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Abstract 

This thesis reports original research on a novel internal combustion (IC) engine charge air system 

concept called Turbo-Discharging. Turbo-Discharging depressurises the IC engine exhaust system so 

that the engine gas exchange pumping work is reduced, thereby reducing fuel consumption and CO2 

emissions.  

There is growing concern regarding the human impact on the climate, part of which is attributable to 

motor vehicles and transport. Recent legislation has led manufacturers to improve the fuel economy 

and thus reduce the quantity of CO2 generated by their vehicles. As this legislation becomes more 

stringent manufacturers are looking to new and developing technologies to help further improve the 

fuel conversion efficiency of their vehicles. Turbo-Discharging is such a technology which benefits 

from the fact it uses commonly available engine components in a novel system arrangement.  

Thermodynamic and one-dimensional gas dynamics models and experimental testing on a 1.4 litre 

four cylinder four-stroke spark ignition gasoline passenger car engine have shown Turbo-Discharging 

to be an engine fuel conversion efficiency and performance enhancing technology. This is due to the 

reduction in pumping work through decreased exhaust system pressure, and the improved gas 

exchange process resulting in reduced residual gas fraction. Due to these benefits, engine fuel 

conversion efficiency improvements of up to 4% have been measured and increased fuel conversion 

efficiency can be realised over the majority of the engine operating speed and load map. This 

investigation also identified a measured improvement in engine torque over the whole engine speed 

range with a peak increase of 12%.  

Modelling studies identified that both fuel conversion efficiency and torque can be improved further 

by optimisation of the Turbo-Discharging system hardware beyond the limitations of the 

experimental engine test. The model predicted brake specific fuel consumption improvements of up 

to 16% at peak engine load compared to the engine in naturally aspirated form, and this increased to 

up to 24% when constraints imposed on the experimental engine test were removed. 
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The use of IC engines for propulsion grew and still dominates the road transport market. There 

are many reasons for this including: 

I. high fuel energy density giving extended range; 

II. high engine specific powers and fuel economy; 

III. relative low cost of manufacture and ownership; 

IV. reliability and robustness; 

V. fuel distribution infrastructure; 

VI. ease of fuel storage and handling. 

Each of the reasons given above will now be discussed in more detail as Turbo-Discharging can 

be beneficial to specific power and fuel consumption, but its implementation must not be 

detrimental to, for example, engine reliability and robustness.   

I. High Fuel Energy Density 

Fuels such as gasoline, diesel and natural gas have high energy per unit mass compared to 

other methods of storing energy. Table 1-1 gives a summary of fuels and other forms of 

energy storage. 

Fuel Type 
Energy density by 

mass 

MJ/kg 

Pure Uranium-235 82x106 

Hydrogen 120 

Natural Gas  45 

Gasoline 44 

Diesel 42.5 

Coal 32.5 

Lithium ion (Li-ion) battery 72 x10-3 

Nickel Metal Hydride (NiMH) 
battery 

4 x10-3 

Lead Acid battery 1.4 x10-3 
Table 1-1 – Energy densities by mass of different energy storage methods (Boyle et al 2003, Heywood 1988) 

High energy density fuels are desirable since, for a fixed energy conversion efficiency, they 

allow a vehicle to travel further when carrying a given mass of fuel.  

It can be seen that the difference in energy density between fossil fuels and electric batteries 

is significant. For example, 20 kg of Gasoline contain over 60 times more energy than a 

Lithium-Ion (Li-ion) battery of the same mass. Internal combustion engines are less efficient 
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converting fuel energy into crankshaft rotational energy than electric motors converting 

electricity to rotational energy operating at their rated speed; the useful work produced by IC 

engines is only about 30-40% of the total available energy (Martyr and Plint 2007), whereas 

permanent magnet electric motors are significantly more efficient at 96% (Sergaki 2012), (de 

Almeida et al 2011). However, even when taking into account this difference in efficiency of 

energy usage, the gasoline engine could still produce over 20 times as much shaft work as a Li-

ion battery powered electric motor with the same mass of energy store.  

Another major advantage of fossil fuels is that re-fuelling the vehicle takes only a matter of 

minutes as opposed to charging an electric vehicle which, depending on the facilities available, 

can take from several hours to over-night for a full recharge. For example, the Nissan Leaf with 

a battery of approximately 24 kWh takes 7 hours to fully charge from a domestic source in 

Europe or the US (Ikezoe et al 2012). This is could be an inconvenience when trying to 

complete a journey greater than the range of the vehicle on a single charge. 

Batteries do offer some advantages such as the ability to capture energy that would otherwise 

be lost. An example of this is regenerative braking, where during the process of braking the 

kinetic energy of the vehicle is recovered by a generator which charges the batteries, allowing 

the energy to be re-used to propel the vehicle. This system amongst others has led to the 

interest in hybrid and full electric vehicles, with the former becoming increasingly popular 

through vehicles such as the Toyota Prius and the Honda Insight which use regenerative 

braking systems to help increase the overall efficiency of the vehicle (Uehara et al 2012). 

II. High Specific Powers and Fuel Economy  

Figure 1-1 shows a graph of specific energy vs specific power for leading electric vehicle 

technology and internal combustion engines. The electrical system includes the mass of the 

energy store and a nominal electric motor mass of 80 kg. The internal combustion engine 

systems include only the engine and mass of fuel. For all systems the drivetrain is excluded. As 

explained previously, it can be seen that the specific energy is an order of magnitude higher to 

most battery technology; this is based on the mass of the vehicle power and drivetrain and the 

mass of fuel the vehicle carries.  

The specific power of IC engines is significantly better than most of the electric vehicle 

technologies. It should be noted that the best Li-ion battery shown has not been used in a 
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vehicle (Alamgir and Sastry 2008), and ultracapacitors are only used in conjunction with other 

energy sources due to their very low specific energy (Miller et al 2007). 

 

Figure 1-1 - Comparison of Specific Power vs Specific Energy for a number of propulsion systems 

The IC engine therefore still exceeds the specific powers offered by realistic electric vehicle 

alternatives. This specific power helps lead to increased fuel economy; a lower mass of 

powertrain reduces overall vehicle mass, reducing rolling resistance and therefore requiring 

less power to maintain the same velocity. Furthermore, vehicle inertia is reduced, which in 

turn reduces the energy required to accelerate the vehicle. This is especially important with 

current drive-cycle based emissions legislation.  

III. Use of Low Cost Materials 

Only one out of the four strokes of the Otto cycle is at high temperature. For the other three 

quarters of the engine cycle the cylinder contents are at a comparatively low temperature, 

giving the heat transferred to the cylinder walls time to dissipate. This time for heat dissipation 

means that expensive, rare earth materials can be avoided and more common lower cost 

materials and their associated manufacturing processes can be used.  

In comparison, electric and fuel cell vehicles require the use of more expensive, scarcer 

materials. For example, most electric vehicles now use lithium-ion batteries such as the Nissan 

Leaf (Ikezoe et al 2012)and GM Volt; the cost of lithium batteries is four times that of a lead 
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acid battery (Buchmann 2001). Furthermore, the 2010 cost of the battery and motor are 

shown as $22/kW + $700/kWh + $680, and $21.7/kW + $425 respectively, compared to that of 

an  IC engine at $14.5/kw + $531 (Brooker et al 2010). Thus, for 60 kW of motive power, an IC 

engine costs ~$2700 less than an electric vehicle powertrain (assuming a battery discharge 

rate of 0.5 kWh).  

IV. Reliability and Robustness 

IC engines have been developed for over 120 years and in that time have become a well-

established technology. Components have been developed and optimised to a point that they 

are robust, reliable and are becoming increasingly inexpensive; the latter mainly due to 

advanced mass production techniques. 

Batteries as a competing technology to IC engines are able to operate over a comparatively 

small temperature range, and even within these limits their operating characteristics can 

deteriorate significantly. For example, if a Nickel Metal Hydride (NiMH) battery is discharged 

at 30°C the usable life reduces to 80% of that at 20°C; at 40°C this further reduces to 60%. At 

low temperature the battery chemistry ceases to function correctly. The absolute limit for 

NiMH batteries is -20°C, below this the battery will not discharge (Buchmann 2001). A 

battery’s ability to accept charge is similarly affected at extreme temperatures.  

IC engines are more forgiving to ambient conditions. A gasoline engine rejects ~30% of the fuel 

energy to the engine coolant as heat (Martyr and Plint 2007); this allows the engine to operate 

in cold conditions as it is self heating, assuming that it is possible to start the engine in the first 

place. This lower temperature limit is governed primarily by the viscosity of the oil and the 

freezing point of engine coolant and fuel.  

High temperature operation of an IC engine is limited by the heat produced by combustion 

and the ability of the cylinder head, valve, piston and block materials to withstand this, and 

the ability of the engine cooling system to reject this heat. Owing to the fact IC engines have to 

operate over a wide range of load conditions, the cooling system is designed to cope with a 

maximum load at vehicle rated speed for a maximum ambient temperature. Thus, as the 

ambient temperature increases the maximum load permitted decreases as the cooling system 

becomes insufficient.  
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V. Practicality of Fuel Distribution Network 

Fuel distribution is a significant concern for any fuel other than those which are already used 

and widely distributed. For example, there would be substantial cost in implementing a 

hydrogen storage and distribution network for use with polymer electrolyte membrane (PEM) 

fuel cells or other hydrogen powered vehicles.  

It could be argued that the distribution network for electricity already exists as almost every 

home in the developed world has an electrical power supply. However, if every commuter was 

to purchase an electric vehicle to travel to and from their workplace, a large proportion would 

return home and plug their vehicles in at the same time. This would soon overload the current 

electrical distribution network. It could also be argued that the current electricity distribution 

network could not support charging vehicles in the manner which is required by the consumer 

(Berkheimer et al 2014).  

For example, the Tesla Roadster claims to be able to charge to full capacity in 4 hours. 

However, this is charging at 70 Amps from a 90 Amp supply. Not all homes in the United 

Kingdom have a main fuse to the house which would allow charging at this current, not taking 

into account the ability to use any other piece of electrical equipment at the same time as 

charging. For these reasons, IC engines will remain the prime mover for the foreseeable 

future.  

VI. The Ease of Fuel Storage and Handling 

Most liquid fuels are comparatively easy to store compared with some of the other options 

presented above. By way of an example, storing gaseous fuels requires either high pressure or 

low temperature storage conditions, which are expensive to engineer and provide, whereas 

diesel fuel is commonly kept on farms throughout the United Kingdom in relatively 

inexpensive plastic containers. Until the electricity distribution grid is capable of storing and 

supplying energy in a similar manner to the supply of liquid fuels it is unlikely to become 

prevalent as a propulsion method.   
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achieve this high speed of rotation requires a gear set, introducing an extra inefficiency in the 

system. Positive displacement superchargers such as the roots type spin slower than a 

centrifugal compressor, but still faster than an IC engine.  

The second widely used method of pressure charging is turbocharging which utilises energy 

that would otherwise be wasted in the exhaust to provide power to a turbine which drives a 

compressor via a shaft to achieve the same pressure charging effect as a supercharger. It too 

was initially used for increasing the rated power of engines, however, more recently it has 

been seen as an opportunity or an enabling technology to increase the efficiency of the IC 

engine.  

To achieve comparable power densities to engines powered by other fuels, diesel fuelled 

engines require turbocharging, reflected by the fact that in 1999 more than 80% of diesel 

fuelled passenger car engines were turbocharged. This has now increased to nearly 100%. The 

diesel engine has an inherent lean air-fuel ratio operation at rated torque due to emissions 

limits; a denser charge air allows for more fuel to be burned or for a more complete burn of 

the fuel. Compression ignition engines do not suffer from knock as can occur in spark ignition 

(SI) engines, so boost pressures can be higher than those in gasoline engines and these higher 

boost pressures are sometimes required when using high levels of exhaust gas recirculation 

(EGR) to drive the same mass of air into the cylinder.  

The use of turbocharging in gasoline engines is more limited due to knock (the uncontrolled 

auto ignition of the charge mixture) and the wider engine speed range. However, with 

advances in engine materials and control technologies to minimise the propensity to knock 

and growing pressure to increase fuel economy, turbocharging gasoline engines is gaining 

significant popularity. Most manufacturers are now developing and marketing turbocharged 

downsized gasoline engines.  

The aforementioned limits in turbocharging gasoline engines have given rise to an opportunity 

for a new turbocharging technology which will be the subject of this work, called Turbo-

Discharging. This concept uses exhaust gas energy transferred from a turbine to a compressor 

situated downstream in the exhaust system. Through the application of a divided exhaust 

event the cylinder is exposed to a depressurisation generated by the compressor. This 

technology can increase the fuel conversion efficiency of both non-pressure charged and 

turbocharged IC engines, whilst offering significant secondary benefits which may lead to even 
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Conklin goes on to show from a second law analysis that 81.9% of the fuel exergy, the energy 

possible to extract from the fuel with ideal processes with respect to a reference condition, is 

lost through irreversibilities, friction, coolant and other losses, whilst 9.7% goes to brake work 

and 8.4% is lost through the exhaust.  

It is therefore important to eliminate, or minimise any irreversibilities through friction, energy 

transfer to coolant and any other losses. There is substantial ongoing work into reducing these 

losses, but this work will focus on the energy available in the exhaust gas.  

Nearly the same quantity of fuel exergy used for brake work is available as thermal energy in 

the exhaust gas over the FTP-75 drive cycle. Recovering a fraction of this energy could 

therefore significantly improve fuel economy. As such there has been an increasing amount of 

research into utilising this energy in the past decade.  

The amount of energy contained in the exhaust gas is dependent on many factors. It is often 

impossible for the cylinder to fully expand the combustion gases due to the fixed geometry 

nature of engines. Commonly the engine expansion ratio is equal (and fixed) to that of the 

compression ratio. With a fixed expansion ratio it is not possible to fully expand the exhaust 

gas if the pressure at the start of the expansion stroke is higher than that at the end of the 

compression stroke.  

Efforts have been made to further expand the burned gases in engines through variable valve 

timing and engine cycles incorporating Early Intake Valve Closing (EIVC) or Late Intake Valve 

Opening (LIVO), such as the miller cycle. Both of these strategies reduce the compression ratio 

by limiting the amount of air induced into the cylinder. Reducing the compression ratio 

reduces the pressure in the cylinder before the exhaust stroke which allows for a more 

complete expansion of the combustion gases. This results in a reduced amount of energy in 

the exhaust gas and increased engine thermal efficiency. However, these systems still cannot 

fully expand the burned gases and therefore energy can still be extracted.  

One of the most significant factors that makes extracting energy from the exhaust gases 

attractive is their high temperature. The large temperature differential between the exhaust 

gas and the ambient leads to a large amount of energy availability, similar in quantity to that 

of the fuel energy that does positive work on the crankshaft as mentioned previously. High 

mass flow rates can also aid the energy extraction process.  
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However, almost any device placed in the exhaust to recover energy will cause a restriction 

and thus raise the pressure the engine is working against during the exhaust stroke (commonly 

referred to as back pressure). This increases the work required from the crankshaft to forcibly 

remove the gases from the cylinder, decreasing the fuel efficiency of the engine. The device in 

the exhaust must therefore recover and transfer as much energy as this to the crankshaft for 

the system to have no effect on the engine, or more energy to improve fuel efficiency.  

In conclusion, there is significant value in and potential for recovering energy from exhaust 

gases. The following section will discuss different approaches to recover this energy. 
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displacement pulse the piston has to do extra work by driving the exhaust gases from the 

cylinder and through the turbine, rather than just through the exhaust to atmospheric 

pressure. The effect of this is increased pumping work during the displacement part of the 

exhaust stroke.  

Commonly radial inflow turbines are used in passenger car applications. Recent developments 

in turbocharger turbines include the use of mixed flow and axial turbines to reduce exhaust 

pumping work.  

