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I 

ABSTRACT 

Motor vehicle accidents are statistically the major cause of accidental severe injuries 

for pregnant women and fetuses fatality. Volunteers, post mortem human surrogates, 

anthropomorphic crash test devices and computational occupant models are used to 

improve human safety in motor vehicle accidents. However, due to the ethical issues, 

pregnant women and their fetuses cannot be used as volunteers or post mortem 

human surrogates to investigate the effects of crashes on them. The only 

anthropomorphic test device representing pregnant women is very limited in design 

and lacks a fetus. There is no computational pregnant occupant model with a fetus 

other than 'Expecting'. 

 This thesis focuses on understanding the risk of placental abruption for 

pregnant drivers involved in road accidents, hence assessing the risk to fetus fatality. 

An extensive review of existing models in general and pregnant women models in 

particular is reported. The time line of successive development of crash test dummies 

and their positive effect on automotive passive safety design are examined. 

'Expecting', the computational pregnant occupant model with a finite element uterus 

and a multibody fetus, is used in this research to determine the strain levels in the 

uteroplacental interface. External factors, such as the effect of restraint systems and 

crash speeds are considered. Internal factors, such as the effect of placental location 

in the uterus, and the inclusion and exclusion of a fetus are investigated. The head of 

the multibody fetus is replaced with a deformable head model to investigate the 

effects of a deformable fetus head on strain levels. 

 The computational pregnant driver model with a fetus offers a more realistic 

representation of the response to crash impact hence provides a useful tool to 

investigate fetus safety in motor vehicle accidents. Seat belt, airbag and steering 

wheel interact directly with the pregnant abdomen and play an important role on 

fetus safety in motor vehicle accidents. The results prove that the use of a three-point 

seat belt with the airbag offer the greatest protection to the fetus for frontal crash 

impacts. The model without a fetus underestimates the strain levels. The outcome of 

this research should assist automobile manufacturers to address the potential safety 

issues at the design level.  

Key Words: Motor vehicle safety, fetus, pregnant, Expecting, placenta, airbag, 

computational occupant models, anthropomorphic test devices. 
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CHAPTER 1  

INTRODUCTION 

 

 

Motor vehicle accidents are the leading cause of death for young people aged 15-29, 

and the eighth leading cause of death globally. The WHO (World Health 

Organisation) report in 2013 shows that worldwide the total number of road traffic 

deaths remain unacceptably high at 1.24 million per year. This indicates that 

approximately 3400 people die on the world's roads every day and tens of millions of 

people are injured or disabled every year. The WHO report also highlights that road 

traffic deaths are increasing notably in low and middle income countries, whilst 

decreasing in some high income countries. Furthermore, the WHO estimates that by 

2030 road traffic fatalities will become the fifth leading cause of death unless 

immediate action is taken (WHO, 2013). 

 The latest reports from the Department for Transport (DfT) for 2013 indicate 

there is a 5% reduction in the number of people killed or seriously injured in road 

accidents in the UK (DfT, 2013) (Acar and Weekes, 2013). In this report, 

approximately 1,730 people were killed in road accidents, 3% drop from 1,785 in the 
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year ending June 2012. Motor vehicle traffic levels rose slightly by 0.4% compared 

with the 12 month period ending June 2012.  

 National Statistics Office (2003) reports that UK women make an average 

613 trips per year by car, which is similar to men. According to Department for 

Transport (DfT), women in the UK travels 4,573 miles a year on average. Increasing 

safety of vulnerable road users such as pregnant women, children, elderly, 

pedestrians, cyclists and motorcyclists play a significant role in reducing the total 

number of global road accidental deaths. Specifically, for pregnant women, motor 

vehicle accidents are the leading cause of accidental death (Pearlman, 1997). Women 

of childbearing age travel by car more often than men (Acar and Weekes, 2013). 

Worldwide, the number of female drivers and distances driven have increased more 

than ever before in the last two decades. The level of exposure among women of a 

reproductive age to road accidents increased (Haapaniemi, 1996). It has been 

estimated that during pregnancy the incidence of trauma varies between 6% and 7% 

(Pearlman, 1997). In the USA, motor vehicle accidents are the leading cause of 

accidental fetal death (Weiss et al., 2001). It has been indicated that around 130,000 

women in the second half of their pregnancy are involved in road accidents each year 

in the USA. Of these, around 30,000 sustain treatable injuries. Approximately 160 

women die and between 300-3,800 fetuses die when the mother survives (Klinich et 

al., 1999a). Statistics show that in the UK each year, there are approximately 

750,000 new maternities and women are likely to be passengers or drivers during 

their pregnancy (Acar and Esat, 2010). It has been estimated that around 3400 

women in the second half of pregnancy are involved in car crashes annually (Acar 

BS and Acar M, 2006).  These facts indicate that pregnant women and their fetuses 

safety at road accidents is an important issue to investigate.  

1.1  Occupant Safety 

 Car manufacturers and research institutes have been continuously working to 

design safer cars. Data collected from real world accidents and controlled 

experimental crash tests are used to investigate occupant safety in motor vehicle 

accidents. Computational crash test simulations have also become an effective 
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method for improving occupant safety within the car design industry. Real world 

accident data should provide the most realistic information.  

 Experimental crash tests play a significant role to improve occupant safety in 

motor vehicle accidents. Post mortem human surrogates, sandbags, window 

mannequins, animals, and even humans are used as test subjects in these 

experimental crash tests. First test devices did not meet expectations of car 

manufacturers when vehicles are improved into high speed advanced automobiles. 

Experimental studies with cadavers have contributed the greatest amount of 

knowledge about the human response to crashes at various speeds. However, there 

are ethical issues related to working with post mortem human surrogates, animals 

and humans. Translating an animal's anatomy and injuries into human injury criteria 

generates significant problems. Using humans also present unacceptable risks in 

conducting experiments as the human tolerance limits are reached and exceeded.   

 Anthropomorphic test devices (ATDs) make significant contributions to 

improve vehicle design and occupant safety over the years. Mechanical response data 

obtained from humans involved in real world accidents, and from post mortem 

human surrogates and animals from experimental crash tests to impacts have been 

collected and used to develop crash test dummies. Seat belts, vehicle crumple zones, 

side door beams, airbags, head restraints are some of the occupant safety 

developments which are routinely tested with ATDs. However, using ATDs in 

experimental crash tests has several limitations. Crash test dummies are designed for 

repeatable conditions to reproduce predefined load deformation corridors. But they 

have limited capability for assessment of injury of the soft tissue such as internal 

organs, ligaments etc. Furthermore, ATD's are very expensive devices requiring 

regular maintenance and calibration and many tests may become impractical due to 

the costs and time consumption involved in testing. 

 Computational modelling of an occupant and its environment offers an 

effective alternative method to physical experimental crash tests to improve occupant 

safety in motor vehicle accidents. Computational models can simulate vehicle 

collisions and dynamic motion of occupants and most importantly help to determine 

injury risk to the occupants. Occupants with different anatomical details can be 
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modelled to investigate possible injuries on the human body due to road accidents. 

Computational simulations can also provide additional information not readily 

available in experimental tests. Several crash scenarios can be analysed quickly and 

inexpensively with computational modelling. However, computational simulation 

cannot totally replace physical tests as legal certification of new car models is still 

required to be tested using anthropomorphic test devices in vehicles.  

1.1.1  Injury 

Injury has been defined as physical harm to a biological organism, resulting from 

acute exposure to energy such as mechanical, electrical, thermal, chemical (Baker et 

al., 1984). Common types of physical injuries are broken bones, cuts, burns, wound. 

Langley and Brenner (2004) defined injury as damage to the body produced by 

energy exchanges that have relatively sudden discernible effects. Physical injury 

occurs if the biomechanical response is of such a nature that the biological system 

deforms beyond a tolerable limit resulting in damage to anatomical structures and/or 

alteration in normal function (Wismans, 1994). An injury occurs, for example, 

sudden deceleration, wounding by a projectile, or crushing by a heavy object. For the 

impact injury, the damage caused by the collision of a body with a moving or 

stationary object. The higher the speed of a vehicle, the shorter the time a driver has 

to stop and avoid a crash. When the object is brought to a sudden halt, deceleration 

injury to a body within or upon a rapidly moving object caused by the forces exerted. 

Deceleration injury can occur in high-speed vehicles when they stop or slow down 

abruptly or when the occupants of the vehicle are propelled from it while it is 

moving. The extent of injury depends upon the velocity, duration of impact, direction 

of impact, distance travelled, absorption of stresses by the body or objects struck. 

Impact injuries can occur in any accident involving moving vehicles, such as 

automobiles, trains, motorcycles.   

 A road traffic injury is a fatal or non-fatal injury incurred as a result of a 

collision on a public road involving at least one moving vehicle. Road traffic injuries 

are the leading cause of death among young people, aged 15-29 years (WHO, 2013). 

Vehicle accidents cause many different injuries such as brain, head, neck, spinal 
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cord, back, facial, internal injuries, to virtually any part of body, depending on the 

crash and the severity of the impact. Injury Criteria is created to correlate human 

injuries with accelerations, deflections and intrusions of certain body parts during the 

crash test simulation. Injury criteria is mostly statistical and is often based on real life 

accident or experimental test results. While outcome for a fatally injured road user is 

obvious, the outcomes for the survivors can only be classified to match the spread of 

injury from minor to' life-threatening'. 

1.2  Pregnant Driver Safety 

 Motor vehicle accidents are the leading cause of accidental death for pregnant 

women (Pearlman, 1997). Placental abruption is the most common cause of all fetal 

deaths in motor vehicle accidents (Klinich et al., 1998, 1999a; Rupp, 2001). Weiss et 

al., (2001) estimated that each year 90-369 fetal loss occurs resulting from 

automotive crashes in the United States. In the UK, approximately 3400 women in 

the second half of pregnancy are involved in car crashes annually.  

 Seat belts and airbags prevent tens of thousands of deaths and serious injuries 

in the UK each year according to the Royal Society for the Prevention of Accidents 

safety publications report (Rospa, 2003). Wearing the seat belt is a legal requirement 

during pregnancy. The seat belt is designed to protect pregnant women and should be 

worn at all times, unless women are certified medically exempt. Crash test 

investigations have shown the effectiveness of using seat belts in reducing injury risk 

for pregnant women and their fetuses. However, seat belts appear to be one of the 

biggest problem areas for women during pregnancy. Safety guidelines from the UK 

Department for Transport and the National Highway Traffic Safety Administration in 

the USA describe the correct position of wearing seat belt such as 'the lap belt strap 

should go across the hips, fitting comfortably under the bump, while the diagonal 

strap should be placed between the breasts and around the bump'  (DfT, 2003). 

 Johnson and Pring (2000) surveyed 159 pregnant women and found 98% 

were using seat belts in the front, and 48% in the rear. 48% correctly identified how 

to position the seat belt correctly. Brake (2005) surveyed 1,010 pregnant women and 
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found that 92% were using their seat belts. However, nearly a quarter (23%) of the 

pregnant women did not know for sure that it was safer to wear a seat belt in 

pregnancy both for the mother and for their fetuses. McGwin et al. (2004) reported a 

survey of pregnant women about seat belt usage. In this report, while the seat belt 

usage was 95%, correct positioning was only 72.5%. 

 Acar and Weekes did survey about the problems that pregnant women 

experience during car travel using a questionnaire. From the 584 responses from 

pregnant women, only 35 were not wearing their seat belt (7%).  37% had stopped 

wearing the seat belt because they believed it was a safety risk. The correct 

positioning of the seat belt is fundamental to providing protection in a collision. Acar 

and Weekes reported that only 13% of pregnancy women are actually wearing their 

seat belts in the correct position. 

 Department for Transport guidelines recommend that the 'distance between 

the centre of the steering wheel to the breast-bone should be at least 10 in (25 cm)' ( 

Department for Transport, 2010). However, the advice given is not specific to 

pregnant women. The National Highway Traffic Safety Administration in the USA 

(2002) advise pregnant women to sit as far back as possible from the steering wheel 

or dashboard. Acar and Weekes reported that 75% of pregnant women reported that 

they were seated with their abdomen 15 cm or less away from the steering wheel. 

10% of the pregnant women said they were driving with their abdomen less than 3 

cm from the steering wheel or nearly touching. Only 10% of women are seated with 

a clearance distance of 25 cm or greater.   

  Adverse fetal outcome is associated with crash severity, maternal injury and 

maternal restraint (Klinich et al., 1999a). However, pregnant women and their 

fetuses safety in road accidents are not easy to investigate, because there are several 

factors which cause fetal loss in motor vehicle accidents. These factors can be 

classified as external and internal factors. The external factors are such as crash 

speed, impact direction, restraint systems, occupant position. Crash speed contributes 

to about 30% of deaths on the road (WHO, 2004). Speed also contributes to the 

severity of the impact when a collision does occur. Different restraint systems play 

important role on occupant safety in motor vehicle accidents. The internal factors are 
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such as placenta locations in the uterus, inclusion and exclusion of a fetus in the 

uterus, effect of amniotic fluid. Collecting detailed data after a road accident and 

broad investigation for a fetus fatalities and pregnant occupant injuries in road 

accidents is very limited and almost impossible due to ethical issues. Therefore, 

investigation based on real world crash data of pregnant women and their fetuses is 

scarce. Experimental crash tests using pregnant baboons were conducted in the late 

1960s to evaluate the effectiveness of the three-point seat belt for pregnant women 

(Crosby et al., 1968).  

 Pregnant women have completely different anatomy to that of a 50th 

percentile adult male (Acar and Weeks, 2005). In addition to that, abdominal 

measurements of a pregnant woman vary regionally (Loftis et al., 2008). 

Characterization of material properties for tissues in pregnant woman's abdomen is 

also difficult to investigate (Hu et al., 2009; Manoogian et al., 2008).  

 The safety of pregnant women was not seriously considered by car 

manufacturers until the 1990s. The only anthropomorphic test device, MAMA2B 

(Maternal Anthropometry Apparatus Version 2B) representing pregnant women is 

very limited in design (Rupp et al., 2001). The fetus and placenta do not exist in this 

dummy. 30 weeks of pregnancy is represented with a water filled silicon bladder 

which is inserted in the Hybrid III 5th percentile female dummy (FTSS). The size 

and weight of the Hybrid III 5th percentile dummy represents the smallest segment 

of average adult USA population. The dummy was upgraded in 1997. The total 

weight of the Hybrid III 5th female dummy is 108+/-2 lbs, 49 +/-1 kg (User Manual 

MAMA2B Rev B, 2007). Anatomy of a pregnant abdomen is based on data collected 

from only twenty-two pregnant women. However, use of a bladder for a uterine 

insert provides an internal pressure measurement to investigate fetal injury and to 

assess restraint systems effect on fetal survivability.   

 Experimental crash tests with the pregnant ATD are both costly, time 

consuming and have limitations. Accurate humanlike response cannot be achieved. 

Computational human modelling can offer an improved biofidelic and realistic 

response over ATDs. Although several computational adult human models were 
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developed in the late 1990s, there were not any computational pregnant women 

models until early 2000s and pregnant occupant models were simple. 

 A finite element model of a pregnant crash test dummy was developed by 

Volvo in 2002. The model is called 'Linda' and it is a combination of a real human 

body and a Hybrid III dummy. A 36 week-old fetus, placenta and amniotic fluid are 

represented as a human body while the rest of the body is represented by the Hybrid 

III crash test dummy (Volvo Press, 2004). The fetus model was designed as a lump 

without extremities of the 36 week-old fetus. Furthermore, the model is limited by 

the anatomy of the Hybrid III dummy. 

 A computational pregnant woman model was developed by Moorcroft et al., 

(2003) using the crash analysis software package MADYMO (Mathematical 

DYnamical Models). MADYMO is a computer program that simulates the dynamic 

behaviour of a physical system emphasizing the analysis of vehicle collisions and 

assessing injuries sustained by passengers. An existing 5th percentile female facet 

30th week of gestation. The  anthropometry of the adult facet occupant models has 

been obtained from the database of the RAMSIS software package (RAMSIS 1997). 

The Western European population aged 18 to 70 years of 1984 was used. For the 

facet mid-size male occupant model simply medium typologies were selected for 

height, weight and sitting height. For the small female a very short and very slim 

model was selected in RAMSIS. The resulting body mass and sitting height were 

considered to be somewhat extreme also in comparison to the small female Hybrid 

III crash dummy. The finite element placenta and uterus are filled with amniotic fluid 

while a fetus is not included in the model; which is a significant omission. 

 A computational model of the whole human body with a uterus was 

developed by Delotte et al., (2006). The finite element uterus model is integrated in 

the HUMOS (Human Model for Safety) model (Serre et al., 2002) which is a 

computational 3D model of a male human cadaver created from MRI (Magnetic 

Resonance Imaging) scan data. In order to do that, the abdomen of the HUMOS 

model is modified. A fetus of 32-week of gestation was developed from MRI on a 

woman close to a "European 50th percentile" (Delotte et al., 2008). There is not 

enough information about fetus mass and its details. The post mortem human subject 
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were three women who died naturally and whose morphological characteristics were 

close to the 50th percentile (165 cm, 60 kg). Although the model details bones, 

internal organs, and contains an integrated uterus, it does not represent the anatomy 

of a pregnant woman. The model was validated under very low speed impact 

conditions, frontal impact at a speed of 20 km/h. 

 The geometry of the HUMOS 50th percentile male model is scaled to the 

anatomy of a 50th percentile woman with a specific focus on the pelvis (Peres et al., 

2011). The Humos model is a complete human body model resulting from a 

European project. It is based on a seated 50th percentile male human body (176 cm, 

78 kg) and was obtained from a frozen cadaver in driving position. This model was 

scaled to represent the anatomy of a 50th percentile woman (162cm, 62 kg). 

Anatomy of a 7 months uterus is represented with a scaling method from MRI 

images. The fetus geometry is also extracted from the MRI images. Therefore, 

detailed anatomy of the fetus is not modelled and upper and lower extremities do not 

exist. A post mortem human subject is used to validate the model. An artificial 

silicone uterus is inserted into a woman's body. In this study, low impact speed (20 

km/h) is used to validate the model. 

 Detail and accurate representation of anatomy of pregnant women is crucial 

to investigate injuries and fatalities of fetus and pregnant occupant in road accidents 

realistically. In 2006, Acar and Lopik created the first computational pregnant 

occupant model with a realistic fetus (Acar and Lopik, 2009, 2012) using the 

MADYMO which combines in one simulation program the capabilities offered by 

multibody and finite element techniques for the simulation of structural behaviour. 

The model is called 'Expecting' and developed by enclosing a multibody fetus within 

a finite element uterus model, both of which are integrated with an existing 

MADYMO 5th percentile small female model. In order to represent the pregnant 

anatomy in the 38th week of pregnancy, a MADYMO 5th percentile female model is 

modified according to Acar and Weeks research findings (Acar and Weekes, 2005). 

The anthropometry of the existing 5th percentile female facet MADYMO model 

were used from the Western European population aged 18 to 70 years of 1984. For 

the small female a very short and very slim model was selected in RAMSIS. The 

resulting body mass and sitting height were considered to be somewhat extreme also 
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in comparison to the small female Hybrid III crash dummy. As an injury criteria, 

placental abruption failure is considered. The threshold strain value for the 

occurrence of placental abruption is widely accepted to be 0.6 at the UPI (Utero-

placental interface) (Rupp et al., 2001). The placenta attaches to the internal surface 

of the uterus and connects the fetus to the mother. This interface is named 

uteroplacental interface (UPI).  This more biofidelic model of a pregnant occupant 

with realistic hip, breasts, thighs and abdomen dimensions and a fetus within the 

uterus simulates the dynamic response of a pregnant woman and her fetus to impacts. 

The 38 week-old fetus, which has a mass of approximately 3.3 kg, changes the 

dynamic motion of the pregnant abdomen and interacts with internal organs such as 

amniotic fluid and placenta in the uterus. Inclusion of a fetus model in the uterus 

makes the pregnant occupant model to be more life-like and assists to realistically 

investigate fetus fatalities and injuries in road accidents. The abdomen of the 

pregnant driver also interacts with several external vehicle parts such as the seat belt, 

airbag, and steering wheel. Understanding of these interactions and factors is 

important to understand the risks of placental abruption. 

1.3  Motivation 

Only a few researchers have tried to study the impact of vehicle collisions on 

pregnant occupants and their fetuses although road accidents are the leading cause of 

accidental fetal fatalities. Only a few pregnant occupant models have been 

developed. Furthermore, most models do not represent pregnant women realistically 

and have several significant omissions such as a lack of a fetus in the uterus. The 

possible effects of the restraint systems and vehicle interior parts, such as the steering 

wheel on pregnant drivers involved in vehicle crashes are therefore still poorly 

understood. In addition, due to the coarse and simple representation of a pregnant 

abdomen, investigation of the fetus fatalities at road accidents still have several 

limitations. Improvements to the pregnant occupant models are necessary for more 

realistic crash test simulations. An improved ‘Expecting’ should assist car 

manufacturers and researchers to realistically investigate road accidents involving 

pregnant women and their unborn babies. 
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1.4  Aim of the Research 

This research aims to enhance the existing 'Expecting' pregnant occupant model and 

to investigate the effects of internal and external factors on fetus fatalities by 

understanding the risk of placental abruptions in road accidents where a pregnant 

driver involved.  

1.5  Research Questions and Methodology 

The research starts with the investigation of the chronological development of ATDs, 

computational models are studied, the relation between their development and 

vehicle safety design are found through a literature survey. 'Expecting', is used as the 

main tool. It is modified and improved to achieve the following research questions; 

 What is the effectiveness of airbag firing times on well-being of the fetus ?. 

Airbag deployment times were changed at crash test simulations with 

'Expecting'. Strains and displacements in the uterus were calculated to predict 

the fetus fatalities due to abdominal loadings. 

 What is the effectiveness of inclusion of the fetus model in the uterus on the 

risk of placental abruption ?. Drop tests of uterus with and without the fetus 

were simulated and effects of the fetus in the uterus on the strain levels were 

evaluated. Then, crash test simulations with and without the fetus were 

performed. Results of maximum strain levels on uteroplacental interface were 

compared. 

 What is the role of placenta locations on the risk of placental abruption in 

road accidents ?. Placenta at different possible locations in the uterus was 

considered and the placenta was remodelled when the original placenta model 

for fundus location was not suitable for the alternative locations. 'Expecting' 

model with new placenta locations was applied in several crash scenarios and 

results were compared with the original model. 

 What is the effectiveness of finite element amniotic fluid model developed 

between the multibody fetus and the finite element uterus on fetus safety ?. 

'Expecting' model with the finite element amniotic fluid was validated with 
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rigid bar impact and belt loading tests. The fetus, amniotic fluid and uterus 

interactions were investigated and crash test scenarios were conducted with 

the model. 

 What is the effect of a deformable fetus head on the risk of placental 

abruption in motor vehicle accidents ?. A computational fetus head model 

was developed and a hybrid fetus was created. A deformable skull was 

simulated in the uterus during the crash test simulations. Strain levels on 

uteroplacental interface were calculated and compared with the rigid head 

model results. 

 A modified 'Expecting' model was used in several crash scenarios. Crash test 

severities imbedded in all investigations above. The complete new models were used 

to simulate a range of frontal impacts of increasing severities such as from 15-35 

km/h. In addition, several restraint system combinations; 'seat belt only', 'airbag 

only', 'seat belt and airbag', and 'no restraint' systems were applied. 
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CHAPTER 2  

EVOLUTION OF ATDS, 

COMPUTATIONAL MODELLING 

AND VEHICLE SAFETY 

2.1  Introduction 

Car manufacturers and research institutes have been working to improve occupant 

safety for more than 80 years. In order to predict injuries induced during road 

accidents, dynamics of occupant body during collision events must be studied. 

Researchers use information from real world events, controlled experimental tests, 

and computational models, to study the occupant's safety and their risk of injuries in 

automobile accidents. 

 Experimental testing can provide much more extensive quantitative 

information, but there are a number of limitations in terms of creating real world 

conditions. In the experimental crash tests, human volunteers, cadavers, animals, or 

physical Anthropomorphic Test Devices can be used. Results in the experimental 

tests are affected by limited instrumentation and devices. 
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 The first experimental test subjects were live people. Engineers, researchers 

and inventors used themselves as human test subjects. John P. Stapp was a well-

known researcher who conducted live occupant tests from 1946 to 1958. He studied 

the effects of deceleration on both human and animal bodies. The great contribution 

of Stapp was to show that the primary deceleration forces acting in the majority of 

vehicle crashes are entirely survivable if the packaging of the human frame is 

satisfactory. He showed that humans can tolerate high loads for short periods, 

accelerations of 30 g for up to 0,5 second were entirely tolerable, with only 

reversible soft tissue bruising occurring. At 45 g signs of mild concussion and retinal 

haemorrhage begin to show. This was the highest known acceleration voluntarily 

encountered by a human. These were decelerations measured on the seat of a 

dynamic sled. The accelerations experienced by the head itself were much greater. 

John Stapp became interested in the implications of his work for vehicle safety. At 

the time, seat belts were generally not fitted in vehicles. Stapp had revealed that a 

properly restrained occupant could survive at higher impacts than an unrestrained 

one. Use of automobile crash test dummies was demonstrated at his conferences for 

the first time.  

 One of the most difficult problems in determining the benefits of a safety 

countermeasure is how to translate measurements from a test dummy to humans. For 

this analysis, some of the injury curves that it has used in the past and has developed 

many new injury assessment reference values are used.  Injury risk curves are used to 

define the injury risk for a given human body response. Validity of the risk curves 

depend on the boundary conditions for which the injury criteria or models were 

developed. Injury risk curves are mostly based on data from real case studies and 

experiments using animals, post mortem human surrogates (PMHS) or human 

volunteers.  

Injury mechanisms are usually distinguished in impact: 

Elastic injury mechanisms: Compression and tension of the body causing injury if 

elastic tolerances are exceeded. Injury can occur in case of slow deformation of the 

body or in the case of high velocity impacts.  
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Viscous injury mechanisms: Impulsive type of loading causing mechanical waves in 

the body, which results in internal injuries. 

Inertial injury mechanisms: Acceleration type of loading causing tearing of internal 

structures due to inertia effects. 

 An injury criterion is defined as a physical parameter or a function of several 

physical parameters which correlates well  with the injury severity of the body region 

under consideration.  Tolerance level is defined as the magnitude of loading 

indicated by the threshold of the injury criterion, which produces a specific type 

severity and risk.  

 The injury severity can be defined using injury scaling which is defined as the 

numerical classification of  the type and severity of an injury. There are few coding 

systems in existence on a worldwide scale used in everyday practice to code injuries. 

the most well known anatomical scale is the Abbreviated Injury Scale (AIS) .   

Table 2.1 The Abbreviate Injury Scale (AIS, 1990) 

AIS Code Injury Description 

1 Minor 

2 Moderate 

3 Serious 

4 Severe 

5 Critical 

6 Maximum (currently untreatable) 

9 Unknown 

 

             The relation between threat-load-injury is presented in the TLI model by van 

der Horst (Horst, 2005). If an injury risk curve is available, it can be used for injury 

assessment. This means that with information of the human body response it can be 

determined what the injury risk is for a specific load on that body part. An injury risk 

curve can be used to define the tolerance levels for a specific criterion. 

 Injury assessment reference values (IARVs) were developed by Mertz in 

1978 to assess the efficacy of restraint system designs using the Hybrid III midsize 
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adult male dummy as the vehicle occupant. The risk of the associated injury was 

defined as ' Unlikely' as risk levels less than 5% and IARV was not exceeded in the 

prescribed test. Head, neck, thoracic injury risk curves and viscous criterion were 

defined (Mertz, 1978). Injuries are complex and have varying outcomes although 

there are methods to classify injury for research purposes.   

 In order to demonstrate compliance with domestic vehicle safety standards,   

some crash testing became a mandatory as a government requirement.  However, 

passing these tests became a main goal and something to be exceeded by as little as 

possible. Compliance testing has been performed by car manufacturers, insurance-

funded companies,  research  laboratories. Mandatory compliance testing showed 

that one purpose might reveal other safety information. Therefore, success on some 

tests may not predict success on other tests. 

 When powerful high speed engines were inserted into the vehicles, using 

humans in crash tests became serious risk at this high severity range. For ethical 

reasons, human volunteer experiments cannot be performed. In order to facilitate 

vehicle safety tests, cadavers have been employed as test subjects. For instance, the 

injury effects of the windscreen on unrestrained cadavers were studied in the 1960s 

(Patrick, 1966). The experimental work on cadavers has supplied important 

information about variation of human occupant response to crash tests since the 

1960s (Hodgson and Thomas, 1972), (Webster and Newman, 1976). However, work 

with cadavers presents a number of problems. The first problem is the moral and 

ethical issue related to working with the post mortem human surrogate. Secondly, 

while crash testing has become more routine, suitable cadavers have become scarce. 

Another problem is that no two cadavers are the same and tests conducted with them 

are not repeatable. There are also research concerns that the majority of available 

cadavers are old adults who do not represent the average population. Post mortem 

human surrogates have no active muscles as well. In addition to that, deceased 

accident victims could not be used because collected data would be compromised by 

the cadaver’s previous injuries. Therefore, it is extremely difficult to achieve reliable 

data. However, their use in experimental tests helps to generate experimental impact 

corridors. 
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 As alternative test subjects, baboons, pigs, chimpanzees and other animals 

have been employed as occupants in vehicles. A series of 22 pregnant baboons were 

subjected to impact by Crosby et al., (1968, 1972). Pregnant baboons were restrained 

by either a lap belt or a three-point seat belt. Robbins et al., (1976) predicted thoracic 

impact injuries quantifying the thoracic impact response of baboons and cadaver 

subjects in experiments. The most commonly used animal subjects in experimental 

test studies were pigs, because they have similar internal structure to humans and can 

be placed in a vehicle in a good approximation of a seated human. Verriest et al., 

(1981) studied the mechanical response of the pig thorax using belt loading 

conditions. However, animals were very different in structure and their capability for 

internal instrumentation is limited to produce useful data. Translating the animal’s 

anatomy and injuries into human injury criteria was a serious problem. 

 In order to collect data to analyse effects of an impact on the occupant, crash 

test dummies, Anthropomorphic Test Devices (ATDs) were created. They have 

contributed to make safer cars since the 1950s (Nyquist et al., 1980; Melvin et al., 

1993). Humanlike dummies have been designed using response data obtained from 

crash impacts to animals and human cadavers. Early dummies approximated human 

kinematics and provided acceleration movements.  In order to describe the proofing 

of design changes, the models are validated. Testing and retesting an interactive 

process may be necessary to achieve an appropriate level of human error control  in 

occupant modelling. For instance,  a crash test predicts the bio kinematic of a 50th 

percentile male, the head impact force vector, and  uses pass-fail injury criterion. 

However, in a real life crash, a 97 percentile male's head did move forward but then 

rotate downward. Thus, the injury prediction did not include a full range of drivers in 

terms of anthropometry. The simulations have a tolerable level of injury and failed to 

predict appropriately the biomechanics of injury. In fact, properly conceived 

validation criteria are the keys for advanced occupant models and crash test 

simulations. Colleting accurate car accident data is essential since simulation should 

adequately predict the ultimate real life criteria, entail relevant correct assumptions.  

 Controlled crashes with advanced ATDs in crash tests and high speed filming 

provide complete observation of collisions.  Several new advanced restraint systems 

have been improved using crash test dummies. Crash tests incorporating those 
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devices in turn led the motor manufacturers to develop more sophisticated crash test 

dummies. Experimental tests with crash test dummies assist to obtain consistent 

results. ATDs simulate the weight, dimensions and articulation of the human body 

and collect several data such as bending, folding of the body during a collision in 

crash tests. However, using ATDs in experimental tests has a number of limitations. 

Crash test dummies are designed for repeatable conditions to reproduce predefined 

load deformation corridors and meet the vehicle legislation requirements in specific 

crash events. Effects of many parameters need to be investigated in these complex 

events. Many tests that needed ATDs can soon become impractical due to the costs 

involved in testing. ATD's are very expensive devices. Experimental tests with 

dummies can be time consuming with limited in their biofidelity and their 

application area. They have limited capability for assessment of injury of the soft 

tissue such as ligaments, internal organs. In addition to that, the crash test dummies 

represent only the population through 3 sizes; 50th percentile male, 95th percentile 

male and 5th percentile female and some child dummies. 

 The accuracy of a finite element occupant model is dependent on the 

accuracy of the occupant geometry, anatomy, the type and number of elements used, 

and the material property model (linear elastic, viscoelastic, etc.). In order to develop 

an accurate model, the model is tested for convergence of results with increasing 

mesh density and validated against experimentally obtained results. Convergence of 

the model does not guarantee accurate and realistic results. The accuracy with regard 

to the real problem depends on how realistic the model is in an overall sense, how 

well the anatomy of the occupant model and the material properties represent the 

physical case.    

2.2  Early Developments (1914-1964) 

Collision avoidance was the main concern in safety for the motor manufacturers, 

government agencies, safety organizations and insurance companies after vehicle 

mass production started in 1914. At this early stage, developments were based on 

fundamental necessities to drive vehicles properly. For instance, rear mirrors, dual 

windscreen wipers, hydraulic brake control and indicators were integrated into 
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vehicles. Occupant safety in vehicles was not considered in those years. In the late 

1930s, road incident fatalities and injuries increased significantly and created a major 

public health and safety problem. Automobiles became an important part of daily 

life. Therefore, designing safer vehicles for occupants became a crucial problem. In 

order to encourage design a safer steel vehicle body structure, the first barrier frontal 

crash test was conducted in 1934 (Figure 2.1). In the late 1930s, rollover tests were 

also conducted to improve crashworthiness of vehicles. 

