If the two adder input values are of +ye +ye -ye

+ye -ye +ye

different sign then it is simply not possible for the addition to +ye -ye -ye

overflow or underflow; overflow and underflow only occurs
-ye +ye +ye

-ye +ye -ye

in the input signs are identical but the adder result sign is -ye -ye +ye

-ye -ye -ye
different. In these cases the result is replaced by the maximum

or minimum representable value and the integrity flag is set to indicate failure.

5.3.5 Multiplier Unit

5.3.5.1 Multiplier Unit Overview

OK?

V
x

V
V
V
V
x
V

An efficient implementation of a parallel multiplier normally some modified version of the

standard Booth algorithm [Boot51]. Such a circuit tends to occupy the largest block on a VLSI

device, especially if the design cannot include any pipelining due to the requirement of the

multiplication operation being executed in a single machine cycle. The selection of the Booth

algorithm was made because it is fairly simple, which means that a good VHDL synthesis

optimisation tool is able to reduce a behaviourial model VHDL routine into a fairly efficient

6 This can be deduced from the sign of the value, allowing the setting of the maximum or minimum representable value

170

Chapter 5 Proposed Architectural Design

silicon design. However, due to the sheer physical size of a 12-bit parallel multiplier the

example circuit shown in section A.4.5.1 gives a 12-bit VHDL code module but only shows an

optimised 2-bit circuit.

The entire multiplier unit takes in two 12-bit eLK ____ ~

numbers, their associated integrity flags and a

clock signal to indicate to begin the

multiplication operation. The output from the
Figure 5.25 Complete Multiplier Unit

multiplier is the result of the multiplication Schematic

operation, along with an associated integrity flag to indicate the correctness of the result. This

unit is described in section A.4.4, and a schematic of the entire unit is shown in figure 5.25.

5.3.5.2 Booth Multiplier Scheme

A graphical synopsis of the Booth multiplier scheme

[NaJ097J is shown in figure 5.26. The operations of

the multiplier can be summarised as follows:

i) Clear P, load inputs A and B into the registers

ii)

AX [n+1. .1] and B, setting AX [0] to logic-O

Examine AX [1] and AX [0] and carry out an
Figure

operation based upon it: on 00 or 11 do nothing

.. I" 0

I, 'B(n)
1

t
B(n)

5.26 Booth Multiplier
Functional Overview

(add 0 to p), on 01 perform P=P+B, on 10 perform P=P-B. Ignore any errors in the

addition/subtraction operation

iii) Arithmetically shift right the concatenation of P and AX (thus preserving the sign of p)

iv) Repeat from step (ii) for each bit in the original A input

v) The final result can be extracted from both P and AX - concatenate P and AX together and then

discard the most significant and least significant bits of the combined value.

171

Chapter 5

The basic 12-bit multiplier unit, which does not

include any integrity checking of the inputs, is

shown in schematic form in figure 5.27. It shows

two 12-bit inputs A and B, a clocking input eLK and

a 23-bit output RESULT.

5.3.5.3 Multiplier Integrity Checking

Proposed Architectural Design

CLK---""I

A[O: 11]

B[O: 11]

v

~ Jl SUM [0 : 22]

$~
~::;:

Figure 5.27 Basic Multiplier Schematic

As is standard in ari thmetic theory a parallel Internal Format

12-bit multiplier will produce a 23-bit result in

raw form; it is up to the implementation to take

the result and produce a usable value from it.
I I

The internal number format used within the F'ig~~~"5:i8"R~iati~~~h'ip'B~t~~~'~'j~t~;;';~i

systolic array architecture is given in section
and Multiplier Data Formats

5.104. The difference in format between these standard internal numbers and the results

generated by the multiplier is shown in figure 5.28. This shows that the effective width of both

the integer and fractional part of the number is doubled in size by the multiplier unit, with the

shaded bands indicating where equivalent number representations lie within both the internal

format and the multiplier output format (the sign bit is always equivalent).

The multiplier output must be restricted to the ranges laid down in section 5.1.4. The fractional

part of the result can be handled very simply - only the top seven bits of the fractional part of

the multiplier result is used, with the rest being discarded. For the integer part a check on the

top four bits is made; if any of these are logic-D (if the result is positive) of logic-l (if the result

is negative) then the result is out of the internal representable range. In this case the result is

modified to either the minimum or maximum representable value and the integrity flag

associated with the output is set to indicate the overflow error.

172

SYSTOLIC NEURAL
ALGORITHMS

INTRODUCTION

This section describes the three neural network training algorithms that have been implemented

in the systolic array processor. It describes the individual stages of each algorithm, along with

any requirements for constant data values within the PE registers, as well as details of any

instructions that are 'locked' into a PE for perpetual execution during a single stage of an

algorithm. Dataflow diagrams within the systolic array for each stage of each algorithm,

showing the implications of each calculation and the implied direction of the execution flow, as

well as showing timing information for each stage of each algorithm.

6.1 Backpropagation Learning Algorithm

6.1.1 Introduction

6.1.1.1 Backpropagation Instruction Set

The backpropagation algorithm requires all 12 available instruction slots in order to be

implemented on the systolic array processor. All instructions use the default result truncation

range of the system maximum and minimum numbers, except for the (MVMJ operation on the

right-most column of PE's, which uses the range ±4.844. Most of the instructions do not have

an obvious mnemonic, so they have them based on the arithmetic unit using both external

inputs, the arithmetic unit concerned and the other input to the second arithmetic input (if there

is one). Hence, the mnemonic (NW. ADD. R J implies the operation (NS+WE) *REGISTER,

although the redirection of the final result is not implied in the mnemonic.

173

Chapter 6 Systolic Neural Algorithms

Table 6.1 Backpropagation Instruction Set

Opcode Mnemonic Description

[0100] [MVM] col J NS * REGiSTER WE'
[MVM] other - WE + (NS * REGISTER) WE'

[0101] [V.MVM] row J WE * REGISTER WE' & NS'
[V.MVM] other NS + (WE * REGISTER) WE' & NS'

[0110] [N.NABS.R] NEG.ABS(NS) + REGISTER WE'

[0111] [NR.ADD] NS + REGISTER WE'

[1000] [NW.MVL] NS * WE WE' & NS'

[1001] [NW.ADD.R] (NS + WE) • REGISTER WE' & NS'

[1010] [NW.MVL.R] (NS • WE) + REGISTER WE' & NS'

[1011] [NW.MUL.R2] (NS * WE) + REGISTER WE' & REGISTER'

[1100] [WR.MVL] WE • REGiSTER WE'

[1101] [WR.ADD.NJ (WE + REGISTER) • NS WE' & NS'

[1110] [LOAD] WE WE' & REGISTER'

[1111] [MAT-ADD] REGISTER + WE WE' & REGISTER'

Table 6.1 shows the complete programmable instruction set for the backpropagation neural

learning algorithm. Note that some instructions, such as the matrix-vector multiplication

operation [MVM], have multiple definitions depending upon which row or column the PE is in

the systolic array. This feature is used where results of some operation have to be accumulated

across a row or column; this ensures that the first PE in the row or column begins the

accumulation process, with other PE's in the row or column picking up previous partial results

and including them in their own internal calculations.

6.1.1. 2 Algorithm Summary

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and

weight update. The forward pass concerns itself with generating the output values for each

neuron in the network for a particular input pattern. It contains two components:

i) Generate NET Value for Neurons

Carries out a simple matrix-vector multiplication operation using the weight matrix and an input

vector, producing a series of neuron NET values (as described by equation 3.4)

174

Chapter 6 Systolic Neural Algorithms

ii) Bizier Approximation

Converts individual OUT values to a Bezier t-score (as described by equations 5.7 and 5.8),

then approximates the neural activation function for the backpropagation learning algorithm

using the converted OUT value (as described by equation 5.6)

The reverse pass modifies the weights in the neurons in response to the difference between the

actual neuron outputs and the desired neuron outputs. It contains three components:

i) Output Layer: F'(NET), 8 and .1w Calculation

Calculates weight updates for each output layer neuron weight and input-vector combination (as

described by equations 3.3, 3.5 and 3.7)

ii) Hidden Layer: False Target for 8 Generation

Calculates a false target vector for use in the training of hidden layer neurons (as described

within equation 3.6)

iii) Hidden Layer: F'(NET), 8 and .1w Calculation

Calculates weight updates for each hidden layer neuron weight and input-vector combination

(as described by equations 3.3, 3.6 and 3.7)

The weight-update pass updates the weights held in the PE internal register blocks with the

adjustment values that have been calculated; this is based on equation 3.8.

6.1. 2 Forward Pass Components

6.1.2.1 Generate NET Value for Neurons

This operation is a simple matrix-vector multiplication. The correct register set for the network

layer being processed is selected and all processors are unlocked. An input vector is presented

to the array and each PE performs the operation [MVM], with PE's in the first column of the

array starting off the accumulation process. The internal values, such as W2 3, are the contents

of the internal registers representing the layer of the network currently being processed. The

subscript denotes neuron/input, with PE's in a single row representing a single neuron. Each

row of the array, each of which represents an individual neuron in the network layer, generates

a single NET value for the given input vector. The algorithm process is shown in figure 6.1.

175

Chapter 6 Systolic Neural Algorithms

[NEl'd ~ [MVM][V tl

[NET)} +- [1 ---- [J ---- [MVMHV3]

[NET,[__ [) ---- [) ---- [) ---- [MVM][V,)

[NET,} __ [) ---- [) ---- [) ---- [) ---- [MVM][V,)

[NET6/ +- [) ---- [I ---- [I ---- [] ---- [I ---- [MVM)[V6]

Figure 6.1 Algorithm for NET Value Calculation

The array is not always utilised at 100% efficiency for every algorithm). Active PE's in the

array have a highlighted border (although in figure 6.1 all PE's are active). Result redirections

also have this highlight to indicate the flow of results; in figure 6.1 all WE datapaths carry a

partial result value, but no NS datapaths do so. Partial results calculated within a PE are

described with the PE, as are any locked instruction (although there are no locked instructions

in figure 6.1).

Note that in figure 6.1 the input algorithm is entered in a staggered fashion. All algorithms

work in this manner, as this allows results from PE's in one column to be used in PE's in the

next column on the next clock cycle with the next instruction in the algorithm. Multiple

algorithms can be entered into the array on successive clock cycles; the delays shown in

figure 6.1 are present just to show the staggered nature of the algorithm input into the array.

The results generated by a single algorithm are staggered in an identical, but reversed, manner

to the inputs, although figure 6.1 does not show this for the sake of clarity. PE's in the final

column of the array will output a result on the clock cycle following the PE in the previous row;

the first row will output its first result after 12 clock cycles, with results on successive

instances of the same algorithm appearing on successive clock cycles. Hence, the generation of

results from algorithms tend to have an initial delay, but are then generated on successive clock

cycles.

All algorithms shown throughout section 6 assume that the systolic array has a dimension of 6x6. and that the neural
network being utilised on-chip has no layer larger than six

176

Chapter 6 Systolic Neural Algorithms

6.1. 2.2 Bezier Approximation

This algorithm carries out two separate tasks: conversion of a neuron NET value to a Bezier t­

score and then the Bezier approximation of F(NET) based upon this t-score. PE's in the first

three rows in the array carry out the first operation (based upon equations 5.7 and 5.8), with

the next two rows carrying out the approximation (based upon equation 5.6).

There is a large number of pre-Ioaded constant values and Table 6.2
Bezier A roximation Constants

locked instructions present in this algorithm. All of the

pre-Ioaded data required for this algorithm is shown in

table 6.2. The entire algorithm, along with all dependent

data and instructions, is shown in figure 6.2, with locked

instructions and pre-Ioaded data indicated through a

different typeface and a shaded background.

Token

a
MAX-NUM

a

b

c

d

The conversion of a neuron NET value to a Bezier t-score Table 6.3

Value

1 I 9.6875

4.84375

-3Po + 3PI

-3Po - 6PI + 3P2

-Po + 3PI - 3P2 + PJ

PI - 1

shown in figure 6.2 does not use the nomenclature
Bezier A roximation Workings

Figure 6.2 Equation 5.7

specified by equation 5.7. The value u is a modified

version of x, scaled to the range 0.0 ... 1.0 from ±4.844.

The modified workings to the Bezier approximations are

given in table 6.3.

u

u'

u"

c ...)

nla

mid.dis!

magic * mid.dist

end.dis!

The final calculation of the modified t-score is carried out using the following equation:

t.pos=u+u" . (~-ABS (u')) (6.1)

Processing of the approximation within the array has no relation to the position of the neuron in

the network that produced the NET value. The neural weight values are not used at all in this

process, with the algorithms using the fourth (or alternate) register within each PE instead.

177

Chapter 6 Systolic Neural Algorithms

4- [NR.ADDIINET]

4- [] ---- [N.NABS.RlIa]

4- [] ---- [] ---- [NW.AOD.RIIO.O]

4- [] ---- [] ---- [] ---- [NW.MULIIO.O]

(OUT] 4- [] ---- [] ---- [] ---- [] ---- [NW.MULlIo.o]

4- [] ---- [] ---- [] ---- [] ---- [] ---- [WR.ADD.NlIl.O]

Figure 6.2 Algorithm for Bezier F(NET) Approximation

Some PE's obviously create a result, such as that in PE (1,2) (column/row order), but as the

value is not used anywhere within the array the PE border is not highlighted, indicating

effective inactivity. If a PE output is not used then it is simply output into an inactive PE, such

as the WE output for the third PE on the top row of the array, which is denoted PE(3, I).

6.1. 3 Reverse Pass Components

6.1.3.1 Output Layer: F'(NET), 0 and Aw Calculation

There are two different versions of the reverse pass algorithm: one for the output layer and one

for the hidden layers. The difference in the two is in the calculation of the neuron 1\ value. The

output layer version is simple, requiring a single calculation, whilst the hidden layer version is

more complex, requiring a matrix-vector operation. The entire reverse pass, excluding the

actual weight update process, can be completed in a single pass for the output layer neurons

and in two passes for the hidden layer neurons. The three variables that have to be calculated

for the output layer are

where

F' (NET) = OUT (I - OUT)

o=F' (NET)' (Target- OUT)

Aw=n ·o·OUT • I source

T] = training rate coefficient, typically in the range 0.01 ... 1.00

(6.2)

178

Chapter 6 Systolic Neural Algorithms

Target = desired output for neuron / input-vector pair

Perhaps the most important of these three variables is 0, as the hidden layer neurons use the

output layer neurons 0 values in order to calculate their own 0 values. This algorithm outputs

both the weight adjustment with respect to the current neuron / input-vector pair, as well as

outputting the Ii value for the neuron. This is not dependent on any weights, so the 0 is the

same for all weights in a particular neuron and is repeatedly calculated when each weight

adjustment within a neuron is calculated.

As batch processing is more efficient than pattern-by-pattern processing a single weight will

have the adjustments calculated for each input pattern summed within the array. Once the

summation is complete the L1w output will contain the sum of all modifications, which means

that only a single update per weight is required regardless of the number of input patterns the

neural network is attempting to learn or classify. In order to facilitate this the PE that sums the

various L1w values for a particular weight, PE (4,3) in the array, initially loads its alternate

register with 0.0. The adjustments are added to this alternate register and, when all adjustments

have been calculated, the final L1w value for the weight in question is output from the array.

The accumulation PE will require 0.0 to be loaded in at the beginning of processing for every

weight in every neuron. If momentum is required [Rumm86] [SeR087] then PE (4,3) should

be loaded with its own L1w from the previous training pass, scaled by the momentum

coefficient u. This will offset the cumulative weight update by a value proportional to the

previous weight update.

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.3,

with locked instructions and pre-loaded data also indicated. Row #2 of the array outputs the

neuron 0 value, which is the same for all weight/input-pattern combinations within a single

neuron, and row #3 outputs the current accumulation of weight adjustments that has been

calculated; once the last adjustment is accumulated then the output from this row is the total

calculated adjustment.

179

Chapter 6 Systolic Neural Algorithms

+- [MVM][OUT]

o +-[) ._-- (PASSUTargetJ

rAw +- [] ---- [] ---- [WR.ADD.N][OUT]

+- [] ---- [] ---- [] ---- [PASS][OUT."",J

+- [] ---- [] ---- [] ---- [] ---- [PASS][O.O]

+- [] ---- [] ---- [] ---- [] ---- [] ---- [PASS][O.O]

Figure 6.3 Algorithm for Output Layer Weight Adjustments

As the [PASS] instruction causes no additional processing within a PE no outputs are ever

indicated, except when a previous PE result is being passed through a number of PE's for use

either later in the algorithm, as indicated by PE (2,1), or for eventual output from the array, as

indicated by PE (3,2). An additional indication is required when an instruction causes the

result to be stored in the currently active PE register, as indicated in PE (4,3).

6.1. 3.2 Hidden Layer: False Target Calculation

Neurons in the hidden layers of the network have

no specified target value to train for, so the value

Previous
Layer

(i)

w

in equation 6.2 (Target-OUT) must have some OUT,

equivalent value calculated before any weight

adjustments can be ascertained. The standard

method for the Backpropagation algorithm, as

described in section 3.2.2.4, is to use the li-values
Figure 6.4

of the neurons in the following layer, along with Connections for Hidden Layer Training

the weight values that connect those neurons to the current hidden layer neuron. This is shown

graphically in figure 6.4 2. Once the li-value is calculated the weight adjustments for the hidden

layer neuron can be carried out in a similar fashion to the output layer neurons.

The calculation required for neuron p in hidden layer j is show in equation 6.3:

2 Originally shown in section 3 as figure 3.8

180

Chapter 6 Systolic Neural Algorithms

n

False.Target~j = L (1) q,k • W pj.qk) (6.3)
q=l

where

0q,k = o-value for neuron q in hidden layer k

W pj,qk = weight connection neuron p in hidden layer j to neuron q in output layer k

Due to the design of the architecture of the array all weights from neuron p in hidden layer j to

all neurons in output layer k lie in the same column of PE's and are in the PE internal register

set associated with layer k. Hence, equation 6.3 can be calculated by switching in this register

set and carrying out a simple vector product operation.

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.5,

indicating that no locked instructions or pre-Ioaded data is required.

+- [) - - - - [PASSj[O",)

+- [) ---- [) ---- [V.MVM)[O, .•)

+- [) ---- [) ---- [) ---- [PASSj[O, .•)

+- [) ---- [) ---- [) ---- [) ---- [PASSj[O",)

Tu'8" +- [) ---- [) ---- [) ---- [) ---- [) ---- [PASSj[O, .•)

Figure 6.5 Algorithm for False Target Generation

Figure 6.5 shows the calculation of the false target for neuron #3 in hidden layer j. Output

layer k is six neurons in size, so all rows of the array are used and the false target value is

generated on row #6 of the array. If the output layer k consisted of only four neurons then

only four rows of the array would have been used, with the fifth and sixth operations in the

algorithm becoming [PASS J [0 _ 0 J, and the false target would have been generated on row #4.

181

Chapter 6 Systolic Neural Algorithms

To calculate the false target for a different neuron in hidden layer j the algorithm is modified so

that the [V. MVM] instruction lies on the same instruction row as the neuron; i.e. for neuron #3

in hidden layer j the [V. MVM] instruction appears as instruction 3 in the algorithm, thus utilising

all weights in output layer k associated with that hidden layer neuron, all of which lie in column

#3 of the array. All other operations in the algorithm are [PASS] operations, but the placement

of the o-values for the output layer k always remains as shown in figure 6.5.

One pass of this algorithm is made per neuron in hidden layer j using the same output layer k 0-

values. The algorithm changes for each neuron only by the shifting of the [v. MVM] instruction,

as well as resetting any instructions to [PASS] [0.0] as necessary due to a difference in sizes

between layersj and k. As neuron o-values are input-pattern independent this process only has

to be carried out once per neuron in any of the hidden layers in the network.

6.1.3.3 Hidden Layer: F'(NET), 8 and Aw Calculation

This process is virtually identical to the that used for neurons in the output layer, as described

in section 6.1.3.1, except that all references to (Target-OUT) are replaced by False.Target.

+- [MYMllOlIT]

o +- I J - - - - [PASSJ[FaIse.Targetj

L~W +- [I [] [WR.ADD.NllOUT]

+- [I •.•. [] [] •••• [PASSllOUT~.,.]

+- [I [] ..•• [] •••. [] ..•• [PASSllO.OI

+- [I •••• [] •••• [] ...• [] [] [PASSllO.O]

Figure 6.6 Algorithm for Hidden Layer Weight Adjustment

The entire algorithm, along with all dependent data and instructions, is shown in figure 6.6,

with locked instructions and pre-loaded data also indicated; note that these are slightly different

to those required for the output layer, as shown in figure 6.3. Row #2 of the array outputs the

neuron 0 value, which is the same for all weight/input-pattern combinations within a single

182

Chapter 6 Systolic Neural Algorithms

neuron, and row #3 outputs the current accumulation of weight adjustments that has been

calculated; once the last adjustment is accumulated then the output from this row is the total

calculated adjustment.

6.1.4 Update Network Weights

The weights held in the register blocks within the PE's must be updated at the end of each

training pass. As there are three registers set aside for neural network weights, one for each of

the three possible layers, a [SWITCH] operation must precede any attempt to update the

weights. Figure 6.7 shows the majority of the algorithm required to update the weights in a

network layer consisting of six neurons, although for the sake of clarity the operations [PASS]

and [MAT-ADD] have been truncated to [PI and [MA] respectively.

+- [J ---- [] ---- [] ---- [1 ---- (1 ---- [MAIIAw6.J [PIlt.wt..,J

Figure 6.7 Algorithm for Weight Update

The weight updates are fed into the array rotated 90· clockwise, each of which are contained

within a [PASS] instruction. They are arranged so that all weight update values are present in

the correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having

the updates correctly placed on subsequent cycles. The [MAT-ADD] operations are placed so

that when all PE's in row #1 of the array contain the correct weight adjustment value then the

current operation within them is [MAT-ADD]; at this point the weights are updated across the

entire row simultaneously. On the next cycle the block of [MAT-ADD] instructions are passed to

row #2 of the array, where the weights in that row are updated. This is repeated until all

weights in the neural network layer are updated. In order to update all weights in the network

183

Chapter 6 Systolic Neural Algorithms

this algorithm is simply repeated once per layer of neurons in the network, each pass of which

is preceded with a [SWITCH) command to each column of the array in order to activate the

correct internal register within the PE register block.

6.1. 5 Backpropagation Timings

Timings for a number of backpropagation neural Table 6.4 Backpropagation Example
Neural Network Setups

networks have been evaluated, with the networks
6 x 6 24 x 24

being chosen to reflect performance rather than any Layer 1 4 6 24

particular application. Two networks were chosen Layer 2 3 5 20

Layer 3 2 3 12
to be implemented on a standard 6-by-6 array Patterns 25 125 500

processor, one being a small network and one

utilising the array more efficiently. The third and final test network assumes an array

processors of size 24x24 PE's has been generated, either by fabricating a VLSI device of that

size or by using a technique such as wafer-scale integration to connect together multiple smaller

devices. The setup information for these test networks is given in table 6.4.

Throughout these example network timings sufficient start and end delays have been allocated

to each algorithm in order to ensure that all results from one algorithm have been output before

the next algorithm is initiated. Time overheads of the system control hardware have not been

taken into account, which may be a non-trivial figure, as the controller has to collate results and

prepare them for future use. However, no algorithm requires its own output values as its

input, and any variable data required in an algorithm is fixed into the same position in the

algorithm; i.e. the output layer !i-value and 6.w calculation in section 6.1.3.1 uses the output

layer neuron OUT values in instruction rows #1 and #3 of the algorithm at all times, and there

are no cycles of the algorithm where OUT is present on any other instruction rows or where

OUT is not present on rows #1 and #3.

The timing charts show the number of cycles required for each particular algorithm for each

particular network. They show the time required to setup an algorithm, the time required for

184

Chapter 6 Systolic Neural Algorithms

the first result to be made available and the time required for each additional result. Note that in

the first algorithm, the generation of neural NET values, has a different timing requirement for

the output of the first result per layer of the network. This is because an n-neuron layer only

requires n rows of the array in order to output all NET values, as each row in the array contains

weights for one neuron in each layer. Therefore, the timing for this element is averaged over

all three layers, which is why it is shown to sometimes take a non-whole number of cycles in

order to carry out the task. The timing for each additional weight update follows the same

pattern, as each layer requires a slightly different execution time. The final value for total

cycles required is the value required over all three layers of each network.

The algorithm names have been truncated as follows:

NET = Generation of neural NET values

OUT = Generation of OUT values through approximation of F(NET) function

HLn-a = Hidden layer-n generation of false target values

HLn-b = Hidden layer-n generation of 0- and !'J.w values

OL = Output layer generation of 0- and !'J.w values

Update = Update of weights in network

T bl 65 6 6 A a e . x rray T . (. tmmg usmg non-optima networ k)

Direction Forward Pass Reverse Pass Update

Algorithm NET OUT HLl-a HLl-b HL2-a HL2-b OL Update

Setup 1 22 9 11 9 11 13 11
First 15 16 15 15 14 15 15 8

Additional 1 1 2 1 2 1 1 4.5

Cycles Req' d I 120 336 I 30 425 27 325 177 25

Table 6.5 shows timings for a three layer neural network consisting of four, three and two

neurons respectively, with a training set size of 25 patterns. Each training pass takes a total of

1,468 clock cycles, with 456 clock cycles for the forward pass and 1,012 clock cycles for the

reverse pass and associated weight updates.

185

Chapter 6 Systolic Neural Algorithms

T bl 66 6 6A a e . x T' (. k) rray ImIng USIng optIma networ

Direction Forward Pass Reverse Pass Update

Algorithm NET OUT HLI-a HLI-b HU-a HU-b OL Update

Setup 1 22 9 11 9 11 13 11

First 16.67 16 18 15 17 15 15 12

Additional 1 1 2 1 2 1 1 6.5

Cycles Req' d I 425 1864 37 4525 34 3775 1902 36

Table 6.6 shows timings for a three layer neural network consisting of six, five and three

neurons respecti vely, with a training set size of 125 patterns. Each training pass takes a total of

12,598 clock cycles, with 2,289 clock cycles for the forward pass and 10,309 clock cycles for

the reverse pass and associated weight updates.

T bl 6 7 24 24 AT' a e . x rray ImIng

Direction Forward Pass Reverse Pass Update

Algorithm NET OUT HLI-a HLI-b HL2-a HU-b OL Update .

Setup 1 22 27 11 27 11 31 29

First 66.67 16 72 15 68 15 15 48

Additional 1 1 2 1 2 1 1 17

Cycles Req'd 1700 7035 I 145 72025 133 60025 30045 III

Table 6.7 shows timings for a three layer neural network consisting of 24,20 and 12 neurons

respectively, with a training set size of 500 patterns. Each training pass takes a total of

171,219 clock cycles, with 8,735 clock cycles for the forward pass and 162,484 clock cycles

for the reverse pass and associated weight updates.