Mixed flow turbines are becoming more prevalent in their application due to the increasing 

requirement on turbine efficiency under pulsating conditions. Radial inflow turbines are 

commonly quoted as having peak efficiency at a blade speed ratio (U/C) of 0.7; however, the 

U/C for high pressure ratio, low speed operation will be lower than this (Lüddecke et al 2012). 

For gasoline engines, it is desirable to sacrifice efficient energy extraction at high U/Cs to 

improve energy extraction at low U/Cs as there is generally a surplus of energy at high U/Cs, 

whereas turbine energy is the limitation for low U/C operation.  

Honeywell turbo technologies have introduced their dual boost turbocharger which 

incorporates an axial turbine, as well as parallel back-to-back compressor wheels (Lei et al 

2012). The point of peak efficiency for the axial turbine is achieved at a lower U/C than that of 

a radial turbine. Similarly to mixed flow turbines, this enables the axial turbine to operate 

more effectively during transients and pulsed flows, where low U/C’s are frequently 

encountered. Furthermore, reductions in shaft inertia are possible as the hub of the turbine 

wheel is closer to the axis of rotation compared to a radial or mixed flow turbine.  
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It is commonly believed that pulse turbocharging is the better method of the two as more of 

the exhaust gas energy is maintained, rather than being wasted in the expansion of gas in the 
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2.2.3 Wastegates and Variable Geometry Turbines 

It is sometimes desirable to control the power extracted by a turbine, whether it is to provide 

control over the device it is connected to or in some cases to reduce back pressure on an 

engine to improve fuel economy.  

It has already been identified that for a steady state engine condition the turbine is operating 

over a range of mass flows and pressure ratios. Passenger car engines very rarely operate in a 

steady state condition; in fact they operate over a wide speed and load range for which the 

exhaust gas conditions vary substantially. Therefore turbines are generally sized to extract 

energy efficiently over as much of the speed and load map as possible. 

One method of maximising the engine speed and load range a turbine functions over is to use 

a smaller turbine rather than a turbine sized to produce maximum boost at high engine rpm. 

This smaller turbine will extract more power than is required at a lower engine speed, as 

shown as curve 2 in Figure 2-4, as opposed to the large turbine of curve 1.  

 

Figure 2-4 - Torque-Speed characteristics for a turbocharged engine application modified from (Baines 2005) 

Using a smaller turbine will allow the turbocharger to achieve too high a pressure ratio across 

the compressor across some of the engine speed range. It is therefore necessary to employ a 
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device such as a wastegate to limit the energy recovered by the turbine by bypassing some of 

the exhaust gas around the turbine.  

One alternative technology to wastegates that is being implemented on almost all passenger 

car compression ignition engines and on some spark ignition engines is that of Variable 

Geometry Turbines (VGTs). There are several variations on these, but none of them actually 

vary the turbine wheel or blade geometry; they simply affect how the exhaust gas enters the 

turbine. 

The most common type is a Variable Nozzle Turbine (VNT), where pivoting inlet guide vanes 

rotate to adjust the angle of incidence of the gas onto the turbine. This system has the ability 

to increase the energy extracted by the turbine at lower exhaust mass flow rates to aid 

transient response and to minimise the low speed torque deficit commonly observed in 

turbocharged engines. As the vanes rotate to a more closed position the gas enters the turbine 

at a higher angle of incidence, but is also accelerated through the narrowed flow area of the 

guide vanes. This can be shown using Euler’s turbine equation 2-1. For constant mass flow and 

blade speeds, increasing the tangential velocity of the exhaust gas entering the turbine will 

increase the power extracted by the turbine.  

However, the energy to accelerate the gas through the vanes is partially generated by the 

piston, and manifests as an increase in engine pumping work. It is still beneficial to do this as it 

aids transient response, allowing the turbocharger to increase in speed and to reach a more 

efficient operating condition faster. 

The variable guide vanes can also be used for limiting the power extracted by the turbine and 

transferred to a compressor or other device. This is achieved by the guide vanes opening, 

rotating the gas through an angle such that it enters the turbine at a lower angle of incidence, 

reducing the tangential gas velocity and thus the energy extracted. This has a significant 

benefit over that of a wastegated turbine in that by doing this the pressure drop over the 

turbine reduces. In a wastegated turbine the wastegate opens and exhaust gas mass flow is 

bypassed, but to extract the same power from the turbine the pressure ratio must remain 

constant. Thus the engine is still exposed to the same back pressure and thus the same 

pumping work.  

Currently the use of VGTs has largely been limited to passenger or small commercial vehicle 

compression ignition engines. This is due to material cost and high temperature capability; the 



  Chapter 2
  Air Systems and Fuel Saving
   

24 

 

lower exhaust temperatures experienced in a compression ignition engine allow the use of low 

cost materials to be used for the VGT mechanism. However, for SI gasoline engines with higher 

exhaust temperatures more expensive materials such as Inconel 917 must be used, 

significantly increasing the cost of the unit such that the increase in performance cannot be 

justified.  

 

2.2.4 Alternate Forms of Exhaust Gas Energy Extraction 

There are two significant alternate technologies currently considered in research for extracting 

energy from the exhaust gas. These are thermoelectric devices and Rankine cycle energy 

recovery systems.  

Thermo-Electric Generators (TEGs) utilise the Seebeck effect to generate electrical energy, 

where two dissimilar metals are joined and energy is generated when there is a temperature 

differential between the two metals. These junctions are then joined together in an array to 

form a thermopile. The resulting energy can be used to offset the power required by the 

alternator, reducing parasitic losses and increasing the amount of useful work output of the 

engine.  

If the electrical energy is proportional to the transfer of heat through the device, then it is 

important to maximise both the high temperature on the exhaust side and the low 

temperature on the ambient side. However, common material thermal limits for the hot side 

of TEGs are in the region of 230°C (Martins et al 2011), limiting the potential conversion 

efficiency by reducing the potential heat transfer through the device.  

To maximise the high temperature on the device, it is important to transfer as much thermal 

energy from the exhaust gas into the device as possible. Common methods of achieving this 

involve increasing the surface area available for heat transfer from the gas and to increase 

turbulence of the gas across the surface. The drawback of both of these methods is that they 

will cause a restriction in the exhaust, increasing engine back pressure and thus pumping 

work. This will directly detract from the benefit offered by the device, such that to achieve a 

fuel efficiency benefit the device must extract and transfer more energy back to the engine 

than the pumping work required to overcome the restriction in the exhaust. 
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Another drawback of the TEG is their very low energy conversion efficiency, commonly as low 

as 1% system efficiency, peaking at less than 10%. This leads to low total energy conversion 

quantities, commonly less than 1 kW (Ibrahim et al 2010). Mori et al (2009) modelled their 

TEG device on four US drive cycles where the output from the device was based on exhaust 

temperature and mass flow. The result of this was a maximum improvement in fuel economy 

of 0.36% with a corresponding reduction in CO2 of 0.42%.  

Rankine cycle systems for exhaust gas energy recovery use the heat energy from the exhaust 

to evaporate a working fluid in a Rankine cycle. This working fluid is contained within a 

separate circuit comprised of a pump, evaporator, turbine, condenser and adjoining pipework.  

The pump provides the energy required to pressurise the liquid coolant. This requires work, 

which generally originates as fuel energy, detracting from the engine thermal efficiency.  

From the pump, the fluid passes through the evaporator. This is a heat exchanger, transferring 

heat from the exhaust gas into the working fluid. The same drawbacks apply here as for TEGs; 

to increase the effectiveness of heat transfer the heat exchanger must cause a restriction in 

the exhaust, increasing back pressure and increasing pumping work. 

Once the fluid has passed through the evaporator and the thermal energy has been 

transferred (turning the working fluid into vapour), it passes through the turbine. This expands 

the fluid, extracting a portion of the energy transferred to it from the exhaust gas. This work 

recovered is the primary benefit of the system.  

Finally the fluid passes through a further heat exchanger or condenser, returning the fluid to a 

liquid state so it can be pumped round the system efficiently and so it can effectively absorb 

more thermal energy.  

Teng et al claim a 20% improvement in rated power based on a second law analysis of a heavy 

duty diesel engine (Teng et al 2007). Ringler et al (2009) claim a more modest 10% 

improvement when travelling in top gear at a steady speed from a 1-D model and simulation 

on a 4 cylinder SI engine.  

Weerasinghe et al (2010) claim for a 22% improvement in fuel economy from their modelling 

results of a rankine steam hybrid system even though there was only a 7.8% benefit in engine 

power. They argue that the reason for this is the steam hybrid system acts as a buffer; the 

steam allows for storage of energy which is then released slowly, enabling power to be 
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produced by the expander even when there is no hot exhaust from higher load conditions 

from the engine.  

There are a number of common drawbacks with Rankine systems for recovering exhaust gas 

energy from passenger gar IC engine exhausts. A considerable amount of mass would be 

added to the vehicle due to the working fluid and the components required, unless it is 

integrated with a secondary cooling loop such as that for charge cooling (Teng et al 2007). This 

will also take up a significant amount of volume on the vehicle, add substantial cost and the 

condensing heat exchanger will increase vehicle drag. It is anticipated that vehicle 

manufacturers will find this increase in complexity and cost unattractive (Hussain et al 2009). 

Weerasinghe et al (2010) also state that typically secondary fluid power systems are 

unattractive to manufacturers, but argue that the level of complexity is similar to that of an air 

conditioning circuit, and that a rankine cycle system would add only 20 kg more mass than a 

turbo-compounding system. 

Currently the author is not aware of any rankine cycle systems that have been used on a 

production passenger vehicle. It is likely that the increase in complexity, package volume, mass 

and cost are currently restricting their use, even though the claimed benefits are 

comparatively higher than those of competing systems. As such, turbines for extracting energy 

from the exhaust gas are considered the most effective and appropriate technology for 

passenger car IC engines.  
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Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 
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These benefits and challenges will now be discuss

 

 
 
 

 2.3

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

 More engine power through increased air 

density meaning more fuel can be burned. 

 A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

 Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

 Higher charge pressure can allow for 

higher levels of cooled EGR 

 Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

 Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

Benefits

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

increasing the power output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

Benefits

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.  

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

Benefits

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

engines and at WOT.   

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.  

Table 

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging  

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

Benefits 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

 

Higher charge pressure can allow for 

higher levels of cooled EGR 

Scavenging can be improved through an 

improved pressure ratio between intake 

and exhaust manifolds.   

Table 

These benefits and challenges will now be discuss

 

 
 
 

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

higher levels of cooled EGR to be used.  

Scavenging can be improved through an 

improved pressure ratio between intake 

Table 2-

These benefits and challenges will now be discuss

 

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

to be used.  

Scavenging can be improved through an 

improved pressure ratio between intake 

-1 – 

These benefits and challenges will now be discuss

  

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder. 

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

to be used.  

Scavenging can be improved through an 

improved pressure ratio between intake 

 Benefits and challenges of turbocharging

These benefits and challenges will now be discuss

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

increased mass of air in the cylinder.  

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

to be used.  

Scavenging can be improved through an 

improved pressure ratio between intake 

Benefits and challenges of turbocharging

These benefits and challenges will now be discuss

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned. 

A more complete burn can be achieved in 

compression ignition engines from the 

 

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

to be used.   

Scavenging can be improved through an 

improved pressure ratio between intake 

Benefits and challenges of turbocharging

These benefits and challenges will now be discuss

 
 
 

27

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger. 

More engine power through increased air 

density meaning more fuel can be burned.  

A more complete burn can be achieved in 

compression ignition engines from the 

Positive pumping work is possible during 

the intake stroke in compression ignition 

Higher charge pressure can allow for 

 

Scavenging can be improved through an 

improved pressure ratio between intake 

Benefits and challenges of turbocharging

These benefits and challenges will now be discuss

 
 
 

27 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combust

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

challenges associated with using a turbocharger.  

 

1.

2.

3.

4.

5.

Benefits and challenges of turbocharging

These benefits and challenges will now be discussed in more detail.

  
  
  

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

to improve the performance of an internal combustion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement. 

There are also a number of secondary benefits which 

 

1. Exhaust pumping work can be increased 

due to the exhaust restriction of the 

turbine. 

2. Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

3. Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

4. Increased time to catalyst light off due to 

increased thermal mass of exhaust 

system.

5. Extracting energy from the exhaust gas 

may leave less

systems such as thermoelectric or rankine 

cycle and after

Benefits and challenges of turbocharging

ed in more detail.

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

output for a given displacement.  

There are also a number of secondary benefits which 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

turbine. 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

system.

Extracting energy from the exhaust gas 

may leave less

systems such as thermoelectric or rankine 

cycle and after

Benefits and challenges of turbocharging

ed in more detail.

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

 

There are also a number of secondary benefits which 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

turbine. 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

system.

Extracting energy from the exhaust gas 

may leave less

systems such as thermoelectric or rankine 

cycle and after

Benefits and challenges of turbocharging

ed in more detail.

 
 
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

There are also a number of secondary benefits which Table 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

turbine.  

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

system. 

Extracting energy from the exhaust gas 

may leave less

systems such as thermoelectric or rankine 

cycle and after

Benefits and challenges of turbocharging

ed in more detail.

 
 Air Systems and Fuel Saving
 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

Table 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

may leave less

systems such as thermoelectric or rankine 

cycle and after

Benefits and challenges of turbocharging

ed in more detail.

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

Table 2-

Challenges

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

may leave less energy for energy recovery 

systems such as thermoelectric or rankine 

cycle and after-treatment systems. 

Benefits and challenges of turbocharging

ed in more detail. 

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

-1 summarises along with 

Challenges

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

Benefits and challenges of turbocharging 

 

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Challenges

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management.

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Challenges

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

thermal management. 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Challenges 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.  

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

 Chapter 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

the increased charge pressure.   

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems. 

Chapter 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

treatment systems.  

Chapter 
Air Systems and Fuel Saving

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

Chapter 2
Air Systems and Fuel Saving

  

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 

 

Turbocharging is a common method of using work extracted by a turbine in the exhaust flow 

ion engine. The turbine is connected to a 

radial compressor to compress the intake charge air. The primary purpose of this is to increase 

the charge air density such that more air is trapped in the cylinder so more fuel can be burned, 

summarises along with 

Exhaust pumping work can be increased 

due to the exhaust restriction of the 

Turbocharged spark ignited engines can 

have a higher propensity to knock due to 

Complexity is increased from 

turbocharger cooling, packaging and 

Increased time to catalyst light off due to 

increased thermal mass of exhaust 

Extracting energy from the exhaust gas 

energy for energy recovery 

systems such as thermoelectric or rankine 



  Chapter 2
  Air Systems and Fuel Saving
   

28 

 

2.3.1 Benefits 

1. More engine power through increased air density meaning more fuel can be burned 

The power produced by an IC engine can be shown to be 

�̇ = 	 �� ∙ �̇� ∙ ���	
 2-2 

where �̇ is the power produced by the engine, ηf  is the fuel conversion efficiency of the 

engine, �̇� is the mass of fuel inducted per unit time and QHV is the heating value of the fuel. 

This equation can be expanded using the following two equations: 

�̇� = �̇� ∙ [� �⁄ ]	  2-3 

where �̇� is the mass of air inducted into the cylinder and [� �⁄ ] is the mass based ratio of 

fuel to air,  

�̇� = �� ∙ ���� ∙ ������ ∙ 	�
2� 	

 2-4 

where	�� is the density of the charge, ����	is the volumetric efficiency of the engine, ������	is 

the swept volume of the cylinder and � 2� 	is the engine crankshaft rotation speed corrected 

for a four stroke engine as there is only one induction stroke per two revolutions. 

These equations give an equation for the power produced by an IC engine of the following 

form; 

�̇ = �� ∙ ������ ∙ ���� ∙ �
2� ∙ [� �⁄ ] ∙ ��� ∙ ��	  2-5 

Thus an increase in intake charge density for a fixed air to fuel ratio will give an increase in 

output power.  

 

2. A more complete burn can be achieved with a more dense charge in compression ignition 

engines 

Compression ignition engines inject fuel directly into the cylinder once the intake valve has 

closed. Combustion begins very shortly after injection; there is only minimal time for the fuel 

and air to mix, so it is common for there to be areas of high fuel/air ratio across the cylinder. 