 

Figure 2.1 First car crash test, 1934 (taken by General Motors) 

 At the beginning of the 1940s, aircraft industry technology was implemented 

in the automotive industry. Crash tests were very simple and humans, animals, 

sandbags and even shop window mannequins were used to represent vehicle 

occupants in crash tests. Later, experimental crash tests with cadavers played a 

significant role in understanding and creating human responses to crash tests at high 

speed. However, complexity of the tests and durability of test subjects caused a 

decline in test repeatability which was a major problem. Durable and repeatable test 

devices having human like postures had to be designed. Therefore, dummies which 

are used in the aircraft industry were adapted into motor vehicle crash tests for better 

observations.  

 Dummies were designed obtaining human cadavers’ response data from crash 

tests. The first crash test dummy, Sierra Sam (Figure 2.2), which was originally 

created for aircraft ejection seat testing, was used by car manufacturers for restraint 

system testing (Enever, 1999). Crash tests were intended to improve vehicle 
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stiffness. In 1949, the first car safety cage and re-enforced roof pillars were designed. 

In the same year, the first padded dashboard was introduced. Integrity of restraint 

systems were assessed by using the first version of dummies in frontal collisions. For 

instance, it was observed that two-point belt strapped across the body over the 

abdomen caused fatalities and serious internal injuries at high speeds. 

 

Figure 2.2 First crash test dummy, Sierra Sam, 1949 (Enever, 1999) 

 In the late 1950s, car manufacturers realised that the airbag might be a very 

effective supplemental restraint system in providing occupant protection in vehicle 

crashes. However, because of limited technology, it took the automotive industry 

another 20 years to reintroduce airbags. In the 1950s, a modular series of dummies 

were designed for vehicle collision tests. As a result of a number of crash tests, the 

most significant vehicle safety device of that era, three-point seat belt was invented 

by Nils Bohlin, a Volvo engineer, in 1958 (Invent, 2010). In 1959, three-point seat 

belt became standard safety equipment by Volvo in front seats in Sweden.  

 In the early 1960s, significant developments occurred in motor vehicle safety 

around the world. Governments promoted importance of occupant safety in motor 

vehicle accidents. The ADAC (Allgemeinen Deutschen Automobil-Club) (Germany 

Motorbike Association) an automobile club and break-down assistance service was 

launched in Germany.  In 1974, the organization had 3.8 million members at a time 

when there were 19 million passenger cars registered in Germany. ADAC regularly 
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publish maps showing safety characteristics of German roads. Seat belt anchors in 

front seats were designed as standard equipment in US vehicles in 1962. 

Effectiveness of wearing seat belt in automobiles was investigated in Britain and 

survey results showed that seat belt would reduce the likelihood of death and serious 

injury by 0.6.   

2.3  Further Developments (1965-1989) 

Several significant improvements in crash test dummies and in automotive safety 

design were achieved from 1965-1989. In 1965, a requirement for the three-point 

seat belt anchorage points was introduced in Europe. The fitment of the three-point 

seat belts in the front seats became mandatory to fit in 1968 in Europe. In 1969, 

Thatcham Research Centre, the motor insurer's automotive research centre was 

established by the motor insurance industry. The main aim of this centre is to contain 

or reduce the cost of motor insurance claims whilst maintaining safety standards. It is 

the not for profit insurer funded research centre (Thatcham, 2013). In the same year, 

the National Highway Traffic Safety Administration (NHTSA) was established in the 

USA. A number of compulsory safety standards known as Federal Motor Vehicle 

Safety Standards (FMVSS) were introduced (NHTSA, 1973).  The design and 

manufacture of vehicles became a regulated and standardized industry. In addition to 

that, demands on vehicle safety increased enormously. Car manufacturers discussed 

the credibility of crash tests with governments and started intensive research in 

occupant safety in motor vehicles. Anatomical design of dummies was part of this 

investigation. Previous dummies were designed to meet the standards of aircrafts and 

contained no pelvic structures, spinal articulation or realistic range of motion. Hence, 

they were not effective devices to evaluate the impact of road accidents on the 

human body. 

 Throughout the 1970s, dummy models were developed with improved joints, 

range of motion and spine segments to make them more realistic. Effectiveness of 

airbags on human safety was also tested in motor vehicle collisions. Designing 

airbags in vehicles became popular in the same years. In 1971, the Hybrid I dummy 

was designed to produce more repeatable data in crash tests. Variety of different size 
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dummies such as child dummies, small-stature female dummies were created in the 

1970s. After these improvements, occupant safety in motor vehicles gained 

momentum. In 1970, wearing seat belt became compulsory for drivers and frontal 

seat passengers in Australia. Child dummies are used to develop child safety seats, 

booster seats and special restraint systems. However, there were still a number of 

limitations regarding child anthropometry data. 

 In 1972, the Hybrid II was designed and the same year became the standard 

for frontal crash testing to comply with the US automotive regulations for restraint 

systems. More repeatable lap/shoulder harness tests were conducted with this 

dummy. Car manufacturers developed and installed their own airbag restraint 

systems in vehicles and tested with Hybrid II. However, unacceptable sound levels 

when the airbag was inflated and re-designing car interiors to accommodate the 

airbags were only some of the problems for this restraint system.  

 Until 1976, existing crash test dummies represented humans poorly. As a 

third-generation, Hybrid III, 50th percentile male ATD, whose response was closer to 

human response than the Hybrid II dummy was developed (Foster et al., 1977) 

(Figure 2.3). The Hybrid III test dummy is a 50th percentile dummy based on the 

height and weight of the US adult male population. Internal devices, such as rib cage 

were added and a more biofidelic head than the Hybrid II for forehead impacts to 

airbag or windscreen interaction was designed. Hybrid III was more durable and 

repeatable than the Hybrid II and was developed for a particular need in test 

measurement and to improve safety design. 

 

Figure 2.3 The Hybrid III dummy, 1976 (FTSS, 2012) 
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 The Hybrid III dummy became a standard anthropomorphic test device 

around the world for impact restraint compliance testing in 1976. More research in 

airbag interaction with occupants in frontal collusions was conducted by a number of 

car manufacturers.  

 In 1979, side impact dummy (SID) was designed to measure injury severity 

on the ribs, spine and internal organs at side impact collisions. Although the Hybrid 

III was the most advanced dummy developed so far, it was designed for frontal crash 

testing. In 1982, side impact tests were performed by NHTSA, (1982). As a result of 

these tests, side beams to vehicles were installed.  

 In 1984, pretensioners were introduced to tighten the seat belt at early stages 

of a collision. In 1985, airbags were installed in many cars as optional safety 

systems. A more advanced side impact dummy, the EuroSID (a modified version of 

the Hybrid III) was designed. Side airbag was introduced in 1986. In 1987, the 

Hybrid III dummy was scaled to represent 5th percentile small female, 6 years old 

child and 95th percentile large male with the same level of biofidelity and 

measurements capacity. The Hybrid III 6 year old child crash test dummy was 

developed in cooperation with SAE Biomechanics Committees and the NHTSA. 

Originally designed in 1993, the dummy went through a complete upgrade in 1997. 

Weight, sitting height and stature were considered to scale the Hybrid III dummy.    

2.4  Advancements in the Last Decade of the 20th Century (1990-

2000)  

At the beginning of 1990s, airbags were installed in vehicles as a part of the standard 

safety equipment. However, airbag inflation became a serious problem for children 

and small-stature occupants. There were a number of head, neck injuries and fatal 

accidents related to airbag deployments. In 1991, CRABI (Child Restraint Air Bag 

Interaction) dummies including 6, 12 and 18-month were designed to evaluate airbag 

interactions with rear facing infant restraints. Special child restraint seats, more 

effective airbags were developed as a result of a series of crash tests with the CRABI 

dummies.  
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 THOR (Test Device for Human Occupant Restraint) dummy was designed to 

assist the evaluation of advanced vehicle occupant safety systems. The THOR 

dummy offered numerous functional benefits as compared with previously existing 

crash test dummies (Martinez et al., 1999). Its biofidelity was better and injury 

assessment capabilities were expanded in all body regions. Its enhanced design such 

as face, neck, shoulder, thorax, spine, abdomen, pelvis, and femurs had been 

redesigned to achieve more humanlike responses in crash test simulations. As a result 

of these developments, airbag deployment thresholds were set and assessment of seat 

belt and airbag interactions were improved. In 1994, the first dual threshold airbags 

systems were introduced. Same year the idea for a (NCAP) New Car Assessment 

Programme was born. The UK Department of Transport considered the set up of an 

NCAP in the UK. It expanded across Europe later. For comparative vehicle safety 

testing, the testing was conducted to a higher standard than was necessary for 

legislation. Because of this, a detailed test protocol was developed.  The load limiters 

for seat belts were introduced to keep the belt force at a predefined, controlled level.  

In 1992,  The Insurance Institute for Highway Safety (IIHS)  opened the vehicle 

research centre. The IIHS began  crash tests in 1995. Vehicles are rated for safety 

based on performance in several tests.  

 In order to reduce the risk of neck injuries (whiplash) during vehicle 

collisions specifically rear impacts, reactive head restraint system for seats was 

developed in 1996 (SAAB, 1996). Side impact head protection airbags were installed 

in some of the vehicles in 1996 as well. In the same year, detection of airbag, belt 

and child seat interaction were introduced in the airbag system. In 1997, EuroNCAP 

(European New Car Assessment Programme) was founded and vehicles were tested 

using dummies in full scale frontal and side impacts (EuroNCAP, 2013). Safety 

features are standardised throughout the European Union. As a result of these tests, 

for the first time in Europe, crash performance details of automobiles were 

introduced to the public. Car manufacturers responded promptly to improve vehicle 

safety.  

 A pedestrian dummy (POLAR I) representing a 50th percentile male 

pedestrian, was designed and tested to assess the external front sections of the 

vehicles for pedestrian safety in road accidents in 1998. The height of the Polar 
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dummy is 1775 mm and the weight is 770 N. External design of vehicles for human 

safety also started to become an important issue in these years. The POLAR I and 

THOR dummies have similar anthropometry, however, POLAR I had more 

advanced knee design. Mass, centre of gravity, and moments of inertia measurements 

were made on all the principal THOR segments. The THOR dummy is based on the 

anthropometry given by the UMTRI 50th percentile adult male ( Schneider, et al., 

1983). An In 1998, pedestrian safety was also represented with separate star rates in 

the EuroNCAP tests. 

 In 1998, the SID/HIII dummy, which is a combination of the SID and the 

Hybrid III 50th percentile male dummy, was designed for side impact pole tests. In 

the same year, side impact tests were conducted intensively by a number of car 

manufacturers. The Hybrid III dummy became the official crash test device for 

frontal collision restraint regulation compliance in Europe. A unique Whiplash 

Protection System (WHIPS) was introduced by Volvo to reduce neck injuries in 

specifically rear collisions. Installation of driver and passenger airbags in all new 

vehicles was targeted in 1998 in US. In the same year, airbags to protect knees were 

installed in vehicles for the first time. Curtain airbags were also introduced to protect 

front and rear passengers from side impact collisions. 

 Whiplash injuries were still a serious problem in non-severe rear impact 

accidents. In 1999, the BioRID dummy was designed to investigate and reduce neck 

injuries in specifically rear impact crash tests (Davidsson et. al, 1999). This dummy 

has a spinal column with separate vertebrae and linked to the human skeleton. It is 

used for the evaluation of body motion in rear impacts. Two years later, the RID 

(Rear Impact Devices) dummy series were introduced to measure the risk of neck 

injury in low speed, rear-end crashes. In 2001, the RID was upgraded to the RID II 

and the RID3D dummies. The neck assembly of the RID3D was redesigned and 

series of low speed, oblique rear tests were conducted with this dummy. The RID3D 

was more durable, repeatable and reproducible than previous models. It sustained 

higher severity test conditions both in rear impact and frontal impact collision tests. 

The interaction of the RID3D with the test seat compared to human subjects and 

improved head restraint systems were designed. 
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2.5  Recent Developments  

Improving occupant and pedestrian safety in motor vehicles have continued 

significantly in the 21th century. More advanced and different types of ATDs have 

been designed. Communications of restraint systems which are called smart restraint 

systems have been developed.  

 In 2001, in order to keep the load on the occupant’s chest constant during the 

road accidents, more advanced load limiters were introduced. The knee airbag was 

used by a number of car manufacturers and anti-submarining airbag was introduced 

in 2001 as well. In 2003, frontal airbags that were controlled according to the weight 

of the frontal passengers were designed. Airbag controller sensors have played 

significant role at vehicle occupant safety. 

 Several car manufacturer companies have focused on safety of vulnerable 

road users. In 2001, as a special anthropomorphic test device, MAMA2B dummy 

with pregnant abdomen and torso was created to represent a pregnant occupant 

dummy in crash tests. Standard Hybrid III 5th percentile female dummy was 

modified and 30-week pregnant uterus was represented with a fluid-filled silicone 

rubber bladder. MAMA2B had no foetus in uterus. 

 Child occupant safety has also been investigated by a number of car 

manufacturers in detail. In 2003, child safety performance of vehicles was rated to 

provide clear information for public by EuroNCAP. The first multi-directional child 

dummies, Q dummies, were designed to investigate frontal and side impact child 

restraint systems, out of position tests and EuroNCAP tests (Figure 2.4) (Q child 

dummies, 2010). Q dummies were more biofidelic than previous child dummies. The 

Q1.5 and the Q3 child dummies, representing a 1.5 and 3 year-old child, have been 

used to assess dynamic performance of child restraint systems by EuroNCAP. 

However, child safety in vehicle for out of position is still unsolved problem. 
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Figure 2.4 The Q series child dummy family :( from left to right) Q1.5, Q3, Q6, Q1 

and Q1 without suit (Jager et al., 2005) 

 The WorldSID, 50th percentile male side impact dummy was designed to 

assess vehicle occupant injury risk in lateral impact with a biofidelity rated 7.6 out of 

10 in 2004. The dummy was developed to allow a single test procedure to be used for 

side impact in any regulation around the world. Several anthropometry  of different 

populations around the world were used for the WorldSID. In 1999, the AMVO 

dataset for a 50th percentile male (Robbins, et al.,) were accepted. The WorldSID 

50th percentile adult male has a mass of 77.3 kg, a theoretical standing height of 

1753 mm and a seated height of 911 mm. The automotive posture as represented by 

the AMVO dataset was defined as the design reference posture for the dummy. 

Approximately 212 sensors capture data and help to measure head acceleration, 

pelvis forces and many other responses. The twin chamber airbag for the front 

occupants was introduced in 2004. In these years, rollover tests with crash test 

dummies were also improved.  

 The RID3D was upgraded in 2006 and in the same year active powered head 

restraint systems in car seats were installed in some vehicles. The WorldSID 5th 

percentile female side impact dummy was also introduced in 2007. Mass, seated 

height and standing height of the WorldSID 50th percentile adult male are used to be 

the basis for the development of a harmonized side impact dummy family. The 5th 

WorldSID anthropometry is based on the UMTRI dataset. This dataset describes a 

3D surface description and almost 150 anatomical reference points, definitions of 

segments. For the first time, rear curtain airbags were introduced to prevent 
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specifically head injuries of rear seat passengers in 2008. In 2007, an active bonnet 

reversible system, which enlarges the deformation area and reduces the risk of injury 

to pedestrians, was installed on some vehicles (Figure 2.5) (Nissan Global, 2007). In 

2009, the pedestrian score involved as part of the overall rating scheme in 

EuroNCAP tests. Vehicle designers and car manufacturers have focused on 

developing safer frontal vehicle design that reduces injuries to pedestrians in the 

frontal collisions. 

 

Figure 2.5 Active bonnet system (Nissan, 2009) 

 Airbag safety systems for children and small-stature occupants have been 

investigated in recent years. In 2009, Q10, 10 year-old child dummy, the last in the 

series of Q dummies was developed to test child restraint systems and airbag 

interactions for out of position. Adaptive restraint systems which are adjusted 

automatically according to weight, size and anthropometry of occupant in vehicle 

have become more effective safety devices in recent years. 

 In 2010, an airbag which deploys in between rear seats to protect passengers 

from side impacts were introduced. Similar to this airbag, front centre airbag deploys 

between driver's and passenger's seats has also introduced and installed in some 

vehicle models manufactured in 2013 (Figure 2.6). These airbags are expected to 

protect the occupants in rollover crashes.  
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Figure 2.6 Front seat centre airbag (GM, 2011) 

 The Seat beltPlus system which is specifically designed for all however with 

particular emphasis on the needs of pregnant women, is introduced by Acar and Esat, 

(2010). The belt is applied to the conventional, three-point seat belt and holds the lap 

portion in the correct position. 

 Pedestrian dummy head forms were developed in 2010 and implemented 

EuroNCAP. In order to provide pedestrian and cyclist safety and protect them from 

serious head and neck injuries, external airbags which are located under the hood and 

inflate at the base of the windscreen have been designed and installed in vehicles in 

2013 (Figure 2.7).  

 

Figure 2.7 External airbag performing during crash test with pedestrian dummy on 

cycle (TNO, 2012) 

 Q10 child dummy has updated regarding handling and durability in 2013. 

Additional design improvements have been made based on tests conducted around 
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the world.  EuroNCAP decided on the application of Q6 and Q10 dummies. Q1.5, 

Q3, Q6 and Q10 are implemented in EuroNCAP protocol in 2013.  

Research and development in motor vehicle occupant safety still continues 

increasingly using Anthropomorphic Test Devices. Historical development of 

automotive safety design and its relations with physical crash test dummies are 

examined so far. Chronological successive development of ATDs and automotive 

safety is illustrated in Table 2.1. 

Computational crash test simulations have also played important role in 

vehicle safety and their evolution is the subject of the next section. 

Table 2.1 Chronological development of anthropomorphic test devices and 

automotive safety design  
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2.6  Evolution of Computational Occupant Modelling 

Computational occupant models and crash test simulations have become important 

tools and useful alternative to physical models in analysing biomechanical response 

and understanding injury mechanisms of occupants. With an advanced computational 

occupant model, stresses, strains on deformed shapes of bodies and internal organs 

can be predicted, details of injuries to the head, neck, thorax and extremities can be 

analysed. Non-standard vehicle occupants such as a pregnant woman and a fetus can 

be represented to investigate possible fetus fatalities in road accidents. 

 Computational crash test simulations can provide additional information that 

is not available in experimental physical tests. Several crash scenarios can be 

analysed quickly and inexpensively with computational modelling. A number of 

different parameters that cannot be measured on experimental testing can be 

calculated before designing physical models. Repeatable and controlled tests are very 

useful for car manufacturers. 

 Biofidelity of computational occupant model depends on how well each 

mechanism is defined and modelled. Accurate and detailed representation of 

occupant geometry and material properties are very important factors to characterize 

the model. 

 Three basic types of computational model have been developed to represent 

the occupant body in road accidents; lumped mass models, multibody models and 

finite element models. Lumped mass models represent the human body as one or 

several masses connected to a structure with springs and dampers. The most widely 

used type for simulating occupant dynamics are multibody models. 

 Technical specifications such as instrumentation, dimensions, and assembly 

weights of physical crash test dummies are important to develop computational 

dummy models. Several databases about specifications of ATDs have been collected 

since 1980s. One of the most popular computational dummy models is the Hybrid III 

crash dummy. A series of sled test simulations using the computational model of 

Hybrid III dummy has been conducted since 1985s (Prasad, 1990). As result of the 

tests, a number of recommendations were made for further improvements of the 
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Hybrid III dummy model (Obergefell et al., 1988; Wismans and Hermans, 1988; 

Khatua et al., 1988). Figure 2.8 illustrates some of the validated standard multibody 

dummy models currently available with the MADYMO software. The anthropometry 

of the adult occupant models are obtained from the database of the RAMSIS 

software package (RAMSIS, 1997). The Western European population aged 18 to 70 

years of 1984 is used. For the mid-size male occupant model simply medium 

typologies are selected for height, weight and sitting height. For the small female a 

very short and very slim model is selected in RAMSIS. The resulting body mass and 

sitting height are considered to be somewhat extreme also in comparison to the small 

female Hybrid III crash dummy.  

 

Figure 2.8 Multibody crash test dummy models, Hybrid III dummy family 

(MADYMO databases, 2010) 

 With the development of computer technology, finite element modelling of 

occupant body became very popular. This method provides deformations and can 

define the state of stress on occupant. Full occupant body models were designed in 

order to study the full body behaviour in a road accident and to improve vehicle 

safety systems. Lizee et al., (1998) developed a 3D finite element model of seated 

50th percentile adult male occupant body (Figure 2.9). Weight and inertial 

parameters were adjusted. The external surface of the model was based on Robbins' 

study for the 50th percentile US male in the driving position (Robbins, et al., 1983). 

However, the model was not fully validated to predict the injuries. According to 
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Lizee et al., this human body model is believed much more biofidelic tool compared 

to mechanical dummies or to their models. 

 

 

Figure 2.9 Finite element model of full occupant body, internal and external anatomy 

(Lizee et al., 1998) 

 There are specific advantages and disadvantages working with the multibody 

method or the finite element method. With multibody method, complex kinematic 

connections in the human body or in the vehicle structure can be simulated very 

efficiently. However, with the finite element method, local structural stress 

distributions and deformations can be predicted. Injury mechanisms in the human 

body parts can be studied. Finite element model simulations require large CPU times 

than multibody crash simulation. Finite element method accuracy and reliability are 

also limited because it is difficult to develop highly detailed human body model and 

its material properties realistically. 

2.6.1  Computational Dummy Modelling 

Anthropomorphic test devices can be numerically modelled and designed with 

limited accuracy and usually represent an average stature of the human body. 

Computational dummy models have become the standard tool to represent the human 

body in occupant safety simulations. ATDs are used to validate the computer models. 
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The use of computational dummy models instead of using physical crash test 

dummies is a time and money saving method. Various test conditions can be 

reproduced accurately in a number of different crash scenarios. 

 Validated crash test dummy design specifications are important requirements 

for the effective computational dummy modelling. Model databases have been 

developed for many of the physical crash test dummies. For instance, Hybrid III 

dummy model data sets were developed and validated by Kaleps et al., (1988); 

Whitestone and Kaleps (1988) as a first computational dummy model. 

Computational Hybrid III dummy model is widely used in crash environment. 

MADYMO, ATB (Articulated Total Body) and many model databases have been 

developed with Hybrid III dummy. In order to validate the computational dummy 

model designed at ATB, simulation results were compared with frontal impact sled 

test data of Hybrid III physical dummy (Obergefell et al., 1988; Prasad 1988). 

 Several different finite element models of ATDs have been developed with 

varying degree of biofidelity. For instance, models of SID (Side Impact Dummy) 

have been developed and applied for different crash scenarios (Midoun et al., 1993; 

Motojima et al., 1997). Kirkpatrick et al., (1993) developed a finite element SID 

model to understand how details of physical dummy design affect the measurement 

of injury criteria in a complex crash test (Figure 2.10). The SID model was validated 

with comparing pendulum side impact experimental tests results on the ribs and 

lower spine. However, more expansive comparisons between simulation and 

experiment tests were necessary. The effect of material properties and dummy design 

had to be improved. 
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Figure 2.10 Mesh for the SID finite element model, (Overall mesh, Foam arm inserts, 

rib wrap, and shoulder pads, Ribs and damping material) (Kirkpatrick et al., 1993) 

 In 1995, variety of 2D and 3D dummy models were created using MADYMO 

software. In addition to the Hybrid III family, Hybrid II, EuroSID I, SID, BioSID, 

child dummy models, TNO P3/4, TNO P3 and TNOP6 and other computational 

dummy models have been developed (TNO, 1995). 

 Hybrid III 5th percentile female dummy is the standard device to represent 

small adult occupants for frontal crash impacts. When the accuracy requirements 

have increased, a new model for this physical dummy has been developed using 

more powerful multibody techniques such as facet surfaces and deformable bodies 

(Figure 2.11) (Made et al., 2001). The deformable thorax is described more 

precisely, dummy geometry is more accurate and load transfer through contacts is 

handled more realistically. However, the model is slower than ellipsoid models and a 

higher level of modelling detail is necessary to increase confidence in results 

obtained from experimental tests. 
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Figure 2.11 Facet Hybrid III 5th percentile model and physical Hybrid III 5th (FTSS, 

2012) 

 In order to develop and validate an NCAP simulation using LS-DYNA3D, in 

1996, a finite element model of a Ford Taurus vehicle in full scale, a Hybrid III 

dummy, and a driver side airbag were designed and combined to make accurate 

simulation tests (Figure 2.12) (Marzougui et al., 1996). While the components of the 

thorax and neck assemblies were modelled with flexible parts, rest of the dummy 

parts were modelled with rigid body parts.  

 The geometry of the Hybrid III dummy model was obtained from design 

drawings of the physical Hybrid III dummy. The joints at the ankles, hips, elbows, 

shoulders, knees, and wrists are modelled with spherical or cylindrical rigid body 

joints. Properties of each rigid body joint are defined with simulation of the actual 

dummy. Table inlaid in Figure 2.12 shows the model information of the dummy 

model. However, more developments at several areas of the model are necessary to 

be used for accurate injury assessment such as HIC (Head Injury Criteria), head and 

chest accelerations. More detailed dummy mesh, contact algorithms and advanced 

material models were necessary for better prediction and assessment of occupant 

injury. 
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.  

Figure 2.12 Hybrid III 50th percentile LS-DYNA3D FE model (Marzougui et al., 

1996) 

 In 2005, Hybrid III 50th percentile Dummy LS-DYNA finite element model 

was developed to represent physical dummy more accurately (Figure 2.13) (FT-

Arup, 2005). The Hybrid III 50th percentile dummy represents an average 50th 

percentile adult US male occupant in mass and inertia. Highly accurate strain and 

stress data can be obtained from this dummy model. However, the model has very 

high CPU time consumption. Modification of the model is very difficult to perform, 

because modification affects validity of the model. Table 2.2 shows details of the 

Hybrid III dummy model 2005. Number of elements that used at 2005 Hybrid III 

dummy model is approximately 9 times higher than 1996 Hybrid III dummy model. 

 

Item Total Number 

Parts 50 

Nodes 14 200 

Shell Elements 7,576 

Brick elements 4, 479 
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Figure 2.13 Hybrid III 50th Percentile Dummy LS-DYNA Finite Element Model 

(FT-Arup, 2005) 

 

Table 2.2 Hybrid III dummy model details (FT-Arup, 2005) 

Item Total Number 

Part, Section and 

Material 331 

Nodes 64802 

Elements: total 89978 

Beam 370 

Shell 43018 

Solid 46574 

Joint 32 

 

 The EuroSID-2 finite element model has been developed to represent 

behaviour of EuroSID-2 dummy (Schuster et al., 2004) used to assess side impact 

injuries of occupants (Figure 2.14). The EuroSID-2 dummy model has very fine 

mesh. Strain and stress data can be obtained from the FE model. The model has high 

CPU consumption and modification of it is very difficult. 
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Figure 2.14 EuroSID-2 Finite Element Model and details (Schuster et al., 2004) 

 Sankar, et al. (2008) developed the BioRID-2 (Bio Rear Impact Dummy) 

finite element model at Abaqus software (Figure 2.15). The model contains fully 

articulated spine in the sagittal plane composed of 24 vertebrae connected with 

joints. In order to study BioRID-2 flexion/extension and retraction whiplash modes, 

numerous connector elements and advanced material models were used. Although 

the model represents the BioRID-2 physical dummy, a number of improvements 

were necessary such as the definition of neck forces and moments. 

 

 

Figure 2.15 Abaqus BioRID-2 crash dummy model and flexion/extension and 

retraction whiplash modes (Sankar et al., 2008) 

Item Total N 

Nodes 80 041 

Hexahedron elem 24942 

Tetrahedron elem 97114 

Beam elem 218 

Shell elem 64724 

Discrete elem 12 
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 Working with numerical dummies has a number of disadvantages. In an 

accident, assessment and prediction of injury risk on human body are important. 

Computational dummy model anatomy is very different than real human anatomy. 

Therefore, assessment and prediction of injuries are often limited and not accurate 

enough. Moreover, representation of large deformations of the internal organs in an 

accident is difficult. Vehicles tested with dummies can pass the requirements and can 

be safe for dummies but cannot be safe for vulnerable human occupants.   

2.6.2  Computational Human Modelling 

Computational human body models are used for vehicle safety design and play 

important role to simulate motor vehicle accidents within the last decade. While 

computational physical dummy models simulate their metallic, plastic and rubber 

parts, computational human models simulate the response of internal organs, soft 

tissues, and bones that humans are made of. Using of computational human models 

can have a number of advantages over computational dummy models. 

 Simulation models of the human body are usually based on multibody 

methods and/or on finite element techniques. With multibody modelling approach, 

complex dynamic systems with kinematic connections such as in the human body 

can be simulated efficiently. Computational modelling of the real human body allows 

the study of different aspects including body posture, muscular, body size, and 

internal organs activities, and post fracture response. They also offer significant 

advantages such as the prediction of injury criteria. Especially, finite element human 

modelling method plays an important role in improving our understanding of the 

injury mechanisms involved during crash events. With this method, local 

deformations and stresses can be described in a more biofidelic way. When injury 

mechanisms of human body are understood, more biofidelic injury criteria can be 

developed and more reliable injury tolerance level can be identified. If validated 

computational human body models can be created, establishment of injury criteria 

will depend more on finite element model and it is expected that the need for tests 

with human cadavers, animals and physical dummies will be reduced. 
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 Development of a computational human body model is much more difficult 

than developing a computational dummy model, because of the lack of body tissue 

material data and the lack of reliable joint properties. Furthermore, creation of a 

finite element human model is time consuming, and biological tissue response are 

often non-linear. Because of large CPU time consumption, changing design 

parameters for optimization studies is difficult to perform. 

 A number of studies have been performed in the computational human body 

modelling since 1960s. The first of rigid multibody models that contained eight 

masses was proposed by McHenry (1963). McHenry developed one of the early 

human CVS (Crash Victim Simulator) models (Figure 2.16). Human body and 

restraint system are represented in this simulation. Vehicle is two-dimensional. The 

human or physical dummy is treated as an articulated assembly of rigid-mass 

segments consisting of head, torso, and extremities for purpose of determining 

vehicle clearances and body acceleration vectors. The model illustrated in Figure 

2.16 includes the effects of some system nonlinearities, such as varying belt 

angularity, seat cushion deflection and friction, slack, and variations in the effective 

inertia of the articulated body. A more sophisticated 2D model was later developed 

by McHenry and Naab (1966). 

 

Figure 2.16 Multibody model, for frontal collisions (McHenry, 1963) 

 In many crash environments and especially for oblique impacts, two-

dimensional human models were inadequate to simulate these crashes. For instance, 



Chapter 2                                                                                        Evolution of the ATDs Computational Modelling 

48 

three-point seat belt is asymmetric. Therefore, more comprehensive human body and 

its environment simulation were necessary for more realistic crash simulations.    

 In 1970, a three-dimensional occupant model, named HSRI-3D, with three 

mass-segments was generated by Robbins (1970). It was a simple model with three 

bodies. However, only the forces that were generated by impact of the bodies could 

be simulated. Two years later, the model was expanded to include six rigid bodies 

(Robbins et al., 1972). 

 Robbins et al., (1974) developed a two-dimensional crash victim simulation 

model which was called MVMA-2D. Figure 2.17 illustrates MVMA-2D occupant 

simulation linkage system. There were eight rigid, two flexible segments and nine 

masses. The neck and shoulder were modelled by elements. These two features of the 

MVMA-2D model are different than other CVSs. 

 

Figure 2.17 MVMA-2D occupant simulation linkage system (Robbins et al., 1974) 

 These initial developments were followed by several more general occupant 

simulation tools. One of the best known three-dimensional models is, named 

Calspan, CAL-3D occupant simulation model or CVS model developed by Bartz 

(1971). The Calspan model had 15 bodies to simulate the human body frame. The 

bodies were described with ellipsoids connected by spherical and pin joints. 

Articulated Total Body (ATB) simulation model was created with some 

modifications of CVS by Fleck and Butler (1975).  
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 The TNO transportation research institute developed MADAMO two-

dimensional of three-dimensional occupant model respectively (Wismans and 

Maltha, 1981). 3D model consisted of a number of ellipsoids connected with 

spherical and hinge joints to represent the human frame. Vehicle interior was also 

described with surfaces. In 1983, the first version of MADYMO program for 

external use, version 3, was released. In MADYMO, the equations of motion for 

human body structure composed of rigid bodies connected by joints such as hinge or 

ball-socket type. MADYMO3D could also describe the motion in three dimensions.  

 Table 2.3 shows a summary of the computational human models developed 

until 1981 and some of their features. Although computational human models 

especially three-dimensional were very sophisticated for their time, most of them 

were not validated with experimental test data. The modelling of the joint properties 

and the soft tissues were very crude and inaccurate. Therefore, prediction of injury 

severity and mechanisms were almost impossible.  In addition to that, modelling 

programs were not user friendly. 