These timing figures give rise to Table 6.8 Final Back ro agation Timings

the figures shown in table 6.8, WU I Sec Act I Sec Cycles I Act

which show the number of 4-3-2 Network

6-5-3 Network

11.57 x 106

16.06 x 106

weight update calculations per 24-20-12 Network 75.16 x 106

second during a training run, at

9.86 x 106

15.28 x 106

64.12 x 106

2.026

1.308

0.311

a nominal clock speed of 20MHz. Table 6.8 also shows the total number of neuron activations

per second during a forward pass (i.e. when the system is in recognition mode), as well as the

number of clock cycles required per neuron activation.

186

Chapter 6 Systolic Neural Algorithms

6.2 Kohonen Learning Algorithm

6.2.1 Introduction

6.2.1.1 Kohonen Instruction Set

The Kohonen algorithm requires 8 instruction slots in order to be implemented on the systolic

array processor. All instructions use the default result truncation range of the system maximum

and minimum numbers. Instruction mnemonics are defined in a similar way to those for the

backpropagation algorithm, as described in section 6.1.1.1.

Table 6.9 Kohonen Instruction Set

Opcode Mnemonic Description

[0100] [MVM] col J NS • REGISTER -t WE'
[MVM] other WE + (NS • REGISTER) -t WE'

[0101] [LOAD] WE -t WE' & REGISTER'

[0110] [MIN] MIN (NS, REG) -t WE', NS' & REGISTER'

[0111] [EQUAL] EQ (NS, REG) -t WE' & NS'

[1000] [SCALE] NS • REGISTER -t WE'

[1001] [MULT] WE • REGISTER -t WE'

[1010] [ADD] NS + REGISTER -t WE'

[1011] [REG-ADD] NS + REGISTER -t WE' & REGISTER'

Tab]e 6.9 shows the complete programmable instruction set for the Kohonen neural learning

algorithm. As in the backpropagation learning algorithm some instructions have multiple

definitions depending upon which row or column the PE is in the systolic array.

6.2.1. 2 Algorithm Summary

In order to ease implementation all weights stored in the network have their signs reversed. All

equations are modified in order to take this fact into account. Hence, all references to

maximum and minimum values from section 3.2.3 have been swapped.

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and

weight update. The forward pass concerns itself with generating the output values for each

neuron in the network for a particular input pattern. It contains three components:

187

Chapter 6 Systolic Neural Algorithms

iJ Generate OUT Value for Neurons

Carries out a simple matrix-vector multiplication operation using the weight matrix and an input

vector, producing a series of neuron OUT values (as described by equation 3.9)

iiJ Search for Minimum OUT Value

Checks each of the OUT values generated and finds the smallest value, which represents the

winning neuron value, as described in section 3.2.3.1.

iiiJ Modify OUT Values to 1.0/0.0

Changes each of the OUT values to either 1.0 or 0.0, depending on whether the OUT value

equals the minimum OUT value or not, as described in section 3.2.3.1.

The reverse pass calculates the weight update L1w in the winning neuron. Only the neuron that

won the forward pass has it's weights modified, with other modifications being set to 0.0; this

is based on equation 3.11.

The weight-update pass updates the weights held in the PE internal register blocks with the

adjustment values that were calculated in the reverse pass; this is based on equation 3.11.

6.2.2 Forward Pass Components

6.2.2.1 Generate OUT Value for Neurons

This operation is a simple matrix-vector multiplication. An input vector is presented to the

array and each PE performs the operation [MVM], with PE's in the first column of the array

starting off the accumulation process. The internal values, such as W23, are the contents of the

internal registers representing the weights in the network. The subscript denotes neuron/input,

with PE's in a single row representing a single neuron. Processors in the right-most column

do not contain weight values and are not used in this algorithm. Each row of the array, each of

which represents an individual neuron in the network layer, generates a single OUT value for

the given input vector. The algorithm process is shown in figure 6.8.

188

Chapter 6 Systolic Neural Algorithms

{OUT,} +- [MVM][V,]

{OUT,{ +- [I ---- [MVM][V,I

{OUT,! +- [I ---- [I ---- IMVM][V,I

{OUT,! +-1 I ---- 1 I ---- 1 I ---- [MVMIIV,I

{OUT,! +- [I ---- 1 I ---- 1 I ---- 1 I ---- [MVMIIV,I

{OUT,! +-1 I ---- [I ---- 1 I ---- 1 I ---- 1 I ---- [PASSIIO.OI

Figure 6.8 Algorithm for OUT Value Calculation

PE's in the second-last column of the array will output a result on the clock cycle following the

PE in the previous row; the first row will output its first result after 12 clock cycles, with

results on successive instances of the same algorithm appearing on successive clock cycles.

6.2.2.2 Search for Minimum OUT Value

This operation is a data search operation. It scans through each of the generated OUT values

and finds the smallest one, whieh represents the output of the winning neuron. Note that due

to the fact that the signs of the weights are reversed the minimum OUT is searched for rather

than the maximum. A linear search through an output vector is made in the top-right PE, which

is initialised to the maximum representable number before the algorithm begins. Each of the

OUT values from the output vector are applied in turn, and if a value is less than that stored in

the PE then it is written into the internal register, thus becoming the minimum value. This

algorithm has no discernable outputs, although the minimum OUT value is left stored in the

top-right PE in the array. The algorithm process is shown in figure 6.9

6.2.2.3 Modify OUT Values

This operation modifies all OUT values, as well as producing training rate a values that are

specific to each neuron - these a values are required when calculating the weight updates in the

reverse pass. It scans through each of the generated OUT values and checks them against the

stored minimum OUT value. If an OUT value equals the stored minimum value then it replaced

with the value 1.0, else it is replaced by the value 0.0. This is carried out in the top-right PE in

189

Chapter 6 Systolic Neural Algorithms

the array. The PE directly underneath this, which has the operation [SCALE} locked into it and

the training rate parameter -a stored within it, takes these new OUT values and produces either

0.0 or -a as a result. This new value is then used later in calculation of the weight updates,

acting as the a x value for the neuron with the corresponding OUT value. The algorithm

process is shown in figure 6.10.

+- [PASS][O.O]

__ [] ------- [PASSIIO.O]

__ [] ------- [] ------- [PASSIIO.O]

__ [] ------- [] ------- [] ------- [PASS][O.O]

__ [] ------- [] ------- [] ------- [] ------- [PASSIIO.O]

__ [] ------- [] ------- [] ------- [] ------- [] ------- [MINIIOUT.]

Figure 6.9 Algorithm for Minimum OUT Search

Mod OUTx +- [PASS][O.O]

-".. __ [] - - - - [PASSIIO.O]

__ [] ---- [] ---- [PASSIIO.O]

__ [] ---- [] ---- [] ---- [PASSIIO_O]

__ [] ---- [] ---- [] ---- [] ---- [PASSIIO.O]

-- [] ---- [] ---- [] ---- [I ---- [] ---- [EQUALIIOUT.]

Figure 6.10 Algorithm for Modified OUT Generation

The two algorithms shown in figures 6.9 and 6.10 are designed to be run back-to-back with no

intermediate delay_The stored value in the top-right PE in the second algorithm is generated by

the first algorithm and does not have to be loaded in by the second. Also, the locked

information for Ux generation in the second algorithm could be loaded in during the setup phase

of the first; the results for this operation can just be ignored during the run of the first algorithm

and read off as required during the second algorithm.

190

Chapter 6 Systolic Neural Algorithms

6.2.3 Reverse Pass: ~ w Calculation

This operation calculates the individual weight adjustments required per neuron for the current

input pattern. The calculation required is

(6.4)

where

ax = training rate for neuron x

V n = n-th component of input vector

W x.n = n-th weight in neuron x

The <Xx value is either a or 0.0, depending on whether or not neuron x was the winning

neuron. As the weights held in the array are of the incorrect sign the actual calculation carried

out by this step of the algorithm is

-~w x,n=- a x (V n +W x.n) (6.5)

Every weight in the array has an adjustment calculated, although weights that are not associated

with the winning neuron have an adjustment value of 0.0. The algorithm process is shown in

figure 6.11.

-.6.wLn-- [ADDJ[Vd

- AW2,n +- [ADDIIV,) [PIIO)

-.6.WJ,II +- [ADDIIV,) [PIIO) [PIIO)

-.6.W4.a +- [ADDIIV,) [PIIO) [PIIO) [PIIO)

-.6.ws.n +- [ADDIIV,) [PIIO) •..... [PIIO)•. [PIIO) [PIIO)

-.6.W6.11 +- [PASSIIO.O) [PIIO) [PIIO) .•...• [PIIO) .. _--- [PIIO) [PIIO)

Figure 6.11 Algorithm for Weight Adjustment Calculation

191

Chapter 6 Systolic Neural Algorithms

The input algorithm to figure 6.11 is entered in a vertical fashion rather than staggered. This is

so that every PE in a single row receives the (ADD) instruction, along with the associated input

vector component, on the same clock cycle. This allows adjustments for all five weights in a

neuron to be passed along to the right-most column one by one, in order to be scaled by the

relevant training parameter (Ix. Hence, each row outputs five results, one for each weight in

the neuron.

Although all non-winning neuron weight adjustments are 0.0 this method requires no additional

processing time over calculating just the winning neuron weight adjustments. No complex

control is required, as the most time consuming element of this algorithm is the setting up of the

locked instructions and the storing of the training parameters in the right-most column of PE's.

6.2.4 Update Network Weights

The weights held in the register blocks within the PE's must be updated at the end of each

training pass. Figure 6.12 shows the majority of the algorithm required to update the weights

in a network layer consisting of six neurons, although for the sake of clarity the operations

[PASS) and (REG-ADD) have been truncated to [P) and [RA) respectively .

...- [] ---- [) ---- {] ---- [] ---- (RA](.1wljl [PIl6wS,.4J IPIIAw~JI

.- (1 ---- [J ---- I] ---- [) -.-- [] ---- [PIIltowul [Pl~w6,-4J

Figure 6.12 Algorithm for Weight Update

The weight updates are fed into the array rows in reverse order, each of which are contained

within a (PASS) instruction. They are arranged so that the weight updates are present in the

correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having the

192

------------- - - --

Chapter 6 Systolic Neural Algorithms

updates correctly placed on subsequent cycles. The [REG-ADD] operations are placed so that

when all PE's in row #1 of the array contain the correct weight adjustment value then the

current operation within them is [REG-ADD]; this is identical to the method used to update the

weights in a backpropagation network, as described in section 6.1.4.

6.2.5 Network Timings

Timings for several Kohonen neural networks Table 6.10 Kohonen Example Neural
Network Setups

have been evaluated, with the networks being
6 x 6 12 x 12

chosen to reflect performance rather than any
Neurons 6 12 12 12

particular application. Two networks were Inputs 5 5 5 11

Patterns 25 25 25 125
chosen to be implemented on a single 6-by-6

array of processors, both with neurons accepting five inputs; one holds the neural weights in

one internal register whilst the other utilises two internal registers per PE in order to double the

effective number of neurons. Two other networks assumes that a number of array processors

have been connected together in order to form a 12-by-12 array of PE's. One of these larger

networks emulates the larger of the two 6-by-6 array networks, whilst one uses a larger

network architecture. The setup information for these test networks is given in table 6.10.

The network timings are arranged in the same manner as those for the backpropagation

algorithm in that sufficient start and end delays exist at each stage of the algorithm. Although

the Kohonen neural training algorithm is unsupervised there is still a training mode, which is

where weights are adjusted in response to input patterns. Because of this the timing charts

show two versions of the forward pass elements of the algorithm. In training mode the

patterns are trained one by one, whereas in operational mode the patterns can be applied in

batches and thereby reduce the effective time for a classification to be made.

The algorithm names have been truncated as follows:

OUT = Generation of neural OUT values

MIN = Search for minimum OUT value

193

Chapter 6 Systolic Neural Algorithms

WIN = Modify OUT values to 1.0 or 0.0

Llw = Calculate weight update for winning neuron

UPD = Update weights in network

T bl 6 11 6 6 Arr T . (a e . x ay Immg sma 11 networ k)

Mode Training Mode Operational Mode

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN

Setup 1 8 - 4 - 1 8 -
First 18 7 9 18 12 18 7 8

Additional - 1 1 - - 1 1 1

Cycles Req'd 475 500 350 550 300 43 500 325

Table 6.11 shows timings for a network consisting of six neurons, with five inputs per

neurons and a training set size of 25 patterns. A training pass for 25 patterns takes 2,175

cycles, with the forward recognition pass taking 1,325 cycles. In operational mode, where

recognition is done using batches of patterns, the recognition pass takes only 868 cycles.

T bl 6 12 6 6 Arr T . (\ a e . x ay Immg k) arge networ

Mode Training Mode Operational Mode

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN

Setup 1 8 - 4 - 1 8 -
First 20 7 9 20 15 20 7 8

Additional - 1 1 - - 4 1 1

Cycles Req'd 525 650 500 600 375 117 650 475

Table 6.12 shows timings for a network consisting of twelve neurons, with five inputs per

neurons and a training set size of 25 patterns. A training pass for 25 patterns takes 2,650

cycles, with the forward recognition pass taking 1,675 cycles. In operational mode, where

recognition is done using batches of patterns, the recognition pass takes only 1,242 cycles.

Table 6.13 shows timings for a network consisting of twelve neurons, with five inputs per

neurons and a training set size of 25 patterns. This is identical to the previous network, except

that it is implemented on a 12-by-12 array of processors rather than using two layers of internal

registers per PE on a 6-by-6 array of processors. A training pass for 25 patterns takes 3,775

194

Chapter 6 SystoIic Neural Algorithms

cycles, with the forward recognition pass taking 2,075 cycles. In operational mode, where

recognition is done using batches of patterns, the recognition pass takes only 646 cycles.

Note, the algorithms for finding the minimum OUT value and for modifying the OUT values to

1.0 or 0.0 can be split over two 6-by-6 array processors in operational mode, each processing

half of the batch of input patterns.

Table 6.13 12x12 Arrav Timing (small network)

Mode Training Mode Operational Mode

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN

Setup 1 8 - 4 - 1 8 -
First 36 7 9 36 28 36 7 8
Additional - 1 1 - - 1 1 1

Cycles Req' d 925 650 500 1000 700 61 338 247

Table 6.14 12x 12 Array Timing (large network)

Mode Training Mode Operational Mode

Algorithm OUT MIN WIN Llw UPD OUT MIN WIN

Setup 1 8 - 4 - 1 8 -
First 36 7 9 36 36 36 7 8
Additional - 1 1 - - 1 1 1
Cycles Req'd 4625 3250 2500 5000 4500 161 1638 1197

Table 6.14 shows timings for a network consisting of twelve neurons, with eleven inputs per

neurons and a training set size of 125 patterns. A training pass for 125 patterns takes 19,875 .

cycles, with the forward recognition pass taking 10,375 cycles. In operational mode, where

recognition is done using batches of patterns, the recognition pass takes only 2,996 cycles.

Again, the algorithms for finding the minimum OUT value and for modifying the OUT values

have been speeded up by splitting the input patterns over two 6-by-6 array processors whilst

the system is in operational mode.

These timing figures give rise to the figures shown in table 6.15, which shows the number of

patterns that the network can train per second and the rates of neuron activation during both

training mode and operational mode.

195

- ---------

Chapter 6 Systolic Neural Algorithms

Table 6.15 Final Kohonen Timin s

Patterns I Sec Train·Act I Sec Op·Act I Sec

6x6 (small) 2.29 x 105 2.26 x 106 3.45 x 106

6x6 (large) 1.88 x 105 3.58 x 106 4.83 x 106

12xl2 (small) 1.32 x 105 2.89 x 106 9.28 x 106

12xl2 (large) 1.25 x 105 2.89 x 106 10.01 x 106

The timings in table 6.15 assume a nominal clock speed of 20MHz. It is interesting to note that

it is faster to train a twelve neuron / five input network on a 6-by-6 array and then use it on a

12-by-12 array. This is due to the more efficient use of pipelining in the smaller array when

just a single pattern is being processed in training mode. When a batch of patterns require

processing in operational mode the larger array has a lower additional pattern overhead than the

smaller, which more than cancels out this increase, as the figures in table 6.15 show.

The number of neural activations in training mode is independent of the number of neural

inputs if the number of neurons in the network remains constant, as in the two 12-by-12 array

examples. This is due to the inputs to the neurons being presented to the PE array in columns

from left to right in the array. The time taken for a one-input neuron vector product to reach the

array 110 controller on the right-most edge is not affected if, on the way, additional products for

additional neural inputs are also accumulated. Hence, a one-input neuron will present it's

output from the array in the same number of clock cycles as a 12-input neuron.

6.3 Counter Propagation Learning Algorithm

6.3.1 Introduction

6.3.1.1 Counter Propagation Instruction Set

The counter propagation algorithm requires 8 instruction slots in order to be implemented on

the systolic array processor. All instructions use the default result truncation range of the

system maximum and minimum numbers. Instruction mnemonics are defined in a similar way

to those for the backpropagation algorithm, as described in section 6.1.1.1.

196

Chapter 6 Systolic Neural Algorithms

Table 6.16 shows the complete programmable instruction set for the counter propagation neural

learning algorithm. As in the backpropagation learning algorithm some instructions have

multiple definitions depending upon which row or column the PE is in the systolic array. This

instruction set is identical to that required for the Kohonen learning algorithm. This is not

surprising, as one half of the counter-propagation is a direct implementation of the Kohonen

learning algorithm, with the other half being the Grossberg outstar. The Grossberg training

algorithms, as shown in section 3.3.1.2, are remarkably similar to those used in the Kohonen

networks, so no additional instructions over and above the Kohonen instructions are required.

Table 6.16 Counter Propagation Instruction Set

Opcode Mnemonic Description

[0100] [MVM] coil NS • REGISTER -'> WE'
[MVM] other WE + (NS • REGISTER) -'> WE'

[0101] [LOAD] WE -'> WE' & REGISTER'

[0110] [M1N] MIN (NS, REO) -'> WE', NS' & REGISTER'

[Olll] [EQUAL] EQ (NS, REO) -'> WE' & NS'

[1000] [SCALE] NS • REGISTER -'> WE'

[1001] [MULll WE • REGISTER -'> WE'

[1010] [ADD] NS + REGISTER -'> WE'

[lOll] [REO-ADD] NS + REGISTER -'> WE' & REGISTER'

6.3.1. 2 Algorithm Summary

The learning algorithm can be split into three distinct sections: forward pass, reverse pass and

weight update. The forward pass concerns itself with generating the output values for each

neuron in the network for a particular input pattern, which themselves are outputs from the

Kohonen layer of neurons. This pass is just a simple matrix-vector multiplication operation

using the Grossberg weight matrix and the input vector, producing a series of neuron OUT

values (as described by equation 3.13). As only a single input is non-zero, due to only a single

output from the Kohonen layer being non-zero, this algorithm results in all Grossberg neuron

weights connected to a non-zero input to be passed directly to the Grossberg neuron outputs.

197

Chapter 6 Systolic Neural Algorithms

The reverse pass calculates the weight update L1w for all neurons in the network, although only

those neurons connected to the non-zero input are actually modified, and this operation is based

upon equation 3.14. These updates take into account the target value for the input to the

Grossberg layer, which is required due to the Grossberg network being a supervised learning

neural model. The weight-update pass updates the weights held in the PE internal register

blocks with the adjustment values that were calculated in the reverse pass; this also is based on

equation 3.14.

6.3.2 Forward Pass

This operation is a simple matrix-vector multiplication. An input vector is presented to the

array and each PE performs the operation [MVM], with PE's in the first column of the array

starting off the accumulation process. The internal values, such as WZ,3' are the contents of the

internal registers representing the weights in the network. The subscript denotes neuron/input,

with PE's in a single row representing a single neuron. Processors in the right-most column

do not contain weight values and are not used in this algorithm. Each row of the array, each of

which represents an individual neuron in the network layer, generates a single OUT value for

the given input vector. The algorithm process is shown in figure 6.13.

[OUTd +- (MVM][Kd

{OUT,/ +- [I [MVM][K,]

lOUT,! +- [I [I [MVM][K,I

{OUT,/ +- [I [I [I •••• [MVM][K.I

{OUT,/ +- [I [I [I [I [MVM][K,]

{OUTo! +- [] [] [] [I [I [PASS][O.O]

Figure 6.13 Algorithm for OUT Value Calculation

The PE's in the second-last column of the array will output a result on the clock cycle following

the PE in the previous row; the first row will output its first result after 12 clock cycles, with

results on successive instances of the same algorithm appearing on successive clock cycles.

198

Chapter 6 Systolic Neural Algorithms

6.3.2 Reverse Pass

This operation calculates the individual weight adjustment required per neuron for the current

input pattern. As only a single component of the input to each Grossberg neuron is non-zero

the calculation is not relevant for most weights in the network. The calculation required is

where

f3 = training rate

y x = target vector for Grossberg neuron x

Kn = output of Kohonen neuron n

(6.6)

Only those weights attached to the winning Kohonen neuron are modified, so a method of

extracting

(6.7)

for just one weight per Grossberg neuron needs to be devised; i.e. a conditional [PASS] I

[ADD] operation must be created.

The Kohonen layer has to be trained before the Grossberg layer, as otherwise the Grossberg

neurons do not receive the same input/target pair and may never train. Hence, during the

training of the Grossberg neurons only the forward pass of the Kohonen algorithm is required.

When the Kohonen OUT values are being modified to 1.0 or 0.0, as described in

section 6.2.2.3, a value known as ax is calculated for use later in the reverse training pass.

This is not required for training the Grossberg neurons, but the processing required for the

production ofax can be used to calculate the instruction opcode required in each column of

PE's in order to carry out equation 6.7. Each column in the array is required to process either

[ADD] or [PASS], depending on the value of Kn' Hence, in the PE where the ax value is

normally carried out in the Kohonen forward pass the instruction [MULTI is locked and the data

199

Chapter 6 Systolic Neural Algorithms

value 9.0 is stored. The integer result from this calculation is the opcode value for the [ADD] or

[PASS] instruction, which is then used in the associated column of weights in the Grossberg

layer. This simulates multiplying by Kn and the operation can be seen in figure 6.14.

Mod OUTx ~ [PASSIIO.O]

OPCODE, __ [) •••. [PASS)[O.O)

__ [) ••.. [) •..• [PASS)[O.O)

-- [) [) ...• [) [PASS)[O.O)

__ [) [) ...• [) [) ...• [PASS)[O.O)

__ [) •••• [) •.•• [] ••.. [] ...• [) •••• [EQUAL)[OUT,)

Figure 6.14 Modified Algorithm for Kohonen Modified OUT Generation

With the correct opcodes evaluated the rest of equation 6.6 can be easily calculated, and is

shown in figure 6.15, where it is assumed that the second neuron in the Kohonen network was

the winning neuron (hence the location of the [ADD] and [PASS] opcodes).

-.6.w2,n- [1 .--. [OPCOD~][-Y2J

-6w,.. _[] [) -- .. [) .. -- [OPCODE,)[·Y,]

-6w,. - [] [) .. -- [) .. -- [] [OPCODE,)['Y,)

-6wo.. -[] [) .. -- [) .. -- [] [] .. -- [PASS)[O.O)

Figure 6.15 Algorithm for Weight Adjustment Calculation

6.3.3 Update Network Weights

The weights held in the register blocks within the PE's must be updated at the end of each

training pass. Figure 6.16 shows the majority of the algorithm required to update the weights

in a network layer consisting of six neurons, although for the sake of clarity the operations

[PASS] and [REG-ADDJ have been truncated to [PI and [RA] respectively.

200

Chapter 6 Systolic Neural Algorithms

4-[I . _ .. (PIID."'u1 IP][t.W 2 .• 1 IPIIl!.wul (RA][AWl,21 [Pllaw!.ll 11

4-[I ---- [I - - - - (PIlAw).,) [PIIAwuJ (RAIItr.).)1 [PIIAwJ.l.1 [PIIAw),!1

4-[[---- [I -- -- [I ---- [PIIAw.,sl (RAII"'w4,.l [PJ[.t\.wul [P][Awu1

4-[I - .-- [I ---- [I -- -- [I - - - - IRAII.4wu1 (PIIAw,.,J (PIIAw,.,1

<4- () ---- i J ---- i J ---- i J ---- I J ---- [PIIAw6.!I1]PIIAw6.,t1

Figure 6.16 Algorithm for Weight Update

The weight updates are fed into the array rows in reverse order, each of which are contained

within a [PASS I instruction. They are arranged so that the weight updates are present in the

correct PE's in row #1 of the array on the same clock cycle, with subsequent rows having the

updates correctly placed on subsequent cycles. The [REG-ADDI operations are placed so that

when all PE's in row #1 of the array contain the correct weight adjustment value then the

current operation within them is [REG-ADDI; this is identical to the method used to update the

weights in a backpropagation network, as described in section 6.1.4.

6.3.4 Counter Propagation Timings

6.3.4.1 Introduction

All timings for the counter propagation network have been evaluated using the same parameters

as for the Kohonen networks used in section 6.2.5. This setup information has been shown

previously in table 6.10, using two networks on a 6-by-6 array of PE's and two networks on a

12-by-12 array of PE's. This allows for timings for just the Grossberg layer to be evaluated as

well as for the counter propagation network as a whole, which also uses the timings for the

Kohonen networks.

6.3.4.2 Grossberg Layer Timings

Network timings for the Grossberg network layer are arranged in the same manner as those for

the backpropagation algorithm in that sufficient start and end delays exist at each stage of the

201

Chapter 6 Systolic Neural Algorithms

algorithm. The timing charts show two versions of the forward pass element of the algorithm;

in training mode the patterns are trained one by one, whereas in operational mode the patterns

can be applied in batches and thereby reduce the effective time for a classification to be made.

The algorithm names have been truncated as follows:

OUT = Generation of neural OUT values

Llw = Calculate weight updates for all neurons

UPD = Update weights in network

Table 6.17 shows the timings for a Table 6 17 6x6 Array Timing (small network) .
network consisting of six neurons,

with five inputs per neuron and a

training set size of 25 patterns. A

training pass for 25 patterns takes

1,325 cycles, with the forward

Mode

Algorithm

Setup

First

Additional

Cycles Req' d

Training Mode

OUT Llw

I 4
18 18

- -
475 550

Op Mode

UPD OUT

- -
12 18

- I

300 42

recognition pass taking 475 cycles. In operational mode, where recognition is done using

batches of patterns, the recognition pass takes only 42 cycles.

Table 6.18 shows the timings for a Table 6 18 6x6 Array Timing (large network) .
network consisting of twelve neurons,

with five inputs per neuron and a

training set size of 25 patterns. A

training pass for 25 patterns takes

1,500 cycles, with the forward

Mode

Algorithm

Setup

First

Additional

Cycles Req'd

Training Mode

OUT Llw

I 4

20 20

- -
525 600

Op Mode

UPD OUT

- I

15 20

- 4

375 117

recognition pass taking 525 cycles. In operational mode, where recognition is done using

batches of patterns, the recognition pass takes only 117 cycles.

202

Chapter 6 Systolic Neural Algorithms

Table 6.19 shows the timings for a Table 6.19 12x12 Array Timing (small network)

network consisting of twel ve neurons, Mode Training Mode Op Mode

with five inputs per neuron and a Algorithm OUT Llw UPD OUT

Setup 1 4 - 1

training set size of 25 patterns. This First 36 36 28 36

is identical to the previous network,
Additional - - - 1

Cycles Req' d 925 1000 700 61

except that it is implemented on a 12-

by-12 array of processors rather than using two layers of internal registers per PE on a 6-by-6

array of processors. A training pass for 25 patterns takes 2,625 cycles, with the forward

recognition pass taking 925 cycles. In operational mode, where recognition is done using

batches of patterns, the recognition pass takes only 61 cycles.

