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Abstract

This paper presents a comprehensive study on the tensile, compressive, and flexural performance of

six types of 3D woven carbon-fibre/epoxy composites which were manufactured using a traditional

narrow fabric weaving loom and resin transfer moulding. Four orthogonal and two angle-interlock

weaves were tested with the primary loading direction parallel to the warp direction. The mechanical

performance was found to be affected by the distribution of resin rich regions and the waviness of the

load-carrying fibres, which were determined by the fibre architectures. The binding points within the

resin rich regions were found to be the damage initiation sites in all weave types under all loading

conditions, which were confirmed with both visual observation and digital image correlation strain

maps. Among all weave types, the angle interlock weave W-3 exhibited the highest properties under

all loading conditions.

Keywords: A. 3-Dimensional reinforcement; B. Mechanical properties; E. Weaving; E. Resin transfer

moulding.

1. Introduction

The current trend in composites research in the aerospace and automotive industry is to develop

advanced composites using low cost "out-of-autoclave" manufacturing techniques, produce a

component with high structural integrity and high delamination resistance, and explore the potential

for automated manufacturing processes [1, 2, 3]. Compared to conventional pre-preg layered

laminated composites, 3D woven composites provide these advantages. It has been shown by various

researchers that the impact resistance, post-impact strength, and delamination toughness are

improved by introducing through-thickness binder fibres [1, 4, 5, 6, 7]. However, the in-plane
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mechanical properties of 3D woven composites are generally compromised due to the existence of

fibre crimping introduced by the weaving process [1, 8]. Three-dimensional woven composites have

shown both increases and decreases in elastic modulus, tensile strength, and compressive strength

compared with the conventional 2D laminated composites which have comparable in-plane fibre

structures (such as similar in-plane fibre volume fraction) [2]. However, due to the limited published

data for flexural strength, it is difficult to determine whether the flexural strength is increased or

decreased by the through-thickness fibres [2]. Comprehensive experimental studies were carried out

on the tensile, compressive, and flexural behaviour of 3D woven composites [7, 9, 10, 11, 12, 13],

however more data are required to further understand the behaviour of 3D woven composites with

various weave architectures and update with the advances in weaving technology.

The in-plane tensile properties of various types of 3D woven composites have been experimentally

characterised and compared with other fibre architectures such as non-crimp fabrics and 2D woven

composites [8, 9, 10, 11, 14, 15, 16, 17]. One of the common conclusions drawn by this research is

that the tensile properties can be improved by having a minimum waviness in the in-plane fibres,

which is affected by the weave architecture. The compressive properties of 3D woven composites were

reported to be lower [18], similar [12], and even higher [7] compared to the 2D equivalent composites.

It was suggested by Cox et al. [19] that it was more efficient to improve the compressive strength by

increasing the geometrical regularity than increasing the fibre volume fraction, which on the other

hand results in brittle compressive failure and lower failure strain. The compressive failure was found

to initiate around the geometrical flaws and was dominated by fibre kinking which almost always

occurred across the entire cross-section of the load-carrying tows [11, 19, 20, 21]. The effect of the

weave architectures on the flexural behaviour of 3D woven composites were studied in [9, 12, 22], and

the through-thickness binder yarns were found to be effective in resisting delamination crack growth.

Kuo [23] conducted flexural tests on two types of 3D orthogonal woven carbon/epoxy composites and

concluded that the binder yarn loops at the surface of the fabrics prevent and deflect crack

propagation. Adanur and Tam [24] reported that the flexural strength of 3D interlock glass/epoxy

composites was higher than 2D laminates.

In this paper, four types of 3D orthogonal woven composites and two types of 3D angle interlock

woven composites were manufactured and tested under tension, compression, and three-point

bending. The manufacturing process and experimental techniques are described, and the influence of

the weaving process on the weave architectures are discussed. The stress-strain and
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load-displacement curves under different loading conditions are presented along with the tensile,

compressive, and flexural properties, and full-field surface strain distribution maps during tensile

tests are illustrated using a digital image correlation system. The results of all six weave

architectures are compared and discussed.

2. Materials and manufacture technique

2.1. Manufacturing process

All of the fabric preforms were woven using a traditional narrow fabric weave loom

(Muller-NC2-S) by M.Wright & Sons Ltd. Six types of fabrics were produced with the geometric

model of the idealised weave architectures generated using TexGen [25] as shown in Figure 1. One

design of a 1-by-1 orthogonal weave (W-1), three designs of a 3-by-3 orthogonal weave (W-2.1,

W-2.2, and W-2.3), and two types of angle-interlock weaves (W-3 and W-4) were produced. All six

weaves used the same type of warp and weft yarns as listed in Table 1, and the binder yarns were

different between designs in order to achieve the same amount of fibres in the through-thickness

direction. The spacing of the warp tows was kept at 1.535 ends/mm and the weft tow spacing was

kept at 1.5 picks/mm for all of the weaves. The nominal thickness was 0.42 mm for the weft tow and

0.40 mm for the warp tow, and the nominal width was 1.7 mm for the warp tow and 2.5 mm for the

weft tow. It should be noted that each weft tow consists of two 6k yarns because the loom employed

a rapier weft insertion system which feeds one weft yarn during weft insertion and another weft yarn

during weft arm retraction.