Table 2.3 Computational human models until 1981 

Model Name 

Degree 

of 

Freedom 

Body 

segment 

shape 

Analytical 

formulation 
Developer 

CAL 2D 7 Rods Lagrangian McHenry (1963) Calspan 

CAL 2D 11 Spheres Lagrangian 
McHenry and Naab 

(1966) Calspan 

HSRI 3D 12 
Ellipsoids, 

cylinders 
Lagrangian Robbins (1970) 

HSRI 3D 14 
Ellipsoids, 

cylinders 
Lagrangian Robbins et al. (1972) 

CAL 3D 40 Ellipsoids Newtonian 
Bartz et al. (1972) 

Calspan 

MVMA 2D 10 Spheres Lagrangian Robbins et al. (1974) 

CAL 3D N Ellipsoids Newtonian 
Fleck and Butler (1975) 

ATB 

MADAMO 

2D/3D 
N Ellipsoids Lagrangian 

Wismans, Maltha et al., 

(1979, 1981) 
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 Extensive data is necessary to describe human body geometry and inertial 

properties. Dealing with the large variations in human body geometries is challenge 

issue. Therefore, a number of multibody approach methods have been developed to 

generate various human body models. In 1983, GEBOD (Generator of BODy Data) 

was developed to generate geometric and inertia properties for 15 or 17 segments 

ATB or MADYMO multibody model (Baughman, 1983). Although 32 body 

measurements were specified by user or generated by GEBOD for set of geometrical 

parameters of occupant, body segments were approximated by simple geometrical 

volumes. Furthermore, correlation between body dimensions was disregarded at the 

GEBOD. The RAMSIS (1994) software has particularly been developed for 

ergonomic analyses. The RAMSIS model describes the human body with rigid 

bodies connected by kinematic joints and the human skin is described as triangular 

surfaces. RAMSIS models can also be translated into MADYMO models (Figure 

2.18) (Happee et al., 1998). 

 

Figure 2.18 MADYMO human models of various body sizes generated from the 

RAMSIS model, from left to right:3 year old child, 5th percentile small female, 50th 

percentile male, 95th percentile large male (Happee et al., 1998) 

 The RAMSIS models were to represent a human body for forward and 

rearward loading. However, abdomen area of the model was not biofidelic enough. 

Shoulder model had also lack of dynamic and detailed data. Furthermore, the model 

was not validated with seat belt and airbags interactions. 
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 50th percentile finite element 3D human body model was developed by Lizee 

et al., (1998) in the RADIOSS program package. The geometry of the seated 50th 

percentile US male was chosen for the model. The model was created by comparing 

anatomical data and test results. The neck, shoulder, thorax and pelvis were 

represented in detail. According to authors, this model could reproduce cadaver 

responses in frontal, oblique, lateral and some types of rear impact. However, the 

model was very simple to predict injury mechanisms directly. 

 In order to simulate injury mechanisms of occupant during vehicle side 

impact, a finite element model of the human body was created with ABAQUS FE 

codes by Jost and Nurick (1999) (Figure 2.19). The FE model consists of the 

skeleton bones, soft tissues representing skin, fat, muscles and internal organs. While 

pelvic and shoulder joints were modelled using solid elements, ligaments and 

muscles were represented with membrane elements. However, the finite element 

model shoulder impact prediction and experimental corridor test results were not 

satisfactory.  

 

Figure 2.19 Finite Element of skeleton and overall shape of human body (Jost and 

Nurick, 1999) 

 Happee et al., (1999) improved a mathematical human body model for lateral 

loading. The anthropometry of the human model presented was based on the 

RAMSIS database (Flugel, 1986; Geus, 1994). Since 1995, RAMSIS was distributed 

worldwide. More than 50% of all car manufacturers worldwide use RAMSIS to 
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design their cars. A 50th percentile male model using RAMSIS anthropomorphic 

database was converted to MADYMO. RAMSIS models have been developed for 

several population including Germany, USA/Canada, Japan/Korea. The German 

population age ranges from 18 to 59 was surveyed period between 1982 to 1984. 

Standing height, body mass, seating height and gender were the main stratification 

variables. The spine and thorax model was enhanced with additional degree of 

freedom and joint resistance models were added. In order to obtain omni-directional 

biofidelity, the torso and the head-neck systems were improved in more detail. While 

most of skeletal structures were modelled as rigid bodies, rib cage was modelled 

using flexible elements to define deformation. However, detailed human body model 

was necessary for analysis of injury mechanisms on material level. Figure 2.20 

shows 50th percentile male MADYMO human body model.  

 A 5th percentile small female human body model was also developed by 

Happee et al., (2000) with the same combination of modelling technique that uses 

rigid bodies for most segments and describes the thorax as a deformable structure.  

 

Figure 2.20 MADYMO human body model representing a 50th percentile male, 

spine, neck rigid bodies, restrained by finite element belts, with a passenger airbag 

(Happee et al., 2000) 

 With the rapid improvement in both computational power and non-linear 

finite element technology, a number of finite element body parts and whole human 

body models were developed between 2000 and 2003. However, there were only 

three whole human body models available; ESI’s H-Model (Choi et al., 1999), 
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Toyota’s THUMS (Total Human Model for Safety) (Oshita et al., 2002) and TNO’s 

HUMOS (Robin, 2001). 

 H-model is a finite element PamCrash code for 50th percentile male human 

body and it was conceived primarily to study injury mechanisms and to assess 

injuries of the human skeleton and organs during road accidents (Figure 2.21) (Choi 

et al., 1999). Anthropometric data set from Robbin's work (Robbin, 1983) were used 

to determine each segment, dynamic properties such as mass, location of centre of 

masses, and joint resistance. The H-model can adopt itself with a modular modelling 

approach that is multibody H-ARB (Human Articulated Rigid Body) model. In a 

crash simulation scenario, the H-ARB model assures a correct overall kinematic 

behaviour for omni-directional impacts.  

 

 

Figure 2.21 H-Model with skeleton and skin, 50th percentile male (Choi et al., 1999) 

 The H-ARB versions of the H-Models consist of articulated rigid body 

segments with flexible joints. In order to study the injury mechanisms during the 

impact load, internal body components were modelled separately and can be 

selectively added into the whole-body model.  

 HUMOS-1 project was developed between 1999 and 2001 in the European 

institutes (Robin, 2001). In the project, physical slicing of PMHS (Post Mortem 

Human Subject) in a sitting driver position technique was applied and slices were 

photographed and digitised. The main human body structures of the HUMOS-1 
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model were reconstructed using CAD software. The model includes skin, bones, 

muscles, and main organs such as lungs, heart, liver, kidneys, and intestine. The 

model was implemented with three commercially available dynamic crash codes 

(MADYMO, Pam-Crash and Radioss). Figure 2.22 illustrates HUMOS-1 model.  

 

 

Figure 2.22 Geometry acquisition result of the (a) whole body and the skeleton, (b) 

TNO HUMOS-1 full body FE model (c) HUMOS-1 thorax FE model, mid-sagittal 

section (Robin, 2001) 

 The HUMOS-1 model is very detailed; the geometrical definition of the 

model comes from a unique human cadaver subject that was not generic. While 

different segments of the model were validated, the whole body model was not 

validated. Muscle contribution needed to be investigated for the low speed impact 

conditions. In addition to that, injury prediction capabilities of the model were 

limited due to the lack of knowledge of the injury mechanisms and the models 

limited complex internal organs such as kidneys, intestine and heart.  

 Finite element THUMS model was developed in LS-DYNA codes to 

simulate responses of the human body sustaining impact loads and to study injury 

mechanisms (Oshita et al., 2002) (Figure 2.23). The whole body can be deformable 

and represents 50th percentile American male (AM50) in a seating posture based on 

pedestrian and passenger since 1997. The THUMS model has a very detailed skeletal 

structure with detailed representation of the cortical and the spongy bones using shell 
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and volume elements. The joints, ligaments, and tendons are modelled by using shell 

elements. The lung and heart are modelled as a single continuum body with solid 

elements. Skin and muscles that cover the bones are modelled with solid elements. 

The spine including the vertebrae, the intervertebral discs and muscles are also 

modelled using beam or discrete elements. In order to realize a practical level of 

computational time, only the sections expected to receive damage were selected for 

detailed modelling for analysis. The rest of the human body is modelled in a rough 

mode.  

 

 

Figure 2.23 Details of the THUMS model; skin, skeletal structure, spinal and 

muscular system and internal organs (Oshita et al., 2002) 

 The overall force-deflection response of the THUMS model showed a good 

agreement with the experimental corridors. However, the unloading path of the 

model response deviated from some of the experimental corridors (Oshita et al., 

2002). No active muscles were considered within the model. The responses of the 

internal organs cannot be predicted accurately with the THUMS model.  

 HUMOS-2 models were developed to represent a large range of the European 

population (Vezin and Verriest, 2005). Scaling software was developed to define 5th 

and 95th percentile occupant models from 50th percentile model (Figure 2.24). 

Scaling tool was established from geometric data collected on standing and sitting 

human volunteers. European databases of anthropometry measurements were 

analyzed in order to define the external geometry of the human body corresponding 
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to these percentiles. In order to represent the user population from the 5th percentile 

female to the 95th percentile male, three dimensional external and internal 

measurements data of human body are necessary. Data collected includes age, sex, 

weight, lengths, heights and circumferences.  In addition to that, pedestrian models 

were also developed. In HUMOS-2, effect of muscle tone, mechanical properties of 

soft tissues and the whole body response for realistic impact conditions were 

investigated. It was identified that the abdomen area and muscle tone needed to be 

improved.  

 

 

Figure 2.24 From left to right; 5th, 50th, and 95th percentile HUMOS-2 models 

obtained with scaling tool (Vezin et al., 2005) 

 JAMA (Japan Automotive Manufacturers Association) human body models 

were developed using Pam-Crash and LS-DYNA codes to investigate pedestrian and 

occupants during road accidents (Figure 2.25) (Sugimoto et al., 2005). The 

pedestrian model was designed based on both the THUMS and the H-model. While 

upper half of the body was THUMS model, the H-model was used for the lower half 

of the body. Posture of the occupant model was changed to develop pedestrian 

model.  
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Figure 2.25 Existing human body models in Japan, (a)THUMS, (b) Pedestrian model 

based on H-model, (c) JAMA pedestrian model (external and internal) (Sugimoto et 

al., 2005) 

 In 2005, Zhijijan and Gopal developed a finite element human body model to 

investigate restraint systems and develop applications (Figure 2.26) (Zhao and 

Narwani, 2005). The 50th percentile finite element male model consists of details of 

the major tissues and human skeleton such as skull, pelvis, clavicle, ribs, and 

shoulder bones, spinal column, neck muscles, joint ligaments, and joints, lungs, 

heart, aorta, liver, and kidneys. The human body represents an average adult male 

with weight of 75kg.  However, lower and upper extremities were integrated as rigid 

bodies from Hybrid III. Injury prediction of the soft tissues was not possible at this 

model.  

 

 

Figure 2.26 50th percentile male finite element human model and its simulated chest 

shapes at 96ms (Zhao and Narwani, 2005) 
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 Developments in the finite element human body modelling have shown that 

in order to investigate injury mechanisms and severity of injuries in the material level 

on the occupants during road accidents, well defined and detailed interior and 

exterior human body model is necessary. Furthermore, it is also understood that 

muscle bracing influences the results of an impact crash test simulations.  

 In 2006, Behr et al. developed a computational lower limb model, including 

muscle structure and bracing capability on a European 50th percentile single human 

anthropometry. MRI image analysis method was used to extract the three-

dimensional geometry of the musculoskeletal system. The coxal bone was taken 

from the HUMOS database. The muscles were modelled with 3-D viscoelastic solids, 

guided in the direction of fibres with a set of springs (Figure 2.27).  The volunteer 

was 178 cm height and 78 kg weight, and was very close to the European 50th 

percentile. However, the model is only limited to lower limb modelling. The frontal 

impact simulations were performed using computational 50th percentile Hybrid III 

dummy model.  

 

 

Figure 2.27 Geometry acquisition process and meshing of skeletal muscles. The 

muscle passive mass component is modelled with viscoelastic solids merged to a set 

of action lines (Behr et al., 2006) 

 In order to create computational dummy, human and their environment 

models, some of the most popular software packages are; MADYMO, CAL3D/ATB, 

MVMA-2D, RAMSIS, LS-DYNA, RADIOSS, PAM CRASH. Each of these 

software packages uses some combination of rigid bodies, deformable elements, 

springs, and dampers to represent the human or dummy body. The equations of 
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motion are solved for system analysis by these software packages. MADYMO 

software offers two categories of models; human and ATD models. These two 

categories each have three types of model: Ellipsoid models, Facet models and Finite 

Element models (Figure 2.28). The characteristics of each type are given in the 

following Table 2.4. 

 

Figure 2.28 Hybrid III 5th percentile female, three model types; (a) Ellipsoid, (b) 

Facet, (c) Finite element (MADYMO database, 2010)  
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Table 2.4 Characteristics of MADYMO Human and Dummy Models 

ELLIPSOID MODELS FACET MODELS FE MODELS 

Geometry is represented 

with ellipsoids, cylinders 

and planes 

 

 

Only rigid bodies 

 

 

 

Inertial proper. 

incorporated in the rigid 

bodies 

 

Particularly suitable for 

concept, optimization 

and extensive parameter 

sensitivity studies 

 

Less CPU time, can be 

used in a facet or FE 

environment 

Geometry is represented 

by rigid mesh, some 

deformable bodies 

 

 

The outer surfaces of the 

model are described with 

meshes of shell–type 

 

The facets are fully 

connected to rigid and/or 

deformable bodies 

 

More realistic and detailed 

than ellipsoid models 

 

 

Very efficient CPU time 

compared to FE models. 

The most detailed and 

deformable bodies. Local 

effects of interaction and 

local material deformations 

are of interest 

 

Deformable bodies 

modelled with finite 

elements 

 

Finite elements are created 

with nodes and material 

properties are defined  

 

Less suitable for concept 

studies but more suitable 

method to study biofidelic 

and detailed modelling 

 

Longer CPU time than 

ellipsoid and facet models 
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 A number of different crash test dummy numerical models have been created 

and fully integrated into the crash test simulation procedures since 1990s. Figure 

2.29 illustrates the finite element Hybrid III family dummy models. They have 

become standard tools for occupant safety simulations. However, anatomy of crash 

test dummies is not exactly the same as the human body. Computer models of crash 

test dummies are also much more limited and simple than ATDs in terms of 

representing biofidelic human body. Computational modelling of the real human 

body offers improved biofidelity, because human anatomy, anthropomorphic 

variations and posture can be taken into account more accurately. Injury mechanisms 

of the skeleton and soft tissues and internal organs can be studied with a well-

developed numerical human body model. However, this modelling process is 

considerably more complex. Defining soft tissue material properties and structures 

present difficulties in computational human body modelling. Figure 2.30 shows facet 

real human body models. 

 

Figure 2.29 Hybrid III dummy family FE models (MADYMO Model Manual, 2010) 

 

Figure 2.30 Human body facet models (MADYMO Model Manual, 2010) 



Chapter 2                                                                                        Evolution of the ATDs Computational Modelling 

62 

2.7  Conclusions 

Car manufacturers, research institutes and governments have been working to 

improve vehicle safety for more than 80 years. Development history of physical 

crash test dummies and their relations to vehicle safety design were reviewed 

critically.  In the last 60 years, vehicle safety has been developed significantly. 

Evolution of computational crash test modelling using virtual dummy and human 

models was investigated. 

 Research and investigations are continuously directed to understand the 

injuries to human body in motor vehicle accidents. Car manufacturers, researchers 

and investigators have found new techniques to understand the mechanics involved 

in accidents resulting in injuries. In the field of vehicle safety research, simulating 

vehicle crash tests to study the effects on the human body is vital in order to evaluate 

and improve safety devices and occupant environment. 

 Experimental crash tests can anticipate safety problems and respond to a 

problem as an early warning to users. For instance, crash tests with ATDs showed 

that airbags in vehicles can be dangerous for some occupants such as children and 

small size passengers. As a result, children sit in the rear child car seats and special 

airbag systems are developed. Crash test dummies are standardized data collection 

devices to physically test deformations on the vehicles and injuries on occupants.  

 Current restraint and vehicle safety system designs consider small percentage 

of the variation. Versatility and efficiency of computational modelling establish a 

new alternative method for automotive safety designers. 

 This study is also closely related to investigate computational and physical 

pregnant occupant models and understand their development methods to design more 

realistic 'Expecting', which will be explained in the next chapter. 
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CHAPTER 3  

PREGNANT OCCUPANT MODELS 

 

 

3.1  Introduction 

 Understanding how pregnant occupant and their fetuses are injured in motor 

vehicle accidents may assist designers to improve protection for pregnant women and 

their fetuses. Several researchers investigated seat belt effectiveness on pregnant 

baboons and monkeys, conducted in the late 1960’s and early 1970’s women (Crosby 

et al., 1968, 1972). The use of seat belts during pregnancy is a major safety concern 

(Eurostat, 2011). On the other hand, in the experimental crash tests, the 50th 

percentile male dummy is often defined as the standard and used as the main test 

object of investigations. Lack of representation of different shapes and sizes of 

occupants may result in unintended injuries and problems. In order to minimize 

pregnant occupant and fetus injuries or fatalities, new assessment tools, such as 

anthropomorphic test devices are developed in the mid 90’s and early 2000. Two 

types of pregnant dummies were developed by Pearlman and Viano (1996) and Rupp 

et al., (2001). Both crash test dummies were tested utilizing several restraint 
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conditions. Their findings agree with results from animal testing regarding the use of 

a three-point belt. Tests with the crash test dummies are costly and do not show the 

biofidelity of a human occupant. On the other hand, for a pregnant occupant and her 

fetus safety, real collision data is very limited and experimental tests with pregnant 

cadavers or volunteers are not viable. In the last decade, computational pregnant 

occupant modelling has become a very effective method for vehicle safety tests. 

Computational modelling of pregnant occupants provides a broad basis for studying 

factors that could prevent fetal fatalities from motor vehicle accidents.  

3.2  Anatomy of the Pregnant Women 

A number of changes occur a female body during pregnancy. The fetus starts to 

develop at around the ninth week of gestation. Pregnancy lasts approximately 9-10 

months, around 40 weeks. This period is divided into tree trimester periods for 

convenience and simplify the different stages of prenatal development. These periods 

are defined with the physiology of fetal growth.  

 The first trimester represents the first twelve weeks of fetus’ fetal life. In this 

period, primary fetal development occurs. The second trimester ends at 28 weeks. 

Pregnant women gains approximately 6kg and the fetus increases in mass about 0.64 

kg. Uterus enlarges above pelvis and produces alteration in pregnant woman’s centre 

of gravity because of carrying an increasing amount of weight in front. Height of the 

fetus from crown to rump is approximately 82-100 mm. At term about 38 weeks of 

gestation, pregnant women gains approximately 5 kg and weight of the fetus reaches 

about 3.2 kg and rest contains amniotic fluid and placenta (Klossner, 2005; S 

Standing, 2005). 

 The anatomy of the pregnant abdomen is illustrated in Figure 3.1. In 95% of 

pregnancies, the fetus is shown in an upside-down position with its head downwards 

nestled within the confines of the pelvis bone (Acar and Lopik, 2012). The uterus is a 

muscular organ and grows dramatically during pregnancy to accommodate the fetus. 

The uterus increases in weight significantly and displaces other abdominal organs 

upward. By the 36th week of gestation, uterine fundus reaches level of the 
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xiphisternum and uterine wall thickness becomes approximately 10 mm (Acar and 

Lopik, 2012). Anthony et al., (2008) states that thickness measurements vary 

regional for uterine wall and placenta. Size of the uterus in the 3rd trimester of 

pregnancy is determined by the size of the fetus. The uterus also contains the 

amniotic fluid and placenta. The fetus is surrounded by amniotic fluid which allows 

physically cushions and free movement to the fetus. Approximately 98-99% of 

amniotic fluid is water (Fried, 1978). 

 

Figure 3.1 Anatomy of the pregnant abdomen (Acar and Lopik, 2009) 

 The placenta is essentially a large vascular fetal organ and represents the link 

between the developing fetus and the mother. It covers around a quarter of the inner 

surface of the uterus. In generally, it is located at the fundus (top) of the uterus in 

around 80% of pregnancies (Pepperell et al., 1977 cited in Acar and Lopik, 2009). 

The placenta has its final thickness and shape after 16 weeks of pregnancy. However, 

growth of placenta continues by the meaning of circumferential enlargements 

throughout second and third trimester (Chervenak and Kurjak, 2003). The placenta 

has a discoidal circular shape. The placenta attaches to the internal surface of the 

uterus and connects the fetus to the mother. This interface is named uteroplacental 

interface (UPI). The uteroplacental interface is thought to be weaker than either the 

uterine or placental tissue.  
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3.3  Anthropometry of Seated Pregnant Occupant 

A series of physical changes effect pregnant women safety. During pregnancy 

several changes occur such as at the abdominal region and throughout the body (Acar 

and Weekes, 2005). In order to fit and position to the seat belt properly during 

pregnancy, changes in the hip, abdomen and chest regions are particularly important 

(Acar and Weekes, 2005). The analysis of the anthropometry of pregnant women 

throughout the entire body, specifically for the car manufacturing industry, is 

presented by Acar and Weekes (2006). Weight, stature, trunk region, head and 

shoulders regions and limbs are classified in this study (Figure 3.2).  

 

Figure 3.2 Anthropomorphic measurements recorded from pregnant women with 

particular relevance to safety aspects of vehicle travel (Acar and Weekes, 2005)  

 Culver and Viano, (1990) developed an anthropomorphic description using 

ellipses for the abdominal region of women at three, six, and nine months of 

pregnancy. The data were developed for women of 5th, 50th, and 95th percentile 

size. However, ellipses were produced scaling based on stature and the assumption 

that the abdominal size was proportional to stature. The correct position of the seat 

belt for pregnant women is defined by the NHTSA (2002), DfT (2003), 'Think road 

safety' (2013) guidelines and Acar and Weekes (2013), which briefly states that "The 
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lap belt should go across the hips, fitting comfortably under the bump, while the 

diagonal strap should be placed between the breasts and around the bump." (Figure 

3.3). 

 

Figure 3.3 Correct seat belt position during pregnancy as advised by DfT and 

NHTSA (Acar et al., 2004)  

 During pregnancy, the most obvious area of change is the abdomen. The 

mean abdominal depth is 359.5 mm for pregnant women measured in the third 

trimester (DTI, 1998). The fetus does not have a major effect on abdominal shape 

prior to the trimester of pregnancy. However, after this period, the fetus does have 

significant effect on abdominal size and causes to close to steering wheel (Figure 

3.4) (Culver and Viano, 1990). Acar and Weekes (2005) found that 11% of pregnant 

occupants were seated with less than 2.5 cm between the abdomen and the steering 

wheel. Closeness to the steering wheel may cause fetus injuries and fatalities. 

 

Figure 3.4 Lateral view of 5th percentile female seated women with 3-, 6-, and 9-

month fetal ellipses, and frontal view of fetal ellipse at term (adopted from Culver 

and Viano, 1990)  
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 The hips and breasts are two other main areas of change during pregnancy. 

For the women measured in the third trimester the mean standing hip circumference 

is 1155.1 mm, and the mean standing chest circumference is 1046.5 mm. These are 

118.1 mm and 38.7 mm larger respectively than for non-pregnant women's 

anthropomorphic data (DTI, 1998). Acar and Lopik, (2009) stated that for pregnant 

women in the third trimester, it is important to use anthropomorphic data 

measurements taken from the seated posture in designs. The chest and abdominal 

sizes are also greater in seated position than in standing.  

3.4  Injuries Unique to Pregnant Occupants in Vehicle Crashes 

In the case of an crash impact, the risks to the fetus have been explained in medical 

studies as being; uterine injury (Pearlman 1990), placental abruption (Pepperell et al., 

1977; Bunai et al., 2000), maternal death (Crosby and Costille, 1971), direct fetal 

injury (Agran et al., 1987), fetomaternal transfusion (Goodwin and Breen, 1990), and 

preterm delivery (Pearlman et al., 1996; Hammond and Edmonds 1990). It has been 

estimated that placental abruption accounts for around 50 to 70% of all fetal deaths 

in motor vehicle accidents (Pearlman et al., 1990). Even relatively minor 

deformation forces can shear a placenta from the uterus (Pearlman et al., 1990). 

Placental abruption is where the placenta becomes partially or completely detached 

from the inner surface of the uterus due to failure of the uteroplacental interface. It is 

thought that, due to the different material properties between the uterus and placenta, 

large deformation of the uterus creates a shearing effect at the UPI (Uteroplacental 

Interface) and leads to separation of the uterus and placenta. The potential for large 

deformation of the uterus during an automobile impact is high due to the likelihood 

of impact with the steering wheel or direct loading from the vehicle safety systems 

such as the seat belt of airbag. It is also possible that inertial effects during an 

acceleration impact could cause the fetus to strike the placenta causing large strains 

that could lead to placental separation. Quasi-static testing of uterus-placenta tissue 

samples has found that the UPI fails when a strain of around 0.6 is reached in the 

uterus (Rupp et al., 2001). 
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 Direct fetal injuries are less common, occurring in less than 10% of 

automobile crashes involving pregnant occupants (Klinich et al., 1999a). The fetus 

sometimes sustains injury from direct loading of the abdomen as the protective 

cavity of the pregnant occupant abdominal-pelvic region is compromised by pelvic 

fracture or uterine rupture. It is also hypothesized that the most frequently injured 

fetal body region is the head, because it is the largest part of the fetus body. It is also 

thought that skull fracture most often occurs (Klinich et al., 1999a). 

 Klinich et al., (1999) provided information on 120 automotive crashes 

involving pregnant occupants. Of the 120 cases, nine involve both maternal and fetal 

death. The fetus did not survive in 74 cases. The distribution of crash types of 

pregnant women was reported. While the majority of crashes were frontal impacts 

(61%, n=74), side impacts were 25%, (n=30). Rollover crashes were only 3%.   

Pregnant occupant was a driver at 55%, n=66 of all crashes. The distribution of 

restraint use of the pregnant occupants were reported. Approximately half of 

pregnant occupants (49%, n=59) were unrestrained. However, the cases date back to 

the 1960's. In this investigation, the most frequent outcome is placenta injury only 

and none of the fetuses in these cases survived. 69 cases involved some injury to the 

placenta or the placenta/uterine interface. Of these 69 cases, most of the impacts 

were frontal (n=46), 12 were side impacts, 3 were rollovers, 2 each were rear or 

multiple impacts and 4 impact types were not reported. 

 Klinich et al., (1999) reported in their investigation the majority of cases with 

placental abruption, the pregnant occupant was unrestrained (n=48 out of 69). Only 

one pregnant occupant sustaining a placental abruption was restrained by both a 3-

point belt and a deploying frontal airbag. Cases with positive outcomes have the 

highest percentage of 3-point belt use and 3-point belt plus airbag use. 

 Weiss et al., (2011) did investigation on motor vehicle crashes during 

pregnancy. Motor vehicle police crash reports were linked to four years of birth and 

fetal death data. 5929 registered births and fetal deaths from 2002-2004 linking to a 

female driver crash report. Collision angles were mostly either frontal 35% or a rear-

end collision 34%. Rollover occurred in 2.6%. The mean travel speed upon impact 

was reported as 27.5 miles per hour. Police reported 10% unrestrained and 16.6% 
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unknown belt use status. Airbags were reported by the police to have deployed in 

17.1% of all crashes.    

3.5  Pregnant Occupant Modelling 

3.5.1  1st Generation Pregnancy Insert 

In terms of crash test dummies, two pregnancy inserts are improved for use with the 

Hybrid III 5th percentile (height and weight) female dummy (First Technology, 

Farminghton, MI). The dummy represents the adult female population based on USA 

anthropometry studies. The biomechanical impact responses are derived from scaling 

functions applied to the Hybrid III 50th dummy. Originally developed in 1988. In 

1996, the 1st generation pregnancy insert was placed in the pelvic region of the 

Hybrid III 5th percentile female dummy to represent uterus at 28 weeks (Pearlman 

and Viano, 1996) (Figure 3.5). The insert was composed of vinyl covered foam 

casting, with a silicone gel representing the amniotic fluid. In order to determine 

abdominal geometry, it was assumed that abdominal dimensions are proportional to 

maternal stature and weight. The fetus was a 50th percentile 28-week-size and 

composed of a separate head, neck, thorax and abdomen, and four extremities. 

Although placental abruption is one of the most common injuries seen in pregnant 

women (Pearlman, 1997), there was no placenta in this anthropomorphic test device. 

The fetus was instrumented with two triaxial accelerometers within the fetal head 

and thorax. The Hybrid III female, lap and shoulder belt were also instrumented to 

measure responses over range of crash severity and restraint placement. In addition, a 

force transducer (reaction plate) was placed behind the uterus to measure the loads 

transmitted through the uterus. HIC, force on abdomen, belt loads, fetal head and 

torso measurements were taken. However, although acceleration of the fetal 

component and forces transmitted through the abdomen could be measured, the 

relationships between these measures and the likelihood of fetal injury and loss were 

unknown. 

 Experimental tests included proper and improper belt placement, unbelted, 

airbags deployed with driver in normal or out of position for all at different speeds or 
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stationary. It was concluded that placing the seat belt over the uterus, increases force 

transmissions as much as four times. Therefore, Pearlman and Viano (1996) 

suggested that pregnant women should wear seat belts properly to reduce risk of 

directing loads onto the uterus. Physical crash tests also showed that while airbag 

deployment distributes loads and increases safety at higher speeds, the risk of 

detachment of placenta increase at lower speeds due to direct impact on the uterus 

(Pearlman et al., 1996). It was also assumed that out of position condition would 

increase HIC. The experimental tests and the Hybrid III pregnant dummy had a 

number of limitations and lack of data. Real world data on pregnancy complications 

during accidents was not only limited but also based on animal experiments. Figure 

3.5 illustrated 1st generation Hybrid III pregnant dummy. 

 

Figure 3.5 Urethane pregnancy insert and chest skin for the 5th percentile pregnant 

Hybrid III dummy (Pearlman et al., 1996) 

3.5.2  MAMA2B, 2nd Generation Pregnancy Insert 

The second generation insert, or the ‘MAMA2B’, was developed in response to the 

limitations of the first generation pregnancy insert (Figure 3.6) (Rupp et al., 2001). It 

was also based on the Hybrid III 5th percentile female dummy. The dummy 

represents the smallest segment of the adult USA population and derived from scaled 
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data from the Hybrid III 50th dummy. Originally developed in 1988, and was 

upgraded in 1991 and 1997. The MAMA2B consists of a water filled bladder to 

represent 30 weeks pregnant uterus, and neoprene ‘skin’ jacket (Figure 3.6). Its size, 

shape and force-deflection responses were more realistic. The water-filled 

silicon/rubber bladder for uterine insert provides internal pressure measurement to 

assess for the likelihood of fetal loss and the effectiveness of restraint systems. The 

geometry of pregnant abdomen was estimated by scaling abdominal depth 

measurements from 5th percentile Japanese pregnant women to their 5th percentile 

American counterparts assuming that abdominal dimensions are proportional to 

maternal stature and weight (Culver and Viano, 1990).  

 

 

Figure 3.6 MAMA2B 5th percentile dummy and water filled silicon rubber bladder 

to represent uterus (FTSS, 2012; Motozawa et al., 2009) 

 No placenta and fetus were included in the ATD. The Hybrid III lumbar load 

cell and chest deflection instruments removed and pelvis modified as with the first 

pregnant dummy. Pregnant abdomen was inserted in the 5th percentile female 

Hybrid III with minimal modifications to standard dummy components and with no 

significant changes in any of the non-abdominal response characteristics. In order to 

define geometry of the pregnant abdomen, Klinich et al., collected anthropomorphic 

data of twenty-two pregnant women (Klinich et al., 1999b). With very limited 
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pregnant women data, their research indicated that size and shape of the pregnant 

abdomen are relatively independent of maternal stature. In terms of pregnant women 

anatomy, there has been a lack of anthropomorphic data measured from pregnant 

women. In order not to redesign of the ribs and sternum of the small female Hybrid 

III, thirty weeks abdominal was selected as the largest abdominal component. 

 In order to develop and validate the MAMA2B, cadaveric abdominal 

response corridors were used. Force-deflection response of MAMA2B abdomen with 

and without the chest jacket, to belt loading compared to scaled belt loading 

corridors. It was found that the effect of the chest jacket on the belt loading response 

was small but the reason was not explained. Rupp et al. was also assumed that the 

response of the pregnant abdomen is the same as that of a cadaver of identical mass, 

and that pregnant and non-pregnant abdomens are geometrically similar (Klinich et 

al., 1999b). However, dynamic response of the pregnant abdomen is different from 

that of the non-pregnant abdomen.  

 The abdominal insert was designed to predict the occurrence of placental 

abruption in motor vehicle accidents. However, water filled silicon rubber bladder 

does not assist to understand placental abruption. Rupp et al. investigated two 

hypothesized mechanisms of UPI (uteroplacental interface) failure using computer 

modelling and engineering principles (Rupp et al., 2001) (Figure 3.7). These were: 

1. Shear strains in the UPI caused by changes in the curvature of the uterus 

due to direct loading of the abdomen. 

2. Tensile strain at the UPI from the pressure gradients generated by the 

inertia of the amniotic fluid  

 Considering these two hypothesized mechanisms for placental abruption, 

negative pressure in the posterior of the fluid-filled MAMA2B abdomen and 

deformation of the midline contour of the bladder were measured (Rupp et al., 2001). 
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Figure 3.7 Finite element model of prototype uterus bladder installed dummy, 

showing urethane attachments (Rupp et al., 2001) 

 In order to confidently assess vehicle and restraint system performance with 

reducing the likelihood of fetal injury outcome in vehicle accidents, additional 

instrumentation development and more detailed tests are necessary. MAMA2B was 

focused on only one type of injury without a fetus. However, results from this work 

suggest that the addition of a frontal airbag offers further protection to the pregnant 

occupant.  