Table 6.20 shows the timings for a Table 6.20 12x12 Array Timing (small network)

network consisting of twel ve neurons,

with eleven inputs per neuron and a

training set size of 125 patterns. A

training pass for 125 patterns takes

14,125 cycles, with the forward

Mode

Algorithm

Setup

First

Additional

Cycles Req'd

Training Mode

OUT Llw

1 4

36 36

- -

4625 5000

Op Mode

UPD OUT

- I

36 36

- I

4500 161

recognition pass taking 4,625 cycles. In operational mode, where recognition is done using

batches of patterns, the recognition pass takes only 161 cycles.

Table 6.21

Patterns I Sec Train-Act I Sec Op-Act I Sec

6x6 (small) 3.77 x 105 2.26 x 106 71.42 x 106

6x6 (large) 3.33 x 105 11.42 x 106 51.28 x 106

12xl2 (small) 1.90 x 105 6.48 x 106 98.36 x 106

12xl2 (large) 1.76 x 105 6.48 x 106 186.33 x 106

These timing figures give rise to the figures shown in table 6.21, which shows the number of

patterns that the network can train per second and the rates of neuron activation during both

training mode and operational mode.

203

Chapter 6 Systolic Neural Algorithms

During training the Grossberg layer timings are of roughly the magnitude as those for the

Kohonen layer; the pattern throughput per second is no more than double and the number of

neuron activations per second is slightly more than triple.

In operational mode, however, the Grossberg layer excels. Neuron activations in the Kohonen

layer requires three steps, two of which do not use pipelining to any degree and slow the

process down drastically. In the Grossberg layer the neuron activations only require a simple

matrix-vector multiplication, which is an area in which systolic arrays have always had an

impressive record, and give the network layer an impressive turn of speed.

6.3.4.3 Counter Propagation Timings

It is not feasible to produce combined learning times for the full counter propagation network.

The Kohonen and Grossberg layers of the network train independently, and the Kohonen layer

must be fully trained before Grossberg layer training can commence. This is due to the fact that

the input pattern set for the Grossberg layer is the output from a fully trained Kohonen neural

network, and it is simply not possible to train the Grossberg layer until it can be presented with

a coherent and consistent input set from a trained Kohonen layer.

Combined times for the counter propagation network in operational mode are possible, as only

the forward pass elements of both networks are utilised. The timings have used the same four

network configurations that have been used throughout sections 6.2 and 6.3. Timings have

been given for two operational environments: one for pattern processing, where one pattern is

processed at a time, and one for batch processing, where a number of patterns are processes

simultaneously.

Table 6.22 shows the times for a counter propagation network when used in single pattern

processing mode. It shows the times required for each pattern in the training set to be

processed, along with the number of patterns that can be processed and the number of neurons

that can be activated per second at a nominal clock speed of 20MHz. Clearly, the times are

204

Chapter 6 Systolic Neural Algorithms

affected by the reduction in pipelining available due to only single patterns being presented to

the network at anyone time. This greatly affects networks implemented on the larger l2-by-12

array of PE's, as the time lag between input and output is quite excessive. It is because of the

increased latency of the l2-by-12 networks that leads to a l2-neuron 5-input network being

more efficient in single pattern mode when implemented on a 6-by-6 array of processors.

The times in table 6.22 also show that when two networks have an identical number of

neurons, albeit with a different number of inputs, the processing time required per input pattern

is identical. This shows that there is no additional cost when adding network inputs to a

network, so long as the number of inputs is less than the number of neurons.

T bl 622 C a e . ounter P ropagatlOn mg e S· I P attern T· lmmgs

Kohonen Grossberg Totals Pat! I Sec Act I Sec

6x6 (small) 1325 475 1800 2.77 x 105 1.60 x 106

6x6 (large) 1675 525 2200 2.27 x 105 2.72 x 106

12x12 (small) 2075 925 3000 1.66 x 105 2.00 x 106

12x12 (large) 10375 4625 15000 1.66 x 105 2.00 x 106

Table 6.23 shows the times for a counter propagation network when used in batch pattern

processing mode. It shows the same information as table 6.22, but for the network in batch

processing mode instead of pattern processing .. These timings show that the increased use of

pipelining within the networks, by virtue of processing a batch of patterns together instead of

just one, have increased the overall efficiency of the networks.

T bl 623 C a e . ounter P ropagatlOn B hP atc attern T· lmmgs

Kohonen Grossberg Totals Pat! I Sec Act I Sec

6x6 (small) 868 42 910 5.49 x 105 3.29 x 106

6x6 (large) 1242 117 1359 3.67 x 105 4.41 x 106

12x 12 (small) 646 91 737 6.78 x 105 8.14 x 106

12xl2 (large) 2996 161 3157 7.96 x 105 9.50 x 106

205

INTRODUCTION

NEURAL NETWORK
SOFTWARE
SIMULATION

This section describes the soft systolic system written to simulate the systolic array processor.

The software system itself is described, along with details of the various options available

within the software. It goes on to describe several test applications that were developed for the

simulator, with applications available for each of the neural learning algorithms developed in

section 6. These applications were chosen to demonstrate that the systolic array processor and

neural algorithms described in sections 5 and 6 were capable of carrying out some of the

standard neural learning procedures, rather than advanced applications of neural network use in

the real world.

7.1 Soft Systolic Simulator

7.1.1 Simulator Overview

The soft systolic simulator was written in the 'C++' programming language on an Intel

Pentium computer running the Microsoft Windows95 operating system. The code was

developed using the Microsoft Developer Studio environment using Visual C++ V5. The

simulator will run on any Windows95 or WindowsNT Intel-based computer. It consists of

several thousand lines of program code, split into several distinct segments: human-computer

interaction, data acquisition/generation and neural simulation.

206

Chapter 7 Neural Network Software Simulation

The software allows the user to set up a set of program instruction codes to use in any

simulation run, which consists of 12 instructions capable of carrying out any of the operations

specified in section 5. An additional two alternate instructions, depending on tbe placement of

a PE in the array, can be set up per opcode slot.

A project for simulation can be set up for any of the three neural learning methodologies

supported, with training parameters relevant to the network specified by the user on-screen.

Data files containing training vectors, and any associated target vectors for supervised learning

neural networks, are imported into the simulator and then used in a simulation run.

The simulator can be used in three different modes. The simplest mode, known as direct

mode, takes a set of neural data, as specified above, and uses it as the basis for a simulation

run. The user has very little control over the simulation run, bar being able to pause or stop the

run if convergence looks unlikely (or likely to take too long). In step mode the user can

process a single pass of the training algorithm, visualising the outputs of the network in a

separate window. In detailed mode a virtual representation of the array is displayed, with

details of tbe opcode being processed and the results of the opcode being displayed for each PE

in the array. The user can step through each single clock cycle of the process, seeing all

instruction results on-screen at all times. The user is able to switch between the three modes at

any time, so long as the simulation run has been paused.

The results generated by any training run are simply text files usable in any computer

spreadsheet package, witb values relating to the network convergence criteria being arranged so

that the user can create any representational graph required within the spreadsheet package

itself. All network weights are also saved from tbe simulator, so that they can be used at a later

date in a fully trained network that is being used in operational mode rather than training mode.

207

Chapter 7

7.1.2 Simulator Data Definitions

7.1. 2.1 Instruction Set Definitions

The opcodes for each supported neural learning

methodology can be set up using the single

screen shown in figure 7. 1. It shows the various

options available for each individual instruction.

The user can select which instruction is displayed

by clicking on the relevant tab-mark at the top of

the display - this will bring forward the selected

instruction dialog box into the display. All

possible options described in table 5.7 are

implementable in each dialog, although only two

alternate opcode definitions per instruction are

Neural Network Software Simulation

;' :w~t.~~·-:f~~!~t~~~~1:·~JtI?;Jr[
" rAddeJUnt. t ,..Comper4laUriI

" ,UIlPB ~ tINt DD El..i I 111M <A> L==--<-- ,,~-i\
~ I~ ~ AddIicJ'l 0 Sliltracli:Jn , ; SIat1.e IOff El

. ~1r4U: 1MlA:~ El! \ I~<e) I '8

:: ~M"UBl 'rl ,::' ~s~~-,~;-:·~IA~;::.=~i:1,.~· ~ I URXfqu INSoaa 8 j' -.. -..- u

. I <-.... (__ a i -." ("':.4 =a
.. ~ L..

a . l'

Figure 7.1 Opcode Definition Dialog

possible. The dialog shows that it is a fairly straightforward process to set up an instruction.

Some controls are marked as being inactive, such as the sign of the ABS Unit operation, and

are only activated when other enabling controls are selected. The user is also able to modify the

name of the instruction in this dialog, and there is a constant [xxxx} marker by the instruction

name to remind the user of the actual opcode number that they are editing.

The simulator supports three different instruction sets, one for each of the supported learning

methodologies, each of which is fully modifiable by the user. Each set of opcodes is stored in

a separate data fIle, which is loaded in by the application automatically. The user may freely

modify these instruction sets and save them for later use, but they are not able to overwrite the

default instruction sets for each of the three neural learning methods. The user may select to

save the current instruction set via a menu selection; if there is an un-saved modified instruction

set in memory then the application will prompt the user to save it whenever it is about to be

destroyed (such as when the application terminates).

208

Chapter 7 Neural Network Software Simulation

7.1. 2. 2 Neural Parameter Definitions

In order to carry out a simulation the user must select a the type of neural network that they

wish to use and then configure it for the systolic application that they have in mind. The user id

able to modify the training pammeters for all three neuml network types independent of any

systolic application that is loaded (if any), and this allows the simulator to be used as a geneml

purpose instruction set editor.

A single tab-marked display is

used modify the pammeters of

each of the three neural network

types. This allows the user to

modify all of the supported

tmining pammeters for each of '~~~~i~;I~i;~~~~~I~ the three network architectures, ~

although it should be noted that

this display does not have any Figure 7.2 Neural Parameter Definition Lll",lUg

knowledge of the neural tmining sets themselves. The dialog for the backpropagation network

is shown in figure 7.2. The user is able to specify the network tmining mtes, the error bounds'

for the neuml tmining process and dictate the number of neurons in the hidden layers. It should

be noted that the number of neurons in the output layer cannot be specified through this dialog;,

as this value is directly dependant on the number of elements in the target output vectorS

defmed in the neural tmining sets.

For the Kohonen and counter propagation networks a similar scheme is implemented, with the

physical layout of their dialog boxes being modified from that shown in figure 7.2 due to the

differences in the nature of the tmining algorithms. The fourth tab-mark on this display is used

to select the file locations for the instruction sets, both the default ones for each neural,
, "

architecture and any others defined by the user. This allows them to load in any previously

stored instruction set, as well as to locate a default instruction set.

209

Chapter 7 Neural Network Software Simulation

7.1.2.3 Neural Text File Definition

Each systolic application has an associated text data file, which contains information regarding

training set data and the types of network that it is valid for. The format for this data file is as

follows:

<string>
<int>
<int>

<int>
<int> <int>

<float>
<float>

<float>

<float>

Title of neural network (may be left blank)
Type of valid neural networks
Number of training patterns in the set
Number of distinct training patterns in the set
Number of inputs / required outputs per pattern
All inputs for pattern 1
All required outputs for pattern 1

All inputs for pattern N
All required outputs for pattern N

It is clear that the back- and counter propagation networks can share common training files, as

they are both supervised networks. As the Kohonen algorithm is unsupervised it would not

expect any required output values in the text files; hence, any required output data is treated as

an additional input pattern. The Kohonen and counter propagation networks both use the

distinct patterns value in order to guess at the number of neurons required in the Kohonen

layers of both networks; if the value is 0 then the simulator makes it equal to the number of

patterns in the training set.

7.2 Backpropagation Learning Applications

7.2.1 Exclusive-Or Problem

7.2.1.1 Application Overview

The exclusive-or problem is the one that almost halted research for 20 years into the field of

artificial neural networks. In their landmark book Perceptrons [MiPa69] the authors, proved

that single-layer artificial neural networks were theoretically incapable of solving many

problems, including the function performed by the simple exclusive-or logic gate. They also

were not very optimistic about the future:

The Perceptron has shown itself worthy of study despite (and even because of!)

it's severe limitations. It has many features that attract attention: its linearity, it's

intriguing learning theorem and it's clear paradigmatic simplicity as a kind of

210

Chapter 7 Neural Network Software Simulation

parallel computation. There is no reason to suppose that any of these virtues

carry over to many-layered version. Nevertheless, we consider it to be an

important research problem to elucidate (or reject) our intuitive judgement that

the extension is sterile.

Perhaps some powerful convergence theorem will be discovered, or some

profound reason for the failure to produce an interesting 'learning theorem' for

the multi-layered machine will be found.

(pp 231-232)

Unfortunately, Minsky and Paperts conclusions were unassailable. Discouraged researchers

left the field for areas of greater promise and, more importantly, greater funding. The

breakthrough in the field was to produce a learning algorithm that could train a multi-layer

network, which is now known as the backpropagation learning algorithm. A very simple test

of any backpropagation system is the exclusive-or network, as this is the type of linearly

inseparable application that backpropagation was intended to solve.

7.2.1. 2 Network Structure

The architecture of the network to be used is shown in
INPUTS

figure 7.3. It shows just two layers of neurons, with

two neurons in the hidden layer and a single neuron in

the output layer. This is acceptable as a solution for the

exclusive-or problem [LippS7], where only a simple

HIDDEN
LAYER

W I 2. I •

W,,,,

OUTPUT
LAYER

convex open or closed region is required to Figure 7.3 Exclusive-Or Network

discriminate between the training set input patterns.

The training set used is a continuous Table 7.1 Exclusive-Or Training Set

version of the binary exclusive-or Pattern Input A Input B Target

problem, but with the values optimised
13/128 13/128 13/128

2 13/128 115/128 115/128
for the mathematical accuracy available in 3 115/128 13/128 115/128

the array processor. Normally, the 4 115/128 115/128 13/128

continuous values 0.1 and 0.9 are used

211

Chapter 7 Neural Network Software Simulation

instead of the binary values for 0 and I. The nearest equivalences for these values in the array

processor are 13/128 (0:1015625) and 115/128 (0.8984375) respectively. The complete training

set is given in table 7.1.

7.2.1. 3 Simulation Run

Table 7.2 shows all of the training parameters used in the Table 7.2

simulation run, along with the number of clock cycles
Exclusi ve-Or Training

required per iteration. The network trained after 814

iterations, with a maximum pattern error of 11/128 and a

maximum system error of 21/ 128, These are acceptable

errors for the given application, as it allows for full

differentiation between all of the target output vectors. A

graph showing the reduction in the pattern error over the

training run is shown in figure 7.4.

1.2

... O.B
~
W
!: 0.6

~
;;
Do. 0.4

0.2

o

Parameters

Parameter

Training Rate

Momentum

Max Iterations

Max System Error

Max Pattern Error

Cycles / Iteration

o
o
~

o ~ o
o
M

o ~
o 0

Iterations

Figure 7.4 Exclusive-Or Training Run Progress

7.2.2 Parity Problem

7.2.2.1 Application Overview

Value

96/128

OFF

2,500

26/ 128

13/128

317

(0.75)

(-0.2)

(-0.1)

A common approach when looking for problems to test the backpropagation algorithm is to

find one which both Minsky and Papert deemed to be a 'hard' problem for a multi-layer

212

Chapter 7 Neural Network Software Simulation

perceptron to be able to learn. A classical example amongst such problems is the so-called

parity problem, in which a network outputs a logic-I if the total number of logic-I inputs to the

network is odd and logic-O if the total number of logic-I inputs is even (or zero).

7.2.2.2 Network Structure

The simplest network that can show this

example [AIM090] consists of just two layers: a

single neuron in the output layer and n neurons

in the only hidden layer, where n is the number

of inputs to the network. The architecture of the

network used for this problem is shown in

figure 7.5. The object of the training process is

to have the neurons in the hidden layer to learn

INPUTS

to recognise the number of inputs that are set to Figure

logic-I independent of the inputs that are actually

HIDDEN
LAYER

OUTPUT
LAYER

set to logic-I; i.e. neuron I in the hidden layer can recognise if one input is logic-I, neuron 2

can recognise if two inputs are logic-I, and so on. The single output layer neuron just has to

distinguish between n numbers, discerning whether any particular number is odd or even.

This application used the value n = 6 for the training run, as processing a neural layer of six

neurons is the most optimal setup for the 6-by-6 array processor. This gives rise to 2n input

patterns, each with six components, representing all possible 6-bit binary values; for the sake

of brevity these input patterns are not listed here. As in the exclusive-or simulation the binary

inputs 0 and I have been replaced by the closest representable equivalences of the dynamic

values 0.1 and 0.9, as described in section 7.2.1.2. This method could easily be extended for

much larger n, although this would dramatically increase the processing time required for each

additional neuron in the hidden layer, as it doubles the possible number of input pattern

variations.

213

Chapter 7 Neural Network Software Simulation

7.2.2.3 Simulation Run

Table 7.3 shows all of the training parameters used in the Table 7.3
Parity Training Parameters

simulation run. Two separate training runs were carried
Parameter Value

out: one containing the entire training set and one
Training Rate 77/128 (-0.6)

containing a random selection of 80% of the training set. Momentum 32/128 (0.25)

This was to see if the neural network was able to
Max Iterations 10,000

Max System Error 32 / 128 (0.25)

generalise the principle behind the parity problem, given Max Pattern Error 19/128 (-0.15)

the limited mathematical precision available on the array Cycles I Iteration 2,243 (100%)
1,847 (80%)

processor. The number of cycles per iteration required

when using the entire set and when using the reduced set are both shown in table 7.3.

When using the complete training set the network trained after 6,833 iterations, with a

maximum pattern error of 19/128 and a maximum system error of 27/128, These errors are

sufficient, given that the inputs are meant to be equivalent to binary values. A graph showing

the reduction in the pattern error over the training run is shown in figure 7.6.

1.2

... 0.8
e
,:;
c 0.6

~
m
a. 0.4

0.2

0

Figure

0 0
0 0
~ ..

7.6

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
~ :: '" '" '" '" "' '" ;;; .. ~ 0 '" '" '" '" '" '" '"

iterations

Parity Training Run Progress (whole set)

0 0 0 0 0 0 0
0 0 0 0 0 0 0

'" '" "' '" ;:; .. ~ .. "' "' "' '" '"

When using 51 of the 64 members of the training set the network trained after 4,822 iterations,

with a maximum pattern error of 16/128 and a maximum system error of 32/128 , Again, these

214

Chapter 7 Neural Network Software Simulation

final error values are sufficient for the problem. A graph showing the reduction in the pattern

error over the training run is shown in figure 7.7.

1.2

" 0.8

~
w

c 0.6

~ •
a. 0.4

0.2

0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ ~ :" ~ N on '" M 0 M <0 m

N N N M M
iterations

Figure 7.7 Parity Training Run Progress (limited set)

7 . 2.3 Simple Pattern Recognition Problem

7.2.3.1 Application Overview

0 0 0 0 0 0
0 0 0 0 0 0
N on '" ;;;
on on on <0 '"

One common use of the backpropagation learning algorithm is in the field of pattern recognition

and feature extraction. The network is trained on certain known data, normally taken from a

near-perfect source, and used in an environment where the input data may be far from perfect;

an example of this is in a text recognition neural network that has learnt to recognise the

alphabet but has to deal with character images from an imperfect source, such as a fax machine.

7.2.3.2 Network Structure

The network is to be trained on representations

of the numeric characters 0 to 9 inclusive. Data

for the characters is extracted from a 5-by-3

grid of pixels, each of which is either black

(on) or white (off). The entire training set is

shown in figure 7.8. This method of using a Figure 7.8 Pattern Recognition Training

grid of pixels, with the normalised characters
Set Images

215

Chapter 7 Neural Network Software Simulation

projected onto it, has been used successfully in many applications. Burr used this method to

recognise series of characters which, when used in conjunction with a dictionary filtering

program, led to recognition of complete English words at an accuracy level of 99.7% [BurrS7].

The network structure for this problem can be Table 7.4 Pattern Recognition Training

done in several ways. A simple method is to

have a single hidden layer, with the number of

neurons equal to the number of constituent

parts of each input vector, and an output layer

with enough neurons to implement some pre-

defined encoding strategy. For this application

the hidden layer requires 15 units and the

output layer requires six units - one to indicate

Pattern

'0'

'I'

'2'

'3'

'4'

'5'

'6'

'7'

'8'

'9'

Set Targets

Range

0.1 0.9 0.1

0.1 0.1 0.9

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

0.9 0.9 0.1

0.9 0.1 0.9

0.9 0.1 0.1

0.9 0.1 0.1

0.9 0.1 0.1

Indices

0.1 0.1 0.1

0.1 0.1 0.1

0.9 0.1 0.1

0.1 0.9 0.1

0.1 0.1 0.9

0.1 0.1 0.1

0.1 0.1 0.1

0.9 0.1 0.1

0.1 0.9 0.1

0.1 0.1 0.9

the input is in either the range 0 .. .4 or 5 ... 9 and five more to indicate which of the five values

in the recognised range matches the input. Table 7.4 shows the target data values for each

input pattern (0.9 and 0.1 are shown in the table instead of their nearest representable

equivalents for the sake of clarity).

7.2.3.3 Simulation Run

Table 7.4 shows all of the training parameters used in the Table 7.5 Pattern Recognition
Training Parameters

simulation run, along with the number of clock cycles

required per iteration. The network trained after 11,617

iterations, with a maximum pattern error of 13/128 and a

maximum system error of 17/128, These are acceptable

errors for the given application, as it allows for full

differentiation between all of the target output vectors. A

Parameter

Training Rate

Momentum

Max Iterations

Max System Error

Max Pattern Error

Cycles / Iteration

Value

96/128 (0.75)

32/128 (0.25)

25,000

19/128 (-0.15)

13/128 (-0.1)

14,317

graph showing the reducing pattern error over the training run is shown in figure 7.9.

216

Chapter 7 Neural Network Software Simulation

1.2

2 0.8

W
~ 0.6

~ • a. 0.4

0.2

0
0

'" '"
0 0 0 0 0
0 "' 0 '" 0
0 ... "' '" 0

'" '" .. 0 0 0 0 0 0 0 0

'" 0 "' 0 '" 0 '" 0 ... "' '" 0 ... '" '" 0 .. '" '" '" m ~
iterations

Figure 7.9 Pattern Recognition Training Run Progress

0 0 0 0 0 0

'" 0 '" 0 "' 0 ... ~ '" 0 ... '" 0 ~ ~ '" ;':

Although this is a fairly trivial example of the backpropagation learning algorithm it does show

that the architecture and algorithms designed for the backpropagation learning methodology are

able to successfully cope with such a common problem.

7.3 Kohonen Application - Pattern Recognition

7.3.1 Problems Associated with Kohonen Learning

The most useful property of the Kohonen network is that it has the ability to extract the

statistical properties of the input data set. Kohonen showed [Koh088] that in a fully trained

network the probability of a randomly selected input vector being closest to any given weight

vector is J Ik, where k is the number of Kohonen neurons. This, of course, is the optimal

distribution of the weights on the hypersphere; this also assumes that all weight vectors are in

use, which is a situation that can be difficult to realise.

As described in section 3.2.3.4 it is desirable to distribute weight vectors about the hypersphere

according to the density of the input vectors that must be separated. As this is impractical to

implement directly, requiring the placing of more weight vectors near a high density region of

the input space, approximation techniques must be used.

217

Chapter 7 Neural Network Software Simulation

The solution used in this pattern recognition application is to randomise all of the weight

vectors and then normalise them. This will uniformly distribute the weight vectors around the

hypersphere, but is unlikely to give an near-optimal distribution for reasons that have already

been discussed. All input vectors are also normalised, which should help alleviate the

problems caused by non-optimal hypersphere placement of the weight vectors. The

randomisation and normalisation processes are not done on the systolic array processor, and

should be carried out by the host computer before any neural processing is initiated.

7.3.2 Simulation Strategy

Due to the problems with weight distribution it was realised that the network may fail to train

simply due to unfortunate initial values within the network. Therefore, several training runs

were made with different initial values until a trained network was obtained, and it is this

successful network that is discussed throughout the rest of section 7.3.

In order to test for convergence each of the input patterns in the training set are passed through

the network and the winning neurons for each input are noted. Convergence is deemed to

occur when each input pattern results in a different neuron firing.

7.3.3 Network Structure

The network structure for this application consists of a

single layer of Kohonen neurons (n = 10), and this is

shown in figure 7.10. It was anticipated that the

weights within each neuron would align themselves to a

single input pattern, firing only when that input pattern

is present on the inputs to the neuron; this means that the

network has to contain one neuron per input pattern.

INPUTS KOHONEN
LAYER

OUT,

OUT

No neurons within the network are wasted, as each has OUT,

an input pattern that they are expected to train upon. Figure

218

Chapter 7 Neural Network Software Simulation

The input patterns are identical to those specified in section 7.2.3.2, although these inputs do

not have an associated target vector. The values of the inputs themselves have been

normalised, which converts each input into a unit vector pointing in the same direction as the

original vector, using equation 3. 10.

7.3.4 Simulation Run

Table 7.6 shows all of the training parameters used in the Table 7.6 Kohonen Training
Parameters

simulation run, along with the number of clock cycles

required per iteration. The network trained after 3, 121

iterations, which occurred after a number of failed

training runs; note, this failure is a problem inherent in

Parameter

Training Rate

Max Iterations

Cycles 1 Iteration

Value

90/128 (-0.7)

10,000

2, 190

the Kohonen learning algorithm rather that a problem with the systolic simulator.

•

\ I
t-- - '-- 1

\ i

•
7

- P..,tt...-n3
- P.ttwn"
-P.tt.mS
- P.tt.rn6
- P.t1KT11

•
." l.
• - P.tttom8
2

/ /
P ,

\

Figure 7.11 Kohonen Training Run Progress

A graph showing which neurons win for each input pattern is shown in figure 7. 11. It shows

how each neuron changes it's internal weights over the training run, with some neurons

winning for multiple input patterns. At certain times during the training run some neurons do

not win for any of the input patterns. During the course of the training run the network settles

down, with each neuron in the network winning for just a single input pattern in the training

set. At this point the network is deemed to have converged.

219

Chapter 7 Neural Network Software Simulation

7.4 Counter Propagation Application - Pattern Recognition

7.4.1 Application Overview

The idea behind the counter propagation application is to be generate a network that is capable

of differentiating between a series of images, each of which is allocated an index value. Upon

presentation of this index value to the network (when the network is in operational mode rather

than training mode) the actual image bitmap for the appropriate image is output. This identity

mapping feature of the counter propagation network was previously discussed in more detail in

section 3.3.1.2.

Although this bears a strong resemblance to the Kohonen application discussed in section 7.3

the Kohonen part of the network is different, as it has to take into account the index value

inputs. Therefore, the Kohonen layer of the counter propagation network cannot use the

weights from the Kohonen network from section 7.3.

