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ABSTRACT 

 

Lifestyle choices threaten to compromise health and performance of trained athletes. This thesis 

presents a series of studies which broadly investigated the impact of nutritional and physical 

challenges to human health and performance.  

The potential causes and effects of fluid imbalances on physical health, immune function and 

athletic performance were investigated. Certain populations experience chronic low-level 

hypohydration and athletes often fail to rehydrate sufficiently between exercise sessions. The 

long-term implications of hypohydration are not fully understood, but are suggested to be 

associated with chronic disease. In this thesis, maintenance of fluid balance was observed in 

healthy males, despite a caffeine intervention thought to cause diuresis. Furthermore, when mild 

hypohydration was induced by 24-h fluid restriction, there was little impact on mucosal 

immunity during endurance exercise compared with euhydration.  

The impact of intensified training (IT) on the physical, mental, hormonal and immunological 

status of well-trained athletes was investigated. A performance-specific nutritional intervention 

was implemented to investigate the effects of nutrient availability during prolonged exercise 

training sessions. Phases of IT are a regular feature of a periodised training programme. 

However, an imbalance between training and recovery can have significant implications for 

long-term athletic performance and general wellbeing. Changes in neuroendocrine, 

neurobiological and mucosal immune function were observed during IT and some potential 

markers of overreaching and were identified. Further research is required before practical 

application of these markers can be used effectively in the field. A relatively short period of IT 

resulted in significant disruptions to mood state and sleep quality. Minor changes in exercise 

performance were observed. Markers of overreaching were highly individual, as were responses 

to training. 

   

Key Words: Nutrition, Hydration, Immunology, Training, Athlete, Overtraining, Performance, 

Health. 
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Nutrition and Hydration Implications for Health and Performance 

 

1.1 Nutrition 

 

1.1.1 Fuel for Performance 

Studies in the early 1920s were likely the first to identify the importance of carbohydrate as a 

fuel for exercise (1,2). By the 1960s, the use of the muscle biopsy technique (3,4) and the 

subsequent measurement of muscle glycogen enabled a better understanding of the 

importance of carbohydrate as a substrate for exercise. Muscle glycogen is an essential 

substrate for both high-intensity short-duration and prolonged endurance exercise. As muscle 

glycogen stores become depleted in the first 1-2 h of exercise or during periods of increased 

intensity, blood glucose becomes a more predominant energy fuel. In line with increased 

muscle glucose uptake, resulting from translocation of GLUT4 glucose transporter to the 

plasma membrane and subsequent increase in glucose transport and delivery to the skeletal 

muscle, there is a concomitant increase in liver glucose output to ensure that blood glucose 

levels remain at (or just above) resting levels (5). During prolonged exercise, liver glycogen 

levels begin to deplete. At this point the process of gluconeogensis becomes important for 

energy provision and if the rate of hepatic glucose output falls below the rate of muscle 

glucose uptake then a state of hypoglycaemia can develop. Clinically, hypoglycaemia is 

defined as a blood glucose concentration of less than 3 mmol/L; falls in blood glucose to this 

extent are associated with impairments of central nervous function. Muscle glycogen 

depletion and hypoglycaemia have been found to be associated with fatigue during exercise 

(peripheral and central) (6,7). The ingestion of carbohydrate during exercise has repeatedly 

been shown to sustain carbohydrate oxidation rate and to improve exercise capacity (for 

reviews see; 8,9). 

 

1.1.2 Sports Nutrition Guidelines 

Current sports nutrition guidelines summarise a wealth of data collected over the past 50 

years and make recommendations ranging from what to consume before, during and after 

exercise to the volume, frequency and form of carbohydrate consumption (10,11). These 

recommendations are based on a vast database of information provided by researchers and 
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sports nutrition practitioners and to summarise these data is beyond the scope of this 

introduction. Within this thesis, the interest was in assessing whether the current carbohydrate 

ingestion guidelines could support both the health and performance of well-trained athletes 

undergoing a relatively short-term period of intensified training (IT). Specifically, the aim 

was to gain insight into the physical, metabolic and immunological implications of IT and 

whether current sports nutrition guidelines may offer any protective effect against early signs 

of overreaching (OR) and/or the overtraining syndrome (OTS). Previous research has shown 

high carbohydrate diets help maintain performance during periods of intense exercise training 

(12,13) and indeed may be required for supercompensation of performance after an 

appropriate period of tapering (12). It has also been shown that low energy diets (specifically 

carbohydrate) can negatively impact immune function and exacerbate the increase in 

circulating stress hormones during and post-exercise (14). However, whilst carbohydrate 

ingestion to prevent glycogen depletion during heavy training regimens may aid performance 

and support immune function, it has been suggested that this may delay but does not prevent 

the development of OR or OTS (6,12,13). Despite this, the aetiology of the OTS is not fully 

understood, and high carbohydrate availability immediately before, during and post-exercise 

(as opposed to a general high carbohydrate diet) has been recommended to support higher 

daily training loads and to promote optimal recovery (15). The emergence of the ‘train low’ 

glycogen training hypothesis whereby energy restriction during exercise has been shown to 

enhance the training response to an exercise session (via enhanced activation of key 

signalling pathways) is an interesting consideration. ‘Train low’ may have a place in a well 

periodised training programme; however, consistently performing exercise sessions in a low 

carbohydrate state is likely to lead to an inability to complete the desired workload (16,17). 

Instead of investigating the impact of low carbohydrate availability during IT, which may 

have resulted in incomplete data sets, we decided to investigate the effects of a high versus 

moderate carbohydrate consumption during exercise training to identify potential differences 

between the upper and lower ends of recommendations for carbohydrate intakes. In addition, 

we provided a small amount of protein immediately post-exercise in the high carbohydrate 

intervention. A recent study from Witard and colleagues was the first to investigate the 

impact of supplemental protein ingestion during a period of IT on immune function (18). The 

authors reported fewer symptoms of upper respiratory tract infections (URTIs) in a high 

protein (3.0 g/kg) group compared to a control (1.5 g/kg) group during one week of high 

intensity training. Within this study, the interest was in whether the addition of protein in a 
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post-exercise recovery beverage would increase total dietary protein intake across the period 

of IT (or whether there would be subconscious compensation of extra protein during CON) 

and whether it may contribute to differences between interventions.  

 

 

1.2 Hydration 

 

1.2.1 Overview of Fluid Balance 

Maintenance of fluid homeostasis is essential for life; water ingestion from food and 

beverages balances fluid losses from the body to ensure adequate hydration of bodily tissues. 

The body is in constant flux and it is therefore normal for small fluctuations in fluid balance 

to occur throughout a 24 h cycle without causing any noticeable effects on health or 

performance (19). However, in many cases fluid balance is not maintained and there is 

evidence that certain populations experience chronic low level hypohydration (19). Despite a 

lack of research into the long term implications of mild hypohydration, it has been suggested 

that low habitual fluid intakes may be associated with a range of chronic diseases such as 

urolithiasis (urinary tract stone infection), constipation, asthma, cardiovascular disease, 

diabetic hyperglycaemia and certain cancers (19). Furthermore, studies that have increased 

daily fluid intakes across certain populations have seen reduced caloric intakes, increased 

satiety and increased weight loss (for a thorough review see (20)). Within athletic 

populations, large sweat rates during exercise challenge fluid balance and additional fluid 

consumption is required to maintain euhydration. As within the sedentary population, athletes 

and those who are recreationally active also experience wide variability in sweat losses and 

fluid intakes. Fluid losses of between 10-15 L/day have been reported in athletes training in 

hot environments (equal to 25-30% of total body water) (21), although such high sweat rates 

are uncommon. 

 

1.2.2 Hydration Guidelines 

The current European Food Safety Authority (EFSA) dietary reference value for water 

intakes for male adults is 2.5 L/day (22). However, other published guidelines within the 

same population range from 1.5 L/day (23) to 3.7 L/day (24). Within sports the hydration 

guidelines become even more complicated, with top hydration researchers expressing 
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conflicting opinions on how much an athlete should drink and when. The current consensus 

from the American College of Sports Medicine (ACSM) is that an athlete should consume 5-

7 mL/kg BM of fluids 4 h before exercise and an additional 3-5 mL/kg BM 2 h before 

exercise (25). During exercise, athletes are regularly advised to adopt a ‘paced’ strategy to 

ensure sufficient fluid intakes across the duration of the event to minimise fluid deficits (26). 

Furthermore, recommendations for athletes to limit body mass losses during exercise to no 

greater than 1-2% of pre-competition body mass are commonplace (27). Despite this, larger 

body mass losses during prolonged exercise are not uncommon and may be well tolerated by 

certain athletes who may gain a performance advantage. For example, a large reduction in 

body mass (~5%) may be sufficient to reduce the energy cost of exercise, especially if 

power/weight ratio is a significant performance factor, during the later stages of the event 

which would potentially present a performance advantage (21). However, the implications of 

such weight losses during exercise are not fully understood and hence the general opinion is 

that athletes should drink sufficient fluids to limit body mass losses to 1-2% and should plan 

an individual hydration strategy in advance of the event (11,26). Despite this, there is an 

alternative view suggesting that drinking ad libitum is sufficient to ensure fluid balance and 

that fluid needs should be dictated by thirst, not a pre-prepared strategy (28). 

 

1.2.3 Hydration Challenges 

In light of the potentially harmful implications of dehydration on general health and exercise 

performance, it is important to consider the possible causes of chronic dehydration and likely 

substances that could challenge hydration status on a daily basis. The research literature (29) 

and lay-media (30) provide guidelines for recommended fluid intakes. Despite coffee being 

one of the most widely consumed beverages across the world, with an estimated 1.6 billion 

cups consumed worldwide each day (102), it has been suggested by numerous authorities that 

caffeinated beverages should not be included within daily fluid requirement guidelines (29) 

and that a glass of water should be consumed with each cup of coffee to maintain fluid 

balance (30). The advice stems from the understanding that caffeine (1, 3, 7-

trimethylxanthine) behaves as an acute diuretic through its action as an adenosine receptor 

antagonist reducing sodium reabsorption in the kidney’s nephrons. The consumption of 

caffeine in relatively high doses of ≥500 mg, has been shown to elicit a diuretic effect (31-

33). Despite general health guidelines advising individuals about the effects of coffee on 

hydration status, only two studies have specifically investigated the effects of caffeine in the 
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form of coffee on fluid balance. One study examined the effects of a high dose of coffee (six 

cups providing 624 mg caffeine/day) on urine excretion following 5 days of caffeine 

deprivation (33) and reported a 41% increase in urine output. The second study investigated a 

moderate dose of caffeine (3.1 mg/kg/day) in caffeine habituated males, provided in coffee 

and other caffeinated beverages (including colas) and reported no effect of coffee on a wide 

range of hydration markers (34). Both of these studies are limited by their design (see chapter 

2 for a thorough overview) and neither can answer the simple question of whether coffee can 

contribute to daily fluid requirement in caffeine ‘habituated’ adults. Therefore we were 

interested in understanding the true implications of moderate coffee consumption within a 

caffeine-habituated population by assessing hydration status with a wide range of validated 

techniques. With water advocated for its hydrating properties, we were interested in directly 

comparing the effects of coffee consumption with equal amounts of water. We believe this is 

an important question due to coffee’s global popularity and the potential effects of chronic 

dehydration on health. Furthermore, within the athletic population, caffeine is ever growing 

in its popularity as an ergogenic aid. In a recent review of the prevalence of caffeine’s use in 

sport, Del Coso and colleagues reported that 3 out of 4 athletes that had provided a urine 

sample between 2004-2008 (20,686 samples in total) had consumed caffeine before or during 

sports competition (35). Coffee is one of the largest sources of caffeine used by athletes prior 

to competition (36) therefore it is of interest to understand the implications of coffee on fluid 

balance, not only within the general population, but also within athletic populations whereby 

the potential for fluid balance disruption is potentially even greater. 

 

1.2.4 Hydration & Immune Function 

It is not uncommon for athletes to commence exercise in a state of fluid deficit (26). Failure 

to rehydrate between sessions or aggressive weight making strategies makes dehydration a 

real risk within athletic populations. Negative effects of dehydration on exercise performance 

include: increased cardiovascular strain (increased heart rate (HR)) (37), core temperature, 

perception of effort (38) and result in significant increases in plasma cortisol levels (39) 

compared to exercise in a euhydrated state. Indeed, a pre-exercise fluid deficit of as little as 

1.5-2.0% body mass has been suggested to negatively impact performance and has been 

shown to reduce running capacity in events lasting from ~4 to 30 min (21,11). Furthermore, 

the potential for a disturbed immune response when exercising in a state of modest 

dehydration is significantly augmented. Fluid restriction studies have reported significant 
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reductions in salivary flow rates in participants who were dehydrated to 3% body mass loss 

(40). Exercise-induced fluid losses have also been reported to result in reductions in saliva 

flow rate at as little as 1.3% body mass loss (41). Reductions in saliva flow rate are of 

particular importance to immune function as saliva contains numerous antimicrobial proteins 

(AMPs) that play an important role in mucosal immunity. Unfortunately, there is a lack of 

data exploring the interactions between exercise and AMPs, especially within the context of 

fluid balance. However a recent study from Fortes and colleagues attempted to shed light on 

this area (40). Salivary IgA (SIgA) and lysozyme (SLys) were assessed following exercise-

induced dehydration and subsequent overnight fluid restriction. The authors reported a 

significant reduction in salivary flow rate at body mass losses of 3% during exercise which 

remained attenuated until rehydration was permitted the following morning. Dehydration also 

resulted in a significant decrease in SIgA concentration, with no change in secretion rate and 

conversely, no change in SLys concentrations but a significant reduction in secretion rate. 

Rehydration the following morning returned all saliva markers of mucosal immunity to 

baseline, highlighting the transient nature of the immune response. To our knowledge, no 

study has investigated the effects of commencing endurance exercise in a state of moderate 

dehydration on mucosal immunity, specifically across a range of salivary AMPs. With 

immune function at mucosal surfaces acting as an essential factor for the maintenance of 

health and well-being (42), it is important to understand the implications of hydration status 

prior to an exercise challenge. 

 

 

Health and Wellbeing of the Elite Athlete 

 

1.3 Sleep 

 

1.3.1 Overview of Sleep Research 

Sleep is an essential component of post-exercise recovery for an athlete (43,44). Sleep can be 

divided into two main components; slow wave (SW) and rapid eye movement (REM), and 

both are of equal importance for athletic recovery. Throughout the night, sleep will alternate 

between these two stages allowing for the restorative benefits of both to take place (45). The 

brain remains relatively active during REM sleep and it has therefore been proposed that this 
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phase of sleep is essential for motor skill and memory consolidation (46). At the beginning of 

the night the occurrence of SW sleep, whereby brain activity is significantly reduced, enables 

the release of growth hormone from the pituitary gland (45). Growth hormone is responsible 

for stimulating protein synthesis and therefore has a key role in repair and adaptation of 

muscle and bone (47). 

Despite a lack of data in ‘healthy sleepers’ within the general population and almost no data 

in well-trained athletes, sleep studies have suggested that sleep loss results in performance 

attenuation. It has also been proposed that athletic performance is highly dependent on the 

sleep-wakefulness circadian cycle (45). In a meta-analysis from 1996, Pilcher & Huffcutt 

reported that partial sleep deprivation (<5 h in 24 h period) has a profound effect on human 

functioning (cognitive and motor performance) (48). Furthermore, data collected within 

athletic populations, albeit in the context of sleep deprivation or significant disruption, have 

reported increased cognitive errors, impaired decision making, reduced maximal power and 

increased fatigued during exercise (49). 

 

1.3.2 Relationship between Exercise and Sleep 

There is a small collection of theories that outline the relationship between exercise and 

sleep. Perhaps the most commonly cited theory is the restorative theory of energy 

conservation (50) and body restoration (51,52). According to this theory if sleep provides the 

opportunity for body restitution (as opposed to brain), then a change in exercise load should 

directly impact sleeping behaviours. Furthermore, it is suggested that the duration of sleep 

and proportion of SW sleep is dependent on energy expenditure during the previous period of 

wakefulness (50). It has been proposed that one can only achieve such low levels of energy 

expenditure during sleep and that quiet rest alone will not suffice (50). 

Modern neuroscientific theories suggest that complex interactions between the brain and 

neuroendocrine systems may play a key role in homeostatic sleep regulation (44). 

Specifically, a study from Dworak and colleagues observed an increase in total brain 

adenosine (shown to have sleep-promoting properties (53)) in rats following high intensity 

exercise (54).  

A further theory is the thermogenic hypothesis. It has been proposed that declining body 

temperatures initiate sleep and may facilitate entrance to deeper stages of sleep (55). Indeed, 
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some studies have reported associations between peripheral heat loss (56) and lowered body 

temperature (57) with sleep onset. In light of the physiological basis of this theory, it is 

reasonable to assume that exercise may have an impact on sleep, especially when carried out 

in relatively close proximity to sleep onset.  

 

1.3.3 Exercise: Timing and Type  

It has been proposed that exercise performed late in the evening may increase arousal and 

result in poor sleep hygiene (58). However, it is also understood that exercise can reduce 

anxiety and stress (59), which could have the opposite effect. Exercise in the evenings has 

been shown to reduce sleep onset latency compared with when exercising in the morning or 

early evening (60) but have no effect on sleep quality compared to a no-exercise control 

within a population of physically fit young adults (44). The potential benefits of exercising in 

the evenings may be related to the thermogenic hypothesis whereby exercising in the late 

evening raises body temperature and therefore encourages body cooling. Epidemiological 

studies, which have the benefit of relatively large samples sizes but the disadvantage of self-

report data, have consistently shown improvements in self-report sleep quality with both 

acute and regular exercise (61). However, exercise that is prolonged and high intensity is 

suggested to reduce sleep quality, with reports of decreased REM sleep and increased 

wakefulness (61). 

 

1.3.4 Training and Competition 

Whilst a moderate level of regular physical activity has been shown to improve self-reported 

sleep compared with a sedentary lifestyle, it is understood that intensive exhaustive exercise 

may be detrimental to sleep quality. There is a paucity of data on the effects of exercise 

training on sleep physiology in athletic populations (62). Two studies have attempted to 

monitor sleep across an athletic season and have reported conflicting results. Taylor and 

colleagues monitored sleep patterns in female swimming using polysomnography at various 

time points throughout the season, including beginning, peak and taper periods (63). The 

authors observed increased SW sleep during the busiest periods of the season and, consistent 

with the restorative theory of sleep, suggested that the athletes experienced heightened sleep 

quality during these intense exercise periods. Conversely, Fietze and colleagues reported 

increased sleep disturbance in professional ballerinas in the lead up to a Premier show (64). 
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This study involved the use of actigraphy to track changes in sleeping patterns and found 

reduced sleep quality (decreased sleep efficiency and duration) during the period of increased 

training volume. Interestingly, mood state was not monitored during this time and therefore 

the potential interaction of anxiety with sleep in the lead up to the show cannot be ignored 

and the ultimate cause for reduced sleep quality cannot be determined.  

A recent study investigated the impact of 3 weeks of intensified training on sleep quality in a 

group of moderately trained athletes (65). Training volume was increased by 30% over a 

three week period and by the end of the trial, half of the participants were diagnosed as OR. 

Interestingly, the athletes that were diagnosed as OR reported some signs of sleep disruption, 

including reduced sleep efficiency, actual sleep time and increased immobile time, however 

time in bed, sleep latency and the sleep fragmentation index did not change. No changes in 

sleep quality were observed in athletes who were not diagnosed as OR. Unfortunately, it is 

difficult to know whether the athletes described as overreached were actually experiencing 

overreaching, due to the methods of classification used by the authors. However, it is 

interesting to consider that it may not be training load per se that impacts sleep quality, but 

perhaps the individual response of the athlete to the change in training load. 

No studies to date have investigated the impact of short-term intensified training on sleep. 

Our aim is to monitor changes in sleep quality over the course of 9 days of IT in a population 

of well-trained athletes. We anticipate that these data will provide an insight into the effects 

of a training camp style programme on sleep and well being. 

 

1.3.5 Actigraphy for Sleep Analysis 

The use of wrist watch actigraphy dates back to the early 1950s, with wind-up watches being 

used to assess hyperactivity in children (66). These days ‘actiwatches’ are small, 

sophisticated devices that are widely available and frequently used within sleep research in 

medicine, chronobiology, psychiatry and psychopharmacology (67). Modern day actigraphy 

allows objective measures of sleep to be collected over extended periods of time with very 

little inconvenience to the participant (68). During data collection, each movement is 

recorded and translated into digital counts that accumulate over a pre-determined epoch 

interval and are stored within the actiwatch before being downloaded onto a computer and 

analysed against specific algorithms. Known limitations of actigraphy include: inaccuracy in 

assessing onset latency and precise timing of sleep and wake epochs, inability to accurately 
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diagnose sleeping disorders (but may be useful in screening and assessment of treatment), 

general inaccuracy in cases of insomnia and quiet wakefulness and potential variation 

between different actiwatch devices (68). However, in light of these limitations, actigraphy 

has been recommended as an acceptable method of estimating sleep patterns in normal, 

healthy adult populations (69). The use of actigraphy within this study will provide a non-

invasive method of analysing the changes in sleep in a group of well trained athletes 

undergoing a training camp-style intervention. To the author’s knowledge, this is something 

that has not previously been investigated.  

 

 

1.4 Immunology 

 

1.4.1 Exercise Immunology 

Exercise immunology, a sub-discipline of exercise physiology, is a relatively new science, 

with interest in the area starting to increase around the 1970s (14). Around this time, 

epidemiology studies began to confirm the anecdotal reports from coaches and athletes that 

with increased training came increased susceptibility to infection. Following this, a plethora 

of studies have investigated both the acute and chronic impact of training on immune 

function (103,104). It has been suggested that the volume and/or intensity of training is 

related to susceptibility to URTIs. In 1994, Nieman proposed a model for this relationship, 

based on a J-shaped curve; suggesting low volume physical activity reduced the relative risk 

of infection below that of a sedentary individual, but with increased volume/intensity of 

training came an increased risk of immunosuppression (70,71) and incidence of URTI. 

Indeed, many studies have supported this theory, across a wide range of sporting disciplines. 

Despite this, the J-shaped curve relationship is not always found to hold true, with studies 

failing to observe relationships between exercise training load and infection risk in elite 

athletes (72-74). In 2006, an updated model was proposed (75). The S-shaped relationship 

between training load and infection rate proposes that the immune system of an elite athlete is 

able to withstand infection during periods of intensified training and/or psychological stress 

(75). This physiological response extreme may in itself be one of the contributing factors to 

elite success. 
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1.4.2 Overview of Mucosal Immunity 

Mucosal immunity is involved in the first line of defence of the immune system and is 

considered to be the largest component of immune function (14). The mucosal immune 

system is specifically involved in protecting mucosal surfaces. Within the context of this 

PhD, we were specifically interested in the saliva, which provides protection of the salivary 

glands and is regulated by the autonomic nervous system. It is understood that humans 

produce ~1500 mL of saliva per day which protects the oral mucosa by its mechanical 

washing effect (14). In addition, the saliva contains numerous antimicrobial peptides and 

proteins (AMPs) that are involved in innate mucosal immune function. The innate component 

of immune function is largely responsible for defence against pathogens entering the body 

and for the initiation of a rapid immune response, should an infection occur (42). Salivary 

secretory immunoglobulin A (SIgA) is the predominant antimicrobial protein responsible for 

antiviral and antibacterial protection (76) and is specifically thought to be involved in defence 

against infections in the upper respiratory tract (77). Salivary IgA is produced by B cells in 

the mucosal tissues surrounding the mouth before being translocated into the saliva across the 

epithelial cell. Traditionally, SIgA has been the most commonly measured salivary AMP in 

athletic populations. More recently however, there has been increased interested in other 

salivary AMPs that may contribute towards mucosal immune function. There is a wide range 

of salivary AMPs that contribute to the formation of a protective barrier against bacteria and 

pathogens. Two of the most abundant AMPs present in the mucosal secretions of the upper 

respiratory tract are salivary lysozyme (SLys) and salivary lactoferrin (SLac). The small 

collection of studies that have investigated the impact of exercise on salivary AMPs have 

produced mixed results. A study by Koutedakis and colleagues was the first to observe 

reduced salivary flow rate and SLys concentrations following intense exercise in elite 

swimmers (78). Since these early findings, other studies have reported increased secretion 

rates of SIgA and SLys following high intensity exercise (Allgrove et al 2006), no change in 

SLys secretion rates following endurance exercise (41,79) and no change in SIgA 

concentrations following endurance exercise (80) or exercise to exhaustion (81). Clearly the 

variation in exercise modality could lead to the discrepancies between findings; furthermore 

the relative exercise stress on each participant is likely to result in an individual response. The 

mechanisms by which exercise could affect the concentration and secretion of AMPs both 

acutely and chronically include: increased secretion of neuropeptides, secretion of AMPs 

induced by proinflammatory cytokines, secretion of AMPs from neutrophils or damaged 
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epithelial cells or simply hyperventilation during exercise resulting in drying of the 

respiratory tract (42). Furthermore, it has also been proposed that stress hormones, known to 

increase in concentrations during exercise, may inhibit the production, mobilization and 

secretion of salivary SIgA (82) and Lys (83). 