3.5.3  Working Model 2D Model 

A number of computational human body models were developed in the late 1990s. 

However, there was no any computational pregnant women model. In order to 

investigate the movement of the fetus within the uterus during road accident, a 

simple kinematic Working Model 2D model of a pregnant occupant was developed 

by Thackray and Blackketter (2002) (Figure 3.8). Two multibody systems were used 

to represent the pregnant woman and the fetus. The geometry of the pregnant women 

and the fetus were based on approximations of the actual pregnant anthropometry. 

The model was validated by comparing output torso acceleration values with 

experimental data from sled test with Hybrid II dummy. Amniotic fluid was not 

included in the model. The fetus was simulated with four rigid bodies including the 

head, body, arms and legs interconnected with pin joints, which is then restrained 

within a rigid cavity representing uterus. 
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Figure 3.8 Working Model 2D model of the pregnant occupant and the fetus 

(Thackray and Blackketter, 2002) 

 With the Working Model 2D pregnant model, evaluating seat belt safety for 

the fetus was performed. It was found from simulations that fetal acceleration was 

nearly 3 times higher than pregnant occupant acceleration. This result shows the 

existing fetus in the pregnant abdomen may play important role on fetus injuries and 

fatalities. It was also concluded that there is significant comfort problems with 

current seat belts for the pregnant women and their fetuses.   

3.5.4  ‘Linda’, Finite Element Pregnant Dummy Model 

In 2002, finite element model of a pregnant crash test dummy was created by Volvo 

(2002) (Figure 3.9).The model is called as Linda and as a computer model; it is a 

combination of a real human body and a Hybrid III (FTSS) crash test dummy. Since 

no technical papers about this pregnant woman finite element model have been 

released, it is difficult to comment about accuracy of the model; however a small 

amount of information has been given in press releases (Volvo, 2004). Her abdomen, 

pelvic bones, gravid uterus, placenta, amniotic fluid and a 36 week-old fetus 

represents pregnant women and their fetuses. 

 The rest of the model is same to physical Hybrid III crash test dummy, 

modelled of synthetic and steel materials. The fetus was represented as a lump body 
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without extremities. Crash simulations with this model have been performed to study 

effectiveness of seat belt and airbag on the uterus, placenta and fetus. It is stated that 

wearing seat belt is the best way of protection for pregnant women and their fetuses. 

It is also stated that the model has given promising results to simulate frontal impact 

crash tests. With scaling techniques, the model can represent different sized women. 

However, it is limited with physical Hybrid III dummy anatomy and material 

properties, whereas human body anatomy and tissue characteristics are completely 

different. 

 

Figure 3.9 Linda’, 5th percentile Hybrid III dummy finite element pregnant women 

(Volvo, 2002) 

3.5.5  FE and Multibody Model of the Pregnant Occupant  

Moorcroft et al., (2003) have developed a computational pregnant occupant model 

with using dynamic modelling software MADYMO (Figure 3.10). An existing 5th 

percentile female facet occupant model was combined with a finite element model of 

a 7 month pregnant uterus that represents 30th week of gestation. The human model 

is a 5th percentile female (152 cm tall and 50 kg). For the small female a very short 

and very slim model was selected in RAMSIS. The Western European population 

aged 18 to 70 years of 1984 was used. The dummy model was upgraded in 1997. The 

model has been used to investigate injury mechanisms in unrestrained, 3-point belt 
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and 3-point belt with airbag crash tests in various crash speeds ranging from 13 km/h 

to 55 km/h. The vertical position of the lap portion of the seat belt was also varied 

over three predetermined configurations. However, no fetus was included in the 

pregnant occupant  model was based on the findings of Rupp et al. in their design 

and development of the pregnant abdomen for the Hybrid III small female crash test 

dummy. According to Rupp et al., the mechanism of injury that ultimately leads to 

fetal loss is independent of the fetus itself (Rupp et al., 2001).  

 

 

Figure 3.10 Multibody female model with finite element pregnant abdomen 

developed by Moorcroft et al. (2003) 

 The existing MADYMO 5th percentile female model weights 110 lbs with 

the body mass distributed over the rigid bodies of the model. The weight of the 

pregnant occupant model is stated 135 lbs, but there is no information about how this 

extra weight is distributed to the model. The abdominal contour of the pregnant 

occupant model was made to closely match the MAMA2B, second generation 

pregnancy insert for the 5th percentile female Hybrid III crash dummy. When the FE 

uterus model is placed in the abdomen, flexible bodies of the abdomen of the 

standard model have been disabled. It is also not clear how the interaction of the 

uterus with the spine is modelled.  

 Several assumptions have been made in order to model the finite element 

uterine. The uterus, placenta, and amniotic fluid were assumed to be linear, elastic, 
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isotropic solid. However, the uterus is known to be anisotropic and viscoelastic, but 

there is not currently enough data to apply these material properties to the model 

(Moorcroft et al., 2003). 

3.5.6  HUMOS to Pregnant Woman Model 

In order to improve safety of the pregnant woman and her fetus, Delotte et al. (2006) 

developed a computational model of the human body with uterus from HUMOS 

model (Figure 3.11). The anthropometry of the HUMOS model was chosen  as close 

as possible to the anthropometry of the 50th European adult male driver. A frozen 

cadaver was sliced physically. Main characteristics of the HUMOS subject are sitting 

height (920 mm), standing height (1730 mm) and weight (80 kg). The sitting height 

was considered as one of the most important factor for securing the choice of the 

subject. The geometries of the third-trimester uterus and the fetus were obtained from 

MRI data of pregnant woman. The 3D construction was created and meshed using 

the HyperMesh commercial software. This pregnant uterus was integrated in the 

HUMOS model (Serre et al., 2002) which was a computational 3D model of a male 

whole human body in driving position. 

 

Figure 3.11Side and frontal view of the uterus model inserted in HUMOS (Delotte et 

al., 2006) 

 In order to insert the uterus model, geometry and anatomy of the HUMOS 

model was modified. The abdominal wall was removed and replaced by the one of 
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the pregnant woman.  Relations of internal organs were also changed. The pregnant 

uterus thickness was determined with slices of the MRI analysis from male cadaver. 

However, male and female pelvises are different. Very specific and only one 

pregnant woman geometry was designed. Female version of the HUMOS needs to be 

developed to obtain better final outcome of the model. 

3.5.7  Scaling to 50th percentile female 

The geometry of the HUMOS 50th percentile male model was scaled to the anatomy 

of a 50th percentile female (162 cm, 62 kg) by Peres et al., (2011) with particular 

focus on the anatomy of the pelvis. The Humos model is a complete human body 

model resulting from a seated 50th percentile European male human body and was 

obtained from a frozen cadaver in driving position. HUMOS model is translated from 

FE software to LS-DYNA. Due to the direct contact with the uterus, anatomy of 

pelvis is considered as reference subject during scaling process. Anatomy of a 7 

months uterus and fetus are represented with scaling method from MRI images. 

Therefore, the fetus has simplified geometry and its upper and lower extremities do 

not exist (Figure 3.12).  

 

Figure 3.12 Scaled 50th percentile woman model and uterus detail (Peres et al., 

2011) 

 During the scaling process, anatomical target points were defined into a 50th 

percentile woman (Figure 3.13). The authors decided not to account for the 

anisotropic behaviour for the material model of the uterus. The fetus was modelled 
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uniform isotropic part with a material stiffness midrange between bones and soft 

tissues.   

 

Figure 3.13 Scaling the HUMOS model into a 50th percentile woman, (a) 50th 

percentile male and (b) 50th percentile woman (Peres et al., 2011) 

 A limitation of the method was that scaling based on some points was used to 

produce 50th percentile female which does not represent pregnant women. The 

HUMOS model was partially validated against post mortem human subject 

experimental tests. Artificial silicone uterus was inserted into a woman body. In this 

study, low impact speed (20 km/h) was used to validate the model.  

3.5.8  'Expecting' Computational Pregnant Occupant Model 

3.5.8.1  Introduction 

During pregnancy women experiences a wide range of physical changes in size and 

shape. These changes may adversely affect the comfort and safety of pregnant 

women while driving. It was found that 99% of pregnant women experience some 

difficulty or problem with car travel (Acar and Weekes, 2003). A pregnancy and 

driving questionnaire is used to investigate how UK women’s experiences of driving 

and using passive safety systems such as seat belt, airbags, and head restraints (Acar 

and Weekes, 2004). Over 100 sets of data have been collected spanning a wide range 
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of statures of women at different stages throughout pregnancy. Acar and Weekes 

(2005) presented analysis of comprehensive set of 48 anthropomorphic 

measurements of pregnant women body and created the Pregnant Women’s 

Anthropometry Website (Pregnant driver, 2004) for automotive designers and 

engineers. They have stated that pregnant occupant should be considered as a 

separate user group to meet their specific needs.  

3.5.8.2  Biomechanics of 'Expecting' 

Previous pregnant occupant models have only focused on the abdominal region by 

inserting an expanded abdomen to an existing male and some female models. The 

anthropomorphic measurements from pregnant women based on MADYMO 5th                                                                                     

occupant model are used to develop a parametric model of the pregnant female 

occupant which is called 'Expecting'. The model presented describes the changes 

throughout the entire body hence providing a more comprehensive depiction of the 

altered pregnant form.  

 The computational model of a realistic pregnant occupant with a fetus within 

uterus model could be used as a tool to predict the strains and stresses on the uterus 

and placenta (Figure 3.14) (Acar and Lopik, 2009, 2012). 38th week of pregnant 

woman is represented with a modified 5th percentile female. A multibody fetus and 

finite element uterus are integrated into an existing female model to incorporate 

pregnant female anthropometry.  

3.5.8.3  MADYMO 5th percentile female facet occupant model 

The MADYMO 5th percentile female facet occupant model is a multibody model 

with a complex surface representation. The anthropometry of the existing 5th 

percentile female facet MADYMO model were used from the Western European 

population aged 18 to 70 years of 1984. For the small female a very short and very 

slim model was selected in RAMSIS. The resulting body mass and sitting height 

were considered to be somewhat extreme also in comparison to the small female 

Hybrid III crash dummy A series of rigid bodies are defined representing the bony 

skeleton such as spine of the human body. Each rigid body is defined with mass, 
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centre of gravity position and moment of inertia. Rigid bodies are represented with 

ellipsoids. Each ellipsoid is positioned with respect to its parent rigid body relative to 

that body’s local coordinate system. The positions of the kinematic joint centre 

represent actual joints in the human body and are positioned relative to the hip joint 

centre or ‘H’ point. Kinematic joints connect the rigid bodies. Spinal joints are 

represented with a single ‘free’ joint allowing relative movement in all directions 

with a 6 degree of freedom restraint. Rigid links are used to connect corresponding 

joint centres. The rigid bodies describing the upper and lower limbs are connected 

with spherical joints allowing movement in all rotational degrees of freedom (Acar 

and Lopik, 2012). 

 A series of cross sections that are positioned relative to their parent ‘bone’ 

linkage are used to construct the three-dimensional geometric surface of the model. 

Additional anthropomorphic data for 5th percentile UK females from the DTI’s adult 

data handbook have been used to further define the 3D surface. The model has been 

developed in an upright standing position with arms horizontal, and out to the sides 

(Acar and Lopik, 2012). 

 Attached to the underlying multibody model is a complex surface 

representation of the ‘skin’. This is actually an FE mesh comprising of about 1000 

nodes resulting in around 2000 triangular elements. The skin is divided into 45 

sections with the corresponding nodes of each section being attached relative to their 

closest rigid body. This FE mesh defined as a NULL material so no actual FE 

calculations are required; the nodal points are merely used to define contact with the 

environment and to transfer these contact forces to the multibody model. Local 

deformation of this skin surface is not possible i.e. any given node will always 

remain at fixed position relative to its parent rigid body. However, for the thorax and 

abdomen, where local deformation of the skin with respect to the spine is essential, 

deformable elements are defined. 
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Figure 3.14 'Expecting', pregnant occupant and the multibody fetus within the finite 

element uterus (Acar and Lopik, 2009) 

3.5.8.4  Finite Element Uterus Model 

The finite element uterus model was developed in conjunction with the multibody 

fetus model. Geometry of the uterus model was determined with the fetal dimensions 

and configuration based on data reported in Acar and Weekes, (2006), (Acar and 

Lopik 2012) (Figure 3.15). The finite element placenta and uterus were meshed using 

HyperMesh (Altair) by first meshing the inner surface of the uterus using quad 

elements then mapping the elements to the outer surface to create the uterus, and 

mapping the corresponding elements of the placental outer surface to the inner 

surface of the placenta to create the placental elements. The element configurations 

and nodal coordinates were then exported into MADYMO where 8-noded solid 

elements were used for both FE components (Acar and Lopik, 2009) (Table 3.1). 

Table 3.1 Element types used for 'Expecting' 

Structure Element Type Number of Elements Number of Nodes 

Uterus 8-noded Brick 3388 5089 

Placenta 8-noded Brick 884 1393 

Fat 8-noded Brick 3388 5089 
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 The material properties of the uterus and placenta are based on uterus and 

placental tissue tests and on decisions made by other researchers. The uterus has a 

Young’s modulus of 566 kPa, poisons ratio of 0.4 and a density of 1052 kg/m3. The 

placenta has a Young’s modulus of 63 kPa, Poisson’s ratio of 0.45 and a density of 

995 kg/m3. The total mass of the placenta and uterus is 1.29 kg (Table 3.2). 

Table 3.2 Material properties used in the 'Expecting' pregnant model 

Structure 
Material 

Model 
Density (kg/m3) 

Young’s 

Modulus (kPa) 

Poisson’s 

Ratio 

Thickness 

(mm) 

Uterus 

Linear 
Elastic 

1052 566 0.4 10~ 

Placenta 995 63 0.45 20* 

Fat 993 47 0.49 10~ 

~ The thickness is almost uniform all around the uterus and fat tissues                    

* The thickness of the placenta at its thickest cross-section, i.e. in the middle.   

 

Figure 3.15 Side views of the FE uterus and placenta with and without the multibody 

fetus in position (Acar and Lopik, 2009) 

3.5.8.5  Pregnant Occupant Model 

The finite element uterus and the multibody fetus were integrated into an existing 

multibody female model to complete the computational pregnant women model. The 
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facet occupant model available within the MADYMO library represents a 5th 

percentile female, 1.52m in height and 49.8 kg in weight. 

 In 'Expecting', the cushion effect of amniotic fluid is created with defining 

springs and dampers between pelvis of female and pelvis of the fetus. The fetus 

damping characteristic has been defined with MADYMO codes with restraint cardan 

element.  Cardan restraint consists of three torsional parallel springs and dampers 

that connect two bodies. The torques depends on the cardan angles that describe the 

relative orientation of the corresponding restraint coordinate systems. Point restraint, 

three mutually perpendicular springs and dampers that connects two bodies, has been 

also added to model the frontal and lateral stiffness and damping of the flexible 

bodies.  

3.5.8.6  Validation 

Numerous tests have been conducted to determine the response of the human 

abdomen to impact loading. Generally, physical or computational models of the 

human body are validated against experimental tests on soft tissues, isolated 

anatomical segments, whole cadavers or live human volunteers. The 5th percentile 

female facet occupant model used in the development of the pregnant occupant 

model has been previously validated against impactor tests and small female PMHS 

tests (MADYMO Human Models Manual, 2005). Accurate response of the pregnant 

abdomen is important to be able to predict risk of fetus fatalities for the pregnant 

occupant model. 

 Rigid-bar impact and belt loading tests performed by Hardy et al., (2001) are 

used to validate the pregnant occupant model, 'Expecting'. In order to investigate 

difference in force-deflection response among previous test data, Hardy et al., (2001) 

performed rigid bar impact tests into nine 50th percentile male cadavers and created 

new force-deflection abdominal corridors. The nine tests involved nine cadavers with 

an average age, stature, and mass of 78 kg, 170 cm, and 68 years old, respectively.  

As the reference mass, the mass of a Hybrid III 50th percentile male dummy were 

used. These corridors were scaled to a 5th percentile female by Rupp et al., (2001) in 

their development and validation of the MAMA2B ATD. These corridors have been 
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used to validate the response of the computational pregnant occupant model. Prior to 

the General Motor sponsored projects, the only information on pregnant 

anthropometry in the literature was contours that were estimated by scaling 

abdominal depth measurements from 5th percentile Japanese pregnant women to 

their larger 5th percentile American counterparts assuming that abdominal 

dimensions are proportional to maternal stature and weight (Culver and Viano, 

1990). The anthropometry for the new pregnant abdomen was based on data 

collected from seated US pregnant occupants. 

 Nine rigid-bar impacts into nine pressurized cadavers using a 48 kg ballistic 

pendulum were applied. The impactor was a 2.54 cm diameter, 45.7 cm long rod. 

The effect of impact location was studied with impacting both mid-and-lower 

abdomens. The rigid-bar force deflection responses measured by Hardy et al., at 6 

m/s (21.6 km/h)  and 10 m/s (36 km/h) was constructed and impacted into the 

abdominal region of the model. 'Expecting' was validated using 6 m/s (21.6 km/h) 

rigid bar impact loading and force-displacement response of the model is calculated.  

 Hardy et al., (2001) also performed several seat belt loading tests on human 

cadavers. The belt was positioned at mid-abdominal region and curved around 

abdomen. The belt was fastened to a driving mechanism (ram) behind the cadaver. 

The ram was used to pull the webbing into the cadaver abdomens from behind. Peak 

loading rate of approximately 3 m/s (10.8 km/h) was provided with the design. 

Penetration of the belt into the abdomen was calculated from the difference between 

the motion of the seat belt and the displacement of the spine. Finite element belt was 

curved around the pregnant abdomen at mid-abdomen level and was pulled across 

the pregnant abdomen at 3m/s (10.8 km/h). The force-displacement response of the 

model to the 3m/s (10.8 km/h) belt-loading case is shown in Figure 3.16 plotted 

against the response corridor. 
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Figure 3.16 Abdominal response of the pregnant abdomen model to 3m/s (10.8 

km/h) belt loading compared against the response corridor (Hardy et al., 2001) 

3.5.8.7  Around 'Expecting' 

The 'Expecting' is placed within a typical vehicle interior consisting of a seat, vehicle 

floor, pedals, and steering wheel, as shown in Figure 3.17. 

 

Figure 3.17 Vehicle interior for 'Expecting' model, isometric view 

 The seat height from floor is set at 270 mm. Seat pan angle is 10 to the 

horizontal. The horizontal distance from the H point (sagittal plane hip joint centre) 

to the ball of foot is 708 mm which defined the initial position of the vehicle pedals 

with respect to the seated occupant. The steering wheel tilt is 30 degree from vertical. 

No intrusion condition has been utilised between the occupant and restraint systems, 



Chapter 3                                                                                                                          Pregnant Occupant Models 

88 

vehicle environment. The occupant compartment intrusion is not considered. 

Depending upon seating position and restraint condition of the occupant, intrusion 

may have beneficial, detrimental, neutral effects upon injury (Strother el a., 1984).   

3.6  Conclusions 

Although the road accidents are the leading cause of accidental fetal death, there are 

only a few researchers studying the impact of vehicle crashes on fetus fatalities.    

Most of the research performed on the development of physical and computational 

pregnant occupant modelling aim to provide enhanced safety of the pregnant 

occupant and her fetus in motor vehicle accidents. Furthermore,  due to the lack of 

representation of complex shapes and sizes of pregnant occupants and their fetuses, 

most pregnant occupant models did not represent pregnant women realistically and 

had a number of significant omissions such as lack of a fetus in the uterus. The 

anatomy of pregnant women was not considered and a realistic fetus was not 

included in earlier models.  

 A pregnant occupant including a fetus is represented with the 'Expecting' 

computational model. In this thesis, 'Expecting' will be used in and further detailed. 
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CHAPTER 4  

EFFECTIVENESS OF AIRBAG 

FIRING TIME  

 

 

4.1  Introduction 

Airbags are designed as inflatable restraint systems in automobiles and collectively 

they help decrease the severity of a vast amount of potential injuries during an 

impact. Airbag deployment initiates as the sensing system triggers the ignition of a 

gas generator following the onset of the collision. Generated inert gas inflates the 

airbag in approximately 20 to 30 milliseconds. When the occupant in the vehicle hits 

the airbag, the gas escapes from small vent holes in a controlled manner. 

 The objective of this chapter is to investigate the effects of airbag deployment 

time during full-frontal impacts and the interaction of the pregnant driver with the 

frontal driver airbag using 'Expecting', computational pregnant occupant model. This 

investigation involves simulations of crashes with varying impact severities for full-
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frontal collisions with different airbag firing times. Strains and displacements in the 

uterus are calculated to predict the injury risk due to abdominal loadings.  

4.2  Effect of Airbag in Vehicle Collisions 

Real life crash data and laboratory crash tests illustrate that airbag technology helps 

decreasing the severity of a range of possible injuries (Huelke and Moore, 1993; 

Walter and James, 1996; D'Elia, 2012). For instance; steering wheel mounted frontal 

airbags facilitate enhanced driver protection in a number of different ways; by 

allowing for a more controlled deceleration of the head, by reducing and usually 

eliminating the head and facial contact with the steering wheel and other rigid 

vehicle interior elements, and by further distributing the inertial loads (Lau et al., 

1993; Richardson and O’Connell, 2000). 

 The inflation of an airbag under some circumstances also has the potential to 

cause serious injuries and even death at road accidents. Concerns have been raised 

for children, infants, elderly, pregnant, and short stature people (NHTSA, 1997). For 

instance, when the pregnancy develops, the fetus grows inside the pregnant abdomen 

and the uterus gets closer to the steering wheel. The proximity of the uterus to the 

deploying airbag creates an increased risk of fetal death. During the deployment, gas 

pressure in the cushion generates high forces on the occupant. In their case report, 

the possibility of an association between airbag deployment and traumas such as 

placental abruption, uterine rupture are investigated (Schultze et al., 1998; Fusco et 

al., 2001). Sims et al., (1996) described three cases of minor injuries of pregnant 

occupants associated with airbag deployment. However, the authors of these studies 

suggest further research on the subject to determine effect of airbags on pregnant 

women safety. Metz and Abbott et al., (2006) concluded that placental abruption 

does not appear to occur frequently in motor vehicle accidents with airbag 

deployment. The authors also revealed that it is unclear if fetal risk is higher than that 

without airbags.   

 At the time of airbag inflation, occupant position also plays an important role. 

Airbag induced injuries are caused when an occupant is in Out of position (OoP) 
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who sit relatively closer to the steering wheel (thus airbag) during collision 

(Richardson and O’Connell, 2000; Marklund and Nilsson, 2003; Richert et al., 

2007). 175 fatalities caused by airbags in the USA between 1990 and 2000 (NHTSA, 

2008).  

4.3  Airbag Working System 

A typical airbag system consists of an airbag module containing an inflator and an 

airbag, a steering wheel connecting coil, collision sensors, a diagnostic monitoring 

unit, and an indicator lamp (Figure 4.1). 

 

 

Figure 4.1 Airbag working system (Madehow, 2012) 

 There are a number of parameters which exist in an airbag including volume 

and shape of airbag, deployment timing, size of vents, material of airbag, and 

inflation system changes from one car manufacturer to another. Changing 

characteristics of airbag especially airbag deployment time plays an important role in 

occupant safety. 

 The time of deployment of an airbag system is usually programmed to occur 

within the first 60 milliseconds of the moment of impact and commonly referred to 

as Time to Fire (Walter and James, 1996; Mon, 2007; Miller and Allen, 2007; Welsh 
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et al., 2008) (Figure 4.2). In some airbag systems, the sensing system may be set to 

trigger at a different TtF depending on the severity of the collision, typically around 

10-60 milliseconds (Mon, 2007). Airbag manufacturers and automotive companies 

consider Time to Fire as a confidential matter due to complexity of the airbag 

systems and impacts, and competitive advantages. If an airbag inflates too late or too 

early, airbag induced injuries on occupant increase. Therefore, the setting of airbag 

deployment time is crucial for occupant safety.  

 

Figure 4.2 Deployment of an airbag and side view of the response of the 'Expecting' 

model  

4.3.1  Airbag Model 

In order to create realistic crash test simulations, designing of an accurate airbag 

model is very important. In MADYMO applications, finite element driver airbag 

model with Computational Fluid Dynamics (CFD) gas flow module is generated for 

in and out of position simulations (MADYMO Theory Manual, 2010) (Figure 4.3). 

'Expecting' is based on the in position 5th percentile pregnant female driver, seated in 

an optimal seating position with the assumption of making a proper use of the seat 

belt (Acar and Lopik, 2009).  
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Figure 4.3 Steering wheel and driver airbag model (Acar and Lopik, 2009) 

Figure 4.3 and Figure 4.4 illustrate a driver airbag model designed principally for 

occupants in position applications. The driver airbag is a two-dimensional European 

airbag model and when it is deployed it has a volume of 60 litres. Diameter of the 

airbag is 600 mm and totally symmetrical. When the airbag is fully deployed, crash 

test simulations requires a good level of accuracy at the moment of impact. 

Parameters such as deployment timing, final airbag volume and internal pressure are 

thus crucial to obtain a realistic model. Airbag model in crash test simulations with 

'Expecting' is a driver airbag folded and placed in an open box at the bottom of which 

it is supported. The airbag is deployed from the centre of the supported part which is 

the centre of the steering wheel. 

 

 

Figure 4.4 Driver airbag model in container (MADYMO Theory Manual, 2010) 
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 The airbag model in MADYMO is meshed with linear triangular 3-node 

membrane (MEM3) elements, which do not possess hourglass modes and potentially 

describe the geometry of the components better (Figure 4.4). The element strains and 

stresses are calculated with the GREEN formulation in order to handle large 

deformations. Another reason to use GREEN formulation is its objective nature, 

meaning that the results do not depend on the node orientation within an element, 

which results in more accurate output. GREEN strain formulation utilises the left 

Green strain tensor and the 2nd Piola-Kirchhoff stress tensor, and is highly 

recommended for airbag modelling. In terms of material characteristics, the airbag is 

modelled with a linear orthotropic material (ORTHOLIN). It is assumed that the 

airbag fabric presents two orthogonal principal directions. The contact definitions in 

the airbag system are carried out in two major groups; the first one containing all the 

airbag elements and the second one all the box elements (MADYMO Applications 

Manual, 2010). 

 The driver airbag module incorporated into 'Expecting' is a uniform pressure 

mode single chamber unit with gas jet effect. Uniform Pressure mode is usually 

preferred in in-position analyses as it saves computation time compared to a Gas 

Flow calculation. The gas flowing in the airbag chamber is defined in terms of mass 

flow rate, temperature as a function of time, composition of the gas mixture and the 

location and dimensions of the orifice the gas is injected through. In this model, gas 

mainly flows out through vent holes. Outflow from the airbag through elements that 

are in contact is partially blocked with a value of 0.7, which means that there is only 

30% of outflow through airbag elements making contact. The airbag inflator in the 

model supplies gas, mass flow rate and heat into the chamber (MADYMO 

Applications Manual, 2010). 

4.3.2  Overview of the Crash Test Simulations  

The computational pregnant occupant model 'Expecting', which incorporates the 

anthropomorphic and anatomical changes of pregnancy is used in this study to 

predict the optimum airbag firing times to minimise injuries to the fetus. Pregnant 

occupant constitute a vulnerable group in occupant safety in motor vehicles. Their 
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anatomies and dynamic characteristics are totally different than non-pregnant and 

any other occupants. Furthermore, experimental and analytical research show that an 

airbag unit designed to restrain a 50th percentile male occupant can be less effective 

on a person who is not classed as a 50th percentile male (Butler et al., 1993).  

 Use of computational human and dummy models to investigate effectiveness 

of airbag restraint systems have been continually increasing. Computational human 

models have proved to be highly effective tools providing opportunities for cost and 

time-effective crash simulations and analysis, and related design processes. 

 A set of simulations were chosen to explore the effect of airbag and crash 

severity on the response of the pregnant occupant as a vehicle driver to a frontal 

impact. Thirty two simulations were conducted with crash speeds ranging from 15-

30 km/h in 5 km/h steps. The acceleration pulse applied to the model was half-sine 

waves with 120 milliseconds duration. The crash pulses used for the 4 speeds 

simulated are shown in Figure 4.5. 'No restraint', 'seat belt and airbag', 'seat belt 

only', and 'airbag only' cases, which are simulated with airbag firing times range 

from 10, 30, and 60 ms. 

 

Figure 4.5 Half-sine wave acceleration pulses 



Chapter 4                                                                                                             Effectiveness of Airbag Firing Time 

96 

 The model was placed within a vehicle interior including of a seat, vehicle 

floor, pedals, and steering wheel. The positing and posture of the occupant in the 

driving seat was based on the study by Acar and Weekes, (2006). Parameters 

corresponding to the small female group in their final trimester of pregnancies were 

used to define the initial occupant position. Seat height was set at 270 mm with a seat 

pan angle 10 to the horizontal. Seat back angle was set at 14,8 past vertical-point 

(sagittal plane hip joint centre) to ball of foot horizontal distance was 708 mm which 

defined the initial position of the vehicle pedals with respect to the seated occupant. 

The horizontal distance between the steering wheel and the uterus was set at 45 mm. 

Steering wheel tilt was 30 degree from vertical (Acar and Lopik, 2009). 

 The restraint modelled consisted of a three-point seat belt and driver airbag. 

The seat belt was made up of a lap and shoulder portion modelled with width and 

thickness of the belt equal to 50 mm and 1 mm respectively. The sections of the belts 

that contact the occupant are modelled with non-linear 3-node triangular membrane 

elements with belt properties provided within MADYMO. The seat belt system 

incorporates a pretensioner and a load limiter. The pretensioner model in the frontal 

application is a spring-driven unlocking/locking type. It uses a separate stalk body 

that is connected to the seat frame with a revolute joint. The initial displacement 

causes the pre-loading of the pretensioner spring and positions the buckle body. 

During collision, the pretensioner restrains occupant instantly. The load limiter 

reduces load applied to the chest. Pretensioner prevent the occupant from jerking 

forward in a crash. As a result of this, maximum protection is obtained from  the 

front airbags. Load limiter is located at the same place with the pretensioner. A load 

limiter limits the load level in the connected belt segment. A load limiter is activated 

when at least one of its load levels is active. If more than one load level is active at a 

time, the minimum of the active load levels is used. When the minimum active load 

level is reached, the load limiter starts to give out belt material. The belt system 

contains the load limiter of 3.5 kN. Pretensioner and load limiter reduce the seat belt 

impact loading on pregnant occupant's abdomen. Zellmer et al.,(2005) reported that 

with double pretensioning and tuned load limiter level, chest deflection and 

acceleration in crash tests can be reduced by about 20-25% compared to single 

pretensioning. Two pretensioners are located one for the retractor and one on the 
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anchor bracket. Double pretensioner reduces the action time of the seat belt systems 

and enables a modulation of forces applied to the pregnant occupant.      

4.4  Simulations with 'Expecting' and Results 

A typical simulation for the 'seat belt and airbag' case showing the whole model 

kinematics and the airbag deployment for the 30 km/h impact with airbag firing time 

of 30 ms is illustrated in Figure 4.6. The global and local kinematics of the pregnant 

occupant and stresses and strains occurring on the abdomen were investigated. 

Results from the simulations were used to investigate well-being of the fetus. The 

threshold strain value for the occurrence of placental abruption is widely accepted to 

be 0.6 at the UPI (Rupp et al., 2001). 'Expecting'  is in the driving position, because 

this is the most dangerous position for a pregnant occupant. Steering wheel impact to 

the  pregnant abdomen and the uterus plays significant role on fetus fatalities. Crash 

test simulations are conducted crash speed ranging from 15 to 35 km/h. Simulation 

results show that after 35 km/h crash speed, the fetus dies instantly even pregnant 

occupant fully restrained. 

 

Figure 4.6 A typical full-frontal impact situation (30 km/h, Time to Fire: 30 ms) 

 The effects of the impact on the uterus such as maximum strains at 

uteroplacental interface (UPI), maximum overall strains and maximum 

displacements are studied. These results are tabulated for four impact severity and 

four restraint cases are listed in Table 4.1 and Table 4.2 respectively.  The results for 

the three groups of analyses cases ('No restraint', 'seat belt only', and 'seat belt and 

airbag' cases) with three different Time to Fire ranging 10 ms, 30 ms, and 60 ms are 

provided in Table 4.1, whereas three 'airbag only' cases are tabulated in Table 4.2.
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Table 4.1 Injury criteria and loading results for 'no restraint', 'seat belt only', 'seat belt 

and airbag' cases, crash speed ranging from 15-30 km/h, Airbag Time to Fire: 10 ms, 

30 ms and 60 ms 

 

 

Delta V 
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Max strain 
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Max strain 
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displacement (mm) 
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20 0.78 0.84 168 

25 0.89 1.05 180 

30 0.95 1.12 202 

  
  
  

S
B

 O
n

ly
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20 0.15 0.58 93 
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s 15 0.15 0.44 81 

20 0.2 0.49 101 

25 0.31 0.63 114 

30 0.37 0.83 125 
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Table 4.2 Injury criteria and loading results for 'airbag only', crash speed ranging 

from 15-30 km/h, Airbag Time to Fire: 10 ms, 30 ms and 60 ms. 
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4.5  Investigation of Effectiveness of Airbag Deployment Time 

Maximum von Mises strains in the whole uterus are presented in Figure 4.7. 

