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"And the science which knows to what end each thing must be done is the most 

authoritative of the sciences, and more authoritative than any ancillary science; and 

the end is the good of that thing, and in geneml the supreme good in the whole of nature". 

Aristotle (384-322 E.C.), Metaphysics 

"apXIKWrCITIl oe TWV ErTlOTrUJWV, Kai lJoMov apXIK~ T~C;; UTTI1P£Toucrl1C;, ~ 
yvwpi~oucra rivoc;; Ev£KEV eOTI TTpaKTEOV EKaOTov· 

APIOTOTtAl'), METacpUO'IKci, 
«TTEpi TaC;; ahlac;; Kai TaC;; apXaC;; ETTlO'TlllJll» 

Hi 
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Synopsis 

Cell formation has received much attention from academicians and practitioners be­

cause of its strategic importance to modern manufacturing practices. Existing research 

on cell formation problems using integer programming (IP) has achieved the target 

of solving problems that simultaneously optimise machine-cell allocation and part­

machine allocation. 

This thesis presents extensions of an IP model where part-machine assignment and 

cell formation are addressed simultaneously, and integration of inter-cell movements 

of parts and machine set-up costs within the objective function is taking place to­

gether with the inclusion of an ordered part machine operation sequence. The latter is 

identified as a neglected parameter for the Cell Formation problem. 

Due to the nature of the mathematical IP modelling for Cell Formation two main 

drawbacks can be identified: (a) Cell Formation is considered to be a complex and diffi­

cult combinatorial optimisation problem or in other words NP-hard (Non-deterministic 

Polynomial time hard) problem and (b) because of the deterministic nature of math­

ematical programming the decision maker is required to specify precisely goals and 

constraints. 

The thesis describes a comprehensive study of the cell formation problem where 

fuzzy set theory is employed for measuring uncertainty. Membership functions are 

used to express linguistically the uncertainty involved and aggregation operators are 

employed to transform the fuzzy models into mathematical programming models. The 

core of the research concentrates on the investigation and development of heuristic and 

. metaheuristic approaches. A three stage randomly generated heuristic approach for 

producing an efficient initial solution for the CF together with an iterative heuristic 

are first developed. Numerous data sets are employed which prove their effectiveness. 

Moreover, an iterative tabu search algorithm is implemented where the initial solution 

fed in is the same as that used in the descent heuristic. The first iterative procedure and 

the tabu search algorithm are compared and the results produced show the superiority 

of the latter over the former in stability, computational times and clustering results. 

- ix -
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Chapter 1 

Group Technology & Cellular 

Manufacturing 

1.1 Introduction 

Nowadays, in the business environment, manufacturing companies are under intense 

pressure from the increasingly-competitive global marketplace. Shorter product life­

cycles, time-to-market, and diverse c]lstomer needs have challenged manufacturers to 

improve the efficiency and productivity of their production activities. Manufacturing 

systems must be able to output products with low production costs and high quality 

as quickly as possible in order to deliver products to customers on time. In addition, 

the systems should be able to respond quickly to changes in product design and prod­

uct demand without major investment. Because traditional manufacturing systems 

such as mass and jobbing production systems are not capable of satisfying such re­

quirements, companies employ other innovative concepts. They put in a lot of effort 

trying to achieve these capabilities through: Just In Time (JIT), Quick Response (QR), 

Total Quality Management (TQM) and Group Technology (GT)/ Cellular Manufac­

turing (CM). Among all these concepts GTjCM is recognised by the manufacturing 

companies as having a main role in achieving world-class capabilities. Many large and 

medium-size companies have adopted GT/CM concepts and experienced reduction in 

manufacturing lead time, material handling cost and improvement in quality [Sin93]. 

Group Technology was first introduced in the former USSR by Mitrofanov [Mit66] and 

popularised in the west by Burbidge [Bur75]. GT can be defined as a manufacturing 

philosophy identifying similar parts and grouping them together to take advantage of 

their similarities in manufacturing and design. 

- 1 -



Chapter 1 Group Technology & Cellular Manufacturing 

In order to have an understanding of the need and application of GT in manufacturing, 

an introduction to the main traditional production systems and layouts is provided 

next. 

1.2 Traditional Production Systems 

Manufacturing production may be classified into three main types according to the 

variety and volume of products they produce: Mass production, Batch production and 

Jobbing production [Bur75]. 

Jobbing production systems are designed to achieve maximum flexibility such that a 

wide variety of products with small lots can be manufactured. Jobbing systems employ 

a Functional Layout which is designed in such a way that pieces of equipment with 

the same function are located together. Products usually require different operations 

and have different operation sequences. Operating times for each operation could vary 

significantly. Products are released to the shops in batches (jobs). The requirements of 

the system dictate the kind of machines that need to be employed and how they should 

be grouped and arranged. General purpose machines are utilized because they are 

capable of performing many different types of operations. Machines are functionally 

grouped according to the general type of manufacturing process: lathes in one depart­

ment, drill press in another, and so forth. Figure 1.1 illustrates a jobbing production 

system. 

In jobbing systems, jobs can spend 95% of their time in nonproductive activity; much 

of the time is spent waiting in a queue and the remaining 5% is split between lot set 

up and processing [AS93]. When the processing of a part in the system has been com­

pleted, it usually must be moved a relatively large distance to reach the next stage. 

It may have to travel the entire facility to complete all of the required processes as 

shown in Figure 1.1. Therefore, to make processing times more economical, parts are 

moved into batches. Each part in a batch must wait for the remaining parts in its 

batch to complete processing before it is moved to the next stage. This leads to longer 

production times, high production costs and low production rates. 

In contrast to jobbing systems, mass production systems are designed to manufacture 

high volumes of products with high production rates and low costs. Mass production 

employs a Line Layout where for the manufacture of a part a number of sequenced op­

erations are performed. Specialised machines are dedicated to the manufacture of the 

-2-
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Lathe 
Department 

Group Technology & Cellular Manufacturing 

Milling 
Department 

Drilling 
Department 

Figure 1.1: Jobbing Manufacturing 

product and utilised to achieve high production rates. The advantages of flow layout 

are low work-in-process, high throughput time, low material handling cost and simple 

production scheduling. A major limitation of this layout is the lack of flexibility to 

produce products for which it is not designed. This is because specialised machines are 

set up to perform limited operations and are not allowed to be reconflgured. Also if 

one machine is broken that leads to the shutting down of the whole production line. 

Figure 1.2 illustrates mass manufacturing. 

As indicated, jobbing and mass production systems cannot meet today's production 

requirements where manufacturing systems are often required to be reconflgured to re­

spond to changes in product desigu and demand. For these kind of limitations Group 

Technology has emerged as a promising approach in manufacturing. Group Technology 

philosophy is one of the most important innovations to combine the benefits of both 

manufacturing strategies and produce a batch-oriented manufacturing system with a 

Croup Layout [Bur75]. 

Group layout is one of the first key features in group technology. As original equipment 

manufacturers (OEM) are driven by the ever increasing market trends for short prod­

uct life cycles and quick response to the changes in market condition, there are fewer 

and fewer products which enjoy the characters of large quantity and long product life 

time (this means dedicated product lines are often not financially justifiable). For this 

-3-
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Figure 1.2: Mass Manufacturing 

reason an increasing need for making the batch production more efficient is necessary. 

A good solution. to this problem has been given through the group layout approach. 

Under this type of layout, the efficiency of line layout and the flexibility of functional 

layout are combined into one. The implementation of such a system at shop floor level 

is traditionally referred to as Cellular Manufacturing. 

Before proceeding on CM and in order to illustrate the relationship among the three 

production layouts Figure 1.3 is provided. Line layout manufacturing systems provide 

more efficiency but lower flexibility whereas functional layout systems provide more 

flexibility but less efficiency. Group layout lies in between. 

1.3 Cellular Manufacturing 

1.3.1 Introduction 

Cellular Manufacturing (CM) is an application of GT and has emerged as a promising 

alternative manufacturing system. CM could be characterised as a hybrid system link­

ing the advantages of both the jobbing system (flexibility) and the mass production 

approach (efficient flow and high production rate). Within the manufacturing context, 

GT is identified as a manufacturing philosophy identifying similar parts and grouping 

them together into families to take advantage of their similarities in design and man­

ufacturing [SAV98j. CM as the name suggests, entails the creation and operation of 

manufacturing cells. Parts are grouped into part families and machines into cells. A 

- 4 -
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Figure 1.3: Layout Types in Production Systems 

part family is a collection of parts which are similar either because of the geometric 

shape and size or similar processing steps are required in their manufacture. A manu­

facturing cell consists of several functional dissimilar machines which are dedicated to 

the manufacture of a part family. 

CM is defined as the breaking up of a complex manufacturing facility into several 

groups of machines (cells) each being dedicated to process a part family. Under ideal 

conditions, each part type should be manufactured within a single cell. 

As reported by Wemmerlov and Ryer the aim of CM [WR89] is comprised of three dif­

ferent scopes. First, reduce set-up times by using part-family tooling and sequencing. 

Secondly, reduce flow times by reducing set-up and move times, wait times for moves 

and using small transfer batches. Last but not least, there is the aim to reduce inven­

tories and market response times. Moreover, in a survey by Wemmerlov and Johnson 

[WJ97] , CM is promoted as the primary factor for the simplification of production 

planning and control procedures. 

Practically the functionality of CM can be seen in Figure 1.4 where both jobbing and 

mass production systems are aggregated and converted into a cellular batch system. 

Obvious benefits gained from the conversion are less travel distance for parts, less space 

required and fewer machines needed. Since similar part types are grouped this could 

lead to a reduction of set-up and production time and allow a quicker response to 

changing conditions. 

- 5-
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Figure 1.4: Cellular Manufacturing 

1.3.2 Benefits of Cellular Manufacturing 

The advantages of Cellular Manufacturing in comparison with the traditional produc­

tion systems have been an important subject for many researchers for the past decades: 

[WH89J, [HW89J, [WJ97J, [CS97J, [Hye84J, [Sin93J, [Bur75J, [LHZ95J, [FWB87J. Ana­

lytical surveys, system implementations and simulation studies have been carried out 

in order to establish the benefits of cellular manufacturing. Some of the benefits are 

listed below: 

• Reduced set-up time. Each cell is designed to contain part types belonging to 
the same part family. For this reason many of the parts can employ the same or 

similar holding fixtures. Therefore, when fixtures and tools for the parts need to 

. be changed less time is required. 

• Reduced throughput times. In CM, every part is transferred to the next machine 
immediately after it has been processed. For this reason the waiting time is 

reduced substantially. 

• Reduced Work-In-Process (WIP) and finished goods inventory. Askin and Stan­

dridge [AS93J showed that the WlP can be reduced by 50% when the set-up 

time is cut in half. In addition to reduced set-up times and WIP, finished goods 

inventory is also reduced. 

- 6 -



Chapter 1 Group Technology & Cellular Manufacturing 

• Reduced material handling costs and time. In CM parts are produced within 

a single cell (when in ideal conditions). Thus part travel costs and time are 

minimal. 

• Simplified flow of products. Reduced material set-up times and material handling 

time produce a simplification of flow products. 

• Simplified scheduling. Since the manufacturing facility is broken down into cells 

and each part travels within a single cell, the schedule for the plant is simplified 

and it is easily controlled. 

• Improved quality. Parts travel from one machine to another in small distances 

within the same cell till they have been produced. At certain stages immediate 

feedback is provided and if something goes wrong the process will be stopped and 

an inspection will follow. 

A couple of reports have also been produced when real data were collected from firms 

that employed the cellular manufacturing approach. Wemmerlov and Hyer [WH89] 

reported the findings of a survey study of 32 U.S. firms involved in CM. These 32 firms 

represented a wide variety of product lines in machinery and machine tools, agricul­

tural and construction equipment, hospital and medical equipment, defense products, 

engines, piece parts and components. Table 1.1 (page 8) shows the reported benefits. 

Wemmerlov and Johnson [WJ97] conducted a similar survey in implementation experi­

ences and performance measurements of CM at 46 user plants. In the survey, products 

manufactured in these 46 plants are electrical/electronic products and components, 

fluid haudling and flow control devices, machinery and machine tools, heating, cooling 

products and components, tool engines and bearings. Table 1.2 (page 9) shows the 

reported improvements. 

For introducing CM, it is necessary to identify parts and machines to be considered in 

the cellular configuration. This process differs with respect to whether cells are cre­

ated by rearranging existing equipment in the shop floor or whether new equipment is 

acquired for the cells [SAV98], [WH86]. 

The problem of identifying machine cells and part families, has attracted considerable 

amounts of research interest. Burbidge [Bur63], [Bur75], proposed one of the- earli­

est descriptive approaches for the CF problem which is referred to as Production Flow 

Analysis (PFA). PFA is a technique which analyses the information given in route cards 
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Table 1 1: Reported benefits from CM in [WH89] 
Types of benefit Number Average % Minimum % Maximum % 

of responses Improvement Improvement Improvement 

Reduction in 
throughput time 25 45.6 5.0 90.0 
Reduction in 
WlP inventory 23 41.1 8.0 90.0 
Reduction in 
material handling 26 39.3 10.0 83.0 
Improvement of operator 
job satisfaction 16 34.4 15.0 50.0 
Reduction in number 
of fixtures for cell parts 9 33.1 10.0 85.0 
Reduction in 
set-up time 23 32.0 2.0 95.0 
Reduction in 
space needed 9 31.0 1.0 85.0 
Improvement of 
part quality 26 29.6 5.0 90.0 
Reduction in finished 
good inventory 14 29.2 10.0 75.0 
Reduction in 
labor cost 15 26.2 5.0 75.0 
Increase in utilisation 
of equipment in the cells 6 23.3 10.0 40.0 
Reduction in pieces 
of equipment required to 
manufacture cell parts 10 19.5 1.0 50.0 

to form cells. A manual method for CF called "Nuclear Synthesis" was proposed where 

manufacturing cells are created around important key machines, used in conjunction 

with several other machines, to make many different parts. El-Essawy [EET72] pro­

posed a method called Component Flow Analysis (CFA) at about the same time. In 

some respects, the methodology of CFA differs from that of Burbidge's PFA procedure 

since the latter first partitions the problem whereas the former does not. 

1.4 Cellular Manufacturing Design 

The design of cellular manufacturing systems has been called Cell Formation (CF) or 

Part Family/Machine Cell (PF /MC) formation or Manufacturing Cell Design (MCD). 

Given a set of part types, processing requirements, part type demand and available re­

sources (machines, equipment, etc.), a general design of cellular manufacturing consists 

of the following approaches: 

1. Part families are formed according to their processing requirements. 
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Table 1.2: Reported benefits from CM in [WJ97] 
Performance Number Average % Minimum % Maximum % 

Measure Improvement Improvement Improvement 

Reduction of 
move distance time 37 61.3 15.0 99.0 
Reduction in 
throughput time 40 61.2 12.5 99.5 
Reduction of response 
time orders 37 50.1 0.0 93.2 
Reduction in WIP 
inventory 40 48.2 10.0 99.7 
Reduction in 
set-up times 33 44.2 0.0 96.6 
Reduction in finished 
goods inventory 38 39.3 0.0 100.0 
Improvement of 
part quality 39 28.4 0.0 62.5 
Reduction in 
unit costs 38 16.0 0.0 60.0 

2. Machines are grouped into manufacturing cells. 

3. Part families are assigned to cells. 

Note that the above steps are not necessarily performed in the above order or even 

sequentially. Depending upon the procedures/formulations employed to form manu­

facturing cells and part families, three solution strategies are identified [SAV98]: 

1. Part families are formed first and then machines are grouped into cells accord­

ing to the part families. This solution strategy is referred to as Part Family 

Identification (PFI). 

2. Manufacturing cells (grouped machines) are first created based on Similarity in 

part routings and then the parts are allocated to cells. This solution strategy is 

referred to as Machine Groups Identification (MGI). 

3. Part families and manufacturing cells are formed simultaneously. This is referred 

to as Part Families/Machine Grouping (PF /MG) solution strategy. 

Numerous formulations exist for cellular manufacturing depending on the objective of 

optimisation at the level of manufacturing incorporated in the solution procedure. At 

the current stage, a simple formulation for the CF problem is described which is the 

machine/part matrix formulation. This formulation was first adopted by Burbidge as 

part of the Production Flow Analysis procedure for the implementation of CM system 

and also forms the basis of many procedures for cell formation in the years that followed. 
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1.4.1 Machine-Part Matrix Formulation 

The Cell Formation problem in terms of matrix formulation can be defined as follows: 

given a machine-part incidence matrix showing which machines are required to produce 

each part, create cells of machines and identify families of parts, allocate part families 

to machine cells so that each part family is within a cell with minimum inter-cellular 

movement of parts. This CF definition could be illustrated with the help of a machine­

component (m/c) matrix, Amxn, where: 

• m is the total number of machines in the plant 

• n is the total number of parts/components in the plant 

Columns and rows of an incidence matrix represent parts and machines respectively. 

A matrix element aip is 1 if machine i is used to process part p, and 0 otherwise. The 

following example is an illustration for the binary matrix formulation: Consider a plant 

system with 5 parts and 4 machines. By analysing information carried on the route 

cards of the parts, the mic matrix A4x5 in Figure 1.5 is obtained. 

pI p2 p3 p4 p5 
m1 0 1 0 1 1 
m2 1 0 1 0 0 
m3 0 1 0 1 0 
m4 1 0 1 0 0 

Figure 1.5: An initial matrix which gives perfectly separable cells 

The value of a3,4 entity is equal to 1, thus part 4 needs an operation on machine 3. In 

contrast part 4 does not need an operation on machine 2 since a2,4 is equal to O. A 

similar explanation applies to the rest of the matrix entries. 

Once the mic matrix has been obtained, the cell formation problem is now centralised 

on the transformation of the initial matrix into a solution matrix that has a block 

diagonal structure i.e. all positive entries are arranged inside blocks along the main 

diagonal of the mic matrix. Rearranging all rows and columns results in the incidence 

matrix results in a solution diagonalised matrix shown in Figure 1.6. 

By observing the solution matrix it is easy to identify two independent cells, the first 

one comprises of machines 2, 4 and parts 1, 3, whereas the second comprises of ma­

chines 1, 3 and parts 2, 4 and 5. 
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pI p3 p2 p4 pS 
m2 1 1 0 0 0 
m4 1 1 0 0 0 
m1 0 0 1 1 1 
m3 0 0 1 1 0 

Figure 1.6: Two perfectly separable cells 

The main objective of a cell-formation algorithm for the current version of the problem 

is the creation of completely independent cells. The last entails that given a number 

of components belonging to a specific part family these can only be processed within 

the cell initially assigned to. However, this is not what really happens in practice. 

Figure 1.7 illustrates a situation on a different matrix where the cells formed along the 

diagonal are not independent. More specifically, part 5 requires processing on machines 

1, 3 and 4, therefore the matrix cannot be perfectly decomposed and no independent 

cells are formulated. Part 5 is called an exceptional part. 

pI p2 p3 p4 pS 
ml 1 1 0 0 1 
m2 1 1 0 0 0 
m3 0 0 1 1 1 
m4 0 0 1 1 1 

Figure 1.7: Non-disjoint cells due to an exceptional part 

In a similar way to exceptional parts, bottleneck machines are defined. The matrix in 

Figure 1.8 cannot be perfectly decomposed because machine 5 processes parts belong­

ing to more than one cell. 

Exceptional parts and bottleneck machines are the sources of intercellular moves and 

significant consideration is given in cellular manufacturing research. 

Furthermore, it is observed in Figure 1.8 a 0 in the bottom right cell. 0 represents a 

void which indicates that a machine assigned to a cell is not required for the processing 

of a particular part in a cell. In this example machine 5 is not necessary for part type 4. 
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pI p2 p3 p4 p5 p6 
ml 1 1 0 0 0 0 
m2 1 1 0 0 0 0 
m3 0 0 1 0 1 1 
m4 0 0 1 1 1 1 
m5 1 1 1 0 1 1 

Figure 1.8: Non-disjoint cells due to a bottleneck machine 

The binary mic matrix representation is a simple and efficient representation but cap­

tures only a limited amount of manufacturing data. It does not consider important 

information for the cell configuration. The more data types used the more advanced 

formulations (e.g. mathematical programming, graph-based methods) could be consid­

ered for the CF problem. These formulations and some more will be discussed in the 

literature survey. 

1.4.2 Drawbacks in Current CM Design Methods 

In the last three decades, over 200 research papers and practical reports have been 

published in the field of CM, seeking effective methods for designing Cellular Manufac­

turing Systems. CM design methods can be classified into clustering analysis, graph 

approaches, mathematical programming, heuristic strategies and fuzzy theory. A num­

ber of papers produced for each of these categories are described in Chapter 2. 

Each design approach considers different numbers of design objectives and constraints, 

to different extent depending upon the scope and interest of each design approach. For 

instance clustering analysis approaches consider only one objective, i.e. the minimisa­

tion of intercell movements where only part operations and the machines for processing 

those operations are taken into account. Other product data (such as operational se­

quences and processing times) are not incorporated into the design process. Thus, 

solutions obtained may be valid in limited situations. However, they are simple to 

implement and solutions can be obtained in reasonable amounts of time. 

Each design approach has its advantages and limitations. Some are simple to imple­

ment and to obtain solutions. Some capture the design more accurately by considering 

a number of objectives and constraints, but would require a substantial amount of 

time to obtain solutions. Among the available design approaches mathematical pro­

gramming can capture the reality of the design better than others, since product data 

- 12 -



Chapter 1 Group Technology Cl Cellular Manufacturing 

and production requirements can be incorporated. In general product data include 

processing times, set-up costs, tooling costs and other costs. Production requirements 

include product mix and demand in each period, available resources, machine cost, ma­

terial handling cost. Most of these product data and requirements have been addressed 

before but none concentrated on the involvement of ordered part machine sequence 

within a CF system. 

Moreover, a major drawback of mathematical programming approaches and especially 

those involving integer mathematical models, is computational time required for large 

problems. Obtaining optimal solutions from mathematical programming approaches 

can be infeasible due to the combinatorial complexity of the CM design methods 

[SAV98j. Thus, efficient heuristic solutions are needed to obtain reasonably good solu­

tions for large scale problems in limited computational times producing a real system. 

As will be seen in Chapter 2, many heuristic approaches have been proposed in the last 

ten years, however, each is unique based each time on a particular model specifications. 

Additionally, within mathematical programming modelling many system parameters 

are not easy to specify due to the deterministic nature of the former. For this reason 

fuzzy mathematical programming could be of application to model linguistic vagueness 

in information pertaining to design parameters and make the system more robust. The 

reasons that many CM parameters like machine capacity, processing time, machine 

duplication, intercell cost, could be uncertain is due to the following reasons: 

• Substantial gap between design and implementation; 

• High cost for acquiring these figures with precision. 

1.5 Motivation for this Thesis 

Cellular manufacturing has been a prosperous research area for the last three decades, 

however its design involved mainly classical methodologies (details can be found in 

Chapter 2). Relevant published material on cellular manufacturing design is primarily 

based on hard computing techniques. Only during the last decade some work has been 

carried out based on soft, breakthrough, computing techniques where additional cri­

teria have been investigated for assessing the robustness of the cell formation system. 