 

 

1.5 The Overtraining Syndrome 

 

1.5.1 Overtraining  

Periods of increased training volume and/or intensity are regular occurrences throughout an 

athletic training programme. These periods of increased training load can result from heavy 

competition schedules, returns from injury or illness or simply from pre-planned strategies to 

enhance performance and prevent plateaus. The practice of periodising training programmes 

in this manner enables athletes to peak at pre-determined time points across an athletic season 

and staleness (84). Overload training encourages positive adaptation and is essential for 

performance enhancement. In a well-periodised training programme, overload training will 

be followed by a period of recovery, allowing for a super-compensatory effect of training on 

performance. However, if the fine balance between training and recovery is disturbed, OR 

can occur and in some cases, lead to development of OTS (85). 

 

1.5.2 Defining Training Stress 

Research in the area of overtraining is confounded by a lack of clear consensus on the 

diagnosis of OR and OTS. Furthermore, the ethical implications of inflicting overtraining 

regimens on study participants make it a difficult area to study. Nevertheless, numerous 

studies have tried to identify the changes that occur when there is a training stress imbalance, 

either through inducing short term OR or by studying athletes with an existing diagnosis of 

OTS. Before discussing some of most recent developments in the overtraining literature, it is 

important to understand the definitions of OR and OTS and to acknowledge the prevalence of 

such occurrences.  

It is generally agreed that the OTS is defined as a long-term decrease in event-specific 

athletic performance (86-88) with an increase in mood disturbance (88-91) whereby full 
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restoration of performance can take several months. Importantly, the decrease in performance 

occurs despite increased or maintained training load (92). Overreaching can also be defined 

by similar physiological and psychological disturbances; however performance capacity is 

typically restored within a few days to several weeks. Overreaching was originally defined by 

Falsetti in 1983 as a form of training used by coaches to promote a fitness peak prior to a 

major competition, resulting in a short-term period of underperformance but ultimately 

leading to a supercompensation of performance capacity (93). It is understood that OR and 

OTS are related along a continuum, with OR developing into OTS if a period of recovery is 

not sufficient and/or provided at the correct time (90,91,93). 

 

1.5.3 Prevalence 

It is difficult to know the exact prevalence of the OTS in athletic populations due to the 

differences in diagnosis criteria and the reliance on self-report data. Despite this, numerous 

studies have estimated its occurrence and reported ranges from 10-20% (94-96) based on 

samples from a single season, up to around 60% (95,97) when assessed across the duration of 

an athletic career. The rates of occurrence appear to be sport-specific, with distance runners 

experiencing higher prevalence of OTS (~60%) compared with swimmers and wrestlers (10-

21%) (98). Furthermore, elite athletes are suggested to be at a greater risk of OTS than non-

elites, likely due to the greater training volumes performed by the elite (97). Women have 

also been reported to experience higher prevalence of OTS than males (99). Conversely, in a 

study of 257 elite British athletes across a range of sports, only 15% were classified as 

overtrained (100). Furthermore, the authors observed no differences between “aerobic” 

(endurance) and “anaerobic” (sprint/power) disciplines and reported higher prevalence in 

male athletes (17%) compared with their female counterparts (11%). Considering the wide 

range of athletes experiencing OTS at some point over their career, there is clearly a need for 

a better understanding of the causes, diagnosis and implications of overtraining. 

 

1.5.4 Aetiology 

Short-term OR and the subsequent development of the OTS is suggested to be related along a 

continuum, starting with a disturbance, an adaptation and eventually a maladaptation of the 

hypothalamic-pituitary-adrenal (HPA) axis (85,90). Disruption of the HPA axis has been 

suggested to lead to a neuroendocrine imbalance and a resultant change in stress hormone 
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response to exercise (91). Hormonal changes are often reported during periods of intensified 

training, specifically those involved or affected by hypothalamic control and/or subsequent 

glucocorticoid secretion; however, there is no clear consensus on the exact changes that occur 

during the development of OTS. Meeusen and colleagues have provided an excellent 

collection of studies and reviews presenting data on OR and OTS and have suggested that 

resting hormonal levels alone may not provide sufficient evidence for OTS. Rather, it has 

been suggested that the change in hormonal response to exercise may provided the greatest 

insight into the function of the HPA axis (85,91,101). 

Despite the ever accumulating data in and around the area of overtraining, the practicalities 

and relevance of proposed markers to monitor training stress in the field are yet to be 

investigated and validated. At present, the most basic and commonly used methods of 

identifying OR and OTS in the field are a reduction in exercise performance with or without 

related psychological disturbances.  

The aim of one of the studies in this thesis was to monitor a wide range of physiological, 

metabolic, immunological and psychological markers of training load during a short term 

period of intensified training. The novelty of the research reside in the markers that were 

measured, the design of the study and in the highly-trained nature of the study participants. 

Furthermore, an additional aim was to assess the impact of a nutritional intervention that 

provides high (HCHO) versus moderate (CON) carbohydrate immediately before, during and 

immediately after each training session. In addition, participants in the HCHO were provided 

with a protein recovery beverage immediately post-training whereas CON received a placebo 

(cellulose) tablet. With this information, we hoped to gain an understanding of some of the 

short-term physiological changes that occur in elite athletes undergoing ‘training camp’ type 

periods of intensified training. 

 

 

1.6 Scope of Thesis 

 

 This thesis presents a series of studies which broadly investigated the impact of nutritional 

challenges to human health and athletic performance. Chapter 2 introduces the concept of 

fluid balance and presents a study which investigated the impact of caffeine on hydration 

status. A wide range of hydration assessment techniques were implemented, including the 
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gold standard measurement of total body water, to gain an understanding the impact of 

moderate coffee consumption on fluid balance in regular coffee consumers. Chapter 3 

continues to investigate hydration; however, the focus moves to the impact of hydration 

status on health, exercise performance and immune function. A specific interest was in how 

prolonged endurance exercise in a state of moderate hypohydration modulates innate immune 

function. Changes in salivary flow rate were monitored and the concentration and secretion 

rates of numerous salivary antimicrobial proteins were assessed. The aim was to gain insight 

into the impact of hydration status on mucosal immunity, both during exercise and in the 

subsequent recovery period. Chapters 4 and 5 present data from a large training study which 

involved investigation into the impact of training stress on a wide range of markers of health 

and performance. This study aimed to determine whether a training-specific nutrition strategy 

would have any impact on the selected measurements. Changes within a population of highly 

trained athletes undergoing a short-term period of intensified training were assessed. By 

monitoring a selection of variables whilst tracking changes in performance and mood state, 

the aim was to identify potential novel markers of overreaching. Chapter 4 presents the 

hormonal and immunological data collected throughout the period of intensified training. 

Chapter 5 presents data collected using actigraphy to gain an insight into the sleep behaviours 

of well-trained athletes and the implications of intensified training on sleep quality. Chapter 6 

discusses the results of the aforementioned studies and provides and overview of the main 

conclusions, practical implications and future research interests. 
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2.1 Abstract 

 

It is often suggested that coffee causes dehydration and its consumption should be avoided or 

significantly reduced to maintain fluid balance. The aim of this study was to directly compare 

the effects of coffee consumption against water ingestion across a range of validated 

hydration assessment techniques. In a counterbalanced cross-over design, 50 male coffee 

drinkers (habitually consuming 3-6 cups per day) participated in two trials, each lasting three 

consecutive days. In addition to controlled physical activity, food and fluid intake, 

participants consumed either 4 x 200 mL of coffee containing 4 mg/kg caffeine (C) or water 

(W). Total body water (TBW) was calculated pre- and post-trial via ingestion of Deuterium 

Oxide. Urinary and haematological hydration markers were recorded daily in addition to 

nude body mass measurement (BM). Plasma was analysed for caffeine to confirm 

compliance. There were no significant changes in TBW from beginning to end of either trial 

and no differences between trials (51.5 ± 1.4 vs. 51.4 ± 1.3 kg, for C and W respectively). No 

differences were observed between trials across any haematological markers or in 24 h urine 

volume (2409 ± 660 vs. 2428 ± 669 mL, for C and W respectively), USG, osmolality or 

creatinine. Mean urinary Na
+
 excretion was higher in C than W (p= 0.02). No significant 

differences in BM were found between conditions, although a small progressive daily fall 

was observed within both trials (0.4 ± 0.5 kg; p< 0.05). Our data show that there were no 

significant differences across a wide range of haematological and urinary markers of 

hydration status between trials. These data suggest that coffee, when consumed in moderation 

by caffeine habituated males provides similar hydrating qualities to water. 

 

Key Words: Coffee, Caffeine, Hydration, Fluid Balance, Total Body Water
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2.2 Introduction 

 

Maintenance of fluid balance is essential to sustain human life. Water intake balances fluid 

losses to achieve adequate hydration of bodily tissues. Although there are widespread 

guidelines in scientific literature and media for achieving optimal hydration status and about 

the effects that various caffeinated beverages may have on fluid balance, there is no clear 

consensus about how much fluid an individual should consume (1). One study found total 

daily fluid intake observed in healthy adults varied from 0.416-4.316 L/day (2). The current 

EFSA dietary references values for water intakes for male adults is 2.5 L/day (3). However, 

published guidelines range from 1.5 L/day (4) to 3.7 L/day (5) for adult males. It has been 

suggested that caffeinated beverages should not be included in daily fluid requirement 

guidelines (6) and that a glass of water should be consumed with every cup of coffee or tea to 

ensure hydration is maintained (7). 

Caffeine (1, 3, 7-trimethylxanthine) is a naturally occurring methylxanthine which can be 

found in coffee, tea and chocolate. Caffeine acts as an adenosine receptor antagonist to 

reduce fractional sodium reabsorption in both the proximal tubule and distal nephron. When 

consumed in large doses (≥500 mg), caffeine elicits a diuretic effect (8-10). The diuretic 

potential of caffeine in humans has been researched for many years, with the first scientific 

report published over 80 y ago (11). The authors of these early findings suggested that whilst 

caffeine causes acute diuresis, regular caffeine consumption may lead to a tolerance 

developing against its diuretic effect. It has since been suggested that caffeine withdrawal of 

as little as 4 days is sufficient for tolerance to be lost (12). Following the work of Eddy & 

Downs [11], there has been a range of studies that have investigated the effects of caffeine on 

hydration status (Table 2.1). These studies report observations across a range of caffeine 

forms and doses on various markers of hydration status in either caffeine-habituated or 

caffeine-naive populations (individuals who do not habitually consume caffeine, or those who 

have abstained from caffeine consumption for ≥ 4 days). Although the data are somewhat 

varied, the general trend is that higher doses of caffeine in caffeine-naive individuals will 

elicit an acute increase in urine volume, yet a low to moderate dose of caffeine does not 

induce a diuretic effect (13-17). 
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Table 2.1: Effect of Caffeine Consumption on Urine Production

Authors Caffeine Dose 

(mg) 

Caffeine Source Test population Diuretic Effect 

(8) 4 mg/d (200-

700 mg) 

Caffeine tablet Habituated caffeine users Yes –during first 

day only 

(9) 490-680 (8.7 

mg/kg bw) 

Caffeine powder added to carbohydrate 

electrolyte drink Vs carbohydrate 

electrolyte drink 

Caffeine naïve  

(Habitual coffee drinkers – 4 day pre-

trial deprivation) 

Yes 

(10) 642 Caffeinated coffee  Caffeine naïve  

(Habitual coffee drinkers – 5 day pre-

trial deprivation) 

Yes 

(14) 452 Caffeine tablet Habitual caffeine users – 98 ± 17 

mg/day 

No 

(17) 360 Caffeine tablet NA Yes 

(15) 300 Caffeine tablet Habitual coffee drinkers – 8 h pre-trial 

deprivation 

No 

(25) 250 Caffeine beverage Caffeine naïve  

(Non-coffee drinkers – 3 week caffeine 

deprived) 

Yes 

(31) 250  Caffeine tablet Caffeine naïve  

(1 week caffeine deprived) 

Yes –during first 

hour only 

(32) 240 Caffeine beverage Caffeine habituated users Yes 

(14) 226 Caffeine capsules Habitual caffeine users – 98 ± 17 

mg/day 

No 

(16) 168 and 252 Caffeinated tea Caffeine users – 12 h deprived No 

(13) 114-253 Caffeinated carbonated cola, Caffeinated 

carbonated, non-caloric cola, Instant coffee 

Caffeine habituated (61-464 mg/day) No 

(33) 45, 90 and 180  Caffeine tablet NA No 
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Coffee is comprised of many bioactive compounds in addition to caffeine. These active 

compounds may interact with each other and therefore coffee consumption cannot be directly 

compared to caffeine consumption in its purest form (1,3,7-trimethyl xanthine) (18). 

Interestingly, only two studies have specifically investigated the effects of caffeine in the 

form of coffee on hydration status. One study investigated the effects of six cups of coffee 

(624 mg caffeine) on urine excretion following a five day caffeine deprivation period (10). 

Over the 24 h period, authors report a 2.7 % decrease in total body water and a 41 % increase 

in urine excretion, with a subsequent 66 % and 28 % increase in urinary sodium and 

potassium excretion, respectively. Due to the study design, which only included caffeine 

habituated participants who abstained from caffeine for 5 days prior to testing, the results of 

the study should be interpreted with caution before applying to habitual moderate-intake 

coffee drinkers. Another study investigated the effects of consuming equal amounts of water, 

caffeinated cola and caffeinated coffee (3.1 ± 0.4 mg/kg caffeine/day) against water with a 

mixture of caffeinated colas (1.4 ± 0.2 mg/kg caffeine/day) or non-caffeinated beverages 

(13). The authors found no effects of coffee consumption compared with non-caffeinated 

beverages across a range of hydration markers in caffeine-habituated participants. Whilst the 

authors concluded that the advice to exclude caffeinated beverages from daily fluid 

requirement was not supported by their findings, the study did not measure total body water. 

Total body water (TBW) estimations using the doubly labelled water dilution technique is 

considered the gold standard method for assessing body water fluctuations over time (14). 

One recent study investigated the effects of caffeine on TBW using deuterium oxide (19). 

Thirty participants classified as low caffeine users (<100 mg/day) consumed caffeine (5 

mg/kg/day) or placebo tablets for 4 consecutive days. Although these participants could not 

be classified as ‘caffeine-habituated’, no changes in TBW measured on day 1 and 4 were 

found between the caffeine or placebo group. The authors suggested that a moderate dose of 

caffeine does not alter TBW in healthy men. To date, no studies have investigated the effects 

of moderate coffee consumption on TBW in caffeine-habituated adults using the doubly 

labelled water dilution technique. 

It is estimated that 1.6 billion cups of coffee are consumed worldwide every day (20), thus it 

is of interest to know whether coffee contributes to daily fluid requirement, or whether it 

causes low-level chronic dehydration. In the present study, our aim was to directly compare 

the effects of a moderate intake of coffee in caffeine-habituated adults against equal amounts 
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of water across a wide range of hydration markers, including the gold standard TBW 

measure.  

 

 

2.3 Methods 

 

Ethics Statement 

All participants were informed of the purposes of the study and the risks associated with the 

procedures. Written informed consent was obtained from all participants before the study 

commenced. The study was approved by the Science, Technology, Engineering and 

Mathematics (STEM) Ethical Review Committee at the University of Birmingham, UK.  

 

Participants 

Fifty-two healthy non-smoking males aged 18-46 y were accepted to participate in the study 

following the screening of over 100 volunteers. Inclusion criteria required participants to be 

weight stable, pass a general health questionnaire, be free from medications containing 

caffeine or those that might influence weight or fluid-electrolyte balance, live and work in an 

environment of ambient temperature with no significant temperature or humidity fluctuations, 

consume a diet with no extreme food, beverage or dietary supplement intakes and be free 

from chronic illnesses. Females were excluded from the study due to possible disruptions to 

fluid balance by the menstrual cycle. Participants were moderate coffee drinkers consuming 

3-6 cups per day (300-600 mg/day caffeine) assessed by a 3-day weighed food diary. Two 

participants could not complete the study due to individual circumstances preventing them 

from visiting the laboratory. 

 

Study Design 

Participants reported to the School of Sport and Exercise Sciences, Human Performance 

Laboratory at the University of Birmingham on two occasions prior to testing. Trials ran from 

Tuesdays to Fridays during the months of February to December. On their first visit, 

participants were instructed how to complete a 3-day weighed diet diary and were provided 

with a set of digital scales (Electronic Scales; Salter Arc) to weigh their food and fluid intake 

accurately to 0.1 g. On their second visit, participants returned their completed diet diary and 
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baseline body weight was recorded. Each participant completed two treatments each lasting 

four consecutive days. Each trial was separated by a 10 day wash out period during which 

time participants were instructed to consume their normal diet and daily caffeine intake. See 

figure 2.1 for a schematic overview. 

 

Treatment 

Each trial was undertaken in a counter balanced cross-over design and participants were 

randomly allocated to a treatment group. The coffee trial (C) involved participants consuming 

four mugs (200 mL) of black coffee per day (Nescafé Original) equating to a caffeine intake 

of 4 mg/kg BM. The water control trial (W) involved participants consuming four mugs of 

water (200 mL) per day. Participants were required to abstain from alcohol and all physical 

activity 24 h prior to and for the duration of each trial, with the exception of walking for 

transport. 

Diet was controlled and provided to participants throughout each testing period, including the 

control days. The same diet was replicated and provided for each participant’s second trial. 

Food and fluid intake recorded in the 3-day weighed food diary was analysed for 

macronutrients, sodium and potassium and food fluid content using nutrition analysis 

software (Nutritionist Pro, Axxya Systems). Diets were designed and prescribed on an 

individual basis to replicate mean energy and fluid intakes from the food diary. Diets were a 

standard weight-maintaining composition of 50%:35%:15% for carbohydrate, fat and protein 

respectively. A compliance booklet was completed by participants on the morning of each 

trial day to ensure all food and beverages from the previous day were consumed at the correct 

times and that no unplanned exertions, fluid losses or nutritional variations had occurred. 

Participants were instructed to complete the Bristol Stool Chart each morning for indications 

of disruption to fluid balance (21). On the morning of each trial, participants reported to the 

laboratory at a standardised time between 07:00-09:00. Participants were ≥10 h fasted and 

had not consumed any fluids since 21:30 the previous evening. Participants produced a first 

morning void (MV) (trial days 1-3) and a separate 24 h urine collection (trial days 2-3). Nude 

body weight was recorded and a venous blood sample collected. Meals and snacks were 

consumed at standardised times (± 30 min); breakfast at 07:30–09:00 (immediately post 

testing), morning snack at 10:30, lunch at 13:30, afternoon snack at 16:30 and evening meal 

at 19:30. 
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Figure 2.1: Schematic Overview of Study Design. 
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Beverages 

As there is no clear consensus on how much fluid an individual should consume, yet fluid 

intake was required to be standardised for each participant, daily fluid intake was calculated 

based on mean individual fluid intakes recorded over the 3-day diet dairy. Daily fluid intake 

was provided with bottled water and divided into six equal bottles, measured to the nearest 

gram using digital scales. Participants consumed water at pre-determined time points; 

between 07:30-09:00 (post testing), 10:30, 13:30, 16:30, 19:30 and 21:30. Test beverages 

were consumed at predetermined time points; immediately after testing (07:30-09:00), 10:30, 

13:30 and 16:30. Each participant was provided with a mug marked at 200 mL. During trial 

C, participants received four pre-weighed containers of Nescafé Original coffee to provide 4 

mg/kg BM of caffeine per day (2.3 ± 0.4 g Nescafé Original per cup) and were instructed to 

make the beverage with boiled tap water to the 200 mL marker in the mug provided. During 

trial W, participants were instructed to consume 200 mL tap water in the same mug. Total test 

beverage intake was 800 mL/day. 

 

 

2.4 Measures and Analysis 

  

Haematology 

Fasted blood samples (approximately 15 mL) were drawn from a superficial vein (21G 

Venisystem short butterfly, NU Care), typically from the median cubital vein by a trained 

phlebotomist following a 5 min resting period by participants in the supine position. Fasted 

blood samples were collected on the mornings of test days 1-3. Blood for serum and plasma 

analysis were collected directly into two separate tubes; one with clotting agent for analysis 

of serum sodium (Na
+
), potassium (K

+
), osmolality, creatinine, blood urea nitrogen (BUN) 

and deuterium oxide (D2O) for total body water (TBW) calculation and one with K2EDTA 

for analysis of haematocrit, total plasma protein (TPP) and caffeine. Haematocrit was 

analysed using a haematocrit centrifuge (Micro Haematocrit Centrifuge, Hawksley & Sons 

Ltd.) and ruler (Micro Haematocrit Tube Reader, Hawksley & Sons Ltd.). All other samples 

were centrifuged at 3500 RPM for 15 min at 4°C. Plasma and serum were frozen at -20°C for 

later analysis. All samples were analysed in duplicate, with the exception of D2O. Serum 

osmolality was determined via freeze point depression via the Advanced Osmometer Model 
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765 (Advanced Instruments Inc Norwood MA). TPP, serum creatinine and BUN were 

analysed using the iLab 650 (Instrumentation Laboratory, UK). Plasma caffeine was analysed 

for participant compliance using a reversed High Performance Liquid Chromatography 

(HPLC) – UV method, following the protocol described elsewhere (Appendix A) (City 

Hospital, Sandwell and West Birmingham Hospitals NHS Trust). Na
+
 and K

+
 were analysed 

using Ion Specific Electrodes on the iLab 600 (Midland Pathology Services). Samples were 

loaded into cuvettes and place into the iLab without pre-preparation and analysed 

automatically.  

 

Total Body Water and Body Mass 

Nude body mass (BM) was recorded each morning (trial days 1-3) following the participants’ 

first morning void. Participants were fasted and had not consumed any water since the 

previous evening.  

Labelled isotope D2O, was provided for each participant to drink to enable the calculation of 

TBW (99.9 atom % D, Aldrich Chemistry, Sigma-Aldrich). TBW was calculated on days 1 

and 3 of each trial to ensure participants began the study in a state of euhydration and to 

assess any disruptions to fluid balance over the duration of the each trial. 

Participants were provided with 0.1 g/kg BM D2O, measured to the nearest 0.001 g on day 0 

(control day) and trial day 2. Participants were instructed to consume the D2O between 20:30-

21:30 with their evening water allowance. No additional fluids were permitted following D2O 

ingestion until after the fasted blood sample was collected the next morning (trial days 1 and 

3) approximately 10-12 h later. Participants were instructed to continue to collect all urine 

losses. An additional blood sample was taken on the evening of day 2 (between 17:00-18:00) 

prior to the consumption of their second dose of D2O to establish new blood deuterium 

enrichment baseline.  

Serum D2O enrichment was analysed using the Gas-Bench II (Thermo Electron, Bremen, 

Germany) – isotope mass spectrometry (Finnigan, Delta XP, Bremen, Germany) following 

the protocol described elsewhere (23). Briefly, 200 µL of plasma was added to a vacutainer 

(Labco, High Wycombe, England) with a platinum catalyst (Thermo Electron, Bremen, 

Germany). The vacutainer was flushed by an automated autosampler-assisted flushing 

procedure, using 2 %H2 in Helium gas for 5 min. Following this, a 40 min equilibrium period 

occurred whereby the hydrogen isotopes in the aqueous solution exchanged with hydrogen 
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ions in the headspace. A sample of the headspace gas was then injected into the Isotope Ratio 

Mass Spectrometer (IRMS) (Thermo Electron, Bremen, Germany). A mean of the four 

middle measurements was taken as the measure for each sample. The isotopic enrichment 

was expressed as δ
0

/00 against the international water standard Vienna Standard Mean Ocean 

Water (V-SMOW). The coefficient of variation of the measurement was 0.027 %.  Results of 

the isotope ratio analysis were reported relative to the working reference gas versus V-

SMOW and as atom percentage excess (APE).  