Maximum von Mises stress is considered to investigate the simulations withstand the 

load condition. If maximum value of von Mises stress induced in the material is more 

than strength of the material, design fails. The von Mises yield criterion also known 

as the maximum distortion energy criterion, states that the yielding of materials 

begins when the energy of distortion reaches the same energy for yield/failure in 

uniaxial tension. The von Mises stress is used to predict yielding of materials under 

any loading condition from results of simple uniaxial tensile tests. The von Mises 

stress satisfies the property that two stress states with equal distortion energy have 

equal von Mises stress (von Mises R.E., 1913). 

 'No restraint' case yields the highest strain results as expected. The 'seat belt 

only' case and the 'seat belt and airbag' cases form a similar set of results, again 

increasing from 15 km/h to 30 km/h. It is noted that the 'seat belt only' case results 

are amongst the low values within this group, meaning that airbag presence during 

impact may slightly increase the strains in the overall uterus at some particular 

speeds and airbag firing times. These results highlight the fact that airbag inclusion 

in the automobile restraint system contributing to strain development at overall 

uterus; however it decreases the strains at the UPI at all speeds (15-30 km/h) and 

airbag firing times (10-60 ms) investigated.  

 

Figure 4.7 Maximum von Mises strains in overall uterus with respect to change in 

impact velocity 
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 Maximum von Mises strains occurring in uterus at the UPI are presented in 

Figure 4.8. Any value above 0.6 indicates risk of placental abruption leading to fetus 

mortality. Figure 4.8 shows that the strains at the UPI for the 'no restraint' case are 

always above the injury threshold even at the 15 km/h simulation. For the 'seat belt 

only' case, the strain values approach the threshold at 30 km/h impact speed. When 

the three 'seat belt and airbag' case simulations (Time to Fire: 10, 30 and 60 ms) are 

examined, all results show a similar tendency, max strains at UPI are increasing from 

15 km/h to 30 km/h as in Figure 4.8.  

 

 

Figure 4.8 Maximum von Mises strains at the uteroplacental interface with respect to 

change in impact velocity 
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 When the kinematics of the pregnant occupant and the fetus are observed, the 

simulation results show that forward motion of the upper region of pregnant body is 

reduced by airbag whereas the forward motion of the lower region of body remains 

constrained by the lap belt (Figure 4.9). In 'no restraint' case, the displacements are 

significantly higher, indicating an increased risk of injury during pregnant driver’s 

impact with internal features of the automobile such as the steering wheel and the 

dashboard. Amongst all results, 'seat belt and airbag' cases for airbag firing times of 

10ms and 30ms present lower displacement values than 60 ms values.  

 

 

Figure 4.9 Maximum uterus displacements with respect to change in impact velocity 
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 'No restraint', 'seat belt and airbag', and 'seat belt only' cases show that airbag 

inclusion cases have lower strains and displacements than cases without an airbag. 

While seat belt plays a significant role to protect the fetus and pregnant occupant in 

the road accidents, and Figure 4.8 demonstrates that the use of airbags with seat belts 

provides even better protection. Firing times of airbags seem to be making very small 

difference to the strains at the UPI. It is clear that airbags when used in conjunction 

with the seat belt, they reduce the strain at UPI. However, these results show that 

there is very little difference between the three firing times to decide which one is the 

best. In order to investigate if there is a significant role of airbag firing times, further 

investigation is needed. Therefore, 'airbag only' case is investigated for airbag firing 

times of 10 ms, 30 ms, and 60 ms. Maximum strains at the UPI for 'airbag only' case 

are presented in Figure 4.10. Simulation results show that airbag firing time of 10 ms 

cause lower UPI strain than airbag firing times of 30 ms and 60 ms for all impact 

speeds. 

 

Figure 4.10 'Airbag only' case, Maximum von Mises strains at the uteroplacental 

interface with respect to change in impact velocity 
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4.6  Conclusions 

The study investigates the dynamics of the fetus within the uterus in a typical 

automobile setting. Pregnant occupant initially sitting upright while crash severities 

and airbag firing timings vary. 

 Airbag firing times of 10, 30, and 60 ms appeared to make very little 

difference to UPI strains and displacements, when airbag only was considered 10 ms 

firing time appear to result was slightly lower strain levels than firing at 30 and 60 

ms. When airbag firing time was reduced, predicted strain at UPI was reduced as 

well. However, it was clearly shown that when airbag was used without the seat belt, 

strain levels reached and exceeded the threshold level at crash speeds between 15-20 

km/h. Whereas when the airbag was used together with the seat belt, the strain levels 

remained below the threshold level. Having no restraint system at all was shown to 

be the worst case for pregnant women.  

 It can be concluded from this study that, the airbags on its own cause high 

levels of strain and it must be used in conjunction with the seat belt to be effective in 

reducing the strains below the threshold level. The firing time of the airbag appear to 

make a small difference, not significant.  
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CHAPTER 5  

EFFECT OF FETUS IN UTERUS 

 

 

5.1  Introduction 

During pregnancy, the anatomy of pregnant women change significantly. As the size 

and mass of the fetus increase, the uterus expands to create space for it. The mass of 

the fetus reaches about 3.3 kg at approximately 38 weeks of pregnancy. This 

significant mass in uterus is free to move and has potential to affect the entire 

dynamic response of pregnant women. The implications of including the fetus model 

in the uterus as opposed to an amniotic fluid filled the uterus with no fetus are 

investigated. Vertical drop tests onto a rigid-flat-horizontal surface at angle of 

orientations of 0°, 30°, 90°, and 180° have been simulated for the uterus model with 

and without the fetus for comparison to previously reported tests. The contribution of 

the presence of a fetus on the maximum Von Mises strains at the uteroplacental 

interface as well as anywhere in the uterine wall have been determined. 
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5.2  Pregnant Occupant Model without a Fetus 

A computational pregnant occupant model was designed to include a finite element 

uterus and placenta without a fetus model (Moorcroft et al., 2003). Existing 5th 

percentile female occupant model from MADYMO library was integrated with these 

two finite element components. According to findings of Rupp et al., (2001) in their 

dummy designs, computational pregnant occupant model developed by Moorcroft et 

al., (2003) did not have a fetus. 

Fetus-placenta interaction was investigated by Rupp et al., (2001) to predict 

the occurrence of placental abruption in vehicle collisions. For this mechanism, a FE 

model of the pregnant uterus, placenta and fetus was developed (Figure 5.1). 

 

Figure 5.1 FE model of the ellipsoid pregnant uterus for investigation of fetal-

placental loading (Rupp et al., 2001) 

The fetus was represented with two ellipsoids constructed from solid 

elements. This is a very simplistic representation of the fetus. The amniotic fluid was 

also represented as solid elements with zero shear modulus. However, no information 

on the material and element properties of this model was given. The model was used 

to simulate vertical drops on to a rigid-flat-horizontal surface at angle of orientation 

0°, 30° and 90°. From the results of this test, Rupp et al., (2001) concluded that 

contribution of the fetus to the stress and strain in the UPI is probably small relative 
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to the strain caused by deformation of the uterine wall. They added that in 

approximately 80% of pregnancies, the placenta is located in the fundal (top) region 

of the uterus (Fried, 1978) and therefore anterior-posterior compression, as seen in a 

frontal impact or inertial loading of the uterus, would not lead to cause fetal loading 

of the placenta. As a result of these findings, the computational pregnant model 

designed by Moorcroft et al., (2003), did not include a fetus in the uterus. 

Placental abruption is the primary cause of fetal death after motor vehicle 

accidents. It was investigated by Pearlman et al., (1990) and found that it accounts 

for 50% to 70% of fetal deaths in road accidents involving pregnant women. The 

injury occurs where the placenta becomes partially or completely detached from the 

inner surface of the uterus wall, disrupting the supply of oxygen and nutrients to the 

fetus and causes fatalities. Depending on the degree of placental separation from the 

uterus, partial abruptions can occur. It is considered that placental abruption occurs 

during trauma because the placenta is stiffer than the uterus, interface between the 

placenta and the uterus is to be weaker than either the uterus or the placenta, 

therefore UPI usually fails before either the uterus or placenta fails.  

 Placental abruption may occur due to inertial and direct loading by the fetus. 

Overall body of the pregnant woman changes in the last trimester.  The weight of 

most newborn babies carried to full term is generally 2.7 to 3.6 kg. This significant 

mass of the considerably solid fetus can move freely during crash impact but it is 

only constrained by uterus layer. Dynamic response to impact is affected by the 

fetus. Therefore, Acar and Lopik, (2009) included a fetus model in their 

computational pregnant occupant model, 'Expecting'. 

Rupp et al., (2001) concluded that fetal loss is independent of the fetus itself. 

In their study, the fetus model appears to be far from being realistic. Their conclusion 

is questionable and therefore, the same computational drop test as used by Rupp et 

al., (2001) simulations are conducted with and without a fetus and then crash test 

simulations are performed and implications of including a fetus model in the uterus 

are investigated.  
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5.3  Development Phase of the Fetus in Utero 

In Pregnancy, the first trimester is the primary fetal development; fetal phase starts at 

the beginning of the 9th week of pregnancy. Mass of the fetus is approximately 8 

grams and length is typically about 30 millimetres from crown to rump (Klossner, 

2005) (Figure 5.2). At the end of the 12th week of pregnancy, the height of fetus will 

be 75 mm in length. Size of the head reaches almost half of the fetus' size. The fetus 

makes uncontrolled movements and twitches. During the second trimester, which is 

between 14 to 26 weeks of pregnancy, the development process of the fetus organs is 

completed. Skeleton of the fetus starts to harden from rubbery cartilage to bone. 

Neck of the fetus becomes more defined. 15 weeks into the pregnancy, the fetus 

grows rapidly. Skeleton of the fetus becomes visible on ultrasound images. End of 16 

weeks of pregnancy, length of the fetus becomes more than 120 millimetres from 

crown to rump. Fat stores begin to develop under fetus' skin. The fetus is about 16 

cm in long from head to bottom and 25 cm from head to heel at the end of 20 weeks 

of pregnancy. Mass of the fetus is about 460 grams in week 22. At the end of second 

trimester, crown-to-rump length of the fetus might have tripled since the 12 week of 

pregnancy. The fetus weighs roughly 820 grams and is long 230 millimetres from 

crown to rump by the end of 27th week (Figure 5.3). 

 

 

Figure 5.2 Weight of a fetus according to pregnancy period in weeks 
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Over the last trimester, fast development in size and weight of the fetus is seen. The 

volume of amniotic fluid decreases. The amount of body fat in the fetus also 

increases rapidly. At the end of the 28th week of gestation the fetus will be around 

250 millimetres in length with a mass of around 1000 grams. Bones and skeleton 

system of the fetus are fully developed, but are still soft. 34 weeks into the 

pregnancy, fetus is 300 millimetres long from crown to rump and weighs 2100 

grams. Rapid weight gain in fetus begins after 36 weeks into the pregnancy.  

 

 

Figure 5.3 Standing height of a fetus during gestation age 

The later stage of gestation fetus weighs about 2.7 to 3.6 kg and is about 450 

to 500 millimetres long (Figure 5.2 and Figure 5.3). Romero et al., (1988) based on 

the fetus' head measurements, 3.3 kg estimated fetal weight was found for a 38th 

week-old fetus. Fetus occupies the majority of uterine volume and amount of 

amniotic fluid in uterus is at minimum. Acar and Lopik (2009) designed a 38 week 

pregnant small women, 5th percentile model which represents a final trimester 

pregnancy with a large fetus and abdomen.  
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5.4  Multibody Fetus Model  

5.4.1  Anatomy of the Fetus  

By the end of the 38th week of pregnancy, anatomy of the fetus will become same as 

anatomy of newborn baby. Therefore, anthropometric specifications of the fetus are 

based on newborns, fetal MRI and ultrasound scanning (Figure 5.4). 

 

 

Figure 5.4 Anatomy of the fetus, MR scan (adapted from CRIC)  

Ultrasound measurements of the fetus' head and body play significant role to 

assess gestational age. Snijders and Nicolaides, (1994) measured 1040 pregnancies 

and established fetal biometry. According to their ultrasound fetal measurements, 

fetal biparietal diameter (BPD) for median range in 38th weeks of pregnancy is 96 

mm and occipito-frontal diameter (OPD) is 116 mm (Figure 5.5). Head 

circumference was 332 mm for the fetus of 38th week pregnant. So, the fetus' head 

were defined. Abdominal circumference of the fetus for median range is found 339 

mm. They also measured femur length and found 72 mm for median range pregnant 

in her 38th week gestation. 
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Figure 5.5 Top view of the fetus' head, Measurements of biparietal diameter (BPD), 

occipito-frontal diameter (OFD), head circumference (HC) (Novakov, 2002) 

Jeanty et al., (1984) measured upper and lower limps of a fetus. Arm bone 

length was measured 66 mm for a 38th week fetus humerus and ulna were measured 

61 mm. Overall, 79.8% of all pregnancies, the fetus were born in the occiput anterior 

position, head of the fetus is down and back against the anterior uterine wall 

(Lieberman, et al., 2005).  

5.4.2  Model Geometry 

Hyper ellipsoids are used to represent the anatomy of the 38th week fetus in 

MADYMO. Lengths of the three semi-axes of ellipsoids, their orientations and 

positions are necessary to define them. Previous researchers' ultrasound fetal 

measurements, scaling of anthropometric measurements from newborns and existing 

infant and child models in MADYMO dummy database are used to define the 

multibody fetus geometry (Figure 5.6) (Acar and Lopik, 2009, 2012). 
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Figure 5.6 The multibody fetus model (adapted from Acar and Lopik, 2009) 

The optimum fetus position in the pregnant model was estimated from MRI 

scans of pregnant abdomen and previous researchers' findings (Sutton, J., 2007; 

Lieberman, et al., 2005). In this position, the back of the fetus is curved, the head is 

bowed and limbs are bent and drawn up to the abdomen and thorax. The fetus snug 

fits in the uterus with this position.  

Head dimensions of the fetus were defined with using ultrasound fetal 

measurements of Snijders and Nicolaides, (1994), which were the mean BPD was 96 

mm and OFD was 115 mm for a 38th week fetus. Pheasant, (1998) also measured 

similar values, the mean head length was 120 mm and head breadth was 95 mm, for 

a 38th week of pregnancy. Foot length of the fetus for the mean value was 77 mm 

was obtained from Chervenak et al., (1992). Ultrasound fetal measurements of 

Jeanty et al., (1984) such as legs and arms were also used to define the multibody 

fetus model in the uterus. Hands in the fetus model are not represented but the lower 

arms incorporate the added length of the hands. Abdominal circumference of the 

fetus, 339 mm for the 38th week were obtained from fetal biometry data of Snijders 

and Nicolaides, (1994) (Acar and Lopik, 2012).  
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5.4.3  Modelling in MADYMO 

The multibody fetus model is composed of 15 hyper ellipsoids representing different 

body regions of the fetus. These 15 articulations of the fetus are connected by 

kinematic joints. Joint and contact characteristics such as damping, hysteresis, 

friction and stiffness, are scaled from existing multibody models of infants and 

children in MADYMO database. In order to adapt model geometry to the desired 

anthropometry parameters, MADYMO/scaler command is used for specified x-, y-, 

and z-dimensions of scaler factors. All other model parameters such as mass and 

moment of inertia, ellipsoids and penetration characteristics are also scaled from 

existing multibody models of infants (Acar and Lopik, 2012).  

Weight of each rigid bodies and their position of the centre of gravity are 

scaled from the TNO 9 month-old child dummy. According to biparietal diameter 

and abdominal circumference (AC) measurements for the 38th week fetus, an 

estimated fetal weight of 3.3 kg is used from Romero et al., (1988). 

A number of different types of joints with different type of properties are 

used to connect rigid bodies of the fetus model. For instance, joint properties for the 

spine of the fetus model are scaled from adult values found in the literature (Prasad 

and King, 1974). Spherical joints to permit three-rotational degree of freedom are 

used to define spine, hip, ankle and shoulder joints of the fetus model. Revolute 

joints are used to represent elbow and knee joints to provide one degree of freedom 

in the rotational plane (Figure 5.7). A local coordinate system of the ellipsoidal 

pelvis forms the reference coordinate system of the model. Hip joint is located in the 

origin of the pelvis in the sagittal plane. Joint restraints are used to limit the range of 

motion of each anatomical joint to stay within the physiological range of motion. 
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Figure 5.7  Revolute and Spherical Joints (adapted from MADYMO Theory, 2010) 

5.4.4  Contact Penetration of Rigid Bodies 

Contacts of various rigid bodies of the fetus are represented with body-to-body 

contact. Force-penetration characteristics are defined to use in the calculation the 

elastic contact force for each ellipsoid surface separately. Contact interaction is 

defined by a master surface against a slave surface. In order to define body-to-body 

contact, CONTACT.MB_MB command is used to select groups of multibody 

surfaces to be used as master ellipsoid and slave ellipsoid in a contact calculation. 

Contact detection parameters, damping, friction are also defined with this command 

(Figure 5.8).   

 

Figure 5.8 Penetration in ellipsoid-ellipsoid contacts (MADYMO Theory, 2010). 
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5.5  Drop Test Modelling 

5.5.1  Design Approach of Test Parameters 

In order to investigate the fetus-placenta interactions, simulation tests of Rupp et al., 

(2001) which are vertical drops of the fetus within the uterus model onto a rigid-flat-

horizontal-surface at angle of orientation 0°, 30°, 90°, and 180° tests are conducted. 

Drop angles of orientation of the model are defined according to orientation of the 

placenta model with placenta axis (Figure 5.9). 

 

Figure 5.9 Uterus drop angles of orientation according to placenta disc axis 

The multibody fetus and the finite element uterus and placenta model have 

been extracted from the 'Expecting' pregnant occupant model. In addition, uterus 

drop tests without the fetus model are designed to investigate the effect of the fetus in 

the uterus. The uterus is filled with the amniotic fluid model to represent the 

'without-fetus' investigations. Angle of 180o drop tests are also simulated. Drop 

impact simulations involve dropping the model onto a rigid plate from a height of 0.5 

m. The dimensions of the surface are 1m × 1m × 0.01 m represented as rigid plane in 

MADYMO software package (Figure 5.10). Square plane is attached to reference 

space of the ground system. 
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Figure 5.10 Rigid surface for drop test simulations 

5.5.2  Multibody Fetus and Finite Element Uterus Model 

The uterus model in Acar and Lopik, (2009) is represented with two ellipsoidal 

shapes and gives a snug fit around the fetus. Two layers of elements with each 

element size are 5 mm is designed for the uterus model. A 10 mm thick fat layer is 

also meshed to cover the uterus. At the upper interior region of the uterus, finite 

element placenta is located with discoid circular shape. Diameter of the placenta is 

approximately 185 mm. The placenta model has also two layers of elements. 

However, sizes of elements vary. Finite element uterus placenta and fat tissues are 

modelled as linear elastic solids (Figure 5.11) 

 

Figure 5.11 The uterus model with the fetus used for drop test 
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5.5.3  Finite Element Amniotic Fluid Model 

Finite element amniotic fluid filled model without a fetus is designed to represent 

drop test simulations. The multibody fetus and its Cardan restraints which are 

dampers and springs are between uterus and fetus are removed from the uterus 

model.  Amniotic fluid in the uterus model is modelled in HyperMesh using 4-noded 

tetrahedral elements (Figure 5.12). 

 

Figure 5.12 Uterus model with amniotic fluid used for drop test 

5.5.4  Material Properties 

The material properties of fat, uterus, placenta, and amniotic fluid are based on data 

published in open literature (Pearsall and Roberts, 1978; Rupp et al., 2001) and 

previous researchers' estimates (Moorcroft et al., 2003). Placenta is vascular organ 

therefore it is assumed to be softer than uterus but stiffer that fat (Table 5.1). 
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Table 5.1 Material properties used for uterus model 

Structure 

Material 

Model 

Young's 

Modulus (kPa) 

Density 

(kg/m3) 

Poisson's 

Ratio 

Uterus 

Linear 

elastic 

566 1052 0.4 

Placenta 63 995 0.45 

Fat 47 993 0.49 

Amniotic Fluid 20 993 0.49 

 

 The amniotic fluid is modelled as a solid with fluid properties because 

MADYMO does not utilize fluid elements. In MADYMO, MATERIAL.ISOLIN 

code is used to define material density, Young's modulus and Poisson's ratio of the 

amniotic fluid properties. The Young's modulus ranged from 20.3 kPa to 1379 kPa, 

with average of 566 kPa. 98-99% of amniotic fluid is water and therefore it is 

assumed incompressible and has a negligible Young's modulus and a Poisson's ratio 

of 0.49. 

5.5.5  Contact Characteristics between Rigid Surface and Uterus Model 

Contact between the multibody surface, which is a rigid plane, and finite element 

surfaces used in the uterus model, are defined with using the CONTACT.MB_FE 

command in MADYMO software package. The rigid surface is treated as master 

surface while the uterus model is treated as slave surface which is defined by the 

nodes of the finite element surface (Figure 5.13). 

 

Figure 5.13 Contact Type, slave surface deformed 
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Contact force is calculated by using the kinematic contact model which does 

not allow a finite element node to penetrate the master contact plane surface (Figure 

5.14). The contact force is based on an inelastic impact between the nodes and the 

surface. Friction coefficient between the rigid plane and the finite element uterus 

model is taken as 0.3. 

 

 

Figure 5.14 Contact definitions in MADYMO 

5.6  Drop Test Simulation Results  

Eight impact simulations are conducted. The uterus with and without the fetus is 

dropped onto a rigid plate from a height of 0.5 m (Figure 5.15). During the drop test 

simulations, it is observed that the leading end of the uterus is stopped by the rigid 

flat impact surface when the uterus hits rigid plate. However, the fetus within the 

uterus still continues to move due to momentum gained until it is also stopped by the 

impact surface or bounce back begins to occur. Finite element uterus model 

including fat and placenta are compressed between the impact surface and the fetus 

leading to high stresses. Effect of inertial moment of amniotic fluid model on the 

uteroplacental interface (UPI) is also observed during drop test simulations. 
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Figure 5.15 Drop tests (a) with fetus and (b) without fetus 

5.6.1  Vertical Drop Tests at angle of 0 degree 

The placenta axis angle of 0 degree represents the uterus and fetus position in 

pregnant occupant. The head of the fetus is down and disc of the placenta is 

horizontal to the ground (Figure 5.16). For the 0° contact angle, it is observed that the 

model becomes unstable when the finite element uterus model contacts the rigid 

surface. The fetus model hits the floor and the uterus wall is squeezed between the 

rigid surface and fetus head rupturing the uterus model. With the no-fetus model, 

highest strains are observed around contact surface of the uterus with rigid floor. 

However, strain at UPI is below the threshold level. 

 

Figure 5.16 Vertical drop tests at angle of 0° 
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5.6.2  Vertical Drop Tests at angle of 30 degree 

The finite element uterus with and without the fetus model is dropped from 0.5m at 

angle of 30° (Figure 5.17). In the drop test simulations, maximum Von Mises strain 

at UPI and at full uterus has been investigated. For the 30 degree contact angle with 

fetus drop test simulations, the maximum strain in the full uterus model consistently 

higher than without the fetus model. Similar results were also obtained when the 

maximum strain at UPI was investigated. For instance, 30° contact angle drop test 

without the fetus, the maximum strain at UPI is 0.02, whereas, with the fetus, the 

maximum strain at UPI is 0.17.  

 

 

Figure 5.17 Vertical drop tests at angle of 30° 

5.6.3  Vertical Drop Tests at angle of 90°  

For the 90° orientation angle (Figure 5.18), the maximum strain values at anywhere 

in the UPI are similar for both with and without the fetus simulations, but maximum 

strain at the UPI with the fetus is still greater than the one without the fetus.  
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Figure 5.18 Vertical drop tests at angle of 90° 

5.6.4  Vertical Drop Tests at angle of 180° 

In the 180 orientation, the placenta is at the leading end of the uterus in the impact 

simulations (Figure 5.19); hence the placenta is compressed between the fetus and 

the impact surface. Therefore, a very high strain value of 2.57 is obtained at this 

simulation with the fetus. In the drop tests without the fetus the strain value is 0.66. 

The results clearly show that the fetus causes a sharp rise in the UPI strain due to the 

compression between the fetus and the impact surface. Even without the fetus, the 

strain at the UPI is high, higher than the threshold value, due to direct impact with 

the surface. 

 

Figure 5.19 Uterus vertical drop tests at angle of 180° 
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Table 5.2 Von Mises strain levels with and without fetus drop tests 

Drop 

Test 

0° 30° 90° 180° 

Whole 

Uterus 
UPI 

Whole 

Uterus 
UPI 

Whole 

Uterus 
UPI 

Whole 

Uterus 
UPI 

With 

Fetus 
1.37 0.07 2.02 0.17 0.89 0.3 2.57 2.57 

Without 

Fetus 
0.72 0.01 0.66 0.02 0.86 0.24 0.66 0.66 

5.6.5  Conclusions  

In this section, implications of including the fetus model in the uterus were 

investigated. Vertical drops onto a rigid flat horizontal surface at angle of orientation 

of 0°, 30°, 90°, and 180° have been simulated for the uterus model with and without 

the fetus. Contribution of the presence of a fetus on the maximum von Mises strains 

at the uteroplacental interface as well as anywhere in the uterine wall have been 

determined. Drop test simulation results shows that the existence of a fetus have a 

significant effect on the strain levels both in the uterus in general and of the UPI, 

with the exception of 90° orientation, where the difference is small. In all cases, the 

maximum strain level are higher with the fetus than the without fetus model. It is 

therefore crucial to the simulations of pregnant occupant model to include a fetus in 

the uterus.  

5.7  Expecting' with and without fetus model 

5.7.1  Design Approach 

Drop test simulations clearly demonstrates that the fetus changes the dynamics of the 

simulation of the uterus and therefore the fetus should be included in the uterus in all 

pregnant woman models for realistic results in crash test simulations. In this study, 
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implications of including the fetus in the uterus are investigated with the 'Expecting' 

model at crash test simulations.  

The pregnant occupant model with and without the fetus is used to simulate 

four frontal impact speeds, 15, 20, 25 30 km/h with varying levels of restraint system 

including 'unrestrained', 'seat belt only', 'seat belt and airbag', 'airbag only' to explore 

the effectiveness of the existing fetus in the uterus (Figure 5.20). Strains developed in 

the uterus due to loading from the seat belt and steering wheel are presented. 

Contribution of the presence of a fetus on the stresses and strains generated at the 

uteroplacental interface are discussed. 

 

Figure 5.20 (A) Side view of 'Expecting' computational pregnant occupant model 

without the fetus; (B) 'Expecting' (with the fetus) 

 The research strategy adopted in this study was to use the 'Expecting' 

pregnant occupant model which has a fetus in crash test simulations and create 

another 'Expecting' model by removing the fetus and filling the uterus with amniotic 

fluid only. These two uterus models with and without the fetus are already used at 

vertical drop test simulations in section 5.6. 

5.7.2  Simulation Parameters and Applications 

'Expecting', the pregnant occupant model and its "without fetus" version are used at 

four sets of simulations; the 'seat belt and airbag' case group which is also termed full 
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restraint, incorporates the seat belt and airbag, representing a properly restrained 

pregnant driver, the 'seat belt only' case group excludes the airbag, 'airbag only' case 

group excludes the seat belt, and yet the airbag is active, whereas 'no restraint' case 

group excludes all restraints, in other words neither the seat belt is worn nor the 

airbag is deployed. For each group, tests are run with crash speeds of 15, 20, 25, 30 

and 35 km/h, and the half-sine wave is used to represent acceleration pulses with 120 

ms duration. The seat belt system has a pretensioner and a load limiter same as used 

in Chapter 4. While the load limiter protects pregnant occupant from seat belt-

inflicted injury, pretensioner restrains occupant instantly and reduces the amount 

they are thrown forward in frontal crash. The system reduces steering wheel and 

airbag impacts on pregnant abdomen. Standard MADYMO European driver airbag 

model is used in crash test simulations. It has 60 litres volume.  

5.7.3  Injury Criteria 

Maximum von Mises equivalent strain levels in uterus at placental location 

(uteroplacental interface) and in overall uterus are investigated for with and without 

fetus models to assess the possibility of placental abruption, which leads to fetal, and 

occasionally maternal death. The threshold strain value for the occurrence of 

placental abruption is widely accepted to be 0.6 at the UPI (Rupp et al., 2001). 

5.7.4  Crash Test Results  

Figure 5.21 depicts a typical impact response for the 'seat belt and airbag' with and 

without fetus cases. Figure 5.21 (a) shows the excessive deformations on the uterus 

due to the fetus loading, whereas Figure 5.21 (b) shows minimal deformations at 30 

km/h impact. 
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Figure 5.21 Typical frontal impact responses for 30 km/h at 105 ms of impact 

The maximum strains at the uteroplacental interface are compared in Figure 

5.22 in order to demonstrate the differences between with and without the fetus 

model simulations for varying crash speeds for 'seat belt and airbag' case. It is clearly 

seen that strains increase with increasing speed as expected. Figure 5.22 shows that 

the strains at the UPI for with the fetus model changes from 0.24 to 0.42, whereas the 

strains at the UPI for without the fetus model increases from 0.18 to 0.42. It is also 

clearly seen that without the fetus, all strain values at the UPI are considerably below 

the injury threshold value of 0.60. At 35 km/h impact, strains at the UPI for with and 

without the fetus models are same, 0.42. Full restraint case shows that although there 

is no great difference between with and without the fetus models at high speeds, 

without the fetus model simulation results are always lower than with the fetus model 

simulations (Figure 5.22). 
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Figure 5.22 'Expecting' with and without the fetus for 'seat belt and airbag case'. 

Maximum Von Mises strains at the uteroplacental interface comparison for with and 

without the fetus cases 
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'Seat belt only' case results for the maximum strains at the UPI of with and 

without the fetus models are demonstrated in Figure 5.23. 'Seat belt only' case 

follows a similar pattern to the strains at the 'seat belt and airbag case'. Differences of 

strains at the UPI for with and without the fetus cases are higher than 'seat belt and 

airbag case'. At 35 km/h impact, placental abruption risk is the same for both cases 

and close to threshold of 0.60. Without airbag, especially at high speeds, it is clearly 

seen that effect of the fetus for 'seat belt only' is higher than 'seat belt and airbag 

case'. Following the impact, the fetus moves forward and restrained by the uterus 

within the restrained body. The steering wheel loads the uterus at the anterior edge of 

the placental location forcing the fetus downwards also compressing the placenta 

between the fetus and steering wheel. The motion generates considerably higher 

strains at the UPI than without the fetus model. 

 

Figure 5.23 'Expecting' with and without the fetus for 'seat belt only' case. Maximum 

von Mises strains at the uteroplacental interface comparison for the with and without 

the fetus cases 
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Figure 5.24 shows the maximum von Mises strains at the UPI for the 'airbag 

only' case of 'Expecting' with and without the fetus. First of all, it is clearly seen that 

when the fetus is included, placental abruption risk emerges at all speeds but 15 

km/h, whereas without the fetus model, placental abruption risk emerges at the 

speeds of 30-35 km/h. Even at 20 km/h impact, placental abruption risk is present for 

the with the fetus model with a strain of 0.70, exceeding the threshold of 0.60. 

However, strain at the UPI is only 0.43 for without the fetus model which below 

injury threshold value of 0.60. Without the seat belt, it is clear to see the contribution 

of presence of a fetus on the maximum von Mises strains at the UPI. This significant 

mass (3.3 kg) plays a significant role at the dynamics of the simulation of 

'Expecting'. These results clearly demonstrate that the fetus changes the entire 

dynamic response to impact. Figure 5.24 shows that the strains at the UPI for the 

with the fetus model changes from 0.55 to 1.26, whereas the strains at the UPI for the 

without the fetus model increases from 0.43 to 0.73. 

 

Figure 5.24 'Expecting' with and without the fetus for 'airbag only case'. Maximum 

von Mises strains at the uteroplacental interface comparison for the with and without 

the  fetus cases. 
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For the 'no restraint' case in Figure 5.25, with the fetus model, placental 

abruption occurs at all speeds, 15-35 km/h, whereas without the fetus model at 15, 

20, and 25 km/h strains at the UPI is below the injury threshold value of 0.60. As for 

with the fetus model, the strain at the UPI reaches a maximum of 1.08 at 35 km/h 

impact, which is considerably above threshold value of 0.60. 

 

Figure 5.25 'Expecting' with and without the fetus for 'no restraint' case. Maximum 

von Mises strains at the uteroplacental interface comparison for the with and without 

the  fetus cases. 

5.8  Conclusions  

The implications of including a fetus model in the uterus of the 'Expecting' were 

investigated. The 'Expecting' with and without the fetus model were used to simulate 

a range of frontal impacts of increasing severity from 15 km/h to 35 km/h. Four 

levels of occupant restraint, seat belt and airbag, seat belt only, airbag only and 

completely unrestraint were investigated. As a result of loading from the seat belt, 

steering wheel unit and airbag, the strains developed in the uterus. When the  fetus 

existed, inertial loading of it on the uterus occurred as well. 
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was effectively sandwiched between the fetus, lap belt, steering wheel and airbag. 

The fetus was forced against the uterus anterior wall. This dynamic motion of the 

fetus generated significantly higher strains at the UPI than without the fetus model.  

Crash test simulation results with and without the fetus model clearly showed 

that the fetus changes the dynamics of the simulation of the uterus and therefore the 

fetus should be included in the uterus in all pregnant woman models for realistic 

results in crash test simulations. 
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CHAPTER 6  

EFFECT OF PLACENTA 

LOCATIONS 

 

 

6.1  Introduction 

The placenta is normally located at the top (fundus) of the uterus and this is the 

location used in the models in this investigation. However, the placenta can be 

positioned at different locations in the uterus in real life. Different positions of the 

placenta in the uterus may affect the strain levels. 

