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The ∨-systems are special finite sets of covectors which appeared in the theory of the generalized Witten-

Dijkgraaf-Verlinde-Verlinde (WDVV) equations. Several families of ∨-systems are known, but their classifica-

tion is an open problem. We derive the relations describing the infinitesimal deformations of ∨-systems and use

them to study the classification problem for ∨-systems in dimension three. We discuss also possible matroidal

structures of ∨-systems in relation with projective geometry and give the catalogue of all known irreducible

rank three ∨-systems.

Keywords: Root systems; ∨-systems; WDVV equation.

1. Introduction

The ∨-systems are special finite sets of covectors introduced in [19, 20]. The motivation came

from the study of certain special solutions of the generalized Witten-Dijkgraaf-Verlinde-Verlinde

(WDVV) equations, playing an important role in 2D topological field theory and N = 2 SUSY

Yang-Mills theory [2, 10].

Let V be a real vector space and A ⊂V ∗ be a finite set of vectors in the dual space V ∗ (covectors)

spanning V ∗. To such a set one can associate the following canonical form GA on V :

GA (x,y) = ∑
α∈A

α(x)α(y),

where x,y ∈V , which establishes the isomorphism

ϕA : V →V ∗.

The inverse ϕ−1
A (α) we denote as α∨. The system A is called ∨-system if the following relations

∑
β∈Π∩A

β (α∨)β∨ = να∨ (1.1)

(called ∨-conditions) are satisfied for any α ∈A and any two-dimensional plane Π⊂V ∗ containing

α and some ν , which may depend on Π and α. If Π contains more than two covectors, then ν does
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V. Schreiber and A.P. Veselov

not depend on α ∈ Π and the corresponding two forms GA and

GΠ
A (x,y) := ∑

α∈Π∩A

α(x)α(y)

are proportional on the plane Π∨ ⊂V (see [19, 20]). If Π contains only two covectors from A , say

α and β , then we must have

GA (α∨,β∨) = 0.

The ∨-conditions are equivalent to the flatness of the corresponding Knizhnik–Zamolodchikov-type

∨-connection

∇a = ∂a +κ ∑
α∈A

〈α,a〉
〈α,x〉α∨⊗α.

The examples of ∨-systems include all two-dimensional systems, Coxeter configurations and

so-called deformed root systems [11, 17, 19], but the full classification is an open problem. The

main results in this direction can be found in [1, 4–6, 9]. In particular, in [5] it was shown that

the class of ∨-systems is closed under the operation of restriction, which gives a powerful tool to

construct new examples of ∨-systems.

The most comprehensive list of known ∨-systems together with their geometric properties can

be found in [4, 5]. The main purpose of this paper is to present some arguments in favour of the

completeness of this list in dimension three by studying the infinitesimal deformations of ∨-systems.

We start with a brief review of the general notions from the theory of matroids [13], which

provides a natural framework for the problem of classification of ∨-systems. A matroidal approach

in this context was also used by Lechtenfeld et al in [9].

Then we study the infinitesimal deformations of the ∨-systems of given matroidal type and

derive the corresponding linearised ∨-conditions. This allows us to show that the isolated 3D ∨-

systems listed in [4] are indeed isolated.

The main question which still remains open is what are possible matroidal structures of ∨-

systems. We discuss this in the context of the projective geometry using the analysis of the known

∨-systems.

In the last section we study the property of the corresponding ν-function on the flats of matroid

and state the uniqueness conjecture, saying that the matroid and function ν on its flats uniquely

determine the corresponding ∨-system.

In the Appendix we give the catalogue of all known ∨-systems in dimension three together with

the corresponding matroids and ν-functions.

2. Vector Configurations and Matroids

The combinatorial structure of the vector configurations can be described using the notion of

matroid. The theory of matroids was introduced by Whitney in 1935, who was looking for an

abstract notion generalising the linear dependence in the vector space.

We review some standard notions from this theory following mainly Oxley [13].

A matroid M is a pair (X , I ), where X is a finite set and I is a collection of subsets S of X

(called the independent sets of M) such that:

• I is non-empty
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On deformation and classification of ∨-systems

• For any S∈ I , any S
′ ⊂ S one has S

′ ∈ I .

• If A,B ∈ I , | A |=| B |+1 then ∃x ∈ A\B such that B∪{x} ∈ I .

The rank of the matroid M is defined as r (M) = maxI∈I {| I |}. More generally, the rank of the

subset S ⊂ X is defined as r (S) = maxI∈I {| I |: I ⊆ S}.
A direct sum of matroids M1 = (X1,I1) and M2 = (X2,I2) is defined as

M1 ⊕M2 = (X1 ∪X2,{I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}).
A matroid is called connected if it can not be represented as a direct sum.

The most important class of matroids for us consists of vector matroids. Let A be a real r× n
matrix, X = {1,2, . . . ,n} be the set of column labels of A, and I be the collection of subsets S of

X , for which the columns labelled by S are linearly independent over R. Then (X ,I ) is a matroid,

which is called rank r vector matroid and denoted by M[A].
The following operations on matrix A do not affect the corresponding vector matroid M[A] :

1. Elementary operations with the rows,

2. Multiplication of a column by a non-zero number.

Two matrices A and A
′

representing the same matroid M are said to be projectively equivalent
representations of M if A

′
can be obtained from A by a sequence of these operations. Equivalently,

one can say that A′ =CAD, where C is an invertible r× r matrix, and D is a diagonal n×n matrix

with non-zero diagonal entries.

Alternatively, one can define the linear dependence matroid on the set X as a family IC of

minimal dependent subsets C of X (called circuits) through the following axioms:

• The empty set is not a circuit.

• No curcuit is contained in another circuit.

• If C1,C2 ∈ IC are two circuits sharing an element e ∈ X , then (C1 ∪C2) \ e is a circuit or

contains a circuit.

The rank of a circuit is defined as the dimension of the vector space spanned by its vectors.

Circuits spanning the same d-dimensional subspace can be united in so-called d-flats. A set F ⊆ X
is a flat of the matroid M if

r(F ∪{x}) = r(F)+1

for all x ∈ X \F, where r(F) is the rank of the flat F. The matroid can be labelled by listing all

d-flats.

As an example consider the positive roots of the B3-type system. The corresponding matrix

(with the first row giving the labelling) is

A =

⎡⎢⎢⎣
1 2 3 4 5 6 7 8 9

1 1 0 0 1 1 1 0 0

1 −1 1 1 0 0 0 1 0

0 0 −1 1 1 −1 0 0 1

⎤⎥⎥⎦ .

Here matroid M is defined on the set X = {1,2,3,4,5,6,7,8,9}, with 2-flats

{(4,1,6),(6,2,3),(4,5,2),(1,5,3)}
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V. Schreiber and A.P. Veselov

and

{(3,4,8,9),(1,2,7,8),(5,6,7,9)}

with three and four elements respectively. Together with the 3-flat X this gives the complete list of

flats.

Graphically on the projective plane we have

2

6

3 8 4 9

5
7

1

Fig. 1. Graphic representation of B3-matroid: lines correspond to rank-2 flats

A matroid is called simple if it does not contain one- or two-element circuits. For vector matroids

this means that no two vectors are proportional.

Number of matroids up to isomorphism grows very rapidly with n = |X |. The following table

summarises the results for rank 3-matroids for small n (see [12]).

n 3 4 5 6 7 8 9 10 11 12

all matroids 1 4 13 38 108 325 1275 10037 298491 31899134

simple matroids 1 2 4 9 23 68 383 5249 232928 28872972

Vector matroids build the class of realisable matroids. The problem of finding a criterion for

realisability is known to be NP-hard [14].

Let M be a rank r vector matroid. We say that matroid M is projectively rigid if the space of all

its rank r vector realisations

R(M) = {A : M = M[A]}/∼

modulo projective equivalence is discrete and strongly projectively rigid if it consists of only one

point (which means that modulo projective equivalence M has a unique vector realisation).

Let G be a finite Coxeter group, which is a finite group generated by the hyperplane reflections in

a Euclidean space. We say that matroid M is of Coxeter type if it describes the vector configuration

of the normals to the corresponding reflection hyperplanes (one for each hyperplane) for such a

group. For rank three Coxeter matroids we have the following result.

Theorem 1. The matroids of Coxeter types A3 and B3 are strongly projectively rigid. The matroid
of type H3 is projectively rigid with precisely two projectively non-equivalent vector realisations.
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On deformation and classification of ∨-systems

Proof. Let us prove this first for B3 case. Since the images a1,a2,a3,a4 of the elements 1,2,3

and 4 in the projective plane form a projective basis it is enough to prove that the remaining

a5,a6,a7,a8,a9 can be constructed uniquely. From the matroid structure we can see that x5 must

be an intersection point of the lines (2-flats) a1a3 and a2a4. We denote this as

a5 = (a1a3)∧ (a2a4)

using the general lattice theory notation. Similarly we have

a6 = (a2a3)∧ (a1a4), a7 = (a1a2)∧ (a5a6),

a8 = (a1a2)∧ (a3a4), a9 = (a3a4)∧ (a5a6).

Similarly one can prove the rigidity in A3 case (see Fig. 2). In both these cases the space of realisa-

tions modulo projective equivalence consists of only one point.