The delta between sample and reference gas is defined as: Delta D = [(Ratio of Sample - 

Ratio of Reference)/ (Ratio of Reference)] x 1000. The delta deuterium values for the pre-

dose (δpre) and post-dose samples (δpos) were determined. The deuterium dose was diluted 

with tap water. The deuterium content of tap water (δtap) and the dose (δdose) was measured. 

TBW in moles could then be calculated from the dilution of the heavy water isotope using the 

equation: TBW (moles) = A/ (18.02a) × [δdose - δtap/ (δpost−δpre)]. A is the amount of dose 

(g) administered to participants and a is amount of dose (g) diluted for analysis. To convert 

TBW to kilograms, the following equation was applied: TBW (kg) = TBW (moles) x 18.02/ 

1000 g. It is known that some deuterium binds to acidic amino acids of proteins or other non-

exchangeable sites and it has been experimentally determined that deuterium oxide 

overestimates TBW by 4% (24). Therefore, to correct for the non-exchange of deuterium in 

the body, the TBW measurement was divided by 1.04. 

 

Urine Analysis 

A total of five urine samples were collected during each trial; two 24 h collections (24 h) and 

three morning voids (V). V was collected separately each day and analysed for urine specific 

gravity (USG) using a hand held refractometer (Pocket Refractometer, PAL-105. Atago, 

Japan) and volume using digital scales (measured to 0.01 g) (Sartorius, AG Germany), 

applying the formula to correct for USG (V = (M bottle plus urine collection – M empty bottle) / (USG x 

ρH2O): V is volume (mL), M are masses (g) and ρH2O = 1 g/mL is density of water). 

Twenty four hour urine collections were analysed for USG and total volume using the 

methodology outlined above. In addition, 24 h collections were further analysed for 

osmolality via freeze point depression using the Advanced Osmometer Model 765 (Advanced 

Instruments Inc. Norwood MA), creatinine on the iLab 650 (Instrumentation Laboratory UK) 

and sodium (Na
+
) and potassium (K

+
) on the iLab 600 (Midlands Pathology Services Ltd.). 
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The MV volume was added to the 24 h collection to give total 24 h volume data (V24). 

Following the initial measures of urine volume and USG, urine samples were stored at -20°C
 

for later analysis. 

The numbers of urine samples reported throughout the paper are: Volume (n=50), USG 

(n=50), urine osmolality (n=46), urine creatinine (n=48), urine Na
+
 (n=46) and urine K

+
 

(n=42). The numbers of blood samples reported throughout the paper are: haematocrit 

(n=48), serum osmolality (n=49), total plasma protein (n=48), serum creatinine (n=46), 

serum sodium (n=45) and serum potassium (n=45). Sample sizes less than 50 are the result 

of missing samples or technical error. 

 

Statistical Analysis 

All data were analysed using statistical software (SPSS. 18 for Windows). Two-way repeated 

measures ANOVA with pairwise comparisons post hoc were applied to each data set to look 

for significant main effects. Delta values were calculated and Student’s t-tests were used to 

analyse changes overtime in each condition. The level of significance was set at p<0.05. 

 

 

2.5 Results 

 

Participant Characteristics 

Fifty of the fifty two participants recruited for this study fully completed the two trials. The 

characteristics of the study population are presented in table 2.2. 

 

Dietary Intakes 

The habitual caffeine intake questionnaire and three day weighed diet diaries ensured 

participants were habitual moderate coffee drinkers with estimated mean intakes of between 

300-600 mg caffeine per day from coffee. Any participant whose caffeine intake from coffee 

fell outside of this range was not included in the study.  

During trial C, participants consumed 4 mg/kg day caffeine provided in the form of Nescafé 

Original, divided into four equal servings of 200 mL. During trial W, participants consumed 

200 mL tap water on four occasions each day. Total test beverage intake was 800 mL/day 
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during both conditions. Mean caffeine consumption during trial C was 308 mg, and ranged 

from 204.4-453.0 mg caffeine. 
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Table 2.2: Participant Characteristics and Data from 3-day (pre-trial) Weighed Dietary Intakes 

Characteristic Mean ± SD Range 

Age (y) 28.1 ± 7.3 18-46 

Height (cm) 181.1 ± 6.3 169.0-192.0 

Weight (kg) 77.0 ± 12.1 51.1-133.6 

Total Energy Intake (Kcal) 2400 ± 464 1402-3398 

Dietary carbohydrate (%) 53.5 ± 7.0 33.2-72.4 

Dietary Protein (%) 16.4 ± 4.8 10.3-35.3 

Dietary Fat (%) 29.8 ± 5.9 14.1-43.0 

 Total Water Intake 2081 ± 842 1083-3614 

Total Coffee Intake (mL) 979 ± 301 625-1522 
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Compliance booklets suggest that all participants consumed the foods and fluids that they 

were provided with. In addition, no participants partook in any physical activity, with the 

exception of walking for transport, 24 h prior to and throughout the duration of each trial. The  

Bristol Stool Chart monitored any unusual faecal losses. No participants reported unexpected 

fluid losses from diarrhoea or vomiting during either trial.   

Serum caffeine was measured on day two of each trial to check for participant compliance. 

Results of caffeine analysis, performed by high performance liquid chromatography showed 

that, as expected, serum caffeine was significantly higher in the coffee trial than the water 

trial (1.40 ± 1.07 vs. 0.33 ± 0.46 mg/L; p< 0.01). These findings support participant 

compliance to the diet and test beverage during each trial. 

Dietary macronutrient intake was calculated individually for each participant, based on 

energy from their food diary. Mean energy intake during the trials was 2425 ± 413 Kcal. 

Mean water consumption during the trials was 1953 ± 642 mL. 

 

Body Mass Variables 

Figure 2.2 illustrates the results of TBW estimates, based on deuterium oxide analysis 

performed by gas chromatography mass spectrometry. Fluctuations in TBW were not 

significantly different between the two conditions (p= 0.90). There were no significant 

changes in TBW from beginning to end of either trial (p> 0.05) suggesting that participants 

maintained a stable fluid balance throughout the study. This is further confirmed by statistical 

analysis showing no significant effect of trial day on either condition (p= 0.43). 

Figure 2.3 illustrates daily body mass measurements. Mean body mass of participants during 

experimental trials was 76.97 ± 12.15 kg. Mean body mass did not differ between the two 

conditions (p= 0.45), however a small but progressive daily fall in BM occurred within both 

conditions (p< 0.05). Mean decrease in BM from day 1 to day 3 across both trials was 0.39 ± 

0.5 kg.  
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Figure 2.2: Mean Total Body Water Estimates from Day 1-Day 3. n=25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.3: Mean Body Mass.* Significant difference between days. n=50 
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Urinary Markers 

Means and standard deviations of 24 h urinary measures recorded on trial days 1 and 2 are 

presented in table 2.3. Urine void volume and USG collected on trial days 1-3 are presented 

in table 2.4. Twenty four hour urine volume, USG, urine osmolality or urine creatinine did 

not differ between conditions (p> 0.05). Urinary Na
+
 was not different between trials days, 

however mean Na
+
 excretion was significantly higher on both days in the coffee trial than the 

water trial (p= 0.02).  K
+
 concentration was significantly higher in C than W on  

day one only. K
+
 concentration were significantly higher on day 2 in both conditions (p= 

0.02), but no between-condition difference was found. 

Neither urine void volume nor urine void USG were different between conditions; p= 0.86 

and p= 0.95, respectively (1.4). 

 

Haematology  

Means and standard deviations of haematological measures recorded on trial days 1, 2 and 3 

are presented in table 2.5. Haematological markers did not differ between conditions across 

all measures: serum osmolality, haematocrit, total plasma protein, serum sodium, serum 

potassium (p< 0.05). Student’s t-test analysis showed no significant differences between 

conditions in the delta change from day 1 to day 3 for all haematological measures. 

Renal function was normal throughout each trial as assessed by urine creatinine (2.3), serum 

creatinine and BUN (Table 2.5). Neither urine or serum creatinine differed between 

conditions or time points (p> 0.05).  

 

 

* * 
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Table 2.3: Twenty-four hour Urine Collection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are means ± SD. * Coffee (C) significantly higher than water (W) on respective days. † Day 2 significantly higher than day 1.  

Condition/

Day 

 

 

Urine Volume ± 

SD 

(mL/24h) 

 

 

USG ± SD 

Urine 

Osmolality ± SD 

(mOsm/kg) 

Urine 

Creatinine ± SD 

(mg/24h) 

Urine Na 

excretion ± SD 

(total 

mmol/24h) 

Urine K 

excretion 

± SD 

(total 

mmol/24h) 

W1 2521 ± 744 1.009 ± 0.003 208.2 ± 88.2 624.8 ± 183.4 43.6 ± 15.5 32.3 ± 14.2 

W2 2335 ± 826 1.009 ± 0.003 202.1 ± 89.8 696.3 ± 288.1 43.4 ± 16.5 36.4 ± 14.0† 

C1 2593 ± 833 1.009 ± 0.003 217.7 ± 103.2 657.7 ± 243.8 48.7 ± 15.5* 36.6 ± 14.5* 

C2 2226 ± 842 1.009 ± 0.004 243.7 ± 142.7 667.4 ± 271.1 47.0 ± 17.0* 40.3 ± 16.8† 
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Table 2.4: Morning Urine Void Volume and USG  

  

 

 

 

 

 

 

Values are means ± SD. 

  

Condition/Day  Urine Void Volume (mL) Urine Void USG 

W1 349.2 ± 177.0 1.019 ± 0.005 

W2 361.9 ± 168.0 1.017 ± 0.006 

W3 339.8 ± 143.6 1.018 ± 0.006 

C1 344.6 ± 183.6 1.017 ± 0.005 

C2 360.1 ± 171.8 1.018 ± 0.005 

C3 338.3 ± 157.6 1.018 ± 0.005 
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Table 2.5: Haematological data collected over each Three Day Trial.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are means ± SD.  

Condition 

/Day 

Haematocrit 

(%) 

Serum 

Osmolality 

(mOsm/kg) 

TPP (g/L) 

Serum 

Creatinine 

(mmol/L) 

Serum Na 

(mmol/L) 

Serum K 

(mmol/L) 

Blood Urea 

Nitrogen 

(mmol/L) 

W1 43.9 ± 2.0 284 ± 23 73.9 ± 8.1 98.9 ± 11.7 141 ± 4 4.1 ± 0.3 4.6 ± 0.9 

W2 44.0 ± 2.1 287 ± 11 73.7 ±6.8 95.9 ± 12.4 141 ± 3 4.2 ± 0.2 4.8 ± 1.0 

W3 44.0 ± 2.1 285 ± 3 74.2 ± 9.2 95.2 ± 11.2 141 ± 4 4.2 ± 0.2 4.7 ± 0.8 

C1 43.9 ± 2.3 286 ± 7 73.9 ± 11.0 97.7 ± 13.9 141 ± 3 4.2 ± 0.3 4.7 ± 1.2 

C2 44.6 ± 2.4 288 ± 8 75.8 ± 9.4 97.5 ± 11.6 141 ± 3 4.1 ± 0.2 4.8 ± 1.0 

C3 43.9 ± 2.2 286 ± 3 74.7 ± 9.4 97.1 ± 11.7 141 ± 3 4.2 ± 0.2 4.9 ± 1.3 
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2.6 Discussion 

 

Individual daily fluid requirements, intakes and beverage preferences vary extensively within 

and across populations. Despite the lack of a consensus for how much fluid an individual 

should consume and the effects of various beverages on fluid balance, there are widespread 

guidelines for optimal hydration that are considered common knowledge (13). Healthy adults 

are often advised to avoid caffeinated beverages due to the potential negative impact they 

may have on hydration status (7). These opinions and recommendations are based upon a 

relatively small collection of caffeine studies that have been publicised in both scientific and 

lay literature and in the media over the past few decades (10,17,25). Interestingly however, 

there are a lack of data that has specifically investigated moderate doses of coffee in free 

living healthy adults. Thus, the question of whether moderate coffee consumption can 

contribute to daily fluid requirement or causes dehydration remains unanswered. 

To our knowledge, this is the first study to directly compare the chronic effects of coffee 

ingestion with water using a wide range of hydration assessment techniques. We 

hypothesised that when ingested in moderation, coffee would contribute to daily fluid 

requirement and would not result in progressive dehydration over the course of 72 h. Our data 

shows no significant differences in the hydrating properties of coffee or water across a wide 

range of hydration assessment indices. No significant differences were observed between 

conditions in any of the haematological markers. No differences in blood urea nitrogen or 

serum creatinine suggest renal function was normal throughout both trials. Analysis of 

urinary data showed no significant differences between conditions in 24 h urine volume, 

urine void volume, USG or urine osmolality. Small daily fluctuations in TBW were observed 

during both trials; however this did not reach significance in either condition. A very recent 

study investigated the effects of caffeine provided in capsules (5 mg/kg/day) on the TBW of 

30 male participants classified as ‘low-caffeine users’ (<100 mg/day) (19). No differences in 

TBW were observed between the caffeine and placebo control group. Our data confirms the 

author’s conclusions that a moderate consumption of caffeine does not disrupt TBW in 

caffeine habituated males.  

Urinary sodium was significantly higher in the coffee trial than the water trial on both days. 

The increased sodium excretion in the coffee trial supports findings of previous studies that 

have observed that both theophylline and caffeine enhance sodium excretion at the proximal 
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and distal renal tubules (26-28). The increase in sodium excretion is due to methyxanthine-

induced natriuresis caused by inhibition of salt transport along the proximal convoluted 

tubule (29). While sodium excretion is an important determinant of urine production, it is not 

the only driver of urine volume. Some of the water in urine is derived from ‘osmotically free’ 

water (30), particularly when producing a relatively large volume of dilute urine as in the 

current study. Baseline urinary potassium was significantly elevated on day one of the coffee 

trial compared to day one of the water trial. The potassium content in a cup of instant coffee 

(200 mL and ~2 g coffee) is approximately 80 mg (30), thus participants consumed ~320 mg 

additional potassium during the coffee trial than during the water trial. No differences were 

observed between the conditions on day two, which may suggest adaptive renal handling.  

Interestingly, although no changes were observed in TBW, the data showed a small fall in 

body mass of 190 ± 120 g/day in both conditions (0.2 % BM). Clinical dehydration is 

reported to be a body mass loss of between 1-3 %, therefore whilst the 0.2 % BM decrease 

observed in this study did reach statistical significance; participants were not near the level of 

clinical dehydration. These findings are similar to the results of Grandjean et al who assessed 

hydration status in 18 healthy adults consuming a mean caffeine intake of between 1.40-3.13 

mg/kg BM (13). The authors reported a mean loss of 0.30 ± 0.39 % BM across all test 

conditions. Authors suggested that the loss was due to normal divergence or that their method 

of determining treatment volumes caused a small level of dehydration to occur. One strength 

of our study was that the individual fluid intake during the trials was based on three-day diet 

diaries instead of a fixed volume for everyone. Furthermore, if participants felt they were not 

allocated a sufficient volume of water at any point during the first trial or indeed if they had 

too much water, they were permitted to return to the laboratory to have their fluid allocation 

amended. The adjusted fluid intake was recorded and repeated during the second trial. The 

small losses in body mass observed in this study are likely to be multifactorial. As suggested 

by Grandjean et al (13), it is also possible that part of the mass loss observed in this study was 

due to natural divergence or that participants were not provided with sufficient water during 

the trials. The urinary data in the current study shows participants were producing relatively 

large amounts of dilute urine (urine osmolality < serum osmolality), which suggests 

dehydration is unlikely to be the cause of the fall in body mass.  One other possible cause of 

the body mass loss could be due to unmeasured faecal losses. Participants completed a 

compliance booklet each day which included questions regarding faecal losses and included 

the validated Bristol Stool Chart. Data collected from this booklet would highlight any 
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unusual stool production, but as samples were not weighed it is not possible to know how 

much volume was excreted. No unusual faecal losses were reported by any of the 

participants.  

This study is limited by the nature of its design. To achieve optimal results, a metabolic ward 

would have provided the most control of the environment and of the participants; however in 

an attempt to understand the effects of coffee consumption in a ‘free-living’ setting, some 

control will always be lost. Furthermore, it may have been beneficial to continue the 24 h 

urine collection on the third day however this was not possible due to time constraints and 

demands on the participants. It may have been interesting to include a decaffeinated coffee 

condition as this would have identified any differences specifically caused by caffeine in 

coffee and not any of the other bioactive components, however as we found minimal 

differences between coffee and water we believe that it is unlikely that we would have found 

any significant differences if we had included a decaffeinated coffee condition. 

With acknowledgement of the study’s limitations, results suggest that coffee did not result in 

dehydration when provided in a moderate dose of 4 mg/kg BW caffeine in four cups per day. 

Thus, these data suggest that coffee, when consumed in moderation by caffeine habituated 

males contributes to daily fluid requirement and does not pose a detrimental effect to fluid 

balance. The advice provided in the public health domain regarding coffee intake and 

hydration status should therefore be updated to reflect these findings.  
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3.1 Abstract  

 

Several antimicrobial proteins (AMPs) in saliva including secretory immunoglobulin A 

(SIgA), lysozyme (SLys) and lactoferrin (SLac) are important in host defence against oral 

and respiratory infections. The aim of this study was to investigate the effects of hydration 

status on saliva AMP responses to prolonged endurance exercise. Using a randomized design, 

10 healthy male participants (age 23 ± 4 y, body mass 73.8 ± 7.4 kg,         56.8 ± 6.5 

ml/kg/min) completed 2 h cycling at 60%         in states of euhydration (EH) or moderate 

dehydration (DH) induced by 24 h fluid restriction. Timed unstimulated saliva samples were 

collected before, during and immediately post-exercise and each hour for 3 h recovery. 

Baseline body mass was determined over 3 consecutive days prior to the first trial. Fluid 

restriction resulted in a 1.5 ± 0.5% loss of body mass from baseline and a 4.3 ± 0.7% loss 

immediately post-exercise. Pre-exercise urine osmolality was significantly elevated in DH 

compared to EH (958 ± 134 vs 721 ± 237 mOsm/kg; p=0.03). Heart rate and perceived 

exertion were significantly higher throughout exercise in DH compared to EH. Saliva flow 

rate was significantly reduced in DH compared to EH. Baseline SIgA secretion rates were not 

different between conditions; however exercise induced a significant increase in SIgA 

concentration in DH (161 ± 134 to 309 ± 271 mg/L; p<0.05) but not EH and remained 

significantly elevated throughout 3 h recovery. There was a significant increase in SLac 

secretion rate from pre- to post-exercise in both conditions (1.2 ± 1.2 to 3.2 ± 3.0 µg/mL and 

1.7 ± 1.7 to 4.2 ± 1.8 µg/mL for DH and EH, respectively) which remained elevated in DH 

but returned to baseline by 1 h post-exercise in EH. Overall, SLac concentrations were 

significantly higher in DH than EH (p=0.02). Pre-exercise SLys concentration was 

significantly lower in DH compared to EH (1.2 ± 1.6 vs 5.5 ± 6.7 ng/mL; p<0.05). Exercise 

elicited a significant increase in SLys secretion rate in both conditions. Post-exercise SLys 

concentrations remained significantly elevated from baseline in DH whereas concentrations 

in EH returned to baseline by 1 h post-exercise. Exercise in DH caused a reduction in saliva 

flow rate yet induced greater secretion rates of SLac and higher concentrations of SIgA and 

SLys. Thus, DH does not impair saliva AMP responses to endurance exercise. 

 

Key Words: Hydration Status, Mucosal Immunity, Endurance Exercise, Salivary 

Antimicrobial Proteins 

 



Chapter 3                                                                                                  Exercise, Hydration & Immune Function                                                                                                                                                                                    

 

53 

 

3.2 Introduction 

 

Mucosal secretions play an important role in immunity as the first line of defence against 

potential pathogens invading the oral cavity and upper respiratory tract (1). Salivary secretory 

IgA (SIgA) has been the most commonly studied marker of mucosal immunity and its 

deficiency has been correlated to a high incidence of infections (2-5). More recently the 

importance of other antimicrobial proteins (AMPs) in saliva has gained greater recognition. 

There are a diverse range of AMPs in saliva, many of which act to form a protective barrier 

against bacteria and pathogens. Two of the most abundant AMPs present in the mucosal 

secretions of the upper respiratory tract are salivary lysozyme (SLys) and salivary lactoferrin 

(SLac). The presence of AMPs such as SLys and SLac in salivary secretions without prior 

exposure to infectious agents is indicative of their integral role in the innate immune system 

(6).  

Immune resilience is an important factor in the success of an elite athlete (7). Prolonged and 

intense periods of exercise can cause transient perturbations in many cellular and hormonal 

immune factors (8). A small collection of studies have investigated the effects of endurance 

exercise on salivary AMPs. Koutedakis et al (9) was the first to report significant reductions 

in salivary flow rate (FR) and SLys concentrations following exercise in elite swimmers. 

Other studies have reported equivocal results; short-duration, high intensity exercise lead to 

increased secretion rates of AMPs such as SIgA and SLys in active men (10) and prolonged 

endurance exercise either decreased SIgA with no change in SLys secretion rates (11,12) or 

resulted in no change in SIgA concentrations (13-15). The variation in the findings of these 

studies may be due to the differences in exercise intensity, duration and relative stress on the 

participant. Furthermore, there are numerous possible mechanisms by which exercise could 

affect the concentration and secretion of AMPs both acutely and chronically including; 

increased secretion of neuropeptides, secretion of AMPs induced by proinflammatory 

cytokines, secretion of AMPs from neutrophils or damaged epithelial cells or simply 

hyperventilation during exercise resulting in drying of the respiratory tract (for detailed 

review see 16). In addition, circulating stress hormones such as cortisol have been implicated 

in the inhibition of salivary IgA (17) and Lys (18) production, mobilization and secretion. 
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Saliva secretion is regulated by the autonomic nervous system and humans typically produce 

~1500 mL saliva per day (8). However, fluid balance studies have observed significant 

reductions in salivary FR when in a state of dehydration (11,19). Fortes and colleagues 

reported significant reductions in salivary FR and secretion of AMPs at a modest dehydration 

of -3% body mass loss (BM) induced by fluid restriction (19). Dehydration of 1.3-2.4% BM 

resulting from prolonged endurance exercise has also been shown to reduce salivary FR (11). 

In addition to a reduction in salivary FR the authors reported a significant decrease in SIgA 

secretion rates but no change in SLys. During exercise, the concentration of the saliva, and its 

FR, are thought to be influenced by sympathetic nervous activity and the hypothalamic-

pituitary-axis (HPA axis) (10). It has been proposed that increases in protein content are 

influenced by noradrenalin release via sympathetic nervous stimulation, whereas FR is 

considered to respond primarily to parasympathetic stimulation (20).  

As a result of well-established guidelines, athletes are regularly advised to drink sufficient 

fluids before, during and after exercise to limit dehydration to <2% loss in BM (21,22). 

However studies suggest that commencing exercise in a mild state of dehydration is not 

uncommon across athletic populations (23-25). Furthermore, it has been shown that many 

athletes fail to consume sufficient fluids during exercise to offset fluid loses, resulting in 

levels of dehydration in excess of 2% BM loss (26,27). Exercising in a state of dehydration 

has been shown to increase cardiovascular strain (increased heart rate (HR)) (28) and to 

significantly increase plasma cortisol levels (29) compared to euhydration. Thus the potential 

for a disturbed immune response when exercising in a state of dehydration is significantly 

augmented.  

It is apparent that prolonged exercise can effect secretion of salivary AMPs however it is not 

known how the hydration status of an athlete may affect these changes. The aims of this 

study were to investigate the effects of dehydration during prolonged endurance cycling on 

exercise performance and salivary markers of immune function.  

 

 

3.3 Methods 

 

Participants 
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Ten recreational male cyclists were recruited to participate in this study. Participant 

characteristics are presented in Table 3.1. Inclusion criteria required participants to be weight 

stable, involved in regular exercise, complete a general health questionnaire without reporting 

any chronic or underlying illness or disease, free from medications that may disrupt fluid-

electrolyte balance and to have not suffered any symptoms of an upper respiratory tract 

infection during the four weeks prior to the study. Females were not included in the study due 

to potential disruptions in fluid balance resulting from the menstrual cycle. All participants 

were informed of the purposes of the study and the risks associated with the procedures. 