Turbocharging increases the mass of air in the cylinder, giving more chance for the fuel to 
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react with oxygen during combustion. This helps to minimise hydrocarbon emissions and 

decreases the cyclic variance as mixing is less dependent on in-cylinder motion.  

 

3. Positive pumping work is possible during the intake stroke 

For a compression ignition engine, or a spark ignited engine in a wide open throttle condition, 

it is possible for the turbocharger to do work on the piston during the intake stroke. Naturally 

aspirated engines create a low pressure in the cylinder by the downward motion of the piston 

which draws air into the cylinder. If the intake manifold pressure is higher than that of the 

cylinder at Intake Valve Opening (IVO) then air will flow into the cylinder without the need for 

the piston to draw a low pressure. Furthermore, if the pressure above the piston is higher than 

that of the crankcase as it is travelling towards BDC, positive work is done on the piston.  

However, this must be balanced with the extra pumping work required during the exhaust 

stroke when exhausting the burned gases. Turbines can cause a restriction in the exhaust and 

as such present the engine with increased back pressure compared to an NA engine. 

Depending on the efficiency of the turbocharger, the operating condition of the engine and a 

number of other parameters the engine thermal efficiency may increase or decrease.  

 

4. Higher charge pressure can allow for higher levels of cooled EGR to be used 

One method of controlling NOx emissions is to use cooled EGR to reduce peak cylinder 

temperatures. With increasingly stringent emissions targets, manufacturers are being forced 

to use higher levels of EGR to further decrease NOx. 

If the mass of EGR in the cylinder increases then the mass of air in the cylinder will decrease 

unless the density of the air increases, increasing the demand on the boosting system. Thus, 

higher charge pressures are desired, and can be achieved by turbocharging.   
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5. Scavenging can be improved due to an improved pressure ratio between intake and 

exhaust manifolds  

During intake and exhaust valve overlap when the piston is near TDC, a high pressure ratio 

between the intake and the exhaust manifolds is desirable to drive fresh charge into and 

displace any products of combustion from the cylinder. Poor scavenging leads to more hot 

residual gases remaining in the cylinder which decreases the volume available for fresh charge.  

These hot residuals also raise cylinder temperatures, which in spark ignition engines can 

increase the likelihood of knock. Increasing the intake manifold pressure will help to improve 

or give a positive engine scavenging pressure ratio providing the increased exhaust manifold 

pressure caused by the turbine is not excessive.  

 

2.3.2 Challenges 

1. Exhaust pumping work can be increased due to the exhaust restriction of the turbine 

As described previously an exhaust event contains two distinct portions of gas flow; blowdown 

and displacement gases. By placing a turbine in the exhaust system the manifold pressure the 

cylinder is exhausting to is increased. This decreases the amount of gases that leave the 

cylinder during the blowdown pulse (assuming an ideal event where these gases are allowed 

to expand to the manifold pressure), leaving more gases to be displaced by the piston during 

the displacement pulse. Not only does the piston need to displace more gases, but it needs to 

drive these gases through the restriction the turbine is presenting.  

This could lead to worse cylinder scavenging; however, this is generally negated by the 

improved scavenging through higher intake manifold pressures as mentioned previously.  
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 2. Turbocharged spark ignition engines have a higher propensity to knock due to the 

increased charge pressure 

A higher pressure charge in a turbocharged engine, for a fixed compression ratio, will be 

compressed to a higher pressure than that of a naturally aspirated engine. With increased 

pressure comes increased temperature, both of which will advance the onset of knock. 

Commonly the compression ratio of turbocharged engines is decreased to compensate for 

this; however, this leads to decreased combustion efficiency.  

 

3. Complexity is increased from turbocharger cooling, packaging and thermal management 

A turbocharger is generally mounted as close to the engine exhaust ports as possible for an 

optimised pulse turbocharging system (as discussed in section 2.2.2). However, the intake 

manifold is typically located on the other side of the engine. Routing pipework around the 

engine bay will always therefore be a compromise between performance and packaging; the 

best performing pipework may not be able to be packaged into a vehicle. 

Turbochargers consist of a compressor connected to a turbine by a shaft, supported in the 

centre by a bearing housing. These bearings require lubrication, and commonly use engine oil 

to minimise extra complexity. The oil leaving the turbocharger is commonly highly aerated; as 

such the drain back to the engine must be as unrestrictive as possible. This limits placement of 

the turbocharger and the orientations it can operate in.  

Most turbocharger systems include a charge air cooler for reducing the temperature of the 

intake air before it enters the cylinder. Some are air to air heat exchangers which reject heat 

to the ambient air, others are air to coolant heat exchangers which use a secondary coolant 

circuit in the vehicle with associated coolant to air heat exchangers to reject the heat to 

ambient. Lumsden et al (2009) use such a heat exchanger for a small packaging solution, but 

make no mention of a secondary coolant loop. Furthermore, the heat in the secondary coolant 

circuit must still be rejected, thus the cooling drag of the vehicle will be increased by both air 

to air and air to coolant heat rejection methods.  

The turbocharger itself can also become significantly hot under certain operating conditions. 

Depending on the type of turbocharger used the oil supply for the bearings may be sufficient 
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to cool it otherwise a coolant supply may be required, typically the engine coolant, and this 

heat must then be rejected by the vehicle radiator.  

Also, turbine volutes tend to have a high heat capacity and as such they retain heat for much 

longer than an exhaust manifold would. This can pose a problem for locating components in 

the engine bay, requiring modification of the under bonnet airflow and sometimes shielding of 

other components.  

 

4. Increased time to catalyst light off due to the increased thermal mass of the exhaust 

system 

Catalyst light off is the point at which the catalyst becomes hot enough to begin reacting and 

converting harmful combustion products into less or non-toxic gases. It is important to 

minimise the time taken to achieve catalyst light off for emissions testing. The New European 

Drive Cycle (NEDC) requires the test to be started from cold; faster catalyst light off means 

that the catalyst begins minimising harmful emissions earlier, reducing the total amount of 

emissions for that drive cycle. 

Typically the exhaust gases themselves are used to heat the catalyst to light off temperature; a 

result of this is that most powertrains are now developed with the catalyst mounted as close 

to the exhaust port as possible to maximise the exhaust gas temperatures at the catalyst face. 

For turbocharged engines time to catalyst light off has been longer than naturally aspirated 

engines due to the heat capacity of the turbine volute and sometimes the manifolds used; for 

example, a cast iron manifold has a substantially higher heat capacity than a tubular manifold. 

One technology that has been investigated recently is that of pre-turbine catalysts. This 

involves placing a catalyst, or a pre-catalyst element upstream of the turbine (Konieczny et al 

2008). Traditionally catalysts are located in the exhaust after the turbine as it is desirable to 

maximise turbine inlet pressure for performance, but it is argued by the authors that in the 

context of diesel compression ignition engines it is worthwhile making use of higher exhaust 

temperatures pre-turbine. However, they only make brief mention of the negative effect this 

has on turbine and engine performance, concentrating mainly on the emissions analysis. It 

would also still require a catalyst post turbine, albeit smaller and less restrictive than that 

commonly used.  
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In a similar vein, Diesel Particulate Filter (DPF) placement in compression ignition engines has 

been challenged, and Payri et al (2011) have investigated placing this and the Diesel Oxidation 

Catalyst upstream of the turbine. They found that the higher temperatures favour passive 

regeneration, but can lead to a 3.3% increase in pumping work.  

 

5. Extracting energy from the exhaust gas leaves less energy for energy recovery systems 

such as thermoelectric or rankine cycle and after-treatment systems. 

Whilst it is true that turbocharging removes a substantial portion of the exhaust gas energy 

(Carberry et al 2005), it can do so more efficiently than other technologies. As previously 

discussed thermoelectric devices need to absorb a large amount of thermal energy from the 

exhaust gas but then need to reject this to ambient. It will always be a concern as to what the 

order of energy recovery from the exhaust system should be, but this will vary depending on 

the total amount of energy available in the exhaust stream, packaging limitations and 

emissions requirements.  

 

2.3.3 Turbocharging and Downsizing 

Turbocharging and downsizing is an increasingly common method of improving the fuel 

efficiency of a powertrain. The term downsizing refers to decreasing the cylinder volume; the 

two main benefits of this are: 

1. Pumping work benefit. For a comparable load condition a downsized engine operates 

with a more open throttle than a non-downsized equivalent. This leads to decreased 

pumping work on the intake stroke, and when combined with turbocharging positive 

work can be achieved on the intake stroke.  

2. Reduced powertrain frictional losses. The smaller capacity means smaller components 

can be used with reduced frictional surface area.  

However, reducing the cylinder volume for a fixed charge pressure will result in a lower power 

output. To compensate, it is necessary to pressurise the charge air, and this is commonly 

achieved by turbocharging.  
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The Mahle downsized demonstrator (Lumsden et al 2009) is a 1.2 L twin series turbocharged 

engine, designed to replace a 2.4 L V6 engine from a class C or D vehicle. This equates to a 50% 

downsize, which they estimated would equate to a 25-30% benefit in fuel economy, with 

better torque across the whole engine speed range. Careful attention had to be paid to 

cylinder pressure limits, but they found their demonstrator engine had sufficient durability 

even operating up to 35 bar BMEP.  

Han et al (2007) show up to 17% improvement in fuel economy for a 40% downsized and 

turbocharged engine, whilst Shahed and Bauer (2009) state 40% downsizing with 

turbocharging to restore the baseline torque curve should give a 20% improvement in fuel 

economy. Common to all of these approaches is the inclusion of a variable valvetrain (VVT) 

system and Direct Injection (DI). Turner et al (2005) state the importance of VVT and DI 

systems, allowing the elimination of throttles in gasoline engines and further improving 

pumping work.  

Further work by Turner et al (2014) on the Ultraboost project shows that 60% downsizing can 

result in up to a 23% reduction in tailpipe CO2. They postulate that increasing this to 70% 

downsizing could lead to a further 6% reduction in CO2.  

With efficiency benefits as great as those mentioned above, this author considers that the 

popularity will only increase and that most, if not all, future gasoline powertrains will be 

downsized and turbocharged. Thus, any further developments in air systems for fuel efficiency 

must be compatible with turbocharging and downsizing.  

 

2.3.4 Conclusions 

As emissions legislation tightens and customer expectations increase with time more internal 

combustion engines are likely to include turbocharging systems for the benefits outlined in 

this section. However, there are some challenges in implementing turbocharging systems 

which may limit their introduction. Largely, these have been overcome and most passenger 

cars with compression ignition engines are turbocharged and an increasing number of gasoline 

engines are becoming downsized and turbocharged.   
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the complexity of the mechanical linkage will likely inhibit its appeal to automotive 

manufacturers.  

Electric Turbo-Compound 

Electric Turbo-Compound (ETC) systems comprise a turbocharger with a motor-generator 

attached to the shaft. At low speed electrical energy is supplied to the unit, driving the 

compressor to provide pressurised intake air, aiding transient response of the powertrain. At 

high engine speed and load, excess energy is extracted from the shaft by the generator. This 

could be stored in batteries as part of a mild hybrid system, or transferred via electric motor 

back to the vehicle crankshaft.  

Zhuge et al (2011) optimised a system that combined a turbocharger with a VNT controlled 

Turbo-Generator. This produced a 4.74% benefit over US06 and 1.86% over FTP75 drive cycles.  

Tavčar et al (2011) investigated three different topologies of an ETC system; an electrically 

assisted turbocharger, a turbocharger with a separate electrically driven supercharger and an 

electrically split turbocharger. The electrically assisted turbocharger is similar to that used by 

Zhuge et al, whilst the electrically split turbocharger is a system combining a separate turbo-

generator and electric supercharger. The result of this study is that the electrically assisted 

turbocharger and the turbocharger with separate electric supercharger made no significant 

different to the fuel efficiency of the engine over the NEDC, whereas the electrically split 

turbocharger increased fuel efficiency by 10.8%. This improvement in efficiency is largely due 

to the fact the compressor could be largely bypassed during the drive cycle, and the turbine 

(VGT) could be tuned to provide minimal restriction compared to the baseline and other 

systems. Thus, the benefit comes largely from reduced pumping work of the engine, rather 

than improvements by the turbomachines themselves.  

One issue with electric turbomachines is the difficulty in powering them with the common 

vehicle 14 V supply; electric machines capable of providing the performance required by the 

turbomachines tend to be large and present packaging and weight detriments. Wang and Yuan 

(2008) investigated using 42 V electric machines in a turbocharged diesel engine; this would 

allow the use of smaller electric machines and may enable this technology, however, until 

electric machines are improved or a common change in the standard 14 V electric supply of a 

vehicle is made, the use of electrically assisted turbomachines will likely be limited to larger 

diesel engines or hybrid vehicles with secondary electrical power circuits.   
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2.5.1 Blowdown Gas Separation 

For an ideal Turbo-Discharging system the exhaust event is split into two discrete events. The 

first, known as the High Pressure (HP) event, releases the blowdown energy from the cylinder 

which can be captured by a turbine. The second, known as the Low Pressure (LP) event, 

exposes the cylinder to the low pressure.  

Similar split exhaust event concepts have been investigated by two parties, and will be 

described in detail before exploring the Turbo-Discharging concept in more depth.  

Divided Exhaust Period  

The Divided Exhaust Period (DEP) concept (Elmqvist-Möller et al 2005), (Ekenberg 2002) was 

the first to apply a split exhaust event to a modern engine. This exhaust arrangement 

originates from a 1924 patent (Societe Rateau 1924) where the combustion gases are divided; 

the blowdown and displacement gases flow through two distinct routes in the exhaust system. 

The blowdown gases flow through one of the exhaust valves which opens first, flowing 

through a turbine before re-combining and flowing through the rest of the exhaust system. 

The first exhaust valve shuts and the second opens, through which the displacement gases 

then pass. These gases bypass the turbine, passing through a close coupled catalyst before 

recombining with the blowdown gases post-turbine.  

The benefit of this system is that the gases which are desirable to extract energy from, the 

blowdown gases, pass through the turbine whereas the displacement gases do not. The 

displacement gases flow through a path of less resistance, minimising the increase in pumping 

work normally associated with turbocharging.  

As described previously catalyst light off is important in minimising emissions over a drive 

cycle and the time to catalyst light off is typically increased when using a turbocharger due to 

the thermal capacitance of the turbine housing as well as the gas expansion over the turbine. 

In the DEP concept Elmqvist-Moller et al (2005) located a catalyst in the exhaust path that 

bypasses the turbine, which all of the exhaust gas flows through when the engine has just 

started. This reduces the exhaust flow area by 50%; however, it is argued that torque demand 

in the first few minutes of starting a vehicle is minimal as per the EC2005 cycle. When tested it 

was found that the engine produced a similar power to a 1.6 naturally aspirated engine 
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without the use of the turbocharger, more than sufficient for low speed driving whilst the 

engine comes up to temperature.   

They make no mention of how the transition back to using the turbocharger would be 

managed; light off of the primary catalyst downstream of the turbine would be required 

before this is possible, but again they do not measure how long this takes.  

The other main benefit of the DEP system is that of reduced Residual Gas Fraction (RGF). 

Reducing RGF offers a performance advantage for several reasons: 

1. Exhaust residuals, even after expansion, are significantly hotter than the charge air 

entering the cylinder. Once combined the in-cylinder temperature is higher than that 

of the charge air in the intake manifold; this increases the temperature at the end of 

compression and the peak cylinder temperature. This also increases the cylinder 

pressure, both of which increase the likelihood of knock in SI gasoline engines. Knock 

can be seriously detrimental to engine component durability, NVH and performance, 

and must be avoided. For a given knock margin removing in-cylinder residuals allows 

for more spark advance, increased compression ratio or for higher intake charge 

pressure, all of which can be desirable to optimise combustion efficiency.  