1

4

2

3
5

6

Fig. 2. Graphic representation of A3-matroid

The H3 case is more interesting. Fig. 3 shows the graphic representation of the system H3 in the

real projective plane RP2.

Recall that on the projective line RP1 any three points can be mapped into any other three via

the action of the group PGL(2,R). For four distinct points p1, p2, p3, p4 on the projective line RP1

with homogeneous coordinates [xi,yi] there is a projective invariant, namely cross-ratio defined as

(p1, p2; p3, p4) =
(x1y3 − x3y1)

(x1y4 − x4y1)

(x2y4 − x4y2)

(x2y3 − x3y2)
.

If none of the yi is zero the cross-ratio can be expressed in terms of the ratios zi =
xi
yi

as follows:

(z1,z2;z3,z4) =
(z1 − z3)

(z1 − z4)

(z2 − z4)

(z2 − z3)
.

Since any projection from a point in the projective plane preserves the cross-ratio of four points we

have the equalities

(a6,a5;a9,a3) = (a4,a7;a10,a3) = (a5,a6;a8,a3),
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V. Schreiber and A.P. Veselov

(a6,a5;a9,a3) = (a7,a11;a10,a3) = (a5,a8;a9,a3).

Using elementary manipulations with cross-ratios one can show that that these equalities imply

that x = (a6,a5;a9,a3) satisfies the equation

x2 − x−1 = 0

with two solutions x1 =
1+

√
5

2
and x2 =

1−√
5

2
.

If we fix the positions of the four points a4,a5,a6,a7 forming a projective basis in RP2 we can

first reconstruct

a1 = (a5a4)∧ (a6a7), a2 = (a5a7)∧ (a6a4), a3 = (a5a6)∧ (a7a4).

Then using the knowledge of x = (a6,a5;a9,a3) we can reconstruct a9 and all the remaining points

as

a14 = (a2a9)∧ (a5a4), a12 = (a7a6)∧ (a2a9), a10 = (a2a9)∧ (a3a4),

a13 = (a9a4)∧ (a6a7), a8 = (a2a13)∧ (a3a6), a15 = (a2a13)∧ (a5a4),

a11 = (a2a8)∧ (a3a4).

Thus we have shown that modulo projective group we have only two different vector realisations of

matroid H3.

6

8

9

5

3

7

1014 12

13 15 11

4

21

Fig. 3. Graphic representation of H3-matroid

Remark. The existence of two projectively non-equivalent realisations is related to the existence

of a symmetry of matroid M(H3), which can not be realised geometrically, see [3]. These two

realisations are related by re-ordering of the vectors and thus give rise to the equivalent ∨-systems.
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On deformation and classification of ∨-systems

3. Classification Problem for ∨-Systems of Given Matroidal Type

For any ∨-system A ⊂ V ∗ one can consider the corresponding matroid M(A ), which encodes a

combinatorial structure of A . Conversely, having a matroid M one can look for ∨-system realisa-
tions A of M with given combinatorial structure M(A ) = M.

Let R∨(M) be the set of all such realisations modulo group G = GL(V ∗) of linear automor-

phisms of V ∗.
If vector matroid M = M(A) is strongly projectively rigid then all its vector realisations modulo

G have the form A′ = AD, or in terms of the columns ai, i = 1, . . . ,n of A,

a′i = xiai, i = 1, . . . ,n

with arbitrary non-zero parameters xi. The ∨-conditions form a system of nonlinear algebraic rela-

tions on the parameters xi ∈ R\0 and define R∨(M) as an open set of a real algebraic variety.

For a generic vector matroid this set is actually empty. For example, for n vectors ai in R
3 in

general position the ∨-conditions imply that these vectors must be pairwise orthogonal, which is

impossible if n > 3.

In the case when the space R∨(M) is known to be non-empty (for example, for all vector

matroids M of Coxeter type) we have the question of how to describe this space effectively.

For the case of matroid of Coxeter type A3 the answer is known [1]. The positive roots of A3

system are ei − e j, 1 ≤ i < j ≤ 4, where ei, i = 1, . . . ,4 is an orthonormal basis in R
4.

Since matroid A3 is strongly projectively rigid it is enough to consider the system

A =
{

μi j (ei − e j) ,1 ≤ i < j ≤ 4
}
. (3.1)

Theorem 2. [1] The system (3.1) satisfies the ∨-conditions if and only if the parameters satisfy the
relations

μ12μ34 = μ13μ24 = μ14μ23.

All the corresponding ∨-systems can be parametrized as

A3(c) =
{√

cic j(ei − e j),1 ≤ i < j ≤ 4
}
,

with arbitrary positive real c1, . . . ,c4.

Without loss of generality, we may choose c4 = 1 and consider the restriction of the system

onto the hyperplane x4 = 0. This gives the following parametrisation of the space R∨(M(A3)) by

positive real c1,c2,c3 as

A3(c) =

{√cic j(ei − e j), 1 ≤ i < j ≤ 3
√

ciei, i = 1,2,3.

Consider now the case B3, corresponding to the following configuration of vectors in R
3

B3 =

{
ei ± e j, 1 ≤ i < j ≤ 3,

ei i = 1, . . . ,3.
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V. Schreiber and A.P. Veselov

The following 4-parametric family of ∨-systems of B3-type was found in [1]:

B (c,γ) =

{√cic j (ei ± e j) , 1 ≤ j < i ≤ 3√
2ci(ci + γ)ei, 1 ≤ i ≤ 3

(3.2)

with arbitrary positive c1,c2,c3 and γ such that ci + γ > 0 for all i = 1,2,3.

Theorem 3. Formula (3.2) gives all rank 3 ∨-systems of matroid type B3.

Proof. The proof is by direct computations, but we present here the details to show the algebraic

nature of ∨-conditions in this example.

Since B3 matroid is strongly projectively rigid, we can assume that the corresponding ∨-system

has the form

A =

⎧⎪⎨⎪⎩
αi j (ei + e j) , 1 ≤ i < j ≤ 3

α̃i j (ei − e j) , 1 ≤ j < i ≤ 3

βiei, 1 ≤ i ≤ 3,

where all the parameters can be assumed without loss of generality to be positive.

To write down all ∨-conditions consider all two-dimensional planes containing at least two

vectors v1,v2 ∈ A .

There are 3 different types of such planes Π:

1. < e1,e2 ± e3 >,< e2,e1 ± e3 >,< e3,e1 ± e2 >,

2. < e1,e2,e1 ± e2 >,< e1,e3,e1 ± e3 >,< e2,e3,e2 ± e3 >,

3. < e1 − e2,e2 − e3,e1 − e3 >, < e1 − e2,e2 + e3,e1 + e3 >,

< e2 − e3,e1 + e3,e1 + e2 >,< e1 − e3,e2 + e3,e1 + e2 > .

The corresponding form G has the matrix

G =

⎛⎝α2
13 +α2

12 + α̃2
13 + α̃2

12 +β 2
1 α2

12 − α̃2
12 α2

13 − α̃2
13

α2
12 − α̃2

12 α2
23 +α2

12 + α̃2
23 + α̃2

12 +β 2
2 α2

23 − α̃2
23

α2
13 − α̃2

13 α2
23 − α̃2

23 α2
23 +α2

13 + α̃2
23 + α̃2

13 +β 2
3

⎞⎠
In case 1. the ∨-conditions are just the orthogonality conditions G(α∨,β∨) = 0 for the corre-

sponding two covectors α and β in the plane Π. We obtain the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(α̃2
23α̃2

13 + α̃2
23α̃2

12 + α̃2
13α̃2

12 −α2
13α2

12 −α2
13α̃2

23 −α2
12α̃2

23)−α2
13β 2

2 + α̃2
13β 2

2 −α2
12β 2

3 + α̃2
12β 2

3 = 0

2(α̃2
23α̃2

13 + α̃2
23α̃2

12 + α̃2
13α̃2

12 −α2
23α2

12 −α2
23α̃2

13 −α2
12α̃2

13)−α2
23β 2

1 + α̃2
23β 2

1 −α2
12β 2

3 + α̃2
12β 2

3 = 0

2(α̃2
23α̃2

13 −α2
23α2

13 −α2
23α̃2

12 −α2
13α̃2

12 + α̃2
23α̃2

12 + α̃2
13α̃2

12)−α2
23β 2

1 + α̃2
23β 2

1 −α2
13β 2

2 + α̃2
13β 2

2 = 0

2(α2
23α2

12 +α2
23α̃2

13 +α2
12α̃2

13 −α2
23α2

13 −α2
23α̃2

12 −α2
13α̃2

12)−α2
13β 2

2 + α̃2
13β 2

2 +α2
12β 2

3 − α̃2
12β 2

3 = 0

2(α2
13α2

12 +α2
13α̃2

23 +α2
12α̃2

23 −α2
23α̃2

12 −α2
13α̃2

12 −α2
23α2

13)−α2
23β 2

1 + α̃2
23β 2

1 +α2
12β 2

3 − α̃2
12β 2

3 = 0

2(α2
13α2

12 +α2
13α̃2

23 +α2
12α̃2

23 −α2
23α̃2

13 −α2
12α̃2

13 −α2
23α2

12)−α2
23β 2

1 + α̃2
23β 2

1 +α2
13β 2

2 − α̃2
13β 2

2 = 0,

which can be reduced to⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−α2

12 + α̃2
12)(α2

23 +α2
13 + α̃2

23 + α̃2
13 +β 2

3 − (α2
13−α̃2

13)
2

(α2
13+α2

12+α̃2
13+α̃2

12+β 2
1 )
) = 0

(−α2
13 + α̃2

13)(α2
23 +α2

12 + α̃2
23 + α̃2

12 +β 2
2 − (α2

12−α̃2
12)

2

(α2
13+α2

12+α̃2
13+α̃2

12+β 2
1 )
) = 0

(−α2
23 + α̃2

23)(α2
12 +α2

13 + α̃2
12 + α̃2

13 +β 2
1 − (α2

13−α̃2
13)

2

(α2
13+α2

23+α̃2
13+α̃2

23+β 2
3 )
) = 0.
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On deformation and classification of ∨-systems

Note that the second factors in all equations are ratios of principal minors of matrix G and thus

must be positive, since the form G is positive definite. This implies that αi j = α̃i j, which reduces

the matrix G to

G =

⎛⎝2(α2
13 +α2

12)+β 2
1 0 0

0 2(α2
23 +α2

12)+β 2
2 0

0 0 2(α2
23 +α2

13)+β 2
3

⎞⎠ .