Written informed consent was obtained from each participant and a health questionnaire was 

completed before the study commenced. The study was approved by the Loughborough 

University ethical advisory committee. 

 

Table 3.1: Participant Characteristics 

 

 Age (y) Height (cm) Body Mass (kg)         ml/kg/min 

Mean ± SD 21 ± 1 y 178.0 ± 7.9 cm 72.4 ± 8.0 58.2 ± 6.2 

 

 

Experimental Design  

Participants underwent two experimental trials in a randomised, counterbalanced-cross over 

design, consisting of 2 h cycling on an electronically braked ergometer at 60%         in 

either a euhydrated (EH) or dehydrated state (DH). Saliva samples were collected pre-

exercise, throughout the exercise session and each hour for 3 h post-exercise. Urine samples 

were collected pre- and immediately post-exercise and again at 3 h post-exercise. Trials were 

separated by a minimum of 6 days.  

 

Pre-trial Tests & Familiarisation 

Prior to the exercise trials, participants completed an incremental cycle exercise test to 

volitional exhaustion on an electronically braked cycle ergometer (Lode Excalibur Sport, 

Groningen, Netherlands) in order to determine        . Briefly, following a 10 min warm up 
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at 70 W, participants began the exercise test at 95 W, undergoing 35 W increments every 3 

min. Breath samples were collected from participants into Douglas bags during the final 

minute of each stage and a rating of perceived exertion (RPE) was recorded (40). Heart rate 

(HR) was measured throughout the test using short-range telemetry (Polar RS800CX, 

Kempele, Finland). A paramagnetic oxygen analyser (Servomex 1420B, Crowborough, UK) 

and infrared carbon dioxide analyser (Servomex 1415B) were used in combination with a dry 

gas meter (Harvard Apparatus, Edenbridge, UK) for determination of    ,      and      . The 

work rate in Watts corresponding to 60%         was then calculated from the     –work 

rate relationship using a linear equation. Following a 15 min rest period, during which time 

participants were familiarised with the saliva collection protocols, participants then 

completed a 20 min familiarisation at 60%         representing the workload of the 

subsequent trials. Expired gas samples were collected during each trial at 5, 15 and 20 min to 

ensure the calculated work rate elicited the desired relative intensity. In addition to the pre-

trial         test, participants were required to visit the laboratory on the final three mornings 

prior to their first trial to establish fasted baseline body mass. On each occasion nude body 

mass was recorded and the average of these data was used to estimate baseline BM at 

euhydration.  

 

Exercise Trials 

Participants reported to the laboratory between 07:00-09:00 for each exercise trial having 

completed an overnight fast (≥10 h). Each participant performed both trials at the same time 

of day to reduce inter-trial effects of diurnal variations in cortisol (30,31). Participants were 

requested to complete a 24 h weighed food diary prior to their first trial and to avoid 

consumption of foods with a high fluid content, such as yoghurts, soups and fruit. 

Participants were then instructed to replicate their nutritional intake 24 h prior to their second 

trial. Participants were also requested to abstain from any physical activity and alcohol 

consumption for 48 h prior to each trial to help prevent disturbances in fluid balance. Prior to 

commencing exercise trials, participants provided a urine void, nude BM measurement and 

saliva sample for analysis. Participants cycled for 120 min at 60%         on a stationary 

cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands) in a laboratory environment 

maintained at 21.0 ± 1.0˚C. Saliva samples, expired gas and RPE were collected at 15, 45, 75 

and 105 min of exercise. Heart rate was recorded continually during each exercise trial with 
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short range telemetry (Polar RS800CX, Kempele, Finland). Post-exercise saliva and urine 

samples were collected following exercise cessation and BM was measured before 

participants were provided with 500 mL water. Participants remained in the laboratory for 

180 min, sitting quietly, to enable hourly saliva sampling and a final urine sample to be 

collected. 

 

Treatment 

To induce DH, participant’s fluid intakes were restricted to 500 mL water during the 24 h 

period pre- trial. Furthermore, no water was provided prior to or during the 2 hour cycling 

protocol. On completion of the exercise trial, following saliva and urine sampling, 

participants were provided with 500 mL water. During EH, participants were encouraged to 

consume their normal fluid intakes during the 24 h lead into the trial. In addition, participants 

were provided with 500 mL water before commencing the exercise trial and given an 

additional 250 mL water every 20 min during exercise. The exercise protocol was identical 

for both trials. 

 

 

3.4 Measures and Analysis 

 

Unstimulated saliva samples were collected from all participants at each time point. 

Participants were instructed to be in the seated position, leaning forward with their head tilted 

forward. Participants were asked to swallow to empty their mouth of any residual saliva 

before the timed sample collection began. Saliva collections lasted 3 min, during which time 

participants were requested to minimise orofacial movement and passively dribble into a pre-

weighed vial. Samples were weighed to estimate saliva volume and micro-centrifuged to 

remove cells and insoluble matter before storing at -20°C. The saliva flow rate (ml/min) was 

determined by dividing the volume of saliva by the collection time. Subsequently, saliva 

samples were analysed for secretory immunoglobulin A (SIgA) using an ELISA kit 

(Salimetrics, Philadelphia, USA) and both lactoferrin and lysozyme were analysed using 

commercially available ELISA kits (Calbiochem, USA and Biomedical Technologies, USA, 

respectively). Secretion rates for each of the salivary AMPs were calculated as the multiple of 

the saliva FR and the antimicrobial protein concentration. All saliva assays were carried out 
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in duplicate. The intra-assay CV for SIgA, lactoferrin and lysozyme were 1.8%, 8.1% and 

5.3%, respectively. Urine osmolality was analysed via freezing-point depression using a 

single sample osmometer (Osomamat 030, Gonotec, Berlin, Germany). Venous blood 

samples were collected immediately prior to exercise, immediately post-exercise (<3 min) 

and at 2 h post-exercise. After clotting, whole blood was centrifuged at 3500 rpm for 10 min 

at 4°C and serum was immediately stored at -20°C before later analysis of cortisol with an 

enzyme-linked immunosorbent assay (DRG Instruments, Cortisol ELISA EIA – 1887; intra 

assay CV: ±5.6%). 

 

Statistical Analysis 

All data were analysed using statistical software (IBM SPSS Statistics 21) and are presented 

as Mean ± Standard Deviation. Changes in hydration and saliva markers and plasma cortisol 

were analysed using a 2-way repeated measures analysis of variance (ANOVA). A 

Bonferroni adjustment was included into the analysis to correct for multiple comparisons. 

Data sets that were found to be significantly non-normal (Lys and SLac) were log 

transformed prior to analysis. Between trial differences in performance parameters (mean 

HR,     and RPE) were determined using an independent samples t-test. The level of 

significance was set at p<0.05. 

 

 

3.5 Results 

 

Hydration Variables 

Table 3.2 provides an overview of the hydration variables during each trial. Twenty-four hour 

fluid restriction resulted in a 1.5 ± 0.5% loss of body mass from baseline and a 4.3 ± 0.7% 

loss immediately post-exercise. No differences in BM were reported between pre-exercise 

body mass and baseline BM (72.5 kg ± 8.0 vs. 72.4 kg ± 8.0, respectively) in EH. Urine 

osmolality was significantly higher at pre-and post-exercise in DH compared to EH (p<0.05). 

Haematocrit was non-significantly higher at baseline in DH compared to EH (46.9 ± 3.4 vs 

46.0 ± 3.4%, for DH and EH, respectively). Haematocrit was significantly elevated by 

exercise in both conditions (46.5 ± 0.9 to 48.8 ± 1.0%; p<0.01) and remained elevated at 2 h 
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post-exercise (47.7 ± 1.0%; p<0.01; figure 3.1). No difference in baseline salivary FR was 

observed between conditions. However, immediately post-exercise and for the remainder of 

the trial, FR was significantly higher in EH than DH (p<0.05; figure 3.3).  

 

Performance Data 

Average power output during trials was 175 ± 22 W, resulting in an exercise      of 60 ± 4% 

        with no difference between trials. Mean HR and RPE were significantly higher 

throughout exercise in DH compared to EH (157 ± 13 vs. 151 ± 11 bpm; p<0.01, and 14.1 ± 

2.2 vs. 13.0 ± 1.8 RPE; p<0.05).  

 

Haematology 

Figure 3.1 presents plasma cortisol concentrations pre-exercise, immediately post- and 2 h 

post-exercise. Exercise elicited a significant rise in plasma cortisol levels in both conditions 

(632 ± 26 to 771 ± 33 nmol/L; p=0.01). At 2 h post-exercise, cortisol concentrations had 

fallen and were significantly lower than pre-exercise levels (p=0.03). 

 

Salivary Analysis 

Salivary AMP concentrations are presented in table 3.3. There was a significant increase in 

SLac concentrations with exercise (p<0.01) which returned to baseline by 1 h post-exercise in 

EH, but remained elevated in DH for the entirety of the post-exercise recovery period. 

Overall, SLac concentrations were higher in DH than EH (p=0.02). Lys concentrations were 

significantly lower at baseline (pre-exercise) in DH compared to EH (p<0.05). Exercise 

resulted in an increase in Lys concentration (p<0.01), which remained elevated above 

baseline during DH, but returned to baseline in EH by 1 h post-exercise. Baseline SIgA 

concentrations were not statistically different between conditions. Following exercise SIgA 

concentrations were higher in DH than EH; overall SIgA concentrations were significantly 

high in DH than EH (p<0.01). 

No differences were observed between pre-exercise salivary FR, however FR was 

significantly lower during DH than EH at all time points during and post-exercise (p<0.05; 

figure 3.3). SLac secretion rate increased significantly following exercise (p=0.01; figure 

3.4A). No differences between EH and DH were observed. Exercise elicited a significant 
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increase in SLys secretion rate in both conditions; with a tendency to be higher in EH than 

DH (p=0.06; figure 3.4B). SLys secretion rate fell significantly after exercise in EH (p=0.02) 

but remained elevated in DH at the end of the trial. SIgA secretion rates were not acutely 

effected by exercise, however at 3 h post-exercise SIgA secretion rates were significantly 

higher in DH than EH (p<0.01; figure 3.4C). 
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Table 3.2: Overview of Hydration Variables 

  

 

 

Data are means ± SD. * Indicates significant condition effect. 
ǂ
 Indicates significant change from baseline (pre-exercise).

 Body Mass (kg) Urine Osmolality (mOsm/kg) Haematocrit (%) 

 EH DH EH DH EH DH 

Pre-Exercise 72.5 ± 8.0 71.3 ± 8.0 721 ± 237 958 ± 134* 46.0 ± 3.4 46.9 ± 2.4 

Post- Exercise  71.6 ±7.7 69.4 ± 7.8 584 ± 252 918 ± 137* 48.0 ±3.7
ǂ
 49.7 ± 3.4

ǂ
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Figure 3.1: Haematocrit Concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Plasma Cortisol Concentrations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 3.1-3.2: Haematocrit and Plasma cortisol concentrations at pre-exercise, immediately post-

exercise and at 2 h post exercise. Data are means ± SE. 
ǂ
 Indicates significant change from baseline. 

No differences between conditions were observed. 

ǂ
 

ǂ
 

ǂ
 

ǂ
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Table 3.3: Salivary AMP Concentrations  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are means ± SD. * Indicates significant condition effect. 
ǂ
 Indicates significant change from baseline (pre-exercise) 

 

 SLac (mg/L) SLys (mg/L) SIgA (mg/L) 

Mean ± SD EH DH EH DH EH DH 

Pre-Exercise 5.0 ± 5.5 3.5 ± 2.8 5.5 ± 6.7 1.6 ± 2.0* 104.9 ± 84.4 160.6 ± 134.3 

Post-Exercise 11.9 ± 7.0
ǂ
 15.0 ± 12.7

ǂ
 11.1 ± 4.8

ǂ
 9.5 ± 9.1

ǂ
 136.9 ± 98.3 309.3 ± 271.2* 

1 h Post 4.8 ± 3.1 13.6 ± 9.3*
ǂ
 2.4 ± 1.9 9.1 ± 5.3* 73.9 ± 32.5 241.6 ± 214.7* 

2 h Post 7.9 ± 8.6 18.7 ± 21.0
ǂ
 2.1 ± 2.8 9.5 ± 7.4* 87.9 ± 56.2 239.9 ± 140.7* 

3 h Post 5.4 ± 4.5 15.3 ± 12.3*
ǂ
 3.1 ± 3.5 8.9 ± 6.7 74.6 ± 41.6 246.6 ± 146.6* 
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Figures: 3.3 and 3.4A-C 

  

 

 

 

Figures 3.3 and 3.4A-C: Salivary flow rate and AMP secretion rates pre- and post-exercise 

for Euhydrated (EH) and Dehydrated (DH) trials. Data are means ± SE.* Indicates significant 

difference between conditions. 
ǂ
 Indicates significant change from baseline. 

 

 

 

Figure 3.3 Figure 3.4A 

Figure 3.4B Figure 3.4C 
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3.6 Discussion 

 

The aim of the present study were to investigate the effects of dehydration during prolonged 

endurance cycling on exercise performance and salivary markers of immune function. With 

the knowledge that many athletes commence exercise with pre-existing fluid imbalances (32), 

we were interested in the effects of prior dehydration (induced by fluid restriction) on 

exercise performance and mucosal immunity during exercise and short term recovery. The 

main findings of this study were that exercise in a mildly dehydrated state caused a reduction 

in salivary FR and resulted in transient changes in salivary AMPs during and immediately 

post-exercise that had mostly returned to baseline by 3 h of recovery. 

A small collection of studies have reported the effects of a single bout of exercise on AMPs 

involved in host defence. Allgrove and colleagues (10) investigated salivary AMPs in acute 

exercise (22 min) at 50% and 70%         or during an incremental test to exhaustion. The 

incremental test to exhaustion resulted in temporal increases in the secretion rates of SIgA 

and SLac, with exercise at 70%         only resulting in a post-exercise increase in SLys 

secretion rate and no effects at 50%        . The authors concluded that sympathetic 

stimulation during high intensity exercise was sufficient to increase SIgA and SLys transport, 

despite the short-duration of the exercise period.  No studies have investigated the effects of 

endurance exercise (>90 min) on AMPs, with the exception of two field studies which 

analysed SIgA and SLys (and SLac (12)) during ultra-marathon racing and reported 

equivocal results. The authors of the multi-stage ultra-marathon observed exercise-induced 

body mass losses over the duration of the race and postulate that hydration status may play a 

role in protecting the upper respiratory trace when exercising (11).  

Current hydration guidelines advise athletes to limit body mass losses during exercise to no 

greater than 2% in order to prevent deleterious effects of dehydration on exercise 

performance and health (21,22). Dehydration has been shown to increase cardiovascular 

strain, core temperature,  perceived exertion response (33) and a mean change in HR of 3 

bpm for every 1% change in BM loss has recently been reported (28), ultimately inhibiting 

exercise performance. (34). In line with these findings, we observed significantly higher 

mean HR and RPE at the same work rate in DH compared with EH. Twenty-four hour fluid 

restriction in this study resulted in a mean body mass loss of 1.5%, (0.3-1.9 kg loss). 

Following exercise in DH, mean body mass loss was 3.9% (2.1-4.2 kg loss). Baseline urine 
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osmolality was 972 mOsmol/kg (777-1113 mOsmol/kg) in DH compared to 687 mOsmol/kg 

(353-1092 mOsmol/kg) in EH and baseline haematocrit was 47% (43-50%) and 46% (43-

50%) for DH and EH, respectively. These data highlight the large individual variability in 

sweat rates and fluid homeostasis between individuals undergoing the same level of fluid 

restriction.  

Given the known effects of fluid intake (35) and sweat rates (36,37) on salivary FR, the 

potential for exercising in a dehydrated state to interfere with the salivary AMP activity is 

high. Despite this, the effects of dehydration on salivary AMPs during exercise are relatively 

understudied. To the author’s knowledge, only one study has investigated the effects of 

dehydration and exercise on salivary AMPs. Fortes and colleagues investigated the effects of 

dehydration caused by exercise in the heat, with subsequent overnight fluid restriction on 

markers of immune function (19). The authors reported a significant reduction in salivary FR 

immediately following exercise in the dehydration trial, which remained suppressed until 

rehydration was permitted the following morning. In addition, they observed an increase in 

SIgA concentration, with no change in secretion rate and a decrease in SLys secretion rates 

with no change in concentration. Other studies that have investigated the effects of exercise 

on SLys, independent of hydration status, have reported decreased SLys concentrations (9), 

increased secretion rates (10) and no change in secretion rates (11,12) following a range of 

exercise sessions. We did not observe any differences in salivary FR at baseline between EH 

and DH, despite 24 h fluid restriction. However, during exercise, salivary FR decreased 

significantly in DH, with no change in EH, and remained significantly lower than baseline 

until 2 h post-exercise. SIgA secretion rates were not acutely affected by exercise; however 

by 3 h post-exercise SIgA secretion rates were significantly higher in DH than EH. We also 

observed significantly higher concentrations of SIgA and SLac in DH than EH throughout the 

trial, likely the result of a concentrating effect from the reduced salivary FR. SLac secretion 

rates increased with exercise, with no differences between conditions. Participants in both 

trials presented a significant increase in SLys concentrations which returned to baseline 

within 1 h post-exercise in EH but remained elevated for the duration of the trial in DH. 

Furthermore, we observed a transient increase in SLys secretion rate despite no change in 

salivary FR during exercise in EH. Despite a reduction in salivary FR in DH, we observed an 

increase in SLys secretion rates that remained elevated for the duration of the trial. Due to the 

difference in salivary FR between conditions, it is important to consider secretion rates when 

looking at AMP immune responses, and not absolute concentrations. Increases in SIgA 
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secretion rates in DH (above that reported in EH) and elevated SLys secretion rates above 

baseline at 3 h post exercise in DH suggest that DH exacerbated the immune response to 

endurance exercise. Whilst we did not observe any significant differences in cortisol 

concentrations between conditions, it may be possible that a heightened stress response in DH 

(evidenced by increased HR and RPE during exercise) resulted in a great immune response. 

Furthermore, it has been suggested that high-intensity exercise may increase the mobilization 

of SIgA into the saliva via sympathetic nervous activity (10), therefore it could be speculated 

that the increased exercise strain in DH effectively increased the relative intensity of the 

exercise and caused a greater mobilization of SIgA. 

Exercising in a state of dehydration (5% and 7% BM loss) has previously been shown to 

increase resting and post-exercise cortisol concentrations compared to euhydration (29,38). 

However, moderate dehydration in this study did not influence resting cortisol, or 

differentially effect post-exercise response compared to euhydration in this study. These data 

support the findings of Mitchell et al 2002, who reported no effect of hydration status (~1 % 

BM loss versus EH) on cortisol concentrations when exercising in an ambient environment 

(39). It is interesting that we observed higher RPE and HR in DH compared to EU without 

seeing differences in cortisol. This may be explained by relatively high baseline 

concentrations due to the diurnal pattern of cortisol and the fact the testing was carried out 

early in the morning which may have somewhat masked an influence of hydration. 

Alternatively, the level of dehydration may not have been sufficiently severe to trigger a 

stress response. Elevated levels of cortisol are indicative of stress on the body; with stressors 

(physiological or psychological) leading to activation of the hypothalamic-pituitary-adrenal 

axis resulting in secretion of adrenocorticotrophic hormone (ACTH) from the anterior 

pituitary gland and subsequent release of the adrenal glucocorticoid, cortisol. Glucocorticoids 

are potent anti-inflammatory and immunosuppressant agents, thus it is feasible to postulate 

that exercise-related changes in cortisol concentrations, with or without the impact of 

dehydration, would impact salivary AMP activity. Subsequently, stress hormones such as 

cortisol have been reported to inhibit the production, mobilization and secretion of SIgA (17) 

and SLys (18). However, in a field study whereby a low level of dehydration occurred in 

participants, no correlation was observed between cortisol concentrations and mucosal 

immunity (SIgA, SLac and SLys) (12). Similarly, we did not observe any differences in 

cortisol concentrations between conditions and the change in cortisol from pre to post-

exercise was not correlated with pre to post changes in AMPs. 
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In conclusion, we observed transient changes in salivary AMPs during and immediately post-

exercise that had mostly returned to baseline by 3 h of recovery. The responses may have 

been greater if participants were exercising in the heat and/ or if the level of dehydration was 

greater, however in the view of the author, exercising in ambient temperature at low levels of 

dehydration is a common occurrence in athletic populations and therefore requires further 

investigation. It would appear that the moderate levels of dehydration achieved in this study 

do not impair salivary AMP responses to endurance exercise; however more research is 

required to fully understand the implications of a range of fluid deficits on innate mucosal 

immunity.  
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4.1 Abstract 

 

Short periods of intensified training (IT) are a regular feature in a cyclist’s training 

programme. The aim of this study was to monitor changes in performance, mood state, 

plasma hormones and mucosal immune function during IT in well-trained cyclists and 

observe the effects of a carbohydrate nutritional intervention. Thirteen trained male cyclists 

(age: 25±6 y,   O2max: 72±5 ml/kg/min) participated in two 9-day periods of IT while 

undergoing a high (HCHO) or moderate (CON) carbohydrate nutritional intervention before, 

during and after training sessions. Performance was assessed throughout IT with maximal 

oxygen uptake (  O2max) and 1 h time trial (TT). Mood state questionnaires were completed 

daily to monitor total mood disturbance (TMD). Venous blood samples and unstimulated 

saliva samples were collected before and immediately after each TT for analysis. Weekly 

training volume and intensity increased significantly during IT (9.3±2.4 h to 23.5±3.4 h/week 

for volume and 2.6±2.5 to 6.5±4.0 h/week for intensity). Total energy intake and dietary 

CHO were significantly higher in HCHO than CON. TMD was elevated during IT and was 

significantly higher in CON than HCHO (p<0.05). Performance in the         exercise 

protocol fell significantly with IT in both conditions (p<0.05). No significant changes in TT 

performance were observed over IT, or between conditions. However, absolute mean power 

during TT decreased non-significantly in both conditions (-1.2 and -7.2 W for HCHO and 

CON, respectively). Pre-exercise cortisol and BDNF tended to be lower after IT in both 

conditions (p=0.07). Post-exercise cortisol, ACTH, BDNF and prolactin concentrations 

decreased with IT (p<0.05), with no difference between conditions. Vitamin D status was 

positively correlated with ability to maintain TT performance during IT. Transient changes in 

salivary antimicrobial proteins were observed throughout IT. A relatively short period of IT 

resulted in significant disturbances in mood state and minor performance decrements. 

Hormonal changes present signs of chronic stress, including decreased post-exercise 

prolactin, BDNF, cortisol and ACTH suggesting these cyclists may have exhibited early signs 

of overreaching.  

 

Key Words: Intensified Training, Overreaching, Carbohydrate, Hormones, Mucosal 

Immunity, Performance. 
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4.2 Introduction 

 

Short-term bouts of intensified training occur throughout well periodised training 

programmes. This practice enables athletes to peak at pre-determined time points across an 

athletic season and to avoid performance plateaus (1). Overload training is required for 

performance enhancement and when the balance between training and recovery is optimised, 

a heavily demanding training programme can have remarkable performance benefits. 

However, if the fine balance between training and recovery is disturbed, overreaching (OR) 

can occur and in some cases, lead to development of the overtraining syndrome (OTS) (2).  

Short-term OR and the OTS have been suggested to be related along a continuum (3) with a 

disturbance, an adaptation and eventually a maladaptation of the hypothalamic-pituitary-

adrenal axis (HPA) (2) leading to a neuroendocrine imbalance and an abnormal hormonal 

stress response (4). The HPA axis is one of the main pathways activated in response to 

stressors that controls the immune system. Activation of the HPA axis results in secretion of 

adrenocorticotrophic hormone (ACTH) from the anterior pituitary gland and subsequent 

release of the adrenal glucocorticoid cortisol and other neuroendocrine factors. HPA 

activation occurs as a result of stressors such as intense or prolonged physical exercise and 

psychological stress (5). Numerous studies have investigated the effects of exercise training 

on stress hormones, dating back to 1985 (6) yet results have been inconclusive. It is likely 

that the variation in study design and diagnoses of both OR and OTS has led to equivocal 

results.  