The work described in this chapter, different locations of the placenta in the 

uterus and their potential influences on the risk of placental abruption were 

investigated. These models were used as before, to simulate several collisions of 

increasing crash speed from 15 km/h to 35 km/h. The same type of occupant 

restraint; 'seat belt and airbag', 'seat belt only', 'airbag only' and 'unrestrained' cases 

were investigated. The strains developed at the uteroplacental interface were 
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determined and the influence of the placental position on the risk of placental 

abruption studied.  

6.2  Placenta Locations in the Uterus 

The anatomy of pregnant abdomen may be different from one pregnancy to another. 

For instance, the placenta in the uterus can be situated anywhere on the inner surface 

of the uterus wall. The locations of placenta in the uterus can be observed by 

ultrasonography measurements. Approximately six locations are defined to explain 

position of the placenta in the uterus. Placenta at the front wall of the uterus is known 

as the anterior placenta while placenta at back wall of the uterus is called the 

posterior placenta. In addition, the placenta attached to the side walls are defined as 

left lateral and right lateral placenta. The placenta situated at the top of the uterus is 

the fundal placenta and at the bottom of the uterus is the placenta praevia. Figure 6.1 

shows few of these positions. Figure 6.2 shows posterior placenta in fetal MRI. In 

around 80 % of pregnancies, the placenta is located in the top of the uterus (Pepperell 

et al., 1977).  

 

 

Figure 6.1 Placenta at different locations in the uterus 
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Figure 6.2 Posterior placenta in fetal MRI (adapted from CRIC) 

The position of the placenta inside the uterus may potentially play a crucial 

role and hence influences the likelihood of placental abruption. Hence the work 

described in this chapter, investigates the effect of placenta at four further locations 

on the risk of placental abruption during a motor vehicle accident. 

6.3  Finite Element Placenta Model 

6.3.1  Anatomy of Placenta 

The placenta is a highly vascular organ. Its primary function is to exchange oxygen, 

nutrients, and waste between the mother and the fetus. The placenta covers about a 

quarter of the inner surface of the uterus. Microvillus, which are small finger-like 

protrusions, attach the maternal side of the placenta to the decidual layer of the 

uterine wall. Two structures are connected together and this area is called the 

Uteroplacental Interface (UPI) (Figure 6.3). There is also a blood flow from the 

mother to the placenta and from the placenta to the fetus at UPI during pregnancy. 

The placenta receives approximately one sixth (800 ml) of the total amount of blood 

pumped from the heart of mother per minute. Therefore, partial or complete 

detachment of the placenta in the uteroplacental interface can cause fetus mortalities. 

Placental abruption, which is the separation of the placenta from the uterus, has been 

shown to account for 50-70% of fetal losses in motor vehicle collisions (Pearlman et 

al., 1990). 
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Figure 6.3 Section through uterus, placenta and fetal membranes, placenta in detail 

(adapted from Medivisuals) 

The fetus is attached to the placenta via umbilical cord which is on average 

50 cm but can vary from 20-120 cm in length. It is 1-2 cm in diameter. 

The shape of the placenta is a flattened discoid. The centre of the placenta 

represents the thickest part of the placenta while thinning towards the periphery. 

Average thickness of the placenta at term is 23 mm and average diameter is 185 mm. 

The average weight of the placenta is 470 gram, average volume is 500 ml and inner 

surface area of on average 30000 mm2 (Duck 1990 and Standing, S. 2005). Sivaraoa 

et al., (2002), has also reported similar values about the anatomy of the placenta. 

6.3.2  Model Geometry in 'Expecting' 

The discoid shape of the placenta is designed with SolidEdge CAD software. The 

placenta's diameter is chosen to be 185 mm. While the placenta thickness is 

approximately 20 mm at centre, thickness at periphery is about 4 mm. The most 

common position, which is the upper region of the uterus, is chosen to position the 

placenta in the uterus. Surface area of the placenta is 26866 mm2 at the uteroplacental 

interface (UPI). 
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6.3.3  Modelling in HyperMesh and in MADYMO 

The placenta geometry is meshed using HyperMesh software package. In the 

meshing process, two layers of elements are designed and from placental outer 

surface to the inner surface of the uterus are mapped to create the placental elements 

(Acar and Lopik, 2009, 2012). Solid 8-noded brick elements are used to represent the 

placenta. Uteroplacental interface consists of mutual nodes. The 3D placenta model 

is represented with 884 elements (Figure 6.4). 

Node coordinates and element configurations are exported into MADYMO.  

Cartesian coordinates, x, y, z of nodes are defined in the MADYMO table. 

 

 

Figure 6.4 Meshed placenta; (a) Isometric view, (b) Sagittal plane view 

6.3.4  Material Properties of the Placenta 

There is lack of research about mechanical and material properties of the placenta. In 

addition, the placenta and its surrounding membranes change their physical 

properties when the pregnancy nears the final trimester. However, the placentas used 

in research are from pregnancies at or near to term in the most of the cases. 

All uterine bodies including the placenta were modelled as linear elastic 

isotropic solid material. However, the uterus and placenta are considered viscoelastic 

and anisotropic (Mizrahi and Karni, 1975). This means material properties vary 

depending on the direction. Viscoelastic materials exhibit both viscous and elastic 
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characteristics when undergoing deformation. When stress is applied, viscous 

materials strain linearly and resists shear flow. Elastic materials strain 

instantaneously and stretched, but when the stress is removed, just as quickly return 

to their original. Because of insufficient data, these material modelling methods are 

not applied. The material properties for placenta, uterus and fat are taken from 

literature (Pearsall and Roberts, 1978 cited in Acar and Lopik, 2009). It was assumed 

that the placenta is stiffer than fat and therefore the higher Young's modulus is used 

for the placenta. However, the placenta is muscular tissue and the Poisson's ratio is 

lower than fat. The Poisson's ratio of the human placenta is reported as 0.49 

(Manoogian et al., 2008) (Table 6.1). These material properties of the placenta such 

as density, Poisson's ratio and the Young's modulus are defined in MADYMO. 

 

Table 6.1 Placenta material properties 

 
Density Young's Modulus Poisson's Ratio 

Material Properties 995 kg/m3 47 kPa 0.49 

6.4  Contact Characteristics of the Placenta in MADYMO  

Finite element placenta model is defined in HyperMesh as one of the components of 

the uterus model. Element properties and Cartesian coordinates of nodes are exported 

into MADYMO. Model definition data of the placenta are written under the FE 

uterus model. GROUP_FE element is used to assemble selected set of finite element 

placenta within the FE uterus model. Contacts between the  multibody fetus surfaces, 

which are chosen as the master surface, and finite element placenta surface, which is 

chosen as the slave surface, are defined with CONTACT.MB_FE (Figure 6.5). 
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Figure 6.5 Contact definitions between the placenta and the fetus 

6.5  Modelling the Placenta at Different Locations 

Understanding of the design process of the uterus model in detail is very important to 

redesign a new placenta models. During the design process, model geometry, 

element type, supports, boundary conditions, contact definitions, and outputs are 

decided. Design criteria for the new placenta models are taken from the original 

placenta model of the 'Expecting'. Therefore, values for surface area of the UPI, 

placenta diameter or length, and placenta volume are designed as close to the values 

of the original placenta as possible. The most common locations of the placenta in 

the uterus are investigated and four additional regions are chosen in additional to the 

original fundal position. Placenta praevia is not modelled due to its rarity (0.5%) in 

real life and it brings many other complications to pregnancy and child birth. 

6.5.1  FE Placenta Model at Anterior 

The finite element placenta model is positioned on the frontal wall of the 

uterus (Figure 6.6). This is the nearest location to the abdomen muscles of the 

pregnant body. Finite element mesh pattern of the uterus model is kept unchanged 

and therefore the placenta model is designed to match the inner surface of the uterus 

elements. The anterior placenta has rectangular shape approximately 185 x 145 mm 

with thick centre, 17 mm and the thin peripheral, 3mm. Surface area of the new 

placenta is the similar as the original placenta, 26816 mm2. In order to investigate the 

effect of different placental locations in the uterus, it is important to maintain the 

properties of the placenta models at different locations. Especially, surface of the 
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uteroplacental interface (UPI) plays significant role from this point of view. This 

model has also two layers which consist of 8-noded hexahedral elements. Anterior 

placenta is normal place for the placenta to implant and develop. 

 

Figure 6.6 Anterior placenta in uterus; (a) Side view, (b) Top view 

6.5.2  FE Placenta Model at Posterior 

The computational placenta model is attached to the back wall of the uterus 

(Figure 6.7), posterior placenta. The back wall of the uterus is the closest to spine of 

the pregnant woman. Due to its position on the back wall of the uterus, posterior 

placenta forces the fetus forward and closer to the abdomen of the pregnant woman. 

The new placenta model is also meshed using HyperMesh. Due to the mesh pattern 

of the finite element uterus model, posterior placenta has also rectangular shape. 

Posterior placenta has approximately 188 x 135 mm with thick centre, 15 mm. 

Peripherals of the posterior placenta is thinned to about 3 mm. UPI area of the 

placenta at the back wall of uterus is about 25350 mm2. Two layers of linear elastic 

8-noded hexahedral elements are used to construct the new placenta. Posterior 

placenta is considered normal for the mother and the fetus during pregnancy. 
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Figure 6.7 Posterior placenta; (a) Side view, (b) Top view 

6.5.3  FE Placenta at Lateral Left and Lateral Right  

The finite element placenta model is positioned on the lateral left and lateral 

right of the uterus (Figure 6.8 and Figure 6.9). Both of the placentas are designed to 

be symmetric to each other from sagittal plane to investigate external impacts from 

asymmetric loadings due to asymmetrical shoulder belt. Design criteria for the new 

placenta models on the lateral left and lateral right of the uterus are the same. 

Placenta covers almost a quarter of the inner surface of the uterus with its UPI area 

of about 26725 mm2 for both. Due to the mesh pattern of the uterus model, 

rectangular shape placenta models are generated. Height of the placenta towards to 

the back wall of the uterus becomes shorter while it is the tallest near front wall of 

the uterus. Therefore, length of the placenta ranges from 110 mm to 188 mm. Width 

of the each placenta is approximately 135 mm. Placenta on the left or right side of 

the uterus is also considered normal for the pregnancy.  



Chapter 6                                                                                                                          Effect of placenta locations 

141 

 

Figure 6.8 Placenta at lateral left; (a) Side view, (b) Top view 

 

Figure 6.9 Placenta at lateral right; (a) Side view, (b) Top view 
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6.6  Crash Test Simulations with New Placenta Models 

6.6.1  Simulation Set-up 

Four sets of simulations, 'seat belt and airbag', 'airbag only', 'seat belt only', and 

finally 'no restraint' cases, are simulated with 'Expecting' pregnant occupant model 

with four different placental locations. Standard MADYMO European driver airbag 

model (60 litres) is used. Seat belt system has a pretensioner and a load limiter. Each 

group is used to simulate a frontal impact at speeds of 15, 20, 25, 30 and 35 km/h. 

Simulations at these crash speeds are repeated for anterior, posterior, lateral left and 

lateral right placental locations. The simulation results of 'Expecting' which has 

placenta at upper region of the uterus are taken from Acar and Lopik, (2009). 

In order to investigate the potential influence of the placenta position on the 

risk of placental abruption, the maximum von Mises equivalent strain level in 

uteroplacental interface and in overall uterus are determined. 

6.6.2  New Placenta Models with 'Expecting'  

'Expecting' is used with a replaced uterus with four placenta locations in the crash 

test simulations. Every other feature such as vehicle interior, restraint systems are 

used as in 'Expecting' (Figure 6.10). 

 

Figure 6.10 'Expecting' with anterior placenta model 
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6.6.3  Simulation Results 

For the fully restrained pregnant occupant, the maximum strains at the UPI 

are presented in Figure 6.11, for the range of crash scenarios simulated. Figure 6.11 

shows that the strain at the UPI for the placenta located at anterior in the uterus is 

always higher than all other placental locations. Especially, at a crash speed of 30 

km/h, there is a significant maximum strain difference between placenta at other 

positions and anterior position, the latter exceeding the threshold level. Figure 6.11 

also shows that the strains at the UPI for the placenta located at posterior, lateral 

right and left, all remain below the threshold levels, similar to the results from 

'Expecting', at all speeds considered. Although placentas located at lateral left and 

right are designed symmetric from sagittal plane of 'Expecting', simulation results for 

these placenta models are not identical, because the three-point seat belt is not 

symmetrical. Furthermore, the multibody fetus in the uterus model is not symmetric 

either, due to the crossing of legs, where the left leg of the fetus interacts differently 

with placenta to right leg of the fetus. For all range of crash speed cases when 

pregnant occupant is fully restrained, strain values for placenta located at lateral right 

is always lower than placenta located at fundus (Figure 6.11). The only danger to 

fetus is at the crash speed of 30 km/h for the placenta located at anterior position in 

the uterus. 

 

Figure 6.11 Occupant fully restrained, maximum von Mises strains at the 

uteroplacental interface comparison for the four different placental locations 
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'Seat belt only' case is investigated in detail to show the influence of different 

placenta locations on fetus injuries and mortality (Figure 6.12). Airbag is not 

activated in this case. For 'seat belt only' case, strain values at UPI for low crash 

speeds e.g., 15 and 20 km/h, are low in general whereas strains are higher at higher 

speeds compared to the fully restrained case. Similarly only a crash speed of 30 

km/h, strain value at UPI exceeds threshold level when placenta located at anterior. 

Generally, posterior, lateral left and right placenta locations result in lower strain 

levels. These results shows that fetus of a pregnant driver who has a placenta which 

is located at fundus and at anterior in the uterus is more at risk than fetus of a 

pregnant driver who has placenta located at posterior, lateral left and lateral right. 

 

 

Figure 6.12 'Seat belt only' case, maximum von Mises strains at the uteroplacental 

interface comparison for the four different placental locations 
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Figure 6.13 depicts the fetus, placenta located at anterior in the uterus and the 

lap belt. It is clearly seen that strain is developed from the loading of lap belt with 

placenta located at anterior. The anterior placenta and uterus are sandwiched between 

the belt and the fetus. Peak von Mises strains for placenta located at anterior is 

always higher than placenta located at fundus. 

 

 

Figure 6.13 Anterior placenta and lap belt; (a) Front view, (b) Side view 
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Figure 6.14 shows the peak strains at the UPI for five different placenta 

locations when there is only airbag exist as a restraint system. Strain values for all 

placental locations at a crash speed of 15 km/h are under threshold value for 

placental abruption. However, at higher crash speeds, significantly different strain 

values are derived when placenta is located from fundus to other positions. Figure 

6.15, clearly shows that airbag and steering wheel loading on uterus generates 

generally higher strain values at the UPI for all placenta locations but the highest 

strains occurring at anterior and fundus positions. These results show that the safest 

position for the fetus of pregnant driver is to have the placenta located at posterior 

region in the uterus. Comparison of Figure 6.11 and Figure 6.14 also shows that, not 

wearing the seat belt and relying on the airbag only appears to be hazardous for a 

pregnant driver. 

 

Figure 6.14 'Airbag only' case, maximum von Mises strains at the uteroplacental 

interface comparison for the four different placental locations 

  



Chapter 6                                                                                                                          Effect of placenta locations 

147 

‘No restraint’ case is analysed in detail to express the influence of five 

different placenta locations on fetus injuries and fatality (Figure 6.15). Maximum 

von Mises strains at the UPI are investigated when there is no airbag and seat belt 

restraint systems. Strain values for 'Expecting' at all crash speeds are above threshold 

value for placental abruption, whereas strains at UPI when placenta is located at 

anterior is below and on the threshold value for 15 and 20 km/h crash speeds. For a 

crash speed of 30 km/h, different strain values are derived when placenta is located 

from fundus to other locations. These results shows that fetus of a pregnant driver 

who has placenta which is located at fundus and anterior in the uterus is more likely 

to be injured seriously than fetus of a pregnant driver who has placenta located at 

posterior.   

 

Figure 6.15 'No restraint' case, maximum von Mises strains at the uteroplacental 

interface comparison for the four different placental locations 

6.7  Conclusions 

The Chapter focused on the effects of placental locations on the fetus injuries and 

mortality. The impact of placenta position on the risk of placental abruption was 

investigated. It was found that the placenta position plays important role on the risk 

of fetus mortality. The highest peak strain value was generated at anterior placenta, 

whereas posterior placenta generated relatively low peak strain values. Results also 
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showed that the risk of placental abruption for the anterior placenta and the placenta 

positioned at fundus were high and the difference between the two was very little for 

the range of crash speeds at 'airbag only' case. It was found that wearing seat belt and 

activated airbag restrained systems protects the fetus well in all cases. This study has 

found that fetus of a pregnant driver who has a placenta located at anterior in the 

uterus is more likely to be injured than fetus of a pregnant driver who has a placenta 

located at original position (fundus) of 'Expecting'. 
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CHAPTER 7  

FETUS IN AMNIOTIC FLUID  

 

 

7.1  Introduction 

Amniotic fluid is vital to the well-being of a fetus. From the beginning of the first 

trimester to the end of pregnancy, amniotic fluid always exists inside of the uterus. 

Accumulation of the amount of water-like liquid is important to support fetal growth 

and to allow for maternal physiological changes. The amniotic fluid cushions a fetus 

from injuries. It also surrounds the fetus and allows free movements for the fetus. 

Although the volume of amniotic fluid changes with the growth of the fetus during 

pregnancy, this circulation and interaction continues until the end of pregnancy. This 

protective liquid contained by the amniotic sac of pregnant women plays a 

significant role in fetus safety. Its interaction with the fetus needs to be investigated 

to create a realistic model.  

 In the original 'Expecting' model, the cushion effect of the amniotic fluid is 

obtained with defining damping characteristics between the multibody fetus and 

pregnant occupant in MADYMO (Acar and Lopik, 2009). In the literature review in 
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Chapter 3, it was explained that Moorcroft et al., (2003) developed a finite element 

amniotic fluid model in the uterus without the fetus in their design. In this work, 

crash test simulations with pregnant occupant models are conducted with the fetus 

but the effect of the physical amniotic fluid is mimicked with cardan restraints. Finite 

element amniotic fluid model filling the uterus entirely, without the fetus is 

developed in Chapter 5 in order to investigate the effect of no-fetus in the uterus. The 

original 'Expecting' with the fetus and the modified model without the fetus, amniotic 

fluid only, are compared and shown that the fetus plays a significant role in the 

dynamic behaviour of the pregnant abdomen. Finite element amniotic fluid model 

surrounding the multibody fetus is developed to create a more realistic representation 

of the pregnant abdomen.  

7.2  Anatomy of Amniotic Fluid with Fetus 

Amniotic fluid in the uterus exists from the first trimester of pregnancy to the end of 

the pregnancy. In the first trimester of pregnancy, fluid is derived from the maternal 

circulation across placenta. It then circulates through the fetal membranes by osmotic 

and hydrostatic forces. After about 12-14 week of gestation, the liquid contains 

proteins, carbohydrates and urea, which aid in the growth of the fetus. Fried (1978) 

found that approximately 98-99% of amniotic fluid is water. By 25 weeks of 

pregnancy, the fetal lung and bladder contributes to amniotic fluid volume. Fetal 

urine becomes the major source of amniotic fluid in the second trimester of 

pregnancy.   

Normal amniotic fluid volume changes steadily through pregnancy. Wide 

variation of these changes also exists. Figure 7.1 illustrates approximate volumes at 

various gestational ages, based on a compilation of 12 published studies of amniotic 

fluid volume (Brace and Wolf, 1989). Amniotic fluid volume is represented in 

millilitre while the gestation age is defined as weeks of pregnancy. The data 

summarizes covering 8 to 43 weeks' gestation. According to the diagram, amniotic 

fluid has a uniform variability from 8 to 43 weeks of pregnancy. Mean amniotic fluid 

volume does not change significantly between 22 and 39 weeks of pregnancy. Figure 
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7.1 also shows that amniotic fluid volume reaches a peak volume at 32 to 33 weeks 

of pregnancy. 

 

Figure 7.1 Amniotic fluid volume as a function of gestation age (Brace and Wolf, 

1989) 

Volume of amniotic fluid is an important indicator of fetal well-being. 

Therefore, amniotic fluid volume should be evaluated together with evaluation of the 

fetal growth. The ratio of amniotic fluid to fetal volume increases until 

approximately 30 weeks of pregnancy and then appears to decline. The volume of 

amniotic fluid is correlated with growth of the fetus until about 28 weeks of 

gestation. Anatomy of the amniotic fluid indicates that the amniotic fluid and the 

fetus should be always considered together in the uterus.  

7.3  Computational Amniotic Fluid Model 

The amniotic fluid is modelled with finite elements while the multibody fetus model 

still exist in its original position to create more realistic 'Expecting' model. This 

model allows investigating the cushioning effect of the amniotic fluid on the fetus 

and the uterus motion at the crash test simulations. 
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Representation of the cushion effect of amniotic fluid in the original 

'Expecting' model is explained in Chapter 3. Parallel springs and dampers that 

connect the fetus and pregnant occupant bodies define cushioning effect of amniotic 

fluid in the 'Expecting'. Fetus damping characteristics has been defined by the 

MADYMO codes. 

In order to model the amniotic fluid in the finite element uterus model, the 

multibody fetus model and its cardan restraints which are dampers and springs are 

extracted from the uterus model. Chapter 5 reports a model of the uterus which is 

completely filled with 4-noded tetrahedral elements to represent the amniotic fluid. 

The fetus is placed in its original position and the amniotic fluid elements which are 

replaced with the multibody fetus components are deleted one by one in order to 

represent the amniotic fluid and the fetus simultaneously inside of the uterus. Figure 

7.2 illustrates this modelling process. Figure 7.2 (a) shows that entire volume of the 

uterus is filled with amniotic fluid (Chapter 5). Figure 7.2 (b) illustrates the uterus 

model with the fetus and the amniotic fluid simultaneously inside of the uterus. It is 

clearly seen that the 38th weeks of pregnancy, the fetus occupies significant volume 

in the uterus. The mass of the fetus is 3.3 kg, whereas the mass of the amniotic fluid 

is about 0.5 kg. 

 

Figure 7.2 The finite element amniotic fluid and the multibody fetus modelling 

process; (a) Only FE amniotic fluid model from Chapter 5, (b) FE amniotic fluid and 

the fetus model 

(a) (b) 
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 The volume of the amniotic fluid in the uterus is reduced by deleting finite 

elements one by one according to the volume of the fetus. Due to the zero gap 

between the fetus body and the uterus at some points, amniotic fluid elements are 

deleted completely and direct interaction occurs between the fetus and the uterus. 

Specifically, the head of the fetus touches to the base of the uterus directly due to the 

gravitational force on the fetus body. Material properties for the amniotic fluid model 

are taken from Section 5.4.Table 7.1 shows material model and properties used to 

define the computational amniotic fluid model in MADYMO.  

 

Table 7.1 Amniotic fluid material properties 

 

Material Model 
Young's modulus 

(kPa) 

Density       

(kg /m3) 
Poisson's ratio 

Amniotic Fluid Linear Elastic 20 993 0.49 

7.4  Model Validation 

The facet 5th percentile female occupant model has been validated as described in 

Happee et al. (2000) published small female impactor corridors for the SID2s 

dummy (Daniel et al., 1995) and some other female PMHS tests. The MADYMO 

human facet occupant model has been previously validated against rigid bar impact, 

belt loading with cadaver tests for frontal, lateral, and rearward impact loading 

(Happee et al., 2000), (MADYMO Human Models Manual, 2010). 

 The existing MADYMO human female model was modified to represent 

'Expecting' pregnant occupant which is explained in Chapter 3. An accurate and 

realistic response of the pregnant abdomen is necessary to predict risk of fetal 

injuries and fatalities for the computational pregnant women model. Rigid bar impact 

and belt loading tests performed by Hardy et al. (2001) were used to validate 

'Expecting', pregnant occupant model (Acar and Lopik, (2009). Same validation tests 

are conducted to validate the modified 'Expecting ' model. 
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7.4.1  Rigid Bar Impact Test 

Force-deflection abdominal corridors for a 50th percentile male based on dynamic 

testing of human cadaver (175 cm, 88 kg, 80 years) have been developed by Hardy et 

al., (2001). These corridors have been scaled to a 5th percentile female by Rupp et 

al., (2001) in the development and validation of the MAMA2B ATD. Response of 

the computational pregnant occupant model to impacts is evaluated with these 

corridors. The impact test is conducted using a ballistic pendulum with a rigid bar 

impactor in the test set up (Acar and Lopik, 2009). The 'Expecting' model validation 

is explained in detail in Chapter 3. Figure 7.3 depicts a rigid bar impact test for the 

modified 'Expecting' model. The grey colour rigid bar in front of the pregnant 

occupant's abdomen illustrates the impactor.  

 

Figure 7.3 Modified 'Expecting' rigid bar impact test 

The same test set up was described by Hardy et al., (2001) to develop a 6 m/s 

(21.6 km/h)  abdominal response corridor. The force-displacement response of the 

model and results of earlier researchers to the 6 m/s (21.6 km/h) rigid bar loading 

case are shown in Figure 7.4. 
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Figure 7.4 Abdominal response of the modified pregnant occupant model, 

'Expecting', to 6 m/s (21.6 km/h) rigid bar impact test compared with the results of 

earlier researchers 

Force-displacement of the pregnant abdomen was recorded and found to be in 

reasonably good agreement with the experimental data falling within the defined 

response corridors. Figure 7.4 also shows that there is significant similarity between 

'Expecting' and modified 'Expecting' models. 

7.4.2  Belt Loading Test 

A dynamic belt loading test was conducted to validate 'Expecting' by Acar and 

Lopik, (2009) and explained in detail in Chapter 3. For belt-loading a finite element 

belt is initially wrapped around the pregnant abdomen at mid-umbilical region and is 

pulled across the pregnant abdomen at 3 m/s (10.8 km/h) (Figure 7.5). Belt 

penetration is calculated by determining the motion of the belt relative to the position 

of the lumbar spine.  
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Figure 7.5 Belt loading test 

Belt loading on the uterine wall generates high von Mises stresses around the 

uterine wall where the finite element belt and back of the fetus interact. Figure 7.6 

shows the von Mises stress distribution in the uterus as a result of the belt loading 

test. Von Mises stress increases when the blue colour contour becomes lighter. Along 

the path of the lap belt line, the highest stress concentration is observed. Stress 

distribution is low at posterior wall of the uterus. Figure 7.6 illustrates that the fetus 

still play significant role in the uterus while the finite element amniotic fluid model 

exists in the model. 

 

Figure 7.6 Modified 'Expecting' belt loading test 
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 Figure 7.7 shows abdominal response of the pregnant occupant model to the 3 

m/s (10.8 km/h) belt loading. Red colour lines illustrate scaled abdominal response 

corridors to belt loading performed by Hardy et al., (2001). The blue line depicts 

abdominal responses of the modified 'Expecting' model and it shows that pregnant 

abdomen deflections are within the corridors (Figure 7.7). However, at about 30 mm 

abdominal deflection, response is on the lower corridor with approximately 2500 N 

loading.    

 

Figure 7.7 Abdominal response of the pregnant occupant model, to 3 m/s (10.8 km/h) 

belt loading compared against the response corridor 

Rigid bar impact and belt loading tests results are within the response 

corridors and hence validate the modified 'Expecting' model. For both cases the 

force-deflection responses of the abdomen of the modified 'Expecting' model are 

recorded and found to be in reasonably good agreement with the experimental data.  

7.5  Crash Test Investigations with Finite Element Amniotic Fluid 

and Multibody Fetus Model 

The modified 'Expecting' model is used to simulate a range of frontal impacts of 

increasing crash severity from 15 km/h to 35 km/h. Totally, 20 tests are run with 

collision speeds increasing in 5 km/h steps. Several simulations are chosen to 

investigate the effect of the finite element amniotic fluid model on the dynamics of 

the abdomen. The modified 'Expecting' model is used in identical crash test 
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simulations of the original 'Expecting' model. These include (i) 'seat belt and airbag', 

incorporating a 3-point seat belt and a frontal airbag, in other words representing a 

properly restrained pregnant driver; (ii) 'seat belt only' excludes the airbag but 

includes a 3-point seat belt; (iii) 'airbag only' excludes the seat belt, but the airbag is 

still active; and finally (iv) 'no restraint' represents no restraint systems at all, in other 

words neither the 3-point seat belt is worn nor is the airbag deployed. Half-sine 

waves are used to represent the acceleration pulses with duration of 120 ms as shown 

in Chapter 4, Figure 4.5. 

 Maximum von Mises equivalent strain levels in the uterus at uteroplacental 

interface (UPI) and in the overall uterus are found for the modified 'Expecting' 

model. Crash test results of the modified 'Expecting model are compared with the 

original 'Expecting' model. Figure 7.8 shows a typical ‘seat belt and airbag' 

restrained pregnant driver model with the finite element amniotic fluid at impact 

speed of 30 km/h. 

 

 

Figure 7.8 Typical frontal impact responses for 30 km/h 

 The peak strain values at the uteroplacental interface increase with crash 

speed for all crash scenarios as expected. In general, the maximum strain of the 

modified 'Expecting' model is typically higher than the strains of the original 
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'Expecting' model. This could be attributed to the removal of springs and dampers 

simulating the amniotic fluid cushioning in the absence of amniotic fluid in the 

original 'Expecting'. Furthermore, as the amount of amniotic fluid is only about 0.5 

lt, it does not have a significant cushioning effect on 3.3 kg fetus. 

 The 'seat belt and airbag' case results for the maximum strains at the 

uteroplacental interface are shown in Figure 7.9. The original 'Expecting' model 

simulation results show lower strain levels than the modified 'Expecting' model 

simulations for all crash severities, but this is more pronounced at speeds of 30-35 

km/h. At 30 km/h and 35 km/h impacts, strain values at the UPI for the modified 

model are above the injury threshold value of 0.60.  

 

Figure 7.9 Modified 'Expecting' with and without the fetus for 'seat belt and airbag 

case'. Maximum von Mises strains at the uteroplacental interface comparison for the 

'With and without the fetus' cases 
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Figure 7.10 compares the peak strain levels for the 'seat belt only' case for 

crash severities of 15 km/h to 35 km/h. At 15 km/h and 20 km/h impacts, the strain 

levels for the both models are very close to each other. However, after the crash 

speed of 25 km/h, there is considerable difference in strain between the two models. 

Placental abruption occurs at a crash speed range of 25-35 km/h for the model with 

the computational amniotic fluid model while the all strain values at the UPI are 

below the injury threshold value of 0.6 for the original 'Expecting'. With the finite 

element amniotic fluid model with the multibody fetus the maximum strains at UPI 

are much more pronounced at higher speeds and the placental abruption risk is found 

to be higher. 

 

Figure 7.10 Modified 'Expecting' with and without the fetus for 'seat belt only case'. 

Maximum von Mises strains at the uteroplacental interface comparison for the with 

and without the fetus cases 
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The 'airbag only' case results for the maximum strains at the UPI of 

'Expecting' and with finite element amniotic fluid models are shown in Figure 7.11. 

Almost all strain levels at the UPI for both models are above the threshold value of 

0.6, so there is close agreement between the two models. Due to the high impact 

loading from deployment of airbag, placental abruption occurs even at 15 km/h. 

Maximum strains at the UPI for the 'Expecting' with the FE amniotic fluid and the 

original 'Expecting' models are very similar, the amniotic fluid model being slightly 

higher, except the 35 km/h case, where there is a considerable difference in strain at a 

crash speed of 35 km/h between the models. This is an indication of the dynamics of 

the pregnant abdomen including the fetus becoming more significant at higher 

speeds.  

 

Figure 7.11 Modified 'Expecting' with and without the fetus for 'airbag only case'. 

Maximum von Mises strains at the uteroplacental interface comparison for the with 

and without the fetus cases.  
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Figure 7.12 shows the maximum strain levels at the UPI for the 'no restraint' 

case. The placental abruption risk emerges at a crash speed of 20 km/h when the 

amniotic fluid is represented as a finite element model, whereas at all crash speeds, 

placental abruption occurs for the original 'Expecting' model. There is a greater 

increase in strain from 25 km/h to 35 km/h for the modified model, whereas the 

increase for the original model is gradual and almost linear.  

 

Figure 7.12 The modified 'Expecting' with and without the fetus for 'No restraint 

case'. Maximum Von Mises strains at the uteroplacental interface comparison for the 

with and without the fetus cases 

7.6  Conclusions  

The effect of including a finite element amniotic fluid model filling the voids in the 

uterus with the multibody fetus within the 'Expecting', the pregnant occupant model, 

were investigated. A computational amniotic fluid model while the multibody fetus 

still exists in the uterus was developed. In order to do that, the full amniotic fluid 

model in the uterus which was developed in Chapter 5 was used. Material properties 

for the water-like liquid model were taken from Chapter 5. Rigid bar impact and belt 

loading tests were used to validate the modified 'Expecting'. Force-deflection 

abdominal corridors were used and the 'Expecting' with the amniotic fluid and the 
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multibody fetus model results were found to be in reasonably good agreement with 

the experimental data.  The validated model was used to simulate a range of frontal 

impacts of increasing severity from 15 km/h to 35 km/h. Four levels of occupant 

restraint, seat belt and airbag, seat belt only, airbag only, and completely unrestrained 

were investigated.  

Maximum strain levels in the uterus at the placental location obtained from 

modified model were compared with the original 'Expecting'. At high crash speeds, it 

was observed that the increase in the UPI strain was greater for the modified model. 