The application of fuzzy logic within CF mathematical programming model where part 

families and groups of machines are formed simultaneously and the need for studying 

'in-depth' the cell formation design from a mathematical and fuzzy point of view are 
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of great importance. Moreover, many heuristic approaches have been developed in the 

past addressing the CF model with a number of constraints to be taken into consid­

eration. However, in the author's knowledge none of the existing published material 

presents heuristic procedures where multiple machines of the same type are allocated 

to cells and parts are allocated to machine cells simultaneously when part machine 

operation sequence is taken into account. The latter forms a key constraint as CF is 

extended to incorporate more realism where data sets of significant size could be taken 

into account. 

The motivation of this research is to undertake a rigorous study on fuzzy mathematical 

modelling analysis for the cell formation problem based on a sophisticated mathematical 

programming model. Cellular manufacturing systems have been mainly investigated 

in cases where no uncertainty is taken under consideration in the mathematical model. 

However, there is a need to investigate the systems behaviour with uncertainty taken 

properly into account as, this is the situation in real applications. For better results 

reflecting real applications it is also necessary to develop heuristic algorithms via which 

all the benefits for the mathematical models will be revealed. This approach of solving 

the CF problem could provide feedback to the decision maker, implementer and analyst. 

1.6 Work Addressed in this Thesis 

The body of work described in this thesis takes the proven concept of cell formation 

and enhances it through the use of mixed integer mathematical programming. The 

principal area of investigation is that of cell formation when a specific type of uncer­

tainty is taken into account and Fuzzy Set Theory is employed to measure it and make 

the system more robust. The core of the research involves the design of heuristic and 

metaheuristic algorithms in order to be able to incorporate realism and produce a prac­

tical CF system when large data'sets are considered and a key constraint such as part 

machine operation sequence is taken into account. At present cell formation problems 

developed either as mathematical models or as heuristic strategies do not include the 

part machine ordered sequence and part/machine utilisation together with machines 

of multiple instances within their specifications. 

Applying heuristic techniques and Fuzzy Set Theory, cell formation can be utilised by 

using more sophisticated model structures with larger scale data sizes, thus improving 

the concept of Cellular Manufacturing. 
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1.6.1 Thesis Structure 

The thesis is laid out as follows: 

• Chapter 2 is a detailed survey of work involving cell formation and its applications. 

It includes a number of different methodologies employed for CF over the past 

thirty years. 

• Chapter 3 presents a mixed integer mathematical programming model for the cell 

formation problem for simultaneously grouping machines into cells and assign­

ing parts to machine cells when a number of key constraints and an enhanced 

objective function are taken into account. 

• Chapter 4 introduces the use of fuzzy set theory where fuzzy aggregation opera­

tors and membership functions are employed to measure the uncertainty involved 

for determining the maximum number of machines allowed in each cell within the 

cell formation system. 

• Chapter 5 presents a three stage heuristic approach for designing and setting up 

an initial starting framework representing the CF problem. 

• Chapter 6 proposes an iterative heuristics approach, for the cell formation math­

ematical programming model in order to be able to use large scale data sets and 

incorporate more realism. Computational results for small, medium and large 

data sets are also presented and the heuristic's behaviour is examined together 

with some of its limitations. 

• Chapter 7 proposes an extension to the heuristic approach based on the frame­

work of a metaheuristics strategy and more specifically on the principles of the 

tabu search where neighboring solutions are investigated and certain moves are 

forbidden as the search goes along. 

• Chapter 8 presents the computational results for the tabu search algorithm when 

a number of problem instances small, medium and large are taken into account. 

The algorithm's performance is explored by examining its behaviour on a number 

of issues and certain conclusions are drawn when comparing the latter with the 

heuristic approach; 

• Chapter 9 contains a conclusion and discussion on the overall thesis results, and 

suggests possible further work. 
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• The following information is included in the Appendix: (A) CF Mathematical 

Models - XPRESS-MP, (B) Generic Forms of Selected Fuzzy Aggregation Operators, 

(C) Random Data Generation, (D) Part Allocation - Mat Lab Code (E) Tabu 

Search Algorithm - MatLab Code. 

1. 7 Published Work 

(i). Papaioannou, G. and J. M. Wilson, Extensions to Integer Mathematical Program­

ming models of Cell Formation in Machine Scheduling, Applied Mathematical 

Programming and Modelling (APMOD) Conference 2006, Madrid, Spain, June. 

19-21, 2006 

(ii). Papaioannou, G. and J.M. Wilson, Fuzzy Extensions to Integer Mathematical 

Programming models of Cell Formation in Machine Scheduling, Annals of Oper­

ations Research (Accepted) 

(iii). Papaioannou, G. and J.M. Wilson, A Tabu Search Algorithm for the Cell Forma­

tion Problem with Part Machine Sequencing, International Journal of Production 

Research (Under Review) 

1.8 Thesis Contributions 

This study addresses a number of issues concerning the problem of Cell 

Formation and makes contributions in the following areas: 

(a). Rigorous investigation of the Cell Formation problem; 

(b). Development of an advanced mixed integer mathematical programming model 

(MIMP) to simultaneously optimise cell formation, machine-cell allocation and 

part machine cell allocation when part machine sequencing is taken into account; 

(c). Theoretical investigation of a type of uncertainty involved within the MIMP 

model and the employment of Fuzzy Theory for further experimentation. As­

sessment of Fuzzy Theory via membership functions and aggregation operators 

on a number of data sets; 

(d). The novel idea of developing heuristic and metaheuristic algorithms for the Cell 

Formation problem when part machine operation sequence is taken into account 

incorporating realism; 
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(e). Assessment of the heuristic and metaheuristic strategies using small, medium 

and large data sets, where their performance is examined based on a number of 

criteria and a comparison among algorithms is made on the basis of producing a 

robust and stable cell formation system useful for production planners. 
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Chapter 2 

Literature Survey 

In the last three decades much work has been undertaken seeking effective methods for 

designing cellular manufacturing systems. A considerable number of papersbave been 

published during this time making the task of surveying and classifying the solution 

approaches both difficult and challenging. 

The purpose of this review is not to provide an extensive coverage of all the literature 

available but to highlight the relevant studies to this research. In this chapter a number 

of important solution methodologies for cellular manufacturing will be examined. 

2.1 Introduction 

There is no default way of classifying cell-formation methods. In CM literature a 

number of reviews have been written some of which could be found in [SAV98], [AS98], 

[JKC95], [Sin93], [GS84]. A first attempt to classify the approaches, results in the 

following three categories: 

• Informal methods 

• Part coding analysis methods 

• Production based methods 

Informal methods or visual methods or simply" eye-balling" methods rely on the visual 

identification of the correspondent part families and machine cells. This methodology 

is trivial only when the number of parts and machines is small or could be longer but 

with considerable flows. Otherwise, the identification task becomes impossible. 
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In part coding analysis (PCA) methodologies the design characteristic of the parts has 

an important role in the formation of part families. These methodologies use a coding 

system to assign numerical weights to part characteristics and identify families using 

some classification scheme. PCA-based systems are traditionally design oriented or 

shape-based, therefore they are ideal for component variety reduction. 

The core classification for the purpose of this research is production based methods. 

These methods will be defined indirectly through a further classification consisting of 

the following categories: 

• Clustering 

• Graph partitioning approaches 

• Mathematical programming methods 

• Heuristics 

• Metaheuristics 

• Fuzzy logic 

The following section presents for each of the categories, methodologies/algorithms 

proposed in a considerable number of papers. 

2.2 Cell Formation - Existent Methodologies 

2.2.1 Clustering 

Cluster Analysis is composed of many diverse techniques for recognizing structure in 

a complex data set. The main objective of this cell formation tool is to group either 

objects or entities or attributes into clusters such that individual elements within a 

cluster have a high degree of "natural" association among themselves and a very little 

"natural association" between clusters. Clustering procedures can be classified as: 

• Array based clustering techniques 

• Hierarchical clustering techniques 

• Non-hierarchical clustering tech­

niques 
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• Array-Based Clustering 

In array based clustering the processing requirements of components on machines can 

be represented by the part/machine matrix formulation which was described in Chap­

ter 1. The array based techniques try to rearrange columns and rows of the matrix till 

blocks of entries equal to 1 are produced along the diagonal. 

The literature yields at least seven array-based clustering algorithms namely: Rank 

Order Clustering, Rank Order Clustering 2, Bond Energy algorithm, Modified Rank 

Order Clustering, Direct Clustering Analysis, Clustering Identification algorithm, Cost 

Analysis algorithm and Close Neighbour algorithm. 

Rank Order Clustering (ROC) was devised by King [Kin80] and was designed to gen­

erate diagonalised groupings of the matrix entries. ROC was based on reading each 

row of the cell entries as a binary word, represented by '0' or '1', and then ranking 

them in decreasing order of their ranking. The same procedure was repeated, only 

this time on columns. The process was iterative and continued until no further change 

could be achieved. ROC algorithm has its roots in the Bond Energy Algorithm (BEA) 

[MSW72], a general clustering algorithm applied to a wide range of clustering problems. 

It has been computationally proved that ROC algorithm is more efficient in terms of 

computer time than the bond energy method when applied to the machine/component 

matrix problem. 

King and N akornchal [KN82] introduced a modified version of ROC called ROC2. 

ROC2 utilises linked lists to overcome some of the limitations of ROC. With the ROC 

algorithm the storage of the incidence matrix as a two dimensional array puts a severe 

limit on the size of the problem that can be tackled. Moreover, because the sorting 

procedure has a complexity of cubic order, efficient implementation is not possible for 

large problems. By applying the ROC2 algorithm, linked lists enabled the use of fast 

and efficient sorting procedures, which resulted in an overall algorithm with linear time 

complexity. The ROC2 algorithm was also combined with other specialised procedures 

to deal with exceptional parts and bottleneck machines. 

Chandrasekharan and Ragagopalan [CR86b] argued that the ROC algorithm tended 

to collect ones in the top-left. hand corner of the machine/component matrix while the 

rest of the matrix was left highly disorganised. This tendency resulted in the erroneous 

identification of bottleneck machines. To overcome these limitations Chandrasekharan 

and Ragagopalan introduced a modified ROC called Modified Rank Order Clustering 
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(MODROC) algorithm, which removes the ROC defects to a great extent and enables 

the identification of bottleneck machines. MODROC started with the execution of two 

iterations of the ROC algorithm. Then, the block of machines and components created 

on the top left hand corner were removed from the matrix. This process was repeated 

until all components families were identified. ~om this algorithm mutually exclusive 

part families formed but the machines cells were not necessarily non-intersecting. For 

this reason, hierarchical procedures were applied and the final plant configuration was 

produced. 

Direct Clustering Analysis (DCA) method, introduced by Chan and Milner [CM82], 

was an efficient clustering technique for producing a diagonalised matrix. This method 

employed a systematic way for the manipulation of rows and columns of the matrix. 

DCA consisted of going through the matrix sequentially, moving the rows with 'left­

most' positive cells (those with an 'X' value in the mic matrix) to the top and the 

columns with the 'top-most' positive cells to the left of the matrix. The basic rule was 

that each component Or machine number had to be moved together with its respective 

row or column entries during matrix transformation as if the cells or the blocks were 

linked together by an imaginary rod. The procedure was iterative and continued until 

no further improvement could be achieved. The main advantage of this method over 

ROe was that the initial configuration of the matrix did not affect the final partition. 

This was achieved as in a pra-processing stage columns and rows were ranked in order 

of decreasing and increasing value of positive cell entries respectively. 

Kusiak and Chow [KC87] developed two efficient algorithms for the CF problem: the 

Clustering Identification Algorithm (CIA) and the Cost Analysis Algorithm (CAA). 

CIA was developed and applied to a problem with a standard formulation, whereas 

CAA applied to an augmented structured problem. The standard formulation was 

based on the 0-1 mic matrix and did not consider any costs. In the augmented formu­

lation, any part j had an associated cost Cj assigned to it and the number of machines in 

a cell were of limited size. CIA was based on the cutting algorithm, originally proposed 

by Iri [Iri68] and was able to define machine cells and part f~ilies by drawing vertical 

and horizontal lines on the mic matrix. CAA was an extension of CIA and explicitly 

considered the cost of subcontracting parts that caused intercellular moves. 

Boe and Cheng [BC91] produced an efficient heuristic method called Close Neighbour 

Algorithm (CNA) for the grouping of machines and components in a binary mic matrix. 

This algorithm was comprised of two basic steps. First, it rearranged the machines and 
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components by examining a measure of similarity for each pair of machines. This level 

of similarity was calculated from the 'closeness' of the machines in their part routings. 

The heuristic procedure applied resulted in the diagonalisation of the intermediate ma­

trix. The algorithm was tested against ten existing algorithms in solving test problems 

from the literature. Test results showed that the algorithm was reliable and efficient. 

In later work, Da Silveira [DS99] proposed a methodology for implementation of cellular 

manufacturing. This procedure was designed and refined along an action research 

project in a toy manufacturer plant in Brazil. The benefits of the implementation in 

terms of reduction in scrap, rework, work-in-process, final stock, batch size and delivery 

times were significant. The method employed for the identification of part families and 

machine cells was Boe and Cheng's [BC91] Close Neighbour Algorithm . 

• Hierarchical Clustering 

Hierarchical clustering for CF is mainly comprised of two stages. Initially, some form 

of similarity or dissimilarity between machines or parts is employed, in order to create 

machine cells or part families. Later, machines or parts are separated into a few broad 

cells, each of which is further divided into smaller groups and each of these further 

partitioned and so on until terminal groups are generated which cannot be subdivided. 

Essentially hierarchical techniques can be clMsified into two methods: 

• Divisive methods. Start with all the data (machines or parts) in a single group 

and create a series of partitions until each machine (part) is in a singleton cluster . 

• Agglomerative methods. Start with singleton clusters and proceed to merge them 

into larger partitions until a partition containing the whole set is obtained. 

Hierarchical classifications may be represented by inverted dendrograms, which are 

two-dimensional diagrams illustrating the fusions or divisions which have been made 

at each stage of the analysis. 

The first author who introduced agglomerative methods hierarchical clustering for the 

CF problem was McAuley [McA72]. Because his methodology forms the basis for the 

succeeded hierarchical algorithms developed for the CF problem, it will be described 

in more detail with the help of the example matrix given in Figure 2.1. 

Initially, a similarity coefficient value (ranged between 0 and 1) is calculated for each 

pair of machines in the plant. The similarity coefficient indicates the similarity of the 
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pI p2 p3 p4 p5 
ml 1 0 1 0 0 
m2 0 1 0 1 1 
m3 1 0 1 0 0 
m4 1 1 0 1 0 

Figure 2.1: Illustration of McAuley's algorithm 

machine in terms of operations performed. McAuley employed the Jaccard's [Jac08] 

coefficient which for the CF problem is defined as follows: 

a·· 
8ij = t3 

aij + bij + Cij 
(2.1) 

where, 8ij is the similarity between machines i and j, aij number of parts processed by 

both machines i and j, bij number of parts processed by machine i but not machine j, 

and Cij number of parts processed by machine j and not machine i. 

The similarity coefficient value for each of the pairs in matrix ( Figure 2.1) is as follows: 

o 
81,2 = 0 + 2 + 3 = 0.0 

2 
81,3 = 2 + 0 + 0 = 1.0 

1 
81,4 = 1 + 1 + 2 = 0.25 

o 
82,3 = 0 + 3 + 2 = 0.0 

2 1 
834 = = 0.25 , 1+1+2 82,4 = 2 + 1 + 1 = 0.5 

Between machines 1 and 3 there is a total similarity, and no similarity between machine 

pairs 1, 2 and 2, 3. From these values the following similarity matrix in Figure 2.2 is 

produced. 

ml 
m2 0.0 
m3 1.0 
m4 0.25 

m2 m3 

* * 
0.0 * 
0.5 0.25 

Figure 2.2: Similarity matrix 

In the second stage and after the similarity between pairs of machines has been es­

tablished, the numerical method for finding and defining clusters of mutually high 

similarity coefficients and presenting them in a dendrogram, was termed Cluster Anal­

ysis. The algorithm employed for the construction of the dendrogram is called Single 
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Linkage Cluster Analysis (SLCA) [Sne57]. This method clusters those machines mu­

tually related with the highest possible similarity coefficient. In the previous example, 

machines 1 and 3 are grouped at the similarity level 1. Then the algorithm successfully 

lowers the level of admission by steps of predetermined equal magnitude. The next 

highest similarity level is found and the associated pair of machines is merged at this 

level. In this case machines 2 and 4 are merged at the similarity level 0.5. Later, and 

since machines 1 and 4 have already been grouped their groups are merged together as 

well at the next highest similarity level of value 0.25. A picture of how the algorithm 

can be represented in the dendrogram is illustrated in Figure 2.3. 
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Figure 2.3: Dendrogram produced from SLCA algorithm 

The main disadvantage of this method is that while two clusters may be linked by this 

technique on the basis of a single bond, many of the members of the two clusters may 

be quite far removed from each other in terms of similarity. For instance, machines 

1 and 2 were merged together at a similarity level of 0.25 although their calculated 

similarity value was 0.0. 

In order to overcome this inefficiency of SLCA, McAuley and other researchers [GS90] 

suggested the use of alternative methods like Average Linkage Cluster Analysis (ALCA) 

and Complete Linkage Cluster Analysis (CLCA). ALCA calculated the average of sim­

ilarity coefficients between groups of machines. The CLCA worked in a reverse way of 

SLCA by assigning the lowest and not the highest similarity coefficient between groups 
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of machines. However, both ALCA and CLCA required the recalculation of the simi­

larity matrix after each individual step resulting in greater computational complexity. 

Gupta and Seifoddini [GS90] extended the applicability of the coefficient-based hier­

archical clustering methods by introducing an enhanced version of McAuley's simi­

larity coefficient. The researchers argued that the main disadvantage of McAuley's 

method was the limited amount on manufacturing information. Thus, they introduced 

the production-based similarity coefficient method which included relevant production 

data, such as part type production volume, routing sequence and processing times. The 

superiority of the production-based similarity coefficient over McAuley's similarity co­

efficient was verified on some test problems taken from the literature. 

Gupta [Gup93] introduced an improved version of similarity coefficient that incor­

porated alternative process plans for the parts produced. Seifoddini and Djassemi 

[SD95] compared the performance of the production-based similarity coefficient and 

the coefficient-based similarity coefficient and found that the former was more able to 

effectively reduce material handling cost. 

Vakharia and Wemmerlov [VW90] proposed a methodology for the cell formation prob­

lem which this time was based on the identification of part families rather than machine 

cells. The similarity measure proposed, considered not only the number of machines 

visited by each part but also the operation sequences. The merging procedure of the 

parts was highly iriteractive with the operator having the power to control the system 

by approving or objecting to merging based on some information. This information 

was supplied from resultant skip and backtracking moves. Skip moves were generated 

when a part required processing on one or two machines. This part in that case was 

identified and removed from the total population of parts. On the other hand, when a 

part required processing on a machine type more than once then backtracking was nec­

essary. After the grouping of the parts in part families was achieved, the operator dealt 

with backtracking and single operation machine parts that had been removed from the 

system initially, and decided where to allocate 'key' equipment (equipment required by 

many parts). The main disadvantage of this highly interactive methodology was that 

it required an expert operator in this field to make specific decisions. 

Stanfel [Sta85] introduced a clustering algorithm which was not based on agglomerative 

techniques but on divisive solutions. Divisive solutions were generated by progressively 

breaking down a single cell or part family to individual machines or parts. In other 

- 25 -



Chapter 2 Literature Survey 

words, Stanfe!'s algorithm started with a single, parent cell including all machines and 

did not make use of a similarity coefficient between machines in order to form machine 

cells like the previous described algorithms. An iterative procedure followed with each 

machine selected to leave the parent cell to either form a new cell or to join an already 

formed cell. All evaluations made at each iterative step, based upon both the resulting 

intercell moves and the number of extraneous transitions caused by the presence of 

machines within a cell, were not processing all the family parts . 

• Non-Hierarchical Clustering 

Non-hierarchical clustering methods are iterative methods but they also employ a mea­

sure of similarity or dissimilarity for grouping parts or machines. They begin with 

either an initial partition of the data set or the choice of a few seed points. In either 

case, one has to decide the number of clusters in advance. Non-hierarchical procedures 

have been developed by Chandrasekharan and Rajagopalan [CR86aj,[CR87j, Srinivasan 

and Narendran [SN91j, and Jayakrishnan Nair and Narendran [JNN98j, [JNN99j. 

Chandrasekharan and Rajagopalan [CR86aj introduced the first non-hierarchical clus­

tering algorithm for the CF' problem which was comprised of three stages. Initially, 

a method employed for the clustering of parts and machines which was called the K­

means method developed by MacQueen [Mac67j. The K-means method was reported 

to have many advantages [And73j however, it required the number of clusters to be 

specified in advance. Therefore, a modified version of the K-means method was pro­

posed and a new formula was derived for the calculation of the maximum number of 

independent cells that could be formed for a specific problem. For the second stage of 

the algorithm part families were allocated to machine cells and a diagonalised matrix 

was produced. The last was achieved with the calculation of an efficiency factor, an 

indicator of maximising the within cell utilisation for each part family and of min­

imising intercell movements. A further improvement in terms of both utilisation and 

intercell movement was achieved with the introduction of ideal-seed points in the third 

stage. These seed points initialised a new run of the algorithm having as a result the 

elimination of singleton clusters. Within the same paper a new concept that of group­

ing efficiency was developed to provide a quantitative standard On a national scale for 

comparing different solutions to the same problem. Grouping efficiency was utilised by 

many researchers in the area of cellular manufacturing. 

An extension and improved version of the ideal seed clustering algorithm was intro­

duced by the same authors [CR87j and called ZODIAC. The acronym ZODIAC stands 
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for Zero One Data: Ideal seed Algorithm for Clustering. This algorithm dealt with 

concurrent formation of part families and machine cells and identified them in a block 

diagonalisation of the zero-one matrix. ZODIAC and the ideal seed clustering algo­

rithm were much the same except that with ZODIAC different methods of choosing 

seeds had been developed and tested. 

Srinivasan and Narendran [SN91] identified that ZODIAC SUffered from two inefficien­

cies. The choice of the initial number of seeds needed careful consideration and the use 

of the city block distance did not reflect the extent of processing required by compo­

nents. For these reasons the same authors introduced a new non-hierarchical algorithm 

called GRAPHICS (GRouping using Assignment method For Initial Cluster Seeds). 

GRAPIDCS identified initial machine cells by solving an assignment problem [SNM90] 

which assigned machines to form cells such that similar machines were grouped together 

and the similarity between machines was maximised. The machine groups obtained, 

formed an ideal starting point for the algorithm, since a set of machine cells provided 

the seeds to cluster the parts and the given set of part-families in sequence was used to 

generate seeds to cluster machines. The main algorithm processed with the alternative 

clustering of machines and parts until no improvement could be made in terms of the 

number of exceptional elements and the voids. GRAPHICS was compared with ZO­

DIAC and it was found to fare better in terms of grouping efficiency and computational 

time, particularly for ill structured matrices. 

An extended version of the GRAPHICS algorithm was proposed by Srinivasan [Sri94]. 

A minimum spanning tree (MST) for machines was constructed from which seeds to 

cluster components were generated. Machine cells and component families were not 

formed simultaneously. This algorithm was compared to GRAPIDCS and ZODIAC 

and in both cases it was observed that it had a better performance. For the compari­

son of the algorithms a number of examples were taken from the literature. 