2. Commonly exhaust gas residuals are used to control emissions of NOx from 

combustion by limiting the peak temperatures achieved. By removing the hot 

residuals, it is possible to further replace these hot residual gases with cooled EGR, 

decreasing the peak cylinder temperature and further mitigating NOx emissions.  

3. Removing hot gases from the cylinder also offers more space for fresh charge to enter 

the cylinder. As the residuals are also hot, they will occupy more cylinder volume than 

the cold charge that could replace them. More air is desirable as it allows more fuel to 

be burned, but can also lead to more complete combustion especially in compression 

ignition engines. 

The DEP system offers the potential to reduce in-cylinder residual gas by reducing exhaust 

back pressure during the displacement part of the exhaust stroke. This is achieved due to the 

turbine bypass flow which does not experience the restriction of the turbine and therefore 

incurs less of a pressure drop to atmosphere. It was stated that the reduction in residual gases 

was as much as 60% at low engine speeds and loads, but decreased at higher speeds and loads 

due to the increased valve restriction. 
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Valve Event Modulated Boost System 

Roth et al (2010) utilise the same DEP concept but combine the divided exhaust period with a 

cam phasing system. As identified by Möller et al (2005), this allowed them to use the valve 

events to control the energy available to the turbine, thus the power transferred to the 

compressor and therefore boost pressure. In turn this eliminates the need to wastegate, in 

effect using the exhaust valves as the wastegate to bypass exhaust gas around the turbine. 

This was proven using One-Dimensional (1-D) modelling and engine testing. 

Moreover, they observed increased boost and power at low to medium engine speed, whilst 

still achieving equal power at rated engine speed. The increase in engine power was not solely 

due to the increased boost pressure, but also included the benefit from reduced pumping 

work. This improvement in pumping work, plus optimisation through spark timing allowed for 

a 4.5% improvement in brake specific fuel consumption (bsfc) at a high part load condition.  

 

 

2.5.2 Turbo-Discharging Concept 

As previously mentioned, Turbo-Discharging uses a similar divided exhaust manifold to that of 

the DEP and VEMB concepts. Figure 2-5 is a schematic of one potential Turbo-Discharging 

system configuration on a four cylinder gasoline engine.The HP valve opens first, allowing the 

blowdown gases to flow from the cylinder through the turbine. However, in a Turbo-

Discharging system the energy extracted by the turbine is transferred to a compressor further 

downstream in the exhaust. The compressor exit is ideally at ambient pressure, therefore 

when it does work the gas at the compressor inlet becomes depressurised. This is in contrast 

to a normal turbocharging system where the compressor increases the intake charge pressure; 

the compressor in a Turbo-Discharging system only has exhaust gas passing through it, and the 

system does not increase the intake charge pressure.  
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calculated using a sixth order curve fit of data from Heywood (1988) for fixed composition 

burned gases.  

From each step, the mass exiting the cylinder was used to calculate the turbine work using 

��� = �̇���∆�� 3-2 

where ��� is the turbine work, �̇� is the mass flow through the turbine, �� is the specific 

heat at constant pressure of the exhaust gas passing through the turbine and ∆�� is the 

temperature difference of the exhaust gas across the turbine.  

The change in temperature across the turbine was calculated from the pressure differential 

and turbine inlet temperature for a given isentropic turbine efficiency using 

∆�� = ��	��	�� 	�1 − �
��	���

��	��
�

(���)
	��

� 3-3 

where ��	�� is the turbine inlet temperature, �� is the turbine efficiency, ��	��� is the turbine 

outlet pressure and ��	�� is the turbine inlet pressure. The turbine inlet pressure was assumed 

to be the same as the cylinder pressure, whilst the outlet pressure was initially estimated. The 

output of the set of calculations was a revised depressurisation which then replaced the 

estimated depressurisation. The entire process was then repeated until the estimated and 

calculated turbine downstream pressure converged.  

The result of no valve losses and a zero volume manifold is that the pre-turbine pressure rises 

immediately to its maximum at EVO. The total cycle compressor work was then assumed to be 

equal to that of the work done on the turbine over the entire blowdown process.  

The displacement pulse from valve 2 was assumed to happen at the constant low pressure 

manifold pressure. The mass flow from the cylinder in this period was calculated by decreasing 

the cylinder volume from BDC to TDC in 30 equal volume steps. The mass in the cylinder at 

each step was calculated by 

���� = �� �
����

��
� 3-4 

where �� and ���� are the mass of cylinder contents and �� and ���� are the geometric 

cylinder volumes before and after each displacement step respectively. This also gave an 
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estimated residual mass fraction at the end of the exhaust event, in this case entirely 

dependent on the level of depressurisation achieved. 

The combined blowdown and displacement exhaust gas flow then passed through an ideal 

heat exchanger with no pressure drop before being compressed. The compressor inlet 

temperature, compressor work and mass flow were known. From this the outlet temperature, 

and in turn the inlet pressure or depressurisation was calculated.   

The volume of the heat exchanger and adjoining pipework was considered sufficiently large 

such that the pressure upstream of the compressor remained steady.  
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Due largely to the increased expansion ratio of the diesel engine and the amount of excess air 

commonly used in diesel combustion compared to gasoline engines the temperatures and 

pressures at exhaust valve opening tend to be lower. This means there is less energy available 

during the blowdown pulse per unit mass.  

Due to the way the system is modelled, the compressor and turbine efficiencies combine 

directly to form a turbomachine efficiency. Altering one will affect the turbomachine efficiency 

as much as altering the other by the same amount, thus it is only necessary to consider the 

system sensitivity to the turbomachine efficiency with respect to the level of depressurisation. 

In practice the split of irreversibilities between the turbine and compressor will affect the 

amount of heat rejected in the exhaust heat exchanger.   

Figure 3-4 shows the same curves of maximum achievable depressurisation for a 64% efficient 

turbomachine (80% turbine and compressor isentropic efficiencies). The trends in results are 

similar to that of a 100% efficient turbomachine; a dependence on initial cylinder pressure up 

to 400 kPa, beyond which there is a much stronger dependence on initial cylinder 

temperature.  

The absolute values of depressurisation achieved with lower turbomachine efficiencies are of 

course less. For an equivalent amount of exhaust gas energy a less efficient turbine will be 

able to extract less energy, transferring less energy to the compressor. This in turn means less 

depressurisation can be created, decreasing the pressure ratio across the turbine reducing the 

amount of energy that can be extracted.  
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in the exhaust gas by altering the ignition or exhaust valve timing, at which point the 

depressurisation achieved becomes larger and more sensitive to turbomachine efficiency. 

However, the low energy case may represent a part load case where a small benefit in exhaust 

system depressurisation may constitute a larger percentage engine efficiency benefit as the 

engine MEP is lower.  

 

3.2.3 Exhaust Back-Pressure 

One practical consideration of the Turbo-Discharging system is the requirement of exhaust 

noise management and the increased prevalence of exhaust gas aftertreatment systems. Both 

emissions aftertreatment systems and exhaust gas silencers function by passing the gas 

through a medium or a volume, both of which restrict flow and will contribute to increased 

pressure in the upstream exhaust system (back pressure).  

In a Turbo-Discharging system increasing the downstream pressure on the compressor for a 

fixed pressure ratio will increase the upstream pressure. Figure 3-8 shows how the compressor 

absolute pressure rise, or depressurisation, varies with exhaust system back pressure for three 

exhaust gas energy levels with a turbomachine efficiency of 0.8.  

For a higher exhaust system back pressure, the compressor intake air will be more dense, and 

thus the compressor can operate more effectively. This is visible most for the highest exhaust 

gas energy case where the compressor is able to create a larger pressure differential at the 

highest exhaust back pressure where the effect somewhat counteracts the reduction in 

available energy with increasing back pressure.  
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3.3

Efficacy is the power or capacity to produce an effect 

possible to calculate a Turbo

achieved to the maximum depressurisation achievable with an ideal Turbo

system. 

If it is assumed that the press

Turbo

The magnitude of this error will increase as EVO advances due to the increased expansion of 

the cylin

due to cylinder geometry will depend on the flow coefficient of the exhaust valve or valves, 

and how quickly after EVO the pressure decreases. An exhaust valve 

coefficient will allow the pressure in the cylinder to reduce more quickly, and as such the 

change in cylinder volume will have a smaller overall effect. 

It is recommended that

both the actual system and the ideal model

maximum energy 

produce the greatest possible depressurisation. 

therefore be defined as
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Diesel engines tend to have higher compression (and therefore expansion) ratios than gasoline 
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Displacement 1.388 L 

Bore 76 mm 

Stroke 76.5 mm 

Connecting Rod length 136.3 mm 

Cylinders 4 
 

Valves per Cyl 4 
 

Compression Ratio 11:1 
 

Firing Order 1-3-4-2 
 

Max Speed 6200 rpm 

Max Power 59.1 kW @ 5700 rpm 

Max Torque 124 N·m @ 3500 rpm 

Table 4-1 - Ford Sigma Parameters and Performance Data 

 

The engine was attached to a Froude-Consine Model AG150 eddy current dynamometer to 

provide and control load.  The dynamometer is a trunnion-mounted type, where the 

dynamometer is supported by bearings and the torque is measured using a load cell on a lever 

arm. The load is provided through electromagnetic induction; as the shaft rotates magnetic 

fields are cut generating eddy currents in the loss plates, creating heat. This heat is then 

dissipated by plant coolant pumped through the dynamometer.  

The engine speed and load are requested individually on the dynamometer controller. The 

dynamometer load is controlled by altering the current to the coils generating the magnetic 

field; a larger current leads to a stronger magnetic field and thus larger eddy currents in the 

loss plates. The dynamometer controller also controls the engine throttle pedal angle signal, 

which allows for adjustment in load when maintaining a constant engine speed or adjustment 

in engine speed whilst maintaining a constant load.  

The engine control system and instrumentation will now be described in more detail.  
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connected to the Compact DAQ. One module was used to actuate the 

transducer cooling jacket when a measurement is to be taken. This will be 
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In order to ensure the engine maintained 

sensor was used to measure th

that is capable of measuring NO

gave a visual output, but also had a USB connection to allow connection to a PC for data 

logging. The si

At λ=1 

Three methods of fuel flow measurement were identified, the first a 

Within the fuel flow meter the fuel flows through twin tubes parallel to the main axis of flow, 

which are vibrated. In a no

them to move in equal, opposite directions. When flow is passed throu

parallel tubes twist an amount that is proportional to the mass flow through them. This twist 

of the tubes is measured such that the mass flow can be determined. 

The second method used was a volumetric flow meter. A series of optica

timer measured the time to consume a known volume of fuel. This has the obvious 

disadvantage of

the incoming fuel. 

Thirdly t

upon the injection time and maps of measured fuel temperature and pressure, and intake 

manifold temperature and pressure. 

The three measurement methods were used over the entire engine speed and load range

From the measured fuel flow rate a lambda value was calculated using the ECU measured air 

mass flow rate. The resulting lambda values are plotted against engine mass air flow in 

4-

measured error on the lambda sensor increased noticeably with air flow. The error bands for 

the lambda sensor are also plotted for comparison. 
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The signal from the in-cylinder pressure transducer is a relative measurement, thus it needs to 

be referenced from a known pressure. The method chosen was to match the intake manifold 

pressure at 10°CA after TDC. This was chosen as it takes time for the pressure in the cylinder 

to equalise across the intake valve, and 10°CA gave a reasonable accuracy when calculating 

the BMEP from the cylinder pressure trace.  

Gasoline engines are particularly susceptible to cycle-to-cycle variation in the cylinder pressure 

trace, commonly defined by a Coefficient of Variation (CoV) which can be applied to any 

measurement such as maximum cylinder pressure or IMEP. CoV in spark ignition engines is 

largely caused by differences in charge motion around the spark plug, the amount of fuel and 

air in the cylinder and varying residual gas fraction between cycles (Heywood 1988). All of 

these factors cause differences in the fuel burn rate, peak pressure generated by combustion 

and thus the work generated per cycle. This leads to differences in cylinder pressure from 

cycle-to-cycle, and as such it is necessary to average many cycles to achieve an acceptable 

average. Figure 4-2 shows four cycles of measured cylinder pressure overlaid, compared to the 

average of 200 cycles. 
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Unsteady Exhaust Pressure Measurements 

Measuring the pressure pulsations in the exhaust system required the use of fast pressure 

transducers. Those chosen were Kistler type 4007B, a piezoresistive transducer capable of 

continuous operation in temperatures up to 200°C and over a pressure range of 20 bar. 

These were equipped with Kistler type 7553A cooling jackets which provide a cooled housing 

to mount the pressure transducer in as well as shielding the transducer from the exhaust gas 

when a measurement is not being taken. This has the added benefit of preventing the 

transducer from being over-exposed to exhaust soot. Using this with the transducer allows 

intermittent measurement of exhaust gas up to 1000°C. 

The cooling jacket required cooling water, which was supplied from a Kistler temperature 

conditioning unit type 2621E, and also required compressed air to actuate the jacket to expose 

the transducer. The air actuation was triggered by a Labview program; a pneumatic valve 

provides the jacket with the required air pressure when actuated via a digital I/O signal from 

the NI 9403 module. When no actuating signal is provided, the jacket air supply line is exposed 

to atmospheric pressure to ensure it stays closed.  

The unsteady exhaust pressures and cylinder pressure measurements were referenced to 

pulses from an encoder attached to the crankshaft. This encoder provided a pulse for every 

TDC and 720 pulses per revolution of the crankshaft, thus one complete engine cycle was 1440 

samples. The pulse from the TDC marker was used to trigger the start of each measurement 

cycle. This was aligned to actual engine TDC by disconnecting the spark plug from cylinder 1 

and then aligning the peak measured cylinder pressure to 1°CA before TDC. The peak cylinder 

pressure does not occur at TDC due to heat transfer from the compressed charge to the 

cylinder walls; 1°CA was considered optimum for this work based on prior experience.  

The signal from the transducer was sent to a Kistler amplifier which was calibrated in 

conjunction with the transducer and compensated for ambient temperature. The output from 

the amplifier was 0-10 V, which fed into the 16-Bit simultaneous analogue input 0-10 V 

module of the DAQ system.  

A simultaneous sampling module was necessary to capture data from both sensors at exactly 

the same time; regular analogue input modules use a multiplexer to sample each input 
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channel sequentially, which is unacceptable when measuring more than one unsteady exhaust 

pressure for direct comparison.  

Mean Pressure Measurements 

As described previously, each piezo-resitive transducer needs to be referenced to a pressure 

transducer that can measure absolute pressure.  These, along with other steady transducers 

that were used are identified in Table 4-2.  

Measurand 

Measurand 

Range 

/ Bar abs 

Sensor 
Range 

/ Bar abs 

Intake Air  0.05 – 1 GE Unik 5000 0 – 1.6 

Turbine Inlet Gas  0.05 – 6 Delta Ohm HD9408T 0 - 10 

Turbine Outlet Gas  0.05 – 6 Delta Ohm HD9408T 0 - 10 

Low Pressure Manifold Gas  0.05 – 4 Delta Ohm HD9408T 0 - 10 

Combined Exhaust Gas  0.05 – 5 Delta Ohm HD9408T 0 - 10 

Compressor Inlet Gas  0.05 – 3 Delta Ohm HD9408T 0 - 10 

Turbocharger Oil Inlet  0.5 - 4 Delta Ohm HD9408T 0 - 10 

Turbocharger Oil Outlet  0.5 - 3 Delta Ohm HD9408T 0 - 10 

Table 4-2 - Steady Pressure Summary  

Both types of sensor provide a 4-20 mA current output which was fed into the NI 9203 module 

of the compact DAQ, whose input range was ±20 mA. The conversion between current output 

and pressure was performed in the Labview VI such that the data logged was the measured 

pressure in bar.  