7.4 .2 etwork Structure

The index value for the ten input patterns is just a simple binary

code in the range 0 ... 9. This will require four additional inputs to

each of the neurons in the Kohonen layer, which will still consist

of ten neurons. The Grossberg layer will require the same

number of neurons as there are inputs to the Kohonen layer, as

this is a requirement of the identity mapping process. The entire

Table 7.7
Counter Propagation
Network Structure

Parameter Size

Network Inputs

Kohonen Neurons

Grossberg Neurons

19

10

19

network details required for the counter propagation application is shown in table 7.7, which

has not been shown in a figure for the sake of clarity; a detailed diagram of the layout of a

counter propagation network was given in figure 3.13.

The input patterns are identical to those specified in section 7.2.3.2, with the addition of the

four index inputs. The values of the input vectors themselves have been normalised, which

converts each input into a unit vector pointing in the same direction as the original vector, using

equation 3.10.

220

Chapter 7 Neural Network Software Simulation

7.3.3 Kohonen Simulation Run

Table 7.8 shows all of the training parameters used in the

simulation run, along with the number of clock cycles

Table 7.8
Counter Propagation Kohonen
Layer Training Parameters

required per iteration. It also shows the number of Parameter Value
------------~~-------90/128 (-0.7)

training iterations aUowed before a test for convergence is

made. The network trained after 5,117 iterations, which

occurred after a number of failed training runs.

•
1------1 \

\ •
7

• I \
I--h I \

/
~ \ I \

2

. \ I .\

Training Rate

Max Iterations

Cycles 1 Iteration

p,tt.rn 0

- P.«tnl3
- P.,tttn'l4
-P.tt...,.:5
- P.tttnl6
- p,.tt.,.n7
- P.tt.,.ne
- P,.ttwn9

Figure 7.12 Counter Propagation Kohonen Layer Progress

10,000

2,790

A graph showing which neurons win for each input pattern is shown in figure 7.12. It shows

how each neuron changes it's internal weights over the training run, with some neurons

winning for multiple input patterns. Note that although the problem is similar to the that

described in section 7.2 the neuron-pattern mapping shown in figure 7.12 is different from that

shown in figure 7.11 However, the progress of the training run is fairly similar with regards to

multiple-pattern winning neurons, which shows that the addition of some index variable inputs

did not significantly alter the problem with respect to the Kohonen network. Indeed, it is stiU

patterns 8 and 9 that are the last to converge, which indicates that the basic nature of the

problem has remained unchanged.

221

Chapter 7 Neural Network Software Simulation

7.3.4 Counter Propagation Simulation Run

Table 7.9 shows all the training parameters used in the Table 7.9

simulation run, along with the number of clock cycles

required per iteration. The training rate is gradually

reduced over the training process, and this application

Counter Propagation Grossberg
Layer Training Parameters

reduced it every 500 iterations of the training algorithm;

each rate reduction was by 1/128' The network finally

trained after 7,718 iterations, with a maximum pattern

error of 13/128 and maximum system error of 28/128, At

the point of convergence the training rate was equal to 6/128,

Parameter

Training Rate

Max System Error

Max Pattern Error

Max Iterations

Rate Reduction

Reduce By

Cycles / Iteration

Value

13/128 (-0.1)

32/128 (0.25)

13/128 (-0.1)

10,000

1,000 iterations

1/128 (-0.01)

2,210

The inputs to the Grossberg layer each have an associated target vector, which is the input to

the Kohonen layer that created the Grossberg layer input. Before the training process for the

Grossberg layer can begin a mapping between each Kohonen input to Grossberg input must be

made in order to know what the target vector is for each neuron in the Grossberg layer. This is

due to the unsupervised nature of the Kohonen algorithm, as there is no way to determine in

advance of training which neuron in the Kohonen layer will win for each input vector. A

graph showing the reducing pattern error over the training run is shown in figure 7.13.

1.2~~~~----------------__________________________ ,

~ O.S
o
t ...
~ 0.6
• :;
Q. 0.4

0.2

Figure 7.13 Counter Propagation Grossberg Layer Progress

222

INTRODUCTION

SUMMARY AND
FURTHER
RESEARCH

This thesis has introduced a number of new systolic algorithms for neural network learning,

under the framework of being suitable for implementation on a custom designed two­

dimensional systolic array processor. This final chapter summarises the work that has been

presented in this thesis, discussing the more important aspects of the work in more detail. It

concludes by briefly discussing some areas where further research and expansion on this work

could prove fruitful.

8.1 Thesis Summary

The work presented in this thesis has previously been summarised in section 1.5 on a chapter

by chapter basis. However, a re-iteration of this will help to highlight the achievements made

during the course of this study. A different partitioning scheme is used throughout section 8.1

as compared to section 1.5, which may show the success of the work in a slightly different

light.

8.1.1 Increasing Computational Capacity

Chapter 1 gave a general overview on the history of the field of computing, with special

reference to the field of parallel architectures, whilst Chapter 2 described the techniques behind

various fabrication methodologies, with the associated methods for testing digital logic, and

also discussed systolic array architectures in more detail.

223

Chapter 8 Summary and Further Research

These two sections showed that there are, basically, two ways in which computer performance

can be improved in terms of computational capacity. The first, and most costly, is to increase

the efficiency of the VLSI fabrication process, by increasing circuit density, reducing feature

sizes and minimising switching time. Although it seems that the ever-increasing performance

of VLSI must eventually end, due to the inherent difficulties with the silicon process, mM have

recently introduced [mM-98] a copper-tracked fabrication process, as opposed to aluminium­

tracked, which has drastically reduced switching times for little additional fabrication cost; this

does not take into account the massive non-recurrent research expenditure and the cost of re­

tooling fabrication plants in order to cope with this fundamental change. Although silicon

techniques are reaching the frontiers of their capacity there is still plenty of life left in the

technique.

The other method for increasing computational capacity is to use some form of parallel

architecture that employs multiple processing units working simultaneously on a single task.

This may involve exploiting pipelining, utilising multiple identical PE's in a MIMD array or

having a client-server approach based around a multiple-SIMD architecture where PE's are

allocated to multiple tasks on demand; a mixture of these techniques is not unusual on the same

device, with the TMS320C8x family of digital signal processing chips from Texas Instruments

being configurable in several different parallel methodologies [TI-95].

In order to maximize the computational capacity of any device the design would have to keep

track of current fabrication technology in order to maximize the exploitation of silicon, as well

as embrace parallelism as much as possible; the chip architecture presented in this thesis

encompasses both of these areas. The parallel array architecture used provides a reconfigurable

array that allows MIMD, multiple-SIMD and isolated SIMD paradigms. The use of a re­

programmable instruction systolic architecture keeps the instruction set per PE very small and

efficient, with all instructions completing within a single cycle. By choosing to implement all

of the silicon design in VHDL the design is, effectively, fabrication process independent - all

that is required is to keep pace with advances in silicon (or other) fabrication is that a fabrication

224

Chapter 8 Summary and Further Research

process has an efficient VHDL compiler for the design to be implemented on. VHDL compiler

libraries are now released in much the same way that full- and semi-custom silicon CAD

packages release libraries for new fabrication processes. Although some re-design work may

be required in order to fully optimize a VHDL design for a particular process this is not as time

consuming as re-designing the whole system. Because of this a VHDL design can always be

implemented using the most up-to-date fabrication methodologies.

8.1.2 Hardware Implementation of Neural Networks

Chapter 3 gave a general history and overview of the neural network learning methodologies,

discussing various algorithms and some aspects of the biological neural system upon which all

of the field is based upon. Chapter 4 went on to describe some practical implementations of

neural networks, both in software and hardware VLSI systems.

These two sections describe the wide variety of possible implementations of neural networks,

some of which bear more of a resemblance to current models of the biological nervous system

than others. The learning algorithms can be split into two distinct camps: supervised and

unsupervised. Both types have their own relative advantages and disadvantages, both in terms

of functionality and reliability. For example, although the back-propagation algorithm can be

proven to be able to distinguish between all members of a training set it relies on infinitesimally

small adjustments to the neural weights between passes. This is obviously impractical, so

larger steps must be made in order to make an implementation possible; this, however, leads to

the possibility of the learning process entering a state of paralysis, being unable to learn beyond

a certain point. Unfortunately, this learning algorithm is by far the most frequently occurring in

industry, mainly due to its simplicity - implementations of it are all too often far from perfect.

It would seem that for a closed system, where the neural network must operate in a real-time

environment and modify its behaviour to suit, an unsupervised network would be the way

forward. In an embedded system the network would be able to recognise when its

environment had changed substantially and would be able to re-learn (or update) its

225

Chapter 8 Summary and Further Research

environment. This would require some external network supervision and the use of a data

dictionary in order to recognise when the environment had changed, but the network itself

would be entirely responsible for the learning process. Unfortunately, unsupervised learning

algorithms are not suited to all problems, and the level of suitability can only be discovered

through experimentation.

One consideration that must be taken into account when designing a neural network system is

speed: software is slow, hardware is fast. Unfortunately, hardware solutions tend to be fixed

to a specific learning methodology and also have practical limits on the number of artificial

neurons that they contain. Software solutions can be extended to, modified or just plain

replaced as time goes by, but a standard hardware solution cannot be modified at all.

However, the speed of a hardware system is often without comparison; whilst a software

system may be able to carry out a particular computation in a few mill i-seconds, a logically

equivalent hardware system could carry it out in micro-seconds. Some compromise between

hardware and software must be sought.

A MIMD parallel architecture implemented in hardware using VHDL, with each PE in the

device having re-programmable micro-code, would allow a software neural network to be

implemented in high-speed hardware. With the PE's being optimised for matrix-vector

multiplications the neural algorithms will be able to take full advantage of the performance of its

hardware environment whilst retaining the flexibility of a software-based system.

8.1. 3 Practical Advantages of Study

A number of practical advantages in the field of hardware-based neural networks have been

gained through the work presented in this study. The choice of architecture for the neural

networks in itself as described in the previous two sections is a major benefit in its own right,

as it could allow low-cost high-performance hardware neural networks, so will not be

discussed in any more detail here. However, the other major benefits of this study will now be

looked at in a little more detail.

226

Chapter 8 Summary and Further Research

i) Reprogrammable Instruction Sets

The micro-code within each of the PE's on the systolic array device can be re-programmed to

suit any particular task, be it neural network based or otherwise. This vastly increases the

scope of the architecture as it is not fixed to just a single learning paradigm - many different

training methods can be employed on a single hardware device.

The novel feature of allowing each PE to be uniquely programmable, in that each PE can have

an entirely different micro-code set from any other PE in the device, further enhances this re­

programmability, as the restriction of allowing only 16 instructions per PE is greatly alleviated.

In this manner more complex algorithms could be implemented on the architecture, even though

they may require many more than 16 unique instructions.

ii) Multiple Result Outputs

The result from an operation within any PE can be sent in many directions; to the PE to the

east, to the south, to the local registers or to a combination of the three. This allows the

intelligent routing of partial results around the systolic array, implying that part of the array can

be used as the main processing path for an operation yet other PE's within the array can be

utilised in calculating partial results that may be required later in a calculation.

As each row and column of PE's within the systolic array can be processing at any given clock

cycle it is possible for every row of the array to output a result to the outside world on every

clock cycle. This allows for multiple calculations to be carried out at any time, albeit with the

restriction that they most likely have to share some common data. This facility to have a single

instruction/data input stream generate multiple results further increases the processing capacity

for the architecture. Unfortunately, the problem with all such parallel architectures remains, in

that in order to take full advantage of this type of mUlti-processing the software designer must

pay close attention whilst implementing any algorithm so that it fully utilises such features.

227

Chapter 8 Summary and Further Research

iii) Single Cycle Multiply-and-Accumulate

One of the most common operations for many neural network learning paradigms is the matrix-

vector multiplication operation. This consists of a repeated multiply-and-accumulate

instructions (MAC) for each element of the result vector, and this operation is one of the most

highly suited to implementation in a systolic array.

As it was likely to be an integral part to any hardware implementation of a neural network the

systolic array architecture described in this study was designed s!lch that a MAC operation

could be carried out simultaneously in every PE in just a single clock cycle. Although the

architecture is far from unique in this respect it was fundamental in the design of the

architecture, as without a single cycle MAC operation the architecture may not have been

viable.

iv) Function Unit Configurability

The three functional units within each PE, the comparator, the adder and the multiplier, had few

restrictions on the source of either of their two inputs or of the destination for their result

output; i.e. an instruction could use any of the functional units in practically any combination.

This increases the flexibility of each of the 16 operations possible within each of the PE's, as

each operation can be made fairly complex with respect to the calculation carried out and on the

destination of the result.

Both the multiplier and the adder contain in-built saturation of the results, whereby any result

generated is replaced by either the maximum or minimum value representable within a PE if the

result has overflowed or underflowed. Results can be further restricted between a range of two

numbers, programmable on a PE-by-PE basis, and this limit can be enabled or disabled per

instruction. Provision of both saturation and conditional range limiting allows an algorithm to

keep close track of a calculation and ensure that limiting values are never exceeded.

228

Chapter 8 Summary and Further Research

v) Program Independent Operation

Although implicit in the architecture of a systolic array device a software program running on

the architecture requires no external controlling influence regarding the internal operation of the

program. The external controller provides only data values and an algorithm, and the algorithm

itself is fixed in advance; the non-existence of internal loops, as is normal in systolic arrays,

implies that such control is not required. Hence, the complexity of the external controller does

not have to be too advanced.

8.2 Further Work

There are a number of enhancements to the architecture presented in this study that could

increase the complexity of problems that the device is able to handle. These enhancements,

although potentially fruitful, were not fully investigated in this study as they were considered

secondary in importance to finding an architecture that suited the soft-systolic implementation

of neural networks. However, if any work were carried out in the future that might lead to the

fabrication of a VLSI device then these ideas should be investigated more fully, as their

incorporation into the architecture presented here would increase the commercial viability of any

devices produced.

The first of these, the increase in capacity of the on-board PE micro-code, is a benefit in its

own right. However, the other enhancements proposed in this section would not be possible

unless this increase was made. Hence, although the increase itself is not a great technology

feat, it is discussed first in order to show other benefits that would arise from it.

8.2.1 Increased Micro-code Capacity

It would be advantageous to increase both the depth and breadth of the capacity of the PE

micro-code. This would increase the complexity of the existing instructions, as well as

increase the number of instructions as a whole.

229

Chapter 8 Summary and Further Research

One of the main reasons for not carrying out this work at this stage is that the current functional

units within a PE do not require a more complex instruction word, nor do the neural systolic

algorithms require any more complexity. Another reason is that with 12-bits of data and 4-bits

of instruction code the input and output for each row of the systolic array was 16-bits - this was

very convenient in the design of the neural systolic algorithms, and also served to keep the

number of external device I/O pins to a manageable number.

Other neural network training methodologies that may benefit from hardware implementation,

such as the Hopfield network or the ART paradigms, are more complex than those

implemented in this work. Practical implementations would probably require a larger and more

varied instruction set than that implemented here.

The field of signal processing, which now encompasses the fields of audio and visual

processing, also benefits from hardware implementations. Some of the popular algorithms,

such as the discrete cosine transforms used in many image compression techniques, are

possible on the systolic architecture, but are only really plausible when using one dimension of

data; such techniques require two-dimensional data as input and these would not be possible on

the architecture unless the micro-code was increased in both depth and breadth.

8.2.2 Index Registers

The four registers within each of the PE's can be used for either instruction source data or

result destination data. Only a single register is ever active during one clock cycle, but this

register can be read from and written to in the same cycle. During the operations used in the

systolic algorithms that have been developed there has only been the need to access a single

register per clock cycle, with the active register being selected via the [SWITCH] operation.

However, this operation has the drawback in that all PE's in the same column process this

operation.

230

Chapter 8 Summary and Further Research

Hence, it may beneficial to any algorithms developed in the future for the systolic architecture

to include the facility to allow an instruction op-code to specify both the source and destination

register that it requires. This may be hard-wired into the micro-code itself, such that a

particular instruction always uses the same source and destination register pair. It could also be

linked in to a set of mUltiplexors and temporary store so that the result of the previous

instruction selects the register pair for the next instruction.

As well as allowing for the implementation of more complex algorithms this enhancement to the

systolic architecture would also speed up some existing algorithms - they would not have to be

liberally sprinkled with [SWITCH) instructions. Although this may only save one cycle per

pass of an algorithm stage these savings will build up, eventually amounting to a saving of a

few percent.

8.2.3 Conditional Instructions

In the systolic architecture all instructions are processed as the PE receives them on its North­

South input (unless it is locked). There is no capacity for having any functional units within

the PE operate only if a value is less than, greater than, equal to or not equal to any particular

value, as is possible in more conventional processors.

It would be advantageous to some algorithms to conditionally transform some operations to

[PASS) instructions dependant on some other PE input condition. This could be linked directly

to the comparator unit, so that an addition (and result storage) only occurred if some externally

requested condition were met. It may also be possible to split an instruction so that a choice

between two operations occurred; i.e. a multiply if the condition was met and an addition if the

condition was not met.

Conditional instructions, however, introduce an element of uncertainty into the systolic

architecture and into the algorithms that run on it. The external device controller would no

longer be absolutely certain how long a particular stage of an algorithm will take to execute if it

231

Chapter 8 Summary and Further Research

included conditional instructions. Care would need to be taken with the external controller, as

it may have to modify its instruction stream in order to react to a conditional instruction,

whereas without conditional instructions the external controller does not have to react to any

results in this manner. However, as long as sufficient care is taken at the algorithm design

stage the use of conditional instructions could prove very beneficial to some algorithms, and

this could lead to extremely powerful algorithms being implemented in relatively inexpensive

VLSI devices.

8.2.4 Multiple Processing Paths

The functional units within each PE are, effectively, independent of one another, although they

all share a common final output port. There is no technical reason why the results from the

functional units cannot be diverted along different output paths; e.g. the adder result goes to the

West-East port, the multiplier result goes to the North-South port and the comparator result

goes into some destination index register.

This complicates the internal PE architecture and the micro-code by a large degree, although the

bulk of the re-design effort would be in the internal data routing, multiplexing and control

rather than in the functional units themselves (which would remain virtually untouched). Other.

internal units, such as the result range limiter, may have to be duplicated around each functional

unit rather than act as a shared common resource.

This enhancement would vastly increase the computational power of the systolic architecture,

but it would greatly complicate the algorithm design process. The combination of conditional

instructions linked with mUltiple processing paths would make the timing calculations for an

algorithm stage rather complex and, unfortunately, extremely critical. However, the rather

large amount of effort required to implement this is likely to be justified given the improvement

in raw processing power that it would produce.

232

Chapter 8 Summary and Further Research

8.3 Final Comments

Since the development of the digital computer the technology associated with it has evolved at

an extremely rapid rate. However, although performance has improved tremendously in the

last fifty years the demands of the end-user have increased also. Engineers, scientists and

researchers are constantly striving to both improve computing performance whilst still reducing

the overall cost of the computer system.

Systolic array architectures are a very powerful approach to exploiting massive parallelism with

an absolute minimum of communication overheads. Due to their regularity of structure and

heavy use of local communication, they are very amenable to VLSI implementation.

Drawbacks with such implementations, notably the prohibitive cost and the inflexibility of

some fixed hardware solutions, have led to systolic arrays VLSI implementations to be few and

far between. By using VHDL as the target hardware description language, and testing a design

before final fabrication using inexpensive field-programmable gate array devices, the cost

aspect has become less of a burden. Also, by having a systolic array that is completely re­

programmable the systolic designs can be made extremely flexible.

This thesis has shown that systolic arrays are capable of handling computationally intensive

applications and that they are a powerful form of massively parallel processing. It also has

shown that the field of artificial neural networks can benefit hugely from implementation in

hardware. The work presented in this thesis has shown that systolic arrays can be adapted to

implement neural networks very effectively. When this implementation is in a re­

programmable VLSI device its performance surpasses any software system and is on a par

with, if not superior to, any other fixed hardware implementation of an equivalent neural

algorithm.

233

CIRCUIT DESIGNS
AND VHDL CODE

A.l Basic Circuit Elements

A .1.1 2-to-l Multiplexor

This is a data selector. It takes in two separate I-bit data values, A

and B, and outputs one of the them on the output line OUT after a

short delay. The signal to be output is chosen based on the value

of the third input SEL. As the circuit is not clocked in any way it's

output is dependent on changes on all three input signals. The

VHDL code for this circuit is shown below, and a schematic of the

circuit itself is shown in figure A.1.

SEL: MUX switch
-- A,B: Input values
-- OUT: Output value

entity MUX_2 is
port (SEL: in BIT;

A, B: in BIT;
OUT: out BIT);

end MUX_2;

architecture MUX_UNIT_2 of MUX_2 is
begin

process (SEL, A, B)
variable TEMP: BIT;

begin
case SEL is

when '0' => TEMP := A;
when '1' => TEMP := Bi

end casei
OUT <= TEMP after 500 ps;

end process;

SEL

~
A_

B

::E _MUX
.....
N

SEL SEL

A --+-GH--,

B--H~t---'

Figure A.l
2-to-1 Multiplexor

OUT

234

Appendix A Circuit Designs & VHDL Code

A.1. 2 4-to-l Multiplexor

This is a data selector. It takes in four separate I-bit data values, A, B, C and D, and outputs one

of the them on the output line OUT after a short delay. The signal to be output is chosen based

on the value of the fifth input SEL (0: 1). As the circuit is not clocked in any way it's output is

dependent on changes on all five input signals. The VHDL code for this circuit is shown

below, and a schematic of the circuit itself is shown in figure A.2.

A-+Cr+---+-Cr+--,

D-+CJ-+---+-CH---'

Figure A.2 4-to-1 Multiplexor

SEL(2): UX switches
-- A,B,C/D: Input values
-- OUT: Output value

SEL[O:ll.

OUT A~ B_ Sl _OUT
C
D ..;.

entity MUX_4 is
port (SEL: in BIT_VECTOR(O to 1);

A, a , C, D: in BIT;
OUT: out BIT);

end MUX_4;

architecture MUX_UNIT_4 of MUX_4 is
process (SEL, A, B, c, D)

variable TEMP: BIT;
begin

case SEL is
when "QO"
when "01"
when \\10"
when "11"

end casei
OUT <= TEMP

end process;
end MUX_UNIT_ 4;

=> TEMP
=> TEMP
=> TEMP
=> TEMP

after 1

:= A;
.- B;
:= C;
:= D;

nSi

235

Appendix A Circuit Designs & VHDL Code

A.1.3 D-Type Flip-Flop

This is a I-bit data store. Upon a CLOCK event if the CLOCK is high then the data on the input

data D is read and stored in the internal store Q after a short propagation delay. The value stored

in Q is always available at the output of the flip-flop. The circuitry within the shaded area is a

standard S-R flip-flop. The VHDL code for this circuit is shown below, and a schematic of the

circuit itself is shown in figure A.3 - note that the simple VHDL code, which is the standard

definition of a D-type flip-flop, belies the complexity of the circuit.

D

CLOCK

Figure A.3 D-Type Flip-Flop

CLOCK: System clock
-- D: Input data
-- Q: Output data

entity D_FLIP_FLOP is
port (CLOCK, D: in BIT;

out BIT) Q:

architecture SYNC_DFF of D_FLIP_FLOP is
process (CLOCK)
begin

if ((CLOCK ~ '1') and CLOCK'EVENT) then
Q <= D after 2 ns;

end if;
end process;

end SYNC_DFF;

A. 1. 4 D-Type Flip-Flop with Reset

CLOCK I
v

D_ t: • -Q

Q
Q

This is a I-bit data store. Upon a CLOCK event if the CLOCK is high then some data is stored in

the internal store Q; if the input RESET is not set then the data from the input D is stored after a

short propagation delay, else a logic-O is stored after an even shorter delay (as the value is

sourced directly from the power supplies) - in an S-R flip flop the input pair "01" guarantees

the output to be zero regardless of it's previous value. The value stored in Q is always available

236

Appendix A Circuit Designs & VHDL Code

at the output of the flip-flop. The VHDL code for this circuit is shown below, and a schematic

of the circuit itself is shown in figure AA.

RESET

D

CLOCK-+~ __ ~2-/

Figure A.4 D-Type Flip-Flop with Instant Reset

CLOCK: System clock
RESET: Hard reset
D: Input data
Q: Output data

entity D_FLIP_FLOP_RES is
port (CLOCK: in BIT;

RESET, D: in BIT;
Q: out BIT)

end D_FLIP_FLOP_RES;

architecture SYNC_DFF_R of D_FLIP_FLOP is
process (CLOCK)
begin

if ((CLOCK = '1') and CLOCK'EVENT) then
if (RESET = '0') then

Q <= D after 2 ns;
else

Q <= 0 after 500 ps;
end if;

end if;
end process;

end SYNC_DFF_R;

A.1. 5 Half Latch

CLOCK

RESET_ ~

~
Q

D_

This is a pseudo- I-bit data store. Any data on the input line D is stored in the internal value S

so long as the CLOCK signal is both high and stable (as indicated by the internal signal CHS).

The process is dependent on a change in either D or CLOCK. The negation of the stored value S

is made available at the circuit output Q at all times. The VHDL code for this circuit is shown

below, and a schematic of the circuit itself is shown in figure A.S. Note, this circuit does not

237

------------------ . - ----- -- -

Appendix A Circuit Designs & VHDL Code

take into account power leakage at the CLOCK----,

capacitor C - as long as the clock phase in

use is regular and has a period of lOOns or

less then the effect of the leakage should be

negligible.

D

CLOCK: Clock phase
-- D: Input data

Output data

D -l~~~ S [>>----.~ Q

CHS lc -- Q:

entity HALF_LATCH is
port (CLOCK, D: in BIT;

Figure A.S

Q: out BIT)
end HALF_LATCH;

architecture TRANSP_HALF LATCH of HALF_LATCH is
process (CLOCK, D)

signal S: BIT;
begin

if ((CLOCK = '1') AND CLOCK' STABLE) then
S <= D after 500 ps;

end if;
Q <= not S after 500 ps;

end process;
end TRANSP_HALF_LATCH;

A.1.6 3-Input Majority Function

T
Half Latch

This circuit takes three binary inputs, A, Band C, producing a single value RES. If at least two

inputs are set high then RES is also high, whereas if at most one input is set high then RES is set

low. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is

shown in figure A.6.

-- A,B,C: Input Values
-- RES: Output Value

entity MAJORITY is
port (A,B,C: in BIT,

out BIT); RES:
end MAJORITY;

architecture MAJORITY_3 of MAJORITY is
component NAND2

238

Appendix A

port (A, B: in BIT; RES: out BIT);
end component;
component OR2

port (A, B: in BIT; RES: out BIT);
end component;
signal Tl,T2,T3: BIT;

begin
Nl: NAND2(A, B, Tl);
01: OR2(A, B, T2);
N2: NAND2(C, T2, T3);
N3: NAND2(T1, T3, RES);

end MAJORITY_3;

A T1

B

T2

C
T3

Figure A.6 3-Input Majority Function

A.1. 7 Negative Clock Open Latch

RES

Circuit Designs & VHDL Code

A-.
·C

B-' 0 -.RES
'(i

C-. ~

This is a I-bit data store. Throughout the stable negative edge of the CLOCK input (as indicated

by the internal signal CLS) the data present on the input D is stored within the cell. The contents

of the store are always available at the output Q, although newly stored inputs are not output

until the following clock cycles (implying that read/write in a single cycle is possible) Upon the

stable positive edge of the CLOCK input (as indicated by the internal signal CHS) the data within

the cell cannot be altered and is cycled around the circuit. The VHDL code for this circuit is

shown below, and a schematic of the circuit

. itself is shown in figure A.7.

