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ABSTRACT

We study stochastic heat equations of the forms [∂tu−Lu]dtdx = λ
∫
R σ(u, h)Ñ(dt, dx, dh),

and [∂tu − Lu]dtdx = λ
∫
Rd σ(u, h)N(dt, dx, dh). Here, u(0, x) = u0(x) is a non-random

initial function, N a Poisson random measure with its intensity dtdxν(dh) and ν(dh) a
Lévy measure; Ñ is the compensated Poisson random measure and L a generator of a
Lévy process. The function σ : R → R is Lipschitz continuous and λ > 0 the noise level.
The above discontinuous noise driven equations are not always easy to handle. They are
discontinuous analogues of the equation introduced in [44] and also more general than those
considered in [10]. We do not only compare the growth moments of the two equations with
each other but also compare them with growth moments of the class of equations studied
in [44]. Some of our results are significant generalisations of those given in [10] while the
rest are completely new. Second and first growth moments properties and estimates were
obtained under some linear growth conditions on σ. We also consider L := −(−∆)α/2, the
generator of α-stable processes and use some explicit bounds on its corresponding fractional
heat kernel to obtain more precise results. We also show that when the solutions satisfy
some non-linear growth conditions on σ, the solutions cease to exist for both compensated
and non-compensated noise terms for different conditions on the initial function u0(x).
We consider also fractional heat equations of the form ∂tu(t, x) = −(−∆)α/2u(t, x) +

λσ(u(t, x)Ḟ (t, x), for x ∈ Rd, t > 0, α ∈ (1, 2), where Ḟ denotes the Gaussian coloured
noise. Under suitable assumptions, we show that the second moment E|u(t, x)|2 of the
solution grows exponentially with time. In particular we give an affirmative answer to
the open problem posed in [32]: given u0 a positive function on a set of positive measure,
does supx∈Rd E|u(t, x)|2 grow exponentially with time? Consequently we give the precise
growth rate with respect to the parameter λ.

vi



CHAPTER 1

INTRODUCTION

Systems of Partial differential equations (PDEs) best describe at a macroscopic level
majority of physical phenomena (some modelling quantities) like densities, temperatures,
concentrations, etc of many natural, human/biological, chemical, mechanical, economi-
cal/financial systems and processes.

In stochastic partial differential equations (SPDEs), white noise Ẇ (t, x) has been one
of the most commonly used noise terms. For past few decades, there have been signifi-
cantly much advancements in the study of random field solutions to SPDEs driven by the
general Wiener/Brownian noises. Researchers have focused mainly on the analysis of heat
and wave equations perturbed by Gaussian white noise in time with spatial correlations
[99, 37, 38, 42, 7]. Whereas, the SPDEs driven by Gaussian noise have been well studied
for a long time, the SPDEs driven by Lévy (Poisson) noise have only been investigated
more extensively and intensively quite of recent [1, 2, 9, 13, 6, 77, 73, 39, 51]. In its recent
development, SPDEs driven by fractional type noises have received great attention too
[8, 11, 14, 15, 93, 73, 25, 26]. Though the white noise term possesses many attractive mod-
elling properties, Lévy noise has better modelling characteristics [23, 24]. Stochastic PDEs
driven by jump processes or jump type noises (known as stochastic forcing terms) such
as Lévy-type or Poisson-type perturbations have become important and popular for mod-
elling physical, biological and financial phenomena. The Lévy-type perturbations produce
a better modelling result and performance of those natural occurrences and phenomena of
some real world modelling, capturing some large moves and unpredictable events unlike
Brownian motion perturbation that has many imperfections. Lévy noise Ñ(dt, dx, dh) or
N(dt, dx, dh) has a very rich and vast applications in Finance, Economics, Physics, to
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mention but a few. The jump processes of the Lévy noise can be used to model market
behaviours of price processes. The jumps are particularly relevant for the purpose of mod-
elling the price process of financial assets: structure of futures and forward prices, interest
rate models, and so on. They can describe more accurately the observed realities of fi-
nancial markets. The Lévy noise has a representation that consists of a small jump term
and a big jump term. The small jump term describes the daily jitter that causes minor
fluctuations in stock prices while the big jump term describes the large stock price move-
ments caused by major market upsets arising from weather conditions, natural disasters
like flood, earthquake, tornado, hurricane and volcanic eruptions.

This work was inspired by [44] and the references therein, where a non-linear parabolic
SPDEs of the form ∂tu = Lu+ σ(u)Ẇ with Ẇ as the space-time white noise was consid-
ered. The function σ : R → R is Lipschitz continuous and L the L2-generator of a Lévy
process. In what follows, we consider some discontinuous analogue of results in [44] which
are of the general Lévy-type space-time white noises Ñ(dt, dx, dh) and N(dt, dx, dh). To
understand the full behaviour of the solutions and to have an explicit estimate for the gen-
erator of the process, we consider the fractional Laplacian as a special case of the generator
of a Lévy process. Some precise conditions for existence and uniqueness of the solutions
were given and we show that the solutions grow in time at most a precise exponential
rate at some time interval; and if the solutions satisfy some non-linear conditions then it
ceases to exist at some finite time t. Albeverio and Wu in [1] studied the parabolic SPDEs
driven by Poisson white noise with L := 1

2∆; ∆ the Laplacian, where they established the
existence and uniqueness of the solution. Fournier in [43] also studied the case of L := ∆ of
the parabolic SPDE driven by a white noise and a compensated Poisson measure, where he
proved the existence and the uniqueness of the weak solution and also studied its Malliavin
calculus. We proved the existence and uniqueness of solution to the parabolic SPDE driven
by both compensated and non-compensated Poisson measures for L the L2 generator of a
Lévy process on the space (Lp, ‖.‖p, β) for a family of p-norms as defined in [44] for p = 1, 2

.
There are three major approaches to solving an SPDEs that appear in literature: the

Martingale measure approach [99, 34], the Variational approach [21, 82, 7, 91, 92] and the
Semigroup theory approach [33, 84, 85, 20, 74]. A stochastic partial differential equation,
like a partial differential equation, can be viewed in two major ways: firstly, one can
consider its solution as a real-valued function of t and x, where t is the time parameter,
and x (which varies depending on the nature of the domain say Ω ⊂ Rd) is a space
parameter; one can also consider the solution as a function of t with values in a space of
functions of x, say L2(Ω) (Da Prato-Zabczyk Approach). Secondly a solution of a stochastic
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1.1. Formulation of the solution(s)

partial differential equation can be considered either as a real-valued random field indexed
by t and x, or as a stochastic process indexed by t with values in an infinite dimensional
space (Walsh Approach). The variational approach and the semigroup approach are mainly
concerned with giving a rigorous meaning to solutions of stochastic differential equations
in an infinite dimensional spaces. Walsh’s Martingale approach involves representing the
solution as an integral equations with respect to martingale measures, which makes use
of tools in Measure theory, Potential theory, Harmonic analysis and general stochastic
analysis and this is the approach we will be adopting in this work.

1.1 Formulation of the solution(s)

Here, we formulate the research problems and give underlying conditions on the equations’
parameters.

1.1.1 The compensated equation

Consider the following stochastic heat equations driven by a compensated Poisson noise[
∂u

∂t
(t, x)− Lu(t, x)

]
dxdt = λ

∫
R
σ(u(t, x), h)Ñ(dt, dx, dh), (1.1.1)

with initial condition u(0, x) = u0(x). Here and throughout, u0 : R→ R+ is a non-random
function, and L is the L2- generator of a Lévy process.

Definition 1.1.1. We say that a process {u(t, x)}x∈R,t>0 is a mild solution of (1.1.1) if
a.s, the following is satisfied

u(t, x) =

∫
R
p(t, x, y)u0(y) dy

+ λ

∫ t

0

∫
R

∫
R
p(t− s, x, y)σ(u(s, y), h)Ñ(dh, dy, ds), (1.1.2)

where p(t, ., .) is the heat kernel. If in addition to the above, {u(t, x)}x∈R,t>0 satisfies the
following condition

sup
0≤t≤T

sup
x∈R

E|u(t, x)|2 <∞, (1.1.3)

for all T > 0, then we say that {u(t, x)}x∈R,t>0 is a random field solution to (1.1.1).

In order to state our theorem, we make the following notation. Define

Υ(β) :=
1

2π

∫
R

dξ
β + 2ReΨ(ξ)

for all β > 0, (1.1.4)
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1.1. Formulation of the solution(s)

where Ψ is the characteristic exponent for the Lévy process. A result of Dalang [34] shows
that equation (1.1.1) has a unique solution with the requirement that Υ(β) < ∞ for all
β > 0 which forces d = 1 and coincides to a similar situation to that in [44] since Ñ is a
martingale valued Poisson measure. Fix some x0 ∈ R and define the upper p th-moment
Liapunov exponent γ̄(p) of u [at x0] as

γ̄(p) := lim sup
t→∞

1

t
ln E [|u(t , x0)|p] for all p ∈ (0 ,∞), (1.1.5)

and say that u is (see [44])

1. weakly intermittent if, regardless of the value of x0,

γ̄(2) > 0 and γ̄(p) <∞ for all p > 2,

2. fully intermittent if, regardless of the value of x0, the map

p 7→ γ̄(p)

p
is strictly increasing for all p ≥ 2.

The study of exponential behaviours of solution as t→∞, can best be interpreted by the
notion of intermittency. The concept means that, as t → ∞, the solution exhibits a spa-
tially extremely irregular structure consisting of islands of high peaks which are located far
from each other. The solution u is influenced by the interaction or competition between
the generator of a semigroup L which has a smoothing effect, and the noise potential
Ñ(dh, dx, dt), which makes the solution spatially irregular. This is a long-time behaviour
of a system exhibiting an intermittency effect. The notion of intermittency arose origi-
nally in the study of turbulent flow, firstly as a phenomenon in Physics and Statistical
particle Physics. It is a concept of instabilities in random media that arose as a result of
high value quantity growth of some structures. Intermittency connotes random deviations
from smooth and regular behaviour (see [90, 103, 104] and their references for details).
Intermittency for the parabolic Anderson problem was studied in [22] while intermittency
properties in a hyperbolic Anderson problem was studied in [36].

Remark 1.1.2. Unfortunately, we do not have any result for γ(p) for p ≥ 2 and we
therefore cannot talk about intermittency properties of the solution defined and studied
for the white noise case [44]. The reason is that here, we do not have an appropriate
Burkholder’s inequality to use. But under some further assumptions, one can have γ(p) <

∞. We however do not pursue this here.
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1.1. Formulation of the solution(s)

1.1.2 The non-compensated equation

Consider the non-compensated equation.[
∂u

∂t
(t, x)− Lu(t, x)

]
dxdt = λ

∫
Rd

σ(u(t, x), h)N(dh, dx, dt), (1.1.6)

with initial condition u(0, x) = u0(x). Here again L is the L2- generator of a Lévy process.

Remark 1.1.3. Unlike the compensated noise term Ñ(dt, dx, dh), the non-compensated
noise N(dt, dx, dh) is not a martingale-valued Poisson random measure. The existence
and uniqueness of the solution to (1.1.1) does not depend on the integrability condition
(1.1.5) and the first moment of the solution exists; hence the existence and uniqueness for
all d ≥ 1.

Definition 1.1.4 (of random field solution).

We seek a mild solution to equation (1.1.6) of the form.

u(t, x) =

∫
Rd

p(t, x, y)u0(y) dy

+ λ

∫ t

0

∫
Rd

∫
Rd

p(t− s, x, y)σ(u(s, y), h)N(dh, dy, ds), (1.1.7)

with p(t, ., .) the heat kernel. We impose the following integrability condition on the
solution.

sup
t>0

sup
x∈Rd

E|u(t, x)| <∞.

Let us define a Poisson random measure N =
∑

i≥1 δ(Ti, Xi, Zi) on R+×Rd×Rd defined on
a probability space (Ω, F , P ) with intensity measure dtdxν(dh) where ν is a Lévy measure
on Rd; that is, it satisfies the following∫

Rd

(1 ∧ h2)ν(dh) <∞.

According to [6], let (εj)j≥0 be a sequence of positive real numbers such that εj → 0 as
j →∞ and 1 = ε0 > ε1 > ε2 > . . .. Let

Γj = {h ∈ Rd; εj < |h| < εj−1}, j ≥ 1 and Γ0 = {h ∈ Rd; |h| > 1}.
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1.1. Formulation of the solution(s)

Then for any set B ∈ B(R+ ×Rd), define∫
B×Γj

hN(dt, dx, dh) =
∑

(Ti, Xi)∈B

ZiI{Zi∈Γj}, j ≥ 0,

with the following property: E[N(B × Γj)] = |B|ν(Γj) and

N(B × Γj) = #{i ≥ 1; (Ti, Xi, Zi) ∈ B × Γj} <∞ a.s.

Therefore the above integral is finite since the sum contains finitely many terms. We are
going to make sense of the above Poisson noise integrals in details later in the next chapter.

Consider the mild solution (1.1.7) where u0 = 1, σ(., h) = 1 with N =
∑µ

i=1 δ(Ti, Xi, Zi).
Then (see [43])

u(t, x) = 1 +

µ∑
i=1

p(t− Ti, x,Xi)I{t>Ti}.

We observe that for each ω ∈ Ω with µ(ω) ≥ 1, the map t 7→ u(t, Xi)(ω) explodes when
t tends to Ti from the right for each i ≥ 1 and hence not cádlág. Therefore our mild
solutions (1.1.1) and (1.1.6) can either be viewed as weak predictable processes (a version
of the process which will be predictable) as defined in [43] or as modified cádlág processes(
a cádlág version or modification of the process ) in time t [1]. Following [10], we define
the mild solution u(t, x) to (1.1.1) as a progressively measurable process such that for any
x ∈ R, ∫ t

0
E|u(s, x)|2ds <∞, that is, u ∈ L2([0, t]).

Similarly, the mild solution u(t, x) to (1.1.6) is a progressively measurable process such
that for any x ∈ Rd, ∫ t

0
E|u(s, x)|ds <∞, that is, u ∈ L1([0, 1]).

1.1.3 The white noise and coloured noise equations

Consider the stochastic heat equation

∂

∂t
u(t, x) = Lu(t, x) + λσ(u(t, x))ẇ(t, x), x ∈ R, and t > 0 (1.1.8)

with u(0, x) = u0(x), for all x ∈ R. The function u0 : R→ R+ is a non-random function,
σ : R→ R a Lipschitz continuous function and ẇ(t, x) denotes white noise on (0,∞)×R.
We take L := −(−∆)α/2, α > 1. It is given in [44] that as time goes to infinity, the second
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1.1. Formulation of the solution(s)

moment of the mild solution, E|u(t, x)|2 grows like exp(c t) for some positive constant c
whenever the initial condition u0 is bounded below. Whether it is possible for one to get
rid of this assumption and prove the exponential growth when u0(x) is not bounded below
has been a hard open problem posed in [32]. This question has been addressed for different
class of equations. One of the main results here is to give an affirmative answer to the above
open problem, by showing that the second moment of the solution grows exponentially with
time even if the initial function is not bounded below. Other results include a non-linear
noise growth-index of L2 - energy of the solution for time t > 0 to (1.1.8). It is known
in [66], that intermittency can be associated to non-linear noise excitation which in its
informal observation is equivalent to the existence of a non-linear noise excitation. The
above equation (1.1.8) has been proved to be intermittent, see [44]. Excitability can be
described as a dynamic phenomenon of systems far from equilibrium. All excitable systems
exhibit the following states; the existence of a ”rest” state, an ”excited” (or ”firing”) state,
and a ”refractory” (or ”recovery”) state depending on the amount of external perturbations
on the systems. It measures the rate of an exponential growth of the solution with respect
to the noise level λ.

In what follows, we extend the results for the case of a coloured noise. Instead of
looking at the above equation, we consider the following stochastic heat equation driven
by a coloured noise on Rd,

∂

∂t
u(t, x) = −(−∆)α/2u(t, x) + λσ(u(t, x))Ḟ (t, x), (1.1.9)

with the initial condition u(0, x) = u0(x), x ∈ Rd. The parameter σ satisfies same un-
derlying Lipschitz assumption and λ > 0 is the level of the noise. The term Ḟ is a
spatially-coloured, temporally white, Gaussian noise; a generalised Gaussian random field
whose covariance kernel is described as follows

E[Ḟ (t, x)Ḟ (s, y)] = δ0(t− s)fβ(x, y)

where the correlation function fβ is the Riesz kernel given by

fβ(x, y) =
1

|x− y|β
,

with parameter β ∈ (0, d), d ≥ 1 the dimension. The initial function u0 is assumed to be
a bounded non-negative function such that∫

A
u0(x)dx > 0, for some A ⊂ Rd.

7



1.1. Formulation of the solution(s)

That is, we define u0 as any measurable function u0 : Rd → R+ which is positive on a set
of positive measure. This assumption implies that the set A =

{
x : u0(x) > 1

n

}
⊂ Rd has

positive measure for all but finite many n. Thus by Chebyshev’s inequality,∫
Rd

u0(x)dx ≥
∫
{x:u0(x)> 1

n
}
u0(x)dx ≥ 1

n
µ

{
x : u0(x) >

1

n

}
> 0,

where µ is a Lebesgue measure. Following Walsh [99], one defines the mild solution to
(1.1.9) by the following integral equation

u(t, x) = (Ptu0)(x) +

∫ t

0

∫
Rd

p(t− s, x, y)σ(u(s, y))F (dy, ds),

where
(Ptu0)(x) :=

∫
Rd

p(t, x, y)u0(y)dy

is the semigroup and p(t, x, y) denotes the fractional heat kernel. We will also be inter-
ested in random field solutions which require that the mild solution satisfies the following
integrability condition

sup
x∈Rd

sup
t>0

E|u(t, x)|2 <∞.

This further impose that β ≤ α, see [41]. Existence and uniqueness are well known for
the equations studied here as given in [44] and the references therein. The constant c with
subscripts or superscripts appearing in our results or their proofs will denote some generic
constants that we do not keep track of. The main results of the thesis are summarised
below.

• We make sense of equations (1.1.1) and (1.1.6), show that their solutions are well
defined by establishing their existence and uniqueness under some suitably defined
conditions on the parameter σ : R → R, the non-random function u0 : R → R+

measurable and bounded.

• The growth moments of the solutions to (1.1.1) and (1.1.6) were established. Whereas
second moment estimate was given to the compensated equation (1.1.1), the first
moment growth of the non-compensated equation (1.1.6) was estimated and we show
that both solutions grow at an exponential rate with time t under some linear growth
conditions on σ.

• Given some non-linear growth conditions on the parameter σ, that’s, if σ grows
faster than linear growth, then there is no random field solutions to (1.1.1) and
(1.1.6). While we proved that the compensated equation ceases to exist with the

8



1.1. Formulation of the solution(s)

initial function u0 bounded below, the solution to the non-compensated counterpart
on the other hand fails to exist both when the initial data u0 is a positive function
and when it is bounded below .

• Let the initial function u0 : R → R+ be positive on a set of positive measure. We
show that the excitation index of the second moment of the solution u to (1.1.8) at
time t is given by 2α

α−1 .

• As an extension, we prove that the excitation index of the second moment of the
solution u to (1.1.9) at time t is given by 2α

α−β with the initial condition u0 assumed
to be a positive function on a set of positive measure.

In a nutshell, we give a plan of this thesis. In chapter one, the research problem(s) were
introduced; chapter two surveys some basic definitions and concepts used in the work. Our
results are in three main parts. Whereas Chapter three focuses on some properties of the
heat equation with respect to compensated Poisson noise, chapter four discusses the results
on the heat equation driven by non-compensated Poisson noise. Chapter five is devoted
to the proofs of nonlinear noise excitation growth index of the solution for the space-time
white noise driven equations and its extension to Riesz kernel spatial correlated noise.
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CHAPTER 2

PRELIMINARIES

Now, we give some basic definitions, some concepts on PDEs and Stochastic processes.

Partial Differential Equations

"...Partial differential equations are the basis of all physical theorem."
Bernhard Riemann(1826-1866).