Intake Pressure 

A 0-1.6 bar absolute pressure GE Unik 5000 piezo-resistive transducer was specified to 

measure intake air pressure. There are three different accuracies available, and the one 

chosen was the most accurate, varying by up to 0.04% over the full scale of the sensor. This 

transducer was mounted in the intake manifold after the throttle body before it split into 

individual runners.  
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Exhaust Gas Pressure 

The average exhaust gas pressure was measured in 5 locations; the turbine inlet, turbine 

outlet, low pressure manifold, the point at which the low and high pressure manifolds 

combine and the compressor inlet. This was done to allow the transient pressure transducers 

to be pinned to the correct absolute value as well as to give an indication of system 

effectiveness.  

The transducers used were Delta Ohm HD9408T series with a 0 – 10 bar absolute pressure 

range. Further specifications can be found in Table 4-3.  

 

Output 4-20mA current signal 

Accuracy ±0.3% of reading at 20°C 

Response time 0.5 seconds 

Physical connection 1/4 in BSP parallel 

Over pressure limit twice the rated value 

Electrical connection via supplied connector to DIN 41524 

Ambient operating temperature -10°C to +70°C 

Table 4-3 - Delta Ohm steady pressure transducer data 

The temperature of the exhaust gas that these sensors were required to measure exceeded 

their safe operating temperature. As such, the transducers were all mounted remotely; a 300 

mm minimum length of stainless steel pipe was connected to the exhaust using Swagelok 

fittings, which was then connected to a length of nylon hose which in turn was connected to 

the pressure transducer. The only transducer that was mounted directly onto the exhaust was 

the compressor inlet transducer as the temperature at this point had to be controlled to less 

than 150°C so as not to overheat the compressor wheel, so remote mounting was not 

necessary.  
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injection. A further 30% of the liquid fraction was evaporated following the injection. The air-

fuel ratio was adjusted to that measured from the engine in the test cell for each operating 

point, which was typically stoichiometric.  

 

5.1.1 Closed-Cycle Cylinder Calibration 

The term closed-cylinder calibration refers to the part of the cycle where the intake and 

exhaust valves are shut. For this work, the Wiebe combustion model was chosen.  

The Wiebe function is an approximation of the heat release generated by combustion. It is a 

mathematical function which approximates the burn profile from input parameters either 

estimated or measured and calculated from a cylinder pressure trace. The function is  

�� = 1 − ���[−�(�� − ��)���] 5-1 

where �� is the non-dimensional cumulative burn rate, �� is the engine crank angle, ��is the 

crank angle at the start of combustion, ∆� is the combustion duration and � and � are 

adjustable parameters to allow the function to be matched to the measured burn profile.  

Adjustable parameter � is modified to allow the combustion duration to instead use the 10-

90% burn duration. This is beneficial as there can be significant variance in the first and last 

10% of the burn profile, resulting in an incorrectly modelled burn profile.  

The other user adjustable parameter � is then used to control the bias of the burn profile; a 

value of 2 leads to an even burn profile, values less than 2 lead to a faster burn of fuel before 

the 50% burn point, whilst values greater than 2 lead to slower burn of fuel before the 50% 

burn point. This skewing of the burn profile may be necessary to compensate for charge 

motion around the spark plug to account for fast or slow flame propagation. For the purposes 

of this investigation the exponent was not varied as sufficient accuracy to measured results 

was obtained without variation. 

The burn profile in WAVE was then used to calculate the cylinder pressure and temperature. 

The appropriate portion of fuel is burned as the model progresses through the cycle according 

to the burn profile, mass flowrate of air and the specified air-fuel ratio.  
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where �� is the mean piston speed, �� is the cylinder displacement, �� is a reference 

temperature, �� is a reference pressure, �� is a reference volume, ���� is the motored cylinder 

pressure, �� is the cylinder clearance volume and �is the instantaneous cylinder volume. The 

reference pressure, temperature and volume were all assumed to be atmospheric in the 1-D 

model. The constant �� is equal to 6.18 during scavenging and 2.28 when the valves are 

closed, and  �� is equal to 3.24x10-3 during combustion and 0 before combustion and during 

scavenging.  

The first part of equation 5-3 is Woschni’s original correlation which calculates the 

characteristic velocity as the sum of the mean piston speed and an additional velocity that is 

dependent on combustion and the difference in pressure between a motored and firing 

condition (Ricardo plc 2009). The second correlation is still a function of mean piston speed 

but includes cylinder volume and IMEP terms. The maximum value of these two terms is used 

to calculate the characteristic velocity. 

The heat transfer model was important in achieving the correct cylinder pressure at the end of 

compression. An adequate balance between the ‘valves closed’ and ‘valves open’ heat transfer 

coefficient multipliers was found, the result of which is shown below in Figure 5-4 for 1500 

rpm, 6 bar BMEP.  
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The model chosen was the momentum physics without reverse flow for the reason that 

reverse flow should not be required for the modelling work being undertaken. This is due to 

the high compressor mass flow and comparatively low shaft powers; high mass flow will drive 

the compressor operating point away from the surge line. Also, some of the compressors 

being considered for this work had positive speed line gradients within the main body of the 

compressor map, therefore the classic physics model was not applicable.  

The moment of inertia for the turbomachine used is not known, however, all of the 

simulations for this part of the project are steady state. Inertia is important for transient 

simulations but it should not substantially affect a steady state result provided there are 

negligible rotor speed variations during a single crank revolution. 

Compressor maps tend to have little or no data at low speed, mass flow or pressure ratios. The 

thermodynamic calculations demonstrated that only low to moderate pressure ratios can be 

expected across the Turbo-discharging compressor such that it will be operating almost 

exclusively in the low speed portion of the map. With further work it may be possible to 

measure this area of the map more accurately and thus improve the accuracy of the 

simulation in this area. However, this is a necessary limitation at this time as there is no data 

available.  

Turbine 

The turbine map is generated in the same manner as the compressor map in that measured 

values from the gas stand are interpolated and extrapolated to produce sufficient data to run 

the model.  

However, there was an issue with the turbine compared to the compressor. There was only 

limited data available for the turbine in that the one line provided was that of highest mass 

flow and was made up from the peak mass flow from every constant speed line. This is not 

enough data to accurately reconstruct a turbine map, so an existing turbine map was scaled to 

fit the limited data provided by Garrett using the mass flow and speed scaling factors in the 

turbine settings panel. The accuracy of this solution will be discussed in the model calibration 

section 7.1.  
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5.3.2 Other Engine Model Modifications 

Manifold Geometry 

The first major modification of the model was to construct a manifold with divided exhaust 

paths for the high and low pressure gases, as per the schematic in Figure 2-5. 

The high pressure exhaust gases exit the cylinder into a small volume exhaust manifold. The 

flow paths from each cylinder combine before passing through the turbine. The low pressure 

gases exit the cylinder via short runners into a log type manifold constructed from zero-length 

ducts linking junctions. This is a comparatively large diameter exhaust manifold with 

significant length, giving a large volume. The two exhaust paths then re-combine before 

passing through a heat exchanger, modelled by a multiple count duct of 600 4 mm diameter 

ducts. This provides significant cooling to the gases before they pass through the compressor, 

and finally exhaust to ambient. 

To allow for accurate prediction of material temperatures in the exhaust manifold the global 

conduction and heat transfer model was enabled. This, given the thickness, heat capacity and 

thermal conductivity of the material, along with the gas and ambient temperature allows for 

condition specific calculation of the manifold temperature. This allows the potential for a 

much more accurate prediction of exhaust gas temperatures by taking into account the heat 

transfer to and from the surroundings.  

Valve Timing 

The second significant modification for Turbo-Discharging is the split exhaust period with 

independent operation of each exhaust valve. This was achieved by specifying two different 

types of exhaust valve per cylinder, and assigning each valve a custom profile as shown in 

Figure 5-12. 
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It is important for a conventional turbocharger to be sized, or matched, appropriately to an 

engine for maximum performance and efficiency, but also for transient response. Similarly it is 

important that the Turbo

however, there are significant differences that mean standard matching procedures will not 

lead to an optimal match. 

In contrast to a conventional turbocharging system 
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extraction from the turbine is not managed using a wastegate or a VGT

to begin the matching procedure with the turbine, optimising the amount of energy it can 

extract. 

All of the 

means that both the blowdown and the displacement portions of the exhaust gas impart work 
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It is clear from this graph that the points at which most energy is extracted by the turbine are 

higher than both the time and energy averaged mass flow rates. However, the energy 

averaged mass flow rate is almost ten times greater than the time average for the 2000 rpm 

case which suggests the use of a larger turbine. 

This works for the turbine operating in a steady state condition. However, it is currently 

unclear as to how much of an effect the increased turbine size and inertia will have on the 

engine and Turbo-Discharging system during a transient manoeuvre. The author realises this is 

very important in conventionally turbocharged engines, however, in this case the torque 

benefit due to Turbo-Discharging is much smaller and may not even be perceptible to the 

driver of the vehicle. This means initially less emphasis can be put on optimising the 

turbomachine sizing for transient, but should be the subject of further work.  

The turbine model was approximated by scaling an existing turbine map to match the choke 

line provided by the supplier. This data is shown in Figure 6-4, where turbine pressure ratio 

and mass flow are plotted with lines of constant speed, and data points are shown for the raw 

data used to generate the full map as well as the data available from the aftermarket 

turbocharger supplier. It can be seen that the scaled turbine map is a reasonable 

approximation for the data provided.  
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Type 
Bearing 

type 

Compressor Turbine 

Wheel Diameter Trim A/R Wheel Diameter Trim A/R 

mm % 
 

mm % 
 

1548 Journal 48 60 0.48 41.2 72 0.35 

2052 Journal 52.2 48 0.51 47 72 0.5 

2056 Journal 56 55 0.53 47 72 0.46 

2252 Journal 52 60 0.51 50.3 72 0.67 

2259 Journal 59.4 52 0.42 50.3 72 0.56 

2554R Ball 54.3 60 0.8 53 62 0.64 

2560R Ball 60.1 60 0.6 53 62 0.64 

Table 6-1 - Available turbochargers for the Turbo-Discharging experimental engine test (Honeywell International 
Inc 2010) 

Similarly to the compressor, the mass flows and pressure ratios generated through the turbine 

only mean a small portion of the operating range is used for all of the available 

turbomachines. Therefore, the decision was made to use a GT2056 turbocharger as this was 

the smallest turbocharger available with common interfaces to other components, allowing it 

to be swapped easily with other turbomachines in the future.  

Optimisation of the turbomachine matching given complete freedom of turbomachine scale is 

presented in section 9.2.  
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Furthermore, the port has a larger wetted surface area. This is likely to adversely affect 

pressure losses through the port and manifold.  

Production solutions could benefit from a redesigned cylinder head, with individual exhaust 

ports for each valve. These are rare within modern engines, with research being undertaken 

into exhaust manifolds incorporated into the cylinder head, with only one port to the exhaust 

(Turner et al 2010). However, it would be possible for this type of manifold to be incorporated 

into the cylinder head or monoblock of an engine in a similar manner to that currently being 

researched. This inefficiency will be mentioned later in chapter 9 where an optimised model is 

considered.  
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It can be seen that the 

duration multiplier is not linear. This means that for a valve event of half that of the original, 

the maximum lift attainable is only 22.3% that of the original at 1.05 mm. This gives this profile 

very limited use.
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size of graded follower. 
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10 – Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo

size of graded follower. 

ramp included to compensate for valve lash decreased. The lash when

 

 
 
 

e model, equal profiles for the high and l

duration multiplier of 0.8 and lift multiplier of 0.675

10 shows these profiles compared to the original Ford profile; the high 

pressure valve opens 16.75° C

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo

size of graded follower. This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 

 
 
 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

pressure valve opens 16.75° C

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 

 
 
 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

pressure valve opens 16.75° Cam

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 

 
 
 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

amA ahead of the original profile, while the low pressure valve 

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

  

  
  
  

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Valve lash was adjusted on the Turbo-

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
 
 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

-Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
 Turbo
 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

after the high pressure valve.

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Turbo

 

110

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

after the high pressure valve. 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Turbo-Discharging Experimental System Design

 

110 

e model, equal profiles for the high and l

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 

 

e model, equal profiles for the high and low pressure valves were chosen

.8 and lift multiplier of 0.675

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

.8 and lift multiplier of 0.675 giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

ramp included to compensate for valve lash decreased. The lash when cold was controlled to 

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

 Chapter 
Discharging Experimental System Design

 
ow pressure valves were chosen

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Modified Exhaust Camshaft Profiles Compared to the Original Ford Profile 

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

Chapter 
Discharging Experimental System Design

 
ow pressure valves were chosen with a 

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

Chapter 
Discharging Experimental System Design

 
with a 

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

Chapter 6
Discharging Experimental System Design

  
with a 

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

 

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 

 
with a 

giving a 179° cam angle valve event of 

shows these profiles compared to the original Ford profile; the high 

A ahead of the original profile, while the low pressure valve 

 

Discharging experimental setup by specifying the correct 

This was important as, with scaling down the rest of the profile, the 

cold was controlled to 



 
 
 

 

6.5

The primary benefit of Turbo

The depres

increased oil carry over from the turbomachine lubrication circuit due to increased pressure 

differentials over the oil seals. 

6.5.1

It is important to eliminate or minimise oil transfer from the turbocharger lubrication system 

into both the exhaus

after

as the oil partially burning in the exhaust and being emitted from the exhaust pipe of t

vehicle as white smoke. This is significantly less dangerous than leaking oil into the air path of 

a compression ignition engine, where it is possible for the engine to 

when sufficient oil is leaked for the engine to begin operat

and as the lubrication oil is consumed component damage occurs through insufficient 

lubrication and overheating at which point components fail or the engine seizes. This is less of 

an issue for spark ignition engines wh

intake throttle, however, it can still pose a significant emissions risk. 

For a compressor in a co

boost pressure generally increas

mass flow as they are both a function of engine speed. This means that the air pressure 

should, in steady state, always be greater than the oil pressure and there should be no oil 

carry over into 

The compressor inlet pressure in a Turbo

absolute

exhaust system which could vary up to 1.7 bar absolut

exhaust system design and aftertreatment requirements. The compressor seals are exposed to 

this fixed compressor outlet pressure throughout the whole range of operation even whilst 

the engine oil pressure increases wit

be in excess of 5 bar absolute during normal operation there is a significant risk that oil could 

be driven from the bearing housing into the air path.
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assumed that this pressure at the oil seal will be in the region of the exhaust back pressure 

over the entire operating range of the compressor. 

The gas pressure at the turbine-side oil seal is likely to be influenced more by the exhaust gas 

pulsations as the gas flows radially inwards into the turbine. Thus, the gas flow will act to 

increase the static pressure at the oil seal on the turbine side.  

However, depending on the operating condition the depressurisation in the exhaust system 

may translate through the turbine decreasing the pressure at this point. The minimum static 

pressure at this point, ignoring any effect of gas flow, will be equal to the low pressure 

manifold static pressure. Thus it is important to mitigate oil transfer on both the compressor 

and turbine side of a Turbo-Discharging system.  

Attard et al (2007) observed oil transfer through the compressor on their turbocharged 

Formula SAE engine. Formula SAE rules require that a restrictor is placed in the air intake 

upstream of the compressor to restrict the air mass flowrate. However, when the flow through 

the restrictor chokes and more work is provided by the compressor the volume between the 

restrictor and the compressor inlet becomes depressurised. They found this depressurisation 

drew oil through from the turbocharger bearing housing detrimentally affecting combustion 

through plug fouling and increased propensity to pre-ignition or knock.  

Their solution was to modify the turbocharger to provide improved sealing through the use of 

redesigned piston ring seals and a vent to atmosphere between the piston rings. The vent 

between the piston rings is key to this concept; any vacuum leakage past the first compressor 

side piston ring would draw air into the compressor rather than oil from the turbocharger 

core. However, they make no comment on any oil leaking through the first seal and venting to 

atmosphere.  