Each preform was an 80 mm wide, 350 mm long, and 3 mm thick (all dimensions are nominal)

strip since it was fabricated using a traditional narrow fabrics weaving loom. Five strips were placed

in a rectangular shaped closed mould tool for resin transfer moulding using a Hypaject MK-III RTM

system. An 8 mm silicone intensifier was use to fill in the redundant cavity in the mould tool and

provide a consolidation pressure. A Gurit Prime 20LV epoxy resin system, which is a two parts

epoxy system consisting of resin and slow hardener, was used to infuse the preforms. The resin was

degassed and heated up to 30◦C in the homogeniser and then injected into the vacuumed and

preheated mould tool. The injection pressure was kept at 1 bar before the mould tool was fully filled,

and once the resin filled the mould the outlets were locked and the injection pressure was increased

to 1.5 bar and kept for 5 min to further fill any possible dry spots. The mould tool was then heated

up to 50◦C for 16h for curing. The entire manufacturing process including both weaving and

moulding were carefully documented and monitored to ensure consistency of the samples.
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2.2. Examination of the manufactured weave structures

The manufactured samples were sectioned, polished and examined under an optical microscope.

All microscopic samples were randomly selected from the same panel from which the testing samples

were cut, and the typical internal and surface fibre geometries of the six weaves are shown in Figure 2

and Figure 3. As can be seen, the actual fibre architectures differ from the idealised designs. For

instance, the warp and weft tows were designed to be non-crimp in all of the designs, however the

real samples showed a certain degree of waviness, which was quantified for the warp tows as shown in

Table 4. Six warp tows were taken for measurement from the microscopic images to give the

averaged tow waviness. A more detailed discussion of the weave structures is presented in the

following sections.

2.2.1. Binder/warp direction

The actual binder path of the weaves are affected by the interlacing movement which largely

depends on the weave architectures. W-1 had the most orthogonally placed binder tows among all

four weaves. The 1-by-1 orthogonal weave had a more compact binding structure than the other

3-by-3 weaves since every column of the weft tows were interlaced by the binder yarns in W-1. This

compact interlacing sequence resulted in smaller resin rich regions and less free space for the warp

tows to move and therefore relatively straight warp tows.

In W-2.1, three weft tows were bound together, which resulted in the merging of these three weft

tows forced by the binding movement. Therefore the space designed to be in between two individual

weft tows was shifted resulting in the formation of a large resin rich region at each side of the merged

tows. Since the binder tows remained tangential to the weft tows at the surface of the weave, the

through-thickness portions of the binder tows were then inclined at an angle within the extra space

created between the weft tows. This large gap also gave the warp tows more space to expand since

there were no weft tows constraining the movement. It is clearly shown in Figure 2 that the warp

tow of W-2.1 had a wavy path and expands its cross-section in the through-thickness direction

between the two merged weft tows.

Weave W-2.2 and W-2.3 were also 3-by-3 weaves similar to W-2.1 with three weft tows bound

together by one binder yarn but in different binding sequences. However, these three weft tows were

separated by another binder in the adjacent cell, which kept the weft tow within the vicinity of its

designed position. Hence, the weft tow spacing was more evenly distributed in these two weaves,

which resulted in smaller resin rich regions and more orthogonally placed binders compared to W-2.1.
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Moreover, the warp tows were relatively straight and had a more constant cross-section along the

length in these two weaves than in W-2.1. The warp tows in W-2.2 were slightly less crimped than in

W-2.3 due to a shorter weft flow as shown in Figure 4. Within the longer weft flow, the weft tows

were relaxed and moved towards an adjacent binding point, which then left a gap in between that

allowed the warp tow to crimp.

Weave W-3 is an angle-interlock weave with non-interlacing warp tows which had limited crimp.

The cross-section of the weft tows in W-3 shifted into a parallelogram-like shape to fit the binder tow

path. Since two adjacent binder tows had different paths, the parallel angle of the cross-section also

changed in the adjacent cell along the weft direction. Therefore it can be inferred that the weft tow

in W-3 had a varying cross-section.

Weave W-4 is an angle-interlock weave with only interlocking binder tows which used the same

IMS5131-24k yarns as the warp tows in all other designs. As shown in Figure 2, all binder tows were

at an angle and the cross-sections of the weft tows were shaped into various forms by the tensioning

force on the 24k binder yarns during the weaving process.