Definition 2.0.5. Let L2(Rd, dx) be a Hilbert space with an inner product

(f, g)L2(Rd,dx) =

∫
Rd

f(x) g(x)dx

with dx a Lebesgue measure on Rd. For all p ≥ 1, Lp(Rd, dx) are Banach spaces with the
norm

‖f‖Lp =

(∫
Rd

|f(x)|pdx
)1/p

.

Let the Fourier transform of f be denoted by f̂ := Ff, where we define the (normalised)
Fourier transform by

f̂(ξ) =

∫
Rd

e−iξxf(x)dx, for all ξ ∈ Rd and f ∈ L1(Rd).

10



2.1. Fundamental solution of Heat equation

Theorem 2.0.6. (Plancherel) The Fourier transform F : L2(Rd)→ L2(Rd) is a unitary
map. For all f, g ∈ L2(Rd),

(f̂ , ĝ) = (f, g).

In particular,
‖f‖L2(Rd) = ‖f̂‖L2(Rd).

2.1 Fundamental solution of Heat equation

Consider the following heat equation

∂tu(t, x) = (Lu)(t, x) such that u(0, x) = δ0(x),

where L is the generator of a Lévy process Xt with characteristic exponent Ψ. Take Fourier
transform in x of both sides,

∂tû(t, ξ) = −Ψ(ξ)û(t, ξ) such that û(0, ξ) = 1.

Therefore
û(t, ξ) = e−tΨ(ξ) = P̂t(ξ),

and the solution is measure-valued, that’s,

u(t, x) := P(Xt ∈ dx) := Pt(dx),

where (Pt)t>0 is known as the semigroup of the Lévy process Xt.
For L = κ∆, κ > 0 and ∆ the Laplace operator, then P̂t(ξ) = e−tκξ2 and

p(t, x) =
1√

4κπt
e−

x2

4κt .

Definition 2.1.1. (The generator of a Lévy process) Define the domain of L by

D[L] =

{
φ ∈ L2(Rd) : Ψφ̂ ∈ L2(Rd)

}
.

Let L be the generator of a Lévy process. If (Pt)t>0 is the semigroup of a Lévy process Xt,
then

Lφ = lim
t→0

Ptφ− φ
t

in L2(Rd), ∀φ ∈ L2(Rd).

11



2.1. Fundamental solution of Heat equation

For all φ ∈ S(Rd) (Schwartz space of test functions), then

L̂φ = lim
t→0

P̂tφ− φ̂
t

= lim
t→0

e−tΨ − 1

t
φ̂ = −Ψφ̂.

Therefore L̂ = −Ψ.

The L2(Rd)-generator of the semigroup {Pt}t≥0 is the fractional Laplace operator
−(−∆)α/2, α ∈ (0, 2). The operator with the domain

D[(−∆)α/2] =

{
φ ∈ L2(Rd) : |ξ|αφ̂ ∈ L2(Rd), 0 < α < 2

}
,

defined by

F
(

(−∆)α/2φ(ξ)

)
= |ξ|αφ̂(ξ),

is the fractional Laplacian of order α/2.

2.1.1 Mild solution

Consider the non-linear heat equation with a discontinuous noise process

[
∂tu(t, x)− κ∆u(t, x)

]
dxdt = λ

∫
R
σ(u(t, x), h)N(dh, dx, dt), (2.1.1)

κ > 0, t > 0, x ∈ R and u(0, x) = u0(x), t > 0. We define for all smooth function
φ : R→ R, the semigroup (Pt)t>0 as follows,

(Ptφ)(y) :=

∫
R
p(t, x, y)φ(x)dx, (2.1.2)

for which the integral is defined (exists) and p(t, x, y) given by

p(t, x, y) =
1√

4κπt
exp

(
− |x− y|

2

4κt

)
is the solution of the homogeneous equation (that’s at σ = 0) except at t = 0, (P0φ)(y) =

φ(y). It follows by multiplying through by φ that∫ t

0

∫
R
∂sp(s, x, y)φ(x)dxds =

∫ t

0

∫
R
∂xxp(s, x, y)φ(x)dxds.

12



2.1. Fundamental solution of Heat equation

By Fubini and integrating by parts, it follows that∫
R
p(t, x, y)φ(x)dx−

∫
R
p(0, x, y)φ(x)dx =

∫ t

0

∫
R
p(s, x, y)φxx(x)dxds.

Then by (2.1.2), we have for all test functions φ

(Ptφ)(y) = φ(y) +

∫ t

0
(Psφxx)(y)ds. (2.1.3)

We therefore pose the problem in weak form. Let φ ∈ C∞0 (R), then by multiplying (2.1.1)
by φ and integrating in [dxdt],∫

R
u(t, x)φ(x)dx =

∫
R
u0(x)φ(x)dx+

∫ t

0

∫
R
u(s, x)φxx(x)dxds

+ λ

∫ t

0

∫
R

∫
R
σ(u(s, x), h)φ(x)N(dh, dx, ds) (2.1.4)

Next, we extend (2.1.4) to smooth functions ψ(t, x) of two variables. Then similarly as in
φ, let ψ ∈ C∞0 ([0,∞)×R). Multiply (2.1.1) by ψ and integrate in [dxdt],∫

R
u(t, x)ψ(t, x)dx =

∫
R
u0(x)ψ(0, x)dx+

∫ t

0

∫
R
u(s, x)

[
ψxx(s, x) + ψs(s, x)

]
dxds

+ λ

∫ t+

0

∫
R

∫
R
σ(u(s, x), h)ψ(s, x)N(dh, dx, ds). (2.1.5)

By uniqueness of the solutions, (2.1.4) must satisfy (2.1.5) since they both solve (2.1.1),
we fix t and let ψ(s, y) = (Pt−sφ)(y). Then ψ(t, y) = φ(y) and by (2.1.3), we have that{

ψxx(s, x) + ψs(s, x) = 0, x ∈ R, s > 0

ψ(0, x) = (Ptφ)(x), x ∈ R.

Hence, the solution (2.1.5) becomes∫
R
u(t, x)φ(x)dx =

∫
R
u0(y)(Ptφ)(y)dy

+ λ

∫ t

0

∫
R

∫
R
σ(u(s, y), h)(Pt−sφ)(y)N(dh, dy, ds). (2.1.6)

Let φ approach a delta function, for example, if one takes φ of the form of an approximate
identity in S(R) (Schwartz space of test functions), for example the Gaussian approximate
identity φε(x) = 1

(2πε)1/2
exp

(
− |x|

2

2ε

)
. As ε → 0+, then φε converges weakly to δ and the

13



2.2. Stochastic processes

above equation (2.1.6) for Lebesgue-almost all (t, x) will tend to

u(t, x) =

∫
R
u0(y)p(t, x, y)dy

+ λ

∫ t

0

∫
R

∫
R
σ(u(s, y), h)p(t− s, x, y)N(dh, dy, ds).

2.2 Stochastic processes

"... Paul Lévy was a painter in the probability world. Like the very great painting ge-
niuses, his palette was his own and his paintings transmuted forever our vision of reality."
M. Loéve, in 1971.

A stochastic process with state space S is defined as a collection of random variables
(Xt)t∈T defined on the triple (Ω,F ,P) known as a probability space. Let (Ω,F ,P) be
a complete probability space with a right-continuous filtrations {Ft}t≥0, such that F0

contains all P-null sets of F .

Definition 2.2.1. A real-valued stochastic process (Xt)t≥0 is said to have left (right) limits
if for P-a.e. ω ∈ Ω, the mapping t 7→ Xt(ω) has left (right) limits. Simply put, the paths
of the process X have P-a.s. left (right) limits.

Definition 2.2.2. A stochastic process (Xt)t≥0 is said to be left-continuous (right-continuous)
if for P-a.e. ω ∈ Ω, the mapping t 7→ Xt(ω) is left-continuous (right-continuous).

Definition 2.2.3. (Cádlág process) Let (Xt)t≥0, be a real-valued stochastic process.
Then the process Xt is cádlág (continue á droite, á gauche) or RCLL (right continuous
with left limits) if it is a right continuous process with paths having left limits.

Definition 2.2.4. Two real-valued stochastic processes (Xt)t≥0 and (Yt)t≥0 on the prob-
ability space (Ω,F ,P) are called modifications (or versions) of one another if,

for all t ∈ T, P
(
Xt = Yt

)
= 1.

That is, for all t ≥ 0, there exists a null set Nt ⊂ Ω such that

Xt(ω) = Yt(ω), ∀ω /∈ Nt.

Definition 2.2.5. Let (Xt)t≥0 be a stochastic process defined on the probability space
(Ω,F ,P) with values in (Rd,B(Rd)). The process (Xt)t≥0 is said to be measurable if it

14



2.2. Stochastic processes

is measurable as a function defined on [0,∞)× Ω (with the σ-algebra B([0,∞))⊗F) and
values in Rd. That’s, let (Ω1,F1) and (Ω2,F2) be measurable spaces. Then Xt : Ω1 → Ω2

for t ≥ 0 is said to be measurable with respect to the σ-algebras Fi, i = 1, 2, if and only if
X−1
t (A) ∈ F1 for each A ∈ F2. The process (Xt)t≥0 is said to be progressively measurable

if for every T ≥ 0 it is, when viewed as a function X(t, ω) on the product space [0, T ]×Ω,
measurable relative to the product σ-algebra B([0, T ])⊗FT .

Definition 2.2.6. (Adapted process) A sequence (Xt)t≥0 of random variables is said to
be adapted to a filtration (Fs)0≤s≤t if, for each s, the random variable Xt is Fs measurable.

Definition 2.2.7. (predictable σ-algebra) Let (Ω,F , (Ft)t≥0,P) be a filtered probabil-
ity space. The σ-algebra on [0,∞)×Ω generated by all sets of the form {0} ×A, A ∈ F0,

and (s, t]× A, 0 ≤ s < t, A ∈ Fs, is said to be the predictable σ-algebra for the filtration
(Ft)t≥0.

Definition 2.2.8. (Predictable process) A real-valued process (Xt)t≥0 is called pre-
dictable with respect to a filtration (Ft)t≥0, or Ft-predictable, if as a mapping from
[0,∞) × Ω → R it is measurable with respect to the predictable σ-algebra generated
by this filtration.

Definition 2.2.9. (Convergence of random variables) Let (Xn)n≥1 be a sequence of
real-valued random variables and X be another real-valued random variable, all defined on
the same probability space (Ω,F ,P). Then

(1) Xn is said to converge almost surely to X, i.e., Xn
a.s.−−→ X if

P

({
ω ∈ Ω : lim

n→∞
Xn(ω) = X(ω)

})
= 1.

(2) Xn converges in Lp-sense to X for all 1 ≤ p <∞, i.e., Xn
Lp−→ X if

lim
n→∞

EP[|Xn(ω)−X(ω)|p] = 0.

(3) Xn is said to be convergent in probability to X, i.e., Xn
P−→ X if for every ε > 0,

lim
n→∞

P

({
ω ∈ Ω : |Xn(ω)−X(ω)| ≥ ε

})
= 0.

(4) Xn is said to converge in distribution ( or weakly) to X, i.e., Xn
d−→ X if

lim
n→∞

P

({
ω ∈ Ω : Xn(ω) ≤ x

})
= P

({
ω ∈ Ω : X(ω) ≤ x

})
.

15



2.2. Stochastic processes

2.2.1 Lévy process

Definition 2.2.10. (Lévy Process) Let (Ω,F ,P) be a probability space. A Lévy process
on this space is a map Xt(ω) : R+ × Ω→ R with the following properties

(1) X0 = 0

(2) Xt has stationary increments, that’s, Xt −Xs has the same distribution as Xt−s for
all 0 ≤ s < t <∞.

(3) Xt has independent increments, that’s, Xt −Xs is independent of Fs for all 0 ≤ s <
t <∞.

(4) Xt has cádlág paths.

(5) Xt is stochastically continuous, that’s, for all t ≥ 0 and some number ε > 0,

lim
s→t

P(|Xt −Xs| > ε) = 0.

2.2.2 Poisson process

A Poisson process can be defined as a stochastic process Xt having discontinuous realisa-
tions (sample paths), stationary, independent increments and follows a Poisson distribution.

Definition 2.2.11. (Poisson process) A poisson process with intensity λ > 0 is an
integer-valued, continuous time stochastic process {Xt, t ≥ 0} such that

(1) X0 = 0

(2) Xt has an independent increments, that is: for all 0 = t0 < t1 < . . . < tn, the
increments Xt1 −Xt0 , Xt2 −Xt1 , ..., Xtn −Xtn−1 are independent random variables,

(3) Xt has stationary increments: for all t ≥ s ≥ 0, Xt+s−Xs equals Xt in distribution.
Simply put; for all t ≥ s ≥ 0, and non-negative integers k, the increment follows
poisson distribution:

P[Xt+s −Xs = k] = P[Xt = k] =
(λt)ke−λt

k!
.

2.2.3 Poisson random measures

Let (Ω,F ,P) be a complete probability space and (Rd,B(Rd)) be a measurable space. Let
M be the space of all Z̄+ = Z+ ∪ {∞}-valued measures on (Rd,B(Rd)) and consider the
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2.2. Stochastic processes

measurable space (M,BM) with

BM := σ
(
ν(A) : A ∈ B(Rd)

)
, for each ν ∈M.

Definition 2.2.12. (Poisson randommeasure) Let ν be a σ-finite measure on (Rd,B(Rd)).
A random variable N : (Ω,F)→ (M,BM) with intensity measure ν is called a Poisson ran-
dom measure on (Rd,B(Rd)) if the following conditions hold.

(1) For all A ∈ B, N(A) : Ω → Z̄+ is Poisson distributed with parameter E[N(A)] =

ν(A), that is:

P [N(A) = n] =
[E[N(A)]]n exp(−E[N(A)])

n!
, n ∈ N ∪ {0}.

If E[N(A)] = +∞ then N(A) = +∞ P-a.s.

(2) If A1, . . . , Ak are pairwise disjoint then N(A1), . . . , N(Ak) are independent.

Next we state some existence theorems for the Poisson random measure. The first one
states that given a σ-finite measure on a space X, we can find or construct a Poisson
random measure N and it is given below.

Theorem 2.2.13. Given a σ-finite measure ν on (X,B(X)), there exists a Poisson random
measure N such that E[N(A)] = ν(A) for A ∈ B(X). If N(A) =∞, then ν(A) =∞.

Proof. The proof can be found in Ikeda and Watanabe [60, 61].

2.2.4 Point processes and Poisson point processes

We now define the concept of Point processes and Poisson point processes. These are needed
for the definition of stochastic Poisson integral. Let (Ω,F ,P) be a complete probability
space and (X,B(X)) a measurable space.

Definition 2.2.14. (Point function) A Point function p is defined via the mapping
p : Dp → X, where X is some measurable space and Dp is a countable subset of [0,∞].
The point function p defines a counting measure on (0,∞)×X by the following expression:
Np((0, t]×A) := #{s ≤ t; s ∈ Dp; p(s) ∈ A}, for any A ∈ B(X). Basically, Np((0, t]×A)

counts the number of times before t that p(s) is in A.

Let the set of all point functions taking values in X, be denoted by ΠX and B(ΠX)

the smallest σ-algebra such that every mapping p → Np((0, t] × A) for all A ∈ B(X) is
measurable, that’s,

B(ΠX) := σ
(
ΠX 3 p 7→ Np((0, t]×A) : A ∈ B(X), t > 0

)
.
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2.2. Stochastic processes

Definition 2.2.15. (Point process) A Point process p on X is a (ΠX ,B(ΠX))-valued
random variable. In other words, p is defined on some probability space (Ω,F ,P), mea-
surable and it spits out a point function from ΠX , that’s, a random variable p : (Ω,F)→
(ΠX ,B(ΠX)).

Definition 2.2.16. (Poisson point process) A Point process p is said to be a Poisson
point process if the corresponding counting measureNp(dt dx) is a Poisson random measure
on (0,∞)×X.

The second existence theorem characterises a stationary Point process.

Theorem 2.2.17. Given a σ-finite measure n(dx) on (X, B(X)), then there exists a sta-
tionary Poisson point process p if the random measure Np(dt, dx) is of the form E[Np(dt, dx)] =

np(dt, dx) = dt n(dx).

Proof. Ikeda and Watanabe [60].

Now applying the above theorem with X := Rd ×Rd and B(X) := B(Rd) ⊗ B(Rd).
We will take n(dx, dh) := dx ν(dh). One set of the vectors will play the role of position
while the other will play the role of “jumps”. By the above theorem, we have a Poisson
point process p(s) ∈ Rd×Rd. The Poisson random measure is thus given by the following

Np((0, t], A×B) := #{s ≤ t; s ∈ Dp; p(s) ∈ A×B}.

Definition 2.2.18. (Jump of a Lévy Process) The jump process ∆Xt at time t ≥ 0 is
defined by ∆Xt := Xt −Xt− where Xt− is the left limit of the process Xt at the point t.

Definition 2.2.19. (Jump measure) Let (∆Xt 6= 0, t > 0) be the jump process and the
set A ∈ B(Rd) bounded below, then one defines the jump measure by

N(t, A) = #{0 ≤ s ≤ t : ∆Xs ∈ A
}

=
∑

0<s≤t
IA(4Xs).

The jump measure counts the number of jumps of the process between 0 and t such that
their sizes fall into A.

Definition 2.2.20. (Compensated Poisson process) For a Poisson process, N((0, t], A×
B) such that

E[N((0, t], A×B)] = t|A|ν(B) for allA, B ∈ B(Rd),

one defines the compensated Poisson process by

Ñ((0, t], A×B) := N((0, t], A×B)− t|A|ν(B),
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2.2. Stochastic processes

for any t > 0 and any A, B ∈ B(Rd) provided that |A|ν(B) <∞.

Definition 2.2.21. (Lévy measure) Let (Ω,F ,P) be a complete probability space. The
measure ν defined by

ν(A) = E[N((0, 1], A)] = E
[ ∑

0<s≤1

IA(∆Xs)
]

for all A ∈ B(Rd) is said to be a Lévy measure of the process X with E an expectation
with respect to the measure P. Suppose that ν is a Lévy measure on Rd; then it satisfies
the following ∫

Rd

(
1 ∧ h2

)
ν(dh) <∞.

2.2.5 The Poisson Discontinuous Integrals

We now make sense of the discontinuous integrals.

2.2.5.1 Definition of the integral for Point Processes

Let (Ω,F , {Ft}t≥0,P) be a complete filtered Probability space and (Rd,B(Rd)) be a mea-
surable space. Let Ft be defined by

Ft := σ
(
Np([0, t], A× B, ·) : A×B ∈ B(Rd)× B(Rd)

)
∨N ,

where t > 0 and N denotes the null set of F . We can write the Poisson random measure
as

Np((0, t], A×B) :=
∑

s∈Dp,s≤t
IA×B(px(s), ph(s)),

where we define p(s) := (px(s), ph(s)).
Recall that in our case, we have E[Np((0, t], A×B)] = t|A|ν(B). We now describe the

stochastic integral with respect to this Poisson random measure. We will need to define
the class of integrand precisely.

Definition 2.2.22. (The non-compensated Integral)

H1
p :=

{
f(t, x, h) : f is {Ft}-predictable and

∫ t

0

∫
Rd

∫
Rd

E|f(s, x, h)|dsdxν(dh) <∞
}
.

The following integral can now be defined for all f ∈ H1
p
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2.2. Stochastic processes

∫ t

0

∫
Rd

∫
Rd

f(s, x, h, .)Np(ds, dx, dh) =
∑

s≤t,s∈Dp

f(s, px(s), ph(s))

as the a.s sum of the following absolutely convergent sum.

Definition 2.2.23. (The compensated Integral) Define, similarly, for f satisfying the
square-integrability condition

H2
p =

{
f(t, x, h) : f is {Ft}-predictable and

∫ t

0

∫
Rd

∫
Rd

E|f(s, x, h)|2dsdxν(dh) <∞
}
.

Then for all f ∈ H2
p , one defines the integral as follows

∫ t

0

∫
Rd

∫
Rd

f(s, x, h)Ñp(ds, dx, dh) =
∑

s≤t,s∈Dp

f(s, px(s), ph(s))

−
∫ t

0

∫
Rd

∫
Rd

f(s, x, h)dsdxν(dh)

as the a.s sum of the following absolutely convergent sum.

