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1. Introduction 
 

An analytical estimation of the existence and characteristics of limit cycles in a given planar polynomial 
vector field represents a significant progress towards the complete answer to the second part of Hilbert’s 
16th problem. In a very recent work [1], the second author of this present paper has developed a theory 
to fulfil this purpose. One major conclusion of the theory is that the number of limit cycles nested 
around a critical point in a general planar polynomial vector field is bounded by the Hilbert number 

1)( 2  nnH  where n is the order of the vector field. It is well known that linear vector fields have 
no limit cycles and this, of course agrees with the conclusion. Shi [2] shows that there are maximum 
three limit cycles nested around a critical point in quadratic vector fields. Again, it is in an agreement 
with the conclusion. For cubic vector fields results from previous studies [3,4,5] are also in an 
agreement with the conclusion whilst the result from the work [6] is in a disagreement although there 
exists some doubt about the result. In this present work, a detailed study is given to the limit cycles in 
a fifteenth order Liénard equation by using both the theory [1] and numerical simulations to check the 
validity of the theory. The method of analysis is briefly given in Section 2. An application example and 
conclusions are presented in Section 3 and 4, respectively. 
 

2. Method of analysis 
 
2.1 Liénard equation and the theory of Wang [1] 

 
The Liénard equation takes the following form: 
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where m is an integer called the order of the equation, ,  ,  are numerical parameters and 
the  terms are usually called damping terms. The origin (0,0) is its only critical point.  For this 
particular planar polynomial vector field, the theory [1] shows that its number of limit cycles is 
bounded by the number of the positive real roots of the following polynomial equation in terms 
of 2a in the whole space of parameter  ,  
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That is, the maximum number of limit cycles in Liénard equations of order m  is n  when m=2n+1 or 
2n+2. It is seen that the existence of limit cycles in Liénard equations depends on the odd damping 
terms only. The even damping terms, however will have influences on the physical behaviour of the 
limit cycles [1]. When the parameter   is small the theory predicts the number, amplitudes and  
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frequencies of limit cycles. When   is large the theory gives the upper bound for the number of limit 
cycles. 
 

2.2 Construction of Liénard equations and numerical simulation 
 
To verify the theory, an inverse process is adopted in this work. That is, a group of n linear algebraic 
equations in terms of n+1 odd   parameters is obtained first by substituting a group of n given 
values of a  into the polynomial equation (2). The parameters  is then solved from this group of 
equations. A Liénard system of order m is, therefore constructed with n limit cycles whose amplitudes 
and frequencies should have the values that have been given when the parameter   is small. When 
the parameter   is large, the number of limit cycles of the system should be bounded by n. It is noted 
that without loosing any generality the parameter is taken to be a unit value throughout the 
following analysis. In the next section, limit cycles in a fifteenth order Liénard equation are studied. 
 

3. Application example  
 
A fifteenth order Liénard equation is considered here. Therefore, equation (2) becomes 
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This equation can only have seven positive real roots at most – hence resulting in seven limit cycles. 
In the reverse construction process, the amplitudes of these seven limit cycles are set to be 

5.05.05.05.05.05.05.0 5.3,3,5.2,0.2,5.1,0.1,5.0a  and 11 μ  to achieve a set of optimised parameters 
 which are given as 
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Therefore, a fifteenth order Liénard equation is constructed as 
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Comparison of theoretical (denoted by a subscript t) amplitudes and frequencies of all the limit cycles 
for six  values is given in Table 1.  It is observed that a(x2)  for all the limit cycles can always be 
accurately predicted by the theory regardless of the  values whilst the a(x1) and a are accurately 
predicted when   is not large. It is noted that when  is smaller than 3.9 there are seven limit cycles 
as predicted by the theory. The portraits of the seven cycles are shown in Figure 1. When  
approaches to 3.8 the two inner most cycles start to impact to each other as shown in Figure 2 and 
finally collapse at =3.9  as shown in Figure 3. Thus, there only five limit cycles left. It is noted that 
the first ‘bubble burst’ occurs around the threshold =4.0. When =5.1 the second ‘bubble burst’ 
happens as shown in Figure 4. Therefore, there are only three limit cycles left. When  approaches to 
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9 the two inner cycles of the remaining three start to impact to each other as shown in Figure 5 
resulting the third ‘bubble burst’ at =10. Finally, there is only one limit cycle left. Its phase portrait is 
shown in Figure 6. It is noted from Table 1 that all the collisions happens due to the more rapid 
growth of the inner cycle in the dimension of x1 .  
 