A growing body of evidence indicates that regular physical activity induces neurobiological 

adaptations that result in improved health and cognitive function (7). Endurance exercise, and 

recently resistance exercise (8), have been shown to increase skeletal muscle brain derived 

neurotrophic factor (BDNF) expression and protein content, in addition to acute increases in 

circulating BDNF concentrations (8-14). At present, it is unknown how a short-term 

intensified endurance training programme may affect circulating BDNF concentrations. It is 

also unknown how serum prolactin concentration, an anterior pituitary hormone involved in 

neuroendocrine function and hypothalamic pituitary capacity, may be affected by short term 

intensified cycling training. A small collection of studies have previously investigated 

prolactin in relation to overtraining, finding suppressed post-exercise prolactin levels (2,4,15) 

and increased prolactin response to a neuroendocrine challenge (16) in overtrained athletes. A 

range of suggested mechanisms have been proposed: increased dopaminergic action due to 
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excessive exercise, inhibition of prolactin secretion resulting from noradrenalin action via 

adrenoreceptors (17), or decreased serotonergic drive due to an acute stressor (as seen in rats) 

(18). Circulating concentrations of the gonadal steroid testosterone have also been reported to 

be lower during periods of intensified exercise training (19) and it may therefore be of 

interest to observe changes in prolactin responses during short-term intensified training 

alongside a range of additional hormones (including stress and fertility hormones) and 

immune markers, to help provide an insight into the physiological and biochemical changes 

occurring in athletes undergoing these practices.  

Production of salivary secretory immunoglobulin A (SIgA) is the major effector function of 

the immune system providing the first line of defence against pathogens (20). While SIgA is 

largely unaffected by acute bouts of moderate exercise, prolonged endurance exercise can 

lead to a suppression in its secretion (21-24) and thus increasing susceptibility to upper 

respiratory tract infections (URTIs) (25). The mechanisms behind this suppression are 

suggested to be related to the sympathetic nervous system and changes in HPA axis activity 

resulting in the inhibition of IgA synthesis and/or transcytosis (20). The effects of intensified 

training periods on other salivary antimicrobial proteins (AMPs) have been less well 

researched; however, AMPs such as lysozyme (SLys) and lactoferrin (SLac) are known to be 

present at mucosal surfaces and to contribute to the first line of defence against pathogens 

along with SIgA. Little is known about how prolonged intensified training may impact 

secretion of these AMPs.  

One proposed mechanism behind the development of OTS is the glycogen depletion 

hypothesis. Since the early findings from Bergstrom and Hultman (26), it has been 

understood that prolonged exercise leads to muscle glycogen depletion. Low muscle 

glycogen levels are associated with exercise-induced fatigue (peripheral and central) (27) and 

studies have found high carbohydrate intakes during periods of intensified training help to 

maintain performance (3,28). It is also known that low nutrient availability (specifically 

carbohydrate) can negatively impact immune function via direct (reduced immune cell 

energy metabolism and synthesis of antibody, cytokine and acute phase proteins) and indirect 

(stimulation of stress hormone secretion) mechanisms (25). Furthermore, consumption of 

carbohydrate during endurance exercise has been shown to attenuate the rise in stress 

hormones such as cortisol and adrenaline. However, whilst sufficient carbohydrate to prevent 

glycogen depletion during heavy training regimens may aid performance and support 
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immune function, it has been reported that this does not prevent the development of short 

term OR (3,28,29). 

Current guidelines for carbohydrate intakes state that 30-60 g (30) or 0.7 g/kg carbohydrate 

(31) should be consumed per hour to support endurance exercise lasting longer than an hour 

and to reduce the likelihood of injury or illness (30). Recently studies have shown that higher 

intakes of mixed carbohydrates (90 g/h) may have even greater performance effects (32) and 

it has been suggested that these higher intakes may be more appropriate for exercise lasting 

2.5 h and longer. Furthermore, high carbohydrate diets (6-10 g/kg/day) are generally 

recommended for athletes undergoing heavy training regimens (30,31). High carbohydrate 

intakes (8.5-9.4 g/kg/day) during intensified training have been shown to result in reduced 

mood state disturbances and performance decrements compared to lower intakes (5.4-6.4 

g/kg/day) (3,28). Interestingly, one study found that high dietary protein has also been found 

to reduce the decline in both mood state and performance resulting from short term 

intensified training in endurance trained cyclists (3 g/kg/day vs 1.5 g/kg/day) (33).  

Some evidence suggests that dietary carbohydrate intakes may fall short of the 

recommendation in a large percentage of athletes undergoing such training (34). Lower 

intakes may be the result of an inability to access the foods and fluids required during training 

due to the restrictions or implications of the sport, concerns about total energy intakes and 

body composition, post-exercise appetite suppression or simply due to an inability to tolerate 

such large intakes during exercise due to gastrointestinal complaints (35). The aims of this 

study were to investigate the effects of 9 days of intensified training on hormonal balance and 

immune function (both at rest and in response to exercise) in addition to monitoring mood 

state and exercise performance. Furthermore, we aimed to investigate the potential impact of 

high carbohydrate availability during exercise (in line with current ACSM recommendations) 

on the aforementioned variables. With this information, it was hoped that a better 

understanding of some of the short-term physiological changes that occur in elite athletes 

undergoing ‘training camp’ type periods of intensified training could be gained.  
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4.3 Methods 

 

Participants 

Fifteen trained cyclists were accepted to participate in this study. Participants were included 

if they had a competitive cycling background of at least 3 y, were currently cycling at least 

three times per week for a minimum of 2 h/day and reported a         of ≥65 mL/kg/min. 

Participants were excluded from the study if they were currently suffering from any cycling-

related injuries or had experienced any symptoms of an upper respiratory tract infection 

(URTI) in the four weeks prior to the study. Two participants were unable to complete the 

study due to personal circumstances. All participants were informed of the purposes of the 

study and the risks associated with the procedures. Written informed consent was obtained 

from each participant and a health questionnaire was completed before the study commenced. 

The study was approved by the Loughborough University ethical advisory committee. 

Characteristics of the 13 participants who completed the study are reported in Table 4.1. 

 

Experimental Design 

Participants underwent two 9-day periods of intensified training (IT) while ingesting one of 

two nutritional interventions in a randomised counterbalanced, double-blind cross-over 

model. During the high carbohydrate intervention (HCHO), participants consumed 

carbohydrate beverages at intakes consistent with current ACSM guidelines (30) before and 

during exercise, followed by a high carbohydrate and protein recovery beverage in the 

immediate recovery period (<10 min post-training). During the control condition (CON), 

participants were provided with lower carbohydrate concentration beverages before, during 

and after training. No supplemental protein was provided in the control condition. Prior to 

their first trial, participants underwent a two week pre-trial period to provide protocol 

familiarisation and allow baseline measures to be taken. A 10 day washout period separated 

the two trials. Participants were monitored for 2 weeks following their last trial to ensure full 

recovery. See Figure 4.1 for a schematic overview. 
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Table 4.1: Participant Characteristics  

 

 

 

 Age (y) Height (cm) Body Mass (kg) Body Fat (%)         mL/kg/min 

Mean ±SD 25.0 ± 5.8 178.3 ± 3.9 69.7 ±  6.3 13.4 ± 4.1 72.2 ±  4.9 
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Figure 4.1: Schematic Overview of Study Design 
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Pre-trial Tests and Familiarisation 

Participants visited the laboratory for pre-trial exercise testing to confirm suitability to 

participate. During their first visit, participants underwent an incremental cycle test to 

exhaustion on an electronically braked ergometer (Lode Excalibur Sport, Groningen, 

Netherlands) to determine suitability for the study. Expiratory gases were collected 

continually throughout the test and breath-by-breath analysis was performed automatically 

with a Moxus metabolic systems analyser (AEI Technologies Inc., Naperville, IL, USA). 

Heart rate (HR) was recorded continually using short range telemetry (Polar RS800CX, 

Polar, Kempele, Finland) and ratings of perceived exertion (RPE) were recorded from 

participants during the final minute of each stage. If participants achieved a          of ≥65 

ml/kg/min and were suitable according to all other inclusion criteria, they were included in 

the study. Following this, each suitable participant completed a 2 week pre-trial training 

diary, including mood-state questionnaires and a 3-day weighed diet diary. Participants were 

provided with HR monitors and SRM power meters (SRM Shimano DA7900 PowerMeter) 

and requested to train according to their normal programmes during this phase. During this 

time, participants underwent a full body composition assessment and baseline blood 

screening for vitamin D and iron status (Spire Healthcare Ltd). Body composition was 

determined by DXA at the Gatorade Sports Science Laboratory at Loughborough University. 

No participants exhibited symptoms of overreaching during their pre-trial phase according to 

the guidelines set by Meeusen and colleagues (4). Following the pre-trial phase, participants 

began 9 days of IT.  

 

Intensified Training 

Individual IT programmes were based on participants’ pre-trial training diaries and discussed 

with each individual athlete. Training volume and intensity (time spent in the highest 3 HR 

zones) was increased 2.5-fold from baseline. HR zones were calculated from maximum HR 

achieved during the         test. Five zones were devised, based on previous research within 

our group (3,36), and expressed as a percentage of maximum HR; Zone 1: <69%, Zone 2: 

69% - 81%, Zone 3: 82% - 87%, Zone 4: 88% - 94%, Zone 5: >94%. HR zones were used to 

define the intensity of the training sessions. Power zones were also applied to interval 

sessions. Power zones were calculated as a percentage of Watt max attained by participants in 

the first         of each trial and used as a guideline during training sessions, in addition to 
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HR zones. It was predicted IT would result in a reduction of participants’ ability to achieve 

HR zones; therefore, power zones were put in place as an additional measure to encourage 

participants to achieve the highest workload possible. An example of a typical training 

programme can be seen in Appendix B. SRM power meters (SRM Shimano DA7900 

PowerMeter) were fitted to each participant’s bicycle to enable the monitoring of power 

output during each session. Participants were also provided with a HR monitor to use 

specifically for training (Suunto ANT, Amer Sports Corporation, Finland). Participants were 

responsible for uploading data files (power and HR) after each training session via secure 

online training software (Training Peaks Ltd.). This enabled the researchers to monitor 

sessions that were not performed in the laboratory.  

 

Mood State 

The Profile of Mood State shortened version (POMS-24) and the Daily Analysis of Lifestyle 

Demands on Athletes (DALDA) were completed daily, first thing after waking and before 

visiting the laboratory or partaking in a training sessions. In addition, the full 65 item POMS 

questionnaire (POMS-65) was completed on days 1, 3, 6 and 9. Global mood state (GMS) 

was calculated from POMS questionnaires by summing the five negative measures of affect 

(tension, depression, anger, fatigue and confusion) and subtracting scores for vigour. Total 

mood disturbance (TMD) was monitored throughout IT by changes in GMS. The DALDA 

questionnaire identifies the sources (part A) and symptoms (part B) of stress for athletes. 

Changes in TMD were determined from DALDA B scores by analysing changes in the 

number of ‘a’ (worse than normal) and ‘c’ (better than normal) scores. 

 

Nutritional Intervention and Assessment of Dietary Intake 

Participants and lead investigators were blind to the intervention order. During IT, 

participants ingested either high (HCHO) or control (CON) nutritional beverage before, 

during and after each training session. Table 4.2 outlines the nutritional composition of the 

HCHO and CON. Participants were instructed to consume their normal diet throughout each 

training period and keep their diets as similar as possible between the two conditions. In 

addition, participants completed a weighed diet diary each day through the entirety of each 

trial and at select time points during the pre-trial and washout periods. Evening meals 

consumed before the performance tests were replicated as closely as possible each time, 
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across both conditions. Caffeine was not permitted for 12 h before performance testing. 

Participants consumed a pre-exercise beverage within 15 min of starting each training 

session. Pre-exercise beverages were taste matched carbohydrate solutions (118 mL); 

containing 24 g or 2 g carbohydrate for HCHO and CON, respectively. During exercise, 

participants consumed 1 L of a taste matched carbohydrate-electrolyte solution per hour of 

exercise; containing 60 g (6 m/v % ) or 20 g (2 m/v %) carbohydrate for HCHO and CON 

conditions, respectively. Following exercise, participants were provided with recovery 

nutrition; both trials received a carbohydrate-electrolyte solution (30 g vs 10 g carbohydrate 

for HCHO and CON, respectively) in addition to a recovery product; a beverage during the 

HCHO condition and a placebo tablet in CON. The HCHO recovery beverage contained 14 g 

CHO and 17 g protein. The CON placebo tablet contained only 1 g cellulose. Participants 

were informed that the variation in the nutritional intervention was in the recovery nutrition 

formulation, either tablet or beverage. When questioned after the study, no participants 

reported noticing any differences between carbohydrate beverages or that the intervention 

involved the manipulation of carbohydrate ingestion. 

 

Table 4.2: Composition of Nutritional Interventions 

 

  HCHO CON 

 PRE During/h POST PRE During/h POST 

kcal 98 250 250 12 100 50 

CHO (g) 24 60 44 2 20 10 

PRO (g) 0 0 17 0 0 0 

 

Table 4.2: Pre-exercise (PRE), per hour of exercise (During/h) and post-exercise (POST) 

caloric intakes (Kcal), carbohydrate intakes (CHO) and protein intakes (PRO) for high 

carbohydrate (HCHO) and control (CON) conditions. Data are absolute values. 
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Performance Testing – Time Trial 

Participants arrived at the laboratory at the same time for each TT (between 06:30-08:30) 

following an overnight fast of ≥ 8 h. Blood and saliva samples were collected from 

participants pre-TT (after resting for 5 min) and immediately post-TT (<5 min). Blood 

samples (20 mL) were drawn from a superficial vein by a trained phlebotomist from 

participants in the seated position. Unstimulated saliva samples were collected during a 3 min 

collection period from participants in the seated position. 

Following a 10-min warm-up at a self-selected intensity, participants performed an all-out 1 h 

TT on their own bikes on a turbo trainer (CycleOps Flow) in a quiet laboratory environment. 

Heart rate was recorded continually during each TT with short range telemetry (Suunto). 

Participants were blinded from their power, cadence and HR during the TT and were only 

provided with a stop clock. Changes in TT performance were calculated from mean power 

(watts). Participants were permitted to drink water ad libitum during TT. Post-TT blood and 

saliva samples were collected within 5 min of exercise cessation.  

  

Performance Testing –            

Participants arrived at the laboratory at the same time for each         test (between 06:30-

08:00), following an overnight fast of ≥ 8 h. Blood samples (approximately 10 mL) were 

drawn from a superficial vein by a trained phlebotomist from participants in the seated 

position. Following this, participants completed an incremental cycle test to exhaustion on an 

electronically braked ergometer (Lode Excalibur Sport, Groningen, Netherlands). Results 

were used to determine maximal     , HR and power output (Wmax). No warm-up time was 

permitted prior to testing; however, the test began at 60 W and power increased by 35 W 

every 3 min until volitional exhaustion. Expiratory gases were collected continually 

throughout the test and each breath was analysed automatically with a Moxus metabolic 

systems analyser (AEI Technologies Inc., Naperville, IL, USA). Heart rate was recorded 

continually using short range telemetry (Polar RS800CX, Polar, Kemple, Finland) and ratings 

of perceived exertion were recorded from participants during the final minute of each stage. 

Wmax was calculated with the following equation:  

Wmax = Wfinal  + (t/T) · Winc 
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Wfinal  is the power output (W) of the final completed stage, t is the time achieved in the final 

uncompleted stage (s), T is the duration of each stage (180 s) and Winc is the workload 

increment (35 W).  

 

Haematology and Circulating Hormone Analysis 

Venous blood samples were collected at rest prior to each TT and immediately after the 

cessation of exercise (≤5 min). Blood was collected into chilled EDTA vacutainers and 

analysed for haematological variables and plasma metabolomic profiling. K3EDTA blood 

was used for immediate haematological analysis (including haemoglobin, haematocrit and 

total and differential leukocyte counts) using an automated cell-counter (A
c
.T™5diff 

haematology analyser, Beckman Coulter, High Wycombe, UK) and the remaining blood 

centrifuged at 3500 rpm for 10 min at 4˚C and the plasma was immediately stored at -80˚C. 

The intra-assay coefficient of variation (CV) for all measured blood variables was less than 

3.0%. In addition, venous blood was collected into serum clotting vacutainers and analysed 

for brain-derived neurotrophic factor (BDNF), cortisol (CORT), testosterone (TEST), 

prolactin (PRL), luteinising hormone (LH) and follicle stimulating hormone (FSH). After 

clotting, whole blood was centrifuged at 3500 rpm for 10 min at 4°C and serum was 

immediately stored at -20°C. Serum LH, FSH, PRL and TEST were analysed with a 

chemiluminescent immunoassay (RANDOX, Fertility Hormone Array – EV3610) (mean 

intra assay CV was ±5.6%). Serum CORT, ACTH and BDNF were analysed with an 

enzyme-linked immunosorbent assay (DRG Instruments, Cortisol ELISA EIA – 1887; intra 

assay CV: ±5.6%, Biomercia ACTH ELISA 7023; intra assay CV:  ±4.5% and ChemiKine
TM

 

BDNF ELISA CTY306; intra assay CV: ±3.7%). Serum vitamin D (25-Hydroxyvitamin D) 

and ferritin were analysed using electrochemiluminescence immunoassays (Elecsys Vitamin 

D Total; intra assay CV: ±<5% and Elecsys Ferritin; intra assay CV: ±<3%; Spire Healthcare 

Ltd.). The vitamin D analysis methodology used in the study has been shown to correlate 

well with the gold standard liquid chromatography/mass spectrometry method; Pearson 

r=0.877.  

 

Salivary Analyses 

Unstimulated saliva samples were collected from participants before and immediately after 

the 1 h TT (≤5 min). Participants were familiarised with the saliva collection procedure prior 
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to their first trial. Saliva collections were made with participants in the seated position, 

leaning forward with their head tilted forward. Participants were asked to swallow to empty 

their mouth of any residual saliva before the timed sample collection began. Saliva 

collections lasted 3 min, during which time participants were requested to minimise orofacial 

movement and passively dribble into a pre-weighed vial. Samples were weighed to estimate 

saliva volume and micro-centrifuged to remove cells and insoluble matter before storing at -

20°C. The saliva volume collected was estimated by weighing and saliva flow rate (mL/min) 

was determined by dividing the volume of saliva by the collection time. Saliva samples were 

analysed for SIgA using an ELISA kit (Salimetrics, Philadelphia, USA) and both SLac and 

SLys were analysed using commercially available ELISA kits (Calbiochem, USA and 

Biomedical Technologies, USA, respectively). Secretion rates for each of the salivary AMPs 

were calculated as the multiple of the saliva flow rate and the antimicrobial protein 

concentration. All saliva assays were carried out in duplicate. The intra-assay CV for SIgA, 

SLac and SLys was 1.8%, 8.1% and 5.3%, respectively. 

 

Statistical Analysis 

All data were analysed using statistical software (IBM SPSS Statistics 21) and are presented 

as Mean ± Standard Deviation. Changes in performance, blood markers and mood state 

parameters were analysed using a 2-way repeated measures analysis of variance (ANOVA).  

A Bonferroni adjustment was included into the analysis to correct for multiple comparisons. 

Data that were found to be significantly non-normal were log transformed prior to analysis. 

Between trial and pre- to post-IT changes in performance parameters were determined using 

an independent samples t-test. Pearson’s correlation was used to bivariate correlations 

between vitamin D status and performance outcomes. The level of significance was set at 

p<0.05. 

 

 

4.4 Results  

 

Diet and Training 

Total energy intake (EI) and dietary CHO intakes increased significantly during IT compared 

to baseline (p<0.05). EI and CHO were significantly higher during HCHO than CON (4148 ± 
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766 vs 3501 ± 617 kcal and 9.9 ± 1.5 vs 7.4 ± 1.6 g/kg CHO, respectively; p<0.05). Dietary 

protein intake was significantly higher in HCHO than CON (2.1 ± 0.5 vs 1.7 ± 0.4 g/kg 

protein; p<0.05) and compared with pre-trial intakes (1.7 ± 0.5 g/kg protein; p<0.05). Fat 

intake was not different between conditions, or between HCHO and baseline; however, fat 

intake was significantly higher in CON than at baseline (1.5 ± 0.4 vs 1.2 ± 0.3 g/kg; p=0.02). 

See Appendix C for participant dietary intakes.   

Weekly training volume increased significantly during IT compared with pre-trial baseline 

training (153% increase: 9.3 ± 2.4 to 23.5 ± 3.4 h/week; p<0.001). Total time spent training 

during the 9 days of IT was 30.2 ± 4.4 h. Weekly training intensity increased significantly 

during IT compared with pre-trial baseline training (146% increase: 2.6 ± 2.5 to 6.5 ± 4.0 

h/week spent training above 82% HRmax; p<0.01). Total time spent training above 82% 

HRmax (zone 3 and above) during IT was 8.3 ± 5.2 h. 

 

Performance 

High intensity exercise performance (       ) fell significantly with IT in both conditions 

(p<0.05); peak power (391 ± 37 to 375 ± 38 W; figure 4.2), maximum HR (190 ± 10 to 179 ± 

8 bpm) and completion time (31:15 ± 03:12 to 30:00 ± 03:30). IT did not result in a 

significant reduction in absolute        ; 4.91 ± 0.48 to 4.86 ± 0.48 l/min for pre- and post-

IT respectively. Declines in TT performance over IT and differences between conditions did 

not reach significance. However, performance (mean Watts) fell by 2.8% in CON compared 

to 0.3% in HCHO (-7.2 W ± 2.9 compared to -1.2 W ± 0.5 decrements for CON and HCHO, 

respectively; p>0.05; figure 4.3). Effort, as a percentage of peak power during TT did not 

change over IT in HCHO (64.8 ± 3.3 to 64.7 ± 5.2%) or CON (63.3 ± 5.5% to 61.5 ± 5.9%). 

Mean HR tended to decrease during the TT in CON (p=0.06).  
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Figure 4.2: Individual change in Peak Power during VO2max testing following IT 

 

 

 

 

 

Figure 4.2: Individual performance response to IT represented as percentage change in peak power during the         test from pre- to post-IT.  
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Figure 4.3: Individual change in Mean Power during 1 h time trial following IT 

 

 

 

 

Figure 4.3: Individual performance response to IT represented as percentage change in mean power during the 1-h time trial test from TT1-TT3.  
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Mood State 

Daily records of the POMS-24 questionnaire responses showed a continual increase in TMD 

throughout IT (p<0.01). Overall, TMD was significantly higher in CON than HCHO 

throughout the period of IT (p=0.04). Data from the POMS-65 questionnaire, recorded every 

3 days supported findings from the shortened version, showing a significant increase in TMD 

with time (p<0.05) and TMD was significantly higher in CON than HCHO at day 9 (figure 

4.4; p<0.05). Results from the DALDA questionnaire also indicated a significant overall 

disturbance in mood state, with an increase in section B ‘a scores’ (figure 4.5) and a decrease 

in number of ‘c scores’ with IT (p<0.05).  

 

 

Figures 4.4 and 4.5: Daily changes in Profile of Mood States – 24 item questionnaire (POMS-

24) and changes in the number of ‘a’ scores from the Daily Analysis of Lifestyle Demands on 

Athletes (DALDA) – part B from baseline over IT in the high carbohydrate (HCHO) and 

control (CON) trials. Black circles represent HCHO and white circles represent CON. Data 

are mean ± SE. * Indicates significant increase with time (p<0.05).  

 

Vitamin D Status 

Six of 12 participants tested for vitamin D status reported <75 nmol/L and were classified as 

having insufficient levels (37). Vitamin D status was significantly correlated with better 

maintenance of performance (mean W) following IT, r=0.69; p (one-tailed) <0.01 (figure 

4.6). No relationship between vitamin D status and changes in        ; peak power were 

observed, r=-0.198; p (one-tailed) >0.05.  

Figure 4.4 Figure 4.5 

* * 
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Hormonal Concentrations 

Changes in key hormonal responses to exercise are presented in figure 4.7. Resting CORT 

concentrations tended to be lower after IT (752 ± 23 to 700 ± 42 nmol/L; p=0.07), with no 

differences between conditions. Post-exercise CORT decreased significantly with IT (805 ± 

78 to 646 ± 67 nmol/L; p<0.01), with no differences observed between conditions. Pre-

exercise ACTH tended to be lower in CON than HCHO (46.7 ± 4.8 vs 61.0 ± 6.3 pg/mL, for 

CON and HCHO respectively; p=0.06). Post-exercise ACTH fell significantly with IT (115.9 

± 20.8 to 71.2 ± 12.0 pg/mL; p<0.01), with no difference between conditions.  