Jayakrishnan Nair and Narendran [JNN98] introduced a non-hierarchical clustering al­

gorithm called CASE (Clustering Algorithm for Sequence Data). Machine cells and 

component families were identified on the basis of production-sequence data and for 

this reason they presented a new similarity coefficient which considered the sequence of 

operations for each part, multiple visits to machines and part demands. The coefficient 

was used for the identification of the initial seeds for the start of the clustering. Unlike 

previous methods described above, CASE does not demand a priori specification of 

the maximum number of machines in a cell or the number of cells. It allows natural 
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clusters to emerge and yields solutions of higher quality. 

Later, J ayakrishnan N air and N arendran [JNN99] presented an enhanced version of 

CASE called ACCORD (A bicriterion Clustering algorithm for Cell-formation using 

Ordinal and Ratio-level Data). This 'algorithm was developed because of the need 

to utilize data on production sequence like volumes, processing times and machine 

capacities. Taking the sequence directly as the ordinal data and combining the rest 

into ratio-level data, ACCORD had a twin objective of minimizing within-cell load as 

well as intercell moves. ACCORD combined the similarity coefficient used in CASE 

with a new similarity coefficient that captured the workload similarity between any 

pairs of machines in the system. 

2.2.2 Graph Partitioning Approaches 

Graph partitioning approaches employ a graph or network representation for the CF 

problem, where machines and/or parts are treated as vertices and the processing of 

parts as edges connecting these nodes. 

One of the first graph approaches for the CF problem was introduced by RagagopaJan 

and Batra [RB75]. This approach used Jaccards's [Jac08] similarity coefficient and 

graph theory to form machine groups. Each vertex in the graph represented a machine 

and any pair of vertices was connected by an edge if and only if the 'similarity' between 

the machines was greater than a pre-specified threshold value. After all the allowable 

edges were introduced, cliques (complete maximal subgraphs) were formed and then 

merged to create hybrid cells. At this stage, many cells were observed to have a num­

ber of the same machines and thus a new procedure was needed for the creation of 

mutually independent cells. A new graph was created with each vertex representing a 

cell (cliques of the machine-graph assumed to be the starting cells) and each edge rep­

resenting intercellular moves between the hybrid cells. In this work the Kernighan-Lin 

[KL 70] heuristic procedure was utilised for partitioning the corresponding graph. The 

objective of the algorithm was the minimisation of the total number of intercellular 

moves. 

De Witte [DW80] combined the hierarchical clustering algorithm of McAuley [McA 72] 

and the graph partitioning procedure by Ragagopalan and Batra [RB75] for solving the 

following problem: 'Group components into families and machines into cells, in such a 

way that each component can be fully processed in a cell using existing plant, tooling 

and processing methods'. In an attempt to analyse the existing machines De Witte 
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distinguished them into three main categories: 

• Primary machines: Machines types of which only one unit was available, which 

could be allocated to one cell only. 

• Secondary machines: Machine types of which multiple units were available, which 

could be allocated to several cells. 

• Tertiary machines: Machine types of which enough units were available to cover 

every cell in the plant. 

A machine-to-machine combination matrix (indicating relations between the machine 

types) was then created based on the components operations routing sequence and ma­

chining times, and their required quantity. In order to analyze the relations between 

machine types three different similarity coefficients were calculated. These values were 

then used as input to Ragagopalan and Batra's graph partitioning procedure for the 

creation of machine celIs. Priroary, secondary and tertiary cells were created sequen­

tially. Finally, secondary and tertiary cells were added to the primary cells to obtain 

the final design of the plant. 

VanneIli and Kumar [VK86] focused on finding bottleneck parts or machines when 

creating manufacturing cells. It was shown that this problem was equivalent to find­

ing the minimal cut-nodes of a graph while disconnecting the graph into a number 

of subgraphs. Since the problem was NP-complete a heuristic dynamic programming 

approach [LVM79] was employed for its solution. 

Later, Vannelli and Kumar [VK87] presented a new methodology for using a subcon­

tracting strategy to induce manufacturing efficiency by re-organizing the existent parts 

and machines into disaggregated cells. Two efficient algorithms were developed which 

identified the minimal number or minimal total cost of sub contractible parts while 

achieving disaggregation. For the development of the second mentioned algorithm the 

concept of the weighted graph was introduced. 

Askin et al. [ACGV91] proposed a new method called the Hamiltonian Path Heuristic 

(HPH) for identifying machine cells and part families simultaneously. Machines and 

parts in the mic incidence matrix were ordered using a 'distance' measure. For the 

calculation of the distance a modified version of Jaccard's similarity coefficient was 

employed and the distance matrix was formulated. For rearranging the rows and the 

columns of the matrix the graph-based Travelling Salesman Problem (TSP) was first 
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considered with the objective of finding the shortest tour of all vertices. However, be­

cause TSP required a cyclic solution, the associated Hamiltonian Path Problem (HPP) 

was later employed since it did not require a return tour to the starting vertex. For 

both problems, graph heuristic procedures were utilised. 

Ng [Ng93] introduced a Minimum Spanning Tree (MST) methodology for the solution 

of the binary CF problem. Each row of the incidence matrix was treated as a node 

and there existed an arc between every pair of nodes. Arcs denoted distances between 

nodes or in other words represented the level of nodes dissimilarity. K machine cells 

were obtained by deleting the (k-l) largest arcs from the tree. A methodology was also 

presented for reassigning parts to machines aiming to improve the derived partitions. 

Also a worst-case analysis of the algorithm was performed in terms of the grouping ef­

ficiency and grouping efficacy [KC90] measures. Finally, deficiencies of both measures 

were illustrated and a new measure called weighted grouping efficacy was proposed. 

MSTs were also employed by Lin et al. [LDKN96] in an attempt to solve a more 

enhanced version of the CF problem. For the initial modelling of the system, mathe­

matical programming was used. A multi objective function was defined as: minimize 

the sum of intercell processing costs, intracell processing costs and total cell balance 

delay costs. This model formulation is a non-linear integer program that is generally 

difficult to solve [Kus90]. For this reason a MST heuristic was employed for its solu­

tion. Cells were created by continuously deleting arcs from the graph till no further 

configuration could be found that resulted in lower overall costs. This model compared 

with existing array-based methods on examples taken from the literature and produced 

excellent results. 

2.2.3 Mathematical Programming Methods 

Mathematical Programming formulations can be used in a number of circumstances 

involving a wide range of manufacturing data. Several types of integer programming 

formulations have been proposed over the past years. These formulations simultane­

ously assign parts to individual machines and group the individual machines into cells. 

However, most of the these proposed models require the prior specification of the total 

number of manufacturing cells. 

Purcheck [Pur75], [Pur85], and Olivia-Lopez and Purcheck [OLP79] were among the 

first researchers to apply linear programming techniques to the group technology prob­

lem. They essentially applied the technique of combinatorial grouping and LP to the 
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CF problem. 

Kusiak [Kus87] developed a p-median zero-one integer programming problem for the 

formation of part families. The objective of the problem was the maximization of the 

total sum of similarities of parts within the part families in terms of the common ma­

chines used. For the solution of this integer programming problem the software package 

LINDO was employed. Kusiak also proposed a generalised group technology concept, 

generalised p-median formulation, based on generation of a number of different process 

plans for each of the parts. 

Kusiak and Heragu [KH87] proposed a quadratic formulation for clustering machines 

and parts in an mic. However, since a quadratic formulation is computationally com­

plex they applied a p-median formulation and also a generalised p-median formulation. 

For the latter the mic incidence matrix was extended to obtain a generalised matrix 

in which for every part there was more than one column corresponding to a different 

process plan. They concluded that the generalised p-median formulation was the most 

efficient for solving the clustering problem in GT. 

Shtub [Sht89] proved that a simple CF problem, and a CF problem where the general­

ized group technology concept is employed [Kus87], are equivalent to the Generalised 

Assignment Problem(GAP). 

Choobineh [ChoSS] proposed a two stage procedure for the design of a cellular man­

ufacturing system. For the first stage where part families were identified, a hierarchi­

cal clustering algorithm was employed. The similarity between parts was calculated 

through an enhanced version of Jaccard's similarity coefficient. Through this coefficient 

other process plans for each of the part types were also addressed. The technical goals 

of stage two were to find the number of cells, assign part families to cells and assign 

machines to cells. For the achievement of these goals a linear integer programming 

formulation was presented. The objective of the model was the minimisation of pro­

duction costs and the costs of acquiring and maintaining machine tools. 

Wei and Gaither [WG90] developed a zero-one integer programming formulation for 

determining which machines and parts should be assigned to cells. The objective of 

the model was the minimisation of the opportunity cost of manufacturing exceptional 

elements outside the cellular systems (either produce them in a job shop remainder cell 

or subcontract their production to a supplier), subject to machine capacity constraints. 
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The authors also considered other objectives like minimisation of intercell capacity im­

balance, minimisation of cost, distance, or weighted distance of intercell shipments. 

These objectives were also used in conjunction with the proposed mathematical pro­

gramming formulation. 

Kasilingham and Bhole [KB90] developed a zero-one integer programming model to 

form machine-part cells and to decide on the number of machines and the number of 

copies of tools required to achieve minimum overall system cost. The overall system 

cost was defined as the sum of the annual cost of processing the parts, cost of tooling 

and annualised machine investment costs. 

Sankaran [San90] considered multiple goals for the cell formation procedure by devel­

oping a model with a single objective function defined by five distinct cost functions. 

The optimal solution of the single objective model was broken down into two aspira­

tion levels: operating cost and capital investment cost. These two costs along with 

five other goals were then combined in an integer linear goal programming model. The 

set of goals considered by the authors included: minimum similarity of parts based on 

their needed machines and tools (two goals), available machining capacity, minimum 

and maximum number of total parts movement (two goals), the optimal capital in­

vestment on machines and the optimal operating cost. The main disadvantage of this 

methodology was that the decision maker had to specify in advance priority weights 

for each of the goals. This made the problem solving more difficult. 

Boctor [Boc91] proposed a zero-one formulation and considered only the data that were 

available from the machine part binary matrix. The objective of the model was the 

minimisation of the total number of the exceptional elements. An efficient procedure 

for the linearisation of the objective function was also developed. Boctor showed that 

some of the large number of integrality constraints in the problem could be relaxed 

without changing the binary outcome of the model. However, for large scale problems 

even with the above modifications the problem was still computationally intractable. 

The use of a Simulated Annealing heuristic algorithm, initially developed by Metropolis 

et al. [MRR+53], was proposed for'these cases. 

Zhu et al. [ZHR95] developed a zero-one integer programming formulation and com­

pared it with the formulation that Wei and Gaither [WG90] had proposed. Zhu et al. 

proposed as objective the maximization of opportunity costs of the total number of 

parts to be produced within the system, whereas Wei and Gaither tried to minimise 
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the opportunity costs for those parts that were to be manufactured outside the system. 

These two objectives were the same in the sense that both sought to produce the parts 

with higher opportunity costs and leave the less costly parts to be produced elsewhere. 

Zhu et al. showed that the maximisation was able to achieve the same objective using 

a lean structure with fewer decision variables and constraints. They also proved that 

their formulation was computationally faster and more efficient than the corresponding 

formulation of Wei and Gaither [WG90]. 

Selim et al. [SAV98] proposed a comprehensive mathematical programming formula­

tion with the objective of minimising cost assignment of part operations, machines, 

workers and tooling to cells. However, this CF model was combinatorially complex 

and would not be solvable for any real problem. The authors identified sub problems 

(with fewer constraints and variables) which had been proposed by several researchers 

and proceeded with a general classification of CF procedures based on their employed 

methodology and identification of a number of useful suggestions for future research. 

More specifically one of their observation was that many of the known techniques for 

the OF problem do not include machine utilisation, multiple machines of the same type 

nor part operation requirements when larger scale models are taken into account. The 

work of this thesis will extend the scope for modelling CF based upon most of these 

suggestions. 

Won and Lee [WL04] proposed a modified p-median approach for efficient GT cell 

formation with the objective of maximising the sum of similarities between machines. 

The authors commented that the original p-median formulation [Kus87] when applied 

to real applications was severely restricted due to two major factors: problem size and 

software type. Their new formulation had two major advantages when compared with 

the classical p-median model: speedy implementation, and large CF problem capability 

even when using education-purpose software. 

Foulds et al.' [FFW06] developed a mixed integer mathematical programming model 

where machine modification was introduced .. It is often the case for OF that it is 

important to be able to reassign parts to additional machine parts in order to create 

better cell system confignration and also avoid duplication of machines which might 

be very expensive. Thus, they introduced machine modification to reduce intercellular 

travel and they claimed that the cost of such modifications could be balanced by the 

consequent reduction in intercell travel cost. The objective was to minimise the sum 

of the machine modification costs and the intercell travel. This problem was called 

- 33 -



Chapter 2 Literature Survey 

Sustainable Cell Formation Problem (SCFP). For using the current algorithm for large 

scale problems the authors proposed and analyzed greedy and tabu search heuristics. 

2.2.4 Heuristics 

Heuristic algorithms have popularly been implemented for many practical applications 

as they are designed to provide an alternative framework for solving a problem in con­

trast with a set of restricted rules-constraints that cannot vary. Although heuristic 

approaches do not guarantee.to provide optimal solutions (usually sub-optimal results 

are derived) they are very useful in producing an acceptable solution in reasonable 

time. A number of heuristic algorithms were developed recently for the CF problem 

by Mukattash et al. (MAT02], Chan et al. [CCI02] and Kim et al. [KBB04] and are 

presented below. 

Mukattash et al. [MAT02] proposed three heuristic procedures. Given a CF solution, 

the heuristics were designed to assign parts to the cells in the presence of alternative 

process plans, multiple alternative machines and processing times. Cell formation with 

the presence of alternative process plans and multiple types of machines led to the 

elimination of exceptional elements. When multiple types of machines were considered 

some exceptional elements were also eliminated. The exceptional elements could be 

further added to the bottleneck machines thus increasing machine utilisation. 

Chan et al. [CCI02] developed a heuristic algorithm that addressed problems of machine 

allocation in cellular manufacturing only when the intra-cell materials flow was taken 

into account. The proposed algorithm used an adaptive approaCh to relate machines in 

a cell by examining the merged part flow weights of machine pairs. The establishment 

of the part flow weight included practical constraints, such as the part-handling factor 

and the number of parts per transportation. The objective function employed was to 

minimise the total travelling score in which the total travelling distance was covered. 

The current algorithm outperformed other approaches as it provided near optimum 

solutions. 

Kirn et al. [KBB04] considered a multi-objective machine CF problem. Part route 

families and machine cells needed to be determined in such a way that minimisation 

of the total sum of intercell part movements and maximum machine workload imbal­

ance could be achieved. A two-phase heuristic algorithm was proposed. In the first 

phase, representative part routes with part route families were determined whereas in 

the second phase the remaining part routes were allocated to part route families. The 
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authors concluded that the two-phase heuristic algorithm was effective in minimising 

intercell part movements and maximum machine workload imbalance. 

2.2.5 Metaheuristics 

Metaheuristics form a group of search algorithms that have been mainly developed 

during the last two decades for the solution of difficult combinatorial optimisation 

(CO) problems or in other words NP-hard1 (Non-deterministic Polynomial time hard) 

problems. The cell formation problem is considered to be a complex and difficult 

optimisation problem. Many researchers in order to gain more benefits of the CF 

problem have applied metalleuristic algorithms. Four of the most notable members of 

the metaheuristics group are: 

• Simulated Annealing 

• Tabu Search 

• Evolutionary Algorithms 

• Ant Colony Optimisation 

• Simulated Annealing and Tabu Search 

Simulated Annealing (SA) and Tabu Search (TS) algorithms have a common character­

istic as the search process starts from one initial state (the initial solution) and describes 

a trajectory in the state space. SA is commonly said to be the oldest among meta­

heuristics. The origins of the algorithm are in statistical mechanics (see the Metropolis 

algorithm [MRR+53]) and it was first presented as a search algorithm for CO problems 

in Kirkpatrick et al. [KGJV83]. TS is one of the most successful metaheuristics for the 

application to CO problems. The basic ideas were introduced by Glover [Gl086], based 

on his earlier ideas [Gl077]. Both SA and TS have been substantially employed for the 

CF problems and some of the most significant work is presented here. 

Vakharia and Chang [VC97] developed two heuristic methods for the CF problem both 

based on simulated annealing and tabu search algorithms. The objective function of 

their model was the minimisation of the total cost of machines required as well as ma­

terials handling cost for loads transferred between cells. A considerable amount of data 

1 A problem IT is NP-hard if an algorithm for solving it can be translated into one for solving every 
problem in NP (Non-deterministic Polynomial time). NP-hard therefore means 'at least as hard as any 
NP problem', although it might in fact be harder. 
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was considered, such as processing times and transportation costs. The performance of 

their heuristics was examined using published and industrial data and the result indi­

cated that simulated annealing outperformed tabu search in terms of solution quality 

and computational complexity. 

Aljaber et al. [ABC97] modelled the CF problem using a pair of shortest spanning 

path problems, one for the machines (rows) and one for the parts (columns). Then 

they employed a modified version of Jaccard's similarity coefficient for calculating the 

distance between pairs of machines or parts. The authors proposed a tabu search 

heuristic algorithm for the solution of both problems. 

Spiliopoulos and 80fianopoulou [8803J proposed a two stage heuristic approach for the 

manufacturing cell design problem and a tabu search scheme for its solution. The first 

stage tackled parts grouping whereas the second eliminated intercellular traffic flow. 

The tabu search algorithm, as the third stage to be implemented, integrated proper 

short and long term memory structures and an overall search strategy for their use. 

At the code development phase special care was taken to enhance the exploration ca­

pability of the algorithm by correlating search statistics with the values of the search 

parameters. The resulting algorithm was proved to be robust and the results were 

recorded to be encouraging. 

Wu et al. [WLW04J considered a CF problem when process plans for parts and produc­

tion factors such as production volume and cell size were taken into account. The aim 

was to decompose the manufacturing shop into several manufacturing cells so that the 

total part flow within the cells canbe maximised. For solving this problem a tabu search 

heuristic algorithm that consisted of a dynamic tabu tenure and a long term memory 

structure was proposed. Two methods for quickly generating the initial solutions were 

. proposed, namely the group-and-assign and the random approach. Computational re­

sults were observed to be very good for a group-and-assign methodology applied to the 

proposed tabu search approach for small to medium sized problems. The generation of 

the initial solution in the above way will be a starting point for the work addressed in 

this thesis and more specifically for the design of the initial heuristic solution reflecting 

the CF model requirements. 

Lei and Wu [LW06J presented a Pareto optimality based multi-objective tabu search 

(MOTS) algorithm to the part/machine grouping problem with multiple objectives: 

minimisation of the weighted sum of intercell and intra-cell moves and minimisation 
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of the total cell load variation. A new approach was proposed to determine the non­

dominated solutions among the solutions produced by the tabu search algorithm. The 

computational results demonstrated the strong ability of MOTS in multi-objective 

optimisation . 

• Evolutionary Algorithms and Ant Colony Optimisation 

Both Evolutionary Algorithms (EA) and Ant Colony Optimisation (ACO) could be 

characterised as population-based searches. Evolutionary algorithms (EA) are inspired 

by the nature's capability to evolve living beings well adapted to their environment. 

EA algorithms prove to be particularly popular due to their added characteristic of 

being able to search the solutions' space not from a single point but from a population 

of points in parallel. There are several variants of evolutionary algorithms but one 

of the newest and the most popular members is Genetic Algorithms (GAs) [Koz92], 

which were initiated by Holland [HoI75]. ACO is one of the newest metaheuristics for 

the application to CF problems.' The basic ideas of ACO were introduced in Dorigo 

et al. [DMC96j, [DDCS99j. ACO was inspired by the foraging behaviour of real ants 

[DAGP90] and its search process can be described as the evolution of a probability 

distribution over the search process. 

Venugopal and Naredran [VN92] were the first researchers to approach the CF problem 

using GAs. Their objective was the minimisation of the intercell movements of parts 

and balancing of loads in the cells. A different population of solutions was employed 

for each of the objectives. The solution representation was simple and efficient where 

each machine in the plant corresponded to a gene in the chromosome. The value of the 

gene defined the owing cell of the respective machine. The total number of cells was 

predefined and the processing time of parts was also taken under consideration. Gupta 

[GGKS96] enhanced this formulation by considering the intracell movements of parts 

and the intracelllayout. Special care was taken to ensure that no cell remained empty 

during this evolutionary process. 

Gravel [GNP98] considered a version of the cell formation problem that allowed the 

existence of alternative process plans for the parts. A double-loop EA was employed 

for the solution of the problem with the objective of minimising the volume of intercell 

moves and balancing the workload within cells. For the external loop of the EA, Venu­

gopal and Naredran's coding for the assignment of machines to cells was used. A second 

internal loop that determined the allocation of process plans to parts was employed for 
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the evaluation of solution created in the external loop. Different multi-objective op­

timisation approaches were tested, including the epsilon-constraint approach and the 

weighted-sum approach. 

Mak et al. [MWWOO] proposed an adaptive genetic approach as an effective means 

of providing the optimal solution to the cell formation problem. The objective was 

to group parts and machines into clusters by sequencing the rows and columns of a 

part/machine incidence matrix to maximise the bond energy measure of the matrix. 

The proposed approach was different from the use of traditional genetic algorithms, 

because an adaptive scheme was adopted to adjust the genetic parameters during the 

genetic search process. The effectiveness of the approach was demonstrated by apply- ' 

ing it to numerical results and a number of benchmark problems obtained from the 

literature. 

Solimanpur et al. [SVS04b] formulated a multi-objective integer programming model 

for the cell formation problem with independent cells. A genetic algorithm with mul­

tiple fitness functions was proposed to solve their model. Two features made their 

proposed algorithm to differ from previous approaches i.e. : (1) a systematic uniform 

design-based technique which was used to determine the search directions, and (2) the 

search of the solution space in multiple directions instead of a single direction. The 

results validated the effectiveness of the proposed algorithm. 

Vila Gon,ales Filho and Jose Tiberti [VGFT06] proposed a new genetic algorithm 

for the cell layout problem with several new features such as chromosome codification 

scheme, correction mechanism, crossover and mutation operators that worked directly 

with the group of machines as opposed to individual machines. Tests using published 

data sets proved that the algorithm could find the group structure present in data sets. 

James et aL [JBK07] presented a hybrid grouping genetic algorithm for the cell forma­

tion problem that combined a local search with a standard grouping genetic algorithm 

to form part/machine cells. Computational results were produced using the grouping 

efficacy measure for a set of cell formation data sets borrowed from the literature. 

The hybrid grouping genetic approach outperformed the standard grouping genetic al­

gorithm by exceeding the solution quality on all test problems and by reducing the 

variability among the solutions found. Overall, the proposed algorithm performed well 

on all test problems by either exceeding or matching the solution quality of the results 

presented in the literature. 
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Wu et al. [WCHWY07] proposed a hierarchical genetic algorithm to simultaneously 

form manufacturing cells and determine the group layout of cellular manufacturing. 