In cases 2. and 3. we fix for each plane Π a basis v1,v2 ∈ A ∩Π. The corresponding dual plane

Π∨ is spanned by v∨1 and v∨2 and the ∨-condition implies the proportionality of the restrictions of the

forms G and GΠ onto Π∨. In our case this proportionality turns out to be equivalent to the following

system of equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2α2

12

2(α2
23+α2

12)+β 2
2

− 2α2
13

2(α2
23+α2

13)+β 2
3

= 0

2α2
12

2(α2
13+α2

12)+β 2
1

− 2α2
23

2(α2
23+α2

13)+β 2
3

= 0

2α2
13

2(α2
13+α2

12)+β 2
1

− 2α2
23

2(α2
23+α2

12)+β 2
2

= 0.

Introducing new parameters ci, i = 1,2,3 and γ by

ci :=
αi jαik

α jk
, γ :=

β 2
3 −2c2

3

2c3
.

we can see that these relations imply

α2
i j = cic j, β 2

i = 2ci(ci + γ),

which leads to the parametrisation (3.2).

For larger matroids the direct analysis of the ∨-conditions is very difficult, so we consider a

simpler problem about infinitesimal deformations of ∨-systems.

4. Deformations of ∨-Systems

Let A = {α} ⊂V ∗ be a ∨-system realisation of matroid M. Consider its smooth scaling deforma-
tion A (t) of the form

A (t) = {αt}, αt = μα(t)α, μα(0) = 1. (4.1)

For projectively rigid matroids M one can always reduce any deformation to such a form.

Let ξα = μ̇α(0). We are going to derive the conditions on ξα , which can be considered as

linearised ∨-conditions for such deformations.
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V. Schreiber and A.P. Veselov

Let

Gt(x,y) := GA (t)(x,y) = ∑
α∈A

αt(x)αt(y)

with G0 = G = GA (t) and consider its derivative

Ġt(x,y) = ∑
α∈A

α̇t(x)αt(y)+ ∑
α∈A

αt(x)α̇t(y),

which at t = 0 gives Ġ0(x,y) = 2X , where

X = ∑
α∈A

ξαα(x)α(y).

Consider now the ∨-conditions.

For any two-dimensional plane containing only two covectors we have

Gt(α∨
t ,β

∨
t ) = 0.

Differentiating it in t we have

Ġt(α∨
t ,β

∨
t )+G(α̇∨

t ,β
∨
t )+G(α∨, β̇∨

t ) = 0, (4.2)

where here and below by α̇∨
t we mean d

dt (α
∨
t ).

To find G(α̇∨
t ,β∨

t ) note that by definition of α∨
t Gt(α∨

t ,v) = αt(v) for any fixed vector v ∈ V.
Differentiating this with respect to t we have

Ġt(α∨
t ,v)+Gt(α̇∨

t ,v) = α̇t(v)

which for t = 0 gives

2X(α∨
t ,v)+G(α̇∨

t ,v) = ξαα(v).

Thus we have

G(α̇∨
0 ,v) = ξαα(v)−2X(α∨,v).

and thus

G(α̇∨
0 ,β

∨) = ξαα(β∨)−2X(α∨,β∨) =−2X(α∨,β∨)

since α(β∨) = G(α∨,β∨) = 0 by the ∨-conditions.

Substituting this into (4.2) we have the first linearised ∨-condition: for α,β being the only two

covectors in a plane Π we have

X(α∨,β∨) = 0. (4.3)

Let now Π be a two-dimensional plane containing more than two covectors from A (and hence

from At . Then from the ∨-conditions there exists ν = ν(Π)∈R such that for any α ∈ Π∩A ,v ∈V
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On deformation and classification of ∨-systems

we have

GΠ(α∨,v) = νG(α∨,v), (4.4)

where GΠ(x,y) = GΠ
A (x,y) = ∑α∈Π∩A α(x)α(y) (see [5]). Now assuming that A depends on t as

above and differentiating with respect to t at t = 0 we have as before for any α,β ∈ A ∩Π

ĠΠ(α∨,β∨)+GΠ(α̇∨,β∨)+GΠ(α∨, β̇∨)= ν̇G(α∨,β∨)+νĠ(α∨,β∨)+νG(α̇∨,β∨)+νG(α∨, β̇∨).

But from (4.4) we have GΠ(α̇∨,β∨) = νG(α̇∨,β∨) and GΠ(α∨, β̇∨) = νG(α∨, β̇∨). Since ĠΠ =

2XΠ, where

XΠ(x,y) = ∑
α∈Π∩A

ξαα(x)α(y),

we have

2XΠ(α∨,β∨) = ν̇G(α∨,β∨)+2νX(α∨,β∨),

or, eventually

2(XΠ −νX)((α∨,β∨) = ν̇G(α∨,β∨). (4.5)

Since this is true for all α,β ∈ Π∩A we have the second linearised ∨-condition: for any plane Π
containing more than two covectors from A we have

XΠ −νX ∼ G |Π∨ , (4.6)

where the sign ∼ means proportionality.

Thus we have proved

Theorem 4. The deformations of ∨-systems of the form (4.1) are described by the linear ∨-
conditions (4.3), (4.6). For projectively rigid matroidal types this describes all infinitesimal defor-
mations of a given ∨-system.

Case by case check of the ∨-systems from the Appendix leads to the following

Theorem 5. All rank three vector matroids corresponding to known irreducible 3D ∨-systems are
projectively rigid. The H3 matroid is the only one, which is not strongly projectively rigid.

Let us show that the largest known case (H4,A1) is strongly projectively rigid. We will use the

labelling of the points shown at the last figure of the paper. Fix the positions of the four points
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V. Schreiber and A.P. Veselov

6,25,27,30 forming a projective basis in RP2. After this all the remaining points can be recon-

structed uniquely as follows:

31 = (25,30)∧ (6,27), 29 = (25,27)∧ (6,30), 12 = (6,25)∧ (27,30),

9 = (30,27)∧ (29,31), 17 = (25,21)∧ (6,30), 28 = (17,27)∧ (12,25),

4 = (28,31)∧ (12,30), 24 = (17,27)∧ (25,30), 3 = (25,30)∧ (28,29),

23 = (3,28)∧ (27,31), 11 = (27,31)∧ (28,30), 19 = (3,9)∧ (4,8),

1 = (25,30)∧ (11,12), 16 = (7,11)∧ (1,19), 20 = (16,25)∧ (4,8),

7 = (1,4)∧ (25,27), 21 = (25,17)∧ (7,11), 10 = (7,31)∧ (4,25),

26 = (7,31)∧ (4,16), 14 = (4,16)∧ (11,31), 18 = (21,31)∧ (28,25),

22 = (7,31)∧ (3,28), 15 = (7,31)∧ (24,28), 2 = (15,19)∧ (10,11),

5 = (24,28)∧ (21,31), 13 = (7,25)∧ (12,24), 8 = (1,12)∧ (10,16).

A direct computation shows that in case of the classical systems A3 and B3 the linear system

(4.2),(4.5) has corank four in agreement with the results of the previous section.

The analysis of the linearised ∨-conditions for the families D3(t,s), F3(t), G3(t) and

(AB4(t),A1)1,2 shows that these families of ∨-systems can not be extended.

Consider, for example, the family of ∨-systems D3(t,s) from [5] with

A =

⎛⎜⎜⎝
1 1 1 1 0 0

√
2
√

s+ t −1

1 −1 −1 1
√

2
√

s−t+1
t 0 0

1 −1 1 −1 0
√

2
√

−s+t+1
s 0

⎞⎟⎟⎠
with real parameters s, t such that |s− t|< 1, s+ t > 1. Matrices G and X have the form

G =

⎛⎜⎝2(s+ t +1) 0 0

0
2(s+t+1)

t 0

0 0
2(s+t+1)

s

⎞⎟⎠

X =

⎛⎜⎝ξ1 +ξ2 +ξ3 +ξ4 +2ξ7(s+ t −1) ξ1 −ξ2 −ξ3 +ξ4 ξ1 −ξ2 +ξ3 −ξ4

ξ1 −ξ2 −ξ3 +ξ4 ξ1 +ξ2 +ξ3 +ξ4 +
2(s+1)

t ξ5 −2ξ5 ξ1 +ξ2 −ξ3 −ξ4

ξ1 −ξ2 +ξ3 −ξ4 ξ1 +ξ2 −ξ3 −ξ4 ξ1 +ξ2 +ξ3 +ξ4 +
2(−s+t+1)

s ξ6

⎞⎟⎠.