One method to avoid oil transfer could be to depressurise the oil return from the 

turbomachine enabling the same mass flow rate of oil to be achieved for a lower oil inlet 

pressure reducing the risk of oil transfer. However, the capability of this method had to be 

proven so an investigation was undertaken on a turbocharger test rig to identify the conditions 

at which oil transfer occurs and the possible safe extension of operating range by 

depressurising the oil return.  
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6.5.2 Depressurised Oil Return Capability 

The turbocharger test rig used to conduct this investigation had an oil conditioning system 

that could provide oil at a given flowrate, pressure and temperature. The oil reservoir was 

depressurised by a variable air vacuum pump connected to the air volume at the top of the 

reservoir such that the oil return depressurisation from the turbomachine can be varied.  

The turbine was driven by cold compressed air supplied by a steady pressure of up to 6 bar, 

the outlet of which was open to atmosphere. The compressor outlet was connected to an 

intercooler, the air from which then passed back into the compressor inlet. The purpose of this 

was to maintain a steady pressure through this sealed loop across a range of operating 

conditions. This compressor side gas path was connected to the turbine inlet to ensure the air 

pressure at both oil seals was as similar as possible. Given a similar design of oil seal this 

means both seals should have the same leakage characteristics and should begin to leak at the 

same pressure differential.  

This setup would not allow for control of the turbomachine speed independent of the turbine 

inlet pressure and there was no control over the turbine outlet pressure. Similarly, due to the 

closed-loop air circuit, the compressor inlet pressure was governed by the work input by the 

turbine. Control of the oil return pressure was possible by adjusting the flow rate through the 

vacuum pump.  

To observe the presence of air carry over into the oil, i.e. no oil carry over into the air, an 

observation window was installed in the oil return from the turbocharger. If air carry over into 

the oil occurs the oil should be aerated. Conversely, substantial oil carry over into the gas 

paths could be observed by examining the turbine outlet, and within the compressor outlet 

pipe.  

Steady gas pressures were measured using the same Delta Ohm steady pressure transducers 

as used in the engine tests and logged via a NI 9203 compact DAQ card. Steady gas and oil 

temperatures were measured using K-type thermocouples connected to a NI 9213 compact 

DAQ card. Turbocharger speed was measured using the same eddy current type Picoturn 

turbocharger speed sensor as used in engine testing. The output of these was logged using a 

bespoke NI Labview program.  
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The left image shows oil flow from the turbomachine where no gas is entering the oil system. 

This does not guarantee oil transfer to the gas path, however, it gives an indication that it 

might be occurring. The image on the right shows typical oil flow from the turbomachine when 

there is gas entering the oil system. Filaments of oil can be seen indicating that the flow of oil 

from the bearing housing is turbulent, and aeration can be observed at the base of the 

inspection glass indicating gas must be entering the oil circuit. The oil inlet pressure and 

temperature and turbomachine speed for both these conditions was constant; the only 

alteration was the oil return pressure.  

From the results in Table 6-3 a limit value of pressure differential across the seals of 0.2 bar 

was defined. This meant that the oil pressure in the turbomachine should never be greater 

than 0.8 bar absolute for an exhaust pressure of 1 bar absolute to inhibit oil transfer.  

The engine oil pump is specified to deliver oil throughout the engine at pressures dependent 

upon engine speed. The crankcase pressure, which would be the oil return pressure, is 

controlled by the engine breather system to a value close to 1 bar absolute. As engine speed 

rises the oil pressure rises in unison, whilst the crankcase pressure remains constant. To utilise 

the solution identified a larger depressurisation would be required at higher engine speeds.  

The solution identified was to design and fabricate a bespoke oil conditioning and supply rig 

for the Turbo-Discharging turbomachine. This will be described in more detail in section 6.6. 

Alternative solutions 

An alternative solution to depressurising the oil return system would be to increase the 

effectiveness of the shaft seals. This may be possible with the introduction of face seals. 

Face seals work by applying a force over a comparatively large surface area between the shaft 

and the seal. A conventional piston ring seal will never seal completely due to the gap required 

in the ring that allows it to expand and contract. In comparison the face seal maintains a 

positive contact over the entire sealing face, eliminating any potential leak path (Simon et al 

2010). These are in series production on the BMW triple turbocharger system due to the fact 

one of the high pressure stages remains stationary for prolonged periods of engine operation 

whilst supplied with high engine oil pressure.  

However, there are two major downsides of face seal utilisation in turbomachine applications. 

The first is they result in an increase in shaft friction compared to a piston ring type seal. This is 
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efficacy calculation. Typically it is difficult to measure in

measurements tend to be intrusive and may adve

mass of a thermocouple (for example) that will endure cylinder conditions is too high for it to 

react fast enough to the changing cylinder conditions. 

The thermodynamic model was then re

and a minimum theoretical compressor inlet pressure generated. The efficacy was then 

calculated from this and the measured or modelled compressor inlet pressure. 
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To achieve an instantaneous blowdown pulse the HP valve and manifold must have as little 

pressure drop as possible and the turbine should be large such that it offers as little back 

pressure on the engine as possible (i.e. it restricts the flow as little as possible). There is 

obviously a trade off with turbine size as well as packaging restrictions limiting the manifold 

geometry, material mechanical and thermal limits and valvetrain design governing the flow 

capacity of poppet valves.  

 

7.4.2 Valve Timing 

The primary performance gain from a Turbo-Discharging system is dependent on the energy 

content of the exhaust gas and how effective the system is at transferring that energy back to 

the crankshaft. It is possible to trade off exhaust gas energy with crankshaft work by altering 

the exhaust valve timing. There are limits on how far the exhaust valve timing can be varied 

which will be described below, but with a Turbo-Discharging system it is also important to 

individually consider the variability of the HP and LP exhaust valve events.  

Conventional Valve Event Constraints 

The ideal EVO occurs when the maximum amount of expansion work has been extracted from 

the gas in the cylinder. This is limited by the geometry of the engine where peak cylinder 

volume occurs at BDC. However, it may be possible or desirable for EVO to occur before BDC. 

This may be beneficial when the cylinder contains more mass as it gives more time for this 

mass to exit the cylinder. Also, as the piston approaches BDC it slows, and for a given crank 

angle period the piston does less expansion work. Thus EVO can occur before BDC without 

significant effect on the energy extracted by the crankshaft. 

This is beneficial when utilising an exhaust gas energy extraction system such as turbocharging 

or Turbo-Discharging. The reason for this is even though the gas in the cylinder is not 

undergoing much expansion it is still transferring thermal energy to the cylinder walls, 

effectively losing energy that would otherwise be available to the turbine.   

If the exhaust valve is opened before the exhaust gas is fully expanded the deficit in crankshaft 

work may be compensated by the increased performance of the turbocharging or Turbo-

Discharging system. There is a trade-off between higher energy exhaust gas and increased 

expansion work in the cylinder which will be investigated in this chapter for Turbo-Discharging.  
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Discharging system. There is a trade-off between higher energy exhaust gas and increased 

expansion work in the cylinder which will be investigated in this chapter for Turbo-Discharging.  

The other main consideration of valve timing in a regular engine is the overlap between 

exhaust and intake valves for cylinder scavenging. The overlap period is included to flow intake 

air through the cylinder and reduce RGF, as well as increasing the length of the intake event to 

maximise the quantity of charge trapped in the cylinder. There is a limit on how early the 

intake valves can be opened; if the intake valves open too early the cylinder and exhaust 

pressure may be too high such that exhaust gases flow from the cylinder into the intake 

manifold. The flow of hot residual gases into the intake manifold is undesirable as it will 

increase the charge air temperature which can induce knock.  

For Turbo-Discharging air flowing through the cylinder is undesirable as it will increase the 

mass flow through the compressor without increasing the energy available to the turbine, 

reducing the depressurisation generated and limiting the pumping work benefit of the system. 

The baseline chosen was for the exhaust event to end at TDC which with the standard intake 

cam means there is less than 10° CA of valve overlap.  

Turbo-Discharging Specific Valve Event Constraints 

One feature required by Turbo-Discharging is the individual operation of the two exhaust 

valves. However, for this modelling study it is assumed the HP and LP valves can be phased 

and the duration and lift varied individually. This would represent a system such as the Mahle 

Cam-in-Cam (Taylor et al 2011) or Borg Warner (Roth et al 2010) systems combined with a 

variable lift mechanism such as that of BMW Valvetronic (Luttermann et al 2006).  

 

7.4.3 LP Valve Event 

As described previously, the LP valve closing time is effectively fixed if maximum exhaust 

depressurisation is desired. Thus varying the LP valve opening will vary the duration and lift of 

the valve.  

Varying the LP valve duration at 3000 rpm and 6 bar BMEP leads to more mass bypassing the 

turbine as shown in Figure 7-17. Should the engine be operating at a point where there is no 

blowdown or the blowdown pressure equalises before the LP valve event, the same is still true 
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The HP valve opening helps to govern the mass flow split betwe

Turbo

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

Furthermore

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 

The HP valve opening helps to govern the mass flow split betwe

Turbo

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

Furthermore

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 
 

Figure 

The HP valve opening helps to govern the mass flow split betwe

Turbo-Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

Furthermore

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 
 

Figure 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

Furthermore

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 
 

Figure 7

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

Furthermore a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 
 

7-29

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in

 
 Turbo

29 – Simulated e

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

impart work on it and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

lead to reduced in-cylinder expansion and therefore reduced engine fuel 

 
Turbo

Simulated e

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Turbo-

Simulated e

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
-Discharging

Simulated effect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

there is less benefit of Turbo-

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Discharging

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

-Discharging. 

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Discharging

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

Discharging. 

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Discharging

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

Discharging. 

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Discharging a Naturally

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

Discharging. 

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
a Naturally

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work

possible. Compounding this is the lack of turbine e

Discharging.  

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
a Naturally

154

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

beneficial to maximise the expansion work in the cylinder and open the HP valve as late as 

possible. Compounding this is the lack of turbine e

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in th

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
a Naturally

154 

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

possible. Compounding this is the lack of turbine e

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

It is worth noting that, although not shown in these plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

  
a Naturally Aspirated Internal Combustion Engine

 

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

possible. Compounding this is the lack of turbine energy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

turbine before the LP valve opens. Advancing the HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split betwe

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

ffect of HP valve opening on PMEP and bsfc at 

The HP valve opening helps to govern the mass flow split between the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

ffect of HP valve opening on PMEP and bsfc at 4000 rpm, 11

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

4000 rpm, 11

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

At this engine speed and load point, however, much more energy is available to the turbine. 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel 

 
Aspirated Internal Combustion Engine

4000 rpm, 11

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

available to the turbine. 

This leads to a larger depressurisation and therefore a larger benefit of

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold. 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

cylinder expansion and therefore reduced engine fuel conversion 

 
Aspirated Internal Combustion Engine

4000 rpm, 11

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

available to the turbine. 

This leads to a larger depressurisation and therefore a larger benefit of Turbo

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

and less bypassing it through the LP valve and manifold.  

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

conversion 

 
Aspirated Internal Combustion Engine

4000 rpm, 11 bar BMEP

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

available to the turbine. 

Turbo

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the tur

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

conversion 

 
Aspirated Internal Combustion Engine

bar BMEP

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads

available to the turbine. 

Turbo-Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

between the HP and LP valve events leading to more gas passing through the turbine that can 

ese plots, there will still be a trade

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

conversion 

 Chapter 
Aspirated Internal Combustion Engine

bar BMEP

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

nergy at lower speeds and loads such that 

available to the turbine. 

Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

bine that can 

-off with in

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

conversion efficiency. 

Chapter 
Aspirated Internal Combustion Engine

bar BMEP 

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

such that 

available to the turbine. 

Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

bine that can 

off with in

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

efficiency. 

Chapter 
Aspirated Internal Combustion Engine

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

such that 

available to the turbine. 

Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

bine that can 

off with in

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

efficiency. 

Chapter 7
Aspirated Internal Combustion Engine 

 

 

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

such that 

available to the turbine. 

Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

bine that can 

off with in-

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

efficiency. 

 
 

 

en the HP and LP sides of the 

Discharging system. At lower speeds and loads it may be possible to evacuate all of the 

exhaust gas which will impart work on the turbine in a shorter period, in which case it is 

in the cylinder and open the HP valve as late as 

such that 

available to the turbine. 

Discharging. 

a longer period may be required to evacuate gas through the HP valve to the 

HP valve opening decreases the overlap 

bine that can 

cylinder expansion and turbine work. Advancing the HP valve opening beyond that shown may 

efficiency.  



 

 

Figure 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

minimum

to decrease. 

Figure 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the e

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 

 

Figure 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

minimum

to decrease. 

Figure 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the e

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
 

Figure 7

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

minimum

to decrease. 

Figure 7-

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the e

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
 

7-30

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

minimum there is little effect until a relative duration of 0.85 where the tu

to decrease. 

-30 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the e

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
 

30 shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

to decrease.  

 – Simulated e

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the e

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
 

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

 

Simulated e

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

delaying the exhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
 Turbo

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

Simulated e

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
Turbo

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

Simulated effect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
Turbo-

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

fixed point in the cycle. Adjusting the duration in this manner therefore has a similar effect to 

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
-Discharging

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
Discharging

shows the effect of 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ram

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
Discharging

shows the effect of HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

point of peak lift, and the ramp to it,

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

xhaust valve opening. 

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 where

 
Discharging

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

p to it,

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

xhaust valve opening.  

This is also observed in the PMEP and bsfc shown in 

both around a duration of 0.85 whereupon

 
Discharging a Naturally

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

p to it, 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in 

upon

 
a Naturally

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

 later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in 

upon turbine power starts to decrease. 

 
a Naturally

155

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe
BMEP

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in 

turbine power starts to decrease. 

 
a Naturally

155 

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe
BMEP 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in 

turbine power starts to decrease. 

  
a Naturally Aspirated Internal Combustion Engine

 

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe
 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine powe

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

This is also observed in the PMEP and bsfc shown in Figure 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

ffect of HP valve duration on turbine power and depressuri

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

Figure 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

r and depressuri

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

later in the cycle. The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

Figure 7

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

r and depressuri

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

7-31

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

r and depressuri

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

31. There is a clear optimum in 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

r and depressuri

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the tu

r and depressurisation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

there is little effect until a relative duration of 0.85 where the turbine power starts 

sation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

turbine power starts to decrease. 

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increa

rbine power starts 

sation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

turbine power starts to decrease.  

 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

and system depressurisation at 4000 rpm, 11 bar BMEP. As the duration increases fro

rbine power starts 

sation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

 Chapter 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

ses fro

rbine power starts 

sation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

Chapter 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

ses from the 

rbine power starts 

sation at 4000 rpm, 11

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

Chapter 
Aspirated Internal Combustion Engine

HP valve duration for a fixed valve opening on turbine power 

m the 

rbine power starts 

sation at 4000 rpm, 11 bar 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

blowdown gases from leaving the cylinder reducing the energy available to the turbine at a 

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

Chapter 7
Aspirated Internal Combustion Engine 

 
HP valve duration for a fixed valve opening on turbine power 

m the 

rbine power starts 

 

bar 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

at a 

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 

 
 

HP valve duration for a fixed valve opening on turbine power 

m the 

rbine power starts 

 

The reason for this is the manner in which the valve events have been scaled. The entire 

profile has been stretched from the point of valve opening. This has the effect of shifting the 

The slower ramp rate delays the 

at a 

. Adjusting the duration in this manner therefore has a similar effect to 

. There is a clear optimum in 



 

 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 
 

Figure 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 
 

Figure 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 
 

Figure 7

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 
 

7-31 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo

depressurisation 

and turbine power to maximise the depressurisation achieved.  

 
 Turbo

 – Simulated e

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

that of the Turbo-Discharging system whereas for throttled part

depressurisation it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Turbo

Simulated e

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Turbo-

Simulated e

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
-Discharging

Simulated effect of HP Valv

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Discharging

ffect of HP Valv

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Discharging

ffect of HP Valv

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Discharging

ffect of HP Valv

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Discharging a Naturally

ffect of HP Valv

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
a Naturally

ffect of HP Valve duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
a Naturally

156

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
a Naturally

156 

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

  
a Naturally Aspirated Internal Combustion Engine

 

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.  