The main features of this algorithm was the development of a hierarchical chromosome 

structure to encode two important cell design decisions, a new selection scheme to dy­

namically consider two correlated fitness functions and a group mutation operator to 

increase the probability of mutation. From the computational results it was proved 

that both proposed structures and operators developed were effective in terms of im­

proving solution quality as well as accelerating convergence. 

ACO was recently applied for the CF problem by Solimanpur et al. [SVS04a]. This 

paper presented an affective and efficient ant algorithm for the inter-cell layout problem, 

which was formulated as a quadratic assignment problem. The sequence of operations 

and the production volume of parts were introduced as two major factors effecting the 

flow of materials. A mathematical model was proposed for calculating the material flow 

among cells whereas an ant algorithm was proposed to solve the formulated problem. 

It was proved that the proposed algorithm outperformed previous techniques in terms 

of the total material handling and distance in all problems. 

2.2.6 Fuzzy Logic 

The decision making process in a manufacturing system often involves uncertainties 

and ambiguities. Under such circumstances, fuzzy methodologies have been proved 

to be effective tools for taking fuzziness into consideration. A Significant number of 

researchers have applied fuzzy clustering and fuzzy mathematics by employing fuzzy 

set theory for addressing uncertainty or vagueness in system parameters whereas, a 

limited number of researchers attempted to use fuzzy mathematical programming in 

the design of manufacturing systems . 

• Fuzzy Clustering 

Chu and Hayya [eH91] applied a fuzzy c-means clustering algorithm, developed by 

Bezdek [Bez81]' to identify the part family configuration for each part and also to pro­

vide the degree of membership associated with each part family. The fuzzy c-means 

clustering can be classified as non-hierarchical, therefore it suffers from the need to 

specify a priori the number of part families. However, the technique was unaffected by 

exceptional elements. Overall, the advantage of this methodology was that it provided 

the designer with more information than the available given from a "crisp" definition 
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of families and cells. 

Zhang and Wang [ZW92] proposed a fuzzy version of single linkage clustering and rank 

order clustering algorithms, where a non-binary part/machine matrix was considered. 

As mentioned earlier, SLCA requires a secondary process of component allocation to 

the machine groups after the machine grouping whereas, ROC algorithm performes 

both tasks simultaneously. In addition, fuzzy ROC preserved all the benefits from 

ROC and also ranked machines with priority so problems like exceptional and bottle­

neck elements and machine capacity could also be addressed. 

Gindy et al. [GRC95] developed an extended version of fuzzy c-means clustering al­

gorithm for component grouping with cluster validation procedure. With the latter 

the authors were aiming at component grouping for cellular manufacturing systems 

when maximum diversity (i.e. minimum overlapping in terms of the repeated machines 

between cells) was considered. The validity measure proved very useful in· optimising 

component partitioning by forming component groups with the maximum compactness 

(maximum number of components in each group requiring the full set of machine re­

sources available in a cell) and of machining cells with a minimum number of repeated 

machines. The .vaIidity measure was experimentally assessed using industrial data and 

compared with similar validity measures used in fuzzy clustering analysis. The results 

showed that the fuzzy clustering approach and the validity measure provide a realistic 

solution methodology useful for part family formation. 

Masnata and Settineri [MS97] tailored a fuzzy c-means clustering algorithm for devel­

oping a non-binary approach to group technology based on the capabilities of fuzzy 

logic. They also integrated fuzzy c-means with the strategy for minimum make-span 

scheduling. 

Ravichandran and Ran [RROI] proposed a new fuzzy clustering algorithm and a new 

similarity coefficient for sub-grouping parts/machines before the optimal grouping and 

for optimal grouping. For analysing output, the proposed algorithm performed quite 

well when compared to a fuzzy c-means clustering algorithm and other conventional 

algorithms. The results showed that the new approach to fuzzy part-family formation 

and grouping efficiency provided a more realistic solution methodology for part family 

formation in cellular manufacturing applications. 

- 40 -



Chapter 2 Literature Survey 

• Fuzzy Mathematics 

Xu and Wang [XW89J incorporated uncertainty or imprecision in the measurement of 

similarity between parts by employing fuzzy mathematics. In considering issues related 

to part families two intermingled themes appeared: 
> 

(i). Fuzzy mathematics as part clustering 

The authors selected a sample part set, determined the features which were rel­

evant to the machining process under consideration and defined a membership 

function for each selected feature. Then they calculated a similarity matrix and 

assigned a value>. corresponding to fuzzy equivalence analysis of fuzzy classifica­

tion to obtain a set of part families [L8C83J. 

(ii). Fuzzy mathematics as pattern recognition 

Pattern recognition was applied to assign new parts into part families. By using 

this technique the authors calculated the closeness values between the new part 

and the existing part families and then assigned the new part to the family which 

showed the maximum closeness value. 

The results produced, when several rotational parts from a local company were tested, 

were satisfactory. 

Ben-Arieh and '1Hantaphyllou [BAT92J used fuzzy set theory for grouping a significant 

number of different part types into groups based on predetermined set of features. The 

methodology proposed was based on a modification to the revised analytical hierarchy 

process [8aa80J. The discrete values of the fuzzy features were compared to each other. 

This allowed the same features to be used for classification of a large collection of parts, 

unlike the more traditional part to part comparison. For the fuzzy features matrices 

were generated and the eigenvectors for each matrix were calculated expressing the fea­

ture value for each part. Then the weight (importance) of each feature was estimated 

by using pairwise comparisons. The last step was to cluster the parts based on features 

values and weights. This methodology had many advantages: the user was able to 

define the features used for parts grouping, the user could define the importance of the 

features in a specific scenario, the methodology was not constrained by the number of 

parts but by the number of different values the features could have. However, a major 

disadvantage for the existent methodology was the estimation of the pairwise compar­

isons. In the case of a large system, the required number of comparisons increased very 

fast. 
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Gill and Bector [GB97] developed an approach, based on fuzzy linguistics, to deal with 

data quantification and construction of distance measures for part family formation . 

• Fuzzy Mathematical Programming 

Tsai et al. [TCB97] proposed a Mixed Integer Mathematical Programming (MIMP) 

formulation with a single objective to minimise the cost of eliminating exceptional 

elements. They illustrated how a Fuzzy Mixed Integer Mathematical Programming 

(FMIMP) approach can be used to solve the CF problem when applied to the initial 

deterministic MIMP model. Two membership functions with four operators, including 

a newly proposed operator, were applied and the results compared. They observed that 

the proposed operator always outperformed the other three operators and it was more 

stable and robust. The authors concluded that FMP provided a better and a more 

flexible way of presenting the problem domain than the traditional MP. 

2.3 Summary 

This review covers a significant number of methodologies developed for the cell forma­

tion problem in the past decades. Methodologies employed were discussed through a 

core classification consisted of array based methods, graph based methods, mathemat­

ical programming methods, heuristics, metaheuristics and fuzzy theory. The evolution 

of cellular manufacturing systems was mainly based on academic studies. 
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Mixed Integer Mathematical 

Programming Model for CF 

3.1 Introduction 

The activities required for the formation of a system of manufacturing cells can be 

described by the following steps: 

(a). Assigning part families to groups of machine types; 

(b). Finding lot sizes, i.e. quantities, of the parts to be produced; 

(c). Determining the number of machine instances for each machine type; 

(d). Assigning parts to individual machines; 

(e). Grouping the individual machines into cells. 

For the purpose of this chapter, the researcher is interested in investigating steps (d) 

and (e) and solving them simultaneously when a number of key constraints and an 

enhanced objective function are proposed. The most effective solution procedures that 

solve the problems represented by activities (d) and (e) simultaneously involve integer 

mathematical programming models. 

3.2 Initial model for CF 

An integer programming model developed by Foulds et al. [FFW06] assigns parts to 

machines and groups machines to cells simultaneously. Because this was a comprehen­

sive model but still had scope of further development it was decided to use this as a 
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starting point. The minimisation of the intercell movement of parts was considered as 

an objective function and a number of constraints were included, some of which are 

described next. 

• Utilisation levels. Ensure that existing machines in the plant aren't overloaded 

and that new arriving machines are economically justifiable to be included in a 

cell. 

• Cell size. The cell size is determined by the number of machines it includes and 

needs to be controlled for the following reasons: First, space availability imposes 

constraints on the number of machines in a cell. Second, in the case where the 

plant is run by operators the larger the size of the cell the more difficult for it to 

be controlled. 

• Machine capacity. The capacity of a machine should be adequate in order to be 

able to process all the parts assigned to it. 

• Multiple machines of the same type. Many machines of a specific type ensure 

that all the relevant parts are processed without duplication of machines. When 

the latter happens increment in the equipment cost occurs. 

3.2.1 Notation for model formulation 

The following notation has been used for the model formulation: 

• Index Set 

i machine type index i=l, ... ,NM 

j part index j=l, ... ,NP 

q cell index q= 1, ... ,NC 

k machine instance index k=l, ... ,KMi 

• Input Parameters 

EMIN 

EMAX 

UTILi,j 

NC 

NM 

NP 

KMi 

minimum number of machines allowed in a cell 

maximum number of machines allowed in a cell 

utilisation of machine of type i by part j 

number of cells to be created 

number of machines 

number of parts 

number of machine instances for each machine of type i 
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KMAX the maximum number of machine instances recorded 

for all machine types in K Mi 

denote machine of type i and part of type j respectively 

denotes the k'h individual machine instance of type i 

• Decision Variables 

Xi,j,q number of machines or fraction thereof (in terms of machine capacity used) 

of type i that process part j on cell q 

Yi,k,q = 1 if k'h machine of type i is assigned to cell q, 0 otherwise 

Wj,q =1 if part j is processed in cell q, 0 otherwise 

Vq =1 if cell q is formed, 0 otherwise 

3.2.2 Model Formulation and Solution 

A mathematical programming model representing the cell formation is as follows: 

subject to 

NO 

NPNO 

MinLLwj,q 
j~lq~l 

NO 

LYi,k,q = 1 V i, k 
q~l 

LXi,j,q = UTILi,j V i,j 
q~l 

NP KMi 

L X;,j,q:::; L Yi,k,q V i, q 
j~l k~l 

NMKM, 

L LYi,k,q:::; Vq X EMAX V q 
i=l k=l 

NMKMi 

L L Yi,k,q 2: Vq X EMIN V q 
i=l k=l 

NO NO 

L<z x Yi,k,q:::; Lq x Yi,k+l,q V i,k 
q~l q~l 

Xi,j,q :::; UTILi,j X Wj,q V i,j, q 
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Yi,k,Ql Vql Wj,q = 0 or 1; 0:5 Xi,j,q Tt i,j, k, q 

The objective function (3.1) minimises the number of distinct cells used by each part. 

Constraint (3.2) ensures that the k'h machine of type i must be assigned to exactly 

one cell. Constraint (3.3) serves to satisfy the requirements for processing part j on 

machine i: the number of machines required to process part j in cell q is equal to the 

utilisation of machine i required to process part j in cell q. Constraint (3.4) serves 

to indicate that the total number of machines of type i used in cell q should be less 

than or equal to the number of machines of type i assigned to cell q. Constraints (3.5), 

(3.6) limit the number of machines in each cell. Constraint (3.7) ensures that cells are 

formed in successive numerical order for convenience. Constraint (3.8) assigns multiple 

instances of machine of type i to lower numbered cells in successive numerical order. 

Constraints (3.7) and (3.8) are included to eliminate certain symmetries. Lastly, con­

straint (3.9) picks out the intercellular movements. 

The above model was rigorously examined by the researcher for a good understanding 

of the objective and the constraints involved. The software package XPRESS-MP [XM], 

general purpose mathematical programming solver, was employed for finding the opti­

mum value of the objective function and its related solutions. At this stage the data 

employed consist of seven machine types and ten parts respectively. Also the maximum 

allowable numb et of cells to be created is assigned to five. The maximum number of 

machines allowed in each cell is defined to be of magnitude six, whereas the minimum 

as four. Moreover, the part machine utilisation needed is presented in Table 3.1. 

Table 3.1: Part/Machine Utilisation 
11 M-j p. 1 1 2 3 4 5 6 7 8 • 2 9 10 

M1 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 
M2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 
M3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 
M4 0.0 1.21 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 
Ms 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 
M6 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 
M7 0.0 0.5 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 

Also, the number of machines of type i, KMi, needed to process any part j can be 

1 When the amount of the machine capacity required from a specific part to be processed by a. 
machine of type i is greater than one, then more that ODe machines instances of type i will be utilised. 
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mathematically calculated by the equation (3.10). 

NP 

KMi = r2:UTILiJl 
j=1 

(3.10) 

Therefore, for the part/machine utilisation in Table 3.1 the KM; will be as follows: 

KMi = [1 4 2 3 7 2 1] (3.11) 

Appendix A.I presents the output generated when the above data is employed. From 

the produced solution four cells are created in total, each consisting of machine instances 

of certain types. The cell configuration is shown in Table 3.2. 

Table 3.2: Machine r,pl\ Allocation 1 
Cell I: Mi, Mt, Mt, M~, MJ 
Cell 2: M?, M~, Ml, M?, Mt, M-f 
Cell 3: M~, MJ, Mg, Mr, Ml, Mg 
Cell 4: Mt, Mj, M], Ml 

For the current model it is assumed that the machine utilisation for processing a part 

j is equal to the processing time of part j in machine i. For this reason no time 

element is considered for the current model. It is also assumed that for each machine 

of type i only a maximum of a unity of its capacity can be spent for processing a part 

j. By taking the latter into consideration and in conjunction with the part/machine 

utilisation, Table 3.1, and the machine sequences (routings) of parts, Table 3.3, the 

part/machine assignment could be obtained as shown in Table 3.4. 

Table 3.3: Desired Part Machine Operation 
11 Pj 1 Machine Sequence 11 

1 Ms 
2 M}, M4, Ms, Ms 
3 M3 
4 Ml, M2, M4, Ms, M7 
5 M2, Ms, M4, M7 
6 M4,Ms 
7 Ms,M2,Ms 
8 M}, M3, Ms 
9 M3, Ms, M2 
10 M2,Ms 

It can be seen from Appendix A.1 that the total cost, i.e. the value of the objective 

function, is equal to twelve which implies that two intercellular movements of parts 
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Table 3.4: Part/Machine Assignment 
, 2 3 4 5 6 7 8 9 10 lE:" 1 UTIL;; 11 -

Ml 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 
Mi 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 
M~ 0.0 0.0 0.0 0.0· 0.2 0.0 0.0 0.0 0.0 0.0 0.5 
M! 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.1 0.0 1.0 
M§ 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.0 
Ml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 
M. 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.0 
Ml 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
Ml 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 
M: 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.9 
Mt 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 1.0 
M~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 
Ml 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 
Mt 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0 
Ml 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8 
M: 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4 

occur since in total ten distinct part cell allocations are counted. The cells formed and 

the flow of parts together with all the intercellular movements are illustrated in Figure 

3.1. Note that in cell one, ME is fully dedicated to part six; in cell two, Mi and M~ 
are dedicated to parts five and ten; in cell three, Mg is dedicated to part nine; and in 

cell four, Ml is dedicated to part eight. Also parts two and four are those causing the 

two intercellular moves. 

It is also worth commenting on the part routing machine sequence. For example part 

four follows· a slightly different machine operation sequence in Figure 3.1 from the one 

indicated in Table 3.3. More specifically, part four visits machine instances in the 

following order: Ml, M4, M2, Ms and M7. The latter though is expected since no part 

machine operation sequence is included within the current model. In order to illustrate 

how the machine sequence could affect the cell formation configuration, Figure 3.2 is 

desigued. All parts this time follow strictly the sequence of machines in Table 3.3. 

Thus, employing part machine operation sequence makes the system more complex 

. but incorporates realism. The latter will be studied in section 3.4. 
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3.3 An Extended Cell Formulation Model 

In addition to the constraints included in the initial model, set-up costs for setting 

up machines required by certain parts every time they start to be processed are now 

considered. This aspect was ignored in previous model making the problem less re­

alistic. It is worth examining whether this update will affect significantly the overall 

part/machine cell allocation. In order for the set-up costs to be considered a few things 

need to be added in the initial model. More specifically, in addition to the old index 

set, parameters and decision variables, (section 3.2.1), two new parameters and one 

decision variable are included as follows: 

SETUPi,j 

UTILMIN 

Mj,q 

set-up cost of machine i needed to process part j 

minimum amount of utilisation in UTI Li,j matrix 

cost of allocating part j in cell q 

Si,j,q integer number of machines of type i that will be used by part j in cell q 

Moreover, in addition, to the constraints (3.2)-(3.9), defined in section (3.2.2), the 

following two constraints are now added: 

Xi,j,q :5 Si,j,q 'V i, j, q (3.12) 

Xi,j,q 2:: UTILMIN X Si,j,q 'if i,j, q (3.13) 

Also the new objective function is produced as seen in equation 3.14. 

NPNC NMNP NC 
Min (L L(Mj,q x Wj,q) + L L(SETUPi,j X L Si,j,q)) (3.14) 

j=1 q=l i=l ;=1 q=l 

Constraint (3.12) simply serves to capture that the total number of machines (in terms 

of machine utilisation) required to process part j in cell q is less than or equal to the 

integer number of machines of type i that will used by part j in cell q. Constraint 

(3.13) forces variable S to get the value zero whenever an x variable is zero and is not 

strictly necessary but aids branch and bound. 

Objective, (3.14), ensures that two requirements are satisfied: 

• Minimise number of intercellular movements of parts 
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• Minimise set-up costs when allocating machines to cells 

It was decided that the cost coefficient, Mj,q, for the first product of the objective 

function should take the value ten and is used to weight intercellular movements of 

parts against total set-up cost. 

For testing the above model and for comparison purposes of the current model with 

the initial, it is assumed that the number of machines and parts remains the same, i.e .. 

seven machines and ten parts. Also the part machine utilisation as seen in Table 3.1 is 

employed here as well. For the added feature, i.e. the set-up costs, the part/machine 

set-up costs are presented in Table 3.5. 

11 Mo/? 1 1 • 1 

Table 3.5: Part/Machine Set-up Costs 
2 345 678 9 10 11 

Ml 0.00 2.95 0.00 1.96 0.00 0.00 0.00 1.92 0.00 0.00 
M2 0.00 0.00 0.00 5.12 2.42 0.00 5.05 0.00 1.54 2.16 
M3 0.00 0.00 2.93 0.00 0.00 0.00 0.00 1.94 1.45 0.00 
M4 0.00 5.54 0.00 2.91 2.42 2.38 0.00 0.00 0.00 0.00 
Ms 2.91 2.59 0.00 2.88 5.42 4.91 2.63 4.93 4.81 0.00 
Ms 0.00 2.82 0.00 0.00 0.00 0.00 2.73 0.00 0.00 2.49 
Mr 0.00 0.00 0.00 2.12 2.12 0.00 0.00 0.00 0.00 0.00 

3.3.1 Solution for Extended Model 

From the extended model four new cells are created (see Appendix A.2) each consisting 

of the following machine instances: 

Table in el 11 Model 
MJ, Mi, Mg, Mg, MJ 

Cell 2: Ml, Ml, Mf, Mg 
Cell 3: Mt, M~, Mj, Mt, Mg, Mj 
Cell 4: M~, Ml, Mg, Ml, Mg 

Comparing Tables 3.2 and 3.6 it is observed that the new cells created contain dif­

ferent types of machines. Also, using Tables 3.1, 3.3 in conjunction with Table 3.6, 

part/machine assignment is created and presented in Table 3.7. From Tables 3.6 and 
3.7 it can easily be detected the effect of the newly added feature to the CF configura­

tion. 
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For better illustration of the actual part machine cell allocation, the cells formed and 

the flow of parts see Figure 3.3. Similar to the initial model, parts two and four are 

processed in more than one cell. Note also that in cell one, Mg is dedicated to part six; 

in cell two Mg is dedicated to part eight; and in cell three Mg and M~ are dedicated 

to parts five and four respectively. 

Although the involvement of set-up costs within the CF problem could affect the part 

machine cell allocation, it won't change significantly the value of the objective function 

as the latter is driven mostly by the number of distinct allocation of parts to cells. 

Table 3.7: Part/Machine Assignment for Extended Model 

Pj/M;" 1 2 3 4 5 6 7 8 9 10 L:;~1 UT IL;,j 

Mt 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 
Mj 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 
M2 

2 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 
M~ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
M4 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.1 0.0 1.0 
M~ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 
M2 

3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.0 
MJ 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.0 
Ml 0.0 0.6 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
M1 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 
M2 

5 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 
M3 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 
M4 

5 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.0 0.0 0.0 0.9 
M5 

5 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
M6 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 
Ml 0.4 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 1.0 
MJ 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0 
Ml 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8 
M-t 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4 
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3.4 Complete Model Formulation 

Within this section a more sophisticated model will be presented where the part ma­

chine operation sequence is taken into account incorporating more realism into the 

system. The current objective function involves minimisation of both the distinct allo­

cation of parts to cells and machine set-up costs. The former element of the objective 

function will now be complemented with an additional feature. Before proceeding 

with more details, new indices, parameters, variables and constraints needed together 

with a presentation of the complete form of the model (objective and constraints) are 

presented next. 

3.4.1 Notation for model formulation 

• Index Set 

z machine operations index z = 1, ... ,ZOP ER2 
r machine operations index r = 1, ... , ZOP ER 

• Input Parameters 

ZOP ER number of machine operations 

ZTYPESj number of different operations (machine types) required by part j 

L j ,. for part j the machine used for the zth machine operation in sequence 

UTILMAX biggest amount of machine utilisation used 

Aj cost for part j traveling back to an already visited cell 

• Decision Variables 

extraq,j,L". =1 if after the zth operation of part j in cell q the part leaves cell q 

but returns later 

XXLj,z,j,q =1 if part j is processed in cell q for zth machine operation, 0 otherwise 

3.4.2 Model Formulation 

The complete formulation of the mathematical programming model is shown below: 

NPNC NMNP NC NCNPNM 

Min (L2)Mj,qxwj,q)+ LL(SETUP;,jXLSi,j,q)+ LLL(Ajxextraq,j,i)) 
j=1 q=l i=l j=1 q=l q=l j=1 i=l 

(3.15) 

subject to 

2Z0PER is defined within the Input Paramet~rs section. 
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Ne 
L: Yi,k,q = 1 'I i, k 
q~l 

Ne 
L: Xi,j,q = UTI Li,j 'I i, j 
q~l 

Xi,j,q :::; Si,j,q V i, j; q 

Xi,j,q;::: UTILMIN X Si,j,q 'I i,j, q 

NP KM" 

L: Xi,j,q $ L: Yi,k,q 'I i, q 
j~l k~l 

NMKMi 

L: L: Yi,k,q $ Vq X EMAX 'I q 
i=l k=l 

NMKM. 

L: L: Yi,k,q ;::: Vq X EMIN 'I q 
i=1 k=l 

Vq+l $ Vq 'I q 

Ne Ne 
L: q x Yi,k,q $ L: q x Yi,k+l,q 'I i, k 
q=l q=l 

Xi,j,q $ UT ILi,j x Wj,q 'I i, j, q 

Xi,j,q $ UTILMAx X XXi,j,q 'I i,j,q 

Xi,j,q ;::: UTILMIN X XXi,j,q 'I i,j, q 

r-1 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

XXLj,z,j,q +XXLj, .. ,j,q - L XXLj,u,j,q:5 extraq ,j;Lj,III + 1 V q,j,z,r (3.28) 
%z=z+1 

Yi,k,ql Vq, Wj,ql extraq,j,il XXi,j,q = 0 or 1; 0:::; Xi,j,q; Si,j,q integer 'V i, k, j, q (3.29) 

New constraints added are (3.26), (3.27) and (3.28). Both constraints (3.26) and (3.27) 

ensure that whenever a part uses a machine or a fraction thereof (Xi,j,q > 0.0) variable 
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XX;,j,q is assigned the value 1, otherwise it is assigned to O. The key constraint (3.28) 

picks out the number of times a part travels back to a cell for a later machine operation. 