2.2.5.2 Definition of the integral for deterministic functions.

Definition 2.2.24. Let N be a Poisson random measure on (Rd,B(Rd)) with intensity
measure ν. Given that N has the following representation

N(A)(ω) =
∞∑
k=1

δxk(ω)(A), ω ∈ Ω, A ∈ B(Rd)

for a properly chosen sequence (xk) of random elements in Rd. We define the integral with
respect to N as follows: suppose that f is a real-valued function defined on Rd then∫

Rd

f(x)N(dx) =

∞∑
k=1

f(xk),

provided that the series is convergent P-a.s.

2.2.5.3 Definition of the integral for measurable functions

Definition 2.2.25. Let f : Rd × Rd → Rd be a Borel measurable function and A, B

bounded below, then for each t > 0, we define the Poisson integral of f as a random finite
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sum by ∫
A×B

f(x, h)N(t, dx, dh) =
∑

x, h∈A×B
f(x, h)N(t, {x}, {h}),

which is anRd-valued random variable. Then, sinceN(t, {x}, {h}) 6= 0, that’s, N(t, {x}) 6=
0⇔ ∆Xx

s = x and N(t, {h}) 6= 0⇔ ∆Xh
s = h for at least one 0 ≤ s ≤ t, we have∫

A×B
f(x, h)N(t, dx, dh) =

∑
0≤s≤t

f(∆Xx
s , ∆Xh

s )IA×B(∆Xx
s , ∆Xh

s ).

Generally, let P = (Pt)t≥0 be a compound Poisson process and define for each t ≥ 0,
P xt (A) =

∫
A xN(t, dx) and P ht (B) =

∫
B hN(t, dh) for all A, B ∈ B(Rd). Then for a

predictable function f such that E
∫ t

0

∫
A×B |f(s, x, h)|ν(dh)dxds <∞,

∫ t

0

∫
A×B

f(s, x, h)N(ds, dx, dh) =
∑

0≤s≤t
f(s, ∆P xs , ∆P hs )IA×B(∆P xs , ∆P hs )

as a random finite sum, and if f is square integrable then∫ t

0

∫
A×B

f(s, x, h)Ñ(ds, dx, dh) =

∫ t

0

∫
A×B

f(s, x, h)N(ds, dx, dh)

−
∫ t

0

∫
A×B

f(s, x, h)ν(dh)dxds.

Any measurable function may be approximated by simple functions.

Theorem 2.2.26. Let f : Ω → R+ ∪ {+∞} be a nonnegative F-measurable functions.
Then there exists a sequence of simple F-measurable functions (fn) such that 0 ≤ f1 ≤
... ≤ fn ≤ fn+1 ≤ ... and limn→∞ fn = f (that’s, there is a monotone increasing sequence
(fn) of nonnegative simple functions that converges pointwise to f). If f is bounded, then
fn converges to f uniformly.

Corollary 2.2.27. If f : (Ω,F) → R ∪ {+∞} is F-measurable then it is the limit of a
sequence of simple F-measurable functions.

Now we give definitions of the integral for simple functions (and processes). Let N be
the Poisson random measure associated to a Lévy process Xt, t ≥ 0.

Definition 2.2.28. Let (Ω1, F1) and (Ω2, F2) be measurable spaces. Then f : Ω1×Ω2 →
R ∪ {+∞} is said to be a simple function if and only if f is Borel measurable and takes
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on only finite many distinct values. That’s f has the form

f =
n∑
k=1

akIAk×Bk

for (ak)1≤k≤n ∈ R and the measurable sets (Ak)1≤k≤n ∈ F1, (Bk)1≤k≤n ∈ F2 such that
Ai ∩ Ak = ∅, Bi ∩ Bk = ∅, i 6= k with ∪nk=1Ak = Ω1 and ∪nk=1Bk = Ω2. Given that
N(Ak), N(Bk) <∞, P-a.s., or equivalently ν(Ak), ν(Bk) <∞, we define∫

Rd×Rd

f(x, h)N(t, dx, dh) =

n∑
k=1

akN(t, Ak ×Bk).

Definition 2.2.29. For a nonnegative Borel measurable function f on a measurable space
(Ω, F) with the intensity measure ν,∫ ∫

f(x, h)N(t, dx, dh) = sup

{∫ ∫
g(x, h)N(t, dx, dh), 0 ≤ g ≤ f, g simple

}
.

Theorem 2.2.30. (Monotone Convergence) Suppose that (fn) is a monotone increas-
ing sequence of nonnegative F-measurable functions and f its pointwise limit,

f(x, h) = lim
n→∞

fn(x, h).

Then
lim
n→∞

∫
Ω1×Ω2

fn(x, h)N(t, dx, dh) =

∫
Ω1×Ω2

f(x, h)N(t, dx, dh)

in L1(P) sense.

Next we give definition of the integral for simple processes.

Definition 2.2.31. (Random step function) An adapted process f(t, x, h) is said to
be simple, if there exists a partition 0 = t0 < t1 < ... < tn = T of [0, T ] such that we have
the random step function

f(t, x, h) =

n−1∑
i=0

m∑
k=1

φikI(ti,ti+1](t)IAk×Bk(x, h)

where φik are some bounded Fti-measurable random variables and Ak, Bk pairwise disjoint
subsets with |Ak|, ν(Bk) <∞. Therefore we define the integral process by

∫ t

0

∫
Rd×Rd

f(s, x, h)N(ds, dx, dh) =

n−1∑
i=0

m∑
k=1

φik[N(ti+1∧t, Ak×Bk)−N(ti∧t, Ak×Bk)].
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2.3. Symmetric α-stable processes

For a compensated random measure Ñ(t, A×B) = N(t, A×B)− t|A|ν(B), we define

∫ t

0

∫
Rd×Rd

f(s, x, h)Ñ(ds, dx, dh) =

n−1∑
i=0

m∑
k=1

φik[Ñ(ti+1∧t, Ak×Bk)−Ñ(ti∧t, Ak×Bk)],

with the following properties:

• Martingale preservation

E

[ ∫ t

0

∫
Rd×Rd

f(s, x, h)Ñ(ds, dx, dh)

]
= 0

• Itô Isometry

E

[∫ t

0

∫
Rd×Rd

f(s, x, h)Ñ(ds, dx, dh)

2]
=

∫ t

0

∫
Rd×Rd

E|f(s, x, h)|2ν(dh)dxds.

Thus we extend the compensated integral to all square integrable functions such that
E
∫ t

0

∫
Rd×Rd |f(s, x, h)|2ν(dh) dx ds <∞, from simple processes fn by

E

∫ t

0

∫
Rd×Rd

|fn(s, x, h)− f(s, x, h)|2ν(dh) dx ds→ 0 as n→∞.

2.3 Symmetric α-stable processes

Definition 2.3.1. (Stable process) A random variable X is said to be stable if there
exist real valued sequences (cn, n ∈ N) and (dn, n ∈ N) with each cn > 0 such that

X1 +X2 + . . . +Xn =d cnX + dn (2.3.1)

where X1 + X2 + . . . + Xn are independent copies of X. The random variable X is said
to be strictly stable if each dn = 0.

It has been shown (Feller (1971)) that the only choice of cn in (2.3.1) is of the form

cn = σn
1
α , 0 < α ≤ 2.

The parameter α plays a key role in the investigation of stable random variables and it is
called the "index of stability". The operator −(−∆)α/2 is the fractional Laplacian of the
L2 - generator of a symmetric stable process Xt of order α.
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2.3. Symmetric α-stable processes

Definition 2.3.2. (Symmetric stable process) A symmetric α-stable process X on Rd

is a Lévy process whose transition density p(t, x) relative to Lebesgue measure is uniquely
determined by its Fourier transform:

E[exp(iξXt)] =

∫
Rd

ei<x, ξ>p(t, x)dx = e−t|ξ|
α

ξ ∈ Rd.

We present some required properties of p(t, x) which come in handy in the proof of our
results [96, 44].

p(t, x) = t−d/αp(1, t−1/αx)

p(st, x) = t−d/αp(s, t−1/αx). (2.3.2)

From the above relation, p(t, 0) = t−d/α p(1, 0), is a decreasing function of t. The heat
kernel p(t, x) is also a decreasing function of |x|, that’s

|x| ≥ |y| implies that p(t, x) ≤ p(t, y).

This and equation (2.3.2) imply that for all t ≥ s,

p(t, x) = p(t, |x|) = p

(
s.
t

s
, |x|
)

=

(
t

s

)−d/α
p

(
s,

(
t

s

)−1/α

|x|
)

≥
(
s

t

)d/α
p(s, |x|)

(
since

(
t

s

)−1/α

|x| ≤ |x|
)

=

(
s

t

)d/α
p(s, x).

Proposition 2.3.3. Let p(t, x) be the transition density of a strictly α-stable process. If
p(t, 0) ≤ 1 and a ≥ 2, then

p
(
t,

1

a
(x− y)

)
≥ p(t, x)p(t, y) ∀x, y ∈ Rd.

Proof. Given that
1

a
|x− y| ≤ 2

a
|x| ∨ 2

a
|y| ≤ |x| ∨ |y|,
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2.3. Symmetric α-stable processes

then it follows from the above that,

p
(
t,

1

a
(x− y)

)
≥ p(t, |x| ∨ |y|)

≥ p(t, |x|) ∧ p(t, |y|)

≥ p(t, |x|)p(t, |y|)

= p(t, x)p(t, y).

The transition density also satisfies the following Chapman-Kolmogorov equation,∫
Rd

p(t, x)p(s, x)dx = p(t+ s, 0).

Let T (t, ., .) for all t ≥ 0 be a semigroup given by

T (t, x, y) :=
( 1

4πt

)d/2
exp

(
− |x− y|

2

4t

)
the fundamental solution of a heat equation and define

ft,α/2(s) =
1

2πi

∫ a+i∞

a−i∞
ezs−tz

α/2
dz (a > 0, t > 0, s ≥ 0, 0 < α < 2) (2.3.3)

by the inversion formula of a Laplace transform. That is, let (Yt)t>0 be a α/2-stable
subordinator given by the Laplace transform

exp(−tzα/2) = E[exp(−zYt)] =

∫ ∞
0

e−zsft,α/2(s)ds,

where ft,α/2(s), t > 0, s ≥ 0 is its one dimensional density function. It has been shown
(see [96, 101]) that

p(t, x, y) =

{ ∫∞
0 ft,α/2(s)T (s, x, y)ds for 0 < α < 2

T (t, x, y) forα = 2.

We quickly mention here, for clarity and consistency that the following notations p(t, x, y) =

p(t, x− y) = pt(x, y) will be adopted and have their usual meaning and definition.
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2.3. Symmetric α-stable processes

Lemma 2.3.4. Suppose that p(t, x) denotes the heat kernel for a strictly stable process of
order α. Then the following estimate holds.

p(t, x, y) � t−d/α ∧ t

|x− y|d+α
for all t > 0 and x, y ∈ Rd.

Here and in the sequel, for two non-negative functions f, g, f � g means that there
exists a positive constant c > 1 such that c−1g ≤ f ≤ c g on their common domain of
definition.

Proof. We give a detailed proof of a well known estimate on a fractional heat kernel [11,
15, 18]. Let 0 < α < 2 and recall that p(t, x, y) is given by

p(t, x, y) =

∫ ∞
0

ft,α/2(s)T (s, x, y)ds (2.3.4)

where ft,α/2(s) is as defined in (2.3.3) and there exist some positive constants c1, c2, c3, c4

(see [18]) such that

c1s
−d/2 exp(−c2

|x− y|2

s
) ≤ T (s, x, y) ≤ c3s

−d/2 exp(−c4
|x− y|2

s
). (2.3.5)

We have the following scaling property for ft,α/2(s) given by

ft,α/2(s) = t−2/αf1,α/2(t−2/αs), t, s > 0. (2.3.6)

Next, we state the behaviour of f1,α/2(s) for large values of s (see [11]) given by

lim
s→∞

f1,α/2(s)s1+α/2 =
α

Γ(1− α/2)
. (2.3.7)

Then by the boundedness of f1,α/2(.), the above behaviour and the scaling property, the
following estimates follow

ft,α/2(s) ≤ c5ts
−(1+α/2), t, s > 0 (2.3.8)

and
ft,α/2(s) ≥ c6ts

−(1+α/2), t > 0, s > s0t
2/α, (2.3.9)

where s0 depends only on α. First we prove the lower bound of the estimate, let us define
for all t > 0, x, y ∈ Rd, d(t, x, y) := |x − y|2t−2/α and substitute v = c2|x − y|2s−1, then
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2.3. Symmetric α-stable processes

by (2.3.5), (2.3.9) and (2.3.4), it follows that

p(t, x, y) ≥ c t

∫ ∞
s0t2/α

s−d/2e−c2
|x−y|2
s s−(1+α/2)ds

= c t

∫ ∞
s0t2/α

s−(d+α)/2e−c2
|x−y|2
s s−1ds

= c t|x− y|−(d+α)

∫ c2s
−1
0 d(t,x,y)

0
v(d+α)/2−1e−vdv (2.3.10)

≥ c t|x− y|−(d+α)e−c7d(t,x,y)

∫ c7d(t,x,y)

0
v(d+α)/2−1dv

= c t−d/αe−c7d(t,x,y).

If t ≥ |x− y|α, that’s, |x−y|
α

t ≤ 1, then d(t, x, y) ≤ 1 and e−c7d(t,x,y) ≥ e−c7 . It follows that
p(t, x, y) ≥ c7t

−d/α and therefore

p(t, x, y) ≥ c7 min
(
t−d/α,

t

|x− y|d+α

)
.

On the other hand, if t < |x − y|α then d(t, x, y) > 1 so that the integral in (2.3.10) is
bounded away from 0 and hence

p(t, x, y) ≥ c8t|x− y|−(d+α) ≥ c8 min
(
t−d/α,

t

|x− y|d+α

)
.

We follow similar steps in proving the upper bound estimate by using (2.3.8) and (2.3.5),
thus

p(t, x, y) ≤ c9 t

∫ ∞
0

s−(d/2+α/2+1)e−c4
|x−y|2
s ds

= c9
t

|x− y|d+α
Γ(
d+ α

2
),

which establishes the first term under the minimum. To estimate the other term, it suffices
to verify the following estimate

ft,α/2(s) ≤ c t s−(1+α/2)e−t s
−α/2

, s, t > 0. (2.3.11)

For t = 1 in (2.3.3), thus

f1,α/2(s) =
1

2πi

∫ a+i∞

a−i∞
exp(zs− zα/2)dz

for a > 0. The above integral is not easy to evaluate, so we approximate it. We state
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2.3. Symmetric α-stable processes

a technique known as Laplace approximation used for saddle point approximation (from
Taylor series to Saddle points). Consider a positive function f(x) and suppose that one
wants to approximate its value at some point x0 via Taylor series expansion of its first few
terms. Let h(x) ≡ log f(x), then writing f(x) = exp[h(x)] and choosing x0 as the point to
expand around, one obtains

f(x) ≈ exp

{
h(x0) + (x− x0)h′(x0) +

(x− x0)2

2
h′′(x0)

}
.

The above approximation simplifies if one chooses x0 = x̂, where h′(x̂) = 0, and∫
f(x)dx ≈

∫
exp

{
h(x̂) +

(x− x̂)2

2
h′′(x̂)

}
dx.

Therefore by letting z0 = ( α2s)
2/(2−α), a = z0 and substituting for ξ = z/z0,

f1,α/2(s) =
z0

2πi

∫ 1+i∞

1−i∞
exp[φ(ξ)]dξ

with φ(ξ) = −zα/20 ξα/2 + sz0ξ. We have the following for the value of z0 above,

φ(1) = −
(
1− α

2

)(α
2

)α/(2−α)
s−α/(2−α),

φ′(1) = 0,

φ′′(1) =
α(2− α)

4

(α
2

)α/(2−α)
s−α/(2−α).

Hence,

φ(ξ) + φ(1) +
(ξ − 1)2

2
φ′′(1)

and, if we let ξ = 1 + iy with y real, then as y → 0+,

φ(ξ) + φ(1)− y2

2
φ′′(1).

Thus, by the saddle point approximation, as s→ 0+,

f1,α/2(s) ≈ z0

2πi
exp

[
φ(1)

]
i

∫
R

exp
(
− 1

2
φ′′(1)y2

)
dy

=
z0

2π
exp

[
φ(1)

]√ 2

φ′′(1)

∫
R
e−x

2
dx

=
z0

2π
exp

[
φ(1)

]√ 2π

φ′′(1)
.
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2.3. Symmetric α-stable processes

Therefore defining c10 = (1− α
2 )(α2 )α/(2−α) and c = (α/2)1/(2−α)

[2π(1−α/2)]1/2
, we have that

f1,α/2(s) ≤ c s(α−4)/(4−2α)e−c10s
−α/(2−α)

.

Also, α/(2− α) > α/2 and −α
2(2−α) − 1 < −1 − α/2, that’s, α−4

4−2α < −(1 + α/2). Then it
follows (see [15]) that

s(α−4)/(4−2α)e−c10s
−α/(2−α)

= o(s−(1+α/2)e−s
−α/2

), as s→ 0.

Therefore, this and (2.3.8) imply that

f1,α/2(s) ≤ c s−(1+α/2)e−s
−α/2

, s > 0.

Then by applying the scaling property in (2.3.6), the estimate in (2.3.11) follows. Hence,
making use of the established (2.3.11), and substituting for v = t s−α/2, we have that

p(t, x, y) ≤ c t

∫ ∞
0

s−d/2s−(1+α/2)e−t s
−α/2

ds

= c t−d/α
∫ ∞

0
vd/αe−vdv

= c t−d/αΓ(d/α+ 1) = c1 t
−d/α,

and that completes the proof.

Now we show that the first term (Ptu0)(x) of the mild solution to (1.1.9) grows or
decays but only polynomially fast with time. Recall that

(Ptu0)(x) :=

∫
Rd

p(t, x, y)u0(y)dy.

With the assumption that the initial condition u0 is positive on a set of positive measure,
we then have the following.

Proposition 2.3.5. There exists a T > 0 and a constant c1 such that for all t > T and
all x ∈ B(0, t1/α),

(Ptu0)(x) ≥ c1

td/α
.
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2.3. Symmetric α-stable processes

Proof. Applying Lemma 2.3.4,

(Ptu0)(x) ≥
∫
B(x, t1/α)

p(t, x, y)u0(y)dy

≥ c1

td/α

∫
B(x, t1/α)∩B(0, t1/α)

u0(y)dy.

Since x ∈ B(0, t1/α), then by the assumption on u0, we can find T > 0 large enough so
that for all t > T , ∫

B(x, t1/α)∩B(0, t1/α)∩A
u0(y)dy ≥ c2,

where A is the set of positive measure where we are assuming u0 is positive and the result
follows.

The next proposition is similar to but more general than Proposition 2.3.5.

Proposition 2.3.6. Given the assumption on the initial function u0. Then for t0 ≥ 1, η >

0 , there exists c(t0) > 0 such that∫
Rd

p(t+ t0, x, y)u0(y)dy ≥ c(t0)p(t+ η, x).

Proof. Choose t0 > 0 such that p(t0, 0) ≤ 1, then by Kolmogorov property, proposition
2.3.3 and the scaling property of the heat kernel (2.3.2), we have that∫

Rd

p(t+ t0, x− y)u0(y)dy

=

∫
Rd

dy
{∫

Rd

p(t, x− z)p(t0, z − y)dz
}
u0(y)

=

∫
Rd

dz p(t, x− z).
∫
Rd

p(t0,
1

2
(2z − 2y))u0(y)dy

≥
∫
Rd

dz p(t, x− z).
∫
Rd

p(t0, 2z)p(t0, 2y)u0(y)dy

= 2−d
∫
Rd

dz p(t, x− z) p(t0/2α, z)
∫
Rd

p(t0, 2y)u0(y)dy.

Let c(t0) := 2−d
∫
Rd p(t0, 2y)u0(y)dy which is finite by Proposition 2.3.5. Denote η :=

t0/2
α > 0 and the result follows.