For the three covectors α5,α6,α7 the first linearised ∨-conditions X(α∨
i ,α∨

j ) = 0, i, j = 5,6,7

are equivalent to

ξ1 +ξ2 −ξ3 −ξ4 = 0,
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On deformation and classification of ∨-systems

ξ1 −ξ2 −ξ3 +ξ4 = 0,

ξ1 −ξ2 +ξ3 −ξ4 = 0,

which imply that ξ1 = ξ2 = ξ3 = ξ4.

For the planes with more than two covectors we have the linear system

(s+ t)(ξ1(s+ t +1)+ξ2(s+ t −3)+ t(ξ3(2s+3)+ξ4(2s−1)−2(s(ξ5 +ξ6)+ξ5 +ξ7))

+ t2(−(ξ3 +ξ4 −2ξ5))− s(s(ξ3 +ξ4 −2ξ6)+ξ3 −3ξ4 +2(ξ6 +ξ7))+2ξ7) = 0,

(s+ t)((s−1)(ξ2 −ξ7 + s(ξ6 −ξ4))+ t(ξ2 +ξ3 −ξ5 −ξ7 + s(ξ3 +ξ4 −ξ5 −ξ6))

+ t2(−ξ3 +ξ5)) = 0,

(s+1)t(s(ξ1 −ξ2 +ξ3 +3ξ4 −2(ξ5 +ξ6))+ξ1 +3ξ2 +ξ3 −ξ4 −2(ξ5 +ξ7))+(s+1)

t2(ξ1 −3ξ3 +2ξ5)+(s2 −1)(−ξ2(s−1)−ξ4(s−1)+2ξ6s−2ξ7) = 0,

(s+1)t(ξ2 + s(ξ3 +ξ4 −ξ5 −ξ6)+ξ3 −ξ5 −ξ7)+(s2 −1)(ξ2 + s(ξ6 −ξ4)−ξ7)

+(s+1)t2(−(ξ3 −ξ5)) = 0,

(t +1)(−t(s(ξ1 +ξ4 −2(ξ5 +ξ6))+ξ3(3s+2)−2(ξ5 +ξ7))+ s(−s(ξ1 +2ξ6)+ξ3

+ξ4(3s−1)+2(ξ6 +ξ7))−ξ1s+ξ2s(t −3)+(t −1)2)+ t2(ξ3 −2ξ5)+ξ3 −2ξ7 = 0,

(t +1)(t(ξ2 + s(ξ3 +ξ4 −ξ5 −ξ6)+ξ3 −ξ5 −ξ7)+(s−1)(ξ2 + s(ξ6 −ξ4)

−ξ7)+ t2(ξ5 −ξ3) = 0,

(t +1)(ξ1(s(t −3)+(t −1)2)− t(s(ξ2 +ξ3 −2(ξ5 +ξ6))+ξ4(3s+2)−2(ξ5 +ξ7))

− s(s(ξ2 −3ξ3 +2ξ6)+ξ2 +ξ3 −ξ4 −2(ξ6 +ξ7))+ t2(ξ4 −2ξ5)+ξ4 −2ξ7) = 0,

(t +1)(t(ξ1 + s(ξ3 +ξ4 −ξ5 −ξ6)+ξ4 −ξ5 −ξ7)+(s−1)(ξ1 + s(ξ6 −ξ3)

−ξ7)+ t2(ξ5 −ξ4)) = 0,

(s+1)t(ξ1(s−3)− s(ξ2 +3ξ3 +ξ4 −2(ξ5 +ξ6))−ξ2 +ξ3 −ξ4 +2(ξ5 +ξ7))

+
(
s2 −1

)
(ξ1(s−1)+ξ3(s−1)−2ξ6s+2ξ7)+(s+1)t2(−(ξ2 −3ξ4 +2ξ5)) = 0,

(s+1)t(ξ1 + s(ξ3 +ξ4 −ξ5 −ξ6)+ξ4 −ξ5 −ξ7)+(s2 −1)(ξ1 + s(ξ6 −ξ3)

−ξ7)+(s+1)t2(−(ξ4 −ξ5)) = 0,
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V. Schreiber and A.P. Veselov

(s+ t)(t(ξ1(2s+3)+ξ2(2s−1)+ξ4 −2(s(ξ5 +ξ6)+ξ5 +ξ7))+ s(−s(ξ1 +ξ2 −2ξ6)

+ξ4 −2(ξ6 +ξ7))+ t2(−(ξ1 +ξ2 −2ξ5))−ξ1s+3ξ2s+ξ3(s+ t +1)−3ξ4 +2ξ7) = 0,

(s+ t)(t(s(ξ1 +ξ2 −ξ5 −ξ6)+ξ1 +ξ4 −ξ5 −ξ7)+ t2(ξ5 −ξ1)+(s−1)(s(ξ6 −ξ2)

+ξ4 −ξ7)) = 0.

A check with Mathematica shows that the co-rank of the total system is three for every admis-

sible values of s and t. The free parameters correspond to two deformation parameters s and t and

the uniform scaling of the system.

This approach with the use of Mathematica (see the programme in Appendix B to [15]) allows

us to prove that the isolated examples of ∨-systems from the list [5] are indeed isolated.

Theorem 6. There are no non-trivial deformations of the ∨-systems (E7,A2
1 ×A2), (E8,A2 ×A3),

(E8,A2
2 ×A1), (E8,A3

1 ×A2), (E8,A2
1 ×A3), (E8,A1 ×A4), (H4,A1) and H3.

5. Matroidal Structure of ∨-Systems and Projective Geometry

The main part of the classification problem is to characterise the corresponding class of possible

matroids. This question was addressed by Lechtenfeld et al in [9]. They developed a Mathematica

program, which generates simple and connected matroids of a given size of the ground set X . If

a generated matroid has a vector representation, they have checked first if the orthogonality ∨-

conditions are possible to satisfy before verification of the ∨-conditions for the non-trivial planes

(all 2-flats). For matroids with n < 10 elements the orthogonality conditions are strong enough to

identify all matroids corresponding to ∨-systems in dimensions three. All the identified ∨-systems

turned out to be part of the list in [4].

For larger matroids this approach seems unworkable because of the unreasonably large computer

time required. This means that we need a more conceptual approach, which is still missing.

In this section we collect some partial observations based on the analysis of the known 3D

∨-systems and projective geometry.

We start with the notion of extension and degeneration for ∨-systems.

Let A1,A2 ⊂ V∗ be two ∨-systems. If A2 ⊂ A1 we call A1 an extension of A2.

Let ∨-system A = At depend on the parameter t. Assume that for some t = t0 one or more

of the covectors α ∈ At0 vanishes. In that case the system Ã = lim
t→t0

A (t) is called degeneration of

A (t). A reverse process we will call regeneration.

In the tables below we give the list of all extensions and degenerations for known three-

dimensional ∨-systems from the catalogue in the Appendix.

Table 1. Extensions of known 3D ∨-systems.

∨-system Extension The added covectors

A3 F3(t) {1,2,3,10,11,12,13}
A3 (AB4(t),A1)2 {1,2,3,10}

(E6,A3
1) (E8,A3

1 ×A2) {3,4,5,6,9,14,15,16,17}
G3(

3
2
) (E8,A3

1 ×A2) {1,2,10,11,12,13}
H3 (H4,A1) {4,5,6,7,20,21,22,23,24,25,26,27,28,29,30}
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On deformation and classification of ∨-systems

Table 2. Degenerations of known 3D ∨-systems.

∨-system Degeneration The vanishing covectors

F3(t) lim
t→0

F3(t)∼ B3(
√

2) {11,12,13,14}
F3(t) lim

t→∞
F3(t)∼ D3(1,1) {8,9,10,11,12,13}

B3(c,c,c;γ) lim
γ→c

B3(c,c,c;γ)∼ A3 {1,2,3}
(AB4(t),A1)2 lim

t→∞
(AB4(t),A1)2 ∼ D3(1,1) {5,7,9}

(AB4(t),A1)2 lim
t→0

(AB4(t),A1)2 ∼ B3(
√

2) {10}
(AB4(t),A1)1 lim

t→ 1√
2

(AB4(t),A1)1 ∼ (E6,A3
1) {3}

1
t (AB4(t),A1)1 lim

t→∞
(AB4(t),A1)1 ∼ B3(

√
2) {5,6}

G3(t) lim
t→ 1

2

G3(t)∼ (E6,A3
1) {4,5,6}

D3(t,s) lim
t→ (s+1)

D3(t,s)∼ A3 {5}
B3(c1,c2,c3,γ) lim

c1→ −γ
B3(c1,c2,c3,γ)∼ (E6,A3) {1}

B3(c1,c2,c3,γ) lim
c1,c2→ −γ

B3(c1,c2,c3,γ)∼ D3(1,1) {1,2}

More relations between ∨-realisable matroids can be seen using projective geometry, in partic-

ular projective duality. We will demonstrate this on few examples.