2.2.2. Weft direction

In all of the orthogonal weaves, due to the orthogonal binder insertion, a clear resin channel was

left between two weft tows as shown in Figure 3. It can also be seen that W-1 had a evenly spaced

resin-rich channel, W-2.1 had the widest resin rich channel, and both W-2.2 and W-2.3 had

discontinuous and curved resin channels. The effect of the resin channel on the mechanical

performance will be discussed in a later section. In the angle-interlock W-3, the surface resin rich

regions were localised around the binding point and did not form a distinctive channel. In W-4, resin

rich zones were distributed as "resin pockets" between the weft and binder tows.

The in-plane waviness of the weft tows varies between designs. As shown in Figure 4, the weft

tows of W-1, W-2.1, W-3, and W-4 had the least in-plane waviness, because the adjacent binders on

these weft tows had the same binding movement which did not force the weft tows to bend in

opposite directions. While in W-2.2 and W-2.3, the two adjacent binders had the opposite movement

as demonstrated by the arrows in Figure 3. The curvature of the weft tows at the binding points in

W-2.2 was larger than in W-2.3, which was caused by the difference in binding sequence between the

two weaves.

The samples were also sectioned along the weft direction to reveal the internal weft tow path, as

shown in Figure 4. W-1 had the least crimped weft tows among all of the designs due to the compact
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binding sequence and the shorter weft flow. As shown in Figure 4, W-2.1 and W-2.2 had shorter weft

flows than W-2.3, therefore the out-of-plane waviness of the weft tows in these two weaves was larger

than in W-2.3. W-3 also had some extent of out-of-plane waviness in the weft tows, which is caused

by the longer weft flow. The weft tows in W-4 had the largest out-of-plane waviness due to the

absence of non-interlacing warp tows in this weave architecture. The non-interlacing 24k warp tows

in all other designs were changed into angle-interlock tows in W-4. This increased thickness

angle-interlock binder yarn also caused the out-of-plane waviness of the weft.

2.3. Measured fibre volume fraction

The nominal thickness of the infused composite panel was 2.78 mm with variations between

weave types as listed in Table 2, which were averaged from the 22 mechanical testing samples. The

fibre volume fractions of the six types of composites were obtained from matrix burn-off tests. By

measuring the weight before and after burn off tests, the overall fibre volume fraction were

calculated. The fibre volume fraction of the warp tows and weft tows were measured by separating a

dry fabric strip which was long enough to cover at least four complete unit cells, into individual tows

and weighing the overall mass of each type of tow. Two dry fabric samples and three composite

samples were measured and the averaged results are listed in Table 2. All of the weave architectures

except W-3 had a similar overall fibre volume fraction of around 50%, while W-3 had the lowest

overall fibre volume fraction and warp fibre volume fraction.

3. Mechanical testing

All samples were cut from the moulded panel using a water jet cutter. Tensile, compression, and

flexure tests were conducted on all six weave architectures with the primary loading axis parallel to

the warp direction. Five samples were tested for each weave type under each loading condition and

the geometries of each type of samples are shown in Table 3.

3.1. Tensile testing

The tensile tests were carried out following ASTM D3039 standard [26] using an Instron 6025

testing machine with a 100 kN load cell as shown in Figure 5. A displacement control of 2 mm/min

was applied and one 5 mm long TML-BFLA-5-3 strain gauge was attached in the centre of each

specimen along the loading direction to determine the elastic modulus. Since the strain gauge only

measures local strain and fails at higher strain, a LaVision 2D digital image correlation (DIC) system

was used on two extra samples of each weave in order to obtain full-field strain development
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especially in the higher strain regions. Random speckle patterns were applied to these samples using

white paint on a matt black base coat, and the DIC camera recorded the deformation at 4 frames/s

during loading. All of the samples were loaded until cross-sectional fracture with the load,

displacement, and strain data recorded at 2 Hz.

3.2. Compression testing

The compression tests were conducted following the modified ASTM D695 standard [27, 28] using

an Instron 6025 with a 100 kN load cell and an anti-buckling guide as shown in Figure 6. In order to

achieve an acceptable compressive failure mode a short gauge length of 5 mm was required [27],

which was not enough to attach the strain gauges. Therefore two independent tests were conducted

to obtain the compressive modulus and strength. The compressive modulus were obtained from

strain gauged un-tabbed samples, while the compressive strength were obtained from end-tabbed

samples. For each untabbed sample, another sample was cut next to it to obtain the compressive

strength. A displacement control of 2 mm/min was applied on each sample and TML-BFLA-2-3 (2

mm) strain gauges were attached in the centre of the un-tabbed specimens.