In what follows, we will need the Gamma function denoted by Γ(.). Here, Z+ denotes
the set of all non-negative integers and N the set of all positive integers. We give a slightly
different proof of the lemma proved in( [66] page 38).
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Lemma 2.3.7. Let 0 < ρ ≤ 1, then there exists a positive constant c1 such that for all
b ≥ (e/ρ)ρ,

∞∑
j=0

(
b

jρ

)j
≥ exp

(
c1b

1/ρ
)
.

Proof. We begin by writing

∞∑
j=0

(
b

jρ

)j
= 1 +

∑
j∈N, jρ<1

(
b

jρ

)j
+

∑
j∈N, jρ≥1

(
b

jρ

)j
≥ 1 +

∑
j∈N, jρ≥1

(
b

jρ

)j
. (2.3.12)

By Stirling’s formula for jρ integers, we have that Γ(jρ+ 1) = (jρ)! ≈
√

2πjρ(jρ/e)jρ. It
follows that for jρ ≥ 1, Γ(jρ+ 1) ≥ (jρ/e)jρ and

∑
j∈N, jρ≥1

(
b

jρ

)j
≥

∑
j∈Z+, jρ≥1

(
b1/ρ(ρ/e)

)jρ
Γ(jρ+ 1)

. (2.3.13)

Since 0 < ρ ≤ 1 and j ∈ N, then for each positive integer k ≥ 2, we can always find a
distinct product jρ such that Γ(jρ+ 1) ≤ Γ(djρe+ 1) = (djρe)! = k! and jρ ≥ 1. Let djρe
denote the smallest integer greater than jρ and denote bjρc to be the greatest integer less
than jρ. Substitute these into (2.3.13), since b ≥ (e/ρ)ρ we have that b1/ρ(ρ/e) ≥ 1. Thus

∑
j∈N, jρ≥1

(
b1/ρ(ρ/e)

)jρ
Γ(jρ+ 1)

≥
∑

j∈N, jρ≥1

(
b1/ρ(ρ/e)

)bjρc
(djρe)!

≥
∞∑
k=2

(
b1/ρ(ρ/e)

)k−1

k!
=

∞∑
k=1

(
b1/ρ(ρ/e)

)k
(k + 1)!

≥
∞∑
k=1

2−k
(
b1/ρ(ρ/e)

)k
k!

= exp
(
b1/ρ(ρ/2e)

)
− 1.

Substituting this into (2.3.12) gives the result.

The next result gives the reverse of the above inequality proved in the above Lemma.
The proof follows same notations as in the proof of the above Lemma.
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Lemma 2.3.8. Let 0 < ρ ≤ 1, then there exist positive constants c1 and c2 such that

∞∑
j=0

bj

Γ(jρ+ 1)
≤ c1 exp

(
c2b

1/ρ
)
for all b > 0.

Proof. Just as in the above Lemma, we start by writing

∞∑
j=0

(b1/ρ)jρ

Γ(jρ+ 1)
=

∑
j∈Z+, jρ<1

(b1/ρ)jρ

Γ(jρ+ 1)
+

∑
j∈Z+, jρ≥1

(b1/ρ)jρ

Γ(jρ+ 1)
. (2.3.14)

We first consider the case when 0 < b < 1. With same notations from the above Lemma,
we write

∑
j∈Z+, jρ≥1

(b1/ρ)jρ

Γ(jρ+ 1)
≤

∑
j∈Z+, jρ≥1

(b1/ρ)bjρc

(bjρc)!

≤ c1

∞∑
k=2

(b1/ρ)k−1

(k − 1)!
= c1

∞∑
k=1

(b1/ρ)k

k!
= c1

(
exp(b1/ρ)− 1

)
,

and ∑
j∈Z+, jρ<1

(b1/ρ)jρ

Γ(jρ+ 1)
≤ c2,

where Γ(jρ + 1) is bounded below by a constant for all jρ < 1. Substituting both sums
into (2.3.14), therefore we come up with

∞∑
j=0

(b1/ρ)jρ

Γ(jρ+ 1)
≤ c3

(
exp(b1/ρ) + 1

)
≤ c4 exp(b1/ρ).

Next, we consider the case of b ≥ 1 where we have

∑
j∈Z+, jρ≥1

(b1/ρ)jρ

Γ(jρ+ 1)
≤

∑
j∈Z+, jρ≥1

(b1/ρ)djρe

(bjρc)!
=

∑
j∈Z+, jρ≥1

(b1/ρ)bjρc+1

(bjρc)!

≤ c5

∞∑
k=2

(b1/ρ)k

(k − 1)!
= c5

∞∑
k=1

(b1/ρ)k+1

k!

≤ c6

∞∑
k=2

(2b1/ρ)k

k!
= c6

(
exp(2b1/ρ)− 2b1/ρ − 1

)
.
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We also have on the other hand that

∑
j∈Z+, jρ<1

(b1/ρ)jρ

Γ(jρ+ 1)
≤ 2c7b

1/ρ.

Therefore substituting for both cases into (2.3.14), we obtain

∞∑
j=0

(b1/ρ)jρ

Γ(jρ+ 1)
≤ c8 exp(c9b

1/ρ).
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CHAPTER 3

ON A STOCHASTIC HEAT EQUATION
DRIVEN BY COMPENSATED

POISSON NOISE

We look at the following stochastic heat equations driven by discontinuous processes.[
∂u

∂t
(t, x)− Lu(t, x)

]
dxdt = λ

∫
R
σ(u(t, x), h)Ñ(dt, dx, dh), (3.0.1)

with initial condition u0(x). Here and throughout, u0 : R→ R+ is a non-random function,
and L is the L2-generator of a Lévy process. For existence and uniqueness, we need the
following condition on σ. Essentially this condition says that σ is globally Lipschitz in the
first variable and bounded by another function in the second variable.

Condition 3.0.9. There exist a positive function J and a finite positive constant, Lipσ

such that for all x, y, h ∈ R, we have

|σ(0, h)| ≤ J(h) and |σ(x, h)− σ(y, h)| ≤ J(h)Lipσ|x− y|. (3.0.2)

The function J is assumed to satisfy the following integrability condition:∫
R
J(h)2ν(dh) ≤ K, (3.0.3)

where K is some finite positive constant.
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3.1. Existence and Uniqueness result

3.1 Existence and Uniqueness result

With the linear growth condition on σ, we give proof of the existence and uniqueness result
for the compensated equation. Roughly speaking we have the following theorem with the
assumption that u0 : R→ R+ is measurable and bounded.

Theorem 3.1.1. Under condition 3.0.9, there exists a unique random field solution to
(3.0.1) satisfying

γ̄(2) ≤ inf

{
β > 0 : Υ(β) <

1

λ2KLip2
σ

}
<∞,

where γ̄(p) is as defined in (1.1.5).

This result is a direct analogue of Theorem 2.1 of [44] and it gives an upper bound
on the rate of growth of the second moment E|u(t, x)|2 of the solution. It also generalises
Theorem 1.3.1 of [10].

Example 3.1.2. For L = ∆, the characteristic exponent is given by Ψ(ξ) = ξ2 and
σ(u, h) = uh satisfies condition 3.0.9 with Lipσ = 1 and J(h) = |h| such that∫

R
|h|2ν(dh) <∞.

Also,

Υ(β) =
1

2π

∫
R

dξ
β + 2ReΨ(ξ)

=
1

2π

∫
R

dξ
β + 2ξ2

=
1

2π
.
π√
2β

=
1√
8β

for all β > 0.

Estimates for the proof(s) of results are presented as follow.

3.1.1 Some estimates for the compensated equation

Throughout this section we set

(Au)(t, x) := λ

∫ t

0

∫
R

∫
R
p(t− s, x, y)σ(u(s, y), h)Ñ(dh, dy, ds). (3.1.1)

We will also use the following norm:

‖u‖2,β :=

{
sup
t>0

sup
x∈R

e−βtE[|u(t, x)|2]

}1/2

. (3.1.2)

Lemma 3.1.3. For all β > 0,

sup
t>0

e−βt
∫ t

0

∫
R
|p(s, x, y)|2dy ds ≤ Υ(β).
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3.1. Existence and Uniqueness result

Proof.

sup
t>0

e−βt
∫ t

0

∫
R
|p(s, x, y)|2dy ds ≤

∫ ∞
0

∫
R
e−βs|p(s, x, y)|2dy ds

=

∫ ∞
0

∫
R
e−βs|p̂(s, ξ)|2dξ ds

=

∫
R

dξ
β + 2ReΨ(ξ)

= Υ(β).

The above result is true for Rd and will be severally used in the proof of the following
Lemma(s) below. We then have the following estimates.

Proposition 3.1.4. Suppose that u admits a weak predictable version and that ‖u‖2, β <∞
for β > 0. Then there exists some positive constant c4 =

√
c1Kλ such that

‖Au‖2,β ≤ c4[Lipσ‖u‖2,β + 1]
√

Υ(β).

Proof. We use the Itô isometry to write

E|Au(t, x)|2 = λ2

∫ t

0

∫
R

∫
R
|p(t− s, x, y)|2E|σ(u(s, y), h)|2ν(dh) dy ds.

We now use the first part of condition 3.0.9 to see that there exists a constant c1 such that
|σ(x, h)|2 ≤ c1J

2(h)(Lipσ|x|2 + 1). This and the above display yield the following bound

E|(Au)(t, x, .)|2

≤ c2

∫ t

0

∫
R

∫
R
|p(t− s, x, y)|2J2(h)(Lip2

σE|u(s, y)|2 + 1)ν(dh) dy ds

≤ c3

∫
R
J2(h)ν(dh)eβtΥ(β)[Lip2

σ‖u‖22,β + 1].

We now use the second part of condition 3.0.9 and rearrange the bound in the above
display to end up with

‖Au‖2,β ≤ c4

√
Υ(β)[Lip2

σ‖u‖22,β + 1]

≤ c4[Lipσ‖u‖2,β + 1]
√

Υ(β).

for some constant c4.
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3.1. Existence and Uniqueness result

Proposition 3.1.5. Let β > 0 and let u and v be two weak predictable random field
solutions satisfying ‖u‖2,β + ‖v‖2,β <∞. Then

‖Au−Av‖2,β ≤ λLipσ
√

KΥ(β)‖u− v‖2,β.

Proof. The proof is very similar to the proof of the previous result. We start by applying
Itô-isometry and the first part of condition 3.0.9, to obtain

E|Au(t, x)−Av(t, x)|2 ≤ Kλ2Lip2
σ

∫ t

0

∫
R

E|u(s, y)− v(s, y)|2|p(t− s, x, y)|2dyds.

Following same procedure as the preceding Proposition, we have that

‖Au−Av‖22,β

≤ sup
x∈R

sup
t>0

e−βtλ2KLip2
σ

∫ t

0

∫
R

E
[
|u(s, y)− v(s, y)|2

]
|p(t− s, x, y)|2dyds

≤ λ2KLip2
σ‖u− v‖22,β

∫ ∞
0

∫
R
e−βs|p̂(s, ξ)|2dξds

by Plancherel’s identity. Hence,

‖Au−Av‖22,β ≤ λ2KLip2
σ‖u− v‖22,β

∫ ∞
0

∫
R
e−βse−2sReΨ(ξ)dξds

= λ2KLip2
σ‖u− v‖22,βΥ(β).

Therefore,
‖Au−Av‖2,β ≤ λLipσ

√
KΥ(β)‖u− v‖2,β.

We now use the above estimates to prove the result.

Proof of the existence and uniqueness part of Theorem 3.1.1. We prove the existence of
the solution by an iterative schemes. Let’s define v0(t, x) := u0(x) for all t ≥ 0 and x ∈ R.

Since u0 is assumed to be bounded, so ‖v0‖2,β <∞ for all β > 0. Iteratively, we set{
vn+1(t, x) = Avn(t, x) + (Ptu0)(x)

vn(t, x) = Avn−1(t, x) + (Ptu0)(x).

From the above, we have that for sufficiently large β

‖Avn+1‖2,β = ‖A(Avn)‖2,β.
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3.1. Existence and Uniqueness result

Then by Proposition 3.1.4, we have that

‖Avn+1‖2,β = ‖A(Avn)‖2,β ≤ c4

√
Υ(β)

[
Lipσ‖Avn‖2,β + 1

]
. (3.1.3)

Since limβ→∞Υ(β) = 0, then we can always choose and fix β > 0 such that

c4

√
Υ(β)Lipσ < 1 ⇔ c2

4Υ(β)Lip2
σ < 1

since c4

√
Υ(β)Lipσ > 0. It follows that

Υ(β) <
1[

c4 Lipσ
]2 <∞, ∀β > 0.

From (3.1.3) we have ‖Avn+1‖2,β ≤ c4

√
Υ(β)Lipσ‖Avn‖2,β+c4

√
Υ(β). Taking sup of both

sides over n, therefore,

sup
n≥0
‖Avn+1‖2,β − c4

√
Υ(β)Lipσ sup

n≥0
‖Avn‖2,β ≤ c4

√
Υ(β).

But supn≥0 ‖Avn+1‖2,β = supn≥0 ‖Avn‖2,β since ‖Av0‖2,β is significantly small for suffi-
ciently large β, then

sup
n≥0
‖Avn‖2,β ≤

c4

√
Υ(β)

1− c4Lipσ
√

Υ(β)
<∞.

Also vk(t, x) = Avk−1(t, x) + (Ptu0)(x) and the uniform bound on Ptu0(x),

‖vk‖2,β = ‖Avk−1‖2,β + ‖Ptu0(x)‖2,β
≤ ‖Avk−1‖2,β + sup

r∈R
|u0(r)|.

Then we have that

sup
k≥1
‖vk‖2,β ≤ sup

k≥1
‖Avk−1‖2,β + sup

r∈R
|u0(r)|

≤
c4

√
Υ(β)

1− c4Lipσ
√

Υ(β)
+ sup
r∈R
|u0(r)| <∞.

Furthermore, ‖vn+1 − vn‖2,β = ‖Avn −Avn−1‖2,β and by Proposition 3.1.5, we have that
for all n ≥ 1

‖vn+1 − vn‖2,β ≤ c4Lipσ
√

Υ(β)‖vn − vn−1‖2,β.
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3.1. Existence and Uniqueness result

Since we can choose β > 0 such that c4 Lipσ
√

Υ(β) < 1, then by contraction mapping
principle we prove the existence of the solution u such that

lim
n→∞

‖vn − u‖2,β = lim
n→∞

‖Avn −Au‖2,β = 0, andu(t, x) = Au(t, x) + (Ptu0)(x).

Therefore, ‖u‖2,β ≤ ‖Au‖2,β + supr∈R u0(r) <∞ and ‖un−Aun−Ptu0‖2,β = 0, hence

E
[
|u(t, x)−Au(t, x)− Ptu0(x)|2

]
= 0, t ≥ 0 andx ∈ R.

That’s, for j = 1, . . . n, we have that

‖vn+1 − vn‖2,β

≤ c4Lipσ
√

Υ(β)‖vn − vn−1‖2,β ≤ . . . ≤
(
c4Lipσ

√
Υ(β)

)j
‖vn−(j−1) − vn−j‖2,β

≤
(
c4Lipσ

√
Υ(β)

)n
‖v1 − v0‖2,β.

Choose ε > 0 and pick Nε ∈ N such that
(
c4Lipσ

√
Υ(β)

)Nε
‖v1 − v0‖2,β < ε. Since

c4Lipσ
√

Υ(β) < 1 then for any n+ 1 > n ≥ Nε,

‖vn+1 − vn‖2,β ≤
(
c4Lipσ

√
Υ(β)

)n
‖v1 − v0‖2,β ≤

(
c4Lipσ

√
Υ(β)

)Nε
‖v1 − v0‖2,β < ε.

Therefore {vn} is a Cauchy sequence. Since (L2, ‖.‖2,β) is complete, the v′ns converge in
(L2, ‖.‖2,β). So u = limn→∞ vn belongs to (L2, ‖.‖2,β).

Next, we prove the uniqueness of the solution up to modification. Let u1 and u2 be
solutions and assume for contradiction that u1 6= u2 such that{

u1(t, x) = Au1(t, x) + (Ptu0)(x)

u2(t, x) = Au2(t, x) + (Ptu0)(x).

Therefore, ‖u1 − u2‖2,β = ‖Au1 − Au2‖2,β, β > 0. Then by Proposition 3.1.5 we have
that ‖u1 − u2‖2,β ≤ c4Lipσ

√
Υ(β)‖u1 − u2‖2,β, and ‖u1 − u2‖2,β[1 − c4Lipσ

√
Υ(β)] ≤ 0.

This implies that ‖u1 − u2‖2,β ≤ 0 (since 1 − c4 Lipσ
√

Υ(β) > 0) which implies that
‖u1− u2‖2,β = 0, and follows that u1 = u2. This contradicts the assumption that u1 6= u2,
hence u1 = u2 and thus a unique solution. Therefore u1 and u2 are modification of each
other. The proof of the upper bound result of the theorem follows similar argument as in
the proof of Theorem 3.2.2 below.
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3.2. Growth of second moment of the solution

3.2 Growth of second moment of the solution

Here, we estimate bound on growth moment and show that our solution grows exponentially
for the compensated equation. For the lower bound result, we will need the following extra
condition on σ.

Condition 3.2.1. There exist a positive function J̄ and a constant, Lσ such that for all
x, h ∈ R, we have

|σ(x, h)| ≥ LσJ̄(h)|x| (3.2.1)

The function J̄ is assumed to satisfy the following integrability condition.

κ ≤
∫
R
J̄(h)2ν(dh) ≤ K, (3.2.2)

where K is the constant from (3.0.3) and κ is another positive, finite constant.

Let’s recall that
γ(2) := lim sup

t→∞

1

t
ln E|u(t, x)|2, x ∈ R.

Then under some further assumptions, we have the following

Theorem 3.2.2. If we further assume that condition 3.2.1 holds and infx∈R u0(x) > 0,
then

γ(2) ≥ Υ−1
( 1

K2

)
> 0,

where Υ−1(t) := sup
{
β > 0 : Υ(β) > t

}
and K =

√
κLσλ.

Example 3.2.3. For L = ∆, σ = uh, then Lσ = 1, J(h) = |h| and

Υ−1

(
1

κλ2

)
= sup

{
β > 0 :

1√
8β

>
1

κλ2

}
.

Proof of Theorem 3.2.2. As in the proof of Theorem 2.7 of [44], it is sufficient for us to
show that ∫ ∞

0
e−βtE|u(t, x)|2dt =∞, ∀ t > 0

whenever Υ(β) ≥ 1
K2 with K :=

√
κLσλ. We prove by contradiction by assuming that

lim sup
t→∞

e−αtE|u(t, x)|2 <∞

with Υ(α) < 1
K2 and x ∈ R, which is equivalent to say that E|u(t, x)|2 = O(exp(αt)) as
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3.2. Growth of second moment of the solution

t→∞, since e−αt ≥ 0, ∀ t ≥ 0 and α ∈ R. It follows from the above that∫ ∞
0

e−βtE|u(t, x)|2dt ≤ C
∫ ∞

0
e−βteαtdt = C

∫ ∞
0

e−(β−α)tdt <∞,

for all β ∈ (α,Υ−1( 1
K2 )) which contradicts the assumption that∫ ∞

0
e−βtE|u(t, x)|2dt =∞, ∀ t > 0

provided that Υ(β) ≥ 1
K2 and hence the claim. By condition 3.2.1, we obtain that

E|u(t, x)|2

= |(Ptu0)(x)|2 + λ2

∫ t

0

∫
R

∫
R

E|σ(u(s, y), h)|2|p(t− s, x− y)|2ν(dh)dyds

≥ |(Ptu0)(x)|2 + λ2L2
σ

∫ t

0

∫
R

∫
R

E(|u(s, y)|2)J̄2(h)|p(t− s, x− y)|2ν(dh)dyds

≥ |(Ptu0)(x)|2 + κλ2L2
σ

∫ t

0

∫
R

E|u(s, y)|2|p(t− s, x− y)|2dyds.

The last inequality follows by the assumption on ν. Apply Laplace transforms to both for
all β > 0 and x ∈ R,∫ ∞

0
e−βtE|u(t, x)|2dt

≥
∫ ∞

0
ε2e−βtdt+ κλ2L2

σ

∫ ∞
0

e−βt
∫ t

0

∫
R

E(|u(s, y)|2)|p(t− s, x− y)|2dydsdt

≥
∫ ∞

0
e−βt|(Ptu0)(x)|2)dt+ κλ2L2

σ

∫
R

∫ ∞
0

e−βs|p(s, x− y)|2ds
∫ ∞

0
e−βsE|u(s, y)|2dsdy.