Please note that it is assumed that z < r. A part j, whose z·h machine operation is 

processed in cell q, could revisit the cell q for a later machine operation i.e. (r)'h, only 

when the 2nd machine operation (z + 1) is not processed within the same cell. In this 

case the value of extraq,j,L;,. is assigned to 1. 

Objective function, (3.15), ensures that three requirements are now satisfied: 

• Minimise number of distinct cells used by each part 

• Minimise set-up costs when allocating machines to cells 

• Minimise number of times a part revisits a cell for a later machine operation 

The latter mentioned item acts as an extra feature for the minimisation of the inter­

cellular movements of parts. The inclusion of part machine operation sequence within 

the system can cause an increment on the number of possible forward and backward 

movements of parts. Note that the first part of the objective function counts the move­

ments of parts between two cells only once. No indication of direction exists. On the 

other hand, the last item of the objective function simply serves to examine, count 

and minimize any revisits of a part to a cell. For simplicity reasons the value of cost 

coefficient Aj is assigned the value one. 

The XPRESS-MP file for the implementation of the final form of the integer programming 

model can be seen in Appendix A.3. The data employed to test the model's performance 

are the same with those used for the initial model where the number of machines, N M, 

and number of parts, N P are seven and ten respectively, number of cells, NC, is five, 

and the maximum and minimum number of machines, EMAX and EMIN, is six and 

four respectively. Also the part/machine utilisation, UTIL;,j, is shown in Table 3.1 

and the number of instances needed by each part, KM;, is presented in equation (3.11). 

Moreover, the number of operations for each part, ZTYPESj can be seen in equation 

(3.30), whereas the part machine sequence, Lj,., is provided in matrix (3.31). 

ZTYPESj = [1 4 1 5 4 2 33 3 2J (3.30) 
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5 0 0 0 0 

1 4 5 6 0 

3 0 0 0 0 

1 2 4 5 7 

Lj,z = 
2 5 4 7 0 

(3.31) 
4 5 0 0 0 

5 2 6 0 0 

1 3 5 0 0 

3 5 2 0 0 

2 6 0 0 0 

Comparing the solutions produced from both the current model (see Appendix A.3.1), 

where part machine operation is taken into account, and the extended model (see Ap-

pendix A.2), where no sequence was considered, it can be observed that although the 

value of the objective function remains the same the cell machine allocation changes. 

The latter happens since every part now follows strictly its part machine operation 

sequence resulting in a significant change to the configuration of the CF system. 

Please note also that for the current model no part revisits a cell for a later operation 

since extraqJ,i is 0 for all parts, machines and cells. Although this is happening when 

current data set is employed it could change with the usage of a different problem 

instance . 

• Illustration of Complete Model's Operation: Example (I) 

In order to illustrate the operation for the complete model a new problem instance 

is assumed. The machine operation sequence adopted here is presented in Table 3.8. 

It can be seen from the latter that part 2 is now has a different and longer machine 

operation sequence compared to the sequence that it initially had, as it was shown in 

Table 3.3. 

Moreover, the number of allowable cells and the maximum and the minimum number 

of machines allowed in a cell are now changing to three, eight and six respectively. The 

output produced according to the above specifications is presented in Appendix A.3.2. 

The value of extra variable for q = 2, j = 2 and i = 4 is 1, Le. extraz,z,4 = 1. This 

means that part 2 after the operation on machine 4 in cell 2 leaves cell 2 but returns 

later. 

- 58 -



Chapter 3 Mixed Integer Mathematical Programming Model for GF 

Table 3. ce of Parts 8: Example(I):Machine Sequen 
Pj Sequence 

1 Ms 
2 Mt, M4, Ms, Mr, M6 
3 M3 
4 M" M2, M4, Ms, Mr 
5 M2, Ms, M4, Mr 
6 M4,Ms 
7 M5, M2, M6 
8 M" M3, M5 
9 M3,M5,M2 
10 M2,M6 

In order to be able to demonstrate this graphically, the part/machine assignment for 

current CF system is needed. For producing the latter the part/machine utilization 

matrix, as shown in Table 3.9, and the new machine cell allocation, presented in Table 

3.10, are used in conjunction. The result is shown in Table 3.11. 

Table 3.9: Example(I): Part/Machine Utilisation 
11 P;/M; 1 1 2 3 4 5 6 7 8 9 10 1 KM; 11 

Mt 
M2 
M3 
M4 
Ms 
M6 
Mr 

0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0. 0.0 
0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 
0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 
0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 
0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 
0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 
0.0 0.5 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 

Table 3.10: Example(I): Machine Cell Allocation 
Cell 1: Mt, Mi, Mt, Mt, Mt, Mt, Mt, Mj, 
Cell 2: Mi, Ml, Mt, M?,M~, MJ, 
Cell 3· M3 M~ M§ M? MJ M; . 2' .:.l' Ab' "tl' Ob' '0 

1 
4 
2 
3 
7 
2 
1 

Moreover, for a visual representation of the cells formed and the flow of parts consult 

Figure 3.4. 
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Table 3.11: Example(I): Part/Machine Assignment 
Parts/Mi

k 1 2 3 4 5 6 7 8 9 10 L:1:'-1 UT !Li.j 

Mt 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 
M~ 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Mf 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 0.7 
Mi 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.5 
M~ 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.9 
M§ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.2 
Ml 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.1 0.0 1.0 
Ml 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 1.0 
M2 

4 0.0 0.6 0.0 0.4 0·0 0.0 0.0 0.0 0.0 0.0 1.0 
Ml 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 1.0 
Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 
M~ 0.0 0.2 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 
Mt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 
Mg 0.4 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.5 
Mg 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
Ml 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 
MJ 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.0 
M~ 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.8 
Mj 0.0 0.5 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0 0.9 
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Chapter 3 Mixed Integer Mathematical Programming Model for CF 

According to Figure 3.4 the route that part two follows in order to be processed is 

represented by a dotted line. The machine sequence operation for part two as seen in 

Table 3.8 is: Mb M4, Ms, M7, M6. Part two starts getting processed in cell one and 

then moves into cell two; while the latter is in cell two the value of the 'extra' variable 

for q = 2, i = 4 is one. Because of that it is expected for part two to leave cell two and 

return for a later operation. Indeed, part two leaves cell two and moves into one and 

then returns to cell two for the final machine processing operation. 

3.5 Summary 

This chapter presented an enhanced mixed integer mathematical programming model 

for the CF problem. Initially the main operation for the model was the minimisation 

of the distinct allocation of parts to cells. Later the model's operation was enhanced 

by considering within the objective function the part/machine set-up costs and some 

additional constraints needed for the current task. Finally, a key constraint such as 

the part machine operation sequence was added together with' an additional element 

minimising the revisits of parts to already visited cells. This final form of the math­

ematical programming model represents a more sophisticated CF problem which will 

be the foundation for the employment of other theories and methodologies, presented 

in the chapters to follow, incorporating realism to the system. 
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Chapter 4 

Fuzzy Mathematical 

Programming for CF 

4.1 Introduction 

Applying mathematical programming problems to real world problems is a challenging 

task due to the following reasons: 

• decision makers find it difficult to specify goals and 

• parameters used in these models cannot be specified precisely. 

Over the past twenty five years, fuzzy set theory, firstly developed by two pioneers 

Bellman and Zadeh [BZ70], has been applied to many disciplines, including operations 

research, control theory, artificial intelligent/expert systems, dealing with situations 

or problems involving ambiguities and fuzziness. Fuzzy Mathematical Programming 

(FMP) is one area in which fuzzy set theory has been applied extensively. For in­

stance, FMP has been applied to problems regarding transportation [CKM84], location 

planning [DE90], project networks [Mje86], resource allocations [SP78], air pollution 

regulations [WZ78] and media selection for advertising [Dar87]. Although there has 

been an intense study of the application of fuzzy set theory to industrial engineering 

[EKW89], and operations management [KE86] very few studies have attempted to use 

FMP in the design of cellular manufacturing systems. This chapter will focus attention 

on applying fuzzy set theory to the mixed integer mathematical cell formation model 

described in Chapter 3. 
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4.2 Fuzzy Set Theory and Linear Programming 

The term "fuzzy" was proposed by Zadeh in 1962 [Zad62J. In 1965, Zadeh [Zad65J 

formally published the famous paper "Fuzzy Sets". The fuzzy set theory [BZ70J, was 
. developed to improve the oversimplified model, thereby developing a more robust and 

flexible model in order to solve real-world complex systems involving human decision 

making. 

Zadeh [Zad65J writes: 

"The notion of a fuzzy set provides a oonvenient point of departure for the 

construction of a conceptual framework which parallels in many respects 

the framework used in the case of ordinary sets, but is mOre general than 

the latter and, potentially, may prove to have a much wider scope of appli­

cability, particularly in the fields of pattern classification and information 

processing. Essentially, such a framework provides a natural way of dealing 

with problems in which the source of imprecision is the absence of sharply 

defined criteria of class membership rather than the presence of random 

variables." 

"Imprecision" here is meant in the sense of vagueness rather than the lack of knowl­

edge about the value of a parameter. Fuzzy set theory provides a strict mathematical 

framework (there is nothing fuzzy about fuzzy set theory!) in which vague conceptual 

phenomena can be precisely and rigorously studied [Zim88aJ. 

In fuzzy set theory constraints as well objectives are regarded as fuzzy sets. In general 

a fuzzy set is defined as follows [Zad65J: 

If X = {x} is a collection of objects denoted generically by x then a fuzzy set 

A in X is a set of ordered pairs: 

A = {(x,/LA(x))lx E X} (4.1) 

/LA (X) is called the membership function or grade of membership, also degree of truth, 

of x in A which maps X to the membership space M. The space of these values is again 

a fuzzy set, which is called "decision". But how can the decision space be determined 

for a linear programming model? According to Bellman and Zadeh [BZ70J: 
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Assume the existence of a fuzzy goal Cl and a fuzzy constraint C in a space 

of alternatives X. Then Cl and C combine to form a decision, D, which is a 

fuzzy set resulting from intersection of Cl and C. In symbols, D=Cl n C, and 

correspondingly 

(4.2) 

where '*' denotes an appropriate, possibly context dependent "aggregator" 

(connective operatorl ). Let M be the set of points X E X for which {lb(x) 

attains its maximum, if it exists. Then M is called the maximising decision. 

If I' b (x) has a unique maximum at x M, then the maximising decision is a 

uniquely defined crisp decision which can be interpreted as the action which 

belongs to all fuzzy sets representing either constraints or goals with the high­

est possible degree of membership. 

For the classical form of a Linear Programming model where the decision made is 

decision under certainty and the decision space is defined by the constraints and the 

'goal' representing the objective function is of the following classical form: 

Table 4.1: Classical LP Model 
minimise f(x) = cTx 
such that Ax:O; b 

x>O 

In the case where goal and constraints are fuzzy the problem can be modelled as: 

Table 4.2: Fuzzy LP Model 
find x such that 

cTx ~ z 

Ax~b 
x>O 

Here ,~, denotes the fuzzified version of ':0;' and has the linguistic interpretation "es­

sentially smaller than or equal" . 

From Table 4.2, objective and constraints are treated equally and there is no longer a 

difference between them. Therefore the relationship between constraints and objectives 

1 Commonly used operators applied in mathematical programming will be presented in next section. 
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in a fuzzy environment is fully symmetric [Zim91], [LH92a]. 

It is worth mentioning, that a model, where the objective function is crisp, that is, has 

to be maximised or minimised and in which the constraints are all or partially fuzzy, 

is no longer symmetrical. 

4.2.1 Membership Functions and Fuzzy Operators 

Although FMP is different from other fuzzy applications such as fuzzy ranking and 

fuzzy inference, two factors - membership functions and fuzzy operators - common to 

other fuzzy applications deserve attention. 

Membership functions are used to incorporate fuzziness or to represent the linguistic 

variables for applications of fuzzy set theory. Many types of membership functions 

have been used in practice [LH92a], [Zim85], [Dom90], [1L91], [Leb81]. However, lin­

ear non-increasing [WZ78], [SP78], and triangular [YI91] are two of the most popular 

functions in use. 

In order to manipulate fuzzy numbers in fuzzy sets, a variety of fuzzy operators ex­

tended from the traditional (crisp) mathematical programming have been proposed. 

For instance, let A and B be two fuzzy sets in X, the fuzzy sum C=A+B is defined 

as: 

where 

In FMP, fuzzy aggregation operators are used to transform FMP to traditional math­

ematical programming so that the FMP can be solved via traditional mathematical 

programming. 

There are two basic classes of operators: operators for the intersection and the union 

of fuzzy sets - referred to as triangular norms (t-norms) and triangular conorms (t­

conorms) respectively - and the class of averaging operators which model connectives 

for fuzzy sets between t-norms and t-conorms [Zim91]. 

One of the most ,commonly used operators [Zad65] applied for the intersection of fuzzy 

goals and constraints is the 'min' operator. Although, this operator is very practical 
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when applying it, it does not allow for compensation at all. Compensation, in the 

context of aggregating operators for fuzzy sets, could be interpreted as follows [Zim91 J: 

Given that a degree of membership to the aggregating fuzzy set is: 

(4.3) 

f is compensatory if It Agg(Xk) = k is obtainable for a different It A(Xk) by a 

change in ltiJ(Xk). 

The 'min' operator together with some commonly used compensatory operators (most 

of which are averaging operators) are presented in Table 4.3. 

Please note that the formulations for each of the aggregation operators presented in 

Table 4.3 have a generic form. For more details on the generic forms of some of the 

aggregation operators refer to Appendix B. 
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Table 4 3' Commonly Used Operators in FMP Studies .. 
Operator Formulation' Compensatory T Format after 

transformation 
'Min' J.lD = min J.lS TT No . Linear 

'Fuzzy and' (ruid) J.lD =,min J.lS + (1 -/}/(T + 1) x 2:~=o J.lS Positive Linear 
, 
:5l 'Min - bounded sum' J.lD =,min J.lS + (1 -/}min(l, 2:~=o J.ls) Positive Linear 

'Compensatory and' J.lD = ,min J.lS + (1 -/}max J.lS Positive Linear 

'Product' J.lD = II1'=1 J.lS Negative Nonlinear 

'I' J.lD = (IILn}l-~ [1 - rr!=n(l- J.ls}P Positive Nonlinear , , 
• The objective IS to maXImIse J1.D. 

, The definitions for both positive and negative compensatory operators are adapted from [KLL93J. 
" J.ls is membership function of the 8 th fuzzy constraint (8 is index of fuzzy constraints, 8 = 0, .'" T). 
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4.3 Fuzzy Cell Formation Models 

In the aforementioned deterministic model, section 3.4.2, it is assumed that both the 

objective function and all related constraints can be defined precisely. In practice it 

is very difficult for the decision maker to specify the exact goals and constraints when 

modelling the problem. Tools for experimenting with changes in both coefficients and 

constraints by doing either sensitivity or postoptimality analysis are well established 

for linear programming (LP) models. For IP these tools are less well developed because 

the absence of continuity precludes the natural extension of these tools from LP to lP, 

however certain experimentation is still possible. In what follows the authors consider 

aspects of fuzzification within CF problems. 

Although in the current model there are a lot of elements that could be fuzzy such as 

set-up costs and utilisation amounts, the author considers the fuzziness concept on the 

number of machines included in cells. The latter is chosen based upon the model's main 

operation which is the creation of cells with a specific number of machines in them. 

The resulting analysis can thus be considered as just one example of analysing fuzzi­

ness out of a range of possible elements that could be made fuzzy. Thus the analysis 

is to some extent exploratory and intended to show the possibilities of extending CF 

problems to incorporate more realism. The analysis will show ways in which a range 

of configurations can be offered to decision makers and this range could be extended 

by introducing fuzziness into other parameters, of which the number of machines in a 

cell is one. 

In the deterministic model, equation (3.21), the maximum number of machines, EM AX, 

allowed in each of the cells has been precisely specified. What will happen if the 

maximum number of machines varies between a range, thus is uncertain? The range 

assumed is defined by the upper bound of the maximum number of machines and the 

lower bound of the maximum number of machines. The following two fuzzy equations 

describe the situation where the maximum number of machines takes values between a 

range. Depending upon the type of the membership function used, either both equations 

(4.4), (4.5) are utilised or only one is employed as will be seen later. 

NMKMi 

I: I: Yi,k,q ~ Vq x EMAX 'I q 
i=l k=l 

NMKM. 

I: I: Yi,k,q ~ Vq X EMAX 'I q 
i=l k=l 
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The objective function, equation (3.15), can also be assumed as fuzzy (see Table 4.2) 

and according to Werners [Wer87] and Lai and Hwang [LH92b] can be fuzzified as 

follows: 

NPNO NMNP NO 

LL(Mj,q x Wj,q) + LL(SETUP;,j X LS'J,q)+ 
j=1 q=l i=l ;=1 q=l 

NO NPNM 

L L L(Aj X extraq,j,,) if, DO = Dl - Po (4.6) 
q=l j=1 i=l 

where DO is the feasible value of the best goal, which can be obtained by solving the 

traditional model (see section 3.4.2) with the total number of machines instances in 

the system. Dl is the feasible value of the worst goal which can be obtained by solving 

the deterministic model with the minimum feasible number of machines. More details 

for the above parameter values are provided within section 4.4. 

In order to transform the fuzzy model to its equivalent traditional formulation three 

tolerance values, Po, PR! and Pm are used within the objective function (4.6) and 

constraints (4.4) and (4.5) respectively. The value for parameter Po can be determined 

as the value equal to DO subtracted from Dl, whereas the values of parameters PRl and 

Pm depend upon the decision maker's experience on the characteristics of the problem. 

For the fuzzy incorporation within the current model two membership functions lin­

ear non-increasing [WZ78], [Zim91], and triangular [YI91] will be considered. For the 

transformation of the fuzzy formulation to MP formulation, fuzzy aggregation operators 

will be used. As already stated, Table 4.3 (page 68) summarizes a number of operators 

that have been applied before in fuzzy mathematical programming. The first three 

operators have linear forms after transformation whereas the last two are non-linear 

and thus more difficult to handle. Moreover, all operators except the 'min' classical 

operator allow some type of compensation; either a positive or negative [KLL93]. For 

example, the 'fuzzy and' operator [Wer88] combines the minimum and maximum op­

erator with the arithmetic mean and allows compensation between the membership 

values of the aggregated sets leading to very good results with respect to empirical 

data [ZZ88]. For the current study 'min', 'fuzzy and' and 'min-bounded sum' opera­

tors will be examined. Last but not least, objectives and constraints are treated equally 

and there is no difference between them, therefore their relationship is fully symmetric 

[Zim91], [LH92a]. 
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Before continuing with the model formulation, it is useful to have a visual presentation 

of the membership functions involved. The membership function for the objective 

function, currently added as a new constraint (4.6), is linear non-increasing and can be 

seen in Figure 4.1. 

1 f--, 

0' 

. 

Figure 4.1: Membership Function for Objective Function 

The mathematical presentation for the above membership function is as follows: 

{ 

1, 
I'o(x)= 1 _ cTp;;DO, 

0, 

ifcTx$DO 

if D°:5 cT x :5 DO + Po 

if er x> DO + Po 

In the case where the only fuzzy constraint considered in the model is (4.4) (i.e. min­

imum number of maximum number of machines is equal to the minimum number of 

machines as rigidly defined in constraint (3.22)), the membership function is linear non­

increasing and can be seen in Figure 4.2(a). However, when both fuzzy constraints, 

(4.4) and (4.5), are involved the membership function is triangular and presented in 

Figure 4.2(b). Parameter Pm is involved as the 'negative' tolerance value for maximum 

number of machines and PR! is involved as the 'positive' tolerance value as the frame of 

reference for both tolerance values is the crisp value of maximum number of machines. 

In other words, the maximum number of machines is the intermediate value between 

the lower bound of maximum number of machines determined by the tolerance value 

Pm, and the upper bound of the maximum number of machines determined by the 

tolerance value PR!. 

Mathematical formulations for the membership functions, as presented in Figures 4.2( a) 

and 4.2(b) respectively, are shown next. 
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"", (Ax); 

(a) Membership function for fuzzy con~ 

straint (4.4) 

(b) Membership function for fuzzy constraints (4.4) 
and (4.5) 

Figure 4.2: Membership Functions related to Constraints 

1, if Yi,k,q :5 l1q X EM AX 
1 _ y"kl!Z-vqxEMAX 

PRl ' 
if Vq X EMAX ~ Yi,k,q ~ Vq X EMAX + PRl 

0, if Yi,k,q> Vq X EMAX + PRl 

0, if Yi,k,q ;::: Vq x EMAX + PRl 
I....! Yi,kl!l-vqxEMAX if Vq X EMAX ~ Yi,k,q ~ Vq X EMAX +PRl 

PRl ' 
1 _ V!lXEMAX-Yi,k,!l if Vq x EMAX - Pm ~ Yi,k,q ~ Vq x EMAX 

PR2 ' 

1, if Yi,k,q = Vq X EMAX 

0, if Yi,k,q ~ XVq x EMAX - P~ 

The next task is to present the way that each of these membership functions are utilised 

within the CF problem when different aggregation operators are employed. 
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4.3.1 'Min' Aggregation Operator 

For 'min' operator one additional variable is needed and specified below: 

).: minimum value of all membership functions 

• Linear Non-Increasing Membership Function 

The equivalent formulation can be obtained as follows: 

Max ). 

subject to 

NPNC NM NP NC 

LL(Mj .• x Wj .• ) + LL(SETUNP;,i x LSiJ,.)+ 
;=1 q=l i=l ;=1 q=l 

NCNPNM 

(4.7) 

L L L(Aj x extra.,j,;) + ).Po ~ DO + Po (4.8) 
q=l ;=1 i=l 

NMKMi 

L LYi,k,. + ).PR! ~ v. X EMAX + PR! 'I q 
i=1 k=1 

(4.9) 

(4.10) 

Besides those equations noted above, equations (3.16)-(3.20) and (3.22)-(3.29) are 

added here as well. 

From equation (4.9), the number of machines allowed in a cell ranges from EMIN 

(crisply defined by the decision maker as in the traditional model) to v. x EMAX +PR!' 

• Triangular Membership Function 

The equivalent MP formulation consists of equations (4.7) to (4.10) and equation (4.11) 

below. 