Baseline BDNF concentrations tended to decrease following IT (p=0.08) with no difference 

between conditions. Exercise resulted in a significant increase in BDNF concentration 

compared to pre-exercise baseline (p<0.01). Post-exercise BDNF concentrations were 

significantly lower following IT (p<0.05). The percentage increase in serum BDNF after TT3 

was non-significantly lower in CON (12.5%) than HCHO (22.0%). 
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Figure 4.6: Vitamin D Status and TT Performance  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Relationship between vitamin D status and percentage change in TT performance (mean W) from TT1-TT3.Solid line represents the 

linear regression. Broken line marks the 75 nmol/L cut off for sufficiency levels of Vitamin D. 
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A significant change in the acute PRO response to exercise was observed following IT 

(4.6A). Post-exercise PRO concentration increased from baseline at TT1 and decreased 

following TT3. Post-exercise PRO concentration decreased significantly with IT, with no 

significant difference between conditions. 

No changes in baseline serum testosterone were observed from pre-post exercise (TT), or 

between conditions. Post-exercise serum testosterone was significantly lower in CON than 

HCHO (13.2 ± 0.7 vs 14.6 ± 0.9 nmol/L; p<0.01). Pre-exercise cortisol/testosterone ratio 

tended to be higher at TT2 in CON than HCHO (p=0.06). Overall, post-exercise 

CORT/TEST ratio declined during IT (63.9 ± 8.5 to 48.2 ± 5.6 C/T ratio; p=0.02). 

No differences were observed in pre-exercise LH concentrations over IT, or between 

conditions. Post-exercise LH concentrations increased significantly with IT from TT1-TT3 

(2.8 ± 0.4 to 3.4 ± 0.4 mLU/mL; p=0.02). Post-exercise FSH did not change from TT1-TT2, 

but tended to increase from TT2-TT3 (3.2 ± 0.5 to 3.5 ± 0.5 mLU/mL; p=0.06). 
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Figure 4.7: Changes in Hormone Responses to 1 h Time Trial over IT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Change in hormone responses to each 1 h time trial over (TT) IT for HCHO (solid 

line) and CON (broken line). Data are mean ± SE. *Significant change with IT. † Significant 

acute change following TT. 
ψ
 Significant change in acute response to exercise with IT. ¶ 

Significant difference between conditions. # Tendency to decrease with IT. 
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Salivary AMP Concentrations 

Tables 4.3 and 4.4 report salivary AMP concentrations and secretion rates, respectively, at 

rest (PRE) and post-exercise (POST) with the delta values (Δ POST minus PRE) for each of 

the three TT performance tests. 

 

Table 4.3: Pre-exercise (PRE) and post-exercise (POST) salivary secretory immunoglobulin 

A (SIgA), lactoferrin (SLac) and lysozyme (SLys) concentrations for high carbohydrate 

group (HCHO) and control trial (CON) for each time trial (TT) performance test. 

 

 HCHO CON 

SIgA (mg/L) PRE POST Δ PRE POST Δ 

TT1 154.4 (71.9) 227.4 (66.5) 73.0 (64.9) 127.6 (54.9) 208.4 (50.6) 80.8 (93.6) 

TT2 160.7 (76.6) 216.6 (118.8) 55.9 (106.5) 165.4 (72.9) 217.2 (99.9) 51.8 (96.2) 

TT3 158.4 (76.2) 204.7 (33.3) 46.3 (62.1) 140.2 (66.2) 195.1 (45.3) 54.9 (77.2) 

SLac (mg/L) PRE ¶ POST ¶ Δ † PRE POST Δ † 

TT1 2.1 (1.5) 6.9 (2.4) 4.8 (3.1) 2.1 (1.5) 9.5 (4.6) 7.4 (4.1) 

TT2 3.9 (4.7)* 9.0 (5.6)* 5.2 (2.8) 2.4 (1.8)* 13.1 (11.2)* 10.7 (11.5) 

TT3 3.1 (3.1) 8.3 (4.6) 5.2 (4.3) 2.2 (1.8) 8.8 (5.7) 6.5 (4.4) 

SLys (mg/L) PRE POST Δ* PRE POST Δ† 

TT1 1.9 (0.9) 2.8 (1.2) 0.8 (0.6) 2.0 (0.8) 3.0 (1.3) 0.9 (0.9) 

TT2 2.1 (0.9) 2.7 (1.1) 0.6 (0.7) 2.2 (0.9) 2.7 (1.2) 0.5 (1.0) 

TT3 2.0 (0.9) 2.5 (1.0) 0.5 (0.4)* 2.1 (1.1) 2.4 (1.0) 0.3 (0.6)* 

  

Data are mean (± SD). *Significant change with IT from TT1. †Significant change with 

exercise bout. ¶ Significant difference between conditions; p<0.05. 
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Table 4.4: Pre-exercise (PRE) and post-exercise (POST) salivary secretory immunoglobulin 

A (SIgA), lactoferrin (SLac) and lysozyme (SLys) secretion rates for high carbohydrate 

(HCHO) and control (CON) treatments for  each time trial (TT) performance test. 

 

 

 HCHO CON 

SIgA (µg/min) PRE POST Δ PRE POST Δ 

TT1 73.2 (43.8) 101.2 (39.8) 28.1 (36.9) 82.6 (55.4) 90.3 (32.4) 6.9 (40.3) 

TT2 84.1 (64.0) 159.8 (150.1) 21.2 (107.7) 100.5 (53.1) 104.0 (66.7) 16.4 (84.3) 

TT3 112.4 (103.7) 107.6 (41.1) -4.9 (74.8) 90.0 (55.1) 94.0 (45.3) 4.0 (40.0) 

SLac (µg/min) PRE POST Δ PRE POST Δ 

TT1 0.9 (0.6) 3.0 (1.6) 2.1 (1.6) 1.1 (0.9) 4.8 (3.6) 3.7 (2.9) 

TT2 1.4 (0.9) 5.7 (5.1) 4.2 (4.9) 1.2 (1.2) 5.0 (5.4) 3.8 (5.3) 

TT3 1.9 (1.4)˚ 3.7 (2.0) 1.8 (1.8) 1.5 (1.5)˚ 3.9 (2.4) 2.4 (2.2) 

SLys (µg/min) PRE POST Δ † PRE POST Δ † 

TT1 0.7 (0.3) 1.1 (0.7) 0.4 (0.6) 1.0 (0.5) 1.3 (0.6) 0.3 (0.3) 

TT2 0.9 (0.4) 1.7 (2.0) 0.8 (1.7) 1.1 (0.5) 1.2 (0.6) 0.1 (0.6) 

TT3 1.0 (0.4) 1.1 (0.6) 0.1 (0.4)˚ 1.0 (0.6) 1.2 (0.7) 0.1 (0.4)˚ 

 

 

Data are mean (± SD). †Significant change with exercise bout; p<0.05. ˚Tendency to change 

from TT1-TT3 (p=0.07)  
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No differences in baseline or post-exercise SIgA concentrations or secretion rates were 

observed between conditions or with IT. No significant differences were seen in the response 

to exercise. Figure 4.8 presents the significant increase in SLac concentration from pre-post 

exercise, observed in both conditions (p<0.01). SLac concentration increased significantly 

from TT1-TT2 (p<0.05). Overall, SLac concentration was significantly higher in HCHO than 

CON (p<0.05). No change in baseline SLac secretion rates were observed following IT; 1.02 

vs 1.71 mg/min for TT1 and TT3, respectively (p>0.05) and no differences were observed in 

post-exercise secretion rates after IT or between conditions.  

SLys concentrations increased significantly with exercise from 0.95-2.63 mg/L in HCHO 

(p<0.01) and tended to increase in CON (p=0.06). There was a significant attenuation in the 

magnitude of increase in concentration from pre-post exercise from TT1-TT3 (figure 4.9; 

p<0.05). Exercise resulted in a significant increase in SLys secretion rates in both conditions 

(p<0.05). The magnitude of the post-exercise increase in SLys secretion rate tended to 

decrease over IT (p=0.08) from 0.38-0.12 mg/min and 0.28-0.10 mg/min for HCHO (p=0.21) 

and CON (p=0.08), respectively. No changes in baseline SLys secretion rate or concentration 

were observed during IT or between conditions.  

 

 

 

 

Figure 4.8-4.9: Data are mean ± SE.* Significant change with IT from TT1. Ѱ Significant 

change in acute response to exercise bout with IT. † Significant change with exercise; p<0.05 
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4.5 Discussion 

 

The main aims of this study were to investigate the effects of 9 days of IT on hormonal 

balance and mucosal immune function (both at rest and in response to exercise) in addition to 

monitoring mood state and exercise performance in highly trained athletes. In addition, we 

were interested in the potential impact of high carbohydrate availability before, during and 

after exercise (in line with current ACSM recommendations) on the aforementioned 

variables. The main findings of our study were that a relatively short period of IT resulted in 

large declines in mood state, significant reductions in maximal exercise performance and 

minor endurance performance decrements. Furthermore, significant changes in hormone 

regulation and markers of immune function were observed during 9 days of IT. The HCHO 

nutritional intervention appeared to provide a protective effect against some, but not all, of 

the detrimental physiological and psychological effects of IT.  

Short-term periods of training at higher volumes and/or intensities are commonplace 

throughout an athletic training programme, enabling targeted performance peaks and 

preventing staleness. If the periodisation of this practice is not properly considered, short 

term OR (whereby performance is restored within several days to a few weeks of recovery) 

can develop into the OTS (38). Within ethical restraints, numerous studies have attempted to 

investigate the causes and effects of OR and OT, and have reported a range of different 

findings. In light of our data, it is not possible to confirm whether all cyclists experienced 

OR; however, some level of performance decrement occurred in almost all athletes. It is 

important to consider that whilst changes in TT performance over IT did not reach 

significance (p<0.05), many athletes and coaches would consider a 2.8% attenuation in 1 h 

TT performance in CON to have meaningful implications in the field, especially when 

compared to a 0.3% change in HCHO.  

An alternative statistical method was considered when analysing these data. Inferential 

statistics can help provide insight into whether results from such performance tests are 

meaningful when translated into performance outcomes in the field. Inferential statistics can 

be used to make conclusions about the true value of an effect statistic derived from a sample. 

It has been suggested that magnitude based inferences help determine whether the true value 

of an outcome has any meaningful implications (70). Furthermore, calculating clinical 

inferences with confidence intervals and probabilities of benefit and harm has been suggested 
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to be used in place of null-hypothesis significance testing (70). However, the use of this 

alternative statistical method was not implemented within the body of research in this thesis 

due to the potential confusion over the use of two statistical methodologies. The use of 

traditional hypothesis testing with p-values is well understood by readers of scientific 

literature and most commonly used. Whilst this traditional method of statistical analysis may 

not give true insight into the meaning of the result outside of the laboratory environment; 

there can be no confusion over the statistical outcome. Furthermore, the use of traditional 

statistics in this study enable the findings to be easily compared and contrasted against 

previous literature, which can therefore contribute to a greater understanding in the field.  

Previous research has reported significant performance decrements following similar 

protocols (3,28,39). The differences in our findings may be due to the training status of our 

participants. It appears that the highly-trained athletes in this study exhibited a level of 

resilience in their ability to perform endurance exercise following short-term IT, almost 

independently of the nutritional intervention, despite experiencing significant declines in 

mood state and hormonal disruptions.  

It is understood that carbohydrate consumption is an important component of an athlete’s 

diet, both in its ability to enhance physical performance (3,26,28) and to enhance recovery 

after exercise (31,34). Furthermore, low carbohydrate diets have been implicated with 

suppressed immune function (40) and increased stress hormones responses to exercise (3) in 

athletic populations. A small collection of studies have investigated the effects of high versus 

low/moderate carbohydrate diets during periods of intensified training and reported 

attenuation in performance decrements (3,28). Differences in our outcome measurements 

between conditions were not as clear as have been previously reported (3,28). The 

carbohydrate intervention completed in this study resulted in high (HCHO: 10 g/kg/day) and 

moderate (CON: 7 g/kg/day) dietary CHO intakes whereas other studies have compared high 

(10.0-8.5 g/kg/day) versus considerably lower (5.4-5.0 g/kg/day) doses of carbohydrate and 

have found more pronounced differences between conditions (28,41,42). Results from this 

study fall more closely in line with findings from Lamb and colleagues who found no 

difference in maintenance of swim intensity following 9 days of training between high (12.1 

g/kg/day) and a moderate (6.5 g/kg/day) carbohydrate interventions (43). Furthermore, 

Sherman and colleagues observed no change in time to exhaustion following 7 days of 

cycling training between high (10 g/kg/day) and low (5 g/kg/day) carbohydrate groups, 

despite significant reductions in muscle glycogen in the low group (44). It is important to 
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note that neither of these studies increased the training load of participants during the testing 

periods, which may explain the absence of a significant change in performance. Participants 

in the present study displayed a level of tolerance to IT that has not previously been observed, 

potentially due to the high aerobic capacity of the cyclists which was approximately 9 

ml/kg/min greater than the aforementioned studies (3,28). 

A recent publication has also highlighted the importance of protein intake during periods of 

IT (45). High dietary protein (3 g/kg/day) attenuated endurance performance decrements in 

trained cyclists undergoing 7 of days IT compared to a moderate protein diet (1.5 g/kg/day) 

(45). The addition of small amount of protein to the post-exercise recovery beverage in the 

present study resulted in a significant increase in total dietary protein in HCHO compared to 

CON and may have provided an additional stimulus for immediate post-exercise recovery 

that was absent in CON. The ingestion of protein during recovery from endurance exercise 

has been shown to improve endurance capacity of subsequent exercise sessions compared to 

carbohydrate alone (46,47). It is therefore possible that the additional protein, in combination 

with the additional carbohydrate in HCHO, contributed to the small differences in endurance 

performance and hormone responses to exercise observed in this study. It is of further interest 

that Witard and colleagues reported an association between high dietary protein during IT 

and fewer symptoms of URTI and suggest that a high protein diet may support the immune 

system during periods of high intensity training (45). 

It is understood that moderate intensity, regular exercise can enhance immune function above 

that of a sedentary individual, but that prolonged strenuous exercise or periods of increased 

training load can be immunosuppressive (48). Mucosal immunity is an essential first line of 

defence of the immune system and its popularity for measurement in athletic populations is 

ever increasing due to its non-invasive sampling methods and relatively straightforward 

analysis. Salivary IgA is perhaps the most commonly measured AMP in saliva and changes 

in SIgA have been reported during periods of IT and/or chronic stress (20) and suggested to 

be linked to HPA axis activity. Interestingly, we did not observe any significant changes in 

SIgA in our participants during IT, or any differences between conditions. A small collection 

of studies have also failed to observe differences in SIgA concentrations with carbohydrate 

nutritional interventions during exercise (24,49,50). However, it is unusual that we did not 

observe any changes over the period of IT. Both the inter- and intra-subject variability was 

high, which may explain the absence of a clear trend. We did, however, observe significant 
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increases in SLys concentration and secretion rate with exercise. Despite a paucity of data on 

SLys responses to exercise, it has been proposed as a potential marker of both psychological 

(51) and physical stress (52), making it a potentially interesting marker of the OTS. Previous 

research has shown transient increases in SLys with exercise (53) and suggested that its 

increase may be the result of changes in sympathetic nervous activity resulting in 

mobilisation of SLys to the saliva, providing a temporary enhancement of immune function. 

Interestingly, over the course of IT, we observed a significant attenuation in the post-exercise 

increase in SLys secretion rate. Whilst the regulation of SLys is not entirely understood, 

reductions in SLys concentrations have been attributed to secretion of glucocorticoids (51) 

and thus activation of the HPA axis. Our data report a suppression of SLys with IT. 

Furthermore, the increase in SLys with exercise was lower in CON compared to HCHO and a 

larger attenuation in this increase was seen over IT. These data suggest HCHO may have 

supported the mobilization of SLys to the saliva via sympathetic nervous activation. In line 

with these findings, SLac concentrations were significantly higher in HCHO than CON 

throughout IT. SLac concentrations also increased acutely with exercise. There was no 

change in SLac secretion rates at baseline or post-exercise following IT. 

Hormonal disturbances during training, IT and under conditions of OR or OTS have been 

well documented in recent years. However the ability of practitioners to utilise these data in a 

meaningful way with their athletes is not as straight forward. Clearly, there is huge individual 

variability in hormonal responses to exercise, therefore a change in an individual hormone or 

a single threshold value during a season could never been sufficient in monitoring training 

load. In addition to standard measures of stress, including alterations to hypothalamic control 

and subsequent glucocorticoid secretion, we were interested in changes in prolactin 

concentrations. Prolactin is an immunoregulatory hormone that has previously been 

suggested to be affected by chronic stress (2,54). Meeusen and colleagues observed 

suppressed exercise-induced prolactin concentrations in athletes diagnosed as OT. Indeed, we 

observed a significant change in post-exercise response of prolactin over IT from an 

increased concentration (TT1) to a complete attenuation of prolactin (TT3) in just 9 days. The 

link between prolactin suppression and training stress has been proposed to be the result of 

altered central dopaminergic or serotonin activity due to accumulating fatigue (2,55). The 

suppression in prolactin suggests an increase in immunosuppression during IT. Furthermore, 

analysis of CORT and ACTH, showing attenuated post-exercise concentrations provide 

evidence of HPA axis disturbance. Previous research has shown elevated CORT in low 
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carbohydrate groups, compared with high following one-off endurance exercise (56) and 

following IT (3); however, no condition effects were reported in this study. Interestingly, 

baseline ACTH tended to be lower in CON compared with HCHO during IT, suggesting 

some level of reduced adrenocortical secretion or reactivity, or enhanced negative feedback 

inhibition of the HPA axis (3) in the CON condition. Furthermore, whilst we found no effect 

of IT on serum testosterone levels, we did observe significantly lower post-exercise levels in 

CON, compared with HCHO following IT. Lowered testosterone levels result from a 

decrease in steroid synthesis which is thought to be a consequence of physiological and/or 

psychological strain (54). 

In addition to ACTH and prolactin, additional pituitary hormones were analysed. In vitro 

studies have reported inhibition of LH by glucocorticoids (57), however one study of 

professional cyclists during a 3-week multi-stage competition (Vuelta a Espana) found no 

changes in LH or FSH following the race (58). To the authors’ knowledge, no studies have 

investigated the effects of short term intensified training on LH and FSH in line with the 

more commonly measured pituitary hormones. Whilst we did not observe changes in baseline 

LH or FSH or differences between conditions, we did see post-exercise increases in LH 

following IT, which could be associated with the attenuated CORT and ACTH responses to 

exercise after IT.  

In addition to the measurement of neuroendocrine function, we were interested in specific 

neurobiological changes during short term periods of IT. Neurotrophic factors, in particular 

BDNF, are understood to play a role in central and peripheral energy metabolism in skeletal 

muscle (59). It is thought that exercise is a key stimulus for mediation of this process (60) due 

to its characteristics as a contraction-induced protein in the skeletal muscle (61). In a recent 

review, Knaepen and colleagues reported that 69% of healthy participants showed a ‘mostly 

transient’ increase in serum BDNF concentrations following acute aerobic exercise (60) and 

that the increase in post-exercise BDNF concentrations appears to occur in a dose response 

manner with exercise intensity. A number of studies have investigated the effects of aerobic 

training in healthy populations on baseline and post-exercise BDNF concentrations and have 

reported mixed findings. No training-induced effects on basal BDNF were observed by 

Schiffer and colleagues (71), while the three studies that adopted more intense aerobic 

training interventions, reported elevated basal plasma BDNF concentrations following the 

training period (13,62,63). Elevated pre- to post-exercise changes in BDNF have also been 
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observed following aerobic training (13,63,64). As BDNF is a key component of the 

hypothalamic pathway (65), which is understood to be disrupted as a result of periods of 

intense exercise training, it was of interest to observe BDNF concentrations in this study. As 

predicted, our results showed an acute increase in post-exercise BDNF; however, we also 

observed a significant attenuation in post-exercise concentrations from TT1 to TT3. In 

addition, we observed a tendency for decreased baseline BDNF concentrations following IT 

(9 of 13 participants decreased; p=0.08). It is also of interest to note that the percentage 

increase in BDNF concentrations at TT3 were almost double in HCHO (22%) compared to 

CON (12%), although this was not statistically significant. It appears that IT had a 

suppressive effect on BDNF concentrations, not only at baseline, but in the typical response 

to exercise. Low levels of BDNF have been associated with neurodegenerative diseases and 

depression thus BDNF could potentially be considered as a tool for monitoring training load 

and identifying OR or OT within athletic populations, especially considering the prevalence 

of significant mood disturbance in overtrained athletes. 

This study not only provides a novel insight into neurobiological and neuroendocrine changes 

in well trained athletes undergoing short term IT, but also supports previous research in the 

common goal of identifying the changes that occur during strenuous and prolonged exercise 

in the aim to understand the aetiology of the OTS. In line with previous studies, the 

maintenance of mood state was favoured by HCHO, but its decline could not be prevented. 

All participants experienced disturbed mood state during IT. The DALDA appeared to be a 

less sensitive indicator of mood state when compared to the POMS-24 and 65 as was less 

able to identify a condition effect. Whilst only minor differences were observed in exercise 

performance between nutrition interventions, the authors believe this study highlights the 

importance of carbohydrate availability during exercise for maintenance of performance 

during IT, perhaps independent of absolute volume of carbohydrate per day. In addition to 

measuring the impact of macronutrients during IT, this is the first study to investigate the 

importance of micronutrient status, specifically the impact of vitamin D status on 

performance. It is interesting to observe the significant correlation between vitamin D status 

and better maintenance of TT performance following IT. It is of further interest to note that 

all athletes presenting a vitamin D insufficiency (<75 nmol/L; (66)) experienced a decline in 

performance and those that were classified as sufficient (≥75 nmol/L) experienced no change 

or an improvement in TT performance. This finding supports the current literature suggesting 

the importance of vitamin D status for athletic performance (67-69) and highlights the 
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importance of vitamin D status for endurance athletes undergoing demanding training 

programmes. 

Based on the findings of this study, the authors conclude that a combination of carefully 

selected markers; such as prolactin, BDNF, salivary AMPs and vitamin D should be included 

in general athlete screening and may be useful in monitoring of training stress when used in 

combination with performance, mood state and the more commonly measured 

glucocorticoids and hormonal markers of HPA axis functionality. Each measurement is 

highly individual, as are the responses to training; both acute and chronic. Repeated sampling 

throughout a season will help identify abnormal responses to exercise training and is strongly 

advised for athletes prone to overtraining or those regularly undergoing periods of intensified 

training. 
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This chapter includes data collected from a larger study (chapter 4). A brief re-introduction to 

overreaching and overtraining is present in the introduction to remind the reader of the 

background of this study. A small selection of data from chapter 4 has been included within 

this chapter to re-familiarise the reader of the methods and to help portray the context of the 

results. However the main focus of this chapter is on the sleep data collected and analysed 

with actigraphy.
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5.1 Abstract  

 

Few studies have investigated the effects of exercise training on sleep physiology in well–

trained athletes. We investigated changes in sleep markers, mood state and exercise 

performance in well-trained cyclists undergoing short-term intensified training (IT) and 

observed the effects of a high carbohydrate intervention. Thirteen highly-trained male cyclists 

(age: 25±6y,   O2max: 72±5ml/kg/min) participated in two 9-day periods of IT while 

undergoing a high (HCHO) or moderate (CON) carbohydrate nutritional intervention before, 

during and after training sessions. Sleep was measured each night via wristwatch actigraphy. 

Mood state questionnaires were completed daily. Performance was assessed with maximal 

oxygen uptake (        . Time in bed increased during IT (456±50 to 509±48min; p=0.02) 

however percentage sleep time fell (87.9±1.5 to 82.5±2.3%; p<0.05). Actual sleep time was 

significantly higher in CON than HCHO throughout IT. Sleep efficiency decreased during IT 

(83.1±5.3 to 77.8±8.6%; p<0.05). Mood disturbance increased during IT and was higher in 

CON than HCHO (p<0.05). Performance in the         exercise protocol fell significantly 

with IT. The main findings of this study were that as little as 9-days of IT in highly-trained 

cyclists resulted in significant and progressive declines in sleep quality. In addition, we 

observed significant declines in mood state and maximal exercise performance. 