Then,

Fβ(x) ≥ Gβ(x) +K2

∫
R
Hβ(x− y)

{∫ ∞
0

e−βsE(|u(s, y)|2)ds
}
dy,

where we define the following

Fβ(x) :=

∫ ∞
0

e−βtE|u(t, x)|2dt, Gβ(x) :=

∫ ∞
0

e−βt|(Ptu0)(x)|2dt,

Hβ(x) :=

∫ ∞
0

e−βt|p(t, x)|2dt and K2 = κλ2L2
σ.

Therefore,
Fβ(x) ≥ Gβ(x) +K2(Fβ ∗Hβ)(x).
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3.2. Growth of second moment of the solution

Let’s define a linear operator H (a convolution operator) by

(Hf)(x) := K2(Hβ ∗ f)(x), (3.2.3)

we deduce that
HnFβ(x)−Hn+1Fβ(x) ≥ HnGβ(x)

where n ≥ 0 is the number of convolutions. Also,

N∑
n=0

(
HnFβ −Hn+1Fβ

)
(x) ≥

N∑
n=0

(
HnGβ

)
(x),

which implies that

Fβ −HN+1Fβ(x) ≥
N∑
n=0

(
HnGβ

)
(x)

and

Fβ ≥ HN+1Fβ(x) +

N∑
n=0

(
HnGβ

)
(x) ≥

N∑
n=0

(
HnGβ

)
(x).

Therefore,

Fβ ≥
N∑
n=0

(
HnGβ

)
(x) and Fβ ≥

∞∑
n=0

(
HnGβ

)
(x) as N →∞.

Denote ε := infx∈R u0(x) then it follows that (Ptu0)(x) ≥ ε and hence Gβ(x) ≥ ε2

β . From
equation (3.2.3) we have that

(HGβ)(x) = K2(Hβ ∗Gβ)(x) = K2

∫ ∞
0

e−βt|(Ptu0)(x)|2dt.
∫
R
Hβ(x− y)dy

≥ K2ε2

β

∫
R
Hβ(x− y)dy =

K2ε2

β

∫
R
Hβ(y)dy.

Therefore,

(HGβ)(x) ≥ K
2ε2

β
Υ(β).

Iterating the above argument for n times and taking an infinite sum, it follows that:

∞∑
n=0

(
HnGβ

)
(x) ≥ ε2

β

∞∑
n=0

(K2Υ(β))n and Fβ(x) ≥
∞∑
n=0

(
HnGβ

)
(x) ≥ ε2

β

∞∑
n=0

(K2Υ(β))n.
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3.2. Growth of second moment of the solution

That is;

Fβ(x) ≥ ε2

β

∞∑
n=0

(K2Υ(β))n and Fβ(x) =∞ whenever K2Υ(β) ≥ 1,

and the result follows.

In the next result, we will restrict our attention to the special case when L := −(−∆)α/2

which is the generator of α-stable process. This will enable us to get more precise infor-
mation about the behaviour of the growth of the second moment of the solution to (3.0.1).
Note that Υ(β) <∞ requires that 1 < α ≤ 2 which will be in force.

Theorem 3.2.4. Suppose that L := −(−∆)α/2, 1 < α ≤ 2 and that condition 3.2.1
together with infx∈R u0(x) > 0 hold, then

E|u(t, x)|2 ≥ c2 exp(c3λ
2α
α−1 t), for all t > 0,

where c2 and c3 are some positive constants.

Proof. Starting with Itô isometry

E|u(t, x)|2 = |(Ptu0)(x)|2 + λ2

∫ t

0

∫
R

∫
R
|p(t− s, x− y)|2E|σ(u(s, y), h)|2ν(dh)dyds.

Then using ε := infx∈R u0(x), and condition 3.2.1 to write

E|u(t, x)|2 ≥ ε2 + κλ2L2
σ

∫ t

0

∫
R
|p(t− s, x− y)|2E|u(s, y)|2dyds

≥ ε2 + κλ2L2
σ

∫ t

0
inf
y∈R

E|u(s, y)|2p(2(t− s), 0)ds.

Setting F (t) := infx∈R E|u(t, x)|2, the above together with an upper bound on the heat
kernel in Lemma 2.3.4 yield

F (t) ≥ ε2 + c1κλ
2L2

σ

∫ t

0

F (s)

(t− s)1/α
ds

= ε2 + c1κλ
2L2

σ

∫ t

0
(t− s)

α−1
α
−1F (s)ds.

This proves the theorem by applying renewal inequality.
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3.2. Growth of second moment of the solution

Next we drop the assumption that the initial condition u0 is bounded below. This we
compensate by paying the price of not getting an exponential growth of the solution for all
times.

Theorem 3.2.5. Suppose that L := −(−∆)α/2 and that condition 3.2.1 holds. Fix any
interval [t0, T ], with 0 < t0 < T <∞. If u0 6= 0, then

inf
x∈[−1,1]

E|u(t, x)|2 ≥ c4 exp(c5κλ
2L2

σt), for all t ∈ [t0, T ],

where c4 and c5 are some positive constants.

Proof. As before, take second moment of the solution,

E|u(t, x)|2 = |(Ptu0)(x)|2 + λ2

∫ t

0

∫
R

∫
R
|p(t− s, x− y)|2E|σ(u(s, y), h)|2ν(dh)dyds.

Fix t0 > 0, then use condition 3.2.1 to write

E|u(t+ t0, x)|2 ≥ |(Pt+t0u0)(x)|2 + κλ2L2
σ

∫ t+t0

0

∫
R
|p(t+ t0 − s, x− y)|2E|u(s, y)|2dyds

≥ |(Pt+t0u0)(x)|2 + κλ2L2
σ

∫ t+t0

t0

∫
R
|p(t+ t0 − s, x− y)|2E|u(s, y)|2dyds.

Make the following change of variable s − t0, then set v(t, x) := u(t + t0, x) for a fixed
t0 > 0 together with Proposition 2.3.6 to write

E|v(t, x)|2 ≥ |(Pt+t0u0)(x)|2 + κλ2L2
σ

∫ t

0

∫
R
|p(t− s, x− y)|2E|v(s, y)|2dyds

≥ |c(t0)p(t+ η, x)|2 + κλ2L2
σ

∫ t

0

∫
R
|p(t− s, x− y)|2E|v(s, y)|2dyds

≥ c1p
2(t+ η, x) + κλ2L2

σ

∫ t

0
inf

y∈[−1,1]
E|v(s, y)|2

∫ 1

−1
p2(t− s, x− y)dyds.

Upon setting g(t) := infx∈[−1,1] E|v(t, x)|2, we have that

g(t) ≥ c2(t+ η)−2/α + c3κλ
2L2

σ

∫ t

0
g(s)

∫ 1

−1
(t− s)−2/αdyds.

Since t ≤ T , we obtain that

g(t) ≥ c4 + c5κλ
2L2

σ

∫ t

0
g(s)ds,
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3.3. Non-existence of global solution

where the constants c4 and c5 depend on T and the result follows.

3.3 Non-existence of global solution

Much of the result on SPDEs assumes that the multiplicative non-linearity term is globally
Lipschitz. We show that if the non-linearity term grows faster than linear growth, then our
solution fails to exist. The global non-existence of the solution occurs for some non-linear
conditions on σ. If instead of (3.2.1), we have the following condition.

Condition 3.3.1. There exists a constant β > 1 such that

|σ(x, h)| ≥ LσJ̄(h)|x|β, (3.3.1)

where the constant Lσ and the function J̄ are the same as in condition 3.2.1.

We then have the following result.

Theorem 3.3.2. Suppose that L := −(−∆)α/2 and that condition 3.3.1 is in force. Then
there does not exist any random field solution to (3.0.1) .

We now give the following proposition which establishes the fact that under the local
Lipschitz continuity as stated in condition 3.3.1, there exists a unique solution up to a fixed
time T .

Proposition 3.3.3. Suppose that condition 3.3.1 holds. Then there exists a T > 0 such
that (3.0.1) has a unique random field solution up to time T .

Proof. We begin by defining

σN (x, h) =

{
σ(x, h) if x ≤ N

σ(N, h) if x > N.

σN (x, h) therefore satisfies (3.0.2) but with a different constant. Therefore by the proof of
Theorem 3.1.1, there exists a unique solution {uN (t, x)}0≤t≤T ,x∈R satisfying

sup
0<t<T

sup
x∈R

E|uN (t, x)|2 <∞.

By Proposition A.1.1, for a fixed x ∈ R, E|uN (t, x)|2 is continuous in t. Since E|u(0, x)|2

is finite, there exists T > 0 such that for all t < T , E|uN (t, x)|2 is finite as well. We have
therefore established short-time existence of the solution.
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We state one last result on the global non-existence of solutions to a class of ODE which
the conclusion of our main result will be based on.

Proposition 3.3.4. Consider the following ordinary differential equation.

y′(t)tb = y(t)1+a

for all positive constants a, b with initial condition y(t0). If b < 1, then the solution blows
up for any positive initial datum y(t0). On the other hand, if b > 1, then the solution blows
up for sufficiently large initial datum y(t0).

Proof. For the simplest case when b = 1, an elementary calculus shows that

y(t)−a = y(t0)−a − ln
( t
t0

)
solves the above equation. The above solution shows that y(t) blows up in finite time for
any positive initial function y(t0). Next for a > 0 and b 6= 1 the solution to the equation
is given by

y(t)−a = y(t0)−a +
a

b− 1

(
t1−b − t1−b0

)
.

The theorem follows for b > 1 whenever y(t0)a >
tb−1
0 (b−1)

a and when b < 1 for any positive
initial condition.

Proof of Theorem 3.3.2. We use Ito’s isometry to write

E|u(t, x)|2 = |(Ptu0)(x)|2 + λ2

∫ t

0

∫
R

∫
R
|p(t− s, x− y)|2E|σ(u(s, y), h)|2ν(dh)dyds.

We use the assumption that u0(x) > c1 for some positive constant c1 and condition 3.3.1
to come up with

E|u(t, x)|2 ≥ c2
1 + κλ2L2

σ

∫ t

0

∫
R
p2(t− s, x− y)E|u(s, y)|2βdyds

≥ c2
1 + κλ2L2

σ

∫ t

0
( inf
y∈R

E|u(s, y)|2)βp(2(t− s), 0)ds.

Upon setting
F (t) = inf

x∈R
E|u(t, x)|2,

the above inequality reduces to

F (t) ≥ c2
1 + κλ2L2

σ

∫ t

0
p(2(t− s), 0)F β(s)ds.
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3.3. Non-existence of global solution

We now use Lemma 2.3.4 to find lower bounds on the heat kernel appearing in the
above display.

F (t) ≥ c2 + κλ2L2
σc3

∫ t

0
(t− s)−1/αF β(s)ds

≥ c2 + κλ2L2
σc3

∫ t

0
t−1/αF β(s)ds.

Hence, multiplying through by t1/α

F (t)t
1
α ≥ c2t

1/α + κλ2L2
σc3

∫ t

0
F β(s)ds

= c2t
1/α + κλ2L2

σc3

∫ t

0

(s1/αF (s))β

sβ/α
ds.

Let Y (t) = F (t)t1/α, then for all t ≥ 0

Y (t) ≥ c2t
1/α + κλ2L2

σc3

∫ t

0

Y β(s)

sβ/α
ds

≥ κλ2L2
σc3

∫ t

0

Y β(s)

sβ/α
ds,

which essentially implies by Proposition 3.3.4 that Y (t) ceases to exist in finite time.
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CHAPTER 4

ON A STOCHASTIC HEAT EQUATION
DRIVEN BY NON-COMPENSATED

POISSON NOISE

We now look at the non-compensated equation.[
∂u

∂t
(t, x)− Lu(t, x)

]
dxdt = λ

∫
Rd

σ(u(t, x), h)N(dt, dx, dh), (4.0.1)

with initial condition u(0, x) = u0(x). Here again L is the L2- generator of a Lévy process.
For the existence and uniqueness result, we make the following assumption.

Condition 4.0.5. There exist a positive function J and a finite positive constant, Lipσ

such that for all x, y, h ∈ Rd, we have

|σ(0, h)| ≤ J(h) and |σ(x, h)− σ(y, h)| ≤ J(h)Lipσ|x− y|. (4.0.2)

The function J is assumed to satisfy the following integrability condition.∫
Rd

J(h)ν(dh) ≤ K, (4.0.3)

where K is some finite positive constant.
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4.1. Existence and Uniqueness result

4.1 Existence and Uniqueness result

As with the existence and uniqueness result of the compensated noise, we also assume that
u0 : Rd → R+ is both measurable and bounded.

Theorem 4.1.1. Under condition 4.0.5, there exists a unique random field solution to
(4.0.1) with

γ̄(1) ≤ λKLipσ.

The above result gives an upper bound on the growth of the first moment. Before we
give the proof of Theorem 4.1.1, first some estimates.

4.1.1 Estimates for the non-compensated equation.

We define the following norm

‖u‖1,β = sup
t≥0

sup
x∈Rd

e−βtE|u(t, x)|,

the first moment norm of the solution. Let

Bu(t, x) := λ

∫ t

0

∫
Rd

∫
Rd

p(t− s, x, y)σ(u(s, y), h)N(dh, dy, ds),

and hence the following Lemma(s):

Lemma 4.1.2. Suppose that u is weak predictable and ‖u‖1,β < ∞ for all β > 0 and
σ(u, h) satisfies condition 4.0.5, then ‖Bu‖1,β ≤ λK

β

[
1 + Lipσ‖u‖1,β

]
.

Proof. Following similar steps as in the previous section,

E|Bu(t, x)| = λ

∫ t

0

∫
Rd

∫
Rd

p(t− s, x, y)E|σ(u(s, y), h)|ν(dh)dyds

≤ λ

∫ t

0

∫
Rd

∫
Rd

p(t− s, x, y)J(h)
[
1 + LipσE|u(s, y)|

]
ν(dh)dyds

≤ λK

∫ t

0

∫
Rd

p(t− s, x, y)
[
1 + LipσE|u(s, y)|

]
dyds.
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4.1. Existence and Uniqueness result

Multiply throught by the exponential factor

e−βtE|Bu(t, x)|

≤ λK

∫ t

0

∫
Rd

e−β(t−s)p(t− s, x, y)
[
e−βs + Lipσe

−βsE|u(s, y)|
]
dyds

≤ λK sup
s≥0

sup
y∈Rd

[
e−βs + Lipσe

−βsE|u(s, y)|
] ∫ t

0

∫
Rd

e−β(t−s)p(t− s, x, y)dyds

= λK
[
1 + Lipσ‖u‖1,β

] ∫ t

0

∫
Rd

e−β(t−s)p(t− s, x, y)dyds.

Therefore,

‖Bu‖1,β ≤ λK
[
1 + Lipσ‖u‖1,β

] ∫ ∞
0

∫
Rd

e−βsp(s, x, y)dyds

= λK
[
1 + Lipσ‖u‖1,β

] ∫ ∞
0

e−βsds,

and the result follows.

Lemma 4.1.3. Let u and v be weak predictable random field solutions satisfying ‖u‖1,β +

‖v‖1,β <∞ for all β > 0 and assume σ(u, h) satisfies condition 4.0.5, then

‖Bu− Bv‖1,β ≤
λKLipσ

β
‖u− v‖1,β.

Proof. Follows as above Lemma 4.1.2.

Proof of Theorem 4.1.1. We prove the existence of the solution by method of Picard-
Iteration schemes by following same proof in Theorem 3.1.1. Iteratively, define{

vn+1(t, x) = Bvn(t, x) + (Ptu0)(x)

vn(t, x) = Bvn−1(t, x) + (Ptu0)(x)

where v0 =: Bv−1. Then for sufficiently large β > 0

‖Bvn+1‖1,β = ‖B(Bvn)‖1,β ≤
λK

β

[
1 + Lipσ‖Bvn‖1,β

]
.

Since limβ→∞
1
β = 0, then we choose and fix β > 0 such that λK

β Lipσ < 1. Take sup of
both sides over n and given that supn≥0 ‖Bvn+1‖1,β = supn≥0 ‖Bvn‖1,β , since ‖Bv0‖1,β is
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4.1. Existence and Uniqueness result

significantly small for β sufficiently large. Then

sup
n≥0
‖Bvn‖1,β ≤

λK
β

1− λKLipσ
β

<∞.

Also, vk(t, x) = Bvk−1(t, x) + (Ptu0)(x) and since (Ptu0)(x) is bounded uniformly by
supr∈Rd |u0(r)|,

‖vk‖1,β = ‖Bvk−1‖1,β + ‖(Ptu0)(x)‖1,β ≤ ‖Bvk−1‖1,β + sup
r∈Rd

|u0(r)|.

Then it follows that

sup
k≥1
‖vk‖1,β ≤ sup

k≥1
‖Bvk−1‖1,β + sup

r∈Rd

|u0(r)|

≤
λK
β

1− λKLipσ
β

+ sup
r∈Rd

|u0(r)| <∞.

On the other hand, for all n ≥ 1 and j = 1, . . . n,

‖vn+1 − vn‖1,β = ‖Bvn − Bvn−1‖1, β

≤ λKLipσ
β

‖vn − vn−1‖1,β ≤ . . . ≤
(
λKLipσ

β

)j
‖vn−(j−1) − vn−j‖1,β

≤
(
λKLipσ

β

)n
‖v1 − v0‖1,β.

The existence of the solution u follows by contraction mapping principle since λK
β Lipσ < 1

such that

lim
n→∞

‖vn − u‖1,β = lim
n→∞

‖Bvn − Bu‖1,β = 0, whereu(t, x) = (Ptu0)(x) + Bu(t, x).

Therefore, ‖u‖1,β ≤ ‖Bu‖1,β + supr∈Rd u0(r) <∞ and ‖un − Bun − Ptu0‖1,β = 0, hence

E
[
|u(t, x)− Bu(t, x)− Ptu0(x)|

]
= 0, t ≥ 0 andx ∈ Rd.

Next, we prove the uniqueness. Suppose for contradiction that there exist two solutions
u, v such that u 6= v, then by Proposition 3.1.5,

‖u− v‖1,β = ‖Bu− Bv‖1,β ≤
λKLipσ

β
‖u− v‖1,β.
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4.2. Growth of first moment of the solution

Then ‖u−v‖1,β[1− λKLipσ
β ] ≤ 0 and ‖u−v‖1,β ≤ 0 since β > λKLipσ. That’s ‖u−v‖1,β = 0

which implies that u − v = 0 contradicting the assumption that u 6= v. Hence u and v

are unique modifications of one another which proves the theorem. The second part of the
theorem follows similar steps as in Theorem 4.2.2 below.

4.2 Growth of first moment of the solution

We can also give the lower bound estimate on the growth of the first moment.

Condition 4.2.1. There exist a positive function J̄ and a constant, Lσ such that for all
x, h ∈ Rd, we have

|σ(x, h)| ≥ LσJ̄(h)|x| (4.2.1)

The function J̄ is assumed to satisfy the following integrability condition.

κ ≤
∫
Rd

J̄(h)ν(dh) ≤ K, (4.2.2)

where K is the constant from (4.0.3) and κ is another positive finite constant.

Next we define the upper 1st moment Lyapunov exponent as follows:

γ(1) := lim sup
t→∞

1

t
ln E|u(t, x)|,

and then the lower bound result.

Theorem 4.2.2. If we further assume that condition 4.2.1 holds but with infx∈R u0(x) > 0,
then

inf
x∈Rd

E|u(t, x)| ≥ c1eκLσλt,

where c1 is a positive constant. In particular, we have

γ̄(1) ≥ κLσλ.

Proof of Theorem 4.2.2. We start off with

E|u(t, x)| ≥ |(Ptu0)(x)|+ κλLσ

∫ t

0

∫
Rd

|p(t− s, x− y)|E|u(s, y)|dyds

≥ ε+ κλLσ

∫ t

0
inf
y∈Rd

E|u(s, y)|
∫
Rd

p(t− s, x− y)dyds

= ε+ κλLσ

∫ t

0
inf
y∈Rd

|E|u(s, y)|ds.