NMKMi 

L L Yi,k,. - )'PI/2. 2:: Vq X EMAX - RI/2. 'I q 
i=l k=l 

(4.11) 

It also includes crisp constraints (3.16)-(3.20) and (3.23)-(3.29), defined in Chapter 3. 
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4.3.2 'Fuzzy and' ('and') Aggregation Operator 

For the MP formulation using the 'and' operator new index, parameter and new decision 

variables are needed. 
I membership functions index I = 0, ... ,M F 2 

"I parameter for fuzzy modelling 

a, extra variable used for 'and' operator 

w extra variable used for 'and' operator 

c total number of fuzzy constraints 

• Linear Non-Increasing Membership Function 

The equivalent LP formulation is as follows: 

Max 

subject to 

1 MF 

w + (1- "I) x -1 La, 
c+ 1=0 

NPNC NMNP NC NCNPNM 

(4.12) 

LL(Mj,q x Wj,q) + LL(SETUP;,j x LSi,j,q) + LLL(Aj x extraq,j,i)+ 
j=1 q=l i=l j=1 q=l q=l j=1 i=l 

wX Po+ao x Po :5 DO+Po (4.13) 

NMKM, 

L L Yi,k,q + w X PR1 + a1 x PR! :5 Vq x EMAX + PR! V q 
i=l k=l 

a,2:0, "1<1 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Also crisp constraints (3.16)-(3.20) and (3.22)-(3.29) are included in this model as well. 

2Please note, that in the case where a linear non-increasing membership function is used two mem· 
bership functions are considered, whereas for the triangular case the number of membership functions 
taken into account is three. 

- 74-



Chapter 4 Fuzzy Mathematical Progmmming for GF 

• Triangular Membership Function 

The 'and' operator and triangular membership function will now be considered. The 

objective function for this formulation is the same as equation (4.12), and only one new 

constraint is added as follows: 

NMKMi 

L L Yi,k,q - W X Pm - a2 x Pm ~ Vq x EMAX - Rm 'I q 
i=l k=l 

(4.18) 

Also constraints (4.13)-(4.17), (3.16)-(3.20) and (3.23)-(3.29) are included when trian­

gular membership function is employed. 

4.3.3 'Min-bounded-sum' Aggregation Operator 

For the MP formulation the 'Y parameter and the W decision variable used for the 'fuzzy 

and' operator are preserved here as well. Additionally, an extra index and a new deci­

sion variable are needed and defined as follows: 

t additional cell index 

Ut extra variable used for 'min-bounded sum' operator 

• Linear Non-Increasing Membership Function 

The equivalent LP formulation is as follows: 

subject to 

NO 

Max 'Yxw+(l-'Y)LUt 
t=l 

t=l, ... ,NC 

NPNO NMNP NO NO NPNM 

(4.19) 

LL(Mj,q x Wj,q) + LL(SETUPi,j x LSi,j,q) + LLL(Aj x extraq,j,;}+ 
;=1 q=l i=l ;=1 q=l q=l ;=1 i=l 

W X Po :5 DO + Po (4.20) 

NPNO NMNP NO 

Ut:5 [L L(Mj,q x Wj,q) + L L(SETUP;,j x L Si,j,q)+ 
j=1 q=l i=l j=1 q=l 

NO NP NM NM KM, 

LL L(Aj x extraq,j,i) - DOl/Po + [L L Yi,k,t - Vt x EMAxl/RRl 'I t (4.21) 
q=l j=1 i=l i=l k=l 
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NMKM, 
L LYi,k,q+W x PRl:5 Vq x EMAX +PRl 'I q 
i=l k=l 

Ut:51 'It 

,<1 

( 4.22) 

( 4.23) 

(4.24) 

(4.25) 

Also equations (3.16)-{3.20) and (3.22)-{3.29) are included in the above formulation . 

• Triangular Membership Function 

For this case one more membership function is included, therefore equation (4.21) is 

differently formulated producing equation (4.26)) and constraint (4.27) is also added. 

NPNO NMNP NO 
Ut:5 [LL{Mj,q x Wj,q) + LL{SETUNP;,; x LSi,j,q)+ 

j=1 q=l i=l ;=1 q=l 

NO NP NM NM KM, 
LL L{A; x extraq,j,i) - DOl/Po + [L LYi,k,t - Vt x EMAXI/RRl+ 
q=l j=1 i=l i=l k=l 

NMKMi 

[Vt x EMAX - L LYi,k,t]/RR2 'I t (4.26) 
i=l k=l 

NMKMi 

L LYi,k,q -W X PR2;::: Vq x EMAX - RR2 'I q 
i=l k=l 

(4.27) 

Objective function (4.19) and constraints (4.20), (4.22)-{4.25) are preserved and added 

here. Also equations (3.16)-{3.20) and {3.23)-{3.29j are included in this formulation. 

4.3.4 Modification of the Traditional Crisp Model 

In all fuzzy models considered in previous sections the objective function has changed 

its status compared with the traditional model (described in section 3.4). When fuzzy 

aggregation operators and membership functions are taken into account the objective 

function changes its status and its set to maximise. 
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Although this change does not affect the plant functioning, it leads to a computational 

operation increase of the branch and bound algorithm and production of some faulty 

results when assigning machines to cells for a specific part operation. Hence, in order 

to obtain some reasonably good results, another constraint is added in the traditional 

model. The new constraint has the following form: 

KMi 

Si,j,q ::; L Yi,k,q 'V j, i, q 
k=l 

(4.28) 

Constraint (4.28) simply forces the machine(s) of type i used by part j in cell q to be 

always less than total k number of machines of type i assigned in cell q. 

It is worth mentioning that this crisp constraint is added now to the six fuzzy models: 

'min' operator with linear and triangular membership function, 'fuzzy and' operator 

with linear and triangular membership functions and 'min-bounded sum' operator with 

linear and triangular membership functions. 

4.4 Models Assessment 

To assess the results of each of the aggregation operators within the CF model six data 

sets are used. The first data set (DS 1) was created by adopting numerical values from 

Foulds et al. [FFW06] and randomly generated some more needed to meet the require­

ments of the current model. The numerical values of DS 1 are presented in Table 4.4. 

The remaining data sets were randomly generated by a computer program developed 

with MatLab (see Appendix C). More discussion of this program will be presented later 

in Chapter 6. The sets were chosen in order to provide variety of parameter values in 

the models. 

Data sets two (DS 2) and three (DS 3) have the same size with data set one (DS 1) 

as they employ the same number of parts and machine types but they differ from each 

other as their parameters values are randomly generated. A similar case applies for 

the remainder of the data sets, i.e. data sets four to six, where all consist of nine 

parts and machine types but their parameter values like part/machine set-up costs 

" and part/machine utilisation are different. The latter parameter determines the total 

number of machine instances. The greater the total number of machines in the system 

the more intense the problem as will be seen when examining the model's performance. 
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Table 4.4: Nnmerkal Valne. for DR 1 
Part JMachines utilisation & Number of machine instances 

P';M, P, P2 P3 P4 Ps p. P7 Ps Pg PlO KM, 
M, 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 1 
M2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 4 
M3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 2 
M4 0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 3 
M5 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 7 
M. 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 2 
M7 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 1 

Set-up Costs 
P';M. P, P2 P3 P4 Ps p. P7 Ps Pg PlO 

M, 0.00 2.95 0.00 1.96 0.00 0.00 0.00 1.92 0.00 0.00 
M2 0.00 0.00 0.00 5.12 2.42 0.00 5.05 0.00 1.54 2.16 
M3 0.00 0.00 2.93 0.00 0.00 0.00 0.00 1.94 1.45 0.00 
M4 0.00 5.54 0.00 2.91 2.42 2.38 0.00 0.00 0.00 0.00 
Ms 2.91 2.59 0.00 2.88 5.42 4.91 2.63 4.93 4.81 0.00 
Ms 0.00 2.82 0.00 0.00 0.00 0.00 2.73 0.00 0.00 2.49 
M7 0.00 0.00 0.00 2.12 2.12 0.00 0.00 0.00 0.00 0.00 

Part-Machine operation Sequence & ZTYPES 
P;jSeq. 1 2 3 4 5 ZTYPES 

P, Ms . 1 
P2 M, M4 M5 M. 4 
P3 M3 1 
P4 M, M2 M4 Ms M7 5 
Ps M2 M5 M4 M7 4 
p. M4 M5 2 
P7 M5 M2 Ms 3 
Ps M, M3 M5 3 
Pg M3 Ms M2 3 
P,o M2 Ms 2 

11 EMIN - 3, EMAX - 6 & NCELLS-5 11 

Lastly the maximum number of machines allowed in a cell takes differ~nt values de­

pending upon the total number Of machine instances in each of the data sets and the 

number of cells allowed to be created. When fuzzy models are used, fuzzy intervals are 

used to define those numbers; upper bound of maximum number of machines and lower 

bound of maximum number of machines allowed in a system is the interval specified 

when a triangular membership function is used. Sometimes depending upon the size of 

the problem, the value of the lower bound of maximum number of machines becomes 

equal to the minimum number of machines rigidly defined by the decision maker. For 

the linear non-increasing membership function the upper bound of the maximum num­

ber of machines is also specified. Both for linear non-increasing and triangular cases 

the minimum number of machines is explicitly required to be equal to three in order 
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to prevent the assignment of fewer than three machines in each cell formed. 

It is worth commenting on the tolerance value of an objective function and how this 

can be determined via an example. For example, for DS 1 the tolerance value Po for the 

objective function is assigned the value 32.91. As stated already, this value is produced 

by subtracting DO from Dl. DO in this case is equal to 207.01 (objective value of the 

traditional model, where a maximum number of machines is assumed) and Dl is equal 

to 239.92 (where a minimum number is used). More specifically, for defining DO value 

the maximum number of machines used is assumed to be equal to the total number of 

machine instances in the system. On the other hand for determining the Dl parameter 

the minimum number of machines used is required to be equal to the least number 

of machines which when multiplied with the default number of cells will be equal or 

greater to the total number of machines in the system so that the system won't be 

infeasible. For example, if the total number of machines is 20 and the number of cells 

is 5 then the minimum number of machines will be at least 4; otherwise the problem 

will turn out to be infeasible. 

4.4.1 Performance of Models 

All models were solved by running Xpress-MP on a Linux machine (Intel (P4 Xeon) 

3GHz, 1.00 GB of RAM) and accessed remotely. Clustering performances were mea­

sured in terms of number of cells created, distinct cells used by each part, number of 

times a part re-visits a cell for later machine operation, CPU time and total cost of 

dealing with intercell movements and set-up costs. 

Table 4.5 (page 80) summarises the computational results for all six data sets. For 

each data set, six cases for the fuzzy models (three operators and two membership 

functions), plus two cases for the proposed deterministic model are examined. The 

final case (case 8) where the deterministic model is utilised, examines a possible impact 

on the solution quality when the maxinmm number of machines is relaxed having the 

value of the specified upper bound. 
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Table 4.5: Computational_Results for Fuzzy and Crisp Models - -
DS 1: Problem size (NM x NP) - (7 x 10); NCELLS-5; EMAX - 6; Po - 32.91; PR! - 2; Pro. - 3, Machine Instances- 20 

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 
Functions by Each Part of Parts (secs) 

1 'Min' Linear 4 12 0 2010 211.47 
non-increasing 

2 'Min' Triangular 3 12 1 32 219.95 
3 'and' Linear 4 12 0 40 217.01 

non-increasing 
4 'and' Triangular 3 12 1 38 212.47 
5 'Min - bounded sum' Linear 3 14 0 10 231.47 

non-increasing 
6 'Min - bounded sum' Triangular 3 14 0 9 231.47 
7 Deterministic Model EMAX =6 4 12 0 109 219.92 
8 Deterministic Model EMAX =8 4 12 0 32 210.92 

DS 2: Problem size (NM x NP) - (7 x 10); NCELLS-5; EMAX - 6; Po - 33; PR! - 2; Pm - 3; Machine Instances- 20 
Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 

Functions by Each Part of Parts (secs) 

1 'Min' Linear 3 13 0 10875 229.24 
non-increasing 

2 'Min' Triangular 3 13 0 1149 229.24 
3 'and' Linear 4 13 2 5913 225.82 

non-increasing 
4 'and' Triangular 3 13 0 996 229.24 
5 'Min - bounded sum' Linear 3 14 3 35 236.82 

" non-increasing 
6 'Min - bounded sum' Triangular 3 14 3 21 236.82 
7 Deterministic Model EMAX =6 4 13 2 4554 225.82 
8 Deterministic Model EMAX =8 3 12 1 433 220.24 

... continues on next page 
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Table 4 5 - continues from previous page 
DS 3: Problem size (NM x NP) - (7 x 10); NCELLS-5; EMAX - 8; Po - 21; PR! - 2; Pm - 5; Machine Instances- 27 

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 
Functions by Each Part of Parts (secs) 

1 'Min' Linear - - - > 50 hours -
non-increasing 

2 'Min' Triangular 3 12 1 6966 246.91 
3 'and' Linear - - - > 50 hours -

non-increasing 
4 'and' Triangular 3 12 1 10431 246.91 
5 'Min - bounded sum' Linear 3 13 1 17 251.49 

non-increasing 
6 'Min - bounded sum' Triangular 3 13 1 51 267.75 
7 Deterministic Model EMAX=8 4 12 2 16499 264.14 
8 Deterministic Model EMAX = 10 3 12 0 8341 262.14 

DS 4: Problem size (NM x NP) - (9 x 9); NCELLS-5; EMAX - 6; Po - 32.41; PR! - 2; Pm - 3; Machine Instances- 22 
Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 

Functions by Each Part of Parts (secs) 

1 'Min' Linear - - - > 50 hours -
non-increasing 

2 'Min' Triangular 3 11 2 4576 195.57 
3 'and' Linear 4 11 0 7686 189.19 

non-increasing 
4 'and' Triangular 4 11 0 578 187.78 
5 'Min - bounded sum' Linear 3 12 1 33 200.19 

non-increasing 
6 'Min - bounded sum' Triangular 3 12 1 11 200.19 
7 Deterministic Model EMAX =6 4 11 0 1214 187.78 
8 Deterministic Model EMAX =8 4 10 0 196 177.78 



Table 4 5 - continues from previous page 
DS 5: Problem size (NM x NP) - (9 x 9); NCELLS-5; EMAX - 8; Po - 35; PR! - 4; Pm - 5; Machine Instances- 28 

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 
Functions by Each Part of Parts (secs) 

1 'Min' Linear - - - > 50 hours -
non-increasing 

. 

2 'Min' Triangular 3 11 0 25448 243.27 
3 'and' Linear 4 11 1 114171 249.69 

non-increasing 
4 'and' Triangular 3 11 0 2752 243.27 
5 'Min - bounded sum' Linear 3 12 5 9 263.69 

non-increasing 
6 'Min - bounded sum' Triangular 3 12 5 49 263.69 
7 Deterministic Model EMAX =8 4 11 1 48974 257.99 
8 Deterministic Model EMAX = 12 3 10 1 688 245.11 

DS 6: Problem size (NM x NP) - (9 x 9); NCELLS=5; EMAX = 9; PR! - 5; Pm = 6; Machine Instances= 35 
Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost 

Functions by Each Part of Parts 
1 "Min' Linear - - - - -

non-increasing 
2 'Min' Triangular - - - - -
3 'and' Linear - - - - -

non-increasing 
4 'and' Triangular - - - - -
5 'Min - bounded sum' Linear - - - - -

non-increasing" 
6 'Min - bounded sum' Triangular - - - - -
7 Deterministic Model EMAX=9 - - - > 50 hours -
8 Deterministic Model EMAX = 14 3 11 1 40614 secs 259.08 
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It is observed that the CPU times for both 'fuzzy and' and 'min-bounded sum' oper­

ators vary but they differ marginally, whereas 'min' operator requires more execution 

time. However, the clustering results for all operators are different and this can be 

verified by the number of cells created, the distinct number of cells used by each part 

and the number of later revisits of parts to an already visited cell. The performance 

of 'min' operator is not promising especially when a linear non-increasing membership 

function is employed as it requires the longest time to process (especially when problem 

size increases Le data sets 3, 4, and 5), and the clustering results are not better than 

those produced from the other two operators. The performance of the latter slightly 

improves when a triangular membership function is assumed. Overall and as can be 

seen from the table the computation time for each problem is very long for the 'min' 

operator and for some of the data sets the algorithm fails to converge after excessive 

computational time. 

The 'fuzzy and' operator arrives at acceptable clustering results and the required CPU 

time is quite low for either non-increasing or triangular membership functions when 

smaller data sets are utilised. It is worth noting that the 'min-bounded sum' operator 

results in significant CPU time reduction when larger data sets are used (i.e. DS 3, DS 

5) compared to the other two operators but it has two weaknesses: a) it is time con­

suming to obtain one of its constraints, in which all the membership functions must be 

summed up and, b) clustering results seem to be affected because all the membership 

functions of the constraints are added within one constraint when formulation takes 

place. 

It is particularly encouraging that on the data sets considered, for the linear non­

increasing version of the 'min-bounded sum' operator only small amounts of CPU time 

are required and these are substantially lower than those required for the deterministic 

versions of the problem. Constraints (4.20), (4.21) may be helping to reduce the inte­

grality gap and aid convergence. 

Moreover, for both 'fuzzy and' and 'min-bounded sum' operators experiments were car­

ried out in order to determine a proper 'Y value h parameter can take values between 

the range [0.0, 0.9]). Both Tables 4.6 and 4.7 (pages 84 and 85) summarise the results 

of using DS 1 for the 'fuzzy and' and 'min-bounded sum' operators respectively. 

The best 'Y value for case 3 is 0.1 whereas, the best 'Y value for case 4 is 0.9. For both 

cases the best 'Y is determined from the executing CPU time and not from the total 
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cost found. The reason for this is that a small variation is observed in the total cost 

found mainly because of the machine set-up costs configuration. Moreover, according 

to Table 4.7 the best '"Y value for cases 5 and 6 are 0.4 and 0.5 respectively. For deter­

mining the remaining best '"Y values a similar process was followed. 

Table 4 6 R . : esu ts 0 varymg '"Y f aues ort e uzzyan \Cl £ h 'f d' 0 erator p 
Case 3: Linear non-increasing membership function 

'"Y CPU Time (secs) Total Cost 

0.1 40 217.01 
0.2 131 228.01 
0.3 84 227.01 
0.4 80 227.01 
0.5 150 228.01 
0.6 42 211.47 
0.7 120 222.47 
0.8 73 222.59 
0.9 95 221.47 

Case 4: Triangular membership function 

'"Y CPU Time Total Cost 

0.1 94 222.47 
0.2 198 221.59 
0.3 179 211.59 
0.4 142 211.47 
0.5 186 211.59 
0.6 164 221.59 
0.7 202 211.47 
0.8 185 211.47 
0.9 38 211.47 

For considering the combinatorial explosion on the CPU times of all operators used a 

comparison between DS 1 (the smallest data set recorded in Table 4.5) and DS 5 (a 

larger data set) will now be made. As the size of the problem increases computation 

intensifies especially for the 'min' operator where no compensation between the mem­

bership functions of the aggregated sets is performed. For the 'fuzzy and' operator the 

CPU time increases significantly as the size of the problem becomes larger especially 

when a linear non-increasing membership function is employed. For the 'min-bounded 

sum' operator things are different as CPU time is kept low regardless of how big the 

problem is. Although CPU times are very promising for the latter, clustering results 

ru;e not so good (see DS 5) compared with the 'fuzzy and' operator. Therefore, the 
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Table 4.7 R : esu ts of varying 'Y a ues or t e min- oun e -sum Vd £ h' b d d , Operator 
Case 5: Linear non·increasing membership function 

'Y CPU Time (secs) Total Cost 

0.1 97 237.01 
0.2 23 237.01 
0.3 28 231.47 
0.4 10 231.47 
0.5 12 231.89 
0.6 202 231.59 
0.7 549 231.47 
0.8 325 237.01 
0.9 135 231.47 

Case 6: Triangular membership function 

'Y CPU Time (secs) Total Cost 

0.1 18 237.01 
0.2 27 231.47 
0.3 63 231.47 
0.4 19 237.01 
0.5 9 231.47 
0.6 55 231.47 
0.7 103 237.01 
0.8 77 231.47 
0.9 47 212.47 

'fuzzy and' operator, when a triangular membership function is employed, can be char­

acterised as a good operator with promising clustering results and reasonable CPU 

times even when data sets become larger. 

For cases 7 and 8, the deterministic model is utilised and it can be observed that more 

effort with trial and error is needed before an appropriate maximum number of ma­

chines allowed in a cell is decided to obtain a good solution. Also as the size of the 

problem increases (see DS 3 or DS 5) the CPU time increases siguificantly. However, 

employing a good operator (in terms of clustering results and CPU time) the use of the 

fuzzy model is quite straightforward. It can flexibly adjust the number of machines, 

given a tolerance value, thus avoiding time consuming trial and error. 

Last but not least, it is worth commenting on DS 6 which is the largest of all the data 

sets used for this study. As can be seen from Table 4.5 the optimum value could only 

be found for case 8. All fuzzy models could not be tested since it was impossible to 

determine the tolerance value for the objective function. More specifically, finding Dl 
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it was not feasible because of the excessive amount of computational time. Thus, DS 

6 gives an indication and also puts a limit to the size of the data sets that could be 

solved both for the deterministic and fuzzy models. 

4.4.2 Concluding Remarks 

From all the computational analyses the following conclusions can be drawn: 

• It is a difficult and a very important issue for the decision maker to choose the 

appropriate number of machines allowed in a cell. If the size of the problem 

is small then there are some chances with trial and error that a good solution 

may be obtained. However, once the problem size increases, trial and error is not 

effective. Thus, fuzzy mathematical programming is a more promising alternative 

methodology. 

• The fuzzy mathematical programming provides a more flexible way of represent­

ing the problem and it leads in most cases to better clustering results, especially 

when the 'fuzzy and' operator was employed. The CPU time depends upon the 

operator used. Although the 'min' operator is the most frequently used method, 

it did not perform well especially when a linear non-increasing membership func­

tion was used. The 'min-bounded sum' operator shortened the CPU significantly 

and outperformed the rest of the operators as well as the deterministic model, 

especially when a bigger problem was considered. 

• The time advantage of using a fuzzy model rather than a deterministic model 

becomes significant once a larger scale model is used and the tolerance value of 

the constraints becomes bigger. 

• The triangular membership function performed better than the linear non-increasing 

membership function for the CFproblem and it seems to be more appropriate 

for modelling the constraints when a number of machines, either maximum or 

minimum are involved. 

• Last but not least, although the fuzzy models have a lot of advantages towards 

the deterministic model they still have a major limitation. More specifically, as 

the sizes of the data sets increase computation intensifies and it is difficult for 

the decision maker to find solutions when attempting for example to determine 

the tolerance value of the objective function which is included within all fuzzy 

models. It might be possible to solve some larger sized problems, but ultimately 

a limit will be reached when computation times become excessive. For this reason 

the data sets chosen for the current study had to be of smaller sizes. 
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4.5 Summary 

This chapter has introduced the use of fuzzy set theory where fuzzy aggregation opera­

tors and membership functions were employed to measure the uncert;';nty involved for 

determining the maximum number of machines allowed in each cell in a CF system. A 

number of fuzzy mixed integer programming models were formulated, each correspond­

ing to the utilisation of a single operator and the membership function involved at each 

time. Based upon established theory on the aggregation operators and membership 

functions all models where defuzzified in order to be solvable by XPRESS-MP. Finally, 

all models including also the traditional were tested with a number of data sets and 

results compared. 
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Chapter 5 

Heuristic Approaches for CF 

Initial Solution 

5.1 Introduction 

The cell formation problem is a combinatorial optimisation problem that is NP-hard 

[BFHS88] and therefore an optimisation model (e.g. either a mixed integer mathemat­

ical programming model as described in Chapter 3 or a fuzzy mixed integer mathe­

matical formulation as presented in Chapter 4) will yield a globally optimal solution 

or suboptimal solution in a very large computation time or no solution when a large 

scale data set is to be considered. The inability to address greater instances properly 

is due to the use of many variables and the significant number of constraints consid­

ered in one step when traditional mathematical programming software is employed (Le. 