We start with the matroid of the ∨-system of type A3. In projective geometry (see e.g. [8]) it is

known as the simplest configuration (6243) consisting of four lines with three points on each line and

two lines passing through every point. Its projective dual is a complete quadrangle (4362) consisting

of four points, no three of which are collinear and six lines connecting each pair of points (see figure

4). If we extend the dual configuration by adding the remaining three points of intersections of lines

(the points marked white in the graphic), we come to the projective configuration of seven points

and six lines, corresponding to the matroid of the ∨-system of type D3.

dual

Fig. 4. The projective configuration of A3 type, its dual and the extended configuration corresponding to ∨-system of type

D3.

We can proceed the construction by taking the dual of the new obtained configuration and

extending it by adding the missing points of intersections of lines. The result is the configuration of

nine points and seven lines realisable as B3-type ∨-system (see figure 5).
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V. Schreiber and A.P. Veselov

dual

Fig. 5. D3 configuration, its projective dual and the extended configuration of matroidal type B3.

The next step of the construction is demonstrated in figure 6. The dual configuration was

obtained from the configuration D3 by adding all missing lines passing through any pair of points.

Applying Desargue’s theorem to two marked triangles we see that the white marked points of the

extended configuration are collinear. The new configuration of 10 points and 10 lines is self-dual

and corresponds to the ∨-system of type (AB4(t),A1)2 (see system 9.6 in the Appendix).

1

Fig. 6. B3-configuration and its schematic extended projective dual, corresponding to ∨-system of type (AB4(t),A1)2.

Due to Desargue’s theorem the three added (white) points are collinear.

One can check that the adding of three intersection points with red lines and three lines connect-

ing them pairwise leads to the configuration of F3 type (see system 9.10). However, if we add also

the three intersection points with dotted line then we come to the configuration which can be shown

to be not ∨-realisable.

Although this relation with projective configurations and theorems in projective geometry looks

quite promising, we see that the extension procedure is not straightforward and does not guarantee

the ∨-realisability of the resulting configuration.

We conclude with the following conjecture about 2-flats with precisely four points. Recall that

four points A,B,C,D on a projective line form a harmonic range if the cross-ratio (A,B;C,D) =−1.

The corresponding pencil of four lines on a plane is called harmonic bundle. The B3 configuration

provides a geometric way to construct harmonic ranges: on Fig. 1 the points 3,4,9,8 always form a

harmonic range. Note that the covectors 8 and 9 are orthogonal and determine the bisectors for the

lines corresponding to covectors 3 and 4. Case by case check of the known 3D ∨-systems suggests

that the same is true in general.
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On deformation and classification of ∨-systems

Conjecture 1. Let A be a ∨-system and ΠA ⊂ V ∗ be two-dimensional plane containing exactly
four covectors αi ∈ A , i = 1, . . . ,4, then the corresponding four lines form a harmonic bundle with
two orthogonals.

6. ν-Function, Uniqueness and Rigidity Conjectures

Let M be a matroid and A be its ∨-system realisation. Such a realisation defines the ν-function on

the 2-flats of M, where ν is the coefficient in the ∨-conditions (1.1) corresponding to the plane Π
representing the flat.

Conjecture 2. (Uniqueness Conjecture) An irreducible ∨-system A is uniquely determined mod-
ulo linear group GL(V ∗) by its matroid M and the corresponding ν-function on its flats.

A weaker version of the conjecture is

Conjecture 3. (Rigidity Conjecture) An irreducible ∨-system A is locally uniquely determined by
its matroid M and the corresponding ν-function on its flats.

If the function ν is fixed under deformation then ν̇ = 0 and the corresponding ∨-conditions are

X(α∨,β∨) = 0 (6.1)

for α,β be the only two covectors in the plane, and

XΠ −νX = 0 |Π∨ (6.2)

for any plane Π containing more than two covectors from A .

Conjecturally this should imply that X = cG corresponding to the global scaling of the system.

Case by case check from the list in the Appendix leads to the following

Theorem 7. Both conjectures are true for all known ∨-systems in dimension three.

We have also the following conjecture based on the analysis of the list of extensions of ∨-

systems from the previous section.

Conjecture 4. (Extension Conjecture) For any irreducible ∨-system and its extension the values
of the ν-functions on the corresponding flats are proportional.

One can check that this is true for all known cases. For example, for the extension H3 ⊂ (H4,A1)

we have the set of values

{3/10,1/2}= 3×{1/10,1/6}.

Now we present some results about ν-functions for ∨-systems.

First we give the following, more direct geometric way to compute ν(Π). The form GA on V
defines the scalar product on V ∗ and thus the norm |α|, α ∈V ∗.

Theorem 8. For every plane Π ⊂V ∗ containing more than two covectors α from a ∨-system A

ν(Π) =
1

2
∑

α∈Π∩A

|α|2. (6.3)
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V. Schreiber and A.P. Veselov

Proof. From the ∨-conditions (1.1) we have

∑
α∈Π∩A

α∨⊗α |Π∨= ν(Π)I |Π∨ .

Taking the trace of both sides gives (6.3).

Let A ⊂V ∗ be a ∨-system generating V ∗ and consider the set FA of 2-flats in the corresponding

matroid, which the same as the set of 2D planes Π ⊂ V ∗ containing more than two covectors from

A .

We say that the set of weights xΠ, Π ∈ FA is admissible if for each α ∈ A

∑
Π∈FA :α∈Π

xΠ = 1. (6.4)

Theorem 9. For every admissible set of weights we have

∑
Π∈FA

xΠν(Π) =
n
2
, (6.5)

where n is the dimension of V.

Proof. We have

∑
β∈A

β∨⊗β = ∑
β∈A

( ∑
Π∈FA :β∈Π

xΠ)β∨⊗β = ∑
Π∈FA

xΠ ∑
β∈Π∩A

β∨⊗β .

From the ∨-condition

∑
β∈Π∩A

β∨⊗β = ν(Π)PΠ,

where PΠ is the orthogonal projector onto Π∨. Taking trace and using the fact that ∑β∈A β∨⊗β =

Id we obtain (6.5).

We call (6.5) the universal relation for values of function ν .
For the ∨-system of type A3 the universal relation completely describes the set of all possible

functions ν . Indeed, one can easily see from Fig. 2 that xΠ = 1/2 is the only admissible weight

system, which leads to the universal relation

∑
Π∈FA

ν(Π) = 3.

This gives us three free parameters, which are exactly three parameters of deformation.

However, in general universal relations are not strong enough to describe possible ν-functions.

Moreover, a ∨-system A may not have admissible weights xΠ at all. For instance, this is the case

for the ∨-system of D3(t)-type (this is however the only exception among known 3D ∨-systems).

The list of all known ∨-systems in dimension three with the corresponding ν-functions is given

in the Appendix.
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On deformation and classification of ∨-systems

7. Concluding Remarks

Although the problem of classification of ∨-systems seems to be very hard, in dimension three

it does not look hopeless. As we have seen, matroid theory provides a natural framework for the

problem of classification of ∨-systems. For a given matroidal structure the ∨-conditions define a

set of algebraic relations on the vector realisations. In case when matroid is strongly projectively

rigid we have one free parameter for each vector, which makes possible the full classification of

∨-systems with small number of vectors.

The main problem is to describe all possible matroidal types, which we believe form a finite

list in any dimension. The results of Lechtenfeld et al [9] show that the direct computer approach is

probably unrealistic for ∨-systems with more than 10 covectors, while we have already in dimension

three an example with 31 covectors (system (H4,A1), see 7.16 in the Appendix). In dimension three

we have an intriguing relation with the theory of configurations on the projective plane and with the

theorems in projective geometry, which also suggests that the final list should be finite.

In the theory of matroids and graphs many families have been proved to be closed under taking

minors, thus giving a possibility to reduce the problem of classification to the identification of the

forbidden minors. We hope that a similar approach could be fruitful for classification of ∨-systems.

Another result from matroid theory, which could be relevant, is Seymour’s decomposition theo-

rem [18], which states that all regular matroids can be build up in a simple way as sums of certain

type of graphic matroids, their duals, and one special matroid on 10 elements. Our analysis of degen-

erations and extensions of ∨-systems suggests a possibility of a similar result for the ∨-realisable

matroids.
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9. Appendix. Catalogue of all Known Real 3-Dimensional ∨-Systems

Each 3D ∨-system A is presented below by the matrix with columns giving the covectors of the

system (the first row is simply the labelling of the covectors). We give the graphical representation

of the corresponding matroid with the list of orthogonal pairs, 2-flats, the form G and the values

of ν-function. The ordering of the list is according to the number of covectors in the system. The

parameters are assumed to be chosen in such a way that all the covectors are real and non-zero.