52



4.3. Non-existence of global solution

Upon setting f(t) := infx∈Rd E|u(t, x)|, the above yields

f(t) ≥ ε+ κλLσ

∫ t

0
f(s)ds,

which immediately implies the result . The second part of the theorem follows readily from
the first part.

The next result gets rid of the assumption that the initial condition is bounded below.
The price we pay is that we need some precise information about the heat kernel and we
fail to get an exponential property for all times. The theorem follows.

Theorem 4.2.3. Let L := −(−∆)α/2. Suppose that condition 4.2.1 together with ‖u0‖L1(B(0,1)) >

0 hold. Then there exits t0 > 1 such that for all t0 < t < T <∞, we have

inf
x∈B(0,1)

E|u(t, x)| ≥ c4 exp(c5κλt), for all t ∈ [t0, T ],

where c4 and c5 are some positive constants.

Proof. We follow same lines of proof of Theorem 3.2.5. Set v(t, x) := u(t+ t0, x) for fixed
t0 > 1, then by condition 4.2.1 together with Lemma 2.3.6, we obtain

E|v(t, x)| ≥ (Pt+t0u0)(x) + κλLσ

∫ t

0

∫
Rd

p(t− s, x− y)E|v(s, y)|dyds

≥ c1p(t+ η, x) + κλLσ

∫ t

0
inf

y∈B(0,1)
E|v(s, y)|

∫
B(0,1)

p(t− s, x− y)dyds

≥ c2(t+ η)−1/α + c3κλLσ

∫ t

0
inf

y∈B(0,1)
E|v(s, y)|

∫
B(0,1)

(t− s)−1/αdyds

Upon setting g(t) := infx∈B(0,1) E|v(t, x)|, the above gives

g(t) ≥ c4 + c5κλLσ

∫ t

0
g(s)ds, for all t0 ≤ t ≤ T,

where the constants c4 and c5 are dependent on T . This proves the result.

4.3 Non-existence of global solution

We show that if the function σ grows faster than linear growth, then the first moment of
the solution to (4.0.1) ceases to exist for all time t. Instead of (4.2.1), we consider the
following condition:
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4.3. Non-existence of global solution

Condition 4.3.1. There exists a constant γ > 1 such that

|σ(x, h)| ≥ LσJ̄(h)|x|γ , (4.3.1)

where the constant Lσ and the function J are the same as in condition 4.2.1.

We then have the following result with the initial condition u0 : Rd → R+, a positive
function on a set of positive measure.

Theorem 4.3.2. Suppose that both conditions 4.0.5 and 4.3.1 are in force. Then there
are no random field solutions to (4.0.1) whenever the non-negative initial condition u0 is
bounded below. Let L := −(−∆)α/2, then under the same conditions, there are no random
field solutions to (4.0.1) even if we only have u0 6= 0.

We will also need the following proposition which establishes the fact that under the
local Lipschitz continuity as stated in condition 4.3.1, there exists a unique solution up to
a fixed time T .

Proposition 4.3.3. Suppose that condition 4.3.1 holds. Then there exists a T > 0 such
that (4.0.1) has a unique random field solution up to time T .

Proof. We begin by defining

σN (x, h) =

{
σ(x, h) if x ≤ N

σ(N, h) if x > N.

σN (x, h) therefore satisfies (4.0.2) but with a different constant. Therefore by the proof of
Theorem 4.1.1, there exists a unique solution {uN (t, x)}0≤t≤T , x∈Rd satisfying

sup
0<t<T

sup
x∈Rd

E|uN (t, x)| <∞.

By Proposition A.1.8, for a fixed x ∈ R, E|uN (t, x, .)| is continuous in t. Since E|u(0, x)|
is finite, there exists T > 0 such that for all t < T , E|uN (t, x, .)| is finite as well. We have
therefore established short-time existence of the solution.

Here follows Jensen’s inequality which shall be used in the proof of the blow-up result.

Lemma 4.3.4. Given that p(dx) is a probability measure on Rd and suppose that the
function u is non-negative. Then for all convex function f the following holds,∫

Rd

f(u(x))p(dx) ≥ f
(∫

Rd

u(x)p(dx)

)
.
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4.3. Non-existence of global solution

We now prove the finite time blow up for the non-compensated noise equation.

Proof of Theorem 4.3.2. We begin with the first part of the theorem. Now write

E|u(t, x)| = |(Ptu0)(x)|+ λ

∫ t

0

∫
Rd

∫
Rd

|p(t− s, x− y)|E|σ(u(s, y), h)|ν(dh)dyds.

We use the assumption that u0(x) > c1 for some positive constant c1 and condition 4.3.1
to come up with

E|u(t, x)| ≥ c1 + κλLσ

∫ t

0

∫
Rd

p(t− s, x− y)E|u(s, y)|γdyds

≥ c1 + κλLσ

∫ t

0

(
inf
y∈Rd

E|u(s, y)|
)γds.

Upon setting
F (t) = inf

x∈Rd
E|u(t, x)|,

the above inequality reduces to

F (t) ≥ c1 + κλLσ

∫ t

0
F γ(s)ds,

which fails to converge in a finite time for all γ > 1 .
Next, we consider when the initial function u0 is positive but not necessarily bounded

below and L = −(−∆)α/2. Let t0 > 0 be fixed, then

u(t+ t0, x) =

∫
Rd

p(t+ t0, x− y)u(0, y)dy

+ λ

∫ t+t0

0

∫
Rd

∫
Rd

p(t+ t0 − s, x− y)σ(u(s, y), h)N(dh, dy, ds).

Taking first moment of both sides, then by Proposition 2.3.6 we have

E|u(t+ t0, x)| ≥
∫
Rd

p(t+ t0, x− y)u(0, y)dy

+ λ

∫ t+t0

0

∫
Rd

∫
Rd

p(t+ t0 − s, x− y)E|σ(u(s, y), h)|ν(dh)dyds

≥ c(t0) p(t+ η, x)

+ λLσκ

∫ t+t0

t0

∫
Rd

p(t+ t0 − s, x− y)E|u(s, y)|γdyds.
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4.3. Non-existence of global solution

We perform a change of variable, by letting τ = s− t0, dτ = ds and therefore

E|u(t+ t0, x)| ≥ c(t0)p(t+ η, x)

+ λLσκ

∫ t

0

∫
Rd

p(t− τ, x− y)E|u(τ + t0, y)|γdydτ.

Let v(t, x) := u(t+ t0, x); then to show that E|u(t+ t0, x)| fails to exist in some finite time
suffices to show the same for E|v(t, x)| and therefore

E|v(t, x)| ≥ c(t0) p(t+ η, x) + λLσκ

∫ t

0

∫
Rd

p(t− τ, x− y)(E|v(τ, y)|)γdydτ.

Multiply through by p(t, x), and integrate in [dx], we obtain∫
Rd

E|v(t, x)|p(t, x)dx

≥ c(t0)

∫
Rd

p(t+ η, x)p(t, x)dx+ λLσκ

∫ t

0
dτ
∫
Rd

dy(E|v(τ, y)|)γ
∫
Rd

p(t− τ, x− y)p(t, x)dx

= c(t0) p(2t+ η, 0) + λLσκ

∫ t

0
dτ
∫
Rd

dy(E|v(τ, y)|)γp(2t− τ, y).

The last line follows by Kolmogorov property. Moreover, by properties of p(t, x), Jensen’s
inequality and Lemma 4.3.4, we get∫
Rd

E|v(t, x)|p(t, x)dx

≥ c(t0) p(1, 0)(2t+ η)−
d
α + κLσκ

∫ t

0
dτ
∫
Rd

dy
(

τ

2t− τ

) d
α

p(τ, y)(E|v(τ, y)|)γ

≥ c0(2t+ η)−
d
α + λLσκ

∫ t

0
dτ
(

τ

2t− τ

) d
α
(∫

Rd

(E|v(τ, y)|p(τ, y)dy
)γ
.

Set F (t) =
∫
Rd E|v(t, x)|p(t, x)dx then

F (t) ≥ c0(2t+ η)−
d
α + λLσκ

∫ t

0

(
τ

2t− τ

) d
α

F (τ)γdτ

≥ c0(2t+ η)−
d
α + λLσκ

∫ t

0

(
τ

2t

) d
α

F (τ)γdτ.
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4.3. Non-existence of global solution

Multiply through by t
d
α , therefore

F (t)t
d
α ≥ c0

(
t

2t+ η

)d/α
+
λLσκ

2d/α

∫ t

0

(
τ
d
αF (τ)

)γ
τ
d(γ−1)
α

dτ.

Let Y (t) = F (t)t
d
α and assume further that t ≥ δ for all δ ≥ 0, then

Y (t) ≥ c0

( δ

2δ + η

)d/α
+
λLσκ

2d/α

∫ t

δ

Y (τ)γ

τ
d(γ−1)
α

dτ ≥ λLσκ

2d/α

∫ t

δ

Y (τ)γ

τ
d(γ−1)
α

dτ.

and the result follows by Proposition 3.3.4.
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CHAPTER 5

ON SOME PROPERTIES OF A CLASS
OF FRACTIONAL STOCHASTIC HEAT

EQUATIONS

We consider the following stochastic heat equation with Gaussian white noise

∂

∂t
u(t, x) = Lu(t, x) + λσ(u(t, x))ẇ(t, x), x ∈ R, and t > 0 (5.0.1)

with u(0, x) = u0(x), for all x ∈ R. The function u0 : R → R+ is a non-random function
that is positive on a set of positive measure, the function σ : R → R is a Lipschitz
continuous function and ẇ(t, x) denotes white noise on (0,∞)×R. We need some explicit
heat kernel estimates, so we restrict our attention to the case when L is the generator of
a symmetric stable process, that is, L := −(−∆)α/2 with α ∈ (1, 2). For a stochastic heat
equation driven by a coloured noise on Rd,

∂

∂t
u(t, x) = −(−∆)α/2u(t, x) + λσ(u(t, x))Ḟ (t, x), (5.0.2)

with the initial condition u(0, x) = u0(x), x ∈ Rd. The parameter σ satisfies Lipschitz
assumption and λ > 0 is the level of the noise. The term Ḟ is a spatially-coloured,
temporally white, Gaussian noise; a generalised Gaussian random field whose covariance
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kernel is described as follows

E[Ḟ (t, x)Ḟ (s, y)] = δ0(t− s)fβ(x, y)

where the correlation function fβ is the Riesz kernel given by

fβ(x, y) =
1

|x− y|β
,

with β ∈ (0, d), d ≥ 1 the dimension. We start with the following important estimate:

Lemma 5.0.5. For any t > 0 and all x, y ∈ Rd, there exists some positive constant c1

such that ∫
Rd×Rd

p(t, x, y)p(t, y, z)fβ(y, z)dydz ≤ c1t
−β/α.

Proof. By semigroup identity and Lemma 2.3.4, we write∫
Rd×Rd

p(t, x, w)p(t, y, z)fβ(w, z)dwdz

=

∫
Rd

p(2t, w, x− y)fβ(w, 0)dw

≤ C
∫
Rd

(
(2t)−d/α ∧ 2t

|w − (x− y)|d+α

)
|w|−βdw

= C

∫
Rd

(
(2t)−d/α ∧ 2t

|v|d+α

)
|v + (x− y)|−βdv

= C(2t)−d/α
∫
|v|≤(2t)d/α

|v + (x− y)|−βdv + 2tC

∫
|v|>(2t)d/α

|v + (x− y)|−β

|v|d+α
dv.

The lemma follows from evaluating the two integrals.

We now present some results on the following renewal inequalities from ([55], chapter
7) and its converse. Here, we desire bounds on the functions involved rather than finding
their asymptotic properties.

Proposition 5.0.6. Let ρ > 0 and suppose f(t) is a non-negative and locally integrable
function satisfying

f(t) ≤ c1 + κ

∫ t

0
(t− s)ρ−1f(s)ds for all t > 0,

where c1 is some positive number. Then we have

f(t) ≤ c2 exp
(
c3(Γ(ρ))1/ρκ1/ρt

)
for all t > 0,
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for some positive constants c2 and c3.

Proof. Let (Aψ)(t) = κ
∫ t

0 (t− s)ρ−1ψ(s)ds for locally integrable function ψ. Then f(t) ≤
c1 + (Af)(t). Let k ≥ 1 be a fixed integer, then (Akf)(t) := κ

∫ t
0 (t − s)ρ−1(Ak−1f)(s)ds

and set 1(s) := 1 for all 0 ≤ s ≤ T . Then it follows by iteration that

f(t) ≤ c1

n−1∑
k=0

(Ak1)(t) + (Anf)(t)

and by induction,

(Anf)(t) =
(κΓ(ρ))n

Γ(nρ)

∫ t

0
(t− s)nρ−1f(s)ds,

and consequently, we have

(An1)(t) =
(κΓ(ρ))ntnρ

Γ(nρ+ 1)
.

As n→∞, we have that (Anf)(t)→ 0 and therefore,

f(t) ≤ c1

∞∑
k=0

(Ak1)(t) = c1

∞∑
k=0

(κΓ(ρ)tρ)k

Γ(kρ+ 1)
.

The result follows by applying Lemma 2.3.8 with b = κΓ(ρ)tρ.

The converse of the above Proposition is given as follows.

Proposition 5.0.7. Let ρ > 0 and suppose f(t) is non-negative, locally integrable function
satisfying

f(t) ≥ c1 + κ

∫ t

0
(t− s)ρ−1f(s)ds for all t > 0,

where c1 is some positive number. Then we have

f(t) ≥ c2 exp
(
c3(Γ(ρ))1/ρκ1/ρt

)
for all t >

e
ρ

(Γ(ρ)κ)−1/ρ,

for some positive constants c2 and c3.

Proof. Following same lines of proof as above Proposition 5.0.6, we have that

f(t) ≥ c1

∞∑
k=0

(κΓ(ρ)tρ)k

Γ(kρ+ 1)
.

Applying Lemma 2.3.7 with b = κΓ(ρ)tρ proves the result.
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5.1. White Noise Results

5.1 White Noise Results

We start with some results on the white noise. Here follows our first main result.

Theorem 5.1.1. Let u(t, x) be the unique solution to equation (5.0.1). Then there exists
T > 0, such that for all t > T ,

inf
x∈B(0, t1/α)

E|u(t, x)|2 ≥ c exp
(
c′λ2α/(α−1)t

)
,

where c̃ and c̃′ are some positive constants. An immediate consequence of this gives

lim inf
t→∞

1

t
log E|u(t, x)|2 ≥ c′λ2α/(α−1),

for any fixed x ∈ R.

5.1.1 Proof of Theorem 5.1.1

To give a proof of the above theorem, we begin with the following proposition. Fix t > 0

and set
gt := inf

x∈B(0, t1/α)
(Ptu0)(x),

we then have the following.

Proposition 5.1.2. Suppose that L := −(−∆)α/2 and that condition 3.2.1 is in force.
Then for any fixed t > 0 and x ∈ B(0, t1/α),

E|u(t, x)|2 ≥ g2
t

∞∑
k=1

(
c3λ

2L2
σα

α− 1

)k( t
k

)k(α−1)/α

.

Proof. By Itô isometry, we obtain

E|u(t, x)|2 ≥ |(Ptu0)(x)|2 + (λLσ)2

∫ t

0

∫
R
p2(t− s1, x, y1)E|u(s1, y1)|2dy1ds1.

Recursively,

E|u(s1, y1)|2 ≥ |(Ps1u0)(y1)|2 + (λLσ)2

∫ s1

0

∫
R
p2(s1 − s2, y1, y2)E|u(s2, y2)|2dy2ds2.
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5.1. White Noise Results

Therefore iterating the integrals,

E|u(t, x)|2 ≥ |(Ptu0)(x)|2 + (λLσ)2

∫ t

0

∫
R
p2(t− s1, x, y1)|(Ps1u0)(y1)|2dy1ds1

+ (λLσ)4

∫ t

0

∫
R

∫ s1

0

∫
R
p2(t− s1, x, y1)p2(s1 − s2, y1, y2)

× E|u(s2, y2)|2dy1ds1dy2ds2.

Setting y0 = x and s0 = t and continuing the recursion as above we obtain that

E|u(t, x)|2 ≥ |(Ptu0)(x)|2

+
∞∑
k=1

(λLσ)2k

∫ t

0

∫
R

∫ s1

0

∫
R
. . .

∫ sk−1

0

∫
R
|(Psku0)(yk)|2

×
k∏
i=1

p2(si−1 − si, yi−1, yi)dyk+1−idsk+1−i.

Set B = B(0, t1/α) then by reducing the spatial domain of integration we have

|(Psku0)(yk)|2 ≥ inf
y∈B
|(Ptu0)(y)|2 = g2

t .

Therefore,

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t

0

∫
R

∫ s1

0

∫
R
. . .

∫ sk−1

0

∫
B

×
k∏
i=1

p2(si−1 − si, yi−1, yi)dyk+1−idsk+1−i

≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t

t−t/k

∫
R

∫ s1

s1−t/k

∫
R
. . .

∫ sk−1

sk−1−t/k

∫
B

×
k∏
i=1

p2(si−1 − si, yi−1, yi)dyk+1−idsk+1−i.

Also, making a change of variable for si−1 − si, for all i = 1, 2, . . . , k, then

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫
R

∫ t/k

0

∫
R
. . .

∫ t/k

0

∫
B

×
k∏
i=1

p2(si, yi−1, yi)dyk+1−idsk+1−i.
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5.1. White Noise Results

We further restrict the domain of integration by choosing yi for each i = 1, 2, . . . , k, such
that

yi ∈ B(0, t1/α) ∩B(yi−1, s
1/α
i ),

and denote Ai := {B(0, t1/α) ∩ B(yi−1, s
1/α
i )} in order to get the required bound on the

kernels. Since |yi−1 − yi| ≤ s1/α
i , it follows that p(si, yi−1, yi) ≥ c1s

−1/α
i . Thus

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫
A1

∫ t/k

0

∫
A2

. . .

∫ t/k

0

∫
Ak

k∏
i=1

s
−2/α
i dsk+1−idyk+1−i.

By the lower bounds on the area of Ai, that’s, |Ai| ≥ c2s
1/α
i we have

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2kck3

∫ t/k

0

∫ t/k

0
. . .

∫ t/k

0

k∏
i=1

s
−1/α
i dskdsk−1. . . ds1.

Integrating term-wisely gives the following

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ
√
c3)2k

(
α

α− 1

)k( t
k

)k(α−1)/α

= g2
t + g2

t

∞∑
k=1

(λLσ
√
c3 c4)2k

(
t

k

)k(α−1)/α

,

with c4 given by c4 =
√

α
(α−1) . Setting

Ft(λ) = inf
x∈B

E|u(t, x)|2,

therefore

Ft(λ) ≥ g2
t + g2

t

∞∑
k=1

(λLσ
√
c3 c4)2k

(
t

k

)k(α−1)/α

,

and the result follows immediately.

Proof of Theorem 5.1.1. Applying Lemma 2.3.7 with Proposition 5.1.2 gives the first state-
ment of the theorem. For the second part of the theorem, we fix x ∈ R. Clearly we have
that x ∈ B(0, 2|x|) and by the first part of the theorem, we have that for t1/α ≥ 2|x| ∨ T ,

E|u(t, x)|2 ≥ c exp
(
c′λ2α/(α−1)t

)
.
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5.2. Coloured Noise Results

By taking appropriate limit, we obtain the second part of the theorem.

We now prove an upper bound result for the white noise equation. Let t > 0 be fixed,
define

gλ(t) = sup
x∈R

E|u(t, x)|2.

Proposition 5.1.3. For t ≥ 0 fixed, there exist some positive constants c2 and c3 such
that

gλ(t) ≤ c3 + (λLipσ)2c2

∫ t

0
(t− s)−1/αgλ(s)ds.

Proof. By the assumption that u0(x) ≤ c1, then it follows by taking second moment and
by semigroup identity, that

E|u(t, x)|2 ≤
c1

∫
R
p(t, x, y)dy

2

+ λ2Lip2
σ

∫ t

0

∫
R
p2(t− s, x, y)E|u(s, y)|2dyds.