XPRESS-MP) aiming to group machines into cells and assign parts to machine cells si­

multaneously when both ordered part machine operation sequence and machine set-up 

costs are taken into account. To gain more benefits from the cell formation, heuristic 

approaches will be developed and presented in this chapter. More specifically, a three 

stage approach will be proposed underlying the system requirements and effectively 

represent the CF mathematical model (see section 3.4). This three stage approach will 

form the foundation of an initial starting solution to be fed into more advanced search 

strategies developed in later chapters. 

In areas with practical applications such as industrial engineering, heuristics is an 

analytical method Le. an algorithm for problem solving. It is originally derived from 

the Greek verb "heurfsko" (e:uptcrxw), which means "to search". Although heuristic 

algorithms are not guaranteed to provide optimal solutions (usually sub-optimal results 
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are obtained), they are very useful in producing an acceptable solution in reasonable 

time. In fact, optimal results can only be obtained under very restricted conditions 

as mathematical programming indicates and this makes heuristic approaches more 

practical in real life applications. 

5.2 A Heuristic in the Presence of Part Machine Sequence 

In the present work, a three stage approach for the CF problem is proposed based upon 

the CF model requirements. In the first stage, a preliminary allocation of machines 

, to cells is introduced which forms an initial phase and basic input for later stages. In 
the second stage key restrictions together with special input parameters of the above 

model form the foundation of building a new approach for allocating parts to machine­

cells. The last stage involves the evaluation of both the value of the objective function 

involved and its solution. 

, 

The model adopted for heuristic development is the complete formulation of Chapter 

3:' For reference reasons within this Chapter the complete model is provided below as 

well. 

NPNC NMNP NC NCNPNM 
Min (L: '2)Mj,q X Wj,q) + L L(SETUPijX LSi,j,q)+ LL L(Ajxextraqj,i)) 

j=lq=1 

subject to 

i=l j=1 q=1 

NO 
LYi,k,q = 1 'V i,k 
q=! ' 

o 
L Xi,j,q = UT ILi,j 'V i, j 
q=1 

Xi,j,q ~ Si,j,q \J i, j, q 

q=l ;=1 i=l 

x',j,q :::: UTILMIN x Sij,q 'V i,j, q 

NP KMi 

L x',j,q ~ L Yi,k,q 'V i, q 
j=1 k=! 
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NMKM, 

L L Yi,k,q ::; Vq X EMAX 'V q 
i=l k=l 

NMKMi 

L L Yi,k,q ~ Vq X EMIN 'V q 
i=l k=l 

. Vq+! ::; Vq 'V q 

NO NO 

L q x Yi.k,q ::; L q x Yi,k+!,q 'V i, k 
q=! q=! 

Xi,;,q::; UTILi'; x W;,q 'V i,j, q 

Xi,;,q::; UTILMAX x XXi,;,q 'V i,j,q 

Xi,j,q ~ UTILMIN X XXi,j,q 'V i,j,q 

r-I 
XXLj,:c,j,q + XXLj,r,j,q - L XXLj,uti,q::5 extraq,j,Lj,% + 1 V q,j, z,r 

%z=z+l 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

Yi,k,q, vq , Wj,q, extraq,j,i, XXi,j,q = 0 or 1; 0:5 Xi,j,qi Si,j,q integer Vi,k,j,q (5.15) 

Moreover, part of the notation defined in Chapter 3 will also be used for the current 

analysis, together with some extra features as follows: 

CELLMIN 

CELLMAX 

TMI 

minimum number of cells to be formed 

maximum number of cells to be formed 

total number of machine instances in the system 

It is worth noting that the heuristic algorithms were developed and solved in MatLab(TM)I. 

MatLab is a high-performance language for technical computing. It integrates compu­

tation and programming in an easy-to-use environment where problems and solutions 

are expressed in a familiar mathematical notation. 

The CF model is a rather complex problem where a significant number of indices is 

used to address all the input elements. In an integer programming environment it is 

lMatLab is a trademark of the Math Works, Inc., 1994-2007. 
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quite straightforward to interrelate indices of certain attributes i.e. with the use of 

variables. However, in a MatLab environment all the processing is based on matrix 

manipulation. For this reason, arrays and matrices of two to four dimensions will be 

employed to address certain problem operations. 

5.3 Stage I: Random Allocation of Machines to Cells 

Before presenting an approach for allocating machines to cells there is a need to deter­

mine the number of cells in the system. It has been stated by Foulds et al. [FFW06] 

that the number of cells created could be any integer number between: 

and 

NM 
CELLMIN = r(1/EMAX x LKM;ll 

i=l 

NM 
CELLMAX = l(1/EMIN x LKM;)J 

i=l 

where KM;, as already stated in Chapter 3, is given by the formulae below. 

NP 
KM; = rLUTIL;,;l 

;=1 

However, it was found in practice, that in the majority of cases the best solutions are 

produced when the number of cells is set to CELLMIN. The same scheme is adopted 

here as well. 

Moreover, a set of restrictions as expressed via constraints (5.2), (5.7), (5.8), and (5.10) 

will be interpreted in MatLab when allocating machines to cells. These can be described 

in words as: 

1. k'h instance of machine of type i must be assigned to exactly one cell; 

2. Each cell can accommodate between EMIN and EMAX machine instances; 

3. Any duplicate machines are allocated to lower numbered cells in successive nu­

merical order. 

5.3.1 Design of the Algorithm 

A natural representation of the initial solution involves a random allocation of machines 

to cells. In order to fill each cell with machine instance pairs two procedures are 

examined: 
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• the random selection of the capacity for the chosen cell; 

• the random selection of the machine pair (machine type and its instance) to 

allocate to the chosen cell. 

The random generation of the above elements is based on the uniform distribution2 of 

random elements. 

The algorithm that follows, named as Routine 1, describes in pseudo terms the imple­

mentation of allocating machines to cells. 

Routine 1: Machine cell allocation 

1. Set up a vector holding the number of machine instances for each machine type i.e. 

KTYPES; 

2. Set up a 2-D matrix named MACH MATRIX of size (NM x length(KTYPES)) 

to hold machine types and machine instances. Allocate '1' when machine instance 

exists and '0' otherwise; 

3. Identify row-column indices (coordinates) from step 2 where '1' exists (using the 

MatLab function UndO); sort these indices in ascending order and store them in a 

matrix named MACHCOORD; 

4. Initialize a 3-D matrix named CELLMATRIX of size (NM x KMAX x NC) to 

hold machine type, machine instance and cell number respectively. Allocate machines 

to cells but do not consider duplicate machine instances order yet; 

(a) Choose cell to fill (store number to avoid filling this cell again); 

(b) Choose machine capacity, within EMIN and EMAX for the cell in step 4(a); 

(c) Choose randomly a machine instance pair from the sorted matrix defined in step 

3 (delete pair once choosing, in order to avoid choosing this pair again) and 

update CELLMATRIX for corresponding cell; 

(d) Repeat the above step until the corresponding chosen cell defined in step 4(a) 

is filled with a number of machine instances equal to the chosen capacity de­

termined in 4(b); 

(e) Repeat steps 4(a) to 4(d) until all cells are filled. 

Z A uniform distribution of random numbers on a specified interval [a, b] is implemented by multi­
plying the output of rand(n) by (b-a) and then adding a (n is the size of the array required). rand(n) 
is a MatLab function which returns an n-by-n matrix of random entries. 
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At the end of this stage each cell accommodates between EMIN and EMAX machine 

instances, while the kth machine instance of type i is allocated to exactly one cell; 

5. Re-arrange the elements of the CELLMATRIX from step 4 so that duplicate 

machines are allocated to lower numbered cells in successive numerical order. The 

number of allocated machine instances to each cell remains unchanged from step 4, 

but the machine instances in all cells are considered and re-arranged in order. 

Although this description provides an indication of all steps involved in machine cell 

allocation, it is worth providing some more details for implementing steps 4{b) and 5 

respectively . 

• Cell Machine Capacity 

The decision made on the capacity of each of the cells in terms of the number of ma­

chine instances that each cell should accommodate is partially random. The method 

employed is introduced via a simple example where the order of which cell is currently 

filled (Le. the first, second etc.) together with the total number of the remaining cells 

to be filled are taken into account. The example is as follows: 

It is assumed that the maximum number of machine in'stances is equal to 20, Le. 

KTYPES = 20. Moreover, the number of cells in the system is 4, Le. NC = 4. Also, 

4 machines are randomly chosen (uniform distribution parameters were chosen to be in 

range [1,length{[EMIN : 1 : EMAX])] and final result rounded to the nearest integer) 

to be allocated to the first randomly chosen cell. 

When the second cell to be filled is randomly chosen (assume cell 3) the capacity 

allocated to this cell is not defined randomly. Its capacity can be determined by the 

formulae that follows: 

current cell capacity = 

d{sum of all .machine instances - total previous capacity used) ( 6) 
roun remaining cells to be filled (including current) 5.1 

Both total number of remaining cells for allocating machines and total capacity already 

allocated to previous cells are taken into consideration for current cell. Thus, from 

(5.16) and given the data described above, the capacity for the second chosen cell will 

be: 
20-4 

round{-3 -) = 5 
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In a similar way, the capacity for the other two remaining cells can be found. More 

specifically, for the third cell randomly chosen, the number of machines that could be 

assigned to it are: 
round(20 - (4 + 5» = 5 

2 

For the fourth and final cell the machine capacity will be: 

round(20 - (4 + 5 + 5» = 6 
1 

As can be observed from the example, the total capacity in magnitude is equal to 

the total number of machine instances in the system, thus all machine instances are 

accommodated in the existing cells . 

• Machine Instances Rearrangement 

According to constraint (5.10) machines are to be allocated to lower numbered cells in 

successive numerical order. Just after the completion of step 4 machines are allocated 

to cells as indicated in the matrix named CELLMATRIX. However, machines are 

placed in it random way without preserving constraint's (5.10) requirements. Before 

continuing with the rearrangement of machine instances within cells, it is rather useful 

to check on CELLMATRIX's operation via an example. 

CELLMATRIX is binary based of size (NM x KMAX x NC) where 1 is placed 

when the kth instance of machine of type i is allocated in cell q, and 0 otherwise. An' 

illustration of this matrix is given in Figure 5,1. It can be easily observed that cell 4 

(currently highlighted) has five machine pairs in it: 2nd machine of type 3, 3rd machine 

of type 4, 4th machine of type 2, 6th machine of type 5 and 7'h machine of type 5. 

The strategy employed for rearranging machine instances within cells is provided in 

Routine 2 as follows: 

Routine 2: Rearranging machine instances within cells 

• initialise a CELLMATRIX2 equal to the size of CELLMATRIX; 

• initialise a temporary binary matrix, i.e. temp_matrix of size (NC x KMAX) for 

sorting purposes; 

• for all machines whose instances are greater than one 

- find temp_matrix for all cells for current machine: store 1 when machine in­

stance of the current machine exists within a cell and 0 otherwise; 
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Figure 5.1: Graphical illustration of a 3D matrix named CELLMATRIX 

- find row-col indices, i.e. cell-machine instance indices (using MatLab function 

find( 3) in temp_matrix; 

- sort the cell indices in ascending order (instance indices are already sorted in 

ascending order); 

- update CELLMATRIX2 using the sorted indices of cells and corresponding 

machine instances; 

- re-initialise temp_matrix for the next machine; 

end for 

For example assume that matrix CELLM AT RI X, for every machine instance of type 

5 allocated in all cells is of the following form: 

CELLMATRIX{5,:,:) = [~ 
. 1 

o 

o 1 0 0 1 0] 
1 0 0 0 0 0 
o 0 0 0 0 1 
001100 

(5.17) 

After employing Routine 2, CELLM ATRIX2 will be produced with rearranged ele­

ments as shown in matrix (5.18). 

3[R,C} = FIND(EXPR) returns the row and column indices of the evaluated expression which are 
non-zero (true elements). Please note that the searching process is column based. -
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[

1 1 0 0 0 0 0] 
CELLMATRIX2(5 : :) = 0 0 1 0 0 0 0 

" 0001100 

o 0 0 0 0 1 1 

(5.18) 

5.4 Stage II: Part Allocation to Machine-Cells 

The allocation of parts to machine cells forms the key stage of the proposed heuristic 

algorithm as ordered part machine sequence is taken into account imposing a great 

restriction on the solution strategy to be developed. Each part is tied to its ordered 

machine sequence, therefore for each part there is only one route to be followed in order 

for its operation to be complete. Moreover, for each machine in the operation sequence 

there is a certain utilisation amount to be used from current part. The above restric­

tions in conjunction with the elements of the objective function, equation (5.1), such as 

intercellular movements, set-up costs and later revisits of parts to already visited cells, 

and the remaining constraints of the model will be taken under consideration when 

designing the allocation of parts to machine cells. 

The algorithm proposed for part machine cell allocation will be split into different levels 

for better presentation. Although each level can stand on its own as it constitutes an 

independent heuristic algorithm, all levels together operate simultaneously towards the 

allocation of parts to machines cells. These levels are: 

• Initialisation Process; 

• Machine Types Identification; 

• Cell Sequence Identification; 

• Part Allocation. 

5.4.1 Initialisation Process 

Similar to the allocation of machines to cells where a 3D matrix was formed, another 

3D matrix, called PART M AT RI X, is also created here for part machine cell allo­

cation purposes. The dimensions represent machine type i, machine instance k and 

part j respectively (i.e the matrix size is (NM x KMAX x NP». Pl,ase note that 

PART M AT RI X is not a binary matrix as each non-zero entry is equal to the corre­

sponding part/machine utilisation. 
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For illustration purposes of the PART M AT RI X an example is provided in Figure 5.2. 

It is assumed that part's 2 machine sequence is as follows: 

The part/machine utilisation with respect to the machine sequence is 0.3, 1.2, 0.2 and 

0.5 respectively. A possible allocation for part 2 as shown in Figure 5.2, could be as 

follows: 

Part 2 uses 0.3 units of first instance of machine of type 1, 0.2 units of the fifth instance 

of machine of type 5 and 0.5 units of second instance of machine of type 6. Part 2 is 

also allocated to more than one instances of machine of type 4 since the utilisation is 

greater than 1. More specifically a split is carried out forming the utilisations as 0.1, 1, 

and 0.1 (please note that there are many ways of splitting a part/machine utilisation I 
which is greater than one) where the first, second and third instances of machine of 

type four are used respectively. 

4 j :6 7 k: 
C.3 0 0 0 0 lOO! 

,.. ________ -t. __________________________ ) 

o 0,/0 0 ,/ 
// // 

00/000 " 
/,/ ,// 

, 0.1 >/~/: :, 0 0 ./// 

~//.(j.s 0 0 0 ,,/'/ 

7 ,'0 0 0 .-
i ,~: ____ _____________________________ .:,/ 

Figure 5.2: Graphical illustration of a 3D matrix named PART M AT RI X 

PART M AT RI X in conjunction with C ELLM AT RI X are to be used when allocating 

parts to machine cells. However, in order to have a full reference on the part allocation 

where allocated parts and the cells used together with the machine instances pairs 

employed each time can be identified, a 4D binary matrix, named PCMATRIX, of 
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size (N MxK M AX xN PxNG) is developed. For example, in order to find the machine 

instances of machine of type i used by part j in all cells the following command will be 

entered: 

PCMATRIX{i, :,j,:) 

For illustration purposes assume the example used before where part 2 was used, i.e. 

j = 2. From Figure 5.2, it can be observed that part 2 uses three instances of machine 

of type 4. In order to be able to identify the cells (assume four cells in the system) 

that these machines instances are allocated and used by the current part the following 

command will be used: 

PGMATRIX{4,:, 2,:) 

which will produce a number of vectors each referring to a different cell as listed in 

Table 5.1. The length of each vector is equal to KMAX (assume that the maximum 

Table 5 l' Output for PCMATRIX{4,:, 2,:) . . 
VI 0 0 0 0 0 0 0 
V2 0 1 1 0 0 0 0 
V3 0 0 0 1 0 0 0 
V4 0 0 0 0 0 0 0 

number of multiple instances belong to part 5 and it is equal to seven). Vector V2 

shows part 2 using both the second and third instances of machine of type 4 in cell 2 

whereas V3 shows that part 2 is using the fourth instance of machine of type 4 in cell 3. 

Every time a part is allocated both PARTMATRIX and PCMATRIX will be up­

dated simultaneously as will be described later. 

Moreover, two vectors named pm_sequence and part-moves are initialised. For storing 

the machine sequence of each part pm.sequence, is used, whereas for holding informa­

tion such as machine type-instance and cell used each time a part (latter also included) 

is allocated, part_moves is employed. The latter will be of special use when calculating 

the number of later revisits of parts to already visited cells as indicated in the objec­

tive function, equation (5.1). Last but not least, similar to the deterministic model, 

matrices named UTIL, SETUP, L, KTYPES, and ZTYPES are set up to hold 

part machine utilisation, part machine set-up costs, part machine operation sequences, 

number of machine instances per machine type and number of operations for each part 

respectively. More information on all these elements will be provided in later sections . 
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5.4.2 Machine Types Identification 

Before proceeding with the actual allocation of parts to machine cells there is a need to 

identify the machine types as stored in CELLMATRIX(i,k,q). In order to ease the 

implementation, the 3D matrix is mapped temporarily onto a 2D matrix which will get 

hold of machine types and machine instances while the cell index is updated (a "for" 

loop is used). The MatLab function findO is used to deter,mine both coordinates (row 

and column) for machine types and their instances in the temporary matrix, therefore 

two vectors with indices are returned. However, from these two only the one referring 

to machine types, row, is needed. Machine types with reference to the cell currently 

investigated are stored in a 2D matrix named MACHINENUMBERq which is of 

size (NC x EMAX) (EMAX is used because each cell will not have more than EMAX 

total number of machines in it). 

For clarification purposes an example is provided. Assume that the maximum number 

of machines allowed for each cell is six, Le. EMAX = 6, total number of cells in the 

system is equal to four, Le. NC = 4, and total number of machine instances is twenty, 

Le. T M I = 20. Then a possible allocation of machine instances to cells is provided in 

MACHINENUMBERq, matrix (5.19). 

2 5 6 2 5 0 

MACHINENUMBERq = 1 4 7 2 5 0 
(5.19) 

3 4 2 5 5 0 

3 6 4 5 5 0 

It can be seen from matrix (5.19) that for instance cell 1 contains two machine instances 

of type 2 and two instances of machine of type 5. Although knowing where multiples of 

machines are located is important, there is no need to keep a record of them here. What 

is important is to identify the machine types in each cell as they will be needed later 

on when part machine sequence will be involved. Also MACHINEMBERq might 

include some zeros at the tail of each row if not all cells are filled in with the maximum 

allowable number of machines (e.g., rows one to four). Therefore, in order to remove 

multiples and zeros appearing in each row two routines, Routine 2 and Routine 3 are 

developed and described below. 

Routine 3: Remove multiple elements from a row vector 

1. Set up an input vector. i.e. Vin 

2. Set up an output vector i.e. Vout; 
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3. Set counter to 1, i.e N = 1; 

4. while Vin is not empty 

(a) Find the indices in Vin equal to Vin(l) (the indices length is at least one) 

(b) Store the element of first index found in Vout; 

(c) Remove this element from Vin; 

(d) Accumulate counter N; 

end while 

Routine 4: Remove zero entries from a row vector 

• Find the indices of zero entries in Vin; 

1. if no zero entries found return original vector, i.e Vout = Vin; 

2. else remove the zero elements as required. 

Applying the above routines to eliminate multiples and zero entries to the first row of 

M AOHINENUMBERq the following is obtained: 

MACHINENUMBERq(l,:) = [2 5 6] (5.20) 

5.4.3 Cen Sequence Identification 

The next step, after identifying the machine types included in each of the cells, is to 

determine the sequence of cells that will be used by each part when part allocation 

to machine cells commences. Please note that the strategy utilised for cell sequence 

identification is within the part allocation procedure as will be seen later. 

For identifying the cell sequence two approaches were implemented namely: 

• Cell sequence relative to part machine sequence 

• Continuous cell sequence relative to part machine sequence 

details of which are provided next. 
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• Approach 1: CeU Sequence Relative to Part Machine Sequence 

The first approach designed for determining the ceU sequence is based on organizing 

cells in descending order having the majority of machines relative to part machine 

sequence and described in Routine 5 next. 

Routine 5: CeU sequence based on majority of machines in ceUs 

1. Set up a vector for holding machines for a certain cell i.e. machines_in..cell; 

2. Set up a vector for keeping cell and the total number of machines relative to part 

machine sequence, i.e. ceILand_machines; 

3. Initialize temporary vector for classifying cells, i.e. temp_ceILseq; 

4. for each cell 

(a) From corresponding MACHINENUMBERq remove multiple and zero en­

tries and determine machines_in_cell; 

(b) Set up a scalar vector, machines_sum, for keeping the total number of machines 

existing in both machines_in_cell and pm..sequence for current cell; 

(c) Compare each entry of machines_in_cell with pm..sequence. When same entry 

encountered update machines_sum, 

(d) Update celLand_machines vector; 

end for 

5. Sort the cells in cell..and.machines in descending order of majority of machines held 

in each; 

6. Keep a record of these ordered cells in temp..ceILseq. 

For example, assume the following machine sequence of a particular part: 

pm_sequence = [1 2 4 5 7J 

Based on MACHINENUMBERq, matrix (5.19), and the procedure described above 

the cell sequence for the part used when allocation commences will be: 

temp_cell..seq = [2 3 1 4J 

Please note that cells 1 and 4 have the same total number of machines relative to 

pm..sequence. The way that these are decided to be sorted is arbitrarily chosen. 

MatLab, however, sorts elements of the "same size" based on their smallest index. 
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• Approach 2: Continuous Cen Sequence Relative to Part Machine Sequence 

The second approach designed for determining a cell sequence is based on identifying 

a maximum continuous machine operation sequence within cells relative to the part 

machine sequence. During this process a one to one relationship is preserved between 

machines in cells and part machine sequence. The first step involved concentrates on 

the identification of any continuous machine sequence by mapping machines in cells to 

corresponding part machine sequence and it is achieved via Routine 6 described next. 

Routine 6: Mapping machines in cells to part machine sequence 

1. Initialize a 2D matrix, i.e. ac_all to be equal to empty; 

2. for each cell in the system 

(a) Find machines_in..cell as defined in first approach (see step 4(a» in Routine 

5; 

(b) Initialize a vector, i.e. ac for keeping an arranged sequence of machines; 

(c) for i equal to 1 up to the length of pm..sequence 

i. if comparison between current element of pm_sequence and machines_in..cell 

holds add this element in the same position as indicated in pm_sequence 

in ac; 

ii. else store 0 in ac. 

end if 

end for 

(d) Accumulate ac for current cell in ac..all matrix (all rows are of the same length 

with the pm..sequence); 

end for 

For example, assume pm..sequence = [1 2 4 5 6 7] and machines in cells, for cells 1 

to 4 are: 

cell 1: [1 2 4 3J 

cell 2: [3 4 6 8J 

cell 3: [1 2 5 6 7J 

cell 4: [1 2 4 5 3J 
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Employing the procedure described above results in ac..all of the following form: 

(5.21) 

Both cells 4 and 3 complement each other as first four machines of pm..sequence are 

included within cell 4 and the remaining two within cell 3. Although it is obvious for 

the decision maker that probably the best route for the current part would be to visit 

first cell 4 and then cell 3, there is a need for a specific mechanism for producing that. 