 

Key Words: Sleep, Cycling, Intensified training, Actigraphy. 
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5.2 Introduction  

 

It is understood that several compounding factors, such as poor nutrition, inadequate sleep, 

illness and psychological stressors can augment the development of overreaching (OR). Sleep 

is considered to be the ‘gold standard’ post-exercise recovery procedure amongst athletes 

(1,2). During sleep, muscles are in a complete state of relaxation allowing effective myofibre 

restoration. This process is further enhanced by the release of growth hormone from the 

pituitary gland during the night which stimulates protein synthesis and has important effects 

on muscle and bone growth, repair and adaptation (3). When sleep quality or duration (or 

combinations of the two) become compromised, there can be a significant detrimental impact 

on human functioning and mood state (4). Sleep data from normal athletic populations is 

scarce, but sleep deprivation studies in athletes have reported increased errors, impaired 

decision making, reduced maximal power, increased fatigue (5) and an attenuation of the 

ability to perform maximal exercise, as both aerobic and anaerobic pathways are affected (3).  

Research has shown numerous beneficial effects of sleep on exercise performance, and 

equally several studies have reported positive effects of exercise on sleep physiology (6,7). 

Regular physical activity has been shown to improve self-reported sleep compared with a 

sedentary lifestyle (3,8,9). It is also understood that exercise improves mood state (10,11), 

which can be an additional factor in improving (or disturbing) sleep (12). Acute exercise in 

the evenings has been suggested to have positive effects on sleep (7,13,14), especially when 

it is of moderate intensity (15). However, it has been proposed that high-intensity exhaustive 

exercise may be disruptive to sleep by causing decreased rapid eye movement (REM) sleep 

and increasing wakefulness (9)(9). It has also reported that elite athletes experience poorer 

sleep quality than age-matched sedentary individuals, but still remain within the range for 

healthy sleep (16). Research to date suggests that interactions between sleep and exercise do 

exist, but are not yet fully understood.  

Relatively few studies have investigated the effects of exercise training on sleep physiology 

in athletic populations (17). Thus, the manner in which sleep duration and efficiency are 

affected by strenuous exercise and training remains unclear (18). Previous sleep research has 

primarily focused on physically active groups of ‘good sleepers’ whereby the exercise stress 

is low and the margin for sleep improvement is relatively small (ceiling effect) (9). A small 

collection of studies have reported sleeping behaviours in athletes. Taylor and colleagues 
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monitored sleep patterns with polysomnography in female swimmers across a competitive 

season. The authors reported increased movement time during sleep during the busy parts of 

the season (beginning and peak) compared to during a taper and concluded that some sleep 

disruption was present during these times. The authors also reported increases in slow wave 

sleep during these busy periods which suggested improved sleep quality and thereby 

supporting the restorative theory of sleep (19). More recently, a study used actigraphy to 

monitor sleeping patterns of athletes experiencing overreaching (20). The authors reported 

reduced sleep efficiency, duration and immobile time in athletes who were classified as being 

overreached following three weeks of overload training (30% increase in training volume 

from baseline). Another study investigated the sleep quality of professional ballerinas during 

the lead up to a Premier performance (18). This is a period of increased training volume in an 

environment that is often highly stressful. Fietze and colleagues used actigraphy to monitor 

sleep parameters throughout the study and observed impaired sleep efficiency and duration, 

increased time awake after sleep onset and reduced time in bed. It is difficult to draw 

parallels between this study and well-trained endurance athletes undergoing intensified 

training periods, although it may be possible that any period of increased training load, with 

or without heightened stress and anxiety, may have an impact on an athlete’s sleeping 

behaviours. Fietze and colleagues concluded that dancers should focus more attention on 

relaxation and sleep-wake behaviour (i.e. napping) during high stress periods of training, in 

addition to their physical condition and nutrition. 

The effects of nutritional interventions on various sleep parameters have been investigated 

over recent years. Aside from testing numerous herbal extracts, research has focussed on how 

ingestion of different macronutrients may impact sleep. A small number of studies have 

investigated the effects of different macronutrients and/or total energy consumed prior to 

bedtime (21-24) or overall high carbohydrate (CHO) vs. low CHO diets (25) on sleep quality. 

These data are limited and equivocal, likely due to varying study designs; however, based on 

the available information, it has been suggested that reduced energy intakes may result in 

poorer sleep (26). No studies to date have investigated the effects of targeted nutrition 

interventions during exercise on sleep parameters. The timing of nutrient intake to ensure 

high availability for performance and recovery is of great importance to athletes, but how this 

may impact sleep and thus, longer term recovery remains unknown. 
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Given the known restorative qualities of sleep for athletic performance, it is of great interest 

to understand how periods of intensified training affect sleep quality in trained athletes. It is 

possible that either training will elicit a level of stress that induces fatigue and the body 

responds with enhanced or at least sufficient sleep or that both the physiological and the 

psychological stresses associated with intensified training programmes will result in a 

reduction in sleep efficiency and/or duration. It is of further interest to understand how a 

training-specific high CHO nutritional intervention may impact not only performance and 

mood state, but subsequent sleep parameters compared with a moderate CHO alternative. 

Interestingly, sleep deprivation can slow glucose metabolism (reducing the rate of glucose 

disposal and blunting the insulin response) by as much as 30-40% (27), which has 

implications for glycogen resynthesis for athletes which could hinder subsequent exercise 

performance. Therefore, there may be important links between sleep, exercise and nutrition 

that are yet to be understood. 

The aims of this study were to investigate the impact of 9-days of intensified training in well-

trained cyclists on sleep quality, through analysis of nocturnal actigraphy, and mood state. 

Secondly, we aimed to understand the effects of a high vs. moderate CHO intervention on 

sleep parameters during intensified training. Ultimately, we aimed to gain insight into the 

sleeping behaviours of well training athletes undergoing a training camp style intervention. 

 

 

5.3 Methods  

 

Participants 

Thirteen highly-trained cyclists (age: 25.0 ± 5.8 y, maximal oxygen uptake (       ): 72.2 ± 

4.9 ml/kg/min, height: 178.3 ± 3.9 cm, body mass: 69.8 ± 6.3 kg, body fat: 13.4 ± 4.1%) 

completed the study. Participants were included if they had a competitive cycling history of 

at least 3 y, were currently cycling at least three times per week for a minimum of 2 h/day 

and had a         of ≥65 mL/kg/min. Participants were excluded from the study if they were 

currently suffering from any cycling-related injuries or had experienced any symptoms of 

URTI in the four weeks prior to the study. Fifteen participants were recruited, two of which 

were unable to complete the study due to individual circumstances preventing them from 

training. All participants were informed of the purposes of the study and the risks associated 
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with the procedures. Written informed consent was obtained from each participant and a 

general health questionnaire was completed before the study commenced. The study was 

approved by the Loughborough University ethical advisory committee. 

 

Experimental Design 

In a double blind, randomised and counterbalanced, cross-over design, participants 

underwent two 9-day periods of intensified training (IT) while ingesting one of two 

nutritional interventions. During the high carbohydrate intervention (HCHO), participants 

consumed carbohydrate beverages at intakes consistent with current ACSM guidelines (36) 

before and during exercise, followed by a high carbohydrate and protein recovery beverage in 

the immediate recovery period (<10 min post-training). During the control condition (CON), 

participants were provided with lower carbohydrate concentration beverages before, during 

and after training. No protein was provided in the control condition. Prior to their first trial, 

participants completed a 2-week pre-trial period to allow baseline measurements to be taken 

and familiarisation with study procedures. At the beginning and end of each period of IT, 

participants underwent a          test to assess performance. A 10-day washout period 

separated the two trials. Sleep was quantified each night throughout the trial with wrist watch 

actigraphy. 

 

Sleep Measurement 

Participants were fitted with an actiwatch (MotionWatch 8, CamNtech, Cambridgeshire, UK) 

during their pre-trial period to obtain baseline sleep scores using wrist watch actigraphy. 

Baseline data was collected for 5 consecutive nights (mean). Participants continued to wear 

the actiwatch each night for the duration of the study. The actiwatch is a light-weight, 

waterproof, wrist-worn tri-axial actigraph designed to provide an empirical measurement of 

movement throughout the night. The actiwatch uses activity counts to apply published 

algorithms for measurement on actigraphy data, resulting in a reliable and valid method of 

sleep research (42). These data were sampled at 50 Hz and processed into 30s epochs. Sleep 

measurement included; time in bed (TB), actual sleep time (AST), percentage sleep time 

(ST%) expressed as a percentage of assumed sleep time, sleep efficiency (SE) defined as 

AST expressed as a percentage of TB, sleep onset latency (SOL), wake bouts (WB) defined 

as the number of continuous sections categorised as awake in the epoch-by-epoch wake/sleep 
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categorisation, mobile time (MT) expressed as a percentage of assumed sleep time, and the 

fragmentation index (FI) defined as the sum of the mobile time (%) and the immobile bouts 

<=1min (%). The FI is an indication of the degree of fragmentation of the sleep period, and 

can be used as an indication of sleep quality. Sleep data was collected each night and grouped 

into four quarters of IT for statistical analysis; sleep period 1 (nights 1-2), 2 (nights 3-4), 3 

(nights 5-6) and 4 (nights 7-8). In addition, participants completed a daily sleep diary, 

reporting morning resting HR, time to bed and wake up time. Participants were provided with 

a HR monitor to measure overnight heart rate (Polar RS800CX, Polar, Kemple, Finland). 

Participants were instructed to fit the HR chest strap when preparing for bed to ensure a 

strong signal was detected by the watch. HR recordings began after turning lights out for the 

night. Upon waking in the morning, participants were requested to note down their resting 

heart rate before stopping the recording session and getting out of bed.  

For methodological details on training and dietary procedures, performance testing and 

collection of mood state data, please refer to Chapter 4. 

 

Statistical Analysis 

All data were analysed using statistical software (IBM SPSS Statistics 21) and are presented 

as Mean ± Standard Deviation. Changes in performance parameters, mood state and sleep 

parameters were analysed using a 2-way repeated measures analysis of variance (ANOVA).  

A Bonferroni adjustment was included into the analysis to correct for multiple comparisons. 

Data that were found to be significantly non-normal were log transformed prior to analysis. 

Between trial and pre- to post-IT changes in performance parameters were determined using 

an independent samples t-test. Trial order effects were tested using an independent samples t-

test to compare group means. The level of significance was set at p<0.05. 

 

 

5.4 Results 

 

A summary of participants dietary intakes and both the training and performance data can be 

found in Chapter 4 (page 84).  
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Sleep Analysis 

IT resulted in a significant increase in TB (456 ± 50 to 509 ± 48 min; p=0.02) (figure 5.1) 

with a non-significant increase in AST and resultant decrease in percentage sleep time (87.9 

± 1.5 to 82.5 ± 2.3%). Overall, AST was significantly higher in CON than HCHO throughout 

IT (396 ± 11 vs. 377 ± 16 min; p=0.03). No trial order effects were observed between 

measured sleep parameters. Ten participants successfully recorded complete sets of sleep 

files from both trials, therefore the number of participants included in the sleep analysis is 

n=10.  

There was a significant progressive increase in the number of WB during the night (28.1 ± 

2.8 to 35.0 ± 2.6 bouts; p=0.03) (figure 5.1) and MT (7.7 ± 0.9 to 12.7 ± 1.6 %; p<0.01) 

throughout IT and a resultant increase in sleep FI (p=0.02) (figure 5.1). 
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Figure 5.1: Overview of Sleep Measurements  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Change in sleep parameters from baseline over IT in the high carbohydrate 

(HCHO) and control (CON) trials.  Black circles represent HCHO and white circles represent 

CON. Data are mean ± SE. * Indicates significant increase with time (p<0.05).  
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SE decreased significantly with time from beginning to end of IT (83.1 ± 5.3 to 77.8 ± 8.6%; 

p<0.05) (figure 5.2). No changes were observed in SOL with IT, or between conditions.  

 

Figure 5.2: Sleep Efficiency 

 

 

 

 

Figure 5.2: Changes in sleep efficiency from baseline over IT in the high carbohydrate 

(HCHO) and control (CON) trials.  Black circles represent HCHO and white circles represent 

CON. Data are mean ± SE. * Indicates significant decrease with time (p<0.05).  

 

 

Heart Rate Variables 

Morning HR did not change significantly from beginning to end of IT. However, following a 

non-significant increase during the first quarter of IT in HCHO, HR tended to fall by the end 

of IT (p=0.08). Post hoc analysis shows morning HR was significantly higher during days 5-6 

in CON than HCHO (p=0.01); however, no main effect for condition was observed (figure 

5.3).  

  

* 
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Figure 5.3: Morning Resting Heart Rate 

 

 

 

Figure 5.3: Change in resting morning heart rate (HR) from baseline over IT in the high 

carbohydrate (HCHO) and control (CON) trials. Trials days were grouped in two’s for 

analysis. Black circles represent HCHO and white circles represent CON. Data are mean ± 

SE. †Indicates significant difference between conditions (p<0.05). 

 

Overnight HR proved difficult to record, with significant losses of signal throughout the 

night. Complete data sets were collected from 4 participants and therefore have not been 

included in the final analysis. 

 

 

5.5 Discussion 

 

The main aim of the present study was to investigate the impact of 9 days of intensified 

training on the subjective sleep quality of well trained cyclists. Furthermore, we aimed to 

determine the impact of a high CHO nutritional intervention provided immediately before, 

during and after each training session, compared with a moderate CHO control condition on 

sleep quality. The main finding of this study was that as little as 9 days of intensified training 

in highly-trained cyclists resulted in a significant and progressive decline in sleep quality, as 

assessed with actigraphy. In addition, we observed significant declines in mood state and 

† 
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maximal exercise capacity during a test to exhaustion. The high CHO nutritional intervention 

reduced some, but not all of the detrimental effects of IT.   

Sleep is an essential aspect of recovery and fatigue management (1,2)(1,2). Disturbed sleep is 

often reported as both a contributor (28-30) (28-30)and/or symptom of overreaching 

(28,29,31,32), however there is a paucity of data to support either of these claims. Whilst a 

full state of overreaching may not have occurred in all of the participants in this study, many 

reported performance decrements and declined mood states during the period of IT, thus 

these findings support the anecdotal evidence and suggested hypothesis that IT, leading to 

overreaching can result in compromised sleep quality. It is of interest that these athletes 

increased the time they spent in bed (TB) during IT, suggesting that they were exhibiting 

symptoms of fatigue; and although the increased TB did not result in an increase in AST, it 

did compensate for impaired sleep quality such that AST was not significantly changed 

during IT. Our data revealed that SE was significantly reduced during the intensified training 

period from 83.1 ± 5.3 to 77.8 ± 8.6 %. Furthermore, there was an increase in the number of 

WB throughout the night and overall a more fragmented sleep period. In addition, the cyclists 

experienced significant disruptions to mood state, reporting increased tension, anger, fatigue, 

confusion, depression and increased feelings and symptoms of stress. 

These findings contradict the theory that sleep is proportional to restorative needs and instead 

fall in line with results from similar studies that have reported impaired SE during periods of 

intense training (18) or when athletes have become overreached (20). However, it is 

interesting to note that AST was significantly higher during IT in CON than HCHO, which 

may indicate an increased requirement for recovery and/or expression of fatigue. It is 

understood that some forms of training are known to result in detrimental psychological 

effects (33) and that mood disturbances increase in a progressive manner with step-wise 

increases in training load (34). Significant increases in POMS-24 and POMS-65 TMD were 

observed in both conditions as a result of IT. Furthermore, there was a significant increase in 

DALDA scores for symptoms of stress being ‘worse than normal’. These findings support the 

work of previous research into the psychological impacts of intensified training, overreaching 

and overtraining in athletes (34-40).   

To our knowledge, our study is the first to investigate the effects of intensified training with a 

high CHO nutritional intervention on sleep parameters. Despite intensified training having a 

detrimental effect across a range of sleep parameters, the only difference between conditions 
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observed was significantly longer AST in CON compared with HCHO (396 ± 11 vs. 377 ± 

16 min). It was also observed that during the third quarter of IT (days 5-6), HR was 

significantly higher in CON than HCHO (52 ± 9 vs. 46 ± 7 bpm). These, together, could 

indicate a greater level of fatigue in the CON condition and that HCHO may have provided a 

level of protection against the changes in sympathetic nervous activity that are thought to be 

linked to the OTS. 

Overall, these findings suggest that relatively short periods of intensified training, similar to a 

training camp, can result in significant disruptions to sleep quality and mood state. It is 

interesting to note that high intensity exercise performance decreased significantly following 

IT independent of nutritional intervention, which suggests athletes may have been exhibiting 

early signs of overreaching. The athletes in this study were not aware that the two trials 

involved varying CHO intakes, therefore it is unlikely that differences observed in mood state 

were a result of knowing that they were exercising with insufficient energy replacement 

(according to the current ACSM guidelines (41)). With sleep and passive rest providing an 

important form of recovery, athletes undergoing such programmes should plan ahead with 

their coaches to ensure sleep is optimised. Strategies to enhance sleep during these times may 

include improving sleep hygiene before bedtime, ensuring adequate time in bed and 

incorporating time to nap into the day routine.   
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Section A – Hydration Implications for Health and Performance 

 

The volume of fluid required to maintain euhydration is highly variable between individuals 

and for this reason it is impossible to establish drinking guidelines on a ‘one rule fits all’ 

policy. A recent study of fluid intakes in an adult population reported a range from 416-4316 

mL per day (40). Indeed, within our population of healthy sedentary adult males, we 

observed large variation in habitual daily fluid intakes (1082-3614 mL). Despite this there are 

a range of published guidelines on how much fluid one should consume, when it should be 

consumed and in what form, both with a sedentary population (41-44) and within sport 

(35,45-47). 

 

6.1 Fluid Imbalances: Causes and Effects 

There is some evidence that certain populations experience chronic low level hypohydration; 

however, the potential long term implications of this are not well understood (48). Despite 

this, it has been suggested that low habitual fluid intakes may be associated with a range of 

chronic diseases such as urolithiasis (urinary tract stone infection), constipation, asthma, 

cardiovascular disease, diabetic hyperglycaemia and certain cancers (48). Within athletic 

populations, sweating poses an additional challenge to fluid balance, with fluid losses of 

between 10-15 L/day having been reported in athletes training in hot environments (equal to 

25-30 % of total body water) (49). Although such high sweat rates are uncommon, individual 

sweat rates are highly variable and are dependent on environmental conditions that are 

generally out of the athlete’s control. Not only may athletes experience acute hypohydration 

following exercise, it is possible that if they do not rehydrate sufficiently between sessions 

that they carry chronic low-level fluid deficits. A combination of complicated factors 

determine the opportunities to drink during exercise, including the rules of the event, the 

format of play, back to back events that limit the opportunity to rehydrate, the cost/benefit 

calculation of time spent drinking during the event and/or power-weight ratio implications. It 

has been reported that successful athletes take calculated risks over their hydration strategies; 

weighing up to costs of drinking (time, weight etc) versus the potential benefits (46).  

With caffeine regularly reported as a potential diuretic, but coffee consumption hugely 

popular across the globe by the general and athletic population (50,51), it is of interest to 

understand the impact of coffee consumption on fluid balance. In an attempt to gain a better 
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insight into the hydration implications of regular coffee consumption, we designed a study to 

investigate the effects of coffee on fluid balance in a cohort of healthy coffee drinkers. Our 

aim was to understand the effects of habitual coffee consumption on chronic hydration status 

using the most validated and comprehensive hydration assessment methods available. In the 

knowledge that a tolerance to caffeine can develop in habitual caffeine consumers (52), we 

were specifically interested in the effects of coffee consumption in a population of coffee 

drinkers, not in caffeine naïve individuals whereby the outcomes may have been different and 

the practical message for coffee drinkers would be unclear. Using a wide range of hydration 

assessment techniques, including doubly labelled water for total body water (TBW) 

estimation, we observed no significant differences in hydrating properties between coffee and 

water across a wide range of hydration assessment indices. Small daily fluctuations in TBW 

were observed during both trials; however, this did not reach statistical significance in either 

condition. Interestingly, these data support the findings of a recent study that also used TBW 

estimations to assess fluid balance following ingestion of pure anhydrous caffeine (5 

mg/kg/day) and reported no differences between caffeine and placebo over a 4-day period 

(53). We did observe some minor differences in urinary sodium and potassium excretion 

between conditions. The observed increase in urinary excretion of sodium in the coffee 

condition supports previous studies that have reported increased sodium excretion at the 

proximal and distal renal tubules following consumption of caffeine and/or theophylline (54-

56). Furthermore, the content of potassium in a cup of instant coffee (200 mL and ~ 2 g 

coffee) is reported to be ~80 mg (57) which may explain the increased urinary potassium 

excretion during the coffee trial. Therefore, it is possible that these differences between trials 

were the result of the numerous bioactive compounds in coffee that were not controlled for 

and provided in the water trial. Future studies should consider a 4-way analysis that 

investigates caffeinated coffee, decaffeinated coffee, water and caffeinated water. This form 

of analysis would enable a level of ‘blinding’ to both the participants and investigators that 

was not possible in this study. The data may also provide insight into the small variability in 

urinary electrolyte excretion observed between conditions in the present study. The 

limitations of a 4-way analysis would be the large time commitment imposed on the 

participants and the withdrawal of coffee for the duration of two trials may impact upon their 

developed caffeine tolerance. The main conclusion drawn from our study, in light of its 

limitations, is that that the consumption of coffee in moderate doses, by caffeine habituated 

males, contributes to the daily fluid requirement and does not pose a detrimental effect to 
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fluid balance. Furthermore, the advice provided in the public health domain regarding coffee 

intake and hydration status should therefore be updated to reflect these findings. Within 4 

months of publication, this study achieved the status of being the 3
rd

 most viewed paper of all 

time in the Public Library of Science One (PLOS ONE) and currently has received 51,461 

views (October 2014). 

 

6.2 Hydration implications for athletes  

As previously mentioned, it is not uncommon for athletes to commence exercise in a negative 

fluid balance (46). This fluid deficit can arise from a combination of factors including failure 

to rehydrate between sessions, poor hydration strategies and/or result from weight making 

complications. The potential for a disturbed immune response during exercise in a state of 

dehydration has been highlighted within the context of this thesis. Most notably, a significant 

decrease in salivary flow rate can occur at relatively modest levels of hypohydration (58) and 

the implications of this reduction on salivary AMPs are not fully understood.  

To date, salivary secretory IgA (SIgA) has been the most studied marker of mucosal 

immunity within athletic populations; however the importance of other AMPs has recently 

gained greater recognition. Salivary lysozyme (SLys) and salivary lactoferrin (SLac) are both 

present in the mucosal secretions of the upper respiratory tract and are understood to play an 

integral role in the innate immune system. We were interested to know whether exercise in a 

dehydrated state had any impact on salivary secretion and concentrations of a selection of 

under researched salivary AMPs including SLys and SLac.  

To our knowledge, no laboratory controlled studies to date have investigated the effects of 

endurance exercise (>90 min) on salivary AMPs. In line with previous research, we observed 

a chronic reduction in salivary flow rate during and following exercise in the dehydrated trial. 

In addition, we observed transient changes in salivary AMPs during and immediately post-

exercise, which had mostly returned to baseline values by 3 h post-exercise. Due to the 

significantly decreased salivary flow rate in the dehydration trial, it is important to assess 

secretion rates when looking for comparisons in AMP immune responses between conditions, 

and not absolute concentrations. A reduction in salivary flow rate will have an inevitable 

concentrating effect on the AMPs present. With mild dehydration induced by fluid restriction 

in the 24 h period prior to exercise we did not observe a significant difference in the plasma 

cortisol response to exercise between conditions and the secretion rates of SIgA, SLys and 
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SLac were only transiently affected. Exercise in the mildly dehydrated state caused a 

reduction in saliva flow rate, yet induced greater secretion rates of SLac and higher 

concentrations of SIgA and SLys. This suggests that prolonged exercise in a state of mild 

dehydration does not detrimentally affect mucosal immunity and it is unlikely that these 

small transient fluctuations in salivary AMPs would translate into clinical relevance.  