Thus,

gλ(t) ≤ c2
1 + λ2Lip2

σ

∫ t

0
p(2(t− s), 0)gλ(s)ds

= c2
1 + λ2Lip2

σc2

∫ t

0
(t− s)−1/αgλ(s)ds

= c2
1 + λ2Lipσc2

∫ t

0
(t− s)

α−1
α
−1gλ(s)ds.

5.2 Coloured Noise Results

We now give a corresponding relationship between the ”dissipative” effect of the fractional
Laplacian and the "growth" induced by the coloured noise term.

Proposition 5.2.1. For all t > 0 fixed and x ∈ B(0, t1/α), then

E|u(t, x)|2 ≥ g2
t

∞∑
k=1

(λLσc1 c2)2k

(
t

k

)k(α−β)/α

,

with c2 :=
(√

α
2α(k−1)k(α−β)

)1/k
, c1 some positive constants.
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5.2. Coloured Noise Results

Proof. By taking second moment of the mild solution,

E|u(t, x)|2 ≥ |(Ptu0)(x)|2

+ λ2L2
σ

∫ t

0

∫
Rd×Rd

p(t− s1, x, y1)p(t− s1, x, z1)fβ(y1, z1)

× E|u(s1, y1)u(s1, z1)|dy1dz1ds1.

Recursively,

E|u(s1, y1)u(s1, z1)| ≥ (Ps1u0)(y1)(Ps1u0)(z1)

+ (λLσ)2

∫ s1

0

∫
Rd×Rd

p(s1 − s2, y1, y2)p(s1 − s2, z1, z2)fβ(y2, z2)

× E|u(s2, y2)u(s2, z2)|dy2dz2ds2.

We follow the same steps from Proposition 5.1.2 to write

E|u(t, x)|2 ≥ |(Ptu0)(x)|2

+

∞∑
k=1

(λLσ)2k

∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
Rd×Rd

(Psku0)(yk)(Psku0)(zk)

×
k∏
i=1

p(si−1 − si, yi−1, yi)p(si−1 − si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−i.

Set B = B(0, t1/α) then by reducing the temporal domain of the integration,

(Psku0)(yk)(Psku0)(zk) ≥ inf
y,z∈B

(Ptu0)(y)(Ptu0)(z) = g2
t .

Therefore, after few lines of computations, (see Proposition 5.1.2) we have

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫
Rd×Rd

∫ t/k

0

∫
Rd×Rd

. . .

∫ t/k

0

∫
B×B

×
k∏
i=1

p(si, yi−1, yi)p(si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−i.

We further restrict the temporal domain, so we can get the required bounds on p(si, yi−1, yi)

and p(si, zi−1, zi) by making the following definitions. Given that x ∈ B(0, t1/α) then
choose yi, zi such that

Ai := {yi ∈ B(x, s
1/α
1 /2) ∩B(yi−1, s

1/α
i )},
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5.2. Coloured Noise Results

Bi := {zi ∈ B(x, s
1/α
1 /2) ∩B(zi−1, s

1/α
i )},

where yi, zi both lie inside B(0, t1/α) for each i = 1, 2, . . . , k. We make the following
observation about the area of the restricted domain, thus,

|B(x, s
1/α
1 /2) ∩B(yi−1, s

1/α
i )| ≥ c1 s

d/α
i

|B(x, s
1/α
1 /2) ∩B(zi−1, s

1/α
i )| ≥ c1 s

d/α
i

for all c1 > 0 independent of i and

|yi − zi| ≤ |yi − x|+ |x− zi| ≤
s

1/α
1

2
+
s

1/α
1

2
= s

1/α
1 ,

which implies that fβ(yi, zi) ≥ s−β/α1 .We also have |yi−yi−1| ≤ s1/α
i and |zi−zi−1| ≤ s1/α

i

which imply that p(si, yi, yi−1) ≥ c1s
−d/α
i and p(si, zi, zi−1) ≥ c1s

−d/α
i . Thus,

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫
A1

∫
B1

∫ t/k

0

∫
A2

∫
B2
. . .

∫ t/k

0

∫
Ak

∫
Bk

×
k∏
i=1

p(si, yi−1, yi)p(si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−i

≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫
A1

∫
B1

∫ t/k

0

∫
A2

∫
B2
. . .

∫ t/k

0

∫
Ak

∫
Bk

×
k∏
i=1

s
−2d/α
i s

−β/α
1 dyk+1−idzk+1−idsk+1−i.

Applying the bounds on the areas of the bounded domain and the fact that t/k ≥ s1 for
all k, we have that

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσ)2k

∫ t/k

0

∫ t/k

0
. . .

∫ t/k

0

k∏
i=1

c2
1s
−β/α
1 dsk+1−i

= g2
t + g2

t

∞∑
k=1

(λLσc1)2k

∫ t/k

0

∫ t/k

0
. . .

∫ t/k

0
s
−kβ/α
1 dskdsk−1. . .ds1

≥ g2
t + g2

t

∞∑
k=1

(λLσ c1)2k

∫ t/k

0
sk−1

1 s
−kβ/α
1 ds1

= g2
t + g2

t

∞∑
k=1

(λLσ c1)2k α

k(α− β)

(
t

k

)k(α−β)/α

.
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5.2. Coloured Noise Results

Setting
Ft(λ) = inf

x∈B(0,t1/α)
E|u(t, x)|2

then

Ft(λ) ≥ g2
t + g2

t

∞∑
k=1

(λLσ c1c2)2k

(
t

k

)k(α−β)/α

with c2 := (
√

α
k(α−β))1/k.

Next follows the upper bound estimate. Define

Gt(λ) = sup
x∈Rd

E|u(t, x)|2.

Proposition 5.2.2. For t ≥ 0 fixed, there exist c1 and c2 such that

Gt(λ) ≤ c1 + c2(λLipσ)2

∫ t

0

Gs(λ)

(t− s)β/α
ds.

Proof. Taking second moment, semigroup identity and Hölder’s inequality,

E|u(t, x)|2 ≤
c∫

Rd

p(t, x, y)dy
2

+ λ2

∫ t

0

∫
Rd×Rd

× p(t− s, x, y)p(t− s, x, z)E|σ(u(s, y))σ(u(s, z))|fβ(x, y)dydzds

≤ c1 + λ2Lip2
σ

∫ t

0

∫
Rd×Rd

× p(t− s, x, y)p(t− s, x, z)[E|u(s, y)|2]1/2[E|u(s, z)|2]1/2fβ(x, y)dydzds.

Hence,

Gt(λ) ≤ c1 + (λLipσ)2

∫ t

0
Gs(λ)

∫
Rd×Rd

p(t− s, x, y)p(t− s, x, z)fβ(x, y)dydzds

= c1 + c2(λLipσ)2

∫ t

0
(t− s)−β/αGs(λ)ds

= c1 + c2(λLipσ)2

∫ t

0
(t− s)

α−β
α
−1Gs(λ)ds.
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5.2.1 Proofs of Main Results

We now give proofs of main results of this chapter.

Theorem 5.2.3. There exist constants c and c′ such that

sup
x∈Rd

E|u(t, x)|2 ≤ c exp
(
c′λ2α/(α−β)t

)
for all t > 0.

Also there exists T > 0, such that for all t > T ,

inf
x∈B(0, t1/α)

E|u(t, x)|2 ≥ c̃ exp
(
c̃′λ2α/(α−β)t

)
,

where c̃ and c̃′ are some positive constants. This immediately implies that for any fixed
x ∈ Rd,

c̃′λ2α/(α−β) ≤ lim inf
t→∞

log E|u(t, x)|2

t
≤ lim sup

t→∞

log E|u(t, x)|2

t
≤ c̃′λ2α/(α−β).

Proof. We first start with the upper bound. This readily follows as an immediate conse-
quence of Propositions 5.2.2 and 5.0.6 with ρ = (α − β)/α and κ = c2(λLipσ)2. For the
lower bound, we make use of Proposition 2.3.5 which states that gt ≥ c1t

−d/α for all t > T ,
where T > 0. This together with Proposition 5.2.1 gives the following

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσc1 c2)2k

(
t

k

)k(α−β)/α

≥ c2t
−2d/α

∞∑
k=1

(λLσc1 c2)2k

(
t

k

)k(α−β)/α

.

Therefore by taking T larger and applying Lemma 2.3.7 with b =
(
λLσc1c2

)2
tρ and ρ =

(α− β)/α, we have

inf
x∈B(0, t1/α)

E|u(t, x)|2 ≥ c3 exp
(
c4λ

2α/(α−β)t
)
, for all t > T

where c4 :=
(
Lσc1c2

)2α/(α−β) and c3 are positive constants. Taking limit proves the im-
mediate consequence.

Next theorem gives the rate of growth of the mild solution with respect to the level of
noise λ.
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Theorem 5.2.4. For any fixed t > 0 and x ∈ Rd, we have

lim
λ→∞

log log E|u(t, x)|2

log λ
=

2α

α− β
.

Proof. By the upper bound of Theorem 5.2.3, it immediately follows that

lim sup
λ→∞

log log E|u(t, x)|2

log λ
≤ 2α

α− β
.

Next, we seek to prove the converse of the above inequality. Let x ∈ Rd be fixed. If t > T

large enough so that x ∈ B(0, t1/α) then by Proposition 5.2.1, we have

E|u(t, x)|2 ≥ g2
t + g2

t

∞∑
k=1

(λLσc1 c2)2k

(
t

k

)k(α−β)/α

.

Applying Lemma 2.3.7 with b =
(
λLσc1c2

)2
tρ and ρ = (α− β)/α, we obtain

E|u(t, x)|2 ≥ g2
t exp

(
c3λ

2α/(α−β)t
)
,

where c3 :=
(
Lσc1c2

)2α/(α−β)
> 0. Take logarithm of both sides to obtain

lim inf
λ→∞

log log E|u(t, x)|2

log λ
≥ 2α

α− β
.

Now if we take x 6∈ B(0, t1/α) and choose a constant κ > 0 such that x ∈ B(0, κt1/α), then
use the idea of Proposition 5.2.1 to end up with

E|u(t, x)|2 ≥ g2
κ t exp

(
c3λ

2α/(α−β)t
)
,

and the result follows by same lemma.

Define the energy of the solution u(t, x) as follows,

Et(λ) :=

√∫
Rd

E|u(t, x)|2dx,

when it does exist. Under suitable assumption on the initial condition, it can be shown to
exist. For instance, when the initial condition is a bounded non-negative function which
is compactly supported, it does exist. The excitation index of the solution is defined as
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follows
e(t) := lim

λ→∞

log log Et(λ)

log λ
.

Thus the following result.

Theorem 5.2.5. The excitation index e(t) of the solution to (5.0.2) is given by 2α
α−β .

Proof. We start by estimating the upper bound on e(t). Taking second moment of the
mild solution, one obtains

Et(λ)2 ≤
∫
Rd

∫
Rd

p(t, x, y)u0(y)dy
2

dx

+ λ2Lip2
σ

∫
Rd

∫ t

0

∫
Rd×Rd

p(t− s, x, y)p(t− s, x, z)fβ(y, z)E[|u(s, y)u(s, z)|]dydzdsdx

= I1 + I2.

We seek for lower bounds on both integrals. By the assumption on u0, we have that

I1 =

∫
Rd

∫
K
p(t, x, y)u0(y)dy

2

dx

≤
∫
Rd

[ ∫
K
p2(t, x, y)dy.

∫
K
u2

0(y)dy
]
dx

≤
∫
K

∫
Rd

p2(t, x, y)dxdy.
∫
K
u2

0(y)dy = K̃

∫
K
p(2t, y, y)dy ≤ c1,

where K̃ =
∫
K u

2
0(y)dy. Next, we find bound on I2 as follows,

I2 = λ2Lip2
σ

∫ t

0

∫
Rd×Rd

p(2(t− s), y, z)fβ(y, z)E[|u(s, y)u(s, z)|]dydzds

≤ λ2Lip2
σ

∫ t

0
sup
x∈Rd

E|u(s, x)|2
∫
Rd×Rd

p(2(t− s), y, z)fβ(y, z)dydzds

≤ c2λ
2Lip2

σ

∫ t

0
(t− s)−β/α sup

x∈Rd

E|u(s, x)|2ds.

Then by the upper bound of theorem 5.2.3,

I2 ≤ c3λ
2Lip2

σ

∫ t

0
(t− s)−β/α exp

(
c′λ2α/(α−β)s

)
ds ≤ c4 exp

(
c′λ2α/(α−β)t

)
.
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5.2. Coloured Noise Results

Applying logarithm, we have therefore,

lim sup
λ→∞

log log Et(λ)

log λ
≤ 2α

α− β
.

Next we seek for a lower bound on e(t). Following same proof of Proposition 5.2.1, we
obtain

E|u(t, x)|2 ≥ |(Ptu0)(x)|2

+
∞∑
k=1

(λLσ)2k

∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
Rd×Rd

(Psku0)(yk)(Psku0)(zk)

×
k∏
i=1

p(si−1 − si, yi−1, yi)p(si−1 − si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−i.

Next, we integrate both sides in [dx] to obtain

Et(λ)2 ≥
∫
Rd

(Ptu0)(x)
2dx

+

∫
Rd

∞∑
k=1

(λLσ)2k

∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
Rd×Rd

(Psku0)(yk)(Psku0)(zk)

×
k∏
i=1

p(si−1 − si, yi−1, yi)p(si−1 − si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−idx.

Reducing the spatial domain of the integration we obtain

Et(λ)2 ≥
∫
B(0, t1/α)

(Ptu0)(x)
2dx

+

∫
B(0, t1/α)

|(Ptu0)(x)|2
∞∑
k=1

(λLσ)2k

∫ t

0

∫
Rd×Rd

∫ s1

0

∫
Rd×Rd

. . .

∫ sk−1

0

∫
B(0, t1/α)×B(0, t1/α)

×
k∏
i=1

p(si−1 − si, yi−1, yi)p(si−1 − si, zi−1, zi)fβ(yi, zi)dyk+1−idzk+1−idsk+1−idx.

By the same idea of proof of Proposition 5.2.1, we have

Et(λ)2 ≥ c3 + c3

∞∑
k=1

(λLσ c1c2)2k

(
t

k

)k(α−β)/α

with c2 :=
(√

α
2α(k−1)k(α−β)

)1/k
, c1 and c3 some positive constants. This together with
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5.2. Coloured Noise Results

Lemma 2.3.7 with b =
(
λLσc1c2

)2
tρ and ρ = (α− β)/α, yield

lim inf
λ→∞

log log Et(λ)

log λ
≥ 2α

α− β
.

The two inequalities prove the theorem.

The next theorem gives a relationship between the excitation index of (5.0.2) and the
continuity property of the solution.

Theorem 5.2.6. Let η < (α− β)/2α. Then for every x ∈ Rd, {u(t, x), t > 0} the solution
to (5.0.2) has Hölder continuous trajectories with exponent η.

The above shows that η < 1
e(t) , which showcases a link between noise excitability and

continuity of the solution. Recall that

p̂(t, ξ) := Eeiξ.Xt = e−t|ξ|
α
.

Proposition 5.2.7. Let q ∈ (0, α−β2α )and r ∈ (0, 1), we then have∫ t

0

∫
Rd

p̂(t− s+ r, ξ)− p̂(t− s, ξ)
2 1

|ξ|d−β
dξds ≤ c1r

2q,

for some positive constant c1.

Proof. From the Fourier transform of the heat kernel,

p̂(t− s+ r, ξ)− p̂(t− s, ξ)
2

= e−2(t−s)|ξ|α [e−r|ξ|
α − 1]2.

We now apply the following inequality that 1− e−x ≤ x for all x ≥ 0 and it implies that
|e−x − 1| ≤ x. Therefore |e−r|ξ|α − 1| ≤ r|ξ|α. Then from ([19], page 55), we have that for
any q ∈ (0, α−β2α ) ⊂ (0, 1),

|e−r|ξ|α − 1| ≤ 21−q|e−r|ξ|α − 1|q ≤ 21−qrq|ξ|αq

Thus we observe that
e−r|ξ|α − 1

 ≤ c rq|ξ|αq to obtain the following bound∫ t

0

∫
Rd

p̂(t− s+ r, ξ)− p̂(t− s, ξ)
2 1

|ξ|d−β
dξds

=

∫ t

0

∫
Rd

e−2(t−s)|ξ|α [e−r|ξ|α − 1]2

|ξ|d−β
dξds ≤ c r2q

∫ t

0

∫
Rd

e−2(t−s)|ξ|α |ξ|2αq

|ξ|d−β
dξds

= c r2q

[ ∫ t

0

∫
|ξ|<1

e−2(t−s)|ξ|α |ξ|2αq

|ξ|d−β
dξds+

∫ t

0

∫
|ξ|≥1

e−2(t−s)|ξ|α |ξ|2αq

|ξ|d−β
dξds

]
.
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5.2. Coloured Noise Results

The first integral appearing on the right hand side of the above is clearly bounded. So
we do a bit more work for the second integral. Make the following change of variable
z := 2(t− s)|ξ|α, we obtain the bound∫ t

0

∫
|ξ|≥1

e−2(t−s)|ξ|α |ξ|2αq

|ξ|d−β
dξds =

1

2

∫
|ξ|≥1

1

|ξ|d+α−β−2αq

∫ 2|ξ|αt

0
e−zdzdξ

≤
∫
|ξ|≥1

1

|ξ|d+α−β−2αq
dξ.

When α−β−2αq > 0 (since we assumed that q < α−β
2α ), the above integral becomes finite.

We now combine all the above estimates to obtain the desired result.

Proof of Theorem 5.2.6. The proof makes use of Kolmogorov’s continuity theorem. We
will therefore look at the increment E|u(t + r, x) − u(t, x)|p for r ∈ (0, 1) and p ≥ 2. We
have

u(t+ r, x)− u(t, x) =

∫
Rd

[p(t+ r, x, y)− p(t, x, y)]u0(y)dy

+ λ

∫ t

0

∫
Rd

[p(t+ r − s, x, y)− p(t− s, x, y)]σ(u(s, y))F (dy, ds)

+ λ

∫ t+r

t

∫
Rd

p(t+ r − s, x, y)σ(u(s, y))F (dy, ds).

Since (Ptu0)(x) is in fact smooth for t > 0, we will look for higher moments of the remaining
terms. Recall that supx∈Rd E|u(t, x)|p is finite for all t > 0. We therefore use Burkholder’s
inequality together with Proposition 5.2.7 to write

E

∫ t

0

∫
Rd

[p(t+ r − s, x, y)− p(t− s, x, y)]σ(u(s, y))F (dy, ds)
p

≤ c1Lippσ

∫ t

0

∫
Rd

p̂(t− s+ r, x, ξ)− p̂(t− s, x, ξ)
2 1

|ξ|d−β
dξds

p/2
≤ c1Lippσr

pq.
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5.2. Coloured Noise Results

Similarly we have

E

∫ t+r

t

∫
Rd

p(t+ r − s, x, y)σ(u(s, y))F (dy, ds)
p

≤ c2Lippσ

∫ t+r

t

∫
Rd

p̂(t− s+ r, x, ξ)
2 1

|ξ|d−β
dξds

p/2
= c2Lippσ

∫ t+r

t

∫
Rd

e−2(t+r−s)|ξ|α 1

|ξ|d−β
dξds

p/2
= c2Lippσ

1

2

∫
Rd

dξ
|ξ|d−β+α

∫ 2r|ξ|α

0
e−zdz

p/2
≤ c2Lippσ

1

2

∫
Rd

1

|ξ|d−β+α
|e−2r|ξ|α − 1|dξ

p/2
≤ c3Lippσ

r2q

∫
Rd

1

|ξ|d−β+α−2αq
dξ
p/2 ≤ c4Lippσr

pq,

with the assumption on q. Alternatively, we could use Lemma 5.0.5 to write

E

∫ t+r

t

∫
Rd

p(t+ r − s, x, y)σ(u(s, y))F (dy, ds)
p

≤ c2Lippσ

∫ t+r

t

∫
Rd×Rd

p(t− s+ r, x, y)p(t− s+ r, x, z)f(y, z)dydzds
p/2

≤ c2Lippσ

∫ t+r

t
(t− s)−β/αds

p/2 ≤ c3r
(α−β)p/2α.