Table 1. Parameter comparison between theoretical and simulated values for 15th order 

Liénard Equation 

 

 

 

 

 =0.5 =3.8 

Cycle a(x1) a(x1)t a(x2) a(x2)t a at a(x1) a(x1)t a(x2) a(x2)t a at 

1 0.706 0.707 0.704 0.707 0.997 1 0.954 0.707 0.868 0.707 0.861 1 

2 0.986 1 0.986 1 0.997 1 0.975 1 0.901 1 0.873 1 

3 1.194 1.225 1.194 1.225 1.005 1 1.282 1.225 1.261 1.225 0.959 1 

4 1.373 1.414 1.373 1.414 0.997 1 1.406 1.414 1.391 1.414 0.974 1 

5 1.536 1.581 1.536 1.581 0.997 1 1.597 1.581 1.587 1.581 0.982 1 

6 1.724 1.732 1.724 1.732 0.997 1 1.747 1.732 1.739 1.732 0.989 1 

7 1.872 1.871 1.872 1.871 1.005 1 1.980 1.871 1.875 1.871 0.982 1 

 =3.9 =5.1 

Cycle a(x1) a(x1)t a(x2) a(x2)t a at a(x1) a(x1)t a(x2) a(x2)t a at 

1 1.285 1.225 1.263 1.225 0.959 1 1.614 1.581 1.594 1.581 0.967 1 

2 1.405 1.414 1.389 1.414 0.969 1 1.755 1.732 1.738 1.732 0.967 1 

3 1.598 1.581 1.587 1.581 0.980 1 2.431 1.871 1.872 1.871 0.967 1 

4 1.748 1.732 1.738 1.732 0.983 1       

5 1.984 1.871 1.875 1.871 0.980 1       

 =9 =10 

Cycle a(x1) a(x1)t a(x2) a(x2)t a at a(x1) a(x1)t a(x2) a(x2)t a at 

1 1.754 1.581 1.661 1.581 0.843 1 2.355 1.871 1.867 1.871 0.885 1 

2 1.789 1.732 1.709 1.732 0.867 1       

3 2.279 1.871 1.869 1.871 0.904 1       
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Figure 1– Phase Portrait of 15th Order Liénard Equation, =0.5 

 

 
 

Figure 2 Phase Portrait of 15th Order Liénard Equation, =3.8 
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Figure 3 – Phase Portrait of 15th Order Liénard Equation, =3.9 

 

 
Figure 4 – Phase Portrait of 15th Order Liénard Equation, =5.1 
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Figure 5 – Phase Portrait of 15th Order Liénard Equation, =9 

 

 
Figure 6 – Phase Portrait of 15th Order Liénard Equation, =10 

 
4. Conclusions 

 
The theory of Wang [1] for the solution of the second part of Hilbert’s 16th problem is applied to study 
the limit cycles in Liénard equation, a particular planar polynomial vector field. A fifteenth order 
Liénard system is considered. Computer simulated results show that the theory gives the exact 
number of limit cycles and accurate predictions of their amplitudes and frequencies when the system 
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parameter   is not large. When   is large the theory can still give accurate predictions for the 
amplitudes a(x2)  for all the limit cycles whilst there exist discrepancies between the theoretical 
predictions and simulated results for amplitudes a(x1) and frequencies a. The discrepancy increases 
with the order of limit cycles and the increase of the parameter  . It is also found that the frequencies 
of limit cycles decrease with the increase of the order of limit cycles due to the larger orbits. Moreover, 
with the increase of the parameter   all the cycles become larger and their frequencies, therefore 
smaller. Therefore, the theoretical values of the frequencies provide the upper bound for the 
frequencies of all the limit cycles. It is also found that it is always that the two inner most cycles 
impact to each other due to the more rapid growth of the inner one in the dimension of x1 and 
collapse resulting the ‘bubble burst’ phenomenon when system parameter   increases. The simulated 
results prove that the theory [1] provides the upper bound for the number of limit cycles in Liénard 
equations. 
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