 

6.3 Concluding Comments 

To conclude, fluid balance is in a constant flux, with fluid intake balancing fluid losses to 

ensure euhydration is maintained. Our data suggest that the human body is able to adapt to 

potential diuretic challenges and maintain a level of hydration status that ensures we remain 

in fluid balance. However, under some conditions, such as fluid restriction and/or exercise in 

the heat, fluid balance may be compromised and without sufficient rehydration there may be 

health and performance implications for athletes and the general population. Commencing 

exercise in a state of modest dehydration resulted in acute differences in salivary flow rate 

and minor fluctuations in saliva AMP secretion rates. It is currently unclear whether these 

findings have any clinical relevance therefore future studies should consider both acute and 

chronic assessment of mucosal immune function across a range of fluid deficits and in 

particular states of more severe dehydration sufficient to increase activation of the HPA axis. 
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Section B – Intensified Training: Novel Insights and Future Directions for 

Understanding Training Load 

 

Training harder, longer and more frequently was once considered the recipe for the success of 

an athlete. Indeed, many athletes and coaches will still pursue this philosophy. However, 

within the past few decades the science of recovery and training periodisation has provided 

invaluable insight into the physical, psychological and biochemical basis of elite performance 

(1). Currently, a search on ‘exercise training’ in PubMed will return over 62,000 publications, 

detailing and reviewing training practices, outlining responses to training interventions, 

describing the impact of nutrition and supplementation and defining the health and 

performance implications. Training periodisation involves a complex balance of overload 

training and tapering, by adjusting the volume and/or intensity of the sessions (2). Overload 

training can lead to acute physical and psychological disturbances that ultimately lead to 

attenuation in exercise performance (3). However with sufficient recovery these temporary 

stresses resolve and a super-compensation of physical performance usually occurs (4,5). A 

long-term imbalance between training and recovery may manifest into prolonged 

performance decrements, psychological disturbances and physical and biochemical 

disruptions. The stages of overtraining have been proposed to occur along a continuum of 

severity from overreaching (OR), with mild performance decrements that are recovered 

relatively quickly (several days to a few weeks) to the overtraining syndrome (OTS) whereby 

serious performance decrements prevail in the long term (months), with or without 

psychological and biochemical implications. For a recent and thorough review of the 

overtraining syndrome see Meeusen et al (6). 

 

6.4 Markers for monitoring training load 

By definition, overtraining is diagnosed as a reduction in performance and an increase in 

mood disturbance; therefore at the most basic level these two factors can be used to monitor 

training stress. A negative change in sport-specific performance, in the absence of a decrease 

in training load, is one of the easiest markers used to monitor OR in the field. Furthermore, 

mood state is commonly monitored by athlete support teams, either objectively (with 

validated questionnaires) or subjectively by people close to the athlete. Whilst these factors 

may provide early indications for athletes and coaches, it is important to understand why 
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these changes occur and the extent of the physiological effects on the athlete.  A wide range 

of studies have been conducted over recent years, each analysing various aspects of OT, 

including the metabolic, biochemical, hormonal and immune responses, physiological effects 

on sleep, psychology of life stressors and environmental impacts on training. Below is a 

summary of some of the most relevant findings within the scope of this thesis. 

  

Performance 

Performance testing is a key component in the identification of OTS. It has been suggested 

that athletes suffering from underperformance due to OR or OTS are often able to begin 

training sessions or races at a normal pace but are not able to sustain the performance for the 

duration of the exercise period (6). Time to exhaustion tests have been commonly reported in 

the scientific literature (7,8); however, it is argued that this test is not sufficiently sport-

specific. We adopted a time trial performance test in our study as one of our aims was that the 

study would have an applied focus that could be related to practical outcomes in the field. 

Aside from its sport-specific nature, the time trial also offers a level of standardisation that 

cannot be ascertained from a time to exhaustion protocol. A 1 h time trial enabled direct 

comparisons of markers taken from standardised time points. 

Unlike other studies that have adopted similar training protocols (9,10) we did not observe 

significant changes in time trial performance following IT, though some level of performance 

decrement occurred in almost all athletes. These data make diagnosis of OR extremely 

difficult. However, a strength of our study is the ability to quantify exact training load via the 

use of power meters and heart rate monitors in each session. Independent of whether our 

athletes were officially OR or not, we have a collected a vast amount of data from highly-

trained athletes that provides a novel insight into the physiological, metabolic and 

immunological impact of such training. To this author’s knowledge, data of this type has not 

been previously collected within such a highly trained population of athletes. 

In addition to monitoring endurance performance, we were interested in the athlete’s ability 

to sustain short-term high intensity exercise performance following IT. Interestingly, despite 

no change in absolute        , we observed a significant reduction in time to complete the 

test, peak power and maximum heart rate. This suggests that the athletes were unable to 

sustain high intensity exercise performance, despite its relatively short duration, and were 

therefore exhibiting signs of acute fatigue. 
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 Mood State 

Disturbed mood state is commonly reported in relation to OR and OTS. Whether mood 

disturbance is a contributor to or result of under-performance is not entirely understood. 

Firstly, we were interested in whether we would observe changes in mood state during 9-days 

of IT according to the standard POMS-65 mood state questionnaire and secondly, whether it 

was possible to correlate these changes with shorter, less time consuming questionnaires such 

as the POMS-24 and DALDA. We observed disturbed mood states in all of our participants 

during IT, validated by each of our three mood state questionnaires. The DALDA 

questionnaire was least sensitive and was unable to clearly distinguish differences between 

our nutritional interventions, unlike both versions of the POMS. In this study, the POMS-24 

proved to be a simple, useful and valid tool for monitoring changes in mood state on a daily 

basis. 

 

Hormones/Endocrine function 

A multitude of hormones have been analysed in relation to the OTS in recent years. This 

discussion will not list the merits of each hormone (for review see (6)), but will focus on the 

most recent developments and future directions.  

There is a strong consensus within the overtraining literature that OR and OTS occur along a 

continuum; starting with a disturbance, an adaptation and an eventual maladaptation of the 

HPA axis (6,7,11,12). The HPA axis is one of the main pathways that becomes activated 

under stressful conditions, such as exercise, resulting in a stress hormone response (increased 

ACTH secretion and subsequent release of cortisol). Original research linking OTS with 

hypothalamic function dates back to 1985 (13). In a study by Barron and colleagues to assess 

hypothalamic-pituitary function, healthy trained athletes and a small number (n=4) of athletes 

diagnosed as suffering from OTS underwent an insulin-induced hypoglycaemic challenge (in 

the rested state) to stimulate the release of ACTH, growth hormone and prolactin. Plasma 

cortisol, ACTH, growth hormone and prolactin responses to insulin-induced hypoglycaemia 

were much lower in OTS athletes when compared with the trained athletes, indicating 

hypothalamic dysfunction.  

To date, numerous hormones have been measured in overtrained athletes in an attempt to 

identify these so-called ‘abnormalities’ of the HPA axis. Accumulating data suggests that 
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resting hormonal levels may not provide sufficient evidence for OTS. Research has shown 

that resting hormone measurements are highly variable and individual and therefore difficult 

to interpret (9). Indeed, we observed large individual variability in baseline stress hormone 

concentrations between participants which may, in part, explain our reported ‘tendencies’ 

instead of significant observations (e.g. for cortisol and ACTH). Meeusen and colleagues 

were among the first to highlight and test the importance of measuring hormonal responses to 

exercise (14). It is understood that hormonal fluctuations during exercise influence post-

exercise hormonal responses. This can impact the athlete’s ability to recover and perform 

subsequent exercise sessions. In a cleverly designed study, Meeusen and colleagues 

employed a two-bout maximal exercise testing protocol to look at neuroendocrine 

dysfunction in athletes diagnosed with OTS (14). The authors reported suppression of ACTH 

response to the second exercise test in the OTS athletes, something that has been previously 

observed after a single test (13,15). Whilst the authors believe the use of a two-bout test 

protocol is more beneficial for detecting OR, they accept that a single-exercise test is also an 

appropriate tool to use. We did not utilise a two-bout exercise protocol in our study, however 

the training protocol was designed as such that each participant trained on two occasions each 

day (for a minimum or 90 min per session) for 9 days, thus minimising the recovery window. 

Using a time trial test as our performance marker, we observed significant changes in stress 

hormone response to exercise from pre- to post-IT. In line with previous reports in OR 

athletes, ACTH and cortisol concentrations were significantly suppressed following exercise 

after IT, indicating HPA axis disturbance. 

It is not only important to observe individual hormone responses to exercise sessions, the 

concurrent measurement and analysis of multiple related hormones must be also performed. 

The interactions of various hormones contribute to a better understanding of endocrine 

function. An interesting observation in our study was the change in prolactin response to 

exercise. Post-exercise prolactin concentration increased from baseline at TT1 (before IT) 

and decreased from baseline following TT3 (following IT). Overall, post-exercise prolactin 

concentrations decreased significantly with IT suggesting chronic fatigue and potential 

immunosuppression (16,17). In line with suggestions made by Barron and colleagues, if 

measured appropriately, prolactin should be involved in the monitoring and/or diagnosis of 

OT (13).   

An additional marker that could provide insight into an athlete’s training status is BDNF. It 

has been reported that repeated exposure to stress may alter the responsiveness to subsequent 
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stressors leading to an altered neurotransmitter and receptor response (6). BDNF is 

understood to be a key component of the hypothalamic pathway (18) and numerous studies 

have reported transient increases in circulating BDNF concentrations following exercise (19-

21). BDNF is an important mediator in brain neuroplasticity, particularly in survival, 

differentiation and neuronal growth and is thought to influence numerous brain functions, 

such as learning and memory (22). Low levels of BDNF have been associated with 

psychiatric disorders, including major depressive disorder (23) and it has been suggested that 

exercise-induced increases in circulatory BDNF concentrations might be neuroprotective and 

important in the prevention of neurodegenerative diseases (22). To our knowledge, this is the 

first study to measure BDNF concentrations in highly trained athletes undergoing short-term 

IT. Our results indicate that IT had a suppressive effect on BDNF concentrations. We 

observed a decrease in baseline BDNF concentrations in 9 of 13 participants (p=0.08) and a 

significant attenuation in post-exercise concentrations following IT. Given that clinical 

research has highlighted the negative implications of low circulating BDNF concentrations, 

including psychiatric disorders, it is interesting to note that decreased levels of BDNF occur 

in participants who at the same time were experiencing significant mood disturbances. Excess 

glucocorticoids have been associated with reduced levels of BDNF (24); however, the 

mechanisms behind the relationship have not been well researched. A recent study 

investigated the interactions between BDNF and glucocorticoids in the regulation of 

corticotrophin-releasing hormone (CRH) in the hypothalamus (25). In this study, the 

researchers generated mice that were defective in glucocorticoid receptor (GR) signalling in 

the parventricular nucleus (similar to a condition in certain human pathologies). This 

adaptation resulted in increased CRH expression, up-regulation of hypothalamic levels of 

BDNF and disinhibition of the HPA axis. The authors report that BDNF concentrations 

(regulated by cAMP response-element binding protein (CREB) and its coactivator protein 

(CRTC2)) regulate the ability of glucocorticoids to influence expression of CRH (25). A 

common observation following rigorous exercise is an increase glucocorticoid ‘stress-

hormone’ secretion. Our participants underwent a highly strenuous period of IT and we 

observed attenuated levels of BDNF. However, we also observed an attenuation in stress 

hormone response by the end of IT, a common observation in athletes that become 

overreached. There is strong evidence for interactions between BDNF, glucocorticoids and 

training stress; however, more research is required to gain a full understanding of the 

mechanisms and implications.  
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A further interest in BDNF concentrations and the OTS is its central involvement in cellular 

energy metabolism and peripheral roles in skeletal muscle metabolism (26,27). Studies in 

mice have found BDNF to be involved in energy expenditure through activation of the 

sympathetic nervous system (28). BDNF has also been suggested to exert a satiating effect 

(29). Human genetics studies have shown that BDNF gene mutations (resulting in high levels 

of BDNF) may account for certain types of obesity and low circulating levels of BDNF have 

been found to correlate with eating disorders including anorexia nervosa and bulimia nervosa 

(29). Within the OTS complex, the role of BDNF in cellular and skeletal energy metabolism 

is particularly interesting and much more work is required in this field. 

 

Sleep Physiology 

Few studies have investigated the effects of exercise training on sleep physiology in athletes. 

However, with sleep considered as the ‘gold standard’ post-exercise recovery procedure 

among athletic populations, it is of great interest to understand the sleeping patterns of trained 

athletes. We used wrist watch actigraphy (activity-based monitoring) to assess sleep in our 

participants in the lead up to and during two periods of intensified training. Modern day 

actigraphy allows objective measures of sleep to be collected over extended periods of time 

with little inconvenience to the participant (30). In light of its limitations, as discussed in the 

general introduction, actigraphy has been recommended as an acceptable method of 

estimating sleep patterns in normal, healthy adult populations (31). The importance of sleep 

for physical and mental recovery from exercise is well understood and inadequate sleep is 

thought to lead to impaired cognitive function and inability to concentrate (6). A small 

collection of studies have monitored sleep in athletes using actigraphy and one study in 

particular has tracked sleep patterns in athletes diagnosed as OR (32). Participants in this 

study underwent a 3-week intensified raining period whereby training load was increased by 

30%. Nine of 18 participants exhibited significant declines in time to complete an 

incremental cycle test to exhaustion (       ) and were therefore classified as OR. The 

authors reported reduced sleep quality (duration, efficiency and immobile time) in the OR 

group compared with a those who were not classified as OR. Whilst this study has interesting 

implications, it is limited by its design. It is unlikely that a 30% increase in training load 

would actually induce OR over a 3-week period. Indeed, in our study we observed significant 

declines in our         test following 9 days of IT (with a 150% increase in training load), 

but did not observe such consistent observations in a 1 h TT, therefore it cannot be confirmed 
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whether these athletes were truly OR. Nevertheless, we observed significant and progressive 

declines in sleep quality (decreased sleep efficiency and increased fragmentation) during 9 

days of IT.  

It has been proposed that non-restorative sleep can occur during times when sleep duration is 

sufficient, but high sleep fragmentation results in poor quality sleep. It is likely that our 

participants experienced some level of non-restorative sleep as we saw no change in actual 

sleep time and an increase in fragmentation. It has been proposed that athletes who suffer 

from non-restorative sleep may be tired from training and may not be achieving optimal 

restoration from sleep (33). In the longer term, this lack of full recovery could potentially 

contribute to the development of the OTS.  

These novel findings suggest that athletes undergoing relatively short training camps should 

allow extra time for napping to try to compensate for nocturnal sleep loss. Coaches and 

support staff should be aware of the potential implications of disturbed sleep on recovery and 

performance and should design the training programme accordingly, for example by avoiding 

training very late in the evening or very early in the morning to prevent additional sleep 

disruption. 

 

Nutrition 

High carbohydrate diets are commonplace within athletic populations, particularly in sports 

with an endurance component. High carbohydrate diets during periods of intensified training 

have been shown to help maintain performance and attenuate declines in mood state (8,10). 

In our study (Chapters 4 and 5), we were interested not only in the impact of a high vs 

moderate carbohydrate diet, but specifically in how carbohydrate availability immediately 

before, during and immediately after exercise may impact our results. Current ACSM and 

IOC guidelines advise athletes to consume 30-60 g or 0.7 g/kg carbohydrate per hour to 

support endurance exercise lasting longer than 60 min (34,35). Therefore, we were interested 

in how these recommendations might impact short-term periods of intensified training, 

similar to that of a typical training camp. We provided 60 g/h carbohydrate in our high 

carbohydrate group and 20 g/h in our control group. In addition, we provided either 24 or 2 g 

of carbohydrate within the 30 min prior to each training session and 44 or 10 g in the 

immediate post-exercise recovery period, for HCHO and CON respectively. Furthermore, the 

addition of the post-exercise protein in the HCHO contributed to an overall significantly 
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higher dietary protein compared with CON. Despite the differences in nutrient intakes 

between conditions, we did not observe the significant differences across our analyses that we 

had hypothesised. However, whilst we did not observe differences between groups in 

performance of the         tests, we did observe small differences between time trial 

performance (-2.8% vs -0.3% change in performance, for CON and HCHO, respectively) that 

may be meaningful in the field. We also observed small differences in immune response to 

exercise; including attenuated SLys secretion rate response to exercise in CON and lower 

concentrations of SLac throughout IT in CON compared with HCHO. Our data contributes to 

a growing body of research that proposes SLys as a potential marker for psychological (36) 

and physiological stress (37). Reductions in SLys concentrations are thought to be associated 

with secretion of glucocorticoids (36) and therefore activation of the HPA-axis. It may be that 

with further research, SLys could be used as a marker for OTS. Within the context of this 

study, it was interesting to observe potential interactions of salivary AMPs with our nutrition 

intervention. Our data suggest HCHO may have supported the mobilization of SLys to the 

saliva via sympathetic nervous activation.  

The nutritional intervention resulted in minor effects on hormonal responses during IT. Pre-

exercise ACTH tended to be lower in CON than HCHO. ACTH suppression in CON may 

suggest reduced adrenocortical secretion or reactivity, or enhanced negative feedback 

inhibition of the HPA axis (8) however this did not translate into a measureable difference in 

cortisol concentrations and no difference in prolactin concentrations were observed between 

conditions. We also observed significantly lower post-exercise testosterone concentrations in 

CON compared with HCHO following IT, which is thought to result from a decrease in 

steroid synthesis due to physiological and/or psychological strain (17).  

Following IT, we observed attenuated BDNF increases in response to exercise. Interestingly 

this attenuation was more pronounced in the CON (12% increase) compared with HCHO 

(22% increase). The condition effect was not statistically significant, potentially due to lack 

of power, but also because of the time course of BDNF response to exercise. We collected 

blood samples immediately post-exercise (within 5 min of exercise cessation); however in a 

future study it may be interesting to study the acute response with repeated blood sampling 

over a number of hours post-exercise. 

It is likely that we would have observed more significant differences between our measures if 

participants had been provided with the nutritional intervention during the 1 h performance 
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test. It is also an interesting thought from a practical perspective as it would be extremely rare 

for an athlete to undergo a time trial in a fasted state and without consuming any sports foods 

(carbohydrate, caffeine etc). However, due to the importance of standardising the results and 

avoiding short-term effects of the nutritional intervention that may mask some of the 

underlying markers of interest, no nutrition was provided.  

One of the key nutritional messages from this study is that the current ACSM and IOC 

carbohydrate recommendations for endurance exercise helped prevent some, but not all signs 

of chronic fatigue and early markers of OR during 9 days of IT. Interestingly, the lower 

carbohydrate dose in our CON group enabled better maintenance of performance than has 

previously been observed in training studies which provided ~2 g/kg/day carbohydrate less 

than in their control/low carbohydrate groups (7 g/kg/day vs ~5 g/kg/day (8,38,39). It would 

seem that the availability of carbohydrate during exercise, independent of absolute amount, 

was able to help maintain exercise performance over the course of IT. 

 

 

6.5 Practical Messages and Application in the Field 

 In order to determine changes in performance, an athlete must have undergone a 

performance test prior to developing OR or OTS. This is not often the case in elite 

sports, especially team sports, whereby the non-specificity of the performance test 

makes the data collection appear to be pointless. However, the benefit of a 

standardised performance test, whether it is sport-specific or not, is in the ability to 

accurately monitor performance over the course of a season, which otherwise may not 

be possible. 

 Daily monitoring of mood state prior to and during periods of intensified training is a 

beneficial tool in monitoring training stress. The POMS-24 is able to detect changes 

in mood state as effectively as the longer version and has the benefit of being concise 

and not overly time consuming.  

 Periods of intensified training and/or training camps should be carefully designed 

with recovery and sleep in mind. Coaches and support staff should be aware of the 

potential implications of disturbed sleep on recovery and performance and should 

design the training programme accordingly, for example by avoid training very late in 

the evening or very early in the morning to prevent additional sleep disruption. 
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 Salivary AMPs, specifically SLys, may prove to be a useful non-invasive tool for 

monitoring OR in the field. 

 BDNF is potentially a very important marker in monitoring training load and with 

further research could be used as a marker for OTS.  

 Current ACSM and IOC guidelines for carbohydrate intakes during exercise; both at 

the upper (60 g/h) and lower (30 g/h) ends appear to be appropriate for short-term 

periods of IT. Such carbohydrate intakes may help prevent performance decrements 

resulting from OR and may support immune function, mood state and sleep quality 

during IT. 
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Appendix A: Reverse Phase HPLC Methodology for Caffeine Analysis 

 

 

Sample Analysis Notes: 

 

Caffeine sample preparation: 

1. 200 µL of plasma added to 100 µL internal standard (Proxyphylline, Sigma, United 

Kingdom)  

2. Mix thoroughly using vortex (30 s) 

3. Add 500 µL of acetic acid.  

4. Inject supernatant (5 µL) onto the Phenomenex Prodigy 150 x 4.60mm 5 µ Octadecyl 

Silane (ODS) column using the auto sampler 

5.  Add two QCs (High and Low) with each batch of samples. 

 

The sample will be detected at a UV of 273 nm. 

Use the one-point calibrator to quantify caffeine concentration. 

NB: One point calibration has been validated against 9 point calibration curve. 
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Appendix B: Program for 9-day intensified training period:  

Name: xxx Date: xxx 

 

 
HR Intensity 

Zone 1 110-152 Very Easy 

Zone 2 153-161 Easy 

Zone 3 162-170 Moderate 

Zone 4 171-179 Hard 

Zone 5 180+ Very Hard 

Zone 1-2 20:30 h 

Zone 3 6:00 h 

Zone 4 3:00 h 

Zone 5 1:30 h 

TOTAL 31:00 h 

  Day 1 Day 2  Day 3 Day 4 Day 5 Day 6 Day 7  Day 8 Day 9 

Last 

Day 

A

M 
VO2max 1hr TT 

2 h @ 272W  
Must inc. 

3 sets of (5 x 

30s on/ 30s off)  

MAX EFFORT 

 

Total session 2h 

2h @ 272W 

 

Must inc.  

6 x 10 min  

@ 341W 

(3-5 min rec) 

Total session 2h 

2h @ 272W  

 

Must inc.  

5 x 12 min  

@ 341W 

(3-5 min rec) 

Total session 2h 

1hr TT 

2h @ 272W 
Must inc.  

3 sets of (5 x 30 

sec on/ 30 sec off)  

MAX EFFORT 

 

Total session 2h 

2 h @ 272W 

 

  Must inc.  

5 x 12 min  

@ 341W  

(3-5 min rec) 

Total session 2h 

VO2max 

 

 

1hr TT 

P

M 

LAB SESSION 

10 x 4 min  

@ >386W 

(1 min rec) 

 

5 x 1 min 

MAX EFFORT 

(1 min rec) 

 

Total session 2h 

 

LAB SESSION 

 
 

20 min @272W 
 
 

7x1min - 5x30s 

- 7x1min 

MAX EFFORT 
(1min/30s rec) 

 
 

35 min @272W  
 

 

2 x 2 min  

 (4 min rec) 
 

 

Total session 2h 

2 h @ 210W 

 

Must inc. 

4 x 5 min 

@>386W 
 

+ 5x 30sec 

MAX EFFORT 

 

Total session 2h 

LAB SESSION 
 
 

20min @ 272W 
 
 

7x1min - 5x30s - 

7x1min 

MAX EFFORT 
(1min/30s rec) 

 

35min @ 272W  
 

2 x 2 min  

(4 min rec) 
 
 

 

Total session 2h 

 

LAB SESSION 

10 x 4 min  

@ >386W 

(1 min rec) 

 

5 x 1 min  

MAX EFFORT 

(1 min rec) 

 

Total session 2h 

 

2 h @272W 

Must inc. 

4 x 5 min  

@>386W 

 

+ 6x 30sec  

MAX 

EFFORT 

 

Total session 

2h 

 

2 h @ 210W 

 

Must inc.  

5 x 4 min  

@>386W 

 

+ 6x 30sec  

MAX EFFORT 

 

Total session 2h 

LAB SESSION 
 
 

20min @ 272W 
 
 

7x1min - 5x30s - 

7x1min 

MAX EFFORT 
(1min/30s rec) 

 

35min @ 272W  
 

2 x 2 min  

 

(4 min rec) 
 

 

Total session 2h 

LAB SESSION 

10 x 4 min  

@>386W  

 (1 min rec) 

 

5 x 1min 

MAX EFFORT 

(1 min rec) 

 

Total session 2h 
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Appendix C: Participant Dietary Intakes. 

 

 

 

 

 

 

 

 

 

Data are mean ± SD. * Significant increase from Pre-Trial. ¶ Significant difference between 

HCHO and CON.  

 

  Pre-Trial HCHO CON 

  Mean SD Mean SD Mean SD 

Energy 

(Kcal/d) 2910.7 590.0 4148.0*¶ 766.4 3501.5*¶ 616.6 

CHO (g/d) 429 81.2 678.7¶ 105.3 505.4¶ 106.8 

PRO (g/d) 114.5 31.5 143.9¶ 31.2 117.0¶ 25.9 

Fat (g/d) 81.9 20.5 92.0 26.6 102.7* 24.6 