For both models, the peak stress was observed on the anterior wall of the uterus. 

Fetal and amniotic fluid movement caused the high strain levels in the uterus when 

the amniotic fluid was represented physically between the fetus and the uterus. 

 For the 'unrestrained' and 'airbag only' cases, loading from the steering wheel 

and airbag significantly increased the maximum strain at the UPI for both models. 

However, higher velocity impacts for all restraint cases, maximum strain values at 

the UPI for the modified model were considerably greater than the original model. 

Although both models followed a similar pattern and close maximum strain results 

were seen at low crash speeds for all cases, the spring-damper characteristic 

representation of the amniotic fluid cushioning effect were stiffer at higher speeds 

resulting in lower strain levels than the finite element representation of the amniotic 

fluid. 
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CHAPTER 8  

HYBRID FETUS MODEL 

 

 

8.1  Introduction 

During pregnancy, as the fetus grows and develops, a number of anatomical changes 

occur to the female body to accommodate the growing fetus, including placental 

development, amount of amniotic fluid, abdominal extension. In 'Expecting', a 38 

week fetus is represented in the uterus. During this final trimester of pregnancy, the 

bones and skeleton system of the fetus develop rapidly. The head of the fetus 

undergoes structural and morphological developments. The skull of the fetus 

becomes stiffer and heavier. Over the final trimester, the head becomes the heaviest 

part of the unborn occupant. Approximately 1 kg mass of the solid fetus head and its 

large volume might play a significant role on dynamic motion of the pregnant 

abdomen. In addition, its position in the uterus is crucial. It may cause deformations 

to the uterus and may even play a role in causing placental abruption during an 

impact. 
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 The whole fetus model in the original 'Expecting' is developed as multibody, 

hence the head does not deform. A deformable head may change the dynamics of the 

system and therefore can affect the stress and strain levels in the uterus. Hence a 

finite element fetus head model replaced the multibody fetus head. 

 In this study, the effect of further developments to 'Expecting', by 

incorporating a finite element fetus head model is investigated. In order to generate 

deformable fetus head model, further detailed anatomic head geometry is used. The 

hybrid fetus and finite element amniotic fluid model are validated with lap belt 

loading and the rigid bar impact tests. Interactions between the uterus and head of the 

fetus are studied. The effect of having a finite element head fetus on the strains at the 

uteroplacental interface is discussed. 'Expecting' model is used to simulate several 

crash test severities and risk of placental abruption is investigated. 

8.2  Fetus Head Modelling 

8.2.1  Anatomy of Fetus Head  

Anatomy of human head is complicated. There are several layers of different tissues 

covers the brain. Their material, mechanical and anatomic properties are different. 

There have been many studies on biomechanics of adult human head as early as 

1950s (Roche, 1953; Dekaban, 1977). Anatomical dimensions and properties of the 

adult human head are available. In order to investigate adult human head injuries, 

these anatomical data were used and a number of different finite element head 

models were developed (Sances and Yoganandan, 1986; Willinger, R., et al, 1999; 

Zhang, et al. 2001). However, in contrast to adult head studies, there are relatively 

few studies investigating the biomechanics of the fetus head. Modelling of the fetus 

head is limited due to lack of experimental and real world data. 

Basically, the fetus head consists of scalp, skull, and brain layers from 

exterior to interior (Figure 8.1). The brain is protected by outer layers, mainly by the 

skull. There are four regions in the bony skull. The frontal bones, the parietal bones, 

the occipital bone, and face/base region (Figure 8.1). Displacements of these bones 
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are limited. From a structural point of view, there is significant difference between 

adult and fetus skull. The skull of the fetus consists of thin, flexible plates, soft bony 

tissue, while adult skull is very stiff. The skull of the fetus consists of a soft spot 

which are called fontanel. Its approximate dimensions are 3 cm by 3cm. This 

diamond shape space assists the bony regions of the skull to flex and allow the head 

of the fetus to pass through birth canal. Material properties of the soft spot are 

different than the fetus skull and the skull thickness of the fetus is less than that of 

the adult human skull.  

 

 

Figure 8.1 Anatomy of a fetus head (adapted from UTMS) 

The fetal head is connected to the neck with articulation through occipital 

condyles, supporting ligaments. However, this connection is very weak. In order to 

have a correct finite element analysis, it is necessary to know precisely the anatomy 

of the head. Semi axes of the head were defined by using ultrasound measurements 

of the biparietal diameter (BPD) and occipito-frontal diameter (OFD) (Figure 8.2). 

Snijders and Nicolaides (1994) measured the head from the outer boundary of the 

skull. These two main measurements, the mean BPD (96mm) and OFD (115mm) for 

a 38th week old fetus head model  are taken as reference in the original 'Expecting' 

model (Acar and Lopik, 2009, 2012). Pheasant (1998) investigated head of newborns 

and found the mean head breadth (95mm) and head length (120mm). Head breadth is 

defined as maximum breadth of the head above the level of the ears. Head length is 
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distance between the glabella (the most anterior point of the forehead between the 

brow ridges) and the occiput (back of the head) in the midline (Pheasant, 1998 cited 

in Acar and Lopik, 2012). 

 

Figure 8.2 Fetus head diameters (adapted from MBBS Medicine) 

8.2.2  Finite Element Modelling of the Fetus Head  

Anatomic geometry of the fetus head is taken as the reference geometry to develop a 

finite element head model. Geometry of the ellipsoidal rigid structure is redefined to 

represent deformable head body. Face of the fetus which is also rigid ellipsoid 

component is considered as part of the skull geometry. The skull, fontanel, and brain, 

which are the main anatomical features of the head, are modelled. Meshing of the 

finite element head is performed using the HyperMesh (Altair HyperMesh 7.0 

software). Nodes and elements are created in HyperMesh then exported to the 

MADYMO. The FE_MODEL attribute is defined under SYSTEM.MODEL file of 

fetus to write finite element codes of the head. Node coordinates are recorded in one 

table and elements are written in another. Two GROUP_FE files are created to 

define the finite element skull and brain with fontanel. The finite element skull 

model is composed of 4-noded tetrahedral elements. Each element has a single 

integration point. Unlike the eight-node hexahedral element, the one-point 

integration of the four-node tetrahedral element does not result in any zero energy or 

hourglass mode. The tetrahedral elements are also more suitable for modelling 

complex bodies and surfaces than the eight-node hexahedral elements.  
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Modelling complex bodies and surfaces including head models, when using 

eight-node solid elements, the shape of the element becomes often quite poor, 

resulting in a loss of accuracy or leading to numerical instability. This problem is 

avoided by using four-node tetrahedral elements. Two layers of these brick elements 

cover approximately 85 % of the head leaving fontanel at the top of the head (Figure 

8.3). The fontanel is represented as a diamond shape using 4-noded tetrahedral 

elements as well. 

 

 

Figure 8.3 Finite element fetus head; (a) Front view, (b) Side view 

The brain is also represented with tetrahedral brick elements inside of the 

skull. Globally, the model consists of brick elements. The brain is assumed 

homogeneous. The mass of the global head is approximately 1 kg. 

In order to determine the density of the finite element mesh of the fetus head, 

a mesh convergence study is performed. In finite element modelling, more accurate 

results are generated if a finer mesh is used. However, mesh developed with finer 

elements increases computational time. It is important to have accurate interpolation 

inside each element when their mesh is defined. The number of elements is varied in 

this study to determine the mesh density of the model. In order to analyse the model, 

finite element head models are dropped from 0.5 m height onto the rigid plane and 
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maximum von Mises strains are compared (Figure 8.4). Drop position and 

orientation of the fetus head is taken same as in the uterus. Density of the finite 

element fetus head mesh model is chosen 1 at the beginning of this convergence 

study. The mesh of the head model is recreated with a denser element distribution 

and reanalysed. The results are compared with the previous mesh. The mesh density 

is kept increasing from 1 to 4 and the model is reanalysed until the results converge 

satisfactorily. It is observed that the strain results at the finite element head model 

converged upon a solution 0.72 as the mesh density increased. The model is 

consistent and stable when the mesh density is 2 (Figure 8.5). Although the mesh 

density is increased up to 4, there is no considerable change observed in maximum 

von Mises strains. Therefore, the fetus head model is meshed according mesh density 

of 2 as the run time would be much smaller compared to size 3 and 4 with no real 

gain in accuracy. 

 

 

Figure 8.4 Finite element fetus head drop test with element density of 2; (a) Side 

view, (b) Sagittal plane view 



Chapter 8                                                                                                                                      Hybrid Fetus Model 

170 

 

Figure 8.5 Convergence study; Element density and maximum Von Mises strain 

The whole model is made of total of 2279 tetrahedral brick elements. The 

brain and the fontanel models have 1383 elements while the skull has only 896 brick 

elements. In MADYMO, the tied surface tool which does not allow relative 

displacement between the skull and brain is used to represent contact condition 

between the brain and skull models. Connections between nodes and elements of the 

skull and the brain are tied. 

8.2.3  Material Properties  

The material and mechanical properties of the adult human head are well represented 

(McElhaney et al., 1970; Wood, 1971) but there are only a few studies that have 

investigated material and mechanical properties of child head (Roth et al., 2008). 

However, detailed investigation of the material properties of the fetus head is the 

scarcest (Margulies and Thibault, 2000). Response of the fetus head to an impact 

differs from an adult skull. The fetus skull is capable of deformation under external 

loading easily, but adult head resists well to external loading. Material properties 

such as elastic modulus, Poisson’s ratio, density of the fetus head affect the 

biomechanical behaviour. Therefore, material properties play significant role in 

determining the head injury risks. Due to the limited available data in literature, 

much estimation needs to be done to determine material properties. 
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The fetus skull bones are nonhomogeneous and have viscoelastic material properties. 

Information of both viscous and elastic behaviour of the material properties is 

necessary at simulations. However, no parameters exist in literature for the 

viscoelasticity and nonhomogeneous properties. Therefore, the fetus skull is 

simplified to be homogeneous and have only elastic properties. 

McPherson and Kriewall (1980) derived the elastic modulus of fetal skull bone from 

three-point bending tests on 86 specimens. They indicated that elastic modulus and 

ultimate stress of the fetus bones increases with gestational age. Coats and Margulies 

(2006) tested the elastic modulus and ultimate stress of parietal and occipital bone 

specimens to failure in three-point bending tests as well. They also concluded that 

infant age plays significant role on the elastic modulus. Margulies and Thibault 

(2000) tested human and porcine infant cranial bone specimens from 25 weeks 

gestation to six months of age in three-point bending. The data from Margulies and 

Thibault (2000) was used as a basis to obtain age specific material properties for the 

38 weeks fetus skull. 

The brain and fontanelle are represented as linear viscoelastic solid and 

assumed incompressible with a bulk modulus of 2110 MPa. Material properties for 

the brain and fontanelle are based on experimentally determined mechanical 

response of infant porcine brain tissue (Thibault and Margulies, 1998). There are no 

slip at the interface between the brain and skull and they are assumed to be 

displacement compatible. Table 8.1 summarizes the material properties used in the 

model. 

Table 8.1 Material properties found in the literature and used in simulations    

(Thibault and Margulies, 1998, 2000)  

 
Young’s modulus (MPa) Poisson’s ratio Density (kg/m3) 

Skull 820.9 0.28 2150 

Brain and 

Fontanel 

G(t) =G∞ + (G0 −G∞)×e-β·t         β = 0.09248 s-1   with a bulk modulus 

K = 2110MPa 

G0 = 5.99×10-3 MPa G∞ = 2.32×10-3 MPa 
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The finite element head is modelled with elements and nodes with 

MATERIAL.ISOLIN that describes material properties including material density, 

Young’s modulus and Poisson’s ratio. Linear elastic material properties are applied 

to the structure. Using these specifications, MADYMO calculates stress-strain 

contact deformations on the head. For the fontanel, the material property of the brain 

is used.  

8.2.4  Hybrid Fetus; FE head and rigid body  

The original fetus model in 'Expecting' is represented with 15 rigid bodies. These 15 

ellipsoids are connected to each other with different kind of joints. Two spherical 

joints are defined at neck ellipsoid. One is at upper neck used to connect neck and 

head bodies. Another is at lower neck used to connect neck and thorax bodies. This 

type of joint permits three rotational degrees of freedom. Spherical joints are used to 

define the hip, ankle and shoulder joints. Head and face, form an integrated rigid 

body. 

Kinematic joints can only be defined between two bodies. Therefore, head body is 

defined at its original position in 'Expecting' model. In this study, the fetus head is 

modified and the fetus is represented with 13 rigid bodies and 1 finite element head. 

In order to define connection between FE head and ellipsoid neck, SUPPORT 

attribute is used in MADYMO. Finite element head is attached to the neck. This code 

defines which degrees of freedom of nodes are constrained, by supporting them on 

rigid body or the reference space (Figure 8.6). 
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Figure 8.6 Head and neck connection of the hybrid fetus 

In order to decide which and how many nodes to be selected and constrained, 

the full hybrid fetus models are dropped on to the rigid plane. Their motions are 

compared with the multibody fetus model and the most similar model is chosen.  For 

this study, 21 nodes from finite element head model is constrained and supported on 

head body (Figure 8.7). During drop test simulations, both of the heads act similarly. 

Naturally, deformations are observed on finite element head. Connection nodes are 

chosen symmetrically. 

 

Figure 8.7  The multibody and the hybrid fetus drop test comparison 
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8.2.5  Contact Properties 

During pregnancy, the fetus has a close relation with amniotic fluid, placenta, 

umbilical cord and uterus wall. Due to the position of the fetus in the uterus, a large 

degree of interaction can be observed with these body regions during an impact 

situation. The amniotic fluid surrounds the fetus while the uterus envelopes both of 

them. The amniotic fluid may generate pressure on the uterus wall and placenta. The 

placenta stays between the uterus and fetus. 

A number of different body regions and tissues with different material 

properties contacts with each other in the pregnant abdomen. Therefore, definition of 

the contacts between these body regions and tissues play a significant role in the 

development of a realistic model. Since ellipsoid bodies and finite element head 

model are defined for the hybrid fetus, it is very important that the contacts between 

the ellipsoid bodies, finite element head of the fetus and the contact surface of the 

uterus are defined carefully. 

Five contact interaction models are defined between these body regions and 

tissues. These are the contacts between the finite element fetus head and finite 

element amniotic fluid model, the finite element fetus head model and finite element 

uterus model, the finite element fetus head model and the multibody fetus model as 

explained in section 8.2.4, finite element uterus model and the multibody fetus 

model, finite element amniotic fluid model and the multibody fetus model. Contact 

interactions between the uterus, the placenta, the amniotic fluid, and the hybrid fetus 

are shown in Figure 8.8. Multibody to multibody contact between the fetus bodies 

are used same as in the original 'Expecting'. 
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Figure 8.8 Typical contacts in the uterus; Contact MB-MB; Multibody surface to 

multibody surface. Contact MB-FE; Multibody surface to finite element surface. 

Contact FE-FE; Finite element surface to finite element surface. 

Contact interaction can be defined with a master surface against a slave 

surface in the MADYMO. In these contacts, ellipsoids and finite element models are 

specified. For contacts between ellipsoid bodies of the fetus are defined body to body 

contact and a force-penetration characteristic is developed for each ellipsoid surface 

that contacts with another region of the body. The various ellipsoid body regions of 

the fetus model are penetrated based on the force-penetration characteristic values 

used in the TNO dummy models and engineering judgement (MADYMO Model 

Manual, 2010). Actual material properties and contact definitions for these body 

regions are not available in the literature. 

For the contact between FE structures, master surfaces are defined as a group 

of contact segments that are formed by several finite element groups, slave surfaces 

are defined as a group of contact nodes that are formed by several finite element 

groups. Choice of which surface must be the master and which surface must be the 

slave surface depends on the coarseness of the mesh. The finer mesh is chosen as the 

slave surface. 

Contacts between finite elements are defined with two algorithms in 

MADYMO; Intersection based contact and penetration based contact. In this study, 

penetration based contact is used because it is used for deformable FE structures 



Chapter 8                                                                                                                                      Hybrid Fetus Model 

176 

while the intersection based contact is mainly used for contact between rigid surfaces 

where the surface stiffness is defined in the contact force characteristic. 

CONTACT.FE_FE elements are used to define contacts between finite element 

structures. MASTER_SURFACE represented one finite element group and 

SLAVE_SURFACE represents another finite element group which has finer mesh 

than elements of master surface. These attributes are the standard contact definition 

of surfaces (Figure 8.9). 

 

 

Figure 8.9 Contact definitions between finite element surfaces 

Finite element contact algorithms based on penetrations, contact thickness of 

the contact segments are specified. All nodes of the finite element surfaces penetrate 

the gap of the contact segments. Nodes penetrating the gap are pushed away on the 

back of the contact segment.  The gap is specified as a function of time and the same 

for the entire master/slave surfaces (Figure 8.10). Initial penetrations generate initial 

contact forces which can cause instabilities in the simulation. In order to avoid initial 

contact forces for initial penetrations, the INITIAL_PEN_TRACK option is used.  
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Figure 8.10 Penetration based contact 

“Surface to surface” contact method is used to represent penetration based 

contact between finite element surfaces which are curved and complex. In the 

“surface to surface” contact method, the slave nodes are compared with the master 

contact segments and also the master nodes are compared with the slave contact 

segments. 

There is a second phase which is contact force calculation phase in the 

penetration based contact algorithm. In the force calculation phase for all contacts, 

penetrations of contact nodes of the contact segments are calculated. Minimum 

distance between the node and the segment gives the penetrations (Figure 8.10). By 

using this penetration, the contact forces are calculated depending on which contact 

force model is used. The contact force has the same direction as the penetration and 

is applied to both the contact node and master surfaces.  

In MADYMO, three contact force models are available; penalty based 

contact, adaptive based contact and elastic characteristic based contact. Elastic 

characteristic based contact is only available for the intersection based contact 

algorithm. Therefore, this model is not used. CONTACT_FORCE.ADAPTIVE 

attribute is used to generate good results for contacts between FE structures. For this 

model, contact force is calculated based on the TIME_STEP. For FE calculations, 

time step of 1.10-6 is used. This value is recommended by the MADYMO and results 

normally in a good working contact. 
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8.2.6  Hybrid Fetus Model Validation 

The impact response of the hybrid fetus in the uterus is validated under two different 

conditions. These include corridors developed from rigid bar impacts and belt 

loading tests same as validation of the original 'Expecting' model (Acar and Lopik, 

2009). 

8.2.6.1  Rigid Bar Impact 

Mathematical model of the hybrid fetus is developed in which maximum strain can 

be estimated from the measured change at uteroplacental interface displacement. The 

rigid bar loading response corridors developed by Hardy et al., (2001). However, 

these corridors were developed using the 50th percentile male post mortem human 

subject. Rupp et al., (2001) scaled these corridors to a 5th percentile female. Due to 

the lack of test data, there are no force-deflection corridors for pregnant women. 

Therefore, original 'Expecting' and in this study, 'Expecting' with the finite element 

fetus head are validated rigid bar impact tests performed by Hardy et al., (2001).  

 The finite element head with the multibody fetus body and the uterus are 

integrated into the existing 'Expecting' model. The test configurations used by Hardy 

et al., (2001) are constructed as a mathematical dynamic model. The rigid bar 

impactor is a 2.54 cm diameter and 48 kg ellipsoid (Figure 8.11). This is the same 48 

kg ballistic pendulum used by Hardy et al., to verify the 6 m/s (21.6 km/h) 

Cavanaugh corridor and to develop the average 3 m/s (10.8 km/h) abdomen 

response. The rigid impact bar is applied at the approximate height of the umbilicus 

at 6m/s (21.6 km/h). During a typical experimental test, the dummy was seated on 

Teflon skid-plate. The whole body of the 'Expecting' is also skidded when the rigid 

bar impacts on abdomen.  
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Figure 8.11 Rigid impact bar test for the 'Expecting' with the hybrid fetus 

The force-displacement response of the model to the 6 m/s (21.6 km/h) rigid 

bar impact case is shown in Figure 8.12. Results are compared with the earlier 

researchers’ findings. Response of the 'Expecting' with the finite element fetus head 

model is similar to the 6 m/s (21.6 km/h) Cavanaugh upper corridor. 

 

Figure 8.12 The hybrid fetus model rigid impact bar test 

For comparison, Figure 8.13 shows the response of the original 'Expecting' 

model and the 'Expecting' with the hybrid fetus model. The dynamic force-deflection 

response of the original 'Expecting' abdomen is slightly stiffer than the 'Expecting' 

with the hybrid fetus model. The maximum force-displacement difference occurs 
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when the rigid bar impacts 40 mm onto the pregnant abdomen. For the original 

model, approximately 2 kN force is necessary while the model with the hybrid fetus 

1 kN force is enough to generate 40 mm deflection. Because for the hybrid fetus 

model, there is deformable finite element head instead of rigid head, which allows 

further deformation. 

 

 

Figure 8.13 Rigid bar impact test; the original 'Expecting' and the 'Expecting' with 

FE head 

8.2.6.2  Belt Loading 

The belt-loading response corridor generated by Hardy et al., (2001) is also used to 

develop and validate the 'Expecting' with the finite element fetus head model. This 

corridor is developed from force-deflection data collected during simulated belt-

loading tests on the abdomens of the three cadavers. The corridor has been equal-

stress, equal-velocity scaled from the reference mass used in pregnant dummy 

development and validation. The belt-loading simulation is shown in Figure 8.14. 

This is the same test configuration used by Hardy et al., to develop the belt-loading 

corridor. During the simulation, the belt is used to apply a horizontal load to the 

abdomen of the seated pregnant occupant model through a length of belt webbing 

connected at both ends to a yoke-fixture. 
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Figure 8.14 Belt loading test for the 'Expecting' with the hybrid fetus model 

Prior to the simulation test, the belt is in contact with abdomen of the 

pregnant occupant. However, there is no loading to the abdomen. Finite element belt 

displacement at the centre of the abdomen is measured. The motion of the pregnant 

occupant is observed. Abdomen penetration is calculated with determining the 

motion of the belt at the centre of the abdomen relative to the position of the lumbar 

spine. 

Force-deflection response of the pregnant abdomen is shown in Figure 8.15. 

The belt-loading response of the 'Expecting' with the hybrid fetus to the 3 m/s (10.8 

km/h) belt-loading corridor is compared. The model response is within the 3 m/s 

(10.8 km/h) belt corridor.  
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Figure 8.15 Force-deflection response of the 'Expecting' with the hybrid fetus model, 

to belt loading compared to scaled belt-loading corridors 

8.3  Crash Test Simulations with Hybrid Fetus Model 

Validated 'Expecting' with the hybrid fetus model, rigid body with FE head used to 

simulate; 'seat belt and airbag', 'seat belt only', 'airbag only' and completely 

'unrestrained' conditions. 'Unrestrained' case excludes all restraints, which means 

there is no airbag and seat belt. Standard MADYMO European driver airbag is used. 

The volume of the airbag is 60 litres. The seat belt system has a pretensioner and a 

load limiter. The pretensioner is activated and de-activated by a switch. The load 

limiter is activated when at least one of its load levels is active. Typical crash test 

simulation with the 'Expecting' including the hybrid fetus is shown in Figure 8.16. 
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Figure 8.16 Typical frontal impact test configurations with the 'Expecting' including 

the hybrid fetus 

Simulation tests with the hybrid fetus are run at the same conditions as used 

for the original 'Expecting', i.e. with crash speeds of 15, 20, 25, 30, and 35 km/h, and 

the acceleration pulse of half-sine waves. These crash speeds were chosen, because 

after the crash speed of 35 km/h, although the pregnant occupant was fully 

restrained, the fetus in the uterus dies instantly in the vehicle collision. In the 

MADYMO software, crash pulse values (half-sine wave) used in the frontal 

application model. This is a generic pulse representative for full frontal impact of a 

typical crash test simulations with the 'Expecting'. Although the crash pulse values 

are defined in the MADYMO model, crash speeds are named in order to make the 

model easier to understand. The maximum von Mises strains at the uteroplacental 

interface for the each group are compared with the original 'Expecting' results. The 

possibility of the placental abruption, which leads to fetal death, is investigated. The 

threshold strain value for the occurrence of placental abruption is widely accepted to 

be 0.6 at the UPI (Rupp et al., 2001).The red line in Figure 8.17, 8.18, 8.19, 8.20 

represents threshold strain value for the occurrence of placental abruption. 

The maximum strains at the uteroplacental interface are compared in Figure 

8.17 to demonstrate the effect of the finite element fetus head for varying crash 
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speeds. For the 'seat belt and airbag' case, maximum von Mises strains increase as 

expected when the crash speed increases. There is no great difference between the 

models. In addition to this, for both models, maximum strain at UPI is under the 

threshold value. For the speed of 15 and 20 km/h, maximum strain at UPI for the 

original 'Expecting' is slightly higher than the model with the finite element fetus 

head. However, after the speed of 25 km/h, the hybrid fetus model generates higher 

strains at UPI than the original model. This could be attributed to the deformation of 

the head which in turn allows further displacement of the abdomen. 

 

Figure 8.17 Comparison of the original 'Expecting' and 'Expecting' with the hybrid 

fetus model crash test simulation results for 'seat belt and airbag' case 
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The response of the 'Expecting' model with the finite element fetus head for 

'seat belt only' case is demonstrated in Figure 8.18. The results for the maximum 

strain at the UPI for the both models are compared. Higher strains at UPI are 

generally higher than the fully restrained case. Maximum von Mises strains at UPI 

for both the original 'Expecting' and the 'Expecting' with finite element head model 

are similar; the finite element head model giving slightly higher strain levels at 

higher speeds. However, for the 'Expecting' with the hybrid fetus model, the strain 

level at the crash speed of 35 km/h exceeds the critical threshold level when there is 

only seat belt is worn and no airbag is activated. 

 

Figure 8.18 Comparison of the original 'Expecting' and 'Expecting' with the hybrid 

fetus model crash test simulation results for 'seat belt only' case 
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The two 'airbag only' test results from the original 'Expecting' and the 

'Expecting' model with the finite element fetus head are compared in Figure 8.19. 

The difference in strain levels appear to be greater than those observed with the fully 

restrained and 'seat belt only' cases. It is clearly seen that for both models the risk of 

placental abruption is high at speeds between 25 to 35 km/h. 'Airbag only' case, the 

contribution of the deformable head is clearer than other cases. Maximum von Mises 

strains at the UPI for the 'Expecting' are higher than the model with the hybrid fetus 

at all speeds. Risk of placental abruption occurs at speeds between 20 to 35 km/h for 

the original model, whereas the hybrid fetus model, placental abruption risk occurs at 

the speed of between 25 to 35 km/h. Without the seat belt, the contribution of the 

multibody head fetus on the maximum strains at the UPI is much more pronounced 

and the placental abruption risk is found to be higher. 

 

Figure 8.19 Comparison of the original 'Expecting' and 'Expecting' with the hybrid 

fetus model crash test simulation results for 'airbag only' case 
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For 'unrestrained' case shown in Figure 8.20, the strain levels at the UPI are 

consistently above the threshold at all speeds considered (15-35 km/h). Therefore, 

placental abruption occurs at all speeds for both models. The difference between the 

strain levels demonstrated by both models is small. Results confirm that the 'no 

restraint' case is the worst possible case amongst the four restraint conditions 

investigated.  

 

Figure 8.20 Comparison of the original 'Expecting' and 'Expecting' with the hybrid 

fetus model crash test simulation results for 'unrestrained' case 

 The original 'Expecting' and a modified Expecting with a FE-head fetus 

model are used to simulate a range of frontal impacts of increasing severity from 15 

km/h to 35 km/h. In this study, it is observed that no matter which model is used, is 

that the correct use of seat belt in conjunction with the airbag is essential for the 
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8.4  'Expecting' with the hybrid fetus and the FE amniotic fluid 

model validation 

The original 'Expecting' did not have amniotic fluid representation as finite element 

model but the effect of the amniotic fluid was simulated by springs and dampers 

attaching the fetus from pelvis of female and pelvis of the fetus. The fetus damping 

characteristics has been defined by the MADYMO codes with restraint cardan 

element hence suspending the fetus in the uterus. This model was validated using 

same method as explained in section 8.2.6, rigid bar impact and belt loading tests. 

 In this section, springs and dampers were replaced with the finite element 

amniotic fluid model when the hybrid fetus model exist in the uterus. In Chapter 5, 

inner volume of the uterus was filled with finite elements to represent finite element 

amniotic fluid only. In this section, the hybrid fetus model is placed its original 

position and the amniotic fluid elements are deleted one by one in order to represent 

the amniotic fluid and the hybrid fetus models simultaneously inside of the uterus. 

Rigid bar impact test to validate the 'Expecting' with the finite element fetus head and 

finite element amniotic fluid model is illustrated in Figure 8.21.  

 

 

Figure 8.21 Rigid bar impact test, 'Expecting' model 

The force-displacement responses of the 'Expecting' model with FE amniotic 

fluid and the finite element fetus head, and the original 'Expecting' model are shown 

in Figure 8.22 and Figure 8.23, plotted to compare the effect of finite element head 
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and amniotic fluid. Comparison of the both model under rigid bar impact loading 

conditions clearly shows that the finite element fetus head and the amniotic fluid 

model have very similar response, showing slightly higher force up to 55 mm 

displacement and reversing roles after this point. 

 

Figure 8.22 Comparison of the abdominal response of the advanced pregnant 

occupant model with the hybrid fetus, 6m/s (21.6 km/h) rigid bar impact test 
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Figure 8.23 Comparison of abdominal response of the original 'Expecting' and 

'Expecting' with the finite element fetus head and the finite element amniotic fluid 

model 

Please refer to section 8.2.6.2 for further details of the belt loading test. The 

belt-loading corridor for the abdomen of the advanced 'Expecting' model is shown in 

Figure 8.24. Dynamic belt loading tests are performed on the 'Expecting' with the 

hybrid fetus and finite element amniotic fluid model. The force-deflection response 

from the tests lies between the belt-loading corridors. However, it passes from lower 

corridor at around 30 mm abdominal deflection closely. 
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Figure 8.24 Abdominal response of the 'Expecting' with finite element amniotic fluid 

and finite element head, to 3 m/s (10.8 km/h) belt loading compared against the 

response corridor 

8.5  Crash Test Simulations with the 'Expecting' Model with the 

hybrid fetus and the finite element amniotic fluid model 

A set of simulations are chosen to investigate the effect of the finite element fetus 

head and the finite element amniotic fluid model on the response of the 

computational pregnant women model as a driver to a frontal impact. The 

simulations includes pregnant occupants with 'no restraint', 'seat belt only', 'airbag 

only', and 'seat belt and airbag' under at five different severity increasing from 15 

km/h to 35 km/h, a total of 20 simulations.  

During the crash test simulations, steering wheel, airbag, seat belt and inertial 

loadings on the pregnant uterus are identified. Simulations are run approximately 120 

ms to ensure that the forward motion of the occupant has stopped. Acceleration 

pulses applied to the computational model are half-sine waves as shown in Chapter 

4, Figure 4.5. In each simulation, the pregnant occupant is a driver in a frontal crash. 

Peak von Mises strain in the uterus at the uteroplacental interface is used to measure 

for predicting the risk of placental abruption. This maximum strain is compared to 

the threshold strain value for the occurrence of placental abruption, as defined by 
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Rupp et al., (2001). 'Expecting' with the finite element fetus head and the finite 

element amniotic fluid model within vehicle interior is demonstrated in Figure 8.25. 

 

Figure 8.25 'Expecting' with finite element fetus head and finite element amniotic 

fluid model 

Maximum strain levels in the uterus at uteroplacental interface responses are 

considered. Simulations in which the pregnant occupant is 'fully restrained' are 

resulted lower peak uterine strains then all other cases (Figure 8.26). When crash 

speed increases, substantial increase is seen at maximum strain for all cases.  
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Pregnant occupant model is compared with the original 'Expecting' model. 

The effect of steering wheel for 'seat belt and airbag' case, maximum von Mises 

strain values for both models are below threshold level. Therefore, there is no risk of 

placental abruption. For the 'Expecting' model with the finite element fetus head and 

the finite element amniotic fluid, lower peak strains are recorded in the 'seat belt and 

airbag' case at crash speeds of 15, 20, and 25 km/h (Figure 8.26). The abdomen does 

not contact the steering wheel at low speeds, due to the seat belts in this case. 

However, at speeds of 30 and 35 km/h, maximum strain at UPI for the advanced 

'Expecting' model is higher than the original model. For 'seat belt and airbag' 

simulations, the peak strains are 0.12 and 0.14 higher at crash speeds of 30 and 35 

km/h response for the 'Expecting' with the finite element fetus head and the finite 

element amniotic fluid model simulations compared to the original 'Expecting' model 

simulations.  

 

Figure 8.26 'Seat belt and airbag' case; Maximum von Mises strains at the UPI for the 

original 'Expecting' and 'Expecting' with the finite element fetus head and the finite 

element amniotic fluid model 
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Maximum strains occurring at the uteroplacental interface in the uterus are 

presented in Figure 8.27 for the 'seat belt only' case. Forward motion of the pregnant 

occupant is stopped with only seat belt, but due to the lack of airbag, the model 

contacts with the steering wheel. Lap belt compresses the pregnant abdomen. For this 

case, the effect of the steering wheel on strains at UPI is higher than the fully 

restrained cases.  

Effect of finite element head and finite element amniotic fluid model 

developments in the uterus is investigated in the 'seat belt only' case. The strains at 

the UPI change from 0.16 to 0.72 for the 'Expecting' model with the finite element 

fetus head and finite element amniotic fluid while they increase from 0.13 to 0.55 for 

the original 'Expecting' model for the crash severities of 15 km/h to 35 km/h. These 

results highlight that the finite element fetus head and the finite element amniotic 

fluid model developments in the uterus predicts higher risks of placental abruption. 