CLOCK: System Clock
-- D:
-- Q:

Input data
Output data

entity NEG_OPEN_LATCH is
port (CLOCK, D: in BIT;

Q: out BIT)
end NEG_OPEN_LATCH;

architecture NEG_LATCH of
NEG_OPEN_LATCH is

process (CLOCK, D)

CLOCK

CLS

CHS

Figure A.7

D

"><>--+ Q

CHS

Negative Edge Open
Latch

239

Appendix A Circuit Designs & VHDL Code

begin
if (CLOCK'STABLE) then

if (CLOCK = '0') then
S <= D after 500 PS;

else
S <= Q after 500 PS;

end if;
end if;
Q <= S after 1 ns;

end process;
end NEG_LATCH;

A.2 Data Storage Units

A . 2 .1 PE Input Register

This is a l6-bit data storage register. It is used to hold the operation code and data input to the

PE from all four cell edges. It stores the data on the input IP on the rising edge of the clock in

a series of D-type flip-flops. This data is made available at all times on the output OP. The

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in

figure A.S.

CLOCK

:;
IP[O:15)_ .s _OP[O:15)

~

IP[O:15) --.-------~-------­

CLOCK--~--~----~~~----

(0) (1)
OP[O:15) ----~~~~~~--~

Figure A.S

CLOCK:
-- IP(16):
-- OP(16):

PE Input Register

System clock
Input data

Output data

entity PE_INPUT_REG is

(15)

generic (START: INTEGER := 0; STOP: INTEGER := 15);
port (CLOCK: in BIT;

IP: in BIT_VECTOR (START to STOP);

240

-.s

Appendix A Circuit Designs & VHDL Code

oP: out BIT_VECTOR (START to STOP));

architecture OP_INPUT_REG of PE_INPUT_REG is
component D_FLIP_FLOP

port (CLOCK, D: in IT; Q: out BIT);
end component;

begin
process (CLOCK)
begin

INST_ALL: for K in START to STOP generate
DFF: D_FLIP_FLOP port map (CLOCK, IP(K), OP(K));

end generate INST_ALL;
end process;

end OP_INPUT_REG;

A.2.2 PE Output Register

This is a l6-bit data storage register. It is used to hold an operation code and a data value to be

output from the PE from all four cell edges. It stores the data on the input I P throughout the

negative edge of the clock in a series of negative edge open latches - these are used instead of

the D-type flip-flops of the input register as the output of this register is the input to the other,

so the date on the output OP must be stable before the rising edge of the clock. This data is

made available at all times on the output OP. The process is dependent on the value of CLOCK as

well as the value of IP. The VHDL code for this circuit is shown below, and a schematic of

the circuit itself is shown in figure A.9.

CLOCK

IP[O:15] ! _OP[O:15]

[f

IP[O:15]

CLOCK--+---'---~~~~----

[0) [1)

OP[O:15] --------~~------~

Figure A.9 PE Output Register

(15)

241

Appendix A Circuit Designs & VHDL Code

CLOCK: System clock
-- IP(16): Input data
-- OP(16): Output data

entity PE_OUTPUT_REG is
generic (START: INTEGER := 0; STOP: INTEGER := 15);
port (CLOCK: in BIT;

IP: in BIT_VECTOR (START to STOP);
OP: out BIT_VECTOR (START to STOP»;

end PE_OUTPUT_REG;

architecture OP_OUTPUT_REG of PE_OUTPUT_REG is
component NEG_OPEN_LATCH

port (CLOCK, D: in BIT; Q: out BIT);
end component;

begin
.process (CLOCK, IP)
begin

INST_ALL: for K in START to STOP generate
DFF: NEG_OPEN_LATCH port map (CLOCK, IP(K), OP(K»;

end generate INST_ALL;
end process;

end OP_OUTPUT_REG;

A.2.3 PE Internal Register Block

A. 2 .3.1 Register Unit

This is a 12-bit data storage register. It is used to hold a data value within the PE for use in the

execution of any current or future instructions. It uses a series of negative-edge latches to store

data on the input IP internally when the CLOCK is low and the LOAD signal is high. The data

within the register is available at all times on the output OP. The process is dependent on the

value of CLOCK as well as the value of IF; it is not dependent on LOAD as this signal is stable

throughout a clock cycle, changing only at the beginning of a clock cycle in response to a new

instruction code. The VHDL code for this circuit is shown below, and a schematic of the

circuit itself is shown in figure A.IO.

CLOCK: System clock
-- IP(12): Input data
-- OP(12): Output data

entity INTERNAL_REG is
generic (START: INTEGER := 0; STOP
port (CLOCK: in BIT;

LOAD: in BIT

INTEGER : = 11);

242

Appendix A Circuit Designs & VHDL Code

IP: in BIT_VECTOR (START to STOP);
OP: out BIT_VECTOR (START to STOP));

end INTERNAL_REG;

architecture PE_INTERNAL_REG of INTERNAL_REG is
component NEG_OPEN_LATCH

port (CLOCK, D: in BIT; Q: out BIT);
end component;
signal MOD_CLOCK: BIT;

begin
process (CLOCK, IP)
begin

MOD_CLOCK <= (not CLOCK) nand LOAD after 1 ns;
wait on MOD_CLOCK;
INST_ALL: for K in START to STOP generate

DFF: NEG_OPEN_LATCH port map (MOD_CLOCK, IP(K), OP(K));
end generate INST_ALL;

end proceSSi
end PE_INTERNAL_REG;

LOAD --~

CLOCK

Figure A.tO

CLOCK

LOAD_ I
IP[O:l1]_ j _OP[O: 11]

IP[O:l_l~]+-______ ~ ______ __

(0) [1)
OP[O:ll] ----------~------~

Register Block Internal Register

A. 2.3.2 Active Register Selector

(11)

This is an internal control signal generator and data store. The selector holds a 2-bit value to

indicate which of the four internal registers is currently active; the load signals on the registers

and an output multiplexor block takes data from the selector. Data on I P is stored in the

internal registers whenever a [SWITCH) instruction is received by the PE. The outputs from the

regusters are available on OP at all times. These signals are later sent directly to the multiplexor

block without any further processing. They are also combined with the LOAD input to ensure

that only the active register receives any external LOAD instruction. The VHDL code for this

243

Appendix A Circuit Designs & VHDL Code

circuit is shown below (minus the combinational logic for the generation of the internal signal

SWITCH_OP), and a schematic of the circuit itself is shown in figure A.ll.

CLOCK:
IP[2] :
LOAD:
OPCODE[4] :
MUX[2] :

System Clock
Current input data
RegLoad-Op received
Current Opcode
Output MUX signals

INT_LD[4]: Load output signals

entity REG_SELECT is
port (CLOCK: in BIT;

LOAD: in BIT;
IP: in BIT_VECTOR (0
OPCODE: in BIT_VECTOR (0
MUX: out BIT_VECTOR (0
INT_LD: out BIT_VECTOR (0

end REG_SELECT;

to 1) ;
to 3) ;
to 1) ;
to 3»;

architecture PE_REG SELECT of REG SELECT
component INTERNAL_REG

generic (START, STOP: INTEGER)
port (CLOCK, LOAD: in BIT: IP: in BIT_VECTOR (START to STOP);

10: out BIT_VECTOR(START to STOP»;
end component;
component MUX_2

port (SEL, A, B: in BIT; OUT: out BIT);
end componenti
signal SELECT: BIT_VECTOR (0 to 1);
signal T1, T2,. SWITCH_OP: BIT;

begin

-- See if current opcode is [SWITCH]

T1 <= (not OPCODE(O» nor OPCODE(l);
T2 <= OPCODE(2) nor OPCODE(3);
SWITCH_OP <= T1 and T2;

-- Store new 'reg-no' in register

LTC: INTERNAL_REG generic map (0, 1)
port map (CLOCK, SWITCH_OP, lP, SELECT);

-- Generate reg-block load signals

MXO: MUX -
MX1: MUX -
MX2: MUX_
MX3: MUX -

2 port
2 port
2 port
2 port

map
map
map
map

(LOAD,O,SELECT(O) nor SELECT(l), INT_LD(O»;
(LOAD,O,SELECT(O) nor not(SELECT(l), INT_LD(l»;
(LOAD,O,not(SELECT(O» nor SELECT(l) , INT_LD(2»;
(LOAD,O,SELECT(O) and SELECT(l) , INT_LD(3»;

-- Copy output of flip-flops to multiplexor block

244

Appendix A

MUX(O) <= SELECT(O);
MUX(!) <= SELECT(!);

end PE_REG_SELECT;

CLOCK

MUX[O:l]

MUX[O:l]

Figure A.ll Register Block 'Active' Selector

A.2.3.3 Main Register Block

Circuit Designs & VHDL Code

CLOCK

This is a multiple storage unit with a multiplexed output. The internal PE register block

consists of four 12-bit register units, as shown in figure A.IO. Each register unit receives

identical copies of the input data lP, but with individual instances of lNT_LD, as only one

register unit is designated as being 'active'. The 12-bit outputs from each of the register units

are fed into 12 instances of a 4-to-1 multiplexor, arranged and controlled such that the 12-bit

output from the register unit that is currently active is forwarded on out of the register block.

The output OP(12) from the multiplexor block is available at all times. The VHDL code for this

circuit is shown below, and a schematic of the circuit itself is shown in figure A.12.

245

Appendix A Circuit Designs & VHDL Code

CLOCK: System clock
IP(12) : Input data to be stored
INT_LD(4) :
SEL (2) :

Load signal for active register
MUX control signal

OP(12) : Output of active register

entity REG_STORAGE is
port (CLOCK: in BIT;

IP: in BIT_VECTOR (0
BIT_VECTOR (0 INT_LD: in

SEL: in BIT_VECTOR (0

out BIT_VECTOR(O OP:
end REG_STORAGE;

to 11) ;

to 3) ;
to 1) ;
to 11)) ;

architecture PE_REG_STORAGE of REG_STORAGE
component INTERNAL_REG

generic (START, STOP: INTEGER);
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP);

OP: out BIT_VECTOR(START to STOP));
end componenti
component MUX_4

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT: out BIT);
end component;
type BLOCK_ADDR is array (0 to 3, 0 to 11) of BIT;
signal REG_OUT: BLOCK_ADDR:

begin

-- Generate the register block

REG_BLK: for K in 0 to 3 generate
RG1: INTERNAL_REG generic map (0, 3)

port map (CLOCK, INT_LD(K), lP, REG_OUT(K));
end generate REG_BLK;

-- Multiplex the output

GEN MUX: for K in 0 to 11 generate
MX1: MUX_4 port map (SEL, REG_OUT(O) (K), REG_OUT(l) (K),

REG_OUT(2) (K), REG_OUT(3) (K), OP(K));
end generate GEN_MUX;

end PE REG_STORAGE;

246

Appendix A Circuit Designs & VHDL Code

SEL[O:l)

OP[O:l1)

"'1~"_'L~DI~Ol~--~-INT_LD[0:3)

r----<H-- I P [0 : 11)
IP

<l-<H-+-CLOCK

CLOCK

SEL [0: 1)_ "

INT_LD[O: 3)_ I
IP[O:l1)_ 9

Figure A.12 Register Block Storage

A.2.3.4 Complete Register Block

OP[O:l1)

This is the entire register storage block within a single PE. It links together the units described

in both sections A.2.3.2 and A.2.3.3. It adds no additional functionality, save for providing a

single external interface for all signals. The VHDL code for this circuit is shown below, and a

schematic of the circuit itself is shown in figure A.13.

CLOCK:
LOAD:
OPCODE [4] :
IP[12]:
OP[12]:

System Clock
Data load required
Switch-Op being processed
Input data/switch index
Output of active register

entity REGISTER_BLOCK is
port (CLOCK: in BIT;

LOAD: in BIT;
OPCODE: in BIT_VECTOR (0 to 3) ;

IP: in BIT_VECTOR (0 to 11) ;

OP: out BIT_VECTOR (0 to 11)) ;

end REGISTER_BLOCK;

247

Appendix A Circuit Designs & VHDL Code

OPCODE[0:3] LOAD

..,
" '" ~

'" '"

2

OPCODE [0 : 3] ~ ~ LOAD

Register
Block

OP[O:l1]

1

~ 0 ' ..,
12
r---+-- IP [0: 11]

SEL INT_LO

<1---<-- CLOCK

OP [0: 11]

Figure A.13 Entire Internal Register Block

architecture PE_REGISTER_BLOCK
component REG_SELECT

port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(O to 1),

IP[O:l1]

CLOCK

OPCODE: in BIT_VECTOR(O to 3); MUX: out BIT_VECTOR(O to 1);
INT_LD: out BIT_VECTOR(O to 3»;

end component;
component REG_STORAGE

port (CLOCK: in BIT; IP: in BIT_VECTOR(O to 11);
INT_LD: in BIT_VECTOR(O to 3); SEL in BIT_VECTOR(O to 1);
OP: out BIT_VECTOR(O to 11»;

end component;
signal MUX_SEL: BIT_VECTOR (0 to 1);
signal LD_SIG: BIT_VECTOR (0 to 3);

begin
UPPER: REG_SELECT port map (CLOCK, LOAD, IP(O to 1), OPCODE, MUX_SEL,

LD_SIG) ;
LOWER: REG_STORAGE port map (CLOCK, lP, LD_SIG, MUX_SEL, OP);

end PE_REGISTER_BLOCK;

A.3 Instruction Set Storage

A.3.1 Memory Read/Write Generator

This is a control signal generator. It takes in the binary value for an instruction operation and

generates the correct read/write signal for the static memory that holds the instruction set data.

On a RESET the unit outputs a logic-O (read) regardless of the other input data for the current

and subsequent clock cycle. If the operation is a [PROG 1 instruction then the a read is generated

on the current clock cycle, with a logic-I (write) being generated on the subsequent clock cycle.

Any other instruction results in a read being generated on the subsequent clock cycle. The

248

Appendix A Circuit Designs & VHDL Code

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in

figure A.14.

CLOCK:
RESET:

System clock
System reset

OPCODE: Current instruction
WRITE_OP: Write operation

entity MEM_RW is
port (CLOCK, RESET: in BIT;

OPCODE:
WRITE_OP:

end MEM_RW;

in BIT_VECTOR(O to 3);
out BIT);

architecture MEM_RW_CONTROL of MEM_RW is
component NAND2

port (A, B: in BIT; RES: out BIT);
end component;
component OR2

port (A, B: in BIT; RES: out BIT);
end component;
component NOR2

port (A, B: in BIT; RES: out BIT);
end component:
component HALF_LATCH

port (CLOCK, D: in BIT; Q: out BIT);
end componenti
component MUX_2

port (SEL, A, B: in BIT; OUT: out BIT) ;
end component;
signal GEN_VAL, NEXT_OP, T1, T2: BIT;
signal L1_OUT, L2_0UT, L3 IN: BIT;

begin

-- Check for [PROG] 1[0011] & RESET

NA1: NAND2 port map (OPCODE(O) , OPCODE(l) , T1);
OR2: OR2 port map (OPCODE(2) , OPCODE(3) , T2);
NR1: NOR2 port map (T1, T2, GEN_VAL);
MX1: MUX_2 port map (RESET, GEN_VAL, 0, NEXT_OP)

-- Send result into LATCH chain

LT1: LATCH port map (NEXT_OP, CLOCK, L1_OUT);
LT2: LATCH port map (L1_OUT, not CLOCK, L2_0UT);
MX2: MUX_2 port map (RESET, L2_0UT, 0, L3_IN);
LT3: LATCH port map (L3_IN, CLOCK, WRITE_OP);

end MEM_RW_CONTROL;

249

Appendix A Circuit Designs & VHDL Code

OPCODEo
OPCODE,
OPCODE,
OPCODE,

Figure A.14

RESET ~
CLOC~

WRITE OP
OPCODE[4] ~ -

,------------..------- RESET

r---~---~---~---CLOCK

..c:

.:i Ll_O .:i
~ " ..l ..l

S S

Opcode Memory ReadIWrite Generator

A.3.2 Opcode Lock Unit

A.3. 2.1 Inner Block Circuit

This is the inner section of the opcode memory lock-status controller. It keeps track of the

current state of the lock circuitry: locked, locking or unlocked. Depending on the input OPCODE

and the current status of the circuitry, as given by the two negative-edge latches, the status is

changed to a different value. Note, no circuitry for the generation of REG_ROW is given: this

simply indicates if the data on IP is identical to the row of the PE in the processor array. This

is done by a single multi-input NOR gate with some inverted inputs - PE's in each row of the

array, therefore, it has a different set of inputs to the NOR gate. The VHDL code for the

generation of REG_ROW for a PE in row #3 of the array is given. The VHDL code for this

circuit is shown below, and a schematic of the circuit itself is shown in figure A. 14.

CLOCK: System clock
RESET:
OPCODE[4]:
NS [3] :
LOCK_SIG:

System reset signal
Current PE ope ode
Current NS data input
Output Lock signal

entity LOCK_INNER is
port [CLOCK: in BIT;

RESET: in BIT;
OPCODE: in BIT_VECTOR (0
NS: in BIT_VECTOR (0
LOCK_SIG out BIT) ;

end LOCK_INNER;

to 3) ;

to 2) ;

250

Appendix A Circuit Designs & VHDL Code

OPCODEO
OPCODE,
OPCODE,
OPCODE,

RESET ~ --',
CLOCK --.-1-,

CLOC)

OPCODE[4] ~ _LOCK_SIG

Figure A.IS Opcode Lock Inner Block

architecture OP_LOCK_INNER of LOCK_INNER is
component NAND2

port (A, B: in BIT; OUTPUT: out BIT);
end component;
component AND2

port (A, B: in BIT; OUTPUT: out BIT);
end component;
component NOR3

port (A, B, C: in BIT; OUTPUT: out BIT);
end component;
component NOR2

port (A, B: in BIT; OUTPUT: out BIT);
end component;
component NOR

port (A, B: in BIT; OUTPUT: out BIT);
end component;
component MUX_2

port (SEL, A, B: in BIT; OUT out BIT);
end component;
component NEG_OPEN_LATCH

port (CLOCK, D: in BIT; Q: out BIT);
end component;
signal T1, T2, T3: BIT;
signal REG_ROW, REC_OP, PRE_LOCK: BIT;
signal LOCK_, SO, Sl: BIT;
signal NEW_SO, NEW_S1: BIT;

begin

NS[3] g

-- Work out if a LOCK has happened for this row

OR1: OR2 port map (OPCODE(O), OPCODE(l) , T1);
NA1: NAND2 port map (OPCODE(2) , OPCODE(3) , T2);
NR1: NOR2 port map (T1, T2, REC_OP);
NR2: NOR3 port map (NS(2), not NS(l), not NS(O), REG_ROW);
NA2: NAND2 port map (REC_OP, REG_ROW, PRE_LOCK);

-- Override PRE_LOCK during RESET if req'd

251

Appendix A Circuit Designs & VHDL Code

-- Keep the latches up to date

RG1: NEG_OPEN_LATCH port map (CLOCK, NEW_SO, SO);
RG2: NEG_OPEN_LATCH port map (CLOCK, NEW_S1, Sl);

-- Modify the two latches to indicate current state

NA3: NAND2 port map (SO, not Sl, T3);
NA4: NAND2 port map (LOCK_, T3, NEW_S1);
NR3: NOR3 port map (not SO, LOCK_, NEW_S1);
LOCK_SIG_ <= SO;

end OP_LOCK_INNER;

A.3.2.2 Outer Block Circuit

This is the outer section of the opcode memory lock-status controller. This unit stores an

opcode in a set of registers on the cycle after a [LOCK] instruction is processed (during the

locking state). It also routes either this stored opcode or that present on the OPCODE input to the

control signal memory unit; the relevant control signals are then read from or written to that

address. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is

shown in figure A.16.

CLOCK: System clock
RESET:
OPCODE[4] :

System reset signal
Current PE ope ode
Current NS data input
RAM address location

NS[3] :
ADDR[4] :

entity LOCK_OUTER is
port (CLOCK, RESET: in BIT;

OPCODE: in BIT_VECTOR(O to 3);
NS: in BIT_VECTOR(O to 2);
MEMADDR: out BIT_VECTOR(O to 3));

end LOCK_OUTER;

architecture OP_LOCK_OUTER of LOCK_OUTER is
component LOCK_INNER

port (OPCODE: in BIT_VECTOR(O to 3);
CLOCK, RESET: in BIT; NS: in BIT_VECTOR(O to 2);
LOCK_CTRL: out BIT);

end component;
component INTERNAL_REG

generic (START, STOP: INTEGER);
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP);

OP: out BIT_VECTOR(START to STOP));
end component;

252

Appendix A Circuit Designs & VHDL Code

CLOCK

RESET_ 6'
~

OPCODE[41 _ ~

u
ADDR[41

CLOCK

RESET

NS[31

OPCODE[41
I

r±
~

~
U
0

....::...

NS[31 - S

ww

1
Cl:

LOCICSIG j
"

1

Figure A.16 Opcode Lock Outer Block

component MUX_2

r-:~ ..
Q , ~
i
~ OUT ...

A N
~

'---

port (SEL, A, B: in BIT; OUT: out BIT);
end component;
signal REG_OP: BIT_VECTOR(O to 3);
signal LOCK_SIG: BIT;

begin

-- Ensure correct address in register block

ADDR[41

CL: LOCK_INNER port map (OPCODE, CLOCK, RESET, NS, LOCK_SIG);
ST: INTERNAL_REG generic map (0, 3)

port map (CLOCK, LOCK_SIG, OPCODE, REG_OP);

-- Send correct address to RAM unit

MX: for K in 0 to 3 generate
GEN: MUX_2 port map (LOCK_SIG, REG_OP(K), OPCODE(K), MEMADDR(K));

end generate MX.;
end OP_LOCK_OUTER;

A. 3.3 Additional Control Signal Store

This is a data storage area. Section 5.2.2.2 stated that a temporary IO-bit register is required

when programming the instruction set: this data accompanies the [PROG I instruction and is

combined with all data on the NS datapath on the following clock cycle in order to create the full

IS-bit word of control signals. This is accomplished via three negative edge latches, which

store data on NS whenever a WRITE_OP is not occurring. This data is always made available at

the circuit output, so that when a WRITE_OP does occur the data on NS on the previous clock

253

Appendix A Circuit Designs & VHDL Code

cycle is forwarded to the instruction set memory along with the data currently on NS [12]. The

VHDL code for this circuit is shown below. and a schematic of the circuit itself is shown in

figure A.17.

NS[lO]
_TEMP[lO]

NS[O:9]----~~----------._-------­

CLOCK
WRITE_OP

NS(Oj ~ TEMP[O]

l
~ TEMP{l]

NS(!]

l

Figure A.I7 Control Signal Temporary Storage

CLOCK: System clock
WRITE_OP: Current RAM R/W mode
NS:
TEMP:

Current NS data input
Stored temp data

entity TEMP_REG is
port (CLOCK, WRITE_OP: in BIT;

NS: in BIT_VECTOR(O to 9);
TEMP: out BIT_VECTOR(O to 9));

end TEMP_REG;

architecture OP_TEMP REG of TEMP REG is
component NEG_OPEN_LATCH

port (CLOCK, D: in BIT; Q: out BIT);
end component;
signal INT_CLK: BIT;

begin

-- Simple and straightforward register block

INT_CLK <= CLOCK nor WRITE_OP;
REG_BLK: for K in 0 to 9 generate

NS[9j

..c:
] TEMP [9]

l
TEMP[O:9]

LCH1: NEG_OPEN_LATCH port map (INT_CLK, NS[K], TEMP[K]);
end generate REG_BLK;

end OP_TEMP_REG;

254

Appendix A

A.3.4 Instruction Set RAM Unit

A.3.4.1 Base Memory Storage Cell

This is a data storage unit. It is a standard 6-transistor

static memory cell. The outside two transistors restrict

access to the cell via the ACCESS input. The pair of

back-to-back inverters hold the data value. If the values

on DATA and DATA_ are different then they are written

into the cell memory upon a memory access. If the

values on DATA and DATA_ are both logic-l then the

memory is being read from. The inverters within the

cell then pull one of either DATA or DATA_ down to

logic-D, such that they match the values stored internally

Circuit Designs & VHDL Code

OO
_DATA

ACCESS_ f"'l
::; - DATA_

DATA ACCESS

1 o 1
0_

Figure A.IS Base Memory Cell

at D and D_. Values of logic-D on both DATA and DATA_ are invalid for a memory access. The

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in

figure A.IS.

DATA: Input/output data
-- DATA_: Negative input/output data
-- ACCESS: Memory operation in progress

entity BASE_MEMORY is
port (DATA: buffer BIT;

DATA_: buffer BIT;
ACCESS: in BIT);

end BASE_MEMORY;

architecture OP_BASE_MEM of BASE_MEMORY is
signal D, D_: BIT;

begin
process (ACCESS, DATA)
begin

-- Memory access event

if (ACCESS = '1') then

-- Write Memory

if (DATA = DATA_) then
D <= DATA after 500 ps;
D_ <= DATA_ after 500 ps;

255

Appendix A Circuit Designs & VHDL Code

-- Read Memory

else if «DATA = '1') and (DATA_ = '1')) then
DATA <= D after 1 ns;
DATA_ <= D_ after 1 ns;

end if
end if;

end process;

-- Keep the memory cycling

D <= not D_ after 500 ps;
D_ <= not D after 500 ps;

end OP_BASE_MEM;

A.3.4.2 Fixed Instruction Memory Cells

This is a constant data storage cell. It functions in a similar way to the base memory cell except

that no write operations are possible, implying that ACCESS is only granted on read operations.

Instead of having a pair of back-to-back inverters the cell has a direct connection to Vro and v ss'

the order of which depends on the generic input DATA_VAL: if DATA_VAL is logic-O then the·

shaded power connections are used and the non-shaded power connections are not used. If

DATA_VAL is logic-I then the converse is true. The VHDL code for this circuit is shown below,

and a schematic of the circuit itself is shown in figure A.19.