3.3. Flexure testing

The flexural properties were obtained from three point bending tests. Preliminary tests were

carried out on W-1 samples with span-to-thickness ratio of 16, 32, 40, and 60 as suggested by ASTM

D790 [29], and five samples were tested with each ratio. It was found that a span-to-thickness ratio

of 40:1 provided the least scatter in the flexural modulus and strength results, which was then used

to conduct all of the flexural tests. An Instron 8870 with a 25 kN load cell was used to perform the

tests as shown in Figure 7, and a 2 mm/min displacement control was applied.

4. Results and discussion

4.1. Tensile testing

Figure 8 shows the stress-strain curves of one example specimen from each weave with the stress

and strain recorded until failure, and Table 4 lists the averaged tensile strength and modulus from all

seven specimens. As shown in the stress-strain curves, all six samples exhibited linear behaviour at

the beginning of loading and non-linear behaviour towards final fracture. For all other five weaves

except W-4, the non-linear behaviour was attributed to the damage occurring in the specimens and

subsequent load re-distribution, such as matrix cracking. For W-4, the non-linear behaviour was

partially caused by the damage and partially caused by the straightening effect of the angled binder
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tows. The linear portion of the stress-strain curve (0.1-0.3% strain) was used to calculate the tensile

modulus according to ASTM D3039 [26]. Unfortunately the strain gauges on two thirds of the

samples failed before the sample reached its tensile strength, possibly because the surface matrix

cracks occurred within the gauged regions which resulted in the strain gauges debonding. Therefore

failure strain was not obtained through these tests. Although the strain gauges failed, the initial

linear portions of the stress-strain curves were still considered to be valid, because these linear

regions were at about 0.6% strain (at least 200 data points) away from where the strain gauge

started to fail. In addition, it is not uncommon to have strain gauges fail due to surface damage

[21, 27, 30]. As can be seen from Table 4, the tensile modulus was affected by the waviness of the

warp tows: higher waviness resulted in lower modulus. Since the volume fraction of the load-carrying

fibres plays an important role in the mechanical properties of composite materials, the tensile

properties were normalised by the warp fibre volume of each weave fibre architecture in order to

perform an appropriate comparison. The results were normalised according to Equation 1 and are

plotted in Figure 9.

Pn = Pact ×
28%

Vwarp
(1)

where Pn is the normalised material property, Pact is the actual material property, Vwarp is the

actual warp fibre volume fraction of each weave, 0.28 is the normalised warp fibre volume fraction

averaged from all of the weaves.

Weave W-1 had the second highest normalised tensile strength and the third highest normalised

tensile modulus. The compact weave structure of W-1 resulted in less crimped warp tows which led

to the higher tensile properties. In addition, this compact pattern also improved the regularity of the

weave structure, which resulted in W-1 having the lowest coefficient of variation. A similar weave

pattern with different types of yarns was tested in [3] and showed a tensile modulus of 60 GPa and a

tensile strength of 953 MPa in the warp direction. The warp yarns used in [3] had lower tensile

properties than the warp yarns used in this study, and were also lower in volume fraction.

Weave W-2.1 showed the second lowest tensile modulus and the largest scatter. As discussed

earlier, W-2.1 had a large resin rich region between the two merged weft tows and the warp tows had

more waviness than other four weaves, which resulted in the lower tensile modulus. The unit cell of

W-2.1 was relatively large and the fibre/resin distribution were relatively localised on the surface.

Therefore the weave had localised high strain regions within the resin rich zones on the surface of the
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samples as shown in Figure 11. The length of the strain gauge (5 mm) was not long enough to cover

both the resin and fibre regions (10 mm) in this particular weave. Therefore the resultant modulus

was artificially lower from the samples with the strain gauge that only covered the resin rich region,

and artificially high modulus was obtained from the samples with the strain gauge covering the fibre

region. This resulted in the larger coefficient of variation of W-2.1 and also explained the fact that

the tensile modulus data had higher scatter than the tensile strength data. The large resin rich

channels and crimped warp tows in W-2.1 were reduced by varying the binding sequence, as can be

seen in W-2.2 and W-2.3, which resulted in higher tensile modulus of these two weaves. In addition,

W-2.2 had a higher tensile modulus than W-2.3 due to its less crimped warp tow. However the

tensile strength of W-2.2 was lower than W-2.3 and even W-2.1, which was inferred to be caused by

the larger extent of fibre damage during the weaving process due to its less regular weave pattern

than W-2.1 and W-2.3, although this has not been confirmed.

Based on the normalised results, W-3 was the highest in both tensile modulus and tensile

strength. The compact weft tow placement and the angled binders resulted in less crimped warp

tows which led to a higher tensile modulus. The weave architecture also had less and smaller resin

rich regions which were found to be the damage initiation sites in the other weaves. Therefore the

fewer damage initiation sites resulted in higher tensile strength of W-3.