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part

it is important to balance manageable levels of 

and turbine power to maximise the depressurisation achieved.   

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

Discharging system whereas for throttled part-

it is important to balance manageable levels of RGF

 

 
Aspirated Internal Combustion Engine

e duration on PMEP and bsfc at 4000 rpm, 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

-load conditions with less 

RGF to d

 

 
Aspirated Internal Combustion Engine

000 rpm, 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

to de

 

 
Aspirated Internal Combustion Engine

000 rpm, 11

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

e-throttle the engine 

 

 
Aspirated Internal Combustion Engine

11 bar BMEP

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

 
Aspirated Internal Combustion Engine

bar BMEP

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

 Chapter 
Aspirated Internal Combustion Engine

bar BMEP

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

Chapter 
Aspirated Internal Combustion Engine

bar BMEP 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

Chapter 
Aspirated Internal Combustion Engine

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

Chapter 7
Aspirated Internal Combustion Engine 

 

 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

 

 
 

 

It is also worth noting that at 4000 rpm, 11 bar BMEP the largest effect on PMEP and bsfc is 

load conditions with less 

throttle the engine 

  



 

 

7.5

The fuel economy of both the NA and Turbo

calculated

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

Figure 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

There are four main areas on this plot 

 

 

 7.5

The fuel economy of both the NA and Turbo

calculated

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

Figure 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Figure 

There are four main areas on this plot 

1.

2.

3.

4.

 

 
 

 Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

calculated

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

Figure 7

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Figure 

There are four main areas on this plot 

1. 

2. 

3. 

4. 

 

 
 

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

calculated 

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

7-32

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Figure 7

There are four main areas on this plot 

 The low speed, low load region of fuel economy benefit

 The medium 

 The high speed, high load region of fuel economy benefit

 The high speed, low load region of fuel economy detriment

 

 
 

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

 fuel flow 

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

32 is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

7-32 

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

The medium 

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
 

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

fuel flow 

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

 - Contour plot of 

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

The medium 

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
 Turbo

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

fuel flow 

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Contour plot of 

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

The medium 

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
Turbo

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

fuel flow values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

Discharging manifest themselves 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Contour plot of 

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

The medium speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
Turbo-

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

themselves 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observ

limited to around 10% at high engine speed. 

Contour plot of 
percentage change in bsfc compared to

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
-Discharging

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such

themselves 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

benefit of 8% can be observed at low engine speed and load

limited to around 10% at high engine speed. 

Contour plot of measured 
percentage change in bsfc compared to

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
Discharging

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

was stoichiometric. As such 

themselves 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed. 

measured 
percentage change in bsfc compared to

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 

 
Discharging

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

 the combined primary and secondary benefits of Turbo

themselves in the re

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed. 

measured 
percentage change in bsfc compared to

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

  

 
Discharging

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

in the re

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed. 

measured Turbo
percentage change in bsfc compared to

There are four main areas on this plot 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
Discharging a Naturally

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

in the re

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed. 

Turbo
percentage change in bsfc compared to

There are four main areas on this plot that 

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
a Naturally

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

in the results.

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed. 

Turbo-Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to

that will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
a Naturally

157

Observed Fuel Economy Benefit

The fuel economy of both the NA and Turbo-Discharged engines was measured using the 

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

sults. 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

limited to around 10% at high engine speed.  

Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
a Naturally

157 

Observed Fuel Economy Benefit

Discharged engines was measured using the 

values described in chapter 4

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

 

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

  
a Naturally Aspirated Internal Combustion Engine

 

Observed Fuel Economy Benefit

Discharged engines was measured using the 

values described in chapter 4. For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
Aspirated Internal Combustion Engine

Observed Fuel Economy Benefit 

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load

Discharged engine speed vs engine load with contours of
percentage change in bsfc compared to the baseline

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

is a contour plot of the percentage fuel economy 

Discharging engine test data over the baseline engine test data. It c

ed at low engine speed and load whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of
the baseline

will be discussed individually

The low speed, low load region of fuel economy benefit

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit

The high speed, low load region of fuel economy detriment

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

is a contour plot of the percentage fuel economy change

Discharging engine test data over the baseline engine test data. It c

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of
the baseline

will be discussed individually

The low speed, low load region of fuel economy benefit; 

speed, high load fuel economy deficit region

The high speed, high load region of fuel economy benefit;

The high speed, low load region of fuel economy detriment

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

change

Discharging engine test data over the baseline engine test data. It can be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of
the baseline

will be discussed individually

 

speed, high load fuel economy deficit region; 

; 

The high speed, low load region of fuel economy detriment. 

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

change of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of
the baseline 

will be discussed individually

 

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of

will be discussed individually: 

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of

 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the throttle position and spark advance were fixed, and the fuelling altered until the mixture 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of

 Chapter 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the mixture 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

 

Discharged engine speed vs engine load with contours of

Chapter 
Aspirated Internal Combustion Engine

Discharged engines was measured using the 

For each measurement point not at WOT, 

the mixture 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

 

Discharged engine speed vs engine load with contours of

Chapter 
Aspirated Internal Combustion Engine

Discharged engines was measured using the ECU 

For each measurement point not at WOT, 

the mixture 

the combined primary and secondary benefits of Turbo

of the measured Turbo

an be seen that a maximum 

whilst the maximum detriment is 

Discharged engine speed vs engine load with contours of 

Chapter 7
Aspirated Internal Combustion Engine 

 

ECU 

For each measurement point not at WOT, 

the mixture 

the combined primary and secondary benefits of Turbo-

of the measured Turbo-

an be seen that a maximum 

whilst the maximum detriment is 

 
 

ECU 

For each measurement point not at WOT, 

the mixture 

an be seen that a maximum 

whilst the maximum detriment is 



 

 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Turbo

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Figure 

speed there is a detriment to pumping work of 0.2%. 

The Turbo

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

With the

and exhaust events so burned gases will not flow back into the cylinder.

 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Turbo

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Figure 

speed there is a detriment to pumping work of 0.2%. 

The Turbo

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

With the

and exhaust events so burned gases will not flow back into the cylinder.

 
 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Turbo-Discharging. 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Figure 7

speed there is a detriment to pumping work of 0.2%. 

The Turbo

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

With the

and exhaust events so burned gases will not flow back into the cylinder.

 
 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Discharging. 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

7-16

speed there is a detriment to pumping work of 0.2%. 

The Turbo-

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

With the Turbo

and exhaust events so burned gases will not flow back into the cylinder.

 
 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Discharging. 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

16 which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

-Discharging system actively avoids valve overlap as any valve overlap when there is 

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Turbo

and exhaust events so burned gases will not flow back into the cylinder.

 
 

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Discharging. 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Turbo-Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
 Turbo

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Discharging. Figure 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

Figure 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Turbo

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Figure 

by a steady pressure tr

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

a depressurisation would

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

Figure 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Turbo-

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Figure 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

a depressurisation would 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

Figure 7

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
-Discharging

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

Figure 7-13

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

 draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

7-33

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Discharging

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

13 shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

33 - Turbo

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Discharging

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

Turbo

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Discharging

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in 

Turbo-Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
Discharging a Naturally

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low l

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging valve timings are shown in Figure 

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing

and exhaust events so burned gases will not flow back into the cylinder.

 
a Naturally

1. Low speed, low load region of fuel economy benefit

The fuel economy improvement at low load cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Figure 

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

Discharging valve timing as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
a Naturally

158

1. Low speed, low load region of fuel economy benefit

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Figure 7

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
a Naturally

158 

1. Low speed, low load region of fuel economy benefit

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

7-33

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

  
a Naturally Aspirated Internal Combustion Engine

 

1. Low speed, low load region of fuel economy benefit

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%. 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

33.  

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

1. Low speed, low load region of fuel economy benefit 

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

speed there is a detriment to pumping work of 0.2%.  

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

 

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

 

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overl

and exhaust events so burned gases will not flow back into the cylinder.

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

as described there is no overlap between the intake 

and exhaust events so burned gases will not flow back into the cylinder. 

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

which plots the predicted pumping work benefit of Turbo-Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

Discharging and standard valve timing and lifts 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

 Chapter 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

Chapter 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

Chapter 
Aspirated Internal Combustion Engine

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

Chapter 7
Aspirated Internal Combustion Engine 

 

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

depressurisation and thus the pumping work benefit of the system. The standard and Turbo-

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 

 
 

oad cannot be attributable to the primary benefit of 

shows the depressurisation measured at the compressor inlet 

ansducer. There is no depressurisation in the low speed low load region 

of the engine map as shown; as such there can be no benefit from it. This is also shown in 

Discharging; at low 

Discharging system actively avoids valve overlap as any valve overlap when there is 

draw fresh charge through the cylinder limiting the possible level of 

At low speed and low load the baseline engine intake manifold pressure at IVO may be lower 

than that in the cylinder and the exhaust manifold which, given adequate overlap, would draw 

burned gases back from the manifold into the cylinder and possibly into the intake manifold. 

ap between the intake 



 

 

If 

fraction burned curves

Turbo

Dis

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in 

 

 

 this is the case

fraction burned curves

Turbo

Discharged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in 

Figure 

 

 
 

this is the case

fraction burned curves

Turbo-Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in 

Figure 

 

 
 

this is the case

fraction burned curves

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in 

Figure 7-34

 

 
 

this is the case

fraction burned curves

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in 

34 - Mass fraction burned curves for the baseline and Turbo

 

 
 

this is the case

fraction burned curves

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

load benefit in Figure 

Mass fraction burned curves for the baseline and Turbo

 

 
 Turbo

this is the case the extra RGF would cause a longer burn duration. 

fraction burned curves

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

Figure 

Mass fraction burned curves for the baseline and Turbo

 

 
Turbo

the extra RGF would cause a longer burn duration. 

fraction burned curves

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

Figure 7

Mass fraction burned curves for the baseline and Turbo

 

 
Turbo-

the extra RGF would cause a longer burn duration. 

fraction burned curves calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

7-32

Mass fraction burned curves for the baseline and Turbo

 

 
-Discharging

the extra RGF would cause a longer burn duration. 

calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

32.  

Mass fraction burned curves for the baseline and Turbo

 

 
Discharging

the extra RGF would cause a longer burn duration. 

calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same eng

Mass fraction burned curves for the baseline and Turbo

 

 
Discharging

the extra RGF would cause a longer burn duration. 

calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

means to achieve the same engine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

  

 
Discharging

the extra RGF would cause a longer burn duration. 

calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter t

shorter burn duration will give a higher 

expansion whilst the piston is moving 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

 
Discharging a Naturally

the extra RGF would cause a longer burn duration. 

calculated from 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

charged case is 3 degrees shorter than that of the baseline engine

shorter burn duration will give a higher and earlier 

expansion whilst the piston is moving towards BDC 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

 
a Naturally

the extra RGF would cause a longer burn duration. 

calculated from 200 cycles of 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

and earlier 

towards BDC 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

 
a Naturally

159

the extra RGF would cause a longer burn duration. 

200 cycles of 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

and earlier 

towards BDC 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo
BMEP

 
a Naturally

159 

the extra RGF would cause a longer burn duration. 

200 cycles of 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

and earlier 

towards BDC 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo
BMEP 

  
a Naturally Aspirated Internal Combustion Engine

 

the extra RGF would cause a longer burn duration. 

200 cycles of 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

and earlier peak cylinder p

towards BDC and thus more 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo
 

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. 

200 cycles of 

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

peak cylinder p

and thus more 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. 

200 cycles of measured data

Discharged engines at 2000 rpm, 6 bar BMEP. The 10

han that of the baseline engine

peak cylinder p

and thus more 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. 

measured data

Discharged engines at 2000 rpm, 6 bar BMEP. The 10-90% burn duration for the Turbo

han that of the baseline engine

peak cylinder p

and thus more 

ine load less fuel is consumed, resulting in the low speed and 

Mass fraction burned curves for the baseline and Turbo-Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. 

measured data

90% burn duration for the Turbo

han that of the baseline engine

peak cylinder p

and thus more 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. 

measured data

90% burn duration for the Turbo

han that of the baseline engine

peak cylinder pressure 

and thus more work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

the extra RGF would cause a longer burn duration. Figure 

measured data

90% burn duration for the Turbo

han that of the baseline engine which is clearly visible. A 

ressure 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

Figure 

measured data for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

ressure 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

Figure 

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

ressure giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

Figure 7-34

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
Aspirated Internal Combustion Engine

34 shows mass 

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 Chapter 
Aspirated Internal Combustion Engine

shows mass 

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

 

Discharged engines at 2000 rpm, 6 bar 

Chapter 
Aspirated Internal Combustion Engine

shows mass 

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

Chapter 
Aspirated Internal Combustion Engine

shows mass 

for the baseline and 

90% burn duration for the Turbo

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

Chapter 7
Aspirated Internal Combustion Engine 

 
shows mass 

for the baseline and 

90% burn duration for the Turbo-

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 

Discharged engines at 2000 rpm, 6 bar 

 
 

shows mass 

for the baseline and 

which is clearly visible. A 

giving more time for 

work can be extracted. This 

ine load less fuel is consumed, resulting in the low speed and 



  Chapter 7
 Turbo-Discharging a Naturally Aspirated Internal Combustion Engine 

 

160 

 

2. The medium speed, high load fuel economy deficit region 

Near peak load between 2500 and 3750 rpm there is a region of fuel economy detriment, i.e. 

the Turbo-Discharged engine is consuming more fuel than the baseline engine to produce the 

same torque.  

Under these conditions it was noted that the Turbo-Discharged engine was knock limited in 

that the ignition timing compared to the standard engine had to be retarded to avoid knock. 

This is likely due to the more restrictive exhaust manifold used in the prototype Turbo-

Discharging system and a lack of significant depressurisation to overcome this restriction. In 

this condition on the standard engine the valve overlap between the intake and exhaust valves 

would help to drive fresh charge into the cylinder and help to reduce RGF. The Turbo-

Discharging system with no valve overlap does not have this mechanism of reducing RGF 

which may cause it to be higher than the baseline engine in this region. For example, at 3000 

rpm full load the BSAC of the baseline engine was 4.032 kg kW-1 hr-1 as opposed to 3.647 kW-1 

hr-1 for the Turbo-Discharged engine. Further work should be done to optimise valve timing in 

this region as it has been shown that maximising engine efficiency for different speeds and 

loads can require significantly different valve events.  

 

3. The high speed, high load region of fuel economy benefit 

Between 3750 and 4750 rpm and between 70 Nm and peak load there is an area of fuel 

economy benefit with a maximum fuel economy benefit of 4%. In this region the exhaust gas 

contains the largest amount of energy which is available to the turbine. This allows more 

energy to be extracted and a larger depressurisation to be created.   

It is important to note that as the engine speed increases there is less time for knock to occur 

and as such the engine becomes less knock-limited. This means the engine can run at the same 

ignition timing as the base engine. 