DATA:
DATA_:

Output data
Negative utput data ACCESS_ 0

ACCESS: Read operation in progress 00=: DATA

=: DATA_
DATA_VAL: Type of constant cell

entity CONST_MEM is
generic (DATA_VAL: BIT);
port (ACCESS: in BIT;

DATA: out BIT;
DATA_: out BIT);

end CONST_MEM;

architecture OP_CONST_MEM of CONST_MEM is
begin

process (ACCESS)
begin

-- Read Memory only valid op

DATA ACCESS

1
v"

Figure A.19
Constant Memory Cell

if «ACCESS = '1') and (DATA = '1') and (DATA_
DATA <= DATA_VAL after 1 ns;

'1')) then

256

Appendix A Circuit Designs & VHDL Code

DATA_ <= (not DATA_VAL) after 1 ns;
end if;

end process;
end OP_CONST_MEM;

A . 3.4.3 Memory Address Decoder

This is a data selector unit. The signal ADDR indicates which of the 16 memory locations are to

be accessed. The decoder unit then outputs 16 ACCESS signals. one per word of memory,

indicating whether or not memory cells in a particular word allow data to be read to or written

from them. When a read operation is in progress, as indicated by WRITE_OP, only one of the

ACCESS signals are non-zero. During a write operation one or none of the ACCESS signals are

non-zero; writing to the four fixed memory words, from (0000] to (0011] respectively, is

meaningless and if such an operation is attempted then all of the ACCESS signals are set to zero

via the multiplexors. The circuitry to decode addresses (0000], (0001], (0010] and (1111]

is shown in figure A.20; each one simply identifies if the location in ADDR is a particular

number, shown inside the gate, outputting a logic-I if so. This is done with a mixture of NOR

gates, AND gates and INVERTERS, and circuits to decode the other addresses are similar to

those shown. The VHDL code for this circuit is shown below, and a schematic of the circuit

itself is shown in figure A.20.

ADDR: Memory location required
-- WRITE_OP: Write operation required
-- ACCESS: Word select lines

entity ADDR_DECODER is
port (WRITE OP: in BIT;

ADDR: in BIT_VECTOR(O to 3);
ACCESS: out BIT_VECTOR(O to 15));

end ADDR_DECODER;

architecture OP_ADDR_DEC of ADDR_DECODER is
begin

process (ADDR, WRITE_OP)
variable TEMP_LINES: BIT_VECTOR(O to 15);

begin

-- Blank all access lines initially

TEMP_LINES := (others => '0');

257

Appendix A Circuit Designs & VHDL Code

WRITE_OP_ ~
8 _ACCESS [16]

ADDR[4]_
ADDRo ~
ADDRl

ADDR2 WRITE_OP
ADDR3

0 0

1 0 ACCESS [16]

2 0

15
Figure A.20 Memory Address Decoder

-- Mark the correct one

case ADDR is
when "0000" => TEMP_LINES [0] ::;;: 1;
when "0001" => TEMP_LINES [1] := 1;
when "0010" => TEMP_LINES [2] := 1;
when "0011" => TEMP_LINES [3] := 1;
when "0100" => TEMP_LINES [4] .- 1;
when "0101" => TEMP_LINES [5] :;; 1;
when "0110" => TEMP_LINES [6] := 1;
when "0111/1 => TEMP_LINES [7] :::;; 1;
when "1000" => TEMP_LINES [8] := 1;
when "1001" => TEMP_LINES [9] := 1;
when "1010" => TEMP_LINES [10] .- 1;
when "1011" => TEMP_LINES [11] := 1;
when "1100" => TEMP_LINES [12] :; 1;
when "1101" => TEMP_LINES [13] := 1;
when "1110" => TEMP_LINES [14] := 1;
when "1111" => TEMP_LINES [15] := 1;

end case;

-- Make exception for writing to fixed ops

if ((ADDR[3] = '0') and (ADDR[2] '0') and (WRITE_OP = '1'» then
TEMP_LINES := (0 to 3 => '0');

end if;

-- Copy them all across

ACCESS <= TEMP_LINES;
end process:

258

Appendix A Circuit Designs & VHDL Code

A. 3.4.4 Bit Control Logic Driver

This is a control generation unit. It ensures that the correct signal is on the DATA and DATA_

lines for each bit-column in the memory; bits at the same position in different words share the

same DATA and DATA_ values, but at most one bit cell in this column is activated via it's ACCESS

value. On a write operation the data from NS and TEMP is driven onto DATA, with the

complement placed on DATA_. On a read operation both DATA and DATA_ have logic-l placed

on them. The VHDL code for this circuit is shown below, and a schematic of the circuit itself

is shown in figure A.21.

NS:
TEMP:
WRITE_OP:
DATA:

Current NS data
Previously stored NS data
Type of operation required
Data for the bit columns

DATA_: More data for the bit columns

entity MEM_BCL is
port (NS:

TEMP:
WRITE_OP:
DATA:
DATA_:

end MEM_BCL;

in BIT_VECTOR (0 to
in BIT_VECTOR (0 to
in BIT;
buffer BIT_VECTOR (0
buffer BIT_VECTOR(O

architecture OP_MEM_BCL of MEM_BCL is
component MUX_2

11) ;

9) ;

to
to

21) ;
21)) ;

port map (SEL, A, B: in BIT; OUT out BIT);
end component MUX_2i

begin
process (WRITE_OP, NS, TEMP)
begin

-- Generate NS related lines first

GEN NS: for K in 0 to 11 generate
MX1: UX_2 port map (WRITE_OP, 1, NS[K] , DATA[K]);
MX2: MUX_2 port map (WRITE_OP, 1, (not NS[K]), DATA_[K]);

end generate GEN_NS;

-- Then generate old TEMP lines

GEN_TEMP: for K in 0 to 9 generate
MX3: MUX_2 port map (WRITE_OP, 1, TEMP[K], DATA[K+12]);
MX4: MUX_2 port map (WRITE_OP, 1, (not TEMP[K]), DATA_[K+12]);

end generate GEN_TEMP;
end process;

259

Appendix A Circuit Designs & VHDL Code

WRITE_OP=rn=~
NS [12] b DATA[22]

E:: DATA_[22]
TEMP [10] CQ

WRITE _OP

NS[O:ll]
;::; 0 n ;:; ;;; m TEMP[0:9]
U> U> U> U> '" '" Z Z Z z i:l i:l

8 8

~ ~
0 0

- " " n
0 ;:; ~ n ~ 0 -; N ,

",' '" ;.'i ;.'i ;.'i '" 8 8

~ <'i <'i <'i " <'i "
Figure A.21 RAM Unit Bit Control Logic

A.3.4.S Instruction Memory Block

This is a data storage unit. It holds an array of base memory storage cells, which share

common data 110 lines amongst the bit columns. ReadfWrite control is handled by the DATA

and DATA_ lines, which is also where any output data is placed by the memory cells. Word

selection is handled by the ACCESS signals, which activate a single row of cells within the

array. The first four words of memory are ROM-based for the fixed instructions, whilst the

rest are RAM-based for the programmable instructions. The VHDL code for this circuit is

shown below, and a schematic of the circuit itself is shown in figure A.22.

DATA: Bit-control data and data I/O
-- DATA_: Bit control data and data I/O
-- ACCESS: Word control data

entity MEM_BLOCK is
port (ACCESS: in BIT_VECTOR(O to 15)

DATA: buffer BIT_VECTOR(O to 21),
DATA_: buffer BIT_VECTOR(O to 21)),

end MEM_BLOCK,

260

Appendix A Circuit Designs & VHDL Code

ACCESS [16)_

~::c
OU - DATA[22)

~g -DATA_[22)
~=

DATA (0) I DATA[l) I DATA(2) I
DATA_[O) DATA_[l) DATA_(2)

DATA[2l) I
DATA_ (21)

............... -

ACCESS[4) _ -
t

-~~~--~~ ACCESS[15)

tt tt tt tt
Figure A.22 Memory Cell Array

architecture OP_MEM_BLOCK of MEM_BLOCK is
component BASE_MEM

port (DATA, DATA_: buffer BIT; ACCESS: in BIT);
end component;
component CONST_MEM

generic (DATA_VAL: BIT);
port (ACCESS: in BIT; DATA, DATA_: buffer BIT);

end component i
begin

-- Simple large array of elements

GEN_BLK1: for K in 0 to 21 generate

-- Fixed instructions

GEN_BLK2: for L in 0 to 3 generate
MEM: CONST_MEM generic map (0)

port map (DATA[K), DATA_[K), ACCESS[L);
end generate GEN_BLK2;

-- Programmable instructions

261

Appendix A Circuit Designs & VHDL Code

GEN_BLK3: for L in 4 to 15 generate
MEM: BASE_MEM port map (DATA[K], DATA_[K], ACCESS[L]);

end generate GEN_BLK3;
end generate GEN_BLK1;

end MEM_BLOCK;

A.3.4.6 Complete Memory Block

This is the entire memory block, consisting of the memory array block, address decoders and

bit-control logic. No logic in addition to that already described in section A.3.4 exists in this

circuit. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is

shown in figure A.23.

NS: Current NS data
TEMP: Previous NS data
WRITE_OP: Memory operation
ADDR: Memory address (OPCODE) required
DATA: Memory I/O data
DATA_ : Memory

entity RAM_UNIT is
port (NS:

TEMP:
WRITE_OP:
ADDR:
DATA:
DATA_:

end RAM_UNIT;

I/O data

in BIT_VECTOR (0 to
in BIT_VECTOR (0 to
in BIT;
in BIT_VECTOR (0 to
buffer BIT_VECTOR (0
buffer BIT_VECTOR(O

architecture OP_RAM UNIT of RAM UNIT
component MEM_BLOCK

11) ;
9) ;

3) ;
to 21) ;
to 21)) ;

port (ACCESS: in BIT_VECTOR(O to 15);
DATA, DATA_: buffer BIT_VECTOR(O to 21));

end component;
component ADDR_DECODER
port (WRITE_OP: in BIT; ADDR: in BIT_VECTOR(O to 3);

ACCESS: out BIT_VECTOR(O to 15));
end component;
component MEM_BCL

port (NS in BIT_VECTOR(O to 11); TEMP: in BIT_VECTOR(O to 2);
WRITE_OP: in BIT; DATA, DATA_:buffer BIT_VECTOR(O to 21));

end component;
signal WORD_ACCESS: BIT_VECTOR(O to 15);

begin

-- Simply link everything together

COMP1: MEM BCL port map (NS, TEMP, WRITE_OP, DATA, DATA_);
COMP2: ADDR_DECODER port map (NS, ADDR, WORD_ACCESS);
COMP3: MEM_BLOCK: port map (WORD_ACCESS, DATA, DATA_);

end OP_RAM_UNIT;

262

Appendix A

NS [121------,.

TEMP[101_1 RAM I+DATA[221

WRITE_Op-.L.~_U_N_I_T __ ~~DATA_[221

ADDR [41 __ ..Jt

NS[121----------------------,

TEMP[101-------------------. 1

WRITE_OP

ADDR[41

Figure A.23

].-----..... 1 BITCIRL 1
DATA[22j DATA_

'"i"
MEMORY . ~

~ ACCESS [16) BLOCK
• ...s.. ~ ~

DATA[221

Enitre RAM Unit

A.3.S Complete Instruction Set Store

[221

Circuit Designs & VHDL Code

This is a data storage unit. It contains all of the units required for the entire instruction set

memory unit, including read/write control, opcode locking, physical memory array and

temporary data storage. It adds no additional functionality other than that already described.

The VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown

in figure A.24.

CLOCK: System clock
OPCODE: Current opcode
RESET: System reset signal
NS: Current NS input data
WRITE_OP: Memory operation
CTRL[22]: Control signal outputs

entity OPCODE_MEMORY is
port (CLOCK, RESET: in BIT;

OPCODE: in BIT_VECTOR(O
NS: in BIT_VECTOR (0
WRITE_OP: out BIT;
CTRL: out BIT_VECTOR (0

end OPCODE_MEMORY;

to 3);
to 11);

to 21));

architecture OP INSTR_SET of OPCODE_MEMORY is

263

Appendix A Circuit Designs & VHDL Code

component RAM_UNIT
port (NS: in BIT_VECTOR(O to 11); TEMP: in BIT_VECTOR(O to 3);

WRITE_OP: in BIT; ADDR: in BIT_VECTOR(O to 3);
DATA, DATA_: buffer BIT_VECTOR(O to 21));

end component:
component TEMP_REG
port (CLOCK, WRITE_OP: in BIT; NS: in BIT_VECTOR(O to 9);

TEMP: out BIT_VECTOR(O to 9));
end component;
component LOCK_OUTER
port (OPCODE: in BIT_VECTOR(O to 3); CLOCK, RESET: in BIT;

MEMADDR: out BIT_VECTOR(O to 3));
end component;
component MEM_RW is
port (CLOCK, RESET: in BIT; OPCODE: in BIT_VECTOR[O to 3];

WRITE_OP: out BIT);
end component:
signal MEMORY_WRITE: BIT;
signal MEM_ADDR: BIT_VECTOR(O to 3);
signal TEMP_NS: BIT_VECTOR(O to 9);
signal PX, NX: BIT_VECTOR(O to 21);

begin

-- Simply map everything together

COM1: MEM_RW port map (CLOCK, RESET, OPCODE, MEMORY_WRITE);
COM2: LOCK_OUTER port map (OPCODE, CLOCK, RESET, MEM_ADDR);
COM3: TEMP_REG port map (CLOCK, MEMORY_WRITE, NS[O to 9], TEMP_NS);
COM4: RAM_UNIT port map (NS, TEMP_NS, MEMORY_WRITE, MEM_ADDR, PX, NX);
WRITE_OP <= MEMORY_WRITE;
CTRL <= PX;

end OP_INSTR_SET;

CLOCK

RESET

OPCODE[4J

NS[12J

NS [0, 21

Figure A.24

CLOCK:----------'.

RESET~--~.~r---v--_,_
OPCODE [4 J -----t •• 1 OPCODE WRITE_OP

NS[12J • MEMORY _CTRL[22J

It WRIT

~ MEMORY_WRITE

::.
X ... ::.

NS[O,9)
i::

'I-
~ •

""',n'l • CTRL
RAM 6_,,:, r± UNIT

S
HEMJJlDR (41 t

~
U
0

....::L

Complete Instruction Set Memory

[22J

264

Appendix A Circuit Designs & VHDL Code

A.4 Mathematical Units

A.4.1 ABS Unit

This is a subsidiary unit to the multiplier. It modifies one of the inputs to the multiplier to be

±1.0, such that the other input to the multiplier is of a specified sign after the mUltiplication.

The values and implications of the signal CONTROL were specified in table 5.5. If the unit is not

active (CONTROL[lJ) then the input DATA is allowed to pass through unaltered. If the unit is

active then the sign of this input (DATA [11]) and CONTROL [0] determines whether or not DATA

is replaced by either + 1.0 or -1.0. The final output of the unit is placed in MOD_DATA. Note,

the binary representations within the PE for values +1.0 and -1.0 are 000010000000 and

111110000000 respectively. The VHDL code for this circuit is shown overleaf, and a

schematic of the circuit itself is shown in figure A.25.

CONTROL: Unit control signals
-- DATA: Input data
-- MOD_DATA: Output data

entity ABS_UNIT is
port (CONTROL: in BIT_VECTOR(O to 1);

DATA: in BIT_VECTOR(START to STOP) ;
MOD_DATA: out BIT_VECTOR(START to STOP»;

end ABS_UNIT;

architecture MULT_ABS UNIT of ABS UNIT is
component MUX_2

port (SEL, A, B: in BIT; OUT: out BIT);
end component;
signal SELECT: BIT;

begin

-- Generate MUX's that are the same regardless of input sign

BLK1: for K in 0 to 6 generate
MX1: MUX_2 port map (CONTROL [1] , DATA[K], 0, MOD_DATA[K]);

end generate BLK1;
BLK2: MUX_2 port map (CONTROL [1] , DATA[?], 1, MOD_DATA[?]);

-- Generate sign-dependent MUX's

SELECT <= CONTROL[O] xor DATA[ll];
BLK3: for K in 8 to 11 generate

MX2: MUX_2 port map (CONTROL [1] , DATA[K], SELECT, MOD_DATA[K]);
end generate BLK3;

end MULT_ABS_UNIT;

265

Appendix A Circuit Designs & VHDL Code

CONTROL [0 I-.>i'l)!!"""+ ___ _

CONTROL [11-+-----1-_.---

DATA[O, 1111~ ___ ~ __ ~_

MOD_DATA [0 ,111-----"""-

Figure A.2S ABS Unit

A.4.2 Result Range Limiter

A.4.2.1 Range Limit Programmer

This is a data storage unit. It stores and continually outputs a pair of l2-bit values, LIM_MAX

and LIM_MIN. These are stored within two l2-bit register blocks. The upper block, used to

store LIM_MAX, has the value NS stored if a write operation is in progress CWRITE_OP) and the

value on ADDR is (0011]. If the value on ADDR is (0000] then the data on NS is stored in the

lower register block, which holds LIM_MIN, during a write operation. The VHDL code for this

circuit is shown below, and a schematic of the circuit itself is shown in figure A.26.

CLOCK: System clock
NS: Data to be stored
ADDR: Indicates which limit is on NS
WRITE_OP: Data on NS is to be stored
LIM_MAX: Current maximum limit
LIM_MIN: Current minimum limit

entity LIMIT_STORE is
port (CLOCK: in BIT;

NS: in BIT_VECTOR (0 to
ADDR: in BIT_VECTOR (0 to
WRITE_OP: in BIT;
LIM_MAX: out BIT_VECTOR(O to
LIM_MIN: out BIT_VECTOR(O to

end LIMIT_STORE;

11) ;

3) ;

11) ;
11)) ;

architecture RL_LIMIT_STORE of LIMIT_STORE is
component AND2

port (A, B: in BIT; RES: out BIT);
end component;
component NOR2

266

Appendix A Circuit Designs & VHDL Code

port (A, B: in BIT; RES: out BIT);
end component;
component INTERNAL_REG

generic (START, STOP: INTEGER);
port (CLOCK, LOAD: in BIT; IP: in BIT_VECTOR(START to STOP);

OP: out BIT_VECTOR(START to STOP»;
end component;
signal Tl, T2, T3, T4: BIT;
signal LOAD_HIGH, LOAD_LOW: BIT;

begin

-- Generate control signals

ANl: AND2 port map (ADDR[l) , ADDR [0) ,
NRl: NOR2 port map (ADDR[3), ADDR[2) ,
NR2: NOR2 port map (ADDR [l) , ADDR[O) ,
AN2: AND2 port map (T2, WRITE_OP, T4) ;

Tl) ;
T2) ;
T3) ;

AN3: AND2 port map (Tl, T4, LOAD_HIGH) ;
AN4: AND2 port map (T4, TS, LOAD_LOW) ;

-- Instantiate both register blocks

RBl: INTERNAL_REG port map (CLOCK, LOAD_HIGH, NS, LIM_MAX);
RB2: INTERNAL_REG port map (CLOCK, LOAD_LOW, NS, LIM_MIN);

end RL_LIMIT_STORE;

CLOCK

NS [0: 11]-

ADDR[0:3]

NS [0 : 11]----------;:~~~===4___,
LOAD_HIGH

ADDR[O]
ADDR[l]

ADDR[2]
ADDR[3]

ADDR[O]
ADDR[l]

Figure A.26

Tl

T4

Range Limit Data Stores

CLOCK

CLOCK

267

Appendix A Circuit Designs & VHDL Code

A.4.2.2 Single Bit Data Comparator

This is a control signal generator. This is a bit-slice circuit, designed to be implemented with a

cascade of multiple instances. It takes in two I-bit values, A and B, along with a pair of control

signals, C_IN, and indicates via C_OUT whether A=B, A>B or A<B by setting C_OUT to [10],

[00] or [11] respectively. The VHDL code for this circuit is shown below, and a schematic

of the circuit itself is shown in figure A.27.

A
B

B

A-.

B-.

SEL

~.sr- OUT

'/'

0'

!;
0

I
U

Figure A.27 I -Bit Comparator

A: First input value
B: Second input value
C_IN: Initial state of n-bit comparison
C_OUT: Comparison result

entity BIT_COMPARE is
port (A, B: in BIT;

C_IN: in
C_OUT: out

end BIT_COMPARE;

BIT_VECTOR (0 to 1);
BIT_VECTOR (0 to 1»

architecture RL_BIT_COMPARE of BIT_COMPARE is
component MUX_2

port (SEL, A, B: in BIT; OUT out BIT);
end component;
signal DIFF: BIT;

begin

268

Appendix A Circuit Designs & VHDL Code

-- simple multiplex~r function

DIFF <= A xor B;
GEN: for K in 0 to 1 generate

MUX: MUX_2 port map (DIFF, C_IN[Kj, B, C_OUT[Kj);
end generate GEN;

end RL_BIT_COMPARE;

A.4.2.3 n-Bit Comparator

This is a control signal generator. It compares two n-bit data words, indicating which of the

two are the largest (or if they are equal). Multiple instances of the I-Bit Comparator are used,

with the C_OUT output of one being the C_IN input to the next. The final C_OUT value indicates

the relative sizes of the two n-bit data words. The VHDL code for this circuit is shown below

and a schematic of the circuit, instantiated as an I I-bit comparator, is shown in figure A.28.

A:
-- B:

First input
Second input

-- COMP: Comparator result

entity WORD_COMPARE is
generic (START: INTEGER := 0; STOP: INTEGER := 10);
port (A: in BIT_VECTOR(START to STOP);

B: in BIT_VECTOR(START to STOP);
COMP: out BIT_VECTOR(O to 1»;

end WORD_COMPARE;

architecture RL_WORD_COMPARE of WORD_COMPARE is
component BIT_COMPARE

port (A, B: in BIT; C_IN: in BIT_VECTOR(O to 1);
C_OUT: out BIT_VECTOR(O to 1»

end component;
signal C_INT: array [START to STOPj of BIT_VECTOR(O to 1);

begin

-- Starting values

C_INT[STARTj <= "la";

-- Simply cascade lots of I-bit comparators

CASC: for K in START to (STOP-1) generate
CMP: BIT_COMPARE port map (A[Kj, B[Kj, C_INT[K], C_INT[K+1j);

end generate CASC;
FIN: BIT_COMPARE port map (A[STOPj, B[STOPj, C_INT[STOPj, COMP);

end RL_WORD_COMPARE;

269

Appendix A

~ COMP[O:l] A[O:10] =ID-
B[O:10] Cl

A[O:10]--~--------~--------~-----­

B[O:10]~~------~1-------~+-------

A(OJ All] 0\121
~

B(O) ! B 11]

10 C_INTJl,O:lJ

'1'1 1
Figure A.28 N-Bit Comparator

A.4.2.4 Result Range Checker

Circuit Designs & VHDL Code

A/lO]

B(10) 1 COMP[O: 1]

This is a data interrogation unit. It takes in a 12-bit input NS and compares it with two other

inputs HIGH and LOW. The unit uses a mixture of I-bit and n-bit comparators to see if the NS

input is greater than HIGH or less than LOW. This is indicated via the 2-bit control output CTRL.

The VHDL code for this circuit is shown overleaf, and a schematic of the circuit itself is shown

in figure A.29.

HIGH[O: 11]

WE[O:l1]

LOW[O:l1]

Figure A.29

-
WEIO: 10)

I ~[Ol HIGH[O:10) MAlUWM(l]

= WE[l1J
..... ~SIGN(OI

HIGHJllJ ~ MlUCSIGN[l)

10-+~ t J
CTRL(11

'CTRL[
• ~

CTRLIO)

WE(lll r:- ","_''''''IOI~ ~
LOW[ll) ~ ~''''['I
10-+ Cl

'--
r--

WElD: 10]

I
KINJnlHIO]

LOW[O:lO)

~111
'--

Dual-Value Range Checker

WE[O:l1]~ ~ CTRL[O:l]
HIGH[O:ll]~ffi-

LOW[O:l1]~ a

0: 1]

270

Appendix A Circuit Designs & VHDL Code

WE: Data input
HIGH: Upper limiting value
LOW: Lower limiting value
CTRL: Check result output

entity RANGE_CHECK is
port (WE: in BIT_VECTOR(O

HIGH: in BIT_VECTOR (0
LOW: in BIT_VECTOR (0
CTRL: out BIT_VECTOR (0

end RANGE_CHECK;

to 11) ;

to 11) ;

to 11) ;

to 1»;

architecture RL_RANGE_CHECK of RANGE_CHECK is
component WORD_COMPARE

generic (START, STOP: INTEGER);
port (A, B: in BIT_VECTOR(START to STOP);

COMP: out BIT_VECTOR(O to 1»;
end component;
component BIT_COMPARE

port (A, B: in BIT; C_IN: in BIT_VECTOR(O to 1);
C_OUT: out BIT_VECTOR(O to 1»

component BIT_COMPARE
end component;
signal MAX_NUM, MAX_SIGN: BIT_VECTOR(O to 1);
signal MIN_NUM, MIN_SIGN: BIT_VECTOR(O to 1);

begin

-- Maximum value check

MX1: BIT_COMPARE port map (WE[ll], HIGH[ll], 10, MAX_SIGN);
MX2: WORD_COMPARE port map (WE[0:10], HIGH[0:10], MAX_NUM);
CTRL[l] <= MAX_SIGN[l] nand MAX_NUM[l] ;

-- Minimum value check

MN1: BIT_COMPARE port map (WE[ll], LOW[ll], 10, MIN_SIGN);
MN2: WORD_COMPARE port map (WE[0:10], LOW[0:10], MIN_NUM);
CTRL[O] <= MIN_SIGN[O] or MIN_NUM[O];

end RL_RANGE_CHECK;

A.4.2.S Complete Result Range Checker

This is a data integrity checker. It combines the Range Programmer and Range Checker, along

with a separate multiplexor, to determine if the data currently on the WE datapath lies within a

specified range; if it is outside this range then the value on WE is replaced by the relevant range

limit. The whole unit is activated through the assertion of the ACTIVE input. Note, that if the

input on WE is both greater than the upper limit and less than the lower limit then the chosen

value is WE, as such a situation implies that the range limits have been incorrectly specified.

271

Appendix A Circuit Designs & VHDL Code

The VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown

in figure A.30.