Weave W-4 exhibited a large extent of non-linearity after about 0.5% strain due to the absence of

straight load-carrying warp fibres. The angle-interlock binders started to straighten up during

loading, which caused the non-linear behaviour and matrix failure in the resin pockets and then

induced failure. Therefore W-4 had the lowest tensile properties among all of the weaves.

Figure 11 shows the strain distribution maps obtained at the averaged strain level of

approximately 0.5% strain and at the last frame before fracture, along with the corresponding weave

pattern on the left. A 50 mm long virtual strain gauge was attached on the strain map to give the

averaged strain within the gauge area. As shown in the strain maps, the strain distribution was

largely affected by the weave patterns. Localised high strain regions were detected near the binding

points within the resin rich zones where matrix cracks were first visually observed. Two of the

samples failed within the DIC monitored region and the final fracture sites are illustrated on the

strain maps in these two samples (W-2.1 and W-2.2) in Figure 11. In W-1 and W-2.1, high strain

regions were detected within the resin rich channels at an average strain of around 0.5%. W-3 showed

a relatively uniform strain distribution with a few strain concentration regions around the binding
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points. In all other weaves, the high strain regions concentrated near the binding points since there

were no clear connected resin rich channels. As can be seen from Figure 11 (a) and (e), the left side

of the specimens showed higher strain than the right side at lower strain level, and this difference

almost vanished at higher strain levels. This was possibly caused by the misalignment between the

specimen and the DIC camera. The strain caused by this misalignment was lower than the strain at

higher stress level, hence became less noticeable. Since the purpose of the DIC was only to

qualitatively characterise the strain distribution, this strain difference was neglected. However, more

care should be taken in positioning the camera and the specimens in future DIC tests.

The binder tow straightening and matrix cracking around the binding points were visually

observed on the surface of the specimens in all weave types. According to the strain distribution

maps, strain concentration zones located around the binding points where the binder fibres changed

directions, and therefore the matrix cracks initiated within these strain concentration regions. In all

of the orthogonal weaves, the matrix cracks initiated around the binding points, propagated along

the resin rich channel, and then coalesced together into a longer transverse crack across the width of

the sample. In W-1 and W-2.1, warp tow debonding was visually observed through the resin

channels after matrix cracking. It was also observed in W-2.1 that the matrix crack initiated inside

the weft tow and propagated to the boundary of the weft tow and formed a delamination crack

between the weft tow and the warp/binder tow. The stress levels at which these cracks were observed

were recorded in some of the samples. The cracks appeared at the edges in W-2.1 at 489 MPa, in

W-2.2 at 787 MPa, and in W-4 at 422 MPa, and surface indentation caused by the binder tow

straightening was found in W-3 at 422 MPa. However, since these cracks were only detected visually,

the initiation stress of these cracks were inconclusive and cannot be used for comparison.

The final tensile failure was the breakage of the warp tows, which occurred along the coalesced

matrix cracks within the resin channels. Since the resin channel was curved in W-2.2 and W-2.3 as

shown in Figure 3, the final fracture surface followed the curved weft tows in these two weaves.

Figure 10 shows the cross-sections parallel to the loading direction in the vicinity of final fracture

sites. It can be seen that matrix cracks within the weft tows occurred in all weave types. Clear

separation between warp and weft layers was observed in W-1, W-2.1, and W-2.2.

The weaves with more compact architectures (W-1 and W-3) exhibited higher tensile properties,

because the compact structures provide less crimped fibre (W-1) and fewer damage initiation sites

(W-3). The weave without non-interlacing fibres (W-4) showed the lowest tensile properties since the
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benefit of the reinforcement lies in the fibre direction, which was not fully utilised in W-4.

4.2. Compression testing

Figure 12 shows the typical compressive load and displacement curves of the end-tabbed samples

of the six weave architectures. Similar to the tensile properties, W-4 exhibited lower compressive

properties than other weaves due to the absence of non-crimp fibres in the loading direction.

However, it can be seen from the load-displacement curves that the W-4 sample can still carry load

at about 75% of its maximum strength while all other weaves had failed completely. It was also

observed during testing that the failure process of W-4 was less catastrophic than the other weaves.

The averaged compressive properties for all weaves are listed in Table 5 and the normalised results

are shown in Figure 13. As can be seen that W-3 and W-4 were the highest and lowest in

compressive modulus and strength, all four orthogonal weaves had similar compressive strength, and

W-2.1 had the lowest compressive properties among the orthogonal weaves. Since the compression

tests were sensitive to misalignment and the length of the strain gauge (2 mm) was shorter than the

length of the unit cell (up to 10 mm), the scatter of the compressive properties data was relatively

high. Figure 14 shows the fracture sections of the samples from the compressive strength tests. The

main compressive failure features included matrix cracking, delamination, warp tow fracture which

was the final fracture feature for all weaves except W-4.