Recall that q < (α−β)
2α , then combining the estimates above we see that

E|u(t+ r, x)− u(t, x)|p ≤ c5r
pq = c5r

1+(pq−1).

Now an application of Kolmogorov’s continuity theorem with 0 < η < pq−1
p ≤ q completes

the proof.
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Conclusions. Existence and uniqueness of the solutions were given under some linear
growth conditions on σ and also the bounds for the growth moments of the discontinuous
integral solutions for both the compensated and non-compensated noise term.

For some non-linear growth conditions on σ, both the compensated and non-compensated
equations fail to have any random field solutions for different conditions on the initial data
u0(x).

A non-linear effect of noise on a class of stochastic heat equations was studied for a noisy
case, that’s, when λ is large enough. Therefore we established non-linear noise excitation
growth indexes for both the Gaussian space-time white noise and Riesz spatial correlation
noise for all time t > 0 and Rd, and showed that as the level of the noise λ increases, the
solution is bounded exponentially. This shows a non-linear long time effect of noise on the
class of SPDEs. In what follows, the result establishes that the expected L2-energy of the
solution grows at an exponential index as the level of the noise increases. So far the above
results were obtained with the initial condition being some functions which are positive on
a set of positive measure. We can also extend the results with initial conditions which are
more general. The only issue to achieve this extension is the existence and uniqueness of
random field solution. The result of [29] can be used where this issue was settled whenever
u0 is any finite initial measure with white driven noise. Possible future work is to develop
an appropriate Burholder’s inequality in order to study the intermittent property of the
compensated poisson noise equation.
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APPENDIX A

APPENDIX

A.1 Continuity of the solution

We have the following a priori result about the continuity of the second moment of the
solution to (3.0.1).

Proposition A.1.1. Suppose that condition 3.0.9 holds, then for each x ∈ R, the unique
solution to (3.0.1) is mean square continuous in time. That is for each x ∈ R, the function
t→ E[|u(t, x)|2] is continuous.

The mild solution is given by

u(t, x) =

∫
R
p(t, x, y)u(0, y)dy + λ

∫ t

0

∫
R

∫
R
p(t− s, x, y)σ(u(s, y), h)Ñ(dh, dy, ds).

We assume 0 < t1 < t2, then for fixed x ∈ R

u(t2, x)− u(t1, x) =

∫
R

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy

+ λ

∫
R

∫
R

∫ t1

0
[p(t2 − s, x, y)− p(t1 − s, x, y)]σ(u(s, y), h)Ñ(dh, dy, ds)

+ λ

∫
R

∫
R

∫ t2

t1

p(t2 − s, x, y)σ(u(s, y), h)Ñ(dh, dy, ds).
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A.1. Continuity of the solution

We make the following definitions,

D0 =

∫
R

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy

D1 = λ

∫
R

∫
R

∫ t1

0
[p(t2 − s, x, y)− p(t1 − s, x, y)]σ(u(s, y), h)Ñ(dh, dy, ds)

D2 = λ

∫
R

∫
R

∫ t2

t1

p(t2 − s, x, y)σ(u(s, y), h)Ñ(dh, dy, ds)

The proof of the above theorem will be a consequence of the following Lemma(s).

Lemma A.1.2. For all β > 0, 0 < t1 < t2 and x ∈ R,

|D0|2 ≤
c0

2π

∫
R
e−2t1ReΨ(ξ)|1− e−(t2−t1)Ψ(ξ)|2dξ.

Proof. We start by writing

E|D0|2 = |D0|2 = |
∫
R

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy|2

≤
∫
R
|u(0, y)|2dy

∫
R
|p(t2, x, y)− p(t1, x, y)|2dy

≤ c0

∫
R
|p(t2, x, y)− p(t1, x, y)|2dy = c0‖p(t2, .)− p(t1, .)‖2L2(R).

By Plancherel’s theorem

‖p(t2, .)−p(t1, .)‖2L2(R) = ‖p̂(t2, .)− p̂(t1, .)‖2L2(R) =
1

2π

∫
R
e−2t1ReΨ(ξ)|1−e−(t2−t1)Ψ(ξ)|2dξ.

Therefore,

E|D0|2 ≤
c0

2π

∫
R
e−2t1ReΨ(ξ)|1− e−(t2−t1)Ψ(ξ)|2dξ.

Lemma A.1.3. For all β > 0, 0 < t1 < t2 and x ∈ R,

E|D1|2 ≤
λ2KLip2

σ

2π
‖u‖22,βeβt1

∫
R

|1− e−(t2−t1)Ψ(ξ)|2

β + 2ReΨ(ξ)
dξ.
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Proof. By Itô’s isometry, we obtain

E|D1|2 = λ2

∫
R

∫
R

∫ t1

0
|p(t2 − s, x, y)− p(t1 − s, x, y)|2E|σ(u(s, y), h)|2ν(dh)dyds

≤ λ2KLip2
σ

∫
R

∫ t1

0
|p(t2 − s, x, y)− p(t1 − s, x, y)|2E|u(s, y)|2dyds

≤ λ2KLip2
σ‖u‖22,β

∫ t1

0
eβs‖p̂(t2 − s, .)− p̂(t1 − s, .)‖2L2(R)ds.

But

‖p̂(t2 − s, .)− p̂(t1 − s, .)‖2L2(R) =
1

2π

∫
R
e−2(t1−s)ReΨ(ξ)|1− e−(t2−t1)Ψ(ξ)|2dξ.

Therefore,

E|D1|2 ≤ λ2KLip2
σ

2π
‖u‖22,β

∫
R
dξ
|1− e−(t2−t1)Ψ(ξ)|2

β + 2ReΨ(ξ)

[
1− e−t1

(
β+2ReΨ(ξ)

)]
≤ λ2KLip2

σ

2π
‖u‖22,βeβt1

∫
R

|1− e−(t2−t1)Ψ(ξ)|2

β + 2ReΨ(ξ)
dξ.

Lemma A.1.4. For all β > 0, 0 < t1 < t2 and x ∈ R,

E|D2|2 ≤
λ2KLip2

σ

2π
‖u‖22,β

∫
R

dξ
β + 2ReΨ(ξ)

.eβt2
[
1− e−(t2−t1)

(
β+2ReΨ(ξ)

)]
.

Proof. Take second moment of the solution

E|D2|2 = λ2

∫
R

∫
R

∫ t2

t1

|p(t2 − s, x, y)|2E|σ(u(s, y), h)|2ν(dh)dyds

≤ λ2KLip2
σ‖u‖22,β

∫ t2

t1

eβs‖p̂(t2 − s, .)‖2L2(R)ds

≤ λ2KLip2
σ

2π
‖u‖22,β

∫ t2

t1

dseβs
∫
R
e−2(t2−s)ReΨ(ξ)dξ

=
λ2KLip2

σ

2π
‖u‖22,β

∫
R

dξ
β + 2ReΨ(ξ)

.eβt2
[
1− e−(t2−t1)

(
β+2ReΨ(ξ)

)]
.
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Proof of Theorem A.1.1. Combining Lemma A.1.2, A.1.3 and A.1.4, therefore

E|u(t2, x)− u(t1, x)|2 ≤ C

2π

∫
R
e−2t1ReΨ(ξ)|1− e−(t2−t1)Ψ(ξ)|2dξ

+
λ2KLip2

σ

2π
‖u‖22,βeβt1

∫
R

|1− e−(t2−t1)Ψ(ξ)|2

β + 2ReΨ(ξ)
dξ

+
λ2KLip2

σ

2π
‖u‖22,β

∫
R

dξ
β + 2ReΨ(ξ)

.eβt2
[
1− e−(t2−t1)

(
β+2ReΨ(ξ)

)]
.

Then
lim
δ↓0

sup
|t1−t2|<δ

E|u(t2, x)− u(t1, x)|2 ≤ 0

and therefore
lim
t1↑t2

E|u(t2, x)− u(t1, x)|2 = 0 for a fixedx ∈ R.

For the α-stable process, define

Aαu(t, x) := λ

∫ t

0

∫
Rd

∫
Rd

pα(t− s, x, y)σ(u(s, y), h)N(dh, dy, ds).

Lemma A.1.5. Suppose that u is predictable and ‖u‖β < ∞ for all β > 0 and σ(u, h)

satisfies assumption (3.0.9), then

‖Aαu‖1,β ≤ Cd,α,βλK[1 + Lipσ‖u‖1,β]

where Cd,α,β := 2C(d,α)
d+α−1

Γ(γ1+2)
βγ1+2 + 2C(d, α)Γ(γ2+2)

βγ2+2 .

Proof. Taking first moment of the solution,

E|Aαu(t, x)| = λ

∫ t

0

∫
Rd

∫
Rd

|pα(t− s, x, y)|E|σ(u(s, y), h)|ν(dh)dyds

≤ λK

∫ t

0

∫
Rd

|pα(t− s, x, y)|[1 + LipσE|u(s, y)|dyds.
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Multiply through by exp(−βt),

e−βtE|Aαu(t, x)| ≤ λK

∫ t

0

∫
Rd

e−β(t−s)|pα(t− s, x, y)|
{
e−βs[1 + LipσE|u(s, y)|]

}
dyds

≤ λKLipσ sup
s≥0

sup
y∈Rd

{
e−βs[1 + LipσE|u(s, y)|]

}
×

∫ t

0

∫
Rd

e−β(t−s)|pα(t− s, x, y)|dyds.

Then,

‖Aαu‖1,β ≤ λK[1 + Lipσ‖u‖1,β] sup
t≥0

∫ t

0

∫
Rd

e−β(t−s)|pα(t− s, x, y)|dyds

≤ λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

∫
Rd

e−βs|pα(s, y)|dyds

≤ λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

∫
Rd

e−βs
{
C

(
s

|y|d+α
∧ s−

d
α

)}
dyds.

The last inequality follows by Lemma 2.3.4. Let’s assume that s
|y|d+α ≤ s−

d
α which holds

only when |y|α ≥ s. Therefore

‖Aαu‖β ≤ C(d, α)λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

dse−βs
{
s

∫
|y|≥s−α

dy
|y|d+α

+ s−d/α
∫
|y|<s−α

dy
}

= C(d, α)λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

dse−βs
{
s

(
−
∫ s−α

−∞
y−(d+α)dy

+

∫ ∞
s−α

y−(d+α)dy
)

+ 2s−(1−d)/α

}
= C(d, α)λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

dse−βs
{
s

(
− y−(d+α−1)

1− d− α
|s−α−∞

+
y−(d+α−1)

1− d− α
|∞s−α

)
+ 2s−(1−d)/α

}
= C(d, α)λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

dse−βs
{
s

(
− 2

1− d− α
sα(d+α−1)

)
+ 2s−(1−d)/α

}
= C(d, α)λK[1 + Lipσ‖u‖1,β]

∫ ∞
0

dse−βs
{

2

d+ α− 1
s1+α(d+α−1)

+ 2s−(1−d)/α

}
.
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Thus

‖Aαu‖1,β ≤ 2C(d, α)λK[1 + Lipσ‖u‖1,β]

{
1

d+ α− 1

∫ ∞
0

sγ1+1e−βsds

+

∫ ∞
0

sγ2+1e−βsds
}

where γ1 := α(d + α − 1) and γ2 := (α − 1 − d)/α. Then we compute the integral
Iβ,γ :=

∫∞
0 sγ+1e−βsds. Let τ = βs, ds = dτ

β , now therefore,

Iβ,γ =
1

βγ+2

∫ ∞
0

τγ+1e−τdτ

=
1

βγ+2

∫ ∞
0

τ (γ+2)−1e−τdτ =
Γ(γ + 2)

βγ+2
.

Therefore

‖Aαu‖1,β ≤ 2C(d, α)λK[1 + Lipσ‖u‖1,β]

{
1

d+ α− 1

Γ(γ1 + 2)

βγ1+2
+

Γ(γ2 + 2)

βγ2+2

}
.

Lemma A.1.6. Suppose u and v are two predictable random field solutions satisfying
‖u‖1,β + ‖v‖1,β <∞ for all β > 0 and σ(u, h) satisfies condition 3.0.9, then

‖Aαu−Aαv‖β ≤ Cd,α,βλKLipσ‖u− v‖1,β.

Proof. Similar steps as Lemma A.1.3.

Theorem A.1.7. Suppose that Cd,α,β <
1

λKLipσ
for positive constants K, Lipσ, then there

exists a solution u that is unique up to modification.

Here, we present the time continuity of the solution.

Proposition A.1.8. Suppose that condition 4.0.5 holds, then for each x ∈ Rd, the unique
solution to (4.0.1) is mean continuous in time. That is for each x ∈ Rd, the function
t→ E[|u(t, x)|] is continuous.

The solution is given by

u(t, x) =

∫
Rd

pt(y − x)u(0, y)dy + λ

∫ t

0

∫
Rd

∫
Rd

p(t− s, x, y)σ(u(s, y), h)N(dh, dy, ds).
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A.1. Continuity of the solution

We assume 0 < t1 < t2, then for fixed x ∈ Rd

u(t2, x)− u(t1, x) =

∫
Rd

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy

+ λ

∫
Rd

∫
Rd

∫ t1

0
[p(t2 − s, x, y)− p(t1 − s, x, y)]

× σ(u(s, y, .), h)N(dh, dy, ds)

+ λ

∫
Rd

∫
Rd

∫ t2

t1

p(t2 − s, x, y)σ(u(s, y), h)N(dh, dy, ds).

We make the following definitions,

D3 =

∫
Rd

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy

D4 = λ

∫
Rd

∫
Rd

∫ t1

0
[p(t2 − s, x, y)− p(t1 − s, x, y)]σ(u(s, y), h)N(dh, dy, ds)

D5 = λ

∫
Rd

∫
Rd

∫ t2

t1

p(t2 − s, x, y)σ(u(s, y), h)N(dh, dy, ds).

The proof of the above theorem is a follow up from the following lemmas.

Lemma A.1.9. For all β > 0, 0 < t1 < t2, x ∈ Rd then

|D3| ≤ 2c0

{
1

d+ α− 1

(
t
1+α(d+α−1)
2 − t1+α(d+α−1)

1

)
+

(
t
(1−d)/α
2 − t(1−d)/α

1

)}
.

Proof. Write,

E|D3| = |D3| = |
∫
Rd

[p(t2, x, y)− p(t1, x, y)]u(0, y)dy|

≤ sup
y∈Rd

|u(0, y)|
∫
Rd

|p(t2, x, y)− p(t1, x, y)|dy

= c0

∫
Rd

|p(t2, x, y)− p(t1, x, y)|dy.

For α-stable processes,

pα(t2, x− y)− pα(t1, x− y) ≡
(
t
−d/α
2 ∧ t2

|x− y|d+α

)
−
(
t
−d/α
1 ∧ t1

|x− y|d+α

)
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A.1. Continuity of the solution

Therefore,

E|D3| ≤ c0

{∫
Rd

(
t
−d/α
2 ∧ t2

|x− y|d+α

)
dy −

∫
Rd

(
t
−d/α
1 ∧ t1

|x− y|d+α

)
dy
}

But ∫
Rd

(
t
−d/α
2 ∧ t2

|x− y|d+α

)
dy = t2

∫
|x−y|≥t−α2

dy
|x− y|d+α

+ t
−d/α
2

∫
|x−y|<t−α2

dy

=
2

d+ α− 1
t
1+α(d+α−1)
2 + 2t

(1−d)/α
2 .

Doing same for the other integral on t1, therefore

|D3| ≤ 2c0

{
1

d+ α− 1

(
t
1+α(d+α−1)
2 − t1+α(d+α−1)

1

)
+

(
t
(1−d)/α
2 − t(1−d)/α

1

)}
.

Lemma A.1.10. For all β > 0, 0 < t1 < t2 and x ∈ Rd,

E|D4| ≤ 2λKLipσ‖u‖1,β
{

1

d+ α− 1

(
eβt2

∫ t2

t2−t1
z1+α(d+α−1)e−βzdz

− eβt1
∫ t1

0
z1+α(d+α−1)e−βzdz

)
+

(
eβt2

∫ t2

t2−t1
z(1−d)/αe−βzdz − eβt1

∫ t1

0
z(1−d)/αe−βzdz

)}
.
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A.1. Continuity of the solution

Proof. We begin by writing

E|D4| =

∫
Rd

∫
Rd

∫ t1

0
|p(t2 − s, x, y)− p(t1 − s, x, y)|E|σ(u(s, y), h)|ν(dh)dyds

≤ λKLipσ

∫
Rd

∫ t1

0
|p(t2 − s, x, y)− p(t1 − s, x, y)|E|u(s, y)|dyds

≤ λKLipσ‖u‖1,β
∫
Rd

∫ t1

0
eβs|p(t2 − s, x, y)− p(t1 − s, x, y)|dsdy

≤ λKLipσ‖u‖1,β
∫ t1

0
dseβs

{∫
Rd

(
(t2 − s)−d/α ∧

t2 − s
|x− y|d+α

)
dy

−
∫
Rd

(
(t1 − s)−d/α ∧

t1 − s
|x− y|d+α

)
dy
}
.

Similarly as above, therefore,

E|D4| ≤ 2λKLipσ‖u‖1,β
∫ t1

0
dseβs

{
1

d+ α− 1

(
(t2 − s)1+α(d+α−1)

− (t1 − s)1+α(d+α−1)

)
+

(
(t2 − s)(1−d)/α − (t1 − s)(1−d)/α

)}
and the result follows.
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A.1. Continuity of the solution

Lemma A.1.11. For all β > 0, 0 < t1 < t2 and x ∈ Rd,

E|D5| ≤ 2λKLipσ‖u‖1,βeβt2
{

1

d+ α− 1

∫ t2−t1

0
z1+α(d+α−1)e−βzdz

+

∫ t2−t1

0
z(1−d)/αe−βzdz

}
.

Proof. Taking an expectation of the solution,

E|D5| = λ

∫
Rd

∫
Rd

∫ t2

t1

|pα(t2 − s, x, y)|E|σ(u(s, y), h)|ν(dh)dyds

≤ λKLipσ‖u‖1,β
∫
Rd

∫ t2

t1

eβs|pα(t2 − s, x, y)|dyds

= λKLipσ‖u‖1,β
∫ t2

t1

dseβs
{

(t2 − s)
∫
|x−y|≥(t2−s)−α

dy
|x− y|d+α

+ (t2 − s)−d/α
∫
|x−y|<(t2−s)−α

dy
}

= λKLipσ‖u‖1,β
{

2

d+ α− 1

∫ t2

t1

eβs(t2 − s)1+α(d+α−1)ds

+ 2

∫ t2

t1

eβs(t2 − s)(1−d)/αds
}

= 2λKLipσ‖u‖1,βeβt2
{

1

d+ α− 1

∫ t2−t1

0
z1+α(d+α−1)e−βzdz

+

∫ t2−t1

0
z(1−d)/αe−βzdz

}
.
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A.1. Continuity of the solution

Proof of Theorem A.1.8. Combining Lemma A.1.9, A.1.10 and A.1.11, therefore

E|u(t2, x)− u(t1, x)| ≤ 2c0

{
1

d+ α− 1

(
t
1+α(d+α−1)
2 − t1+α(d+α−1)

1

)
+

(
t
(1−d)/α
2 − t(1−d)/α

1

)}
+ 2λKLipσ‖u‖1,β

{
1

d+ α− 1

(
eβt2

∫ t2

t2−t1
z1+α(d+α−1)e−βzdz

− eβt1
∫ t1

0
z1+α(d+α−1)e−βzdz

)
+

(
eβt2

∫ t2

t2−t1
z(1−d)/αe−βzdz − eβt1

∫ t1

0
z(1−d)/αe−βzdz

)}
+ 2λKLipσ‖u‖1,βeβt2

{
1

d+ α− 1

∫ t2−t1

0
z1+α(d+α−1)e−βzdz

+

∫ t2−t1

0
z(1−d)/αe−βzdz

}
.

Then
lim
δ↓0

sup
|t1−t2|<δ

E|u(t2, x, .)− u(t1, x, .)| ≤ 0

and therefore

lim
δ↓0

sup
|t1−t2|<δ

E|u(t2, x)− u(t1, x)| = 0 for a fixedx ∈ Rd.
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