Below is a schematic way to present all known ∨-systems in dimension three taken from [5].
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On deformation and classification of ∨-systems

B  ( 2)
3

A (c)
3

A
     

3D (t,s)
3

(AB (t), A )
4 1 1

(AB (t), A ) 
4 1 2

F (t)3

G (t)
3

(E ,A )
6 1

3

(E , A )
8 5

(E , A )
7

2

2

(E , A  x A  )
7 1 3 2

(E , A  x A  )   
7 1 3 1

(E , A )
 7 1

4

(E , D )
8 5

(E , A x D  ) 
8 1 4

(E , A )
7 4

(E , A x A  )   
6 1 2

(E , A  x A  )
7 1 2

2

(E , A  x A  )
8 2 3

(H , A )
4 1

(E , A  x A  )
8 1 3

2

(E , A  x A  )
8 2 1

2

(E , A  x A  )
8 1 2

3
H

3(E , A  x A  )
8 1 4

(E , A )
6 3

(E , D )
7 4

P
A  (t,t,1,1)

3

B (γ;c)
3

Fig. 7. The map of all known 3-dimensional ∨-systems from [5].

We use here the notations from [4, 5]. In particular, for a Coxeter group G and its parabolic

subgroup H (G,H) denotes the corresponding ∨-system given by the restriction procedure [4].

When the type of the subgroup does not fix the subgroup up to a conjugation the index 1 or 2 is

used to distinguish them.

The ∨-systems of type AB4, G3 and D3 are related to the exceptional generalised root systems

AB(1,3), G(1,2) and D(2,1,λ ) appeared in the theory of basic classical Lie superalgebras [16,17].
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V. Schreiber and A.P. Veselov

9.1. ∨-systems A3(c1,c2,c3)

A =

⎡⎢⎢⎣
1 2 3 4 5 6√
c1 0 0 −√

c1c2 −√
c1c3 0

0
√

c2 0
√

c1c2 0 −√
c2c3

0 0
√

c3 0
√

c1c3
√

c2c3

⎤⎥⎥⎦

1

4

2

3
5

6

G =

⎡⎣ c1(1+ c2 + c3) −c1c2 −c1c3

−c1c2 c2(1+ c1 + c3) −c2c3

−c1c3 −c2c3 c3(1+ c1 + c2)

⎤⎦

I2 ={(1,6),(2,5),(3,4)}

I3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1,2,4) ν3 =

1+c1+c2

1+c

(1,3,5) ν2 =
1+c1+c3

1+c

(2,3,6) ν1 =
1+c2+c3

1+c

(4,5,6), ν4 =
c

1+c , c = c1 + c2 + c3.
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On deformation and classification of ∨-systems

9.2. ∨-system D3(t,s)

A =

⎡⎢⎢⎢⎢⎣
1 2 3 4 5 6 7

1 1 1 1 0 0
√

2(s+ t −1)

1 −1 −1 1

√
2(s−t+1)

t 0 0

1 −1 1 −1 0

√
2(t−s+1)

s 0

⎤⎥⎥⎥⎥⎦

1 6 4

2
7

5

3

G = 2(1+ s+ t)

⎡⎣1 0 0

0 1
t 0

0 0 1
s

⎤⎦

I2 ={(5,6),(5,7),(6,7)}

I3 =

⎧⎪⎨⎪⎩
(1,2,7),(3,4,7) ν31 =

s+t
1+s+t

(1,3,5),(2,4,5) ν32 =
1+s

1+s+t

(1,4,6),(2,3,6) ν33 =
1+t

1+s+t
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9.3. ∨-system (E6,A3)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8

2 2 2
√

6 2 −2 2 −2 0

2 −2 0 1
2

1
2

−1 −1
√

6
2

0 0 0 1
2

1
2

1 1
√

6
2

⎤⎥⎥⎥⎥⎥⎦

8 6 2

3
5

1

7

4

G = 4

⎡⎣12 0 0

0 3 0

0 0 1

⎤⎦
I2 ={(1,5),(2,4),(4,7),(5,6)}

I3 =

{
(2,5,7),(1,4,6) ν31 =

1
2

(6,3,7),(8,1,7),(1,2,3),(8,6,2) ν32 =
2
3

I4 =
{
(8,4,3,5) ν4 =

2
3
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On deformation and classification of ∨-systems

9.4. ∨-systems of B3(c1,c2,c3,γ)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3√

2c1(c1 + γ) 0 0

0
√

2c2(c2 + γ) 0

0 0
√

2c3(c3 + γ)

· · ·

· · ·

4 5 6 7 8 9

0
√

c1c3
√

c1c2 0 −√
c1c3 −√

c1c2√
c2c3 0

√
c1c2 −√

c2c3 0
√

c1c2√
c2c3

√
c1c3 0

√
c2c3

√
c1c3 0

⎤⎥⎥⎥⎥⎦

9

8

7

5

42

6

1

3

G = 2(c1 + c2 + c3 + γ)

⎡⎣ c1 0 0

0 c2 0

0 0 c3

⎤⎦

I2 ={(1,4),(1,7),(2,5),(2,8),(3,6),(3,9)}
Four 3-point lines:

I3 ={(4,5,9),(4,6,8),(5,6,7),(7,8,9)} , ν3 =
∑ci

2(γ+∑3
i=1 ci)

Three 4-point lines:

I4 ={(1,2,6,9),(1,3,5,8),(2,3,4,7)} , ν4 j =
γ−c j+∑ci

γ+∑3
i=1 ci)

, j=1,2,3
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V. Schreiber and A.P. Veselov

9.5. ∨-system (E6,A3
1)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10

√
2

√
2 2

√
3 0

√
2 −√

2 −√
2

√
2 0 0√

2 −√
2 0 2

√
2

2
−

√
2

2

√
2

2
−

√
2

2
1 −1

0 0 0 0
√

2
2

√
2

2

√
2

2

√
2

2
1 1

⎤⎥⎥⎥⎥⎥⎦

7

9
5

3

8

10

6

1
2

4

G =

⎡⎣24 0 0

0 12 0

0 0 4

⎤⎦
I2 ={(1,7),(1,8),(2,5),(2,6),(5,6),(7,8)}

I 3 =

{
(10,2,7),(4,6,7),(9,8,2),(1,5,10),(4,5,8),(9,1,6), ν31 =

5
12

(4,9,10), ν32 =
1
2

I4 ={(4,1,2,3),(9,5,3,7),(6,3,8,10)} ,ν4 =
2
3
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On deformation and classification of ∨-systems

9.6. ∨-system (AB4(t),A1)2

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10

√
2 0 0 1 1√

4t2+1
1 1√

4t2+1
0 0 t

√
2√

(t2+1)

0
√

2 0 1 − 1√
4t2+1

0 0 1 1√
4t2+1

t
√

2√
(t2+1)

0 0
√

2 0 0 1 − 1√
4t2+1

1 − 1√
4t2+1

t
√

2√
(t2+1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

9

7

5 2 4 1

6
3

8
10

G =
6(1+2t2)

(1+ t2)(1+4t2)

⎡⎣1+2t2 t2 t2

t2 1+2t2 t2

t2 t2 1+2t2

⎤⎦

I2 = {(1,9),(2,7),(3,5),(5,10),(7,10),(9,10)}

I3 =

⎧⎪⎪⎨⎪⎪⎩
(1,8,10),(2,6,10),(3,4,10) ν31 =

1+4t2

3(1+2t2)

(4,6,9),(4,7,8),(5,6,8) ν32 =
3+4t2

6(1+2t2)

(5,7,9) ν33 =
1

2(1+2t2)

I4 = {(1,2,4,5),(1,3,6,7),(2,3,8,9)}, ν4 =
2
3
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V. Schreiber and A.P. Veselov

9.7. ∨-system (AB4(t),A1)1

A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11√

2(2t2 +1) 0 0
√

2
√

2 t
√

2 t
√

2 t t t t
0 2

√
2(t2 +1) 0

√
2 −√

2 0 0 2t −2t 2t −2t

0 0 t
√

2(2t2−1)
t2+1

0 0 t
√

2 −t
√

2 t t −t −t

⎤⎥⎥⎥⎥⎥⎥⎦

9
6

8

2

4

1

5

10 7 11

3

G = 6

⎡⎢⎣1+2t2 0 0

0 2+4t2 0

0 0 t2+2t4

1+t2

⎤⎥⎦
I2 = {(2,3),(3,4),(3,5),(4,9),(4,11),(5,8),(5,10)}

I3 =

⎧⎪⎪⎨⎪⎪⎩
(4,6,10),(4,7,8),(5,6,11),(5,7,9) ν31 =

3+4t2

6(1+2t2)

(1,8,11),(1,9,10) ν32 =
1+3t2

3(1+2t2)

(3,8,10),(3,9,11) ν33 =
t2

(1+2t2)

I4 =

⎧⎪⎪⎨⎪⎪⎩
(2,6,8,9),(2,7,10,11) ν41 =

2
3

(1,2,4,5) ν42 =
3+2t2

3(1+2t2)

(1,3,6,7) ν43 =
1+4t2

3(1+2t2)
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On deformation and classification of ∨-systems