In W-1 the delamination crack occurred in between every two layers and propagated for at least

two unit cells before being impeded by the binder tows. In W-1 the binder tows were placed between

every other weft tow therefore the delamination crack had to break all of the binder tows to

propagate to the adjacent cells, which results in a shorter delamination crack than W-2.1.

Weave W-2.1 had longer delamination cracks since the through-thickness binder interlaced three

weft tows together with no other binder inserted in between to prevent the crack growth. The

delamination crack length was reduced in W-2.2 and W-2.3, which was attributed to the different

binding sequence with more frequent binder insertion. Although in W-2.2 and W-2.3 the binder tow

also interlaced three weft tows together similar to W-2.1, another binder tow was inserted within

these three weft tows in the adjacent cell, which resisted the crack propagation in the adjacent cell

and eventually reduced the crack length.

Weave W-3 also had longer delamination cracks, because the binder tows in W-3 were at an angle

to the crack, which did not prevent crack propagation as effectively as the orthogonal binders. In

addition, the delamination crack was deflected by the binder tow and propagated from between the
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first warp layer and the second weft layer to between the second weft layer and the middle warp

layer, as shown by the arrows in Figure 14.

It was visually observed in W-4 that cracks initiated at the boundary of the binder tows first,

which caused separation between the interlaced tows and resulted in the loss of load-bearing capacity.

Since there were no distinctive layers and all binders and weft tows were interlaced, W-4 did not have

any delamination cracks. The crack shown in Figure 14 is not considered as a delamination crack

since its width did not extend along the width of the sample due to the interlacing binder in the

adjacent cell.

The weave with the least crimped tows (W-3) showed higher compressive properties, however it

exhibited longer delamination cracks due to the angled binder tows. The four orthogonal weaves

showed similar compressive strength with various extent of delamination which can be reduced by

changing the binding sequence. W-4 offered the lowest compressive properties due to the absence of

non-crimp warp tows but exhibited non-catastrophic failure.

4.3. Flexure testing

The typical stress-strain curves for the six weaves under three-point bending load are plotted in

Figure 15, and the actual and normalised flexural properties are presented in Table 6 and Figure 16.

Since the span-to-thickness ratio was higher than sixteen and the displacement was larger than 10%

of the span, the flexural stress was calculated based on Equation 2 to correct the influence of

excessive end-forces induced by large span-to-thickness ratio according to ASTM D790 [29]. The

flexural strain was also calculated using Equation 3.

σf = (3PL/2wt2)
[
1 + 6(D/L)2 − 4(D/L)(t/L)

]
(2)

εf = 6Dt/L2 (3)

where σf is the flexural stress, P is the applied load, L is the support span, w and t are the width

and thickness of the sample, D is the displacement, and εf is the strain at the centre of the specimen.

In all of the weaves, the flexural modulus was lower than the tensile and compressive modulus,

and the flexural strength was higher than the compressive strength even though the final flexural

fracture was caused by compressive failure. Similar testing results were reported by Wang and Zhao

[12] on a similar orthogonal 3D woven composite. One possible explanation for the lower flexural

modulus is that the middle warp tow passed through the bending neutral plane and therefore was

not fully loaded as it did under tensile loading. Therefore one of the three main load-carrying tows
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was not fully utilised under flexural loading, which resulted in the lower flexural modulus. The higher

flexural strength might also be caused by the uneven distribution of reinforcement in the

through-thickness direction. The reported flexural strength was the stress on the outer surface, which

was calculated using the classical beam theory for isotropic material. Due to the inhomogeneity in

the through-thickness direction, this calculated stress was not the stress in the warp tows which

failed in compression. In addition, the reported compressive strength was also an averaged stress over

the entire cross-section not the stress within the failed warp tows. Since there were no

well-established methods to estimate the stress within a tow in a 3D woven composite, the flexural

strength can not be compared directly with compressive or tensile strength.

As can be seen from Figure 15, all weave types exhibited a linear stress-strain behaviour at the

beginning of loading, and showed some non-linear behaviour after about 0.01 strain. All of the

weaves except W-4 exhibited a load drop once they reached flexure strength, which was caused by the

brittle fracture of the load-carrying warp tows on the compression side of the specimen. Since W-4

did not have any straight warp fibres, therefore no catastrophic load-carrying fibre breakage occurred.