However, for crash speeds of 20 km/h and 25 km/h, the strain values are less in the 

'Expecting' with the finite element fetus head and the finite element amniotic fluid 

simulations by up to 0.10 compared to the original 'Expecting' model simulations. 

The model with the finite element fetus head and the finite element amniotic fluid 

shows the strain values exceed the threshold with 0.64 and 0.72 strains respectively, 

posing a risk of placental abruption at crash speeds of 30 and 35 km/h. 

 

Figure 8.27 'Seat belt only' case; Maximum von Mises strains at the UPI for the 

original 'Expecting' and 'Expecting' with the finite element fetus head and the finite 

element amniotic fluid model 
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Simulation results for airbag only case are demonstrated in Figure 8.28for 

both models. The maximum strains at the uteroplacental interface are compared for 

varying crash speeds. Peak strains increase with increasing crash speed as usual. 

Figure 8.28 shows that the strains at the UPI for the 'Expecting' model with the finite 

element fetus head and the finite element amniotic fluid simulations increases from 

0.61 to 1.34, whereas the strains at the UPI for the original 'Expecting' model 

changes from 0.55 to 1.26.  

It is interesting that the both models give close strain values to each other. 

This results show that the effect of the finite element fetus head and the amniotic 

fluid on prediction of risk of placental abruption might be insignificant compared to 

the original model. However, the difference is significant for the cases including seat 

belts. The airbag decreases forward movement of the pregnant occupant and 

deformation impact on abdomen due to contact with the steering wheel.  

 

Figure 8.28 'Airbag only' case; Maximum von Mises strains at the UPI for original 

'Expecting' and 'Expecting' with finite element fetus head and finite element amniotic 

fluid model 
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Figure 8.29 shows maximum von Mises strains at the UPI comparison 

between the 'Expecting' with the finite element fetus head and the finite element 

amniotic fluid model and original 'Expecting' model for 'unrestrained' case and 

varying crash speeds from 15 km/h to 35 km/h. The strains at all speeds are similar 

for both cases. For all crash severities, the peak strain at UPI exceeds 0.60 for the 

unrestrained case, indicating the likelihood of placental abruption. However, the 

'Expecting' with finite element head and finite element amniotic fluid model gives 

slightly lower strains than the original 'Expecting' model at all speeds of 15 km/h to 

30 km/h.  

Due to the absence of the seat belt, the both models contact the steering wheel 

in all simulations, hence is exposed significantly high loading from the steering 

wheel. The uterus, including the placenta, is compressed downwards and the fetus 

moves forwards. There is no direct impact on the finite element fetus head. 

 

Figure 8.29 'Unrestrained' case; Maximum von Mises strains at the UPI for the 

original 'Expecting' and 'Expecting' with the finite element fetus head and the finite 

element amniotic fluid model 

  

0.63

0.78
0.89

0.95

1.08

0.6

0.75
0.81

0.93

1.24

0

0.2

0.4

0.6

0.8

1

1.2

1.4

15 20 25 30 35

S
tr

a
in

 a
t 

U
P

I

Delta V (kph)

Unrestrained

Original Expecting

Expecting with FE
Head and FE AF

Injury threshold



Chapter 8                                                                                                                                      Hybrid Fetus Model 

197 

8.6  Conclusions 

The finite element fetus head and the finite element amniotic fluid models were 

developed and integrated into the uterus. The deformable fetus head was designed, 

meshed, and connected with the multibody fetus neck. The hybrid fetus model was 

inserted into the pregnant abdomen and validation tests including rigid bar impact 

and belt loading were applied to the this model.  New contacts between the hybrid 

fetus and the uterus were defined. Validated 'Expecting' model with the finite 

element fetus head was conducted at several crash test simulations. Maximum von 

Mises strains at the UPI were investigated. Results were compared with the original 

'Expecting' model and found to be in reasonably good agreement with it. It was 

observed that the computational fetus head model changes dynamic motion of the 

pregnant abdomen. The rest of the body in the fetus model was rigid whereas head 

model was deformable. Therefore, the deformable fetus head plays a significant role 

in creating realistic computational pregnant occupant model. 

 Finite element amniotic fluid model was integrated into the 'Expecting' model 

which includes the hybrid fetus model. Instead of using the fetus damping and spring 

attributes to represent effect of amniotic fluid in the uterus in the original model, the 

computational amniotic fluid model was developed to fill the gap between the fetus 

and the uterus. This 'Expecting' model with the finite element fetus head and the 

finite element amniotic fluid was also validated against the abdominal response using 

the rigid bar impact and the belt loading tests. The same crash test simulations were 

conducted with the validated model. 

 Peak strains at the UPI for the 'Expecting' with the finite element fetus head 

model and the ''Expecting' with the finite element fetus head and the amniotic fluid 

model are compared with the original 'Expecting' model for four crash test cases in 

Figure 8.30, Figure 8.31, Figure 8.32, and Figure 8.33. Crash test simulation results 

are found to be in reasonably good agreement with the original 'Expecting' model.  
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Figure 8.30 'Seat belt and airbag' case Maximum von Mises strains at the UPI for 

original 'Expecting' model, 'Expecting' with the finite element fetus head model, the 

'Expecting' with the finite element fetus head and the finite element amniotic fluid 

model 

 

Figure 8.31 'Seat belt only' case; Maximum von Mises strains at the UPI for the 

original 'Expecting' model, 'Expecting' with the finite element fetus head model, the 

'Expecting' with the finite element fetus head and the finite element amniotic fluid 

model 
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Figure 8.32 'Airbag only' case; Maximum von Mises strains at the UPI for original 

the 'Expecting' model, the 'Expecting' with the finite element fetus head model, the 

'Expecting' with the finite element fetus head and the finite element amniotic fluid 

model 

 

Figure 8.33 'Unrestrained' case; Maximum von Mises strains at the UPI for the 

original 'Expecting' model, the 'Expecting' with the finite element fetus head model, 

the 'Expecting' with the finite element fetus head and the finite element amniotic 

fluid model 
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 These results also show that the fetus within the uterus makes some 

difference. It was observed that deformable bodies react more realistically than rigid 

bodies during the crash test simulations. For all models, the unrestrained occupant 

resulted in substantially higher risk of placental abruption compared to the fully 

restrained driver in a similar crash case. When there is the seat belt, the strain 

predicted by the original 'Expecting' poses no danger to the occupant at high speeds. 

However, for the same case, the 'Expecting' with the finite element fetus head and the 

amniotic fluid models predict high strains at placental location. This provides that the 

finite element fetus head with the finite element amniotic fluid causes different 

dynamic responses of the uterus. In addition, at high speed crashes, maximum strains 

at the UPI increases significantly for all models and airbag only case give higher 

strains than ‘no restraint’ case. 

 All three models show the same trend with small differences. The 'Expecting' 

with the finite element head and the finite element amniotic fluid model represent a 

more realistic representation of the pregnant occupant model.  

Based on the discussions of simulation results and comparison with the 

original 'Expecting' model, the 'Expecting' with the finite element fetus head model 

and the 'Expecting' with the finite element fetus head and the finite element amniotic 

fluid model are capable of aiding parametric study to determine the sensitivity of the 

pregnant occupant and the fetus kinematics to the airbag system, three-point seat belt 

and vehicle interaction. 
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CHAPTER 9  

DISCUSSION AND CONCLUSIONS 

 

 

 

 

9.1  Discussion 

Motor vehicle collisions are the leading cause of accidental fetal death but the 

developments in safety of pregnant women and their fetuses has not been a major 

concern and not received sufficient attention. Furthermore, modelling pregnant 

occupant has presented more challenges than modelling other occupants such as 

ethical issues, the complexity of having an occupant within an occupant and the size 

and shape changes during pregnancy. Hence, only a few pregnant occupant models 

have been developed but models have several omissions and do not represent 

pregnant women realistically. Pregnant occupant models are necessary for more 

realistic crash test simulations which should assist vehicle manufacturers and 

researchers to realistically investigate road accidents involving pregnant occupants 

and their unborn babies. Despite their limitations, physical crash test dummies still 
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play an important role in occupant safety for vehicle manufacturers. On the other 

hand, crash test simulations with computational human and dummy models became 

an alternative method to experimental ones. The objective of this thesis was to 

investigate effects of external and internal factors on fetus fatalities by understanding 

the risk of placental abruptions in motor vehicle accidents where a pregnant occupant 

is involved. The main goal of this investigation is to improve fetus safety in road 

accidents. 

 This study investigated fetus safety in motor vehicle accidents. Crash, rigid 

bar impact, belt loading, and drop tests were conducted. The research involved 

impact simulations of several impact severities for only frontal crash situations. In 

real life, drivers are exposed to several different motor vehicle accidents. Frontal 

collision is the most common type of crash resulting in fatalities. Simulations 

included a 5th percentile pregnant female model 'Expecting', which embodies a 

detailed representation of a fetus and a finite element uterus at around 38 weeks 

gestation. The kinematic output of the 'Expecting' with the hybrid fetus model around 

the finite element amniotic fluid in the uterus allows for a close-up view of the 

interior of the uterus. The motion and deformation of the uterine wall and placenta 

were investigated more realistically than in previous models. This also reveals an 

advantage over dummy testing. The location of tissue failure can be determined and 

used to design advanced restraint systems. 

  In Chapter 8, the effect of incorporating a finite element fetus head and 

amniotic fluid on the strains generated at the uteroplacental interface of the pregnant 

occupant model was investigated. Maximum strain in the uterus at the placenta 

location, maximum displacements and peak von Mises strains in the uterus were 

provided. Different crash pulses were applied to the model resulting in different 

crash speeds. The effect of safety systems such as seat belt and airbag during the 

impact were investigated. Simulation results were compared with the original 

'Expecting' and found reasonably good agreement with it. Maximum strain at the 

uteroplacental interface was found to be a good predictor of fetal outcome. For the 

seat belt and airbag case, the 'Expecting' with the finite element fetus head and finite 

element amniotic fluid predicted slightly higher strains than the original 'Expecting' 

at the placenta location. Strain values at the UPI were below the injury threshold 
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value and the fetus was less likely to be injured because of possible placental 

abruption risk. A deformable fetus head and finite element amniotic fluid changed 

dynamic behaviour of the fetus and affected the dynamic response of the uterus. Due 

to external impacts such as seatbelt, airbag on the fetus during an accident, structural 

deformations on the fetus head were monitored. These deformations changed the 

fetus motion and affected the risk of placental abruption. It was observed that 

deformable bodies react more realistically than rigid bodies during the crash test 

simulations.  

 The test methods used in this research represented simulations and 

approximations of real world events. Rigid multibody modelling were used to predict 

the displacements and motion at the boundaries between the rigid bodies. In this 

research, finite element analysis was conducted at every numerical integration time 

to determine the reaction stress and strains at the boundaries and also the structural 

deformations. However, many challenges exist in human body modelling such as 

characterisation of material properties, complex anatomy of the human body, 

modelling of some internal organs, prediction of injury mechanisms and injury 

criteria. It was also difficult to handle with the large amount of data and elements.  In 

order to create more realistic crash test simulations, a finite element method was used 

to develop the 'Expecting', computational pregnant occupant model with a hybrid 

fetus in a finite element amniotic fluid in the uterus.  It is more realistic to use a 

deformable model than a solid one. Complex surfaces on occupant and fetus bodies 

were divided into a finite number of elements and the motion of these elements was 

determined over short periods of time. In Chapter 8, the 'Expecting' with finite 

element fetus head model was developed to investigate the implications of changing 

the fetus model partially, from a multibody head model to a more realistic 

deformable finite element head model.  The interaction between fetus, uterus and 

placenta can be observed easily. Simulation results showed that incorporating a finite 

element fetus head in the model slightly changed the dynamic response of the model 

in crash test simulations and there was no great difference between the models for 

the seat belt and airbag case. However, after the crash speed of 25 km/h, the 

'Expecting' with finite element fetus head model had higher strain levels than the 

original 'Expecting' model. Similar differences with higher strain levels between the 
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original and modified 'Expecting' were also observed for the seat belt only case. The 

strain levels approached the placental abruption risk threshold of 0.60 for both 

models and there was high risk of fetus loss. At the 35 km/h seat belt only case, 

strain at the 'Expecting' with finite element fetus head was seen to exceed the 

threshold value for placental abruption. These results showed that improved 

'Expecting' demonstrates its ability to predict fetus outcome and multibody fetus 

head to finite element fetus head model increases placental abruption risk. This was 

due to deformation on the fetus head, changes on dynamic motion of the fetus and 

displacements of the fetus. Simulations increased the processing time. Both fetus 

models gave reliable results for the cases investigated in this study. The benefit of 

using the modified 'Expecting' model lies in its ability to provide a more realistic 

movement of the fetus within the uterus.  

 Human anthropometry varies significantly between individuals and across 

populations. Changes during pregnancy drastically alter the pregnant abdominal 

anatomy of the pregnant female. Pregnant occupants involved in motor vehicle 

accidents are at risk for pregnant-specific injuries, such as placental abruption. The 

placenta in the uterus can be situated anywhere on the inner surface of the uterus 

wall. Therefore, the effects of placental locations on the fetus injuries and mortality 

were investigated. The placenta position was varied alone and maximum uterine 

strain values were recorded. This study showed that the fetus of a pregnant driver 

who has a placenta located at the anterior in the uterus is more likely to be injured 

than the fetus of a pregnant driver who has a placenta located at the original position 

(fundus) of 'Expecting'. The results from the series of simulations suggest that a 

pregnant driver who has a placenta located at the anterior in the uterus should be 

more careful and drive less than a pregnant driver who has a placenta located at the 

original position (fundus) of 'Expecting'. 

 A 5th percentile female near the end of pregnancy represents the worst-case 

scenario in crash test simulations and real word accidents in terms of vulnerability 

while driving. The anthropometry of the existing 5th percentile female MADYMO 

model were created from the Western European population aged 18 to 70 years in 

1984. This data was updated in 1997. Body mass and sitting height were considered 

to represent the small female anthropometry. The female model was altered to 
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represent the anatomy of a pregnant 5th percentile female using the anthropometric 

data collected from pregnant volunteers. Changes were only made to the chest depth, 

abdominal profile, abdominal height and depth, thigh depth and hip breadth. A 

pregnant occupant must position herself far forward in a car to reach the pedals due 

to her short limb length. Moreover, by the 38th week of pregnancy her abdominal 

size is at maximum, resulting in very close proximity to the steering wheel. 

Therefore, it is more appropriate to model and develop a pregnant female as close to 

term as possible to investigate the worst-case scenario. 

 The test methods were designed to provide simplified, easily controlled and 

measured tests containing key aspects of real-world impact inputs and injury 

outcomes. Placental abruption is the only criteria to investigate fetus safety in crash 

test simulations. The crash test results show that in road traffic accidents, even if the 

fetus itself does not directly cause placental abruption, its existence alone has the 

potential to affect the dynamic response of the pregnant occupant and strain levels at 

the UPI and overall uterus. The placental abruption risk was associated with the 

strains at the UPI and the threshold value for the occurrence of placental abruption is 

widely accepted to be 0.6 at the UPI. For crash speeds of 30 km/h and 35 km/h, the 

strain values exceed the threshold value, posing a risk of placental abruption. The 

fetus would have suffered fatal injuries at the crash speed of 35 km/h and then the 

simulation software became unstable. Therefore, in this research, a crash speed of 35 

km/h was taken as the highest impact speed at crash test simulations. The results 

from the series simulations with and without restrained cases show that the use of a 

three-point seat belt with an airbag offers the greatest protection to the fetus for 

frontal crash impacts 

 The modified pregnant occupant model, 'Expecting' was validated in Chapter 

7 and 8 against rigid bar impact and belt loading tests. Force-deflection abdominal 

corridors for a 50th percentile male cadaver were developed and scaled to a 5th 

percentile female. There are no real force-deflection corridors for pregnant women. 

Therefore, force-deflection corridors developed by Hardy et al. (2001) were used 

until new corridors specifically for pregnant women are available.  The rigid bar 

impact tests illustrated the rate dependent nature of the pregnant occupant abdomen. 

The mass of the 48 kg impactor is significantly greater than the effective mass of a 
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typical pregnant abdomen. This helped to generate response corridors. The 6m/s 

corridors were plotted and compared with the original and modified 'Expecting'. Mid 

speed data (6 m/s) was chosen for rigid bar impact tests. The original 'Expecting' 

model was validated against rigid bar impact at 6 m/s. Modified 'Expecting' was also 

validated at 6m/s to compare the results with the original 'Expecting' and previous 

results. The results of modified 'Expecting' validation tests agreed well with the 

stiffness of the Hardy et al. (2001) corridors for rigid bar loading of the pregnant 

abdomen at 6m/s. Results appeared to be within the defined response corridors.  The 

seat belt test was conducted to determine the response of the pregnant occupant 

abdomen to low-speed distributed loading. For the belt loading test, a finite element 

belt section was pulled across the pregnant abdomen at 3 m/s. In this research, belt 

penetration into the pregnant abdomen was calculated. Hardy performed a series of 

belt loading tests on human cadavers at a rate of 3 m/s. Pregnant abdomen response 

corridors for 3 m/s lap belt loading were developed and compared in Chapter 7 and 

8. The peak seat belt loading rate in these tests was 3 m/s. However, these test 

standards were determined from 13.4 m/s sled tests conducted by FTSS using a lap 

and shoulder belt restrained Hybrid III dummy. For rigid bar impact and belt loading 

validation tests, force-displacement data of the abdomen were found to be in good 

agreement with the experimental data. 

 The actual mechanisms of placental abruption are not known. The placenta 

and uterus have different material properties. The uteroplacental interface also shows 

different material properties. Recorded strain value and actual injury risk are 

dependent on material properties. Inertial or directly applied forces can act on the 

fetus and the fetus may move within the uterus during an impact. This movement 

causes it to push directly on the placenta and thereby begin to dislodge the placenta 

from the uterus. Possible mechanisms of placental abruption and effect of the fetus 

were explored with drop test simulations in Chapter 5.  The fetus-placenta interaction 

was investigated using the FE models of the uterus, placenta and the multibody fetus 

to simulate direct loading of the uterus with the fetus. Impact simulations involved 

dropping the uterus with and without the fetus onto a rigid plate from a height of 0.5 

m. Vertical drops onto a rigid flat surface at angles of 0°, 30°, 90°, and 180° were 

simulated. Implications of including the fetus model in the uterus were investigated. 
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Drop test simulations assisted the investigation of different fetus-placenta 

interactions. The contribution of the fetus to the strains generated in the UPI was 

considerably high. Drop test simulation results showed that the existence of a fetus in 

the uterus plays an important role on the strain levels in the UPI and anywhere in the 

uterus. In all cases, the peak strain levels were higher with the fetus than without the 

fetus. This clearly demonstrated that the fetus changes the dynamics of the 

simulation of the uterus and fetus should be included in the uterus in all pregnant 

models to investigate crash test simulations realistically. 

 The airbag was positioned at the centre of the steering wheel in line with the 

steering wheel tilt angle. When the pregnant occupant was unrestrained, the airbag 

tilted up slightly from the steering wheel line in crash tests. This was due to high 

impact of the pregnant abdomen. The initial posture of the pregnant occupant in the 

driving seat was based on seated anthropometric measurements by Acar and Weekes 

(2004). The horizontal distance between the steering wheel rim and the uterus was 

set at 45 mm in the initial position. The steering wheel tilt was 30° from vertical. The 

clearance from the abdomen to the steering wheel decreased with increasing 

gestational age. Occupants generally do not adjust their fore-aft seat position to 

compensate for their increased abdomen depth (Klinich et al., 1999). Close 

proximity to the steering wheel, increases impacts on pregnant abdomen. This study 

investigated the worst-case scenarios in terms of vulnerability for a pregnant 

occupant as a driver. Positions of the steering wheel and pregnant occupant were not 

changed in simulations. The inclusion of the three-point belt reduces the degree of 

steering wheel loading for each crash speed. In this study, the original initial position 

of the 'Expecting' in the vehicle and the initial position of the vehicle interior were 

not changed to compare the original 'Expecting' with the modified 'Expecting'. 

Different steering wheel tilt angle and close proximity to the steering wheel may 

affect fetus safety. 

 Airbags are essential safety devices in vehicles to prevent injuries during road 

accidents. However, the inflation of an airbag under some circumstances also has the 

potential to cause serious injuries and even death in motor vehicle accidents. 

Pregnant occupants constitute a vulnerable group in occupant safety in motor vehicle 

accidents. During pregnancy, the fetus grows inside the pregnant abdomen and the 
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uterus gets closer to the steering wheel. The proximity of the uterus to the steering 

wheel and deploying airbag creates an increased risk of fetal death and injuries. 

Airbag units designed to restrain a 50th percentile male occupant can be less 

effective on a person who is not classed as a 50th percentile male (Butler et al., 

1993). Airbag deployment systems and setting of deployment time are crucial 

elements for occupant safety in motor vehicle accidents. The roles of a range of 

airbag firing times for a typical driver airbag system that potentially reduces the risk 

for pregnant women and their fetuses were investigated in Chapter 4. Well-being of 

the fetus was investigated using the ‘Expecting’ pregnant model. The investigation 

involved simulations of crashes with varying impact severities for full-frontal 

collisions with different airbag firing times. In this study, airbag firing times ranging 

from 10, 30, and 60 ms were chosen to mitigate critical injury criteria values. Strains 

and displacements in the uterus were calculated to predict the risk of placental 

abruption and fetal fatalities. 'Seat belt and airbag', 'seat belt only', and 'no restraint' 

cases showed that airbag inclusion cases had lower strains and displacements than 

cases without an airbag. When an airbag was used without the seat belt, strain levels 

reached and exceeded the threshold level at crash speeds starting from 15 km/h.  

'Seat belt and airbag' case simulations were examined for airbag firing times of 10, 

30, and 60 ms. All results showed a similar tendency and maximum strains at UPI 

increased when crash speed increased. In order to understand the effect of airbag 

deployment time on fetus safety, the airbag only case was investigated for the first 

time with the 'Expecting'. Simulation results showed that an airbag firing time of 10 

ms caused lower UPI strain than airbag firing times of 30 ms and 60 ms, for all 

impact speeds. When the airbag firing time was reduced, predicted strain at the UPI 

was reduced as well. The airbag on its own causes high levels of strain and it must be 

used in conjunction with the seat belt to be effective in reducing the strains below the 

threshold level. The firing time of the airbag appeared to make a small but not 

significant difference to fetus safety. The results from several simulations suggest 

that the use of a three-point seat belt with an airbag offers the greatest protection to 

the fetus for frontal impacts. 

 All measurements in the experimental crash tests are independent of the 

stretch of the belt webbing. Therefore, belt stretch is not included in any analyses in 
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crash test simulations. For the seat belt systems including lap belt, shoulder belt, 

retractor, pretensioner and load limiter, a moderate amount of stretch in a seat belt 

harness can be considered. According to the work-energy principle, a vehicle 

collision stops the vehicle and the occupants and removes their kinetic energy. A 

longer stopping distance decreases the impact force on the vehicle and on the 

occupants. A stretching seat belt can extend the stopping distance of an occupant and 

reduces the average impact force on the occupant compared to a non-stretching 

harness. For only lap belt loading, this effect was neglected in the experimental tests 

and consequently in crash test simulations. 

 The improved 'Expecting' model can be used for the evaluation of safety 

systems and vehicle interiors. The 'Expecting' was used in predicting fetus safety in 

real-world accident case studies. Previous pregnant models had only focussed on the 

abdominal region by simply adding an enlarged abdomen to a female model. The 

significant mass of the fetus and finite element amniotic fluid fill the entire volume 

of the uterus. In this research, movement of the fetus within the uterus and fetus 

interactions with its surroundings such as amniotic fluid and placenta were 

investigated more realistically than in previous models, with a finite element method. 

Simulation results with improved 'Expecting' are more realistic than the original 

'Expecting', because not only displacement of the bodies were defined but also 

deformation on the bodies and their interactions were defined. A cushioning effect of 

the finite element amniotic fluid was observed from the simulation results.  Stresses 

and strains induced in the uterus and placenta were more accurate. Different crash 

scenarios were investigated by changing and developing several different parameters 

as a step forward to more realistic accident recreation for fetus safety in motor 

vehicle accidents.  

9.2  Limitations of the Research 

Investigations on pregnant occupant safety in motor vehicles revealed that there is 

very little experimental and realistic crash test data about pregnant occupants. 

Furthermore, volunteer data are impossible to collect due to ethical issues. Hence, 

computational models play a significant role in safety investigations. 
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Creating a finite element or multibody computational model of a human body 

is also a challenging task. Human anthropometry changes according to ethnic 

composition of population, lifestyle, and nutrition. Every pregnancy and hence each 

uterus, placenta, fetus size and position are different. Hence a number of assumptions 

were made in the modelling of the pregnant occupant. The original 'Expecting', the 

pregnant occupant model, was developed at Loughborough University. For the 

modified versions of 'Expecting', the finite element fetus head and the amniotic fluid 

are assumed to be linear, elastic, isotropic solid materials. The uterus was also 

modelled with the same approach although it is known to be anisotropic and 

viscoelastic. However, currently there is not enough data to apply these material 

properties to the model. The amniotic fluid is defined as a solid with fluid properties 

because MADYMO does not allow fluids to be defined. Due to the complexity, fetus 

head geometry in the uterus is simplified. Material properties of the finite element 

fetus head were taken from new-born baby data as a basis to obtain age specific 

material properties for the 38 week old fetus skull. Over the final trimester, the head 

of the fetus becomes stiffer and heavier. Material properties of the fetus head play an 

important role in representing the fetus realistically. Response of the finite element 

fetus head to an impact differs with different head material properties. The whole 

fetus model in the original 'Expecting' is developed as a multibody, hence the head 

does not deform. The finite element fetus head is capable of deformation under 

external loading easily. A deformable head changed the dynamics of the system and 

affected the stress and strain levels in the uterus. It is also possible to measure local 

stress and strain values at the fetus head. But there is no injury criteria for the fetus 

head.  Realistic representation of the fetus with finite element modelling and material 

properties generates more realistic and accurate results. 

Crash test simulations were performed using a half-sine wave acceleration 

pulse with 120 ms duration. A real acceleration pulse could be different for each 

crash even for the same speed crashes. Some crashes may show much a longer 

acceleration pulse at even low speed whereas in some cases the pulse duration could 

be much shorter with high peak values. The vehicle compartment is modelled as 

multibody while the pregnant occupant uses a finite element model. Material 

properties of pregnant occupant skin and its interaction with restraint systems are not 
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considered. In order to investigate the effects of intrusion on the pregnant occupant, 

vehicle interior and compartments need to be modelled and defined with the finite 

element method. Depending on the restraint system of the pregnant occupant and 

vehicle interior properties, passenger compartment intrusion may have beneficial, 

detrimental or neutral effects upon injury to the pregnant abdomen. Intrusion with a 

deformable vehicle interior depending on its material properties and design may 

increase or decrease the strain levels around the uterus and at the UPI. Deformable 

bodies react more realistically and may give more accurate results than rigid bodies.  

Strain values from the simulations and consequently the actual absolute injury risk 

for the fetus safety are highly dependent on material properties of finite element 

bodies and should be investigated further. 

The main difficulty in developing the 'Expecting' pregnant occupant model is 

its validation. The computational pregnant occupant model can only be validated 

with rigid bar impact and belt loading tests due to lack of experimental data and 

ethical issues. In the case of a human fetus, there is no force-deflection data based on 

cadaver or volunteer tests. The threshold strain value in the uterus for the occurrence 

of placental abruption is accepted as the reference value for the occurrence of fetus 

fatality.  Placental abruption is the only quantifiable injury criterion for the fetus. 

This limits the investigation of fetus safety in motor vehicle accidents because there 

are also some other risks to the fetus in the case of an automobile impact. Fetal 

injuries may occur due to direct contact with the deploying airbag and seat belt 

loading. As a result of road traffic accident and trauma, feto-maternal transfusion, 

loss of fetal blood cells into the material circulation, and preterm delivery may occur. 

Causes of these injuries and fetal loss in motor vehicle accidents may not only be as 

a result of placental abruption. If more injury criteria about fetus safety could be 

defined, the fetus model and the accuracy of the simulation results would have 

improved. 
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9.3  Future Work 

The finite element fetus head and the finite element amniotic fluid in the 'Expecting' 

model are significant improvements for a more realistic model of pregnant 

occupants. Creating a broader, more realistic model will also raise awareness of the 

issues surrounding pregnant women as drivers. Although 'Expecting' has been the 

most realistic pregnant occupant model with the finite element fetus head and the 

finite element amniotic fluid, there is still room for further developments. The next 

stage of the work could be the modelling of the full finite element fetus body. Since 

the fetus may have a direct contact with the placenta, it is possible that a deformable 

fetus body could affect the strain levels and the risk of placental abruption. A fully 

deformable fetus model would give a more realistic representation of the fetus but 

the material properties would be difficult to obtain.  

 Different restraints such as advanced "smart" systems, which could be tuned 

to the range of test conditions,  booster seats, side airbags, retractable seats, 

integrated airbag on seat belt can be modelled and their impacts on modified 

'Expecting' can be investigated. Different seating positions such as the pregnant 

occupant as a passenger in the front seat or rear seat could be investigated with crash 

test simulations. Different airbag and impact types could be compared with other 

computational and experimental occupant models. Simulations at higher crash speeds 

could be modelled and validated with the modified 'Expecting'.  

 Side and rear impact crash test simulations could be conducted when the 

placenta is located at different regions in the uterus in order to investigate the risk of 

placental abruption. For different seating positions of the pregnant occupant in the 

vehicle, higher crash speeds can be tested. The vehicle interior compartment 

including the steering wheel could be modelled as finite elements and the effect of 

intrusion on the pregnant abdomen could be investigated.    

The modified 'Expecting' model can also be converted into a commercial 

software package. The next generation of 'Expecting' can be parametric to represent 

different stages of pregnancies. 
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9.4  Conclusions 

The evolution of finite element occupant models was explained and computational 

pregnant models were examined. The most realistic pregnant occupant model 

‘Expecting’ was used in conducting several crash scenarios. The implications of 

including a fetus in the uterus of ‘Expecting’, the pregnant occupant model, were 

investigated. First of all, the uterus with and without a fetus model was used to 

simulate a range of vertical drops onto a rigid flat horizontal surface at four different 

angles. Drop tests with a fetus in the uterus changed dynamic behaviour of the uterus 

and increased strain levels. Then, in order to explore the role of including a fetus in 

the uterus, ‘Expecting’ with and without a fetus were used in crash test simulations 

and the results were compared. It was observed that the loading from the seat belt, 

steering wheel and airbag, caused strains to develop in the uterus. Furthermore, due 

to the motion of the fetus, inertial loading on the uterus occurs. Crash test simulation 

results from the 'Expecting' model showed that the inclusion of the fetus in the model 

changes the dynamics of the occupant and generates significantly higher strains at 

the UPI than the without fetus model. Therefore, it was concluded that a fetus should 

be included in the uterus in pregnant occupant models, for realistic simulations. 

 The role of placenta position on the risk of placental abruption was 

investigated using different placental locations. In the design approach of the 

placenta models at different locations, limited space between the fetus and the uterus 

was considered. It was found that there is a significant role of placental position on 

the risk of fetus mortality. The highest strain value was predicted with the anterior 

placenta, whereas with the posterior placenta a relatively low strain value was 

predicted. This study found that the fetus of a pregnant driver with an anterior 

placenta has a higher risk than the fetus of a pregnant driver with the placenta located 

at the fundus.  

The uterus with the multibody fetus was filled with finite element amniotic 

fluid to replace the spring suspended fetus of the original 'Expecting' model. The 

multibody fetus was also given a finite element head. The effect of external loadings 

such as seat belt, airbag, steering wheel as well as internal loadings such as fetus, 

amniotic fluid, and pregnant body were investigated. 'Unrestrained', 'seat belt only', 
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'airbag only', and 'seat belt and airbag' tests were simulated with the new amended 

model in frontal impacts. During crash test simulations with the modified model, 

peak strain at UPI was observed to be almost always higher than with the original 

model. It was observed that the dynamic response of the pregnant occupant changes 

considerably when the finite element fetus head and amniotic fluid models are 

integrated into the 'Expecting' model. The main observed difference in simulations is 

the deformation of the fetus head and changing shape of the uterus. During the 

forward motion of the pregnant abdomen, the fetus moves downwards and the head 

of the fetus compresses and presses on the uterus. This generates more space 

between the fetus and placenta than the space observed in simulations with a fully 

rigid fetus body. This may have led to the prediction of reduced risk of placental 

abruption with the deformable fetus head model. 

Overall, there is high probability that placental abruption would occur in the 

unrestrained, frontal impact simulations. The use of a three-point seat belt and an 

airbag reduces the risk to the pregnant occupant and the fetus. The findings of this 

research lead to the recommendation that the use of a three-point seat belt with the 

airbag is crucial for the safety of a pregnant occupant and her fetus. The fully 

restrained case offers the greatest protection to the fetus and the mother in frontal 

crash impacts. More realistic modelling of the pregnant occupant leads to realistic 

responses to the impacts. It is particularly important for the car industry to work with 

more biofidelic and realistic crash test models in order to develop vehicle safety for 

vulnerable occupants, such as pregnant women. It is hoped models such as the 

realistic 'Expecting' could be used to improve pregnant occupant safety in motor 

vehicles. 
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