9.8. ∨-system G3(t)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13

√
2t +1 0

√
2t +1

√
2t−1

3
2
√

2t−1
3

√
2t−1

3
0 1 1 0 0 1 1

0
√

2t +1
√

2t +1 −
√

2t−1
3

√
2t−1

3
2
√

2t−1
3

0 0 0 1 1 1 1

0 0 0 0 0 0
√

3
t 1 −1 1 −1 1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

5

13

3

12

7

11

9

10

6

2

4

1
8

G =

⎡⎣4(1+2t) 2(1+2t) 0

2(1+2t) 4(1+2t) 0

0 0 3(2+ 1
t )

⎤⎦
I2 ={(4,7),(4,12),(4,13),(5,7),(5,10),(5,11),(6,7),(6,8),(6,9)}

I3 =

{
(2,9,13),(2,8,12),(3,8,11),(1,11,13),(1,10,12),(3,9,10) ν31 =

3+4t
6(1+2t)

(4,8,10),(6,11,12),(6,10,13),(5,9,12),(5,8,13),(4,9,11) ν32 =
1+4t

6(1+2t)

I4 ={(2,7,10,11),(1,7,8,9),(3,7,12,13)} ,ν4 =
3+2t
3+6t

I6 = {(1,2,3,4,5,6)},ν6 =
2t

1+2t

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

571

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
3:

29
 0

8 
A

pr
il 

20
15

 



V. Schreiber and A.P. Veselov

9.9. ∨-system (E7,A2
1 ×A2)

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13

√
3

√
3 2 0 0 1√

2
− 1√

2
− 1√

2

1√
2

√
3
2
−
√

3
2
−
√

3
2

√
3
2√

3 −√
3 0 2

√
6 0 3√

2
− 3√

2

3√
2

− 3√
2

√
3
2
−
√

3
2

√
3
2

−
√

3
2

0 0 0 0 1 1√
2

1√
2

1√
2

1√
2

√
3
2

√
3
2

√
3
2

√
3
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

G = 9

⎡⎣2 0 0

0 6 0

0 0 1

⎤⎦
I2 ={(1,8),(1,9),(2,6),(2,7),(3,5),(4,5),(6,11),(7,10),(8,13),(9,12)}

I3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5,9,8),(7,5,6) ν31 =

2
9

(10,3,12),(11,13,3) ν32 =
7

18

(6,3,8),(7,9,3) ν33 =
5

18

(6,1,12),(10,2,8),(7,13,1),(11,9,2) ν34 =
1
3

I4 =

{
(5,13,2,12),(11,5,10,1) ν41 =

4
9

(4,2,3,1) ν42 =
5
9

I5 ={(11,7,4,8,12),(6,10,13,9,4)} ,ν5 =
2
3
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On deformation and classification of ∨-systems

9.10. ∨-system F3(t)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13

√
4t2 +2 0 0 1 1 1 1 0 0 t

√
2 t

√
2 t

√
2 t

√
2

0
√

4t2 +2 0 1 −1 0 0 1 1 t
√

2 −t
√

2 t
√

2 −t
√

2

0 0
√

4t2 +2 0 0 1 −1 1 −1 t
√

2 t
√

2 −t
√

2 −t
√

2

⎤⎥⎥⎥⎥⎥⎦

11

9

12

1

5
2

4

6 7

10
8 13

3

G = (6+12t2)I

I2 ={(4,11),(4,13),(5,10),(5,12),(6,13),(7,10),(7,11),(8,11),(8,12),(9,10),(9,13)}

I3 =
{
(4,6,9),(4,7,8),(5,6,8),(5,7,9), ν31 =

1
2+4t2

I4 =

⎧⎪⎨⎪⎩
(1,2,4,5),(1,3,6,7),(2,3,8,9), ν32 =

2(1+t2)
3+6t2

(1,8,10,13),(1,9,11,12),(2,6,10,11),(2,7,12,13),

(3,4,10,12),(3,5,11,13), ν33 =
1+4t2

3+6t2
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V. Schreiber and A.P. Veselov

9.11. Coxeter ∨-system H3

A =

⎡⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2φ 0 0 1 −1 1 1 φ −φ φ φ φ 2 φ 2 −φ 2 φ 2

0 2φ 0 φ φ −φ φ −φ 2 φ 2 φ 2 φ 2 1 −1 1 1

0 0 2φ φ 2 φ 2 φ 2 −φ 2 1 1 −1 1 −φ φ φ φ

⎤⎥⎥⎦
where φ is the golden ratio φ = 1+

√
5

2
.

6

8

9

5

3

7

1014 12

13 15 11

4

21

G = 10(3+
√

5)I

I2 =

{
(1,2),(1,3),(2,3),(4,8),(4,12),(5,10),(5,13),(6,11),

(6,14),(7,9),(7,15),(8,12),(9,15),(10,13),(11,14).

I3 =

{
(1,8,10),(1,9,11),(2,4,6),(2,5,7),(3,12,15),

(3,13,14),(4,9,13),(5,11,12),(6,10,15),(7,8,14) ν31 =
3

10

I5 =

{
(1,4,5,14,15),(1,6,7,12,13),(2,8,11,13,15),(2,9,10,12,14),

(3,4,7,10,11),(3,5,6,8,9) ν5 =
1
2
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On deformation and classification of ∨-systems

9.12. ∨-system (E8,A1 ×A4)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12

√
10

√
10

√
2

√
2 0 0 2 0 1 −1

√
5 −√

5√
10 −√

10 0 0
√

5
√

10 0 2
√

10 2
5

5
2

− 3
√

5
2

− 3
√

5
2

0 0
√

2 −√
2
√

5 −√
10 0 0 1

2
1
2

√
5

2

√
5

2

· · ·

· · ·

13 14 15 16

√
10 −√

10 0 0√
10
2

√
10
2

− 5√
2

3
√

10
2√

10
2

√
10
2

1√
2

√
10
2

⎤⎥⎥⎥⎥⎥⎥⎦

7

11

6

3

13

4

14 5

15

2

1

12

                 10
                      8

                        16
                                       9

G = 30

⎡⎣2 0 0

0 5 0

0 0 1

⎤⎦
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V. Schreiber and A.P. Veselov

I2 ={(1,10),(2,9),(3,8),(3,10),(3,14),(4,8),(4,9),(4,13),(6,7),(6,9),(6,10),

(7,15),(7,16),(13,15),(14,15)}

I3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5,10,11),(5,9,12),(7,11,12) ν31 =

7
30

(7,9,10) ν32 =
1
10

(3,16,11),(4,5,1),(4,16,12),(3,5,2),(11,15,1),(2,15,12) ν33 =
4
15

(4,10,15),(3,9,15),(3,4,7) ν34 =
2
15

I4 = {(7,2,8,1),(12,8,10,14),(14,16,9,1),(13,16,10,2),(13,5,14,7),(13,9,8,11)},

ν4 =
2
5

I5 ={(15,8,16,5,6),(12,1,13,3,6),(11,2,14,4,6)},ν5 =
3
5

9.13. ∨-system (E8,A2 ×A3)

A =

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6 7 8 9 10 11 12 13

2
√

3 2
√

3 0 0
√

3

√
15
2

2
√

3 0 3
2

3
2

−3 −3 3
√

6
2

2
√

3 −2
√

3 2 2 0 0 0 2
√

6 2 −2 2 −2 0

0 0 2 −2
√

3 −
√

15
2

0 0 1
2

1
2

1 1
√

6
2

· · ·

· · ·

14 15 16 17

−
√

3
2

−
√

3
2

√
3

√
3

2
√

3 −2
√

3 2
√

3 −2
√

3√
3

2
−

√
3

2

√
3

√
3

⎤⎥⎥⎥⎥⎥⎦

13

1

15

9

7                                       6                   5

  12

4

11                            3

2         14
                      10

10                8

17
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On deformation and classification of ∨-systems

G = 30

⎡⎣3 0 0

0 4 0

0 0 1

⎤⎦
I2 ={(1,10),(2,9),(3,7),(3,10),(3,15),(4,7),(4,9),(4,14),

(5,11),(5,12),(9,11),(9,17),(10,12),(10,16),(11,15),(12,14)}

I3 =

⎧⎪⎨⎪⎩
{(5,9,15),(5,10,14),(7,9,14),(7,10,15)} ν31 =

1
6

{(3,14,17),(4,12,13),(4,15,16),(7,11,16),(7,12,17),(8,11,12),

(1,4,5),(1,11,14),(2,3,5),(2,12,15),(3,4,8),(3,11,13)} ν32 =
4

15

I4

=

{
(8,9,10,13) ν41 =

4
15

(1,2,7,8),(1,13,15,17),(2,13,14,16),(5,6,7,13),(5,8,16,17),(6,8,14,15) ν42 =
2
5

I6 ={(1,3,6,9,12,16),(2,4,6,10,11,17)}, ν6 =
3
5

9.14. ∨-system (E8,A2
1 ×A3)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13

2 2 0 0 2 2 2 0 0
√

2
2

√
2

2

√
2

2

√
2

2

2 −2 2 2 0 0 0 2
√

10 0 2
√

2 −2
√

2 −2
√

2 2
√

2

0 0 2 −2 2 −2 0 0 2
√

2
2

−
√

2
2

√
2

2
−

√
2

2

· · ·

· · ·

14 15 16 17

√
2

√
2

√
2

√
2

2
√

2 −2
√

2 −2
√

2 2
√

2√
2 −√

2
√

2 −√
2

⎤⎥⎥⎥⎥⎥⎦

5

2

15

3

14

79 6

16
                          4

                                            11
                                                           10
                                                      8
                                                                           1