However the flexural properties of W-4 were the lowest among all weaves. W-2.1 and W-3 had higher

flexural properties as listed in Table 6, and were still the higher weaves in the normalised results as

shown in Figure 16 due to the angled binder. The flexural properties of W-2.1 were higher than the

other orthogonal weaves while its tensile properties were relatively low. A possible explanation is

that the angle of the binder tow played a more important role in bending than the warp tow

waviness. The binder tow in W-2.1 was at an angle similar to W-3 rather than being orthogonal as

shown in Figure 2. Under flexural loading, the binder tow did not straighten and induce cracks as in

the tensile tests, instead it acted as a “truss” and improved the bending properties. Therefore the

weaves with angled binder tows (W-3 and W-2.1) showed higher flexural modulus.

Figure 17 shows the failed sections of all six weave types. The failure consisted of the matrix

cracking near the binding points, delamination, and warp tow fracture which occurred on the

compression side under the loading point. Delamination occurred in between the first warp layer and

the second weft layer in all of weaves except W-4 and the length of the delamination cracks varied

between designs. W-2.1 and W-3 had the longest delamination cracks among all and relatively

shorter delamination was found in W-2.2 and W-2.3.

Weave W-1 exhibited a longer delamination crack than W-2.2 and W-2.3. W-1 was designed to

have the same amount of fibres in the through-thickness direction within a same area as the other
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orthogonal weaves. Therefore the delamination crack should break the same amount of

through-thickness fibres within the same region for all orthogonal weaves. In addition, the

through-thickness binder tows occurred in between every two weft tows in W-1, which was more

frequent than in other orthogonal weaves. However, W-1 used 1k yarns as binders while all other

orthogonal weaves used 3k yarns which required more energy to break. It is shown in Figure 17 that

the binder tows in W-1 were fractured by the delamination crack while in W-2.2 and W-2.3 the

binder tows deflected the crack and were not fractured by delamination. In addition, the

through-thickness fibres were placed closely and evenly along the weft direction. Therefore the

delamination crack would have an even propagation front, which promoted a steady crack growth

and hence a longer crack.

For W-2.1, although it had the same number of binder tows as W-2.2 and W-2.3, it did not have

a wide distribution of the through-thickness binder fibres. The through-thickness portions of the

binder tows in W-2.1 were all placed within the same binding lines along the same weft tows.

Therefore in between two adjacent binding points along the binder, there were no through-thickness

fibres resisting delamination, which resulted in a longer delamination. While in W-2.2 and W-2.3, the

delamination crack was arrested or retarded by the binder tows in the adjacent cells.

In W-3, the binder tows were at an angle, so they did not prevent crack propagation as effectively

as the orthogonal binders due to their shorter and angled through-thickness portions. Also the

spacing between two binding points in the warp direction was longer in this angle-interlock weave

than in the orthogonal weaves. This larger spacing also caused a longer delamination crack since the

delamination can propagate further before getting impeded by the binder tows at the next binding

point.

Weave W-4 had the lowest flexural properties among all weave types due to the absence of

non-interlacing warp tows. However, W-4 exhibited a more gradual failure process while all other

weaves failed catastrophically.

The weave with angled binder tows (W-3 and W-2.1) showed higher flexural properties, however

they experienced longer delamination cracks. The angled binder was inferred to increase the flexural

properties by acting as a truss, however further tests are required to confirm this. The weave without

non-interlacing fibres (W-4) showed the lowest flexural properties but failed progressively.
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5. Conclusions

The main objective of this study was to understand the effect of weave architecture and binder

placement on the behaviour of the 3D woven composites. Six types of 3D woven carbon fibre

composites with the same types of fibres were manufactured using a traditional narrow fabrics

weaving loom and resin transfer moulding technique. The tensile, compressive, and flexural modulus

and strength in the warp direction of all six weave architectures were experimentally characterised in

this work, and the influence of weave architectures on the behaviour of 3D woven composites was

revealed. Based on the experimental observations and analysis the following conclusions are made:

1. The waviness of the tows were determined by the weave architectures during the weaving

process even though all warp and weft tows were ideally designed to be non-crimp. A compact

binding sequence resulted in less crimp in the warp tows such as in W-1 and W-2.2. Longer

weft flows with the two adjacent binder tows having opposite binding movement caused the

in-plane waviness of the weft tows.

2. The tensile properties of the 3D woven composites were affected by the waviness of the

load-bearing fibres. One-by-one orthogonal W-1 and angle-interlock W-3 had higher tensile

modulus (78.26 GPa and 79.81 GPa) and tensile strength (1370.92 MPa and 1276.24 MPa) due

to their less crimped warp tows. The angle-interlock W-4 showed non-linear stress-strain

behaviour due to the absence of non-interlacing warp fibres and the straightening effect of the

binders. Two-dimensional strain maps obtained from a DIC system showed strain concentration

zones around the binding points where matrix cracks were visually observed.