CLOCK: System Clock
ACTIVE:
WRITE_OP:
WE:

Unit activation input
Memory operation required
Current WE data

NS: Current NS data
ADDR: Current ope ode
NEW_WE: New WE data after check

entity RESULT_RANGE_CHECKER is
port (CLOCK: in BIT;

ACTIVE: in BIT;
WRITE_OP: in BIT;
NS: in BIT_VECTOR (0 to
WE: in BIT_VECTOR (0 to
ADDR: in BIT_VECTOR (0 to
NEW_WE: out BIT_VECTOR (0 to

end RESULT_RANGE_CHECKER;

11) ;

11) ;

3) ;

11)) ;

architecture RL_RESULT_CHECKER of RESULT_RANGE_CHECKER is
component RANGE_CHECK

port (WE, HIGH, LOW: in BIT_VECTOR(O to 11);
CTRL: out BIT_VECTOR(O to 1));

end component;
component LIMIT_STORE

port (CLOCK: in BIT; NS: in BIT_VECTOR(O to 11);
ADDR: in BIT_VECTOR(O to 3); WRITE_OP: in BIT;
LIM_MAX, LIM_MIN: out BIT_VECTOR(O to 11));

end component:
component MUX_4

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT: out BIT);
end component;
signal MAX_VAL, MIN_VAL: BIT_VECTOR(O to 11);
signal CHECK_RES, MUX_CTRL: BIT_VECTOR(O to 1);

begin

-- Map inputs to functional units

PRG: LIMIT_STORE port map (CLOCK, NS, ADDR, WRITE_OP, MAX_VAL, MIN_VAL);
CHK: RANGE_CHECK port map (WE, MAX_VAL, MIN_VAL, CHECK_RES);

-- Put everything through multiplexor

MUX_CTRL[Oj <= ACTIVE and CHECK_RES[Oj;
MUX_CTRL[lj <= ACTIVE and CHECK_RES[lj;
BLK: for K in 0 to 11 generate

MPX: MUX_4 port map (MUX_CTRL, WE[Kj, MIN_VAL[Kj, MAX_VAL[Kj, WE[Kj,
NEW_WE [Kj) ;

end generate BLK; .
Oend RL_RESULT_CHECKER;

272

Appendix A

CLOCK

WRITE_OP

ADDR[0,3]

NS[O,ll]

WE[O,l1]

Figure A.30

CLOCK----~

WRITE_OP'---l~ "

ADDR[0,3] J!~
NS[O,ll] '];i~
WE[O'l1]---l~ ~

ACTlVE-----"

~ l MAX.-VAL[O:l1] r--

I MIN VAL(O:ll] ~ CTRL[O:l]

~ " L..:... il
'-- t

L- \-
A 1 , ,

r 12x 4-10-1 Multiplexor 1::-
I

Complete Result Range Checker Unit

A.4.3 General Purpose Comparator

Circuit Designs & VHDL Code

il
t ACT I

1
VE

'y
MU~C1'RL[O'll

WE_NEW [0 ,11)

This is a data comparator. It takes in two l2-bit data items, A and B, and performs some

comparison operation on them. The unit can carry out either an equality check, indicated by the

input EQUALITY, or can choose the maximum or minimum of the two inputs, as indicated by

the input MAXIMUM. A comparison operation is automatically done when an equality operation

is not required. During an equality check the 12-bit output of the unit, COMP _RES, contains

either 1.0 or 0.0 depending upon a positive or negative result to the check. During a

comparison operation the maximum or minimum of the two inputs, depending on the

comparison required, is copied onto the COMP_RES output. The VHDL code for this circuit is

shown below, and a schematic of the circuit itself is shown in figure A.3I.

A[12] :
B [12] :
EQUALITY:
MAXIMUM:
COMP_RES (12) ,

First input input
Second data input
Equality/Comparison switch
Comparison value required
Result of comparison operation

273

Appendix A Circuit Designs & VHDL Code

A[O:11J----~~~~~u~'·~"ll"----,

8 [0 : lll--.--+-~= ... ==--,

A(O'")~
8[0:11) E [COMP_RES[O:l1]

EQUALITY S ~
MAXIMUM

COX!' [0 I COKI'I11

EQUALITY--r-r-----~~--_+--+_--------,_\

MAXIMUM-j-j-------j-----t:=:==;:[)

IIIJ%..sa.[I]

Figure A.31 General Purpose Comparator Unit

entity GP_COMPARATOR is
port (A, B: in BIT_VECTOR(O to 11);

EQUALITY: in BIT;
MAXIMUM: in BIT;
COMP_RES: out BIT_VECTOR(O to 11»

end GP_COMPARATOR;

architecture GP_DATA_COMPARATOR of GP COMPARATOR is
component WORD_COMPARE

generic (START, STOP: INTEGER);
port (A, B: in BIT_VECTOR(START to STOP);

COMP: out BIT_VECTOR(O to 1»;
end component;
component MUX_4

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT; OUT out: BIT);
end component;
component OR2

port (A, B: in BIT; RES: out BIT);
end component;
component AND2

port (A, B: in BIT; RES: out BIT);
end component;
component XOR2

port (A, B: in BIT; RES: out BIT);
end component i
signal A2, B2: BIT_VECTOR(O to 11);
signal CTRL: BIT_VECTOR(O to 11);
signal MUX_SEL: BIT_VECTOR(O to 1);
signal T1, T2, T3, T4: BIT;

begin

-- Get copies of inputs with inverted signs

A2[0 to 10] <= A[O to 10];
A2[11] <= not A[ll];
B2[0 to 10] <= B[O to 10];

274

Appendix A Circuit Designs & VHDL Code

B2[11] <= not B[ll];

-- Feed these into the comparator

CMP: WORD_COMPARE generic map (0, 11) port map (A2, B2, CTRL);

-- Work out which result to use

MUX_SEL[l] <= EQUALITY;
XR1: XOR2 port map (CTRL[O] , CTRL[l] , T1);
XR2: XOR2 port map (CTRL[O] , MAXIMUM, T2),
AN1: AND2 port map (T1, EQUALITY, T3);
AN2: AND2 port map (T2, not EQUALITY, T4);
OR1: OR2 port map (T3, T4, MUX_SEL[O]);

-- Then use it

RES1: for K in ° to 6 generate
MUX_4 port map (MUX_SEL, B[K], A[K], 0, 0, COMP_RES[K]),

end generate RESli
RES2: MUX_4 port map (MUX_SEL, B[7], A[7], 0, 1, COMP_RES[7]);
RES3: for K in 8 to 11 generate

MUX_4 port map (MUX_SEL, B[K], A[K], 0, 0, COMP_RES[K]);
end generate RES3;

end GP_DATA_COMPARATOR;

A.4.4 Fixed-Point Adder Unit

A.4.4.1 Radix-4 Adder Unit

This is a standard radix-4 adder. It adds a pair of 2-bit inputs, A and B, taking into account the

value of any carry-in, as indicated by eIN, The result of the addition, along with the resultant

carry-out, is made available at SUM and C_OUT respectively, The VHDL code for this circuit is

shown overleaf, and a schematic of the circuit itself is shown in figure A.32.

A:
B:
C_IN:
C_OUT:
SUM:

First input
Second input
Carry-in to calculation
Carry-out of calculation
Result of calculation

entity RADIX_4 is
port (A: in BIT_VECTOR (0 to

B: in BIT_VECTOR (0 to
C_ IN: in BIT;
C - OUT: out BIT;
SUM: out BIT_VECTOR(O to

end RADIX_4;

1) ,
1) ,

1) ;

275

Appendix A Circuit Designs & VHDL Code

A[O: 1]

B[O:l]

C_IN_

C_IN
A[O]--~~xo ______ ~~ __ ~ __ ~~
B[O] ~ ~SUM[O]

SEL

A [1] _c----'l \ X>

B[l]-+~~~F+----4rr-+-----~

A C
'---___ "18 .~

. ..." 1-""""'----.1
L--_____ c"l ~

Figure A.32 Radix-4 Adder

architecture BASIC_RADIX_4 of RADIX_4 is
component XOR2

port (A, B: in BIT; RES: out BIT);
end component;
component NAND2

port (A, B: in BIT; RES: out BIT);
end component;
component MAJORITY

port (A, B, C: in BIT; RES: out BIT);
end component;
component MUX_2

port (SEL, A, B: in BIT; OUT: out BIT);
end component;
signal XO, Xl, MAJOR: BIT;
signal C_INTERNAL, C_SELECT: BIT;

begin

-- Generate SUM[2)

XRl: XOR2 port map (A[O), B[O), XO);
XR2: XOR2 port map (A[l), B[l), Xl);
MXl: MUX_2 port map (XO, B[O), C_IN, C_INTERNAL);
XR3: XOR2 port map (XO, C_IN, SUM[O);
XR4: XOR2 port map (Xl, C_INTERNAL, SUM[l);

-- Generate C_OUT

MAJ: MAJORITY port map (A[l), B[l), B[O), MAJOR);
NAl: NAND2 port map (XO, Xl, C_SELECT);
MX2: MUX_2 port map (C_SELECT, MAJOR, C_IN, C_OUT);

276

Appendix A Circuit Designs & VHDL Code

A . 4 .4.2 Adder Block Pair

This is a 4-bit adder. By cascading together two Radix-4 adders allows creation of a 4-bit

adder, which is a useful circuit in the generation of the full 12-bit carry-select adder. It simply

joins two instances of a radix-4 adder together, with no further intermediate circuitry. The

VHDL code for this circuit is shown below, and a schematic of the circuit itself is shown in

figure A.33.

A: First input
B: Second input
C_IN: Carry-in to calculation
C_OUT: Carry-out of calculation
SUM: Result of calculation

entity ADDER_PAIR is
port (A: in BIT_VECTOR(O to 3);

B: in BIT_VECTOR (0 to 3);

C_ IN: in BIT;
C _OUT: out BIT;
SUM: out BIT_VECTOR (0 to 3));

end ADDER_PAIR;

architecture ADDER_4 of ADDER_PAIR is
component RADIX_4

A[O:3]

B[O:3]
;:; ..
0 ..

;:; ..
0

4
•

•

r..
A[O:3]---. ~

"Cl
B[O:3]---. -<

~
I

.~
"Cl
(U

c:z::

-.-C_IN---' ~
~

- -M M
:::'. :::'. .. .::. C_PROP

r----:::-.... ..
~

~
'"

Figure A.33 4-Bit Basic Adder Block

~
I

~ .-"Cl

~ --
M ..
:::'.
~
'" . • ~ SUM[O:3]

277

Appendix A Circuit Designs & VHDL Code

port (A, B: in BIT_VECTOR(O to 1); C_IN: in BIT; C_OUT: out BIT;
SUM: out BIT_VECTOR(O to 1));

end component;
signal C_PROP: BIT;

begin

-- Simply join two of them together

AD1: RADIX_4 port map (A[O to 1], B[O to 1], C_IN, C_PROP, SUM[O to 1]);
AD2: RADIX_4 port map (A[2 to 3], B[2 to 3], C_PROP, C_OUT,SUM[2 to 3]);

end ADDER_4;

A.4.4.3 Carry-Select Adder Block

This is a section of a 4-bit carry-select adder. It consists of two instances of the Adder Block

Pair, with one given C_IN = 0 and the other C_IN = 1. The blocks add the same A and B data

values. The block sum and carry outputs SUM and CARRY are selected depending on the value of

C_IN for the entire block. The VHDL code for this circuit is shown below, and a schematic of

the circuit itself is shown in figure A.34.

A: First input
B: Second input
C_IN: Carry-in to block
C_OUT: Carry-out of block
SUM: Result of calculation

entity CARRY_SELECT is
port (A: in BIT_VECTOR (0

B: in BIT_VECTOR(O
C - IN: in BIT;
C_OUT: out BIT;
SUM: out BIT_VECTOR(O

end CARRY_SELECT;

to 3) ;
to 3) ;

to 3)) ;

architecture BLOCK_CARRY SELECT of CARRY SELECT is
component ADDER_PAIR

port (A, B: in BIT_VECTOR(O to 3); C_IN: in BIT; C_OUT: out BIT;
SUM: out BIT_VECTOR(O to 3));

end component;
component MUX_2

port (SEL, A, B: in BIT; OUT out BIT);
end component;
signal C_LO, C_HI: BIT;
signal SUM_LO, SUM_HI: BIT_VECTOR(O to 3);

begin

-- Setup a pair of adders with opposite C_IN

AD1: ADDER_PAIR port map (A, B, 0, C_LO, SUM_LO);
AD2: ADDER_PAIR port map (A, B, 1, C_HI, SUM_HI);

278

Appendix A Circuit Designs & VHDL Code

-- Output the correct C_OUT and SUM with multiplexors

CAR: MUX_2 port map (C_IN, C_LO, C_HI, C_OUT);
BLK: for K in 0 to 3 generate

SUM: MUX_2 port map (C_IN, SUM_LO[K], SUM_HI[K], SUM[K]);
end generate BLK;

end BLOCK_CARRY_SELECT;

A[O:3]

A[O:3]_ ~

B[O:3]_ :!l!
C_IN

1

~"-IN
4·BitAdder

B [0 : 3] -+L-=-t---l~r---'P:=~-W C_LO

4·BitAdder SEL .)(

L---"l ~ ~ 1---_ SUM [0 : 3]
SUM_!-:LO:-;"[""O ,"'",:-[--:lA N

Figure A.34 Carry-Select Adder 4-Bit Block

A.4.4.4 Subtraction Control Unit

This is a control generator and data selector unit. It takes in the second input to the adder unit,

B, and produces either a copy of it or the inverse of it in the output B_. This is done on the

basis of the input ADD_SUB, which determines the operation carried out by the adder unit (I =>

addition). The initial carry-in to the adder unit, C_IN, is also generat~d; if a subtraction

operation is required then it is set to logic-I, otherwise it is set to logic-O. The VHDL code for

this circuit is shown below, and a schematic of the circuit itself is shown in figure A.35.

279

Appendix A Circuit Designs & VHDL Code

ADD_SUB----------------~--__1 :xr-----.

!;

>C>:-:::::--'j.A I i
B_INT "9 B_[O: 111

::.)------+
~

B[O,ll)--~--------~··1 ~
~

Figure A.35 Subtraction Control Unit

B: Second input to the adder unit
B_: Modified second input to the adder
ADD_SUB, Required adder operation
C_IN: Initial carry-in to the adder

entity SUBTRACT_CONTROL is
port (B, in BIT_VECTOR(O to 11);

in BIT;
out BIT_VECTOR(O to 11);

C_IN' out BIT);
end SUBTRACT_CONTROL;

architecture ADD_SUB_CONTROL of SUBTRACT_CONTROL is
component MUX_2

port (SEL, in BIT; A, B, in BIT; OUT, out BIT);
end componenti
signal B_INT, BIT_VECTOR(O to 11);

begin

-- Invert all of B

SGN: for K in 0 to 11 generate
B_INTIK) <= not B(K);

end generate SGN;

-- Select correct B or B_INT

BLK, for K in 0 to 11 generate
MX: MUX_2 port map (ADD_SUB, B_INTIK), BIK), B_IK»;

end generate BLK;

-- Finally, do the carry

C_IN <= not ADD_SUB;
end ADD_SUB_CONTROL

280

Appendix A Circuit Designs & VHDL Code

A. 4.4.5 Overflow/Underflow and Integrity Handler

This is a data selector unit. This unit will output either the addition result or the

maximum/minimum representable number. This is done using the integrity flags for both

inputs (A_INT and B_INT), the sign values of both inputs (A_SIGN and B_SIGN) and the sign

value of the result of the addition (RES [11 n. The results of various pieces of combinational

logic are used to drive the selectors of a set of 4-10-1 Mulliplexors, which selects the correct

output. The VHDL code for this circuit is shown below, and a schematic of the circuit itself is

shown in figure A.36.

RES_IN[O:11J---------.
1

A_INT---.r1~~ 'U r-_RES_OUT[O:l1j
B_INT------+I "'!

A_SIGN------+I ~ ~ 1--_ INT_OUT

B_SIGN <

A_SIGN
B_SIGN

L. _______ RES_IN [11]

MA)(MIN o 1

J ,m
12x 4-10-1 Mulliplexor

Figure A.36 Adder OverflowlUnderflow & Integrity Handler

A_INT: Integrity status of adder input
B - INT: Integrity status of adder input
A_SIGN: Sign value of adder input A
B _SIGN: Sign value of adder input B
RES_IN: Result of the addition
RES_OUT: Output of unit
INT_OUT: Integrity of the unit output

entity ADDER_OVERFLOW is
port (A INT: in BIT;

B INT: -
A_ SIGN:
B_SIGN:
RES IN:

in
in
in
in

BIT;
BIT;
BIT;
BIT_VECTOR(O to 11);

A
B

281

Appendix A Circuit Designs & VHDL Code

RES_OUT: out BIT_VECTOR(O to 11);
INT_OUT: out BIT);

end ADDER_OVERFLOW;

architecture ADDITION_OVERFLOW of ADDER_OVERFLOW is
component MUX_4

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT;
OUT: out BIT);

end component;
component NAND2

port (A, B: in BIT; RES out BIT);
end component;
component AND2

port lA, B: in BIT; RES out BIT);
end component i
component NOR2

port lA, B: in BIT; RES out BIT);
end component;
component OR2

port lA, B: in BIT; RES out BIT);
end component;
signal A_OVR_, B_OVR_, A_UND_, B_UND_: BIT;
signal INT_OVR, INT_UND, RES_OVR, RES_UND: BIT;
signal ALL_POS, ALL_NEG_: BIT;
signal SELECT: BIT_VECTOR(O to 1);

begin

-- Check for overflow possibilities

NA1: NAND2 port map IA-INT, not lA_SIGN) , A_OVR_l;
NA2: NAND2 port map (B_INT, notIB_SIGN), B_OVR_);
NR1: NOR2 port map IA_OVR_, B_OVR_, INT_OVR);
NR2: NOR2 port map (A_SIGN, B_SIGN, ALL_POS);
AN1: AND2 port map (ALL_POS, RES[ll], RES_OVR);
OR1: OR2 port map (INT_OVR, RES_OVR, SELECT[O]);

-- Check for underflow possibilities

NA3: NAND2 port map (A_INT, A_SIGN, A_UND_);
NA4: NAND2 port map IB_INT, B_SIGN, B_UND_);
NR3: NOR2 port map (A_UND_, B_UND_, INT_UND);
NA4: NAND2 port map (A_SIGN, B_SIGN, ALL_NEG_);
NR4: NOR2 port map (ALL_NEG_, RES[ll], RES_UND);
OR2: OR2 port map (INT_UND, RES_UND, SELECT[l]);

-- Now select an integrity and a result sign/value

MX1: MUX_4 port map (SELECT, 0, 1, 1, 1, INT_OUT);
MX2: MUX_4 port map (SELECT, RES_IN[ll] , 0, 1, 0, RES_OUT[ll]);
SEL: for K in ° to 10 generate

MX3: MUX_4 port map (SELECT, RES_IN[K], 1, 0, 1, RES_OUT[K]);
end generate SEL;

end ADDITION_OVERFLOW;

282

Appendix A Circuit Designs & VHDL Code

A.4.4.6 Complete Adder Unit

This is the entire 12-bit fixed-point adder unit. It takes in two 12-bit numbers, A and B, and

their respective integrity flags, A_INT and B_INT, and produces a 12-bit output RES and an

associated integrity flag INTEG. The operation carried out is A+B, unless the input ADD is logic-

0, in which case the operation is A-B. The integrity circuit can be bypassed entirely by setting

the input RAW to logic-I; this ignores the bypass function (and sets INTEG to logic-O), but means

that the VHDL compiler would not have to generate the unit at all if this input was a constant

logic-I at the instantiation of the adder unit. The VHDL code for this circuit is shown below,

and a schematic of the circuit itself is shown in figure A.37.

A
DDl lB[O,lll

I Subtractor I
c _'N S[o: 11]

TEMP[O:11]

A[O,ll I

" r::
~T~ ..- '" q t ~
5(0=3) ~ ~ 5[4:1) :g ~

~ "l
-<
"l ~ C_IN:!.... C_IN '--

Figure A.37 Complete Adder Unit

A:
B:
ADD:
RAW:
A_INT:
B_INT:

Adder input A
Adder input B
Indicates if op is subtraction
Pay no attention to integrity
Integrity status of input A
Integrity status of input B

RES: Final result of A+B operation

ADD----..

- t;!! i---RES[O,
B INT -

~j A[O,lll _INTEG

A INT _.
111

B[O,lll

A(ll] ,,-SIGN
~

S [11] B SIGN

~i -- -- j'" ~~
. r ~ .

5[8:11] :g ISUM'"

RES[O:11:

INTEG

-< 10;-
~

C_IN -

INTEG: Integrity status of adder output

entity WHOLE_ADDER is
port (A: in BIT_VECTOR (0 to 11) ;

B: in BIT_VECTOR (0 to 11) ;

ADD: in BIT;
RAW: in BIT;
A_ INT: in BIT;
B - INT: in BIT;
RES: out BIT_VECTOR(O to 11) ;

INTEG: out BIT) ;

283

Appendix A Circuit Designs & VHDL Code

end WHOLE_ADDER;

architecture WHOLE_ADDER_UNIT of WHOLE_ADDER is
component ADDER_OVERFLOW

port (A_INT. B_INT. A_SIGN. B_SIGN: in BIT;
RES_IN: in BIT_VECTOR(O to 11);
RES_OUT: out BIT_VECTOR(O to 11); INT_OUT: out BIT);

end component;
component SUBTRACT_CONTROL is

port (B: in BIT_VECTOR(O to 11); ADD_SUB: in BIT;
B_: out BIT_VECTOR(O to 11); C_IN: out BIT);

end component;
component CARRY_SELECT

port (A. B: in BIT_VECTOR(O to 3); C_IN: in BIT;
C_OUT: out BIT; SUM: out BIT_VECTOR(O to 3»;

end component;
component ADDER_PAIR
port (A. B: in BIT_VECTOR(O to 3); C_IN: in BIT;

C_OUT: out BIT; SUM: out BIT_VECTOR(O to 3»;
end component;
signal TEMP: BIT_VECTOR(O to 11);
signal S: BIT_VECTOR(O to 11);
signal C_IN. Cl. C2. C3: BIT;

begin

-- Sort out carry-in and subtraction control

Sl: SUBTRACT_CONTROL port map (B. ADD. S. C_IN);

-- Feed all of the adder units

A1: ADDER_PAIR port map (A[O to 3]. S[O to 3]. C_IN. Cl. TEMP[O to 3]);
A2: CARRY_SELECT port map (A[4 to 7]. S[4 to 7J. Cl. C2. TEMP[4 to 7]);
A3: CARRY_SELECT port map (A(8 to 11J. S(8 to ll].C2.C3. TEMP(8 to 11J);

-- Sort out the correct output and integrity

if (RAW; "1") then
OVR: ADDER_OVERFLOW port map (A_INT. B_INT. A(llJ. S(ll]. TEMP.

else
RES :; TEMP;
INTEG :; "0";

end if;
end WHOLE_ADDER_UNIT;

RES. INTEG);

A. 4. S Fixed Point Multiplier Unit

A.4.S.1 Modified Booth's Multiplier

Unlike the majority of the VHDL units the multiplier is described purely in behavioural terms

rather than in structural terms. A full description of an optimised mUltiplier circuit would take

many pages of VHDL (and many pages of circuit layout). The VHDL code below gives a

284

Appendix A Circuit Designs & VHDL Code

generic multi-bit multiplier description, but the schematic shown in figure A.38 shows an

optimised circuit for a 2-bit multiplier [NaJo97J based upon the same algorithm

A: Multiplier input A
B: Multiplier input B
RES: Result of A * B operation
CLK: Clock input

entity BOOTH_MU LT is
port (A: in BIT_VECTOR (0 to

B: in BIT_VECTOR (0 to
CLK: in BIT;
RES: out BIT_VECTOR (0 to

end BOOTH_MULT;

11) ;
11) ;

22)) ;

architecture BOOTH_MULT UNIT of BOOTH MULT is
component WHOLE_ADDER

port (A, B: in BIT_VECTOR(O to 11); ADD, RAW, A_INT, B_INT: in BIT;
RES: out BIT_VECTOR(O to 11); INTEG: out BIT);

end component

-- Reverse variable ranges (so later arithmetic shift makes sense)

BIT_VECTOR (11 downto
BIT_VECTOR (12 downto
BIT_VECTOR (24 downto

variable P:
variable AX:
variable s:
variable ACTION:
variable COUNT:

BIT_VECTOR(l downto
INTEGER range A;

signal IGNORE: BIT;
begin

Wait until low edge of clock
-- (i.e. until inputs valid)
-- and initialise circuit

wait until (CLK = '0');
P := (others => 0);
AX := A'reverse_range & '0';
COUNT := 0;

-- Do algorithm for each bit in 'A'

BOOTH: loop

0) ; same size as
0) ; size is 'A'
0) ; size is 'P'

0) ;

-- Work out if we add, subtract or do nothing

case AX(l downto 0) is
when "01" =>

when "10" =>

when others =>

end casei

ACTION
ACTION
ACTION

:= "11";
:= "10";
.- "00";

addition required
subtraction required
no action required

-- Do addition/subtraction as required (ignoring integrity)

'A'
+ 1
+ 'AX'

285

Appendix A Circuit Designs & VHDL Code

if ACTION (1) = "1" then
ADD1: WHOLE_ADDER (P'reverse_range, B'reverse_range,

ACTION(O) , 1, 0, 0, P, IGNORE);
end if;

-- Shift internal values for next cycle

S := P & AX;
S := ARITH_SHIFT_RIGHT(S, 1);
P := S(24 downto 13);
AX := S(AX'range);

-- Finished ?

COUNT := COUNT + 1;
exit BOOTH when COUNT A'length;

end loop;

-- Assign final result

RES <= S(23 downto 1) 'reverse_range;
end BOOTH_MULT_UNIT;

eLK

~

~
B[O]

A[l]
r v-

1 1 ~

--}
A[O]

B[l]

contatenate P and AX
shift right (keeping sign)
reassign P
reassign AX

-+
, "5 Q

Oi -+
...l

-
+

D ~ f4
...l

-

4-
~

I
~

, "5 f4 Oi
.,...... ...l

Figure A.38 2x2 Optimised Booth MUltiplier

SUM[l]

SUM[O]

SUM[2]

286

Appendix A Circuit Designs & VHDL Code

A. 4.5.2 Result Integrity Handler

Due to the number format used within the ISA processor the 23-bit output from the basic

multiplier is defined as a sign bit (22). eight integer bits {21..14} and 14 fractional bits

{\3 .. D}. A valid 12-bit number must be extracted from this and an integrity rating assigned to

it - this rating is based upon the two input vectors A and B, the result RES and the integrity flags

associated with A and B. The VHDL for this circuit is shown below, and a schematic of the

circuit itself is shown in figure A.39.

MAX MIN

Figure A.39 Multiplier Integrity Checker

A_INT: Integrity state of multiplier input A
B_INT: Integrity state of multiplier input B
RES_IN: Full Result of the multiplication
RES_OUT: Output of unit
INT_OUT: Integrity of the unit output

entity MULT_INTEGRITY is
port (A_INT: in BIT;

B_INT: in BIT;
RES_IN: in BIT_VECTOR(O to 22);
RES_OUT: out BIT_VECTOR(O to 11);
INT_OUT: out BIT);

end MULT_INTEGRITY;

architecture MULT_INTEGRITY_UNIT of MULT_INTEGRITY is
component MUX_4

A...INT

B_INT

port (SEL: in BIT_VECTOR(O to 1); A, B, C, D: in BIT;

'" I
H

;'l
t
H

;'l

o
....

:0

'" '" I
H
Z
0 ..
'" '"

287

Appendix A Circuit Designs & VHDL Code

OUT: out BIT);
end component;
component XOR2

port lA, B: in BIT; RES out BIT);
end component;
component NOR3

port lA, B, C: in BIT; RES out BIT);
end component;
component OR3

port lA, B, C: in BIT; RES out BIT);
end component,'
signal Sl, S2, S3: BIT;
signal SAME: BIT;
signal SEL: BIT_VECTORIO to 1);

begin

-- See if any upper bits are different

XR1: XOR2
XR2: XOR2
XR3: XOR2
NR1: NOR3

port
port
port
port

map
map
map
map

IRES_IN[21] , RES_IN[20] , Sl);
IRES_IN[19] , RES_IN[18] , S2);
IRES_IN[21], RES_IN[18] , S3);
IS1, S2, S3, SAME);

-- Map 23-bit to 12-bit and set integrity

INT_RES[11] <= RES_INT[22];
INT_RES[O to 10] <= RES_INT[7 to 17];
OR1: OR3 port map InotISAME) , A_INT, B_INT, INT_OUT);

-- Now select a valid (max/rnin/res/res) result

SEL: for K in ° to 10 generate
MX1: MUX_4 port map ISEL, 1, 0, INT_RES[K], INT_RES[K], RES_OUT[K]);

end generate SELi
RES_OUT [11] <= INT_RES[ll];

end MULT_INTEGRITY_UNIT;

A.4.S.3 Complete Multiplier Unit

This is the entire 12-bit fixed-point multiplier unit. It takes in two 12-bit numbers, A and B,

along with their associated integrity values A_INT and B_INT, and produces a 12-bit output RES

and an associated integrity value INTEG. The VHDL code for this circuit is shown below, and

a schematic of the circuit itself is shown in figure A.40.