To ascertain if this benefit was entirely due to the pumping work benefit of Turbo-Discharging 

the level of depressurisation was converted into a predicted proportional primary benefit of 

Turbo-Discharging by dividing the depressurisation by the engine BMEP. This gave a maximum 

theoretical primary benefit of Turbo-Discharging as shown in Figure 7-16. In fact, at low engine 

speed and load there is a predicted detriment of Turbo-Discharging, where the exhaust system 
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The peak pumping work benefit in the medium to high speed, high load regio

is only in the region of 2%. The extra benefit observed in this region could be due to 

improvements in engine breathing on the intake side from inc

to the depressurised cylinder at the start of the 
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shows the mass fraction burned curves for both engine configurations operating at 

4000 rpm, peak load. It can be seen again that combustion in the Turbo
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will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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improvements in engine breathing on the intake side from inc

to the depressurised cylinder at the start of the 
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allowing the combustion duration to be shorter. 
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will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 

Discharged and baseline cases at 4000 rpm, peak load
based on experimental data

 
Aspirated Internal Combustion Engine

pressure is higher due to the restriction of the manifold, turbine, heat exchanger and 

The peak pumping work benefit in the medium to high speed, high load regio
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90% burn duration 3°CA shorter than th
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90% burn duration 3°CA shorter than th

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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reased charge momentum due 

 reduced residual gas fraction 
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90% burn duration 3°CA shorter than th

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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The peak pumping work benefit in the medium to high speed, high load regio
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reduced residual gas fraction 

shows the mass fraction burned curves for both engine configurations operating at 

4000 rpm, peak load. It can be seen again that combustion in the Turbo

90% burn duration 3°CA shorter than the baseline case. This again 

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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reduced residual gas fraction 
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e baseline case. This again 

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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is only in the region of 2%. The extra benefit observed in this region could be due to 
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shows the mass fraction burned curves for both engine configurations operating at 

4000 rpm, peak load. It can be seen again that combustion in the Turbo-Disc

e baseline case. This again 

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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Disc

e baseline case. This again 

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 

Discharged and baseline cases at 4000 rpm, peak load

 
Aspirated Internal Combustion Engine

pressure is higher due to the restriction of the manifold, turbine, heat exchanger and 

The peak pumping work benefit in the medium to high speed, high load region from 

is only in the region of 2%. The extra benefit observed in this region could be due to 

reased charge momentum due 

reduced residual gas fraction 

shows the mass fraction burned curves for both engine configurations operating at 

Discharged case is 

e baseline case. This again 

will offer a torque improvement, thus to reach the same load requires less fuel to be burned. 
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4. The high speed, low load region of fuel economy detriment

At high speed, and especially low load, a fuel economy detriment c
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due to limits in engine brea

valve flow limitations. 

The split manifold design restricts the flow into the exhaust system, with a 4% reduction in 

flow area due to the divider design. The flow through the cylinder head i

liable to cause larger pressure losses due to the arduous gas path compared to the standard 

manifold. Moreover, due to the offset nature of the high and low pressure events there is a 

substant

highlights these areas in grey. 

This, combined with the reduced lift and duration of the valve events, amounts to an exhaust 

event with only 54.8% of the total flow area over the entire

valve event. It is therefore reasonable to expect a reduction in flow capacity at high engine 

speeds. It would be possible to improve this by increasing the diameter of the valves and 

redesigning the gas p
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The split manifold design restricts the flow into the exhaust system, with a 4% reduction in 

flow area due to the divider design. The flow through the cylinder head i

liable to cause larger pressure losses due to the arduous gas path compared to the standard 

manifold. Moreover, due to the offset nature of the high and low pressure events there is a 
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This, combined with the reduced lift and duration of the valve events, amounts to an exhaust 

event with only 54.8% of the total flow area over the entire

valve event. It is therefore reasonable to expect a reduction in flow capacity at high engine 

speeds. It would be possible to improve this by increasing the diameter of the valves and 

redesigning the gas p
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Knock intensity has been shown to be dependent on RGF. Westin (2000) showed that for a 

2.1% reduction in RGF the spark could be advanced by 6°CA for a given knock intensity.  They 

stated two reasons why the reduction in RGF allowed for spark advance; the change in 

chemical composition of the cylinder contents and the high temperatures of the residual 

gases. Of these, the increase of in-cylinder temperature was defined as having the biggest 

effect on the propensity to knock. When considering two RGF cases (5.1 and 7.2%) they 

calculated a 30 K difference in the temperature at intake valve closing. Even with such a small 

difference in quantity of RGF, its high average temperature in these operating conditions of 

1400 K leads to a significant difference in temperature at the start of compression which will 

then affect peak cylinder temperature, upon which knock is dependant.  

It is common in gasoline engines operating in a throttled condition for burned gases remaining 

in the cylinder at IVO to exit into the intake manifold before being pulled back into the cylinder 

by the vacuum created by the piston. If the cylinder is left in a depressurised state there will 

be less of a pressure difference between the cylinder and the intake manifold such that flow 

out of the cylinder into the intake manifold is reduced. This will have a positive effect on the 

scavenging and charging of the cylinder, manifesting as an increase in volumetric efficiency as 

the piston does less work to draw the charge into the cylinder and as a reduction in RGF.  

Reduced hot RGF will also result more usable cylinder volume for intake charge or cooled EGR. 

If RGF can be replaced with cooled EGR the knock margin could be increased further.  

It is hypothesised that through depressurisation during the exhaust stroke RGF can be reduced 

which has been shown in the thermodynamic model used in chapter 3. This was investigated 

practically and is discussed in section 8.3.  

The other most significant secondary benefit of cylinder depressurisation, and therefore 

Turbo-Discharging, will now be discussed before both are investigated on the engine and using 

1-D modelling.  
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This supercharging effect of the depressurisation created on charge admission will be 

investigated using a modified version of the NA baseline engine model and the compromise 

between engine torque and fuel economy will be investigated.  

The third concern of unburned air in aftertreatment systems is one that is commonly 

experienced in modern pressure charged gasoline engines where scavenging strategies are 

employed. This involves passing the pressurised air through the cylinder to aid removal of 

residual burned gases in a valve overlap period. The limitation on this currently arises from 

emissions legislation where there is a limit on the quantity of unburned air in the exhaust as 

this effectively dilutes the exhaust gas and improves measured engine emissions.  

Furthermore excess oxygen (lean spikes) in the exhaust gas may inhibit operation of three way 

catalytic converters, reducing their conversion efficiencies and increasing exhaust emissions.  

One method to avoid this would be to employ the same strategy as above for optimising fuel 

economy or performance through selectable engine operating modes. Scavenging with large 

amounts of intake air could be minimised during part load operation where fuel economy and 

emissions are of interest and it could be increased for high load operation where these are less 

important.  

Both secondary effects will now be investigated experimentally and theoretically using a 

modified 1-D engine model. 

  



 

 

8.3

To investigate the effect of RGF on knock margin and charge admission it was decided to 

modify the engine test rig to separate some of the effects of the Turbo

This was achieved by removing the Tu

attaching a centrifugal blower to the engine exhaust to create a depressurisation. This 

simulates a Turbo

depressurisation back into the cyl

The blower used was a Ron Tai Electrical Engineering company RT

which could create a depressurisation of up to 0.3 bar depending on

The exhaust gas first passed through the exhaust gas heat exchanger rig described in section 

6.3.2

depressurisation created by the blower was measured using Delta Ohm HD9408T steady 

pressure transducers. 

The operational range of this test setup was limited by two factors:

Both these reasons led to a maximum achievable engine speed of 2500 rpm. 

Since the blower only operated at a fixed speed the level of depressurisation 

have been

installed in the exhaust upstream of the blower. This valve was adjusted to 

manifold 

blower was swi
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The engine was controlled using the ATI Vision software. Not only did this allow for control of 

throttle angle and ignition timing as before, but it allowed for interrogation of the engine 

knock sensor. As well as displaying the signal from the knock sensor it displayed a logical 

variable denoting when the ECU identified a cylinder as knocking. This was used to define the 

onset of knock.  

As mentioned previously the knock margin was analysed for a range of exhaust manifold 

pressure conditions (0.75-1.15 bar) over a range of engine speeds and loads. The 

dynamometer controller was set to a speed and load whereupon the throttle angle, ignition 

timing and injection timing were fixed using the ATI software. From this point the ignition 

timing was advanced until the onset of knock. The advanced ignition gave rise to increased 

engine torque and the peak torque reached before the onset of knock was recorded. Fuelling 

was controlled in closed loop by the engine ECU, varying in lambda by a maximum of 3%. 

It should be noted that the standard engine valve events overlap by 20°CA. Under certain 

conditions this overlap will allow for fresh charge to be pulled through the cylinder, further 

decreasing RGF. Moreover, this may increase charge momentum beyond that achievable with 

Turbo-Discharging. As such this experiment can be considered an optimistic view of what may 

be achievable with a Turbo-Discharging system.  

The RGF was measured using a Cambustion NDIR500 (Cambustion 2014). This is a fast Non-

Dispersive Infra-Red (NDIR) gas analyser which uses a spark plug with an orifice to allow a 

sample of the cylinder gases to be extracted by the analyser. The analyser measures the CO 

and CO2 of the sample gases, CO2 directly reflecting the quantity of burned gases in the 

cylinder. The volume of the sample line and the analyser are minimised to ensure a fast 

reaction time, as low as 8 ms to measure from 10-90% range. Measuring the minimum and 

maximum CO2 over the cycle then allowed calculation of the RGF.  
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9.2.3 Turbomachine matching conclusions 

There is insufficient energy in the exhaust gas at 2000 rpm, 2 bar BMEP for a Turbo-

Discharging system to be effective and the sizing of the turbomachines will have little effect on 

system and engine performance. Given the low mass flows of exhaust gas through the exhaust 

in this operating condition it is unlikely the Turbo-Discharging system will cause much 

restriction, but the performance will be compared to the NA engine in section 9.4.  

At 3000 rpm, 6 bar BMEP it has been shown that the Turbo-Discharging system can generate a 

useful depressurisation and as such the size of the turbomachines has a significant effect on 

the performance of the Turbo-Discharging system and in turn the efficiency of the engine. It is 

important to note that the turbine sizing affects the mass flow split between the HP and LP 

manifolds and the turbine size for maximum energy extraction may not be the same size for 

optimum engine system efficiency. Also the pressure during the initial part of the exhaust 

stroke needs to be considered as it has been found that too small a turbine can reduce 

expansion in the cylinder, reducing work recovered by the piston and negatively impacting 

engine fuel efficiency.  

The compressor sizing, however, is more straightforward. The optimum compressor diameter 

is that which allows the compressor to operate at the point of maximum efficiency and to 

generate the largest pressure ratio. This has little effect on the mass flow split between the HP 

and LP manifolds although the pressure ratio across the turbine is increased with decreasing 

depressurisation which allows the turbine to recover more energy.  

At 4000 rpm, peak load the turbine diameter which generates the lowest depressurisation 

again does not give the best engine fuel efficiency or generate the highest BMEP. The turbine 

matching must minimise PMEP whilst again considering the mass flow balance between the 

HP and LP manifolds and maximising in-cylinder work.  

Optimum Turbo-Discharging and engine system efficiencies are achieved with a compressor 

that is sized to best make use of the energy transferred to it from the turbine.  

For the operating conditions chosen, it was found that a reasonable optimum could be 

achieved with a turbomachine of one size. This may not be possible across the entire engine 

speed and load range, however, it does give a good indication that Turbo-Discharging system 

effectiveness could be optimised for the majority of engine operating conditions with a single 
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 Optimised 
Model 

Validated 
Model 

Compressor Diameter Multiplier  0.95 1.05 

Compressor Efficiency Multiplier  1 1 

Compressor Inlet Temperature K 300 430 

HP Valve Diameter mm 28 24.1 

HP Exhaust Manifold Diameter mm 22.2 25 

HP Valve Duration Multiplier  0.8 0.8 

HP Valve Lift Multiplier  0.689 0.689 

HP Valve Opening °CA 135 135 

Manifold Leakage Diameter mm 0 1 

LP Valve Diameter mm 28 24.1 

LP Valve Duration Multiplier  0.8 0.8 

LP Valve Lift Multiplier  0.689 0.689 

LP Valve Closing °CA 365 365 

Turbine Diameter Multiplier  1.2 1.05 

Turbine Efficiency Multiplier  1 1 
Table 9-1 - Values used in the optimised and validated Turbo-Discharging models 

 

Figure 9-21 shows the modelled WOT BMEP curves for the NA engine, validated Turbo-

Discharging and optimised Turbo-Discharging models. It can be seen that the performance of 

the validated Turbo-Discharging model is very similar to that of the NA engine. The optimised 

model achieves a higher BMEP across the entire engine speed range, increasing the achievable 

BMEP by 12% at 1000 rpm and 6% at 5000 rpm.  
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9.5

This chapter has discussed several variables and their effect on Turbo

system performance. 

variables discussed both f

affect Turbo

or performance. 

The first and possibly most significant variable which has not been discussed is

event. The assumption throughout this work was for the intake valve events to remain 

constant at the standard profiles of the experimental engine. As identified earlier in this thesis, 

it may be possible to positively affect charge motion

by increasing the valve overlap with the exhaust

achievable depressurisation which could detract from the PMEP benefit achievable during the 

exhaust stroke. However, it may

such that engine fuel efficiency is not affected. The investigation of this was not undertaken 

due to the experimental 

the ex

investigated in further work with a direct injection engine. 

A technology which may be beneficial to Turbo

turbine ge

the size has been shown for three load conditions. The sensitivity of

sizing

use of a VGT would allow for optimisation of energy extraction by the turbine for a fixed HP 

valve event, increasing the back pressure during the HP portion of the exhaust stroke to 

increase the pressure ratio across the turbine and extract more 

long duration LP event such that the cylinder can be successfully evacuated and pumping work 

minimised. 

Furthermore for a turbocharged engine with a wider operating range of mass flows and 

exhaust pressures and temperatures it 

extraction and to manage exhaust gas flow around the turbomachines. A VGT may be 

beneficial in these circumstances, as well as turbine wastegates or compressor bypass valves. 

These should be investigate
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One potential benefit of the exhaust arrangement of Turbo

systems is that of the ability to de

fast catalyst light

restrictive LP manifold and retain more heat than if they passed through the HP manifold

turbine reduces the temperature of the exhaust

turbin

enthalpy during cold start. The DEP system provided a pre

manifold to enable even faster catalyst light

something that could be considered in Turbo

difference between the two systems is the depres

should be taken in specifying the catalyst to ensure minimal pressure drop and

the

under low pressure

 

9.6

This chapter has identified how the calibrated and validated model and the experimental 

system could be modified to further improve the effectiveness of the Turbo
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the performance of Turbo-Discharging systems to be quantified. It has been shown 

that the validated Turbo-Discharging model can achieve efficacies of up to 60% at part 

load conditions of less than 4 bar brake mean effective pressure (BMEP) but is limited 

to less than 20% efficacy under full load conditions.  

7. Valve event timing has been identified as a significant factor affecting the primary 

benefit of Turbo-Discharging. The importance of optimising the high pressure valve 

opening to balance in-cylinder expansion work with exhaust gas energy content has 

been identified. For example, at full engine load and 4000 rpm, a reduction in PMEP of 

24% was achieved by varying the high pressure valve opening by 20° crank angle, 

corresponding to a 1.1% improvement in bsfc.  

8. Exhaust and intake valve overlap is particularly influential in the level of 

depressurisation achievable. For optimal exhaust system depressurisation, it is 

important to minimise valve overlap, however, charge motion and scavenging may 

benefit from valve overlap. It may be possible with adjustable cam timing and valve 

event duration systems to optimise for part load conditions, and then extend the valve 

event to allow valve overlap for more optimum high load conditions.  

9. It is important to optimise Turbo-Discharging turbomachine sizing for PMEP. 

Turbomachine sizes that generate the greatest depressurisation may do so at the 

expense of engine fuel efficiency due to its influence on reducing expansion of the gas 

in-cylinder whilst the piston is still travelling to BDC.   

10. Exhaust system depressurisation has been investigated on an experimental rig and a 

resulting benefit in knock margin has been identified. A reduction in RGF of 1.5-2% 

allows for up to a 2 Nm benefit with no ignition timing advance, and up to 5 Nm with 

advanced ignition timing.  
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should be the subject of further work. The transient effects of Turbo-Discharging on a 

turbocharger system should also be investigated.  

6. When discussing the secondary benefits of Turbo-Discharging, experimental work was 

undertaken on the engine to identify the effect of depressurisation on knock margin. 

The result of this work was promising; however, it was not possible to translate this 

into a calibrated 1-D knock model. Further work should therefore be conducted on the 

effect of depressurisation on knock margin across the engine speed and load range. 

7. A potential performance benefit of Turbo-Discharging was identified where it may be 

possible to use the depressurisation to generate a ram or supercharging effect through 

drawing fresh charge through the cylinder. This was not investigated due to the use of 

a port fuel injected engine and the consequential reduction in fuel efficiency. The use 

of a direct injection fuel system would allow this to be investigated.  
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