                            12
                                             17

                                                                              13
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V. Schreiber and A.P. Veselov

G = 30

⎡⎣1 0 0

0 4 0

0 0 1

⎤⎦

I2 ={(1,9),(1,11),(1,12),(2,9),(2,10),(2,13),(3,7),(3,12),

(3,13),(4,7),(4,10),(4,11),(5,11),(5,13),(6,10),(6,12)}

I3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(7,10,11),(7,12,13),(9,10,13),(9,11,12) ν31 =

1
6

(9,15,16),(9,14,17),(7,16,17),(7,14,15) ν32 =
4

15

(1,10,15),(1,13,16),(2,11,14),(2,12,17),(3,10,17),

(3,11,16),(4,12,15),(4,13,14) ν33 =
7

30

I4 ={(1,2,7,8),(1,3,6,14),(1,4,5,17),(2,3,5,15),(2,4,6, 16),(3,4,8,9),(5,6,7,9)},

ν4 =
2
5

I6 ={(6,8,11,13,15,17),(5,8,10,12,14,16)},ν6 =
3
5

9.15. ∨-system (E8,A3
1 ×A2)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

√
3 3 0 1

√
3 0

√
6 0 0

√
6

√
3 3 1

√
3 0√

3 0 3 −1 0
√

3 0
√

6 0
√

6
√

3 3 2 0
√

3

0 3 3 0 −√
3 −√

3 0 0 6
√

2 3
√

6 4
√

3 6 3 3
√

3 3
√

3

· · ·

· · ·

16 17 18 19

2
√

6 0
√

6

1 0
√

6
√

6

3 2
√

6 2
√

6
√

6

⎤⎥⎥⎥⎥⎥⎦
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On deformation and classification of ∨-systems

4

7                                              10
                                                              12
                                              14              17

13

11

6

2
16

5     18    9        19

                                     1

                                                       8

                                                         3

15

G = 30

⎡⎣1 0 0

0 2 0

0 0 3

⎤⎦

I2 = {(1,9),(1,15),(1,17),(2,9),(2,14),(2,16),(3,7),(3,11),

(3,13),(4,7),(4,10),(4,12),(5,11),(5,12),(6,10),(6,13),(10,15),(11,17),(12,16),

(13,14),(14,19),(15,19),(16,18),(17,18)}
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V. Schreiber and A.P. Veselov

I3 =

{
(3,15,18),(3,16,19),(4,14,18),(4,17,19),(7,14,17),(7,15,16) ν31 =

7
30

(7,13,11),(2,12,18),(2,13,19),(1,10,19),(1,11,18),(7,10,12) ν32 =
1
6

I4 =

{
(1,2,7,8),(8,10,13,18),(8,11,12,19) ν31 =

4
15

(3,4,8,9),(5,8,14,15),(6,8,16,17) ν32 =
2
5

I5 =

{
(9,12,13,15,17),(9,10,11,14,16),(2,4,6,11,15),

(2,3,5,10,17),(1,4,5,13,16),(1,3,6,12,14) ν5 =
2
5

I6 ={(5,6,7,9,18,19)},ν6 =
3
5

9.16. ∨-system (E8,A2
2 ×A1)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

√
3 3 0 1

√
3 0

√
6 0 0

√
6

√
3 3 1

√
3 0√

3 0 3 −1 0
√

3 0
√

6 0
√

6
√

3 3 2 0
√

3

0 3 3 0 −√
3 −√

3 0 0 6
√

2 3
√

6 4
√

3 6 3 3
√

3 3
√

3

· · ·

· · ·

16 17 18 19

2
√

6 0
√

6

1 0
√

6
√

6

3 2
√

6 2
√

6
√

6

⎤⎥⎥⎥⎥⎥⎦

2 17      14        9            5
7

8

19

6                 1

                                                                                                       11     15

                              10
                                                18

16
12

13
3

4
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On deformation and classification of ∨-systems

G = 30

⎡⎣2 1 3

1 2 3

3 3 12

⎤⎦

I2 = {(1,17),(1,18),(4,9),(4,10),(4,19),(5,8),(5,10),(6,7),(6,10),(7,11),(7,13),

(8,11),(8,16),(9,13),(9,16),(13,17),(14,18),(14,19),(15,17),(15,19),(16,18)}

I3 =

⎧⎪⎨⎪⎩
(1,2,6),(1,3,5),(2,11,15),(3,11,14),(5,12,15),(6,12,14) ν31 =

7
30

(7,12,18),(8,12,17),(3,10,17),(3,7,19),(2,10,18),(2,8,19) ν32 =
4
15

(1,13,15),(1,14,16),(4,5,6),(4,14,15),(5,11,16),(6,11,13) ν33 =
1
6

I4 =

{
(1,4,7,8),(4,11,17,18),(5,13,18,19),(6,16,17,19),

(7,10,15,16),(8,10,13,14) ν4 =
4

15

I6 =

{
(2,3,4,12,13,16); ν61 =

2
5

(2,5,7,9,14,17),(1,9,10,11,12,19),(3,6,8,9,15,18) ν62 =
3
5

9.17. ∨-system (H4,A1)

A =

⎡⎢⎢⎢⎢⎢⎣
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0
√

2
2

√
2

2

√
2

2

√
2

2
a a a a b b b b 1

2

0 1 0
√

2
2

√
2

2
−

√
2

2
−

√
2

2
1
2

1
2

−1
2
−1

2
a a −a −a b

0 0 1
√

2
2

−
√

2
2

√
2

2
−

√
2

2
b −b b −b 1

2
−1

2
1
2

− 1
2

a

· · ·

...

17 18 19 20 21 22 23 24 25 26 27

1
2

1
2

1
2

a
√

2 a
√

2 0 0 b
√

2 b
√

2
√

b
√

5
√

b
√

5

b −b −b b
√

2 −b
√

2 a
√

2 a
√

2 0 0 2a
√

b
√

5 −2a
√

b
√

5

−a a −a 0 0 b
√

2 −b
√

2 a
√

2 −a
√

2 0 0

...

· · ·

28 29 30 31

0 0 2a
√

b
√

5 −2a
√

b
√

5√
b
√

5
√

b
√

5 0 0

2a
√

b
√

5 −2a
√

b
√

5
√

b
√

5
√

b
√

5

⎤⎥⎥⎥⎥⎥⎦
with a = 1+

√
5

4
and b = −1+

√
5

4
.
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V. Schreiber and A.P. Veselov

1

16

28

71130

19

31

20
8

4

25
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13

G = I

I2

={(1,22),(1,23),(1,28),(1,29),(2,24),(2,25),(2,30),(2,31),(3,20),(3,21),(3,26),(3,27),

(4,11),(4,13),(4,18),(5,10),(5,12),(5,19),(6,9),(6,15),(6,16),(7,8),(7,14),(7,17),(8,25),

(8,29),(8,27),(9,25),(9,26),(9,28),(10,24),(10,27),(10,28),(11,24),(11,26),(11,29),

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

582

D
ow

nl
oa

de
d 

by
 [

L
ou

gh
bo

ro
ug

h 
U

ni
ve

rs
ity

] 
at

 0
3:

29
 0

8 
A

pr
il 

20
15

 



On deformation and classification of ∨-systems

(12,29),(12,31),(13,20),(13,28),(13,31),(14.21),(14,28),(12,21),(14,30),(15,20),

(15,29),(15,30),(16,23),(16,27),(16,31),(17,22),(17,26),

(17,31),(18,22),(18,27),(18,30),(19.23),(19.26),(19,30)}

I3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(1,4,7),(1,5,6),(2,4,5),(2,6,7),(3,4,6),(3,5,7),(4,10,25),

(4,15,21),(4,17,23),(5,11,25),(17,21,25),(8,21,22),(18,20,24),

(16,20,25),(19,21,24),(5,14,20),(5,16,22),(6,8,24),(6,13,21),

(6,19,22),(7,9,24),(7,12,20),(7,18,23),(9,20,23),(10,21,23),

(11,20,22),(12,23,24),(13,22,24),(14,22,25),(15,23,25)} ν31 =
2
15

{(1,16,19),(1,17,18),(2,8,9),(2,10,11),(3,12,14),(3,13,15),

(8,14,17),(11,13,18),(9,15,16),(10,12,19)} ν32 =
1
10

I5 ={(1,8,11,12,15),(1,9,10,13,14),(2,12,13,16,17),(2,14,15,18,19),

(3,8,10,16,18),(3,9,11,17,19)} ν5 =
1
6

I6 ={(1,2,20,21,26,27),(1,3,24,25,30,31),(2,3,22,23,28,29),(4,8,19,20,28,31),

(5,8,13,23,26,30),(5,9,18,21,29,31),(5,15,17,24,27,28),(6,10,17,20,29,30),

(6,11,14,23,27,31),(6,12,18,25,26,28),(4,9,12,22,27,30),(4,14,16,24,26,29),

(7,10,15,22,26,31),(7,11,16,21,28,30),(7,13,19,25,27,29)} ν6 =
1
3
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