288

Appendix A Circuit Designs & VHDL Code

CLK

A[O: 11J

B[O:l1]

v

if

CLK

A[O: 11]

B[O:l1]

A_INT

B_INT

SUM[O:22]

RES_IN [0: 22

.l!b
it
;:;:.5

v

::l.l! ':"i
~;:;:

-
'---

Figure A.40 Complete l2xl2 Parallel Multiplier

A:
B:
A_INT:
B_INT:
RES:
INTEG:
CLK:

Multiplier input A
Multiplier input B
Integrity of input A
Integrity of input B
Result of A * B operation
Integrity of result
Clock input

entity WHOLE_MULT is
port (A: in BIT _VECTOR (0 to

B: in BIT_VECTOR (0 to
A_INT: in BIT;
B_INT: in BIT;
CLK: in BIT;
RES: out BIT_VECTOR (0 to
INTEG: out BIT) ;

end WHOLE_MULT;

11J;
11J;

11) ;

architecture WHOLE_MULT UNIT of WHOLE MULT is
component BOOTH_MU LT

~

port (A, B: in BIT_VECTOR(O to 11); CLK: in BIT;
RES: out BIT_VECTOR(O to 22));

end component
component MULT_INTEGRITY is
port (A_INT, B_INT: in BIT; RES IN: in BIT_VECTOR(O to 22);

RES_OUT: out BIT_VECTOR(O to 11); INT_OUT: out BIT);
end component;
signal TEMP_RES: BIT_VECTOR(O to 22);

begin

-- Simple mapping of two components

PT1: BOOTH_MULT port map (A, B, CLK, TEMP_RES);
PT2: MULT_INTEGRITY port map (A_INT, B_INT, TEMP_RES, RES, INTEG);

end WHOLE_MULT_UNIT;

289

REFERENCES

[Ahme82] H.M. Ahmed, I.M. Delosme and M. Morf, 'Highly concurrent computing
structures for matrix arithmetic and signal processing', in: Computing, 15,
pp 65-82, 1982

[Akin84] I.M. Akinpela, 'Overload performance of engineering networks with non­
hierarchial and hierarchial routing', in: AT &T Bell Labs Technical Journal,
63(7), pp 1261-1281, 1984

[AIM090] I. Aleksander and H. Morton, An Introduction to Neural Computing,
UK : Chapman and Hall, 1990

[AISt91] C. Alippi and G. Storti-Gajani, 'Simple approximation of sigmoidal functions:
realistic design of digital neural networks capable of learning', in: Proceedings
ISCAS '91 (Singapore), USA: IEEE Press, pp 1505-1508, 1991

[Ambl92] A.P. Ambler, CAD-I, Unpublished Lecture Notes, Dept. Electrical
Engineering, Brunei University, Uxbridge, England, 1992

[AmMu88] A.P. Ambler and G. Musgrave, 'Design for testability In the digital
environment', in: New Electronics, pp. 43-44, February 1988

[Ansa96] N. Ansari, A. Arulambalam and S. Balasekar, 'Traffic management of a satellite
communication network using stochastic optimisation', in: IEEE Transactions
on Neural Networks, 7(3), pp 732-744, 1996

[Begu93]

[Beiu92]

[BeNe71]

A. Beguelin et ai, PVM 3 User's Guide and Reference Manual, Oak Ridge
National Laboratory, Oakridge, Tennessee, USA, 1993

V. Beiu, I.A. Peperstraete and R. Lauwereins, 'Using threshold gates to
implement sigmoidal non-linearity', in: Proceedings of the International
Conference on Artificial Neural Networks, Amsterdam : Elsevier Science
Publications, 2, pp 1447-1450, 1992

CG. Bell and A. Newell, Computer Structures: Readings and Examples,
USA: McGraw Hill, 1971

290

References

[B6zi70] P. B6zier, Emploi des Machines cl Commande Numerique, France: Masson et
Cie, 1970. Translated by A.R Forrest and A.F. Pankhurst Numerical Control
- Mathematics and Applications, UK: Wiley, 1972

[BootS I] A.D. Booth, 'A signed multiplication technique', Quarterly Journal of
Mathematics, 4, Part 2, 19S1

[Burg84] R Burger, RK.Calvin Ill, W.C. Holton and L.W. Sumney, 'The impact of
IC's on computer technology', in: IEEE Computer, 17, pp 88-9S, October
1984

[Burr87] DJ. Burr, 'Experiments with a connectionist text reader', in: Proceedings of the
IEEE First International Conference on Neural Networks, (M. Caudi\l and C.
Butler eds.), 4, pp 717-724, USA: SOS Printing, 1987

[CaGr87a] G. Carpenter and S. Grossberg, 'A massively parallel architecture for a self­
organizing neural pattern recogition machine', in: Computer Vision, Graphics
and Image Processing, 37, pp S4-IIS, 1987

[CaGr87b] G. Carpenter and S. Grossberg, 'ART2 : self organisation of stable category
recognition codes for analog input patterns', in: Applied Optics, 26(23),
pp 4919-4930, 1987

[Camp87] SJ. Campanella, 'Small, low-cost earth stations: a major trend', in: IEEE
Spectrum, 24, pp 42-43, January 1987

[Camp96] S.A. Campbell, The Science and Engineering of Microelectronic Fabrication,
UK : Oxford University Press, 1996

[Chow83] T.P. Chow, 'A review of refractory gates for MOS VLSI', in: International
Electronic Devices Meeting (Technical Digest), pp SI3-S17, December 1983

[CoGr83] M.A. Cohen and S.G. Grossberg, 'Absolute stability of global pattern
formation and paralIel memory storage by competitive neural networks', in:
IEEE Transactions on Systems, Man and Cybernetics, 13, pp 8IS-826, 1983

[Cosn86a] M. Cosnard, M. Daoudi, J.M. Muller and Y. Robert, 'On parallel and systolic
Givens factorisation of dense matrices', in: Parallel Algorithms and
Architectures, (M. Cosnard, P. Quinton, Y. Robert and M. Tchuente eds.),
France: North Holland, 1986

[Cosn86b] M. Cosnard, Y. Robert and M. Tchuente, 'Matching parallel algorithms with
parallel architectures : a case study', in: IFIP Working Conference on Highly
Parallel Computers for Numerical and Signal Processing Applications, IFlP
WG 10-3, France, 1986

[Cvet86] Z. Cvetanovic, 'Performance analysis of FFT algorithm on a shared-memory
parallel architecture', in: IBM Journal of Research and Development, 1986

291

[Darn86]

[DeBI90]

[Denn73]

[Denn74]

[Denni75]

[Desi88]

[Dunc90]

[Eldr59]

[EsDu82]

[Evan91]

[Feng77]

[Flyn66]

[Fole90]

[GeGe84]

[GeKu81]

[GiLe80]

References

J. Darnell, H. Lodish and D. Baltimore, Molecular Cell Biology,
USA: American Scientific Books, 1986

M. DeBlasi, Computer Architecture, UK : Addison Wesley, 1990

RH. Dennard et aI., in: Semiconductors Silicon Electrochemical Society, H.R.
Duff and R.R Burgess, Editors, 1973

RH. Dennard et aI., IEEE Journal of Solid-State Circuits, SC·9, 1974

J.B. Dennis and D.P. Misunas, 'A preliminary architecture for a basic data flow
processor', in: Proceedings of the Second Annual Synopsium on Computer
Architecture, pp 126-132, USA: IEEE Press, January 1975

D. DeSieno, 'Adding a conscience to competitive learning', in: Proceedings of
the IEEE International Conference on Neural Networks, pp 117-124,
USA: SOS Printing, 1988

R Duncan, 'A survey of parallel computer architectures', in: IEEE Computer,
23(Feb), pp 5-16, 1990

RD. Eldred, 'Test routines based on symbolic logic statements', in: Journal of
ACM, 6(1), pp 36-39, January 1959

D.B. Estreich and RW. Dutton, 'Modelling latch-up in CMOS integrated
circuits and systems', in: IEEE Transactions on CAD, CAD·l(4), pp 157-162,
October 1982

D.J. Evans, Systolic Algorithms, UK Gordon and Breach Science
Publications, 1991

T.Y. Feng, ed., 'Parallel Processors and Processing', special issue, ACM
Computing Surveys, 9(1), 1977

M.J. Flynn, 'Very high speed computing systems', in: Proceedings of IEEE,
54, pp 1901-1909, 1966

J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics _
Principles and Practice, 2nd Edition, USA: Addison Wesley, 1990

S. Gemen and D. Gemen, 'Stochastic relaxation, Gibbs distributions and
Beyesian restoration of images', in: IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, pp 721-741,1984

W.M. Gentleman and H.T. Kung, 'Matrix triangularization by systolic arrays',
in: Proceedings of the Society of Photo-optical Instrumentation Engineers, 298,
pp 19-26, 1981

J.F. Gibbons and K.F. Lee, in: Electron Device Letters, EDL·l, p 117, 1980

292

References

[Gill92] P.E. Gill, W. Murray and M.H. Wrights, Practical Optimization, UK :
Academic Press, 1992

[Gros69] S. Grossberg, 'Some networks that can learn, remember and reproduce any
number of complex mathematical space-time patterns', in: Journal of
Mathematics and Mechanics, 19, pp 53-91,1969

[Gros87] S. Grossberg, 'Competitive learning: from interactive activation to adaptive
resonance', in: Cognitive Science, 11, pp 23-63, 1987

[Hamm91] D. Hammerstrom, 'A highly parallel digital architecture for neural network
emulation', in: VLSI for Artificial Intelligence and Neural Networks, Cl.G.
Delgado-Frias and W. Moore eds.), pp 357-366, USA: Plenum Press, 1991

[Hast55] C. Hastings, Approximations for Digital Computers, USA: Princetown
University Press, 1955

[Hayk94] S. Haykin, Neural Networks: A Comprehensive Foundation, USA: Macmillan
College Publishing, 1994

[Hebb49] D.O. Hebb, Organisation of Behaviour, USA: Science Editions, 1949

[Hech87] R. Hecht-Nielsen, 'Counterpropagation networks', in: Proceedings of the
IEEE First International Conference on Neural Networks, (M. Caudill and C.
Butler eds.), pp 19-32, USA: SOS Printing, 1987

[HeSn82] K.S. Hedlund and L. Snyder, Proceedings of International Conference on
Parallel Processing, August 1982

[Hira90] M. Hirayama, M. Ohmori and K. Yamasaki, 'GaAs LSI Fabrication and
Performance', in: Semiconductors and Semi-Metals, 29, (T. Ikoma ed.), also
known as Very High Speed Integrated Circuits: Gallium Arsenide LSI, UK :
Academic Press, 1990

[Hopf82] 1.1. Hopfield, 'Neural networks and physical systems with emergent collective
computational abilities', in: Proceedings of the National Academy of Science,
79, pp 2554-2558, 1982

[Hopf84] J.J. Hopfield, 'Neurons with graded response have collective computational
properties like those of two-state neurons', in: Proceedings of the National
Academy of Science, 81, pp 3088-3092, 1984

[HoTa85] J.J. Hopfield and D.W. Tank, 'Neural computation of decisions in optimization
problems', in: Biological Cybernetics, 52, pp 141-152, 1985

[HwBr84] K. Hwang and F.A. Briggs, Computer Architecure and Parallel Processing,
USA: McGraw Hill, 1984

293

[HwNi80]

[IEDM83]

[IEEE85]

References

K. Hwang and L.M. Ni, 'Resource optimisation of a parallel computer for
multiple vector processing', in: IEEE Transactions on Computers, C-29,
pp 831-836, September 1980

_____ , 'Device technology - isolation and dielectrics', in: International
Electronic Devices Meeting (Technical Digest), pp 19-46, December 1983

_____ , IEEE Standard 754-1985 for Binary Floating-Point Arithmetic,
1985

[IEEE89] , IEEE Standard 1149.1 - Standard Test Access Port and Boundary
Scan Architecture, 1989

[KaEv96] A.J. Kane and D.J. Evans, 'An instruction systolic array architecture for neural
networks', in: International Journal of Computer Mathematics, 61(1-2), pp 63-
89, 1996

[Kane95] A.J. Kane, A Neural Network Analyser l.e. for the Evaluation of Boolean
Network Cyclic Lengths, Master's Thesis, Dept. Electrical Engineering, BruneI
University, England, 1995

[Kawa83] S. Kawamura et aI., '3-Dimensional SOIlCMOS IC's fabricated by beam
recrystalisation', in: International Electronic Devices Meeting (Technical
Digest), pp 364-367, December 1983

[Keye79] R.W. Keyes, 'The evolution of digital electronics towards VLSI', in: IEEE
Transactions on Electron Devices, 26(4), pp 271-278, 1979

[Kirk83] S. Kirkpatrick, C.D. Gellat Jr. and M.P. Vecchi, 'Optimization by simulated
annealing', in: Science, 220, pp 671-680,1983

[Koho88] T. Kohonen, Self-Organization and Associative Memory, 2nd Edition,
USA: Springer Verlag, 1988

[KuHw89] S.Y. Kung and J.N. Hwang, 'A unifying algorithm/architecture for artificial
neural networks', in: Proceedings of the International Conference on
Application Specific Signal Processors, pp 2505-2508, Edinburgh, 1989

[KuLe80] H.T. Kung and P.L. Lehman, 'Systolic VLSI arrays for relational database
operations', in: Proceedings afthe ACMISIGMOD International Conference on
Management of Data, (P.P. Chen and R.C. Sprowls eds.), pp 105-116, 1980

[KuLi78] H.T. Kung and C.E. Lieserson, 'Algorithms for VLSI processor arrays', in:
Sparse Matrix Proceedings, Siam Press, pp 256-282, 1978

[KuLi80] H.T. Kung and C.E. Lieserson, 'Systolic arrays for VLSI', in: [MeCo80],
section 8.3

294

References

[Kund86] M. Kunde, H.-W. Lang, M. Schimmler, H. Schmeck and H. SchrOder, 'The
instruction systolic array and its relation to other models of parallel computers',
in: Parallel Computing 85, pp 491-497, Amsterdam, 1986

[KungHT80] H.T. Kung, 'The structure of parallel algorithms', in: Advances in Computers,
19, pp 66-112, 1980

[KungHT82] H.T. Kung, 'Why systolic architectures ?', in: IEEE Computer, 15(1), pp 37-
45, 1982

[KungSY82] S.Y. Kung, K.S. Arun, RJ. Galezer and D.V.B. Rao, 'Wavefront array
processor: language, architecture and application', in: IEEE Transactions on
Computers, C-31(lI), pp 1054-1066, November 1982

[KungSY84] S.Y. Kung, 'On supercomputing with systolic/wavefront processors', Ill:

Proceedings a/the IEEE, 72(7), July 1984

[KungSY88] S.Y. Kung, VLSI Array Processors, USA: Prentice Hall, 1988

[Lawr75]

[Lehm93]

[LePr92]

[Lipp87]

[Man082]

[MaSi64]

[McIr95]

[McKe90]

[McPi43]

[MeC080]

D.H. Lawrie, 'Access and alignment of data in an array processor', in: IEEE
Transactions on Computers, C-24, pp 496-503,1975

C. Lehmann, M. Viredaz and D. Blayo, 'A generic systolic array building block
for neural networks with on-chip learning', in: IEEE Transactions on Neural
Networks, 4(3), pp 400-407, 1993

D. Lewin and D. Protheroe, Design of Logic Systems, 2nd Edition,
UK : Chap man and Hall, 1992

R.P. Lippman, 'An introduction to computing with neural nets', in: IEEE ASSP
Magazine, 4, pp 4-22, 1987

M.M. Mano, Computer Systems Architecture, USA: Prentice Hall, 1982

H.M Mansevit and W.!. Simpson, 'Single crystal silicon on a sapphire
substrate', in: Journal of Applied Physics, 35, pp 1349-1351, 1964

S. McCloone and G. Irwin, 'Parallel off-line training of multilayer
perceptrons', in: Proceedings of the 3rd IFACffFIP Workshop on Algorithms
and Architectures for Real-Time Control, Ostend : Belgium, 1995

JJ. McKeown, D. Meegan and D. Sprevak, An Introduction to Unconstrained
Optimization, UK: Adam Hilger, 1990

W. McCulloch ad W. Pitts, 'A logical calculus of the ideas imminent in the
nervous system', in: Bulletin of Mathematical Biophysics, 5, pp 115-137, 1943

C.A. Mead and L.A. Conway, Introduction to VLSI Systems, USA: Addison
Wesley, 1980

295

--------- ----

[Megs92]

[Micz87]

[MiPa69]

[Moor75]

[Myer89]

[Myer9l]

[NayI94]

[NaJo97]

[Nigr91]

[Ohzo80]

[OUP90]

[Pao89]

[Park82]

[Parr80]

[PeHa89]

References

G.M. Megson, An Introduction to Systolic Algorithm Design, UK : Oxford
Science Publications, 1992

A. Miczo, Digital Logic Testing and Simulation, USA: Wiley, 1987

M.L. Minsky and S.A. Papert, Perceptrons : An Introduction to Computational
Geometry, USA: MIT Press, 1969

G.E. Moore, 'Progress in digital integrated electronics', in: International
Electronic Devices Meeting, December 1975, pp 11-13, 1975

DJ. Myers and R.A. Hutchinson, 'Efficient implementation of piece-wise
linear activation function for digital VLSI neural networks', in: Electronic
Letters, 25(24), pp 1662-1663, 1989

DJ. Myers, I.M. Vincent and D.A. Offey, 'HANNmAL : A VLSI building
block for neural networks with on-chip backpropagation learning', in:
Proceedings of the Second International Conference on Microelectronics for
Neural Networks, pp 171-181, Munich, 1991

D. Naylor, S. lones and D. Myers, 'Backpropagation in linear arrays - a
performance analysis and optimisation', in: IEEE Transactions on Parallel and
Distributed Computing, 1994

D. Naylor and S. lones, VHDL: A Logic Synthesis Approach, UK : Chapman
& Hall, 1997

M.E. Nigri, P. Treleaven and M. Vellasco, 'Silicon compilation of neural
networks', in: Proceedings CompEuro '91, USA: IEEE Press, pp 541-546,
1991

T. Ohzone et aI., 'Silicon-gate n-well CM OS process by full ion implantation
technology', in: IEEE Transactions on Electronic Devices, ED-27, pp 1789-
1795, September 1980

___ , The Concise Oxford Dictionary of Current English, 8th Edition,
UK : Oxford University Press, 1990

Y.H. Pao, Adaptive Pattern Recognition, USA: Addisson Wesley, 1989

D.B. Parker, Learning Logic, Invention Report S81-64, File I, Office of
Technology Licensing, Stanford University, Stanford, USA

L.e. Parillo et aI., 'Twin-tub CMOS - a technology for VLSI circuits', in: IEEE
International Electronic Devices Meeting, pp 752-755, 1980

e. Peterson and E. Hartman, 'Explorations of the mean field theory learning
algorithm', in: Neural Networks, 2, pp 475-494, 1989

296

[Pesu90]

[Pete87]

[Petk89]

[PrVu80]

[PuRo71]

[QuRo89]

[Ram611]

[RiKn91]

[Rodr93]

[Rose62]

[Roth66]

[Roth92]

References

E.E. Pesulima, A.S. Pandya and R. Shankar, 'Digital implementaion issues of
stochastic neural networks', in: Proceedings of the IJCNN (Washington DC),
USA: IEEE Press, 2, pp 187-190, 1990

C. Peterson, 'A mean field theory learning algorithm for neural networks',
in: Complex Systems, I, pp 995-1019, 1987

N. Petkov, Systolic Parallel Processing, Netherlands: Elsevier Science, 1989

F.P. Preparata and I.E. Vuillemin, 'Area-time optimal VLSI networks for
multiplying matrices', in: Information Processing Letters, 11, pp 77-80, 1980

G.R. Putzolu and 1.P. Roth, 'A heuristic algorithm for the testing of
asynchronous circuits, in: IEEE Transactions on Computers, C - 20,
pp 1286-1283, 1971

P. Quinton and Y. Robert, Algorithmes et Architectures Systoliques,
France: Masson, 1989, Translated by I. Craig, Systolic Algorithms and
Architectures, UK : MassonlPrentice Hall, 1991

S. Ram6n y Oija, Histologie du systeme nerveux de l'homme et es vertebres,
Maloine : France, 1911

E. Rich and K. Knight, Artificial Intelligence, 2nd Edition, USA: McGraw
Hill, 1991

A. Rodrfguez-Vazquez et aI, 'Current-mode techniques for the implementation
of continuous- and discrete-time cellular neural networks', in: IEEE
Transactions on Circuits and Systems II, 40, pp 132-146, March 1993

F. Rosenblatt, Principles of Neurodynamics, USA: Spartan BOOks, 1962

1.P. Roth, 'Diagnosis of automata failures - a calculus and method', in: IBM
Journal of Research and Development,lO, pp 278-291, 1966

C.H. Roth, Fundamentals of Logic Design, 4th Edition, USA West
Publishing Company, 1992

[Rumm86] D.E. Rummelhart, G.E. Hinton and R.l. Williams, 'Learning internal
representations by error propagation', in: Parallel Distributed Processing, Vol I,
pp 318-362, USA: MIT Press, 1986

[Schw87] M. Schwarz, Telecommunications Networks: Protocols, Modelling and
Analysis, USA: Addison Wesley, 1987

[Seit85] C.L. Seitz, 'The Cosmic Cube', in: Communications of the ACM, 28(1),
pp 22-33, 1985

297

[SeLi95]

[SeLi96]

[SeR087]

[ShK090]

[Shut88]

[Sore85]

[StHu87]

[Ston71]

[Ston90]

[Swok88]

[Taba95]

[TI-95]

[TI-98]

[Tre182]

[Tre189]

[Uffe87]

References

T. Serrano-Gotarredona and B. Linares-Barranco, 'A VLSI-friendly "fast
learning" ART! algorithm', in: Proceedings of the 1995 World Congress on
Neural Networks, Washington D.e., 1, pp 27-30, 1995

T. Serrano-Gotarredona and B. Linares-Barranco, 'A real-time clustering
microchip neural engine', in: IEEE Transactions on VLSI Systems, 4(2),
pp 195-209, 1996

T.1. Sejnowski and e.R. Rosenberg, 'Parallel networks that learn to pronounce
English text', in: Complex Systems, 1, pp 145-168, 1987

G.M. Shepherd and e. Koch, 'Introduction to synaptic circuits', in: The
Synaptic Organization of the Brain, (G.M. Shepherd ed.), pp 3-31,
USA: Oxford University Press, 1990

M.1. Shute, Fifth Generation Wafer Architecture, UK : Prentice Hall, 1988

D.e. Sorenson, 'Analysis of pairwise pivoting in gaussian elimination', in:
Report MCS-TM-26, Argonne National Laboratory, 1985

W.S. Stornetta and B.A. Huberman, 'An improved three-layer backpropagation
algorithm', in: Proceedings of the IEEE First International Conference on
Neural Networks, (M. Caudill and e. Butler eds.), USA: SOS Printing, 1987

H.S. Stone, 'Parallel processing with the perfect shuffle', in: IEEE
Transactions on Computers, C-20, pp 153-161, 1971

H.S. Stone, High Performance Computer Architecture, 2nd Edition,
USA: Addison Wesley, 1990

E.W. Swokowski, Calculus with Analytical Geometry, 4th Edition,
USA: PWS-Kent, 1988

D. Tabak, Advanced Microprocessors, 2nd Edition, USA: McGraw Hill, 1995

TMS320C80 (MVP) Technical Brief, Texas Instruments Inc, USA, 1995

TMS320C62xx Technical Brief(Rev 3.0), Texas Instruments Inc, USA, 1998

P.C. Treleaven, D.R. Brownbridge and R.P. Hopkins, 'Data-driven and
demand-driven computer architecture', in: ACM Computing Surveys, pp 93-
144, March 1982

P. Treleaven, M. Pacheco and M. Vellasco, 'VLSI architectures for neural
networks', in: IEEE Micro, pp 8-27,1989

J. Uffenbeck, The 8086/8088 Family - Design, Programming and Interfacing,
USA: Prentice Hall, 1987

298

[Ullm84]

[Uya84]

[Vand86]

[Wass89]

[Wate82]

[Watt89]

[WeEs88]

[Werb74]

[Whit84]

[WiBr81]

[Widr59]

[WiHo60]

[Wind60]

[Yama83]

References

J.D. Ullman, Computational Aspects of VLSI, USA: Computer Science Press,
1984

M. Uya, K. Kaneko and J. Yasui, 'A CMOS floating point multiplier', in: IEEE
Transactions on Electronic Devices, C-30(5), pp 305-311,1984

A.J. Vander, J.H. Sherman and D.S. Luciano, Human Physiology: The
Mechanism of Body Functions, 4th Edition, USA: McGraw Hill, 1986

P.D. Wasserman, Neural Computing: Theory and Practice, USA Van
Nostrand Reinhold, 1989

D.G.P. Waters, 'The problems of testing large-scale integrated circuits', in:
British Telecoms Engineering, 1, pp 64-69, July 1982

A. Watt, Fundamentals of 3D Computer Graphics, UK : Addison Wesley, 1989

N. Weste and K. Eshraghian, Principles of CMOS VLSI Design: A Systems
Perspective, USA: Addison Wesley, 1988

PJ. Werbos, Beyond Regression - New Tools for Prediction and Analysis in
the Behavioural Sciences, Masters thesis, Harvard University, USA, 1974

I.R. Whitworth, 16-8it Microprocessors, UK: Granada Publishing, 1984

T.W. Williams and N.C. Brown, 'Defect level as a function of fault coverage',
in: IEEE Transactions on Computers, C-30(12), pp 987-98, December 1981

B. Widrow, 'Adaptive sampled-data systems - a statistical theory of adaptation',
in: 1959 IRE WESCON Convention Record, Part 4, pp 88-91,1959

B. Widrow and M. Hoff, 'Adaptive switching circuits', in: 1960 IRE
WESCON Convention Record, pp 96-104, 1960

R.O. Windner, 'Single state logic', in: Proceedings of the AIEE Fall General
Meeting, 1960

T. Yamaguchi et aI., 'High-speed latchup-free 0.51lm channel CMOS using
self-aligned TiSi2 and deep-trench isolation technologies', in: International
Electronic Devices Meeting (Technical Digest), pp 522-525, December 1983

299

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1
. 1

1

1

1

1

1

1

1
I