3. Weave W-3 had the highest compressive properties but also longer delamination crack. All of

the orthogonal weaves had similar compressive strength, however W-2.1 had lower compressive

modulus due to its crimped warp tows. Delamination occurred to all samples with straight

warp tows, and was longer in W-3 and W-2.1 which had longer distance between two binding

points. The delamination length can be reduced by changing the binding sequence to one with

shorter binder spacing.

4. The flexural properties were found to be higher in W-2.1 and W-3, which was inferred to be

caused by the angled binder acting as a truss. However the delamination cracks were longer in

these two weaves due to binding arrangement. More tests are required to further understand

the flexural strengthening mechanism.
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5. Overall, the angle-interlock W-3 exhibited the best performance under all three loading

conditions however it had the longest delamination crack among all weaves under both

compression and bending loading.
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f) W-4e) W-3d) W-2.3

Figure 1: Idealised weave architectures generated using TexGen.
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Figure 2: Internal geometry of woven composites, section parallel to binder direction.
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Figure 5: Experimental set-up for tensile tests with a DIC system.

Figure 6: Experimental set-up for compression modulus tests.
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Figure 7: Experimental set-up for flexure tests.
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Figure 8: Typical stress-strain curves for all six types of woven composites under tension.
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Figure 9: Normalised tensile properties.
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Figure 10: Failed sections of tensile samples (parallel to warp direction).
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Figure 13: Normalised compressive properties.
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Figure 14: Failed sections of compression samples (parallel to warp direction).
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Figure 15: Typical stress-strain curves for all six types of woven composites under three-point bending.
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Figure 16: Normalised flexural properties.
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Table 1: Preform specification.

Weave type ID Binder tow Warp tow Weft tow
Type Counts Type Counts Type Counts

Orthogonal 1×1 W-1 Toray T300 1k IMS5131 24k HTA40E13 2×6k

Orthogonal 3×3
W-2.1 Tairyfil T33 3k IMS5131 24k HTA40E13 2×6k
W-2.2 Tairyfil T33 3k IMS5131 24k HTA40E13 2×6k
W-2.3 Tairyfil T33 3k IMS5131 24k HTA40E13 2×6k

Angle interlock W-3 Tairyfil T33 3k IMS5131 24k HTA40E13 2×6k
W-4 IMS5131 24k N/A N/A HTA40E13 2×6k

Table 2: Fibre volume fraction and thickness of the samples.
ID Vf (%) CV (%) Vwarp (%) CV (%) Vweft (%) CV (%) t (mm) CV (%)
W-1 49.86 1.59 27.72 4.59 21.10 5.83 2.71 3.48
W-2.1 49.86 3.46 29.98 5.43 17.73 9.64 2.85 5.81
W-2.2 50.02 4.11 27.84 1.79 19.57 3.40 2.77 5.47
W-2.3 51.16 3.32 28.20 1.38 20.55 2.43 2.80 5.00
W-3 46.01 2.57 25.66 3.02 18.09 3.18 2.77 6.11
W-4 50.98 2.35 N/A N/A 21.42 4.35 2.72 2.62
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Table 3: Nominal sample geometries.
Test Width (mm) Length (mm) Gauge (mm) Shape
Tensile 25 250 150 Rectangular
Compressive modulus 15 80 10 Rectangular
Compressive strength 15 80 5 End-tabbed rectangular
Flexure 25 160 120 Rectangular

Table 4: Tensile properties.
Weave ID Warp tow waviness (%) Modulus (GPa) CV (%) Strength (MPa) CV (%)
W-1 1.37 76.75 5.56 1358.54 3.22
W-2.1 2.83 69.44 29.53 1227.94 7.55
W-2.2 1.06 78.67 15.25 1103.17 6.61
W-2.3 1.40 73.46 10.48 1220.31 6.03
W-3 0.55 80.49 8.69 1276.24 5.96
W-4 N/A 48.54 13.44 409.90 4.91
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Table 5: Compressive properties.
Weave ID Modulus (GPa) CV (%) Strength (MPa) CV (%)
W-1 76.18 10.22 444.31 30.46
W-2.1 62.21 12.57 435.59 15.67
W-2.2 77.41 18.81 444.80 18.84
W-2.3 87.19 15.40 421.41 12.82
W-3 92.29 16.27 549.59 12.76
W-4 57.25 23.18 197.41 17.84

Table 6: Flexural properties.
Weave ID Modulus (GPa) CV (%) Strength (MPa) CV (%)
W-1 48.49 8.42 886.48 7.36
W-2.1 62.22 8.87 960.12 9.54
W-2.2 55.04 4.14 805.26 11.65
W-2.3 58.57 7.70 826.52 5.74
W-3 63.32 4.04 1036.62 10.78
W-4 30.37 2.41 379.89 2.60
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