Therefore, another step is involved within the current cell sequence procedure where 

identification of zero entries in ac..all is taking place as shown in Routine 7 . 

. Routine 7: Finding positions of zero entries in ac_all 

1. Initialize a 2D matrix, i.e. zLall same size as ac..all with all entries equal to length 

of (pm..sequence + 1); 

2. Find indices (row i, column j) of zero entries in aCAll; 

3. Sort i indices in ascending order using MatLab function sort 4; return sorted elements 

in y and corresponding indices of the sorted elements in k; 

4. Take i of k store it in ik (ik the same as y) and j of k and store it in jk; 

5. Set counter to 1, i.e zz=1; 

6. while zz is less than or equal to the maximum element of ik; 

(a) Find the indices where current zz is equal to ik and store them in i..set2; 

(b) Store the jk elements of indices Lset2 in zLall; 

(c) Accumulate counter; 

end while 

Applying the above procedure when part machine sequence is [1 2 4 5 6 7] and 

ac..all of form (5.21) the following is obtained: 

4[y, Yi} = sort(A(:, 1), 'ascend') sorts first column of matrix A in ascending order while returning the 
sorted elements in Y and the indices of sorted elements in Yi. 
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[~::~~~] zi..all = 
3 7 7 7 7 7 
5 6 7 7 7 7 

(5.22) 

First column of zLall includes for all cells the positions (indices) of first zero entries 

encountered in ac_all. In other words, for example, in cell 4 the first element recorded 

in zLall has a value five meaning that the first zero encountered in ac_all for the cur­

rent cell is in position 5, thus the first four elements of part machine sequence which 

is of the form [1 2 4 5 6 7], i.e. machines 1, 2, 4 and 5 are sequentially included 

within this cell. The latter implies that the greater the value of the index of the zero 

elements found in ac..all the longer the continuous machine sequence in cells relative 

to part machine sequence. 

The complete description of the algorithm for finding the cell sequence for current part 

allocation via identifying and determining a maximum continuous cell sequence relative 

to part machine sequence is provided in Routine 8 described next. 

Routine 8: Cell sequence based on max continuous sequence of machines 

1. Initialize an index referring to a machine in part machine sequence, Le. jj = 1; 

2. Initialize temp vector for classifying cells, Le. temp_celLseq (similar to Approach 1); 

3. while jj is less than or equal to the length of pm-sequence; -

(a) Initialize vector for storing the indices (i.e. cell no.'s) of the non-zero elements 

in ac..all column-wise, Le. Lset!; 

(b) Find matrix ac..all (refer to Routine 6); 

(c) Find the index(ices) where elements in column jj of ac_all matrix are the same 

with jj machine in pm_sequence and store them in Lsetl; 

(d) if jj is equal to the last element of pm-sequence: 

L Fill cells by adding the cell corresponding to the first index found in i-setl 

in temp_ceILseq; 

else 

i. Determine matrix zi..all (refer to Routine 7); 

iL Sort the elements of the first column of zi_all in descending order and 

return sorted elements and their corresponding indices in yzLtemp and 
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indexLtemp respectively; if only one element found store this element in 

yzLtemp and add one as its index in indexLtemp; 

Hi. Take the i..setl of indexLtemp(1) (cell no.) and update the cell sequence 

temp_ceILseq; 

iv. Update jj to be equal to yzLtemp(1) so that search continues from this 

element in the pm..sequence; 

end if 

end while 

4. Find all remaining cells not involved in the arranged sequence found so far and add 

them to temp_ceILseq. 

Using matrix (5.21) and current part's machine sequence, e.g. [1 2 4 5 6J, the 

following sequence of cells will be obtained via Routine 8: 

temp_celLseq = [4 3 1 2J 

The first two cells listed match exactly the decision maker's choice. Remaining unused 

cells (Le. 1 and 2), are simply added to the tail of temp.celLseq as step 4 of the algo­

rithm indicates. 

In conclusion, the second approach employed organizes the cells in a way that the max­

imum continuous sequence of machines in cells relative to part machine sequence is 

preserved. It is worth mentioning that if the first element of a part machine sequence 

is not included within the cell with the maximum recorded sequence of machines then 

the first cell to be added into the required cell sequence will be that one holding the 

first machine so that the ordered sequence is preserved throughout. In contrast with 

the second approach, the first approach considers only the number of machines in cells 

relative to the part machine sequence and sorts cells in descending order starting with 

the cell that holds the majority of them. 

Overall, when considering the complete CF model where each part has a specific route 

attached to it, Le. a machine operation sequence, approach two seems to be more 

suitable for current study. However, the decision on which approach to employ will 

become obvious later on when testing is carried out. 
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5.4.4 Part Allocation 

Once the machines have randomly been allocated to machine cells, the final and key 

stage to be implemented is the allocation of parts to machine cells. A number of phases 

such as initialisation process, identification of machine types within each cell and iden­

tification of cell sequence relative to the part machine sequence performed in previous 

sections will be recalled when allocating parts to machine cells. 

It is worth mentioning, that throughout the allocation procedure the part machine 

sequence is strictly preserved, thus increasing the complexity of the system . 

• Algorithm Design 

Before proceeding with the description of the pseudo algorithm for allocating parts to 

machine cells, a short description will follow identifying the key operations involved in 

the design stage: 

1. Sort the parts into ascending order of total processing requirements (for each part 

sum up all relevant part/machine utilisation amounts and sort them in ascending 

order); 

2. Let j be the next non-allocated part to be allocated; 

3. Identify part's j machine operation sequence and determine the sequence of cells 

for allocating current part (see Approaches 1, 2); 

4. Let d be the first machine in current part's machine sequence; 

5. Let q be the first cell in sequence; 

6. Check if cell q in sequence includes the machine d of part's j machine operation 

sequence (the latter is examined when Approach 1 is employed and also when 

Approach 2 is utilised but at later stages of the allocation process). If it is, find 

all the instances of current machine in candidate cell otherwise, check the next 

cell in the cell sequence; 

7. Let k be the first machine instance found; 

8. Check current part/machine utilisation and also remaining capacity of instance 

k found within current cell; 

9. Depending upon the values of both, a number of cases are examined as illustrated 

in Table 5.2 (assume remaining capacity of a machine instance is equal to a and 

current part utilisation is equal to b) and part is allocated accordingly; 

- 106 -



Chapter 5 Heuristic Approaches for GP - Initial Solution 

10. After current part's allocation a number of elements are updated (as will be seen 

in Routines 10-12). Also current status of part/machine utilisation is checked: 

if latter is zero current part with reference to a certain machine in its sequence 

is fully allocated and the process continues with next part in sequence, unless 

the length of its machine sequence has not been reached yet, i.e. there are still 

machines for current part to be allocated to, so the process will continue from 

there. In case that the current part/machine utilisation is not zero then continue 

allocating current part to another instance of the same machine type till this 

becomes zero. 

Tabl e 5.2: Remaining C apacity ersus C urrent U I ation ti is 
1.a-l 4. b-l 7. a+b-l 10. a> b 
2. a> 1 5. b> 1 8. a+b> 1 11. a - b 
3. a < 1 6. b < 1 9. a+b < 1 12. a < b 

From Table 5.2, case 1 won't be examined as nothing more can be allocated to a 

machine instance whose capacity has reached one unit. For the same reason case 2 is 

deleted. For the rest of the cases, i.e. 3 to 12, a decision was made to combine some of 

these and a number of combined expressions was derived: 

i: a < 1 & b>=1 

ii: a < 1 & b < 1 

iii: a < 1 & a >= b 

Expression i is complete (nothing else can be chosen), whereas for expressions ii and 

iii a number of other choices exist. Therefore, considering ii and when a <= b cases 

7, 8, and 9 are examined in sequence. Similarly for iii cases 7, 8, and 9 are nested and 

examined separately. 

For a thorough description of the allocation of parts to machine cells Routines 9 to 12 

are presented below. Please note that Routine 9 constitutes the main part allocation 

algorithm, whereas the other routines are simply created to split the algorithm into 

smaller chunks and make it easier to present. For more information on the actual 

MatLab code involved for the allocation of parts to machine cells see Appendix D. 
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Routine 9: Part allocation to machine cells 

• Sort parts into ascending order of total processing requirements and store sequence 

in UTILsortedi; 

• Assign UTIL to UTIL.1emp initially; UTIL.1emp stands for current utilisation; 

• for each part j in UT IL_sortedi 

1. Determine cell sequence, temp-ceILseq, for current part (see Approaches 1 or 

2) 

• for each machine d in pm..sequence 

1. Initialise counter for navigating through cells, i.e. q2 = 1 

2. while q2 (cell index) is less than or equal to the length of temp_ceILseq; 

- if current machine, pm..sequence(d), exists in cell temp-eeILseq(q2) 

• Initialize vector for keeping machine instances of a specific machine 

type within current cell, i.e. mach_instances; 

• Find mach_instances for current part and cell; 

• Identify all non-zero indices in mach_instances and store them in 

instance_noi; 

• Initialise counter for navigating through machine instances, i.e. k2 = 1; 

• while k2 less than or equal to length of instance_noi 

(a) if remaining capacity for current machine instance pair less than 1 & 

current part machine utilisation greater than or equal to 1 

Go to Routine 10; 

(b) else if remaining capacitY for current machine instance pair less than 

1 & current part machine utilisation less than 1 

Go to Routine 11; 

end if 

(a) if remaining capacity for current machine instance less than 1 & 

remaining capacity for current machine instance greater than or equal 

to current part machine utilisation 

Go to Routine 12; 

end if 

Accumulate iteration counter k2; 

end while 

end if 
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3. if UTIL..temp becomes 0 move onto the next machine in sequence; 

Accumulate iteration counter q2; 

end while 

end for loops. 

Routine 10 

1. UTIL.l equals 1 minus remaining capacity; 

2. Update corresponding PARTMATRIX with UTIL_l; 

3. UTIL_temp equals UTIL..temp minus UTIL_l; 

4. Update part-moves; Update PCMATRIX; 

5. if UTIL..temp becomes zero move onto the next machine in sequence. 

Routine 11 

• if remaining capacity for current machine instance pair less than or equal to current 

part machine utilisation 

- if remaining capacity plus current utilisation equal to 1 

1. Update PARTMATRIX with current UTIL..temp; 

2. UTI L..temp equals zero; 

3. Update part_moves; Update PCMATRIX; 

- else if remaining capacity plus current utilisation greater than 1 

1. UTI L_l equals 1 minus remaining capacity; 

2. update corresponding PARTMATRIX with UTIL_l; 

3. UTIL_temp equals UTIL..temp minus UTIL_l; 

4. Update part-moves; Update PCMATRIX; 

5. if UTIL.temp becomes zero move onto the next machine in sequence 

- else (remaining capacity plus current utilisation less than 1) 

1. update PARTMATRIX with current UTIL_temp; 

2. UTIL.temp equal zero 

3. Update part-moves; Update PCMATRIX; 

end if 

end if 

- 109 -



Chapter 5 Heuristic Approaches for CF - Initial Solution 

Routine 12 

• if remaining capacity plus current utilisation equal to 1 

1. Update PARTMATRIX with current UTIL.iemp 

2. UTIL.temp equal zero 

3. UpdateparLmoves; UpdatePCMATRIX; 

• else if remaining capacity plus current utilisation greater than 1 

1. UTI L.l equals 1 minus remaining capacity; 

2. Update corresponding PARTMATRIX with UTIL_l; 

3. UTIL_temp equals UTIL.iemp minus UTIL.l; 

4. Update parLmoves; Update PCM ATRIX; 

5. If UTIL.iemp becomes zero move onto the next machine in sequence; 

• else (remaining capacity plus current utilisation less than 1) 

1. Update PARTMATRIX with current UTIL.iemp; 

2. UTIL_temp equals zero 

3. Update parLmoves; Update PCMATRIX; 

end if 

For illustration purposes of the routines above an example will be provided next, which 

will assist in better understanding of the methodology employed for allocating parts to 

machine cells when part machine operation sequence is taken into account . 

• Illustration of Part Allocation Strategy: Example (11) 

In order to be able to demonstrate the proposed strategy for allocating parts to machine 

cells a data set is randomly generated with a relatively small number of parts and 

machine types. Assume NP = 8, NM = 4 and also TMI = 15, ZOPER = 4, 

KMAX = 5, EMAX = 6, EMIN = 3 and NC = 3. Also part/machine utilisation 

(Le. UTIL) , part/machine set-up cost (Le. SETUP), and parts machine operation 

sequences (Le. L) all randomly generated are as follows: 

[00 0 0.7 1.1 0.6 0.9 0.6 

0:'] 
UTIL= 0~8 0.3 0.7 0.5 -0.4 0.4 0 

(5.23) 
0.8 0 0.5 0.5 0.2 0.8 

0.4 0.4 0 0.4 0.7 0 0 
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[ " 
0 1.16 2.52 0.45 4.72 3.11 

"] SETUP = 1.~7 2.08 4.81 2.06 0.41 1.11 0 

4.}7 0.27 0 3.14 0.68 2.89 0.65 

2.08 4.56 0 0.26 3.31 0 0 

{5.24} 

1 2 4 0 

2 3 4 0 

1 2 0 0 

L= 
4 1 2 3 

1 2 3 4 
{5.25} 

1 2 3 0 

1 3 0 0 

3 0 0 0 

Moreover, KTYPES and ZTYPES are provided below as follows: 

KTYPES= [5 4 4 2], 
ZTYPES = [3 3 2 4 4 3 2 1] {5.26} 

Since allocation of machine to cells is random, one possible allocation of machine to 

cells is described via GELLMATRIX2 for all cells and shown in {5.27}. 

CELLMATRm(,.,.,) - [: 

1 0 0 

II 1 0 0 

0 0 0 

1 0 0 0 

CELLMATRIX7(,.,.') - [1 
0 1 1 

l] . 
0 0 0 

{5.27} 
1 0 0 

0 0 0 

[l 
0 0 0 

1] 
GELLMATRIX2{:,:,3} = 

0 1 1 

011 

100 

Moreover, assuming that parts are sorted in ascending order of total processing require­

ments, UTI L..1lortedi will be of the following form: 

UTIL..1lortedi = [8 3 7 2 6 1 5 4] {5.28} 
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Applying Routines 9-12 to the initial allocation of machines to cells (see (5.27)), parts 

are allocated to machine cells and a number of elements are produced presenting this 

allocation. The first thing to be examined is the actual allocation of parts to machines 

(Le the corresponding PART M AT RI X) as a certain machine instance pair utilisation 

amount is employed by each part while both part machine operation sequence and 

sequence of cellss for parts allocation are taken into account. The PART M AT RI X 

produced for all parts when four machine types and five machine instances (maximum 

allowable number of instances of a specific machine type) are considered, is shown in 

(5.29). 

5 Assume for current example that cells are organised based upon their maximum continuous se­
quence of machines relative to the part machine sequence (i.e. Approach 2). 
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[" " , 0 

~, PARTMATRIX(:,:,l)= 0.3 0.5 0 0 
000 0 

0.4 0 0 0 

PARTMAT"'X(,,'," - [l 
0 0 0 

l] 
0 0.3 0 
0 0.8 0 

0.4 0 0 

[" 
0 0 0 

!l 
PARTMATRIX(:,:,3)= Of 0 0 0 

0 0 0 
0 0 0 

PARTMATmX(",,"" [: 

0.2 0.4 

'" '] 0 0.3 0.2 0 

0 0 0.5 0 ' 

0.4 0 0 o 0 

(5.29) 

. [' 0.5 0 0 

';'] PARTMATRIX(:,:,5)= ~ 0.4 0 0 

0 0 0.5 o ' 
0.1 0.6 0 0 0 

P ARTM ATmX(" ,,"" [j 
0 0 0 

';'] 0 0.4 0 

0 0.2 0 o ' 
0 0 0 0 

P ARTM AT"'X,...," - [: 

0 0.6 "] 0 0 o 0 
0.1 0.7 0 o 0 ' 

0 0 0 o 0 

P ARTM AT"'X(",," - [: 

0 o 0 

!] 
0 0 0 

0.9 0 0 0 

0 0 0 0 

In order to able to see in which cell each part is allocated to, PCMATRIX is pre­

sented in (5.30). PCMATRIX(:,:,j,q) presents part's j machine cell q allocation. 

PCMATRIX(:, :,j,q) is equal to one when a part j occupying a specific machine type 

- machine instance pair is allocated in cell q, 0 otherwise. 
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PCMATRIX(" " " 1) = [~ 

PCMATRIXL',4,1) = [; 

PCMATRIX(",,1,1) = [~ 

PCMATRIX(",,2,2) _ [~ 

PCMATRIX('",6,2) = [~ 

PCMATRIX(",,8,2) = [! 
PCMATRIX(',',3,3) = [~ 

PCMATRIX(,,',6,3) = [~ 

o 
o 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 0 
o 0 
o 0 
o 0 

o 0 
o 0 
o 0 
o 0 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 

1 
o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 

~l' PCMATRIX(",,2,1) = [~ 

~l' PCMATRIX(",,6,1) = [; 

~l' PCMATRIX(",,8,l) = [~ 
0l. [0 ~ • PCMATRIX(,,:.3,2) = ~ 

~l' PCMATRIX(",,6,2) = [~ 

~l ' PCMATRIX(" " 1,3) = [~ 

~l ' PCMATRIX(",,4,3) = [~ 

~l' PCMATRIX(",,7,3) = [~ 

o 
o 
o 
o 
1 
1 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
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o 
o 
o 
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o 
o 
o 
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o 
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o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

o 
o 
o 
o 

~l' PCMATRIX(",,3,1) = [~ 

~l' PCMATRIX(",,6,1) = [~ 

~l ' PCMATRIX(" " 1,2) = [~ 

~l' PCMATRIX(",,4,2) = [~ 

~l ' PCMATRIX(" " 7, 2) = [! 
il, PCMATRIX(",,2,3) = [i 

1 0] [0 100 
'0 • PCMATR/X(:,:,5, 3) = 0 

o 0 0 

o 
o 
o 
o 

~] , PCMATRIX(:.: .. ,8,3) = [~ 
O· 0 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
1 
o 
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o 
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o 
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o 
o 
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o 
1 
o 
o 
o 
o 
o 

il ' 
~l ' 
il ' 
il ' 
il ' 
il ' 
II ' 
~l 

(5.30) 
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Moreover, in order to demonstrate for each part all of its related cell movements while 

its machine operation sequence is preserved, part-moves is produced and is shown in 

(5.31). Each column (starting from the left) represents part, cell, machine type and 

corresponding machine instance. For example part 6 visits only cell 3 (see (5.30» where 

it firstly uses 5th machine of type 1, secondly 3rd machine of type 2 and finally 3rd and 

4th machine instances of type 3 as its machine operation sequence also indicates (see 

(5.25) matrix L for part 6). part-moves will be used very efficiently when evaluating 

the value of the objective function. 

8 2 3 1 

3 1 1 1 
3 1 2 1 

7 2 1 3 
7 2 3 1 

7 2 3 2 

2 3 2 3 
2 3 3 3 
2 3 4 2 
6 3 1 5 
6 3 2 3 
6 3 3 3 
6 3 3 4 
1 1 1 1 

1 1 1 2 
part~moves = 1 1 2 1 (5.31) 

1 1 2 2 
1 1 4 1 

5 3 1 5 
5 1 1 2 

5 1 2 2 
5 3 3 4 

5 3 4 2 

5 1 4 1 

4 1 4 1 

4 1 1 2 

4 2 1 3 
4 3 1 4 

4 3 2 3 
4 3 2 4 

4 3 3 4 
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5.5 Stage Ill: Evaluation of Objective Value and Solution 

The objective function, equation (5.1), includes three elements that need to be min­

imised: number of distinct allocations of parts to cells, part/machine set-up cost and 

later revisits of parts to already visited cells. While allocation of machine to cells is 

implemented as described in Stage I and part allocation as presented in Stage II a 

number of elements are continuously updated. These will help in the evaluation of 

all three components of the objective function, hence the evaluation of the objective 

function as a whole. 

5.5.1 Total Number of Part/Cell Distinct Allocations 

The first procedure to be implemented is for calculating the distinct allocation of parts 

to cells as shown in Routine 13. 

Routine 13: Distinct allocations of parts to cells 

• Initialise a scalar vector. i.e. W = O. for keeping the total number of distinct alloca­

tions of parts to cells; 

• Set up a 2D binary matrix. i.e. W _jq of size N P x NC for part cell allocation (this 

will be used when evaluating the objective function); 

• for all parts in UT1L...sortedi 

- Find the index (indices) in the first column of part-moves where current part 

is; Store these in 1; 

- Based upon 1 return the corresponding element(s) existing in second column. 

i.e actual cell number(s); Store this in qt; 

- while qt is not empty 

1. Compare the first element of qt with the whole of qt and return the indices 

of the same element(s) in 12; 

2. Update W _jq by setting one for current part and first cell in qt; 

3. Remove cells already investigated (using 12) from qt; 

4. Accumulate W as one more part cell distinct allocation is encountered; 

end while 

end for 
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For example, assume the total parLmoves matrix (5.31) where part currently to be 

considered is 5. The segment from parLmoves referring to part 5 is as follows: 

5 3 1 5 

5 1 1 2 

5 1 2 2 
5 3 3 4 

5 3 4 2 

5 1 4 1 

When applying Routine 14 the following qt is produced: 

qt= 

3 

1 

1 

3 

3 

1 

Comparing the first element of qt with the rest of the elements a number of indices 

are returned, i.e. 12 = [1 4 5J. Before removing the corresponding elements from qt, 

W _jq is updated as follows: 

0 0 0 

0 0 0 

0 0 0 

W_jq= 
0 0 0 

0 0 1 

0 0 0 

0 0 0 

0 0 0 

Also W is assigned to 1. The operation for current part continues until qt becomes 

empty and then the next part in sequence is examined. 

5.5.2 Total Part/Machine Set-up Cost 

In order to be able to calculate the total part machine set-up cost there is a need to 

determine in advance the number of machines of type i. used by part j in cell q. For 

the latter Routine 14 is implemented. 
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Routine 14: Total Number of machines of type i used by part j in cell q 

• Set up a 3D matrix S_ijq of size (N M x N P x NC) to hold the number of machines 

of type i used by part j in cell q' 

• Set up a 2D matrix, i.e. S..ij of size (NM x NP) for keeping the total machines of 

type i used by part j 

• for all parts 

- for all machines 

* for all cells 

1. Find the sum of machine instances via PCMATRIX and store this in 

S_ijq; 

end for 

* Map 3D matrix, S_ijq, to 2D, S_ij6 by summing up all machine instances 

of certain type in all cells used by current part; 

end for 

end for 

From example (II) considered earlier and via Routine 14 S ..ijq will be as follows: 

2 0 1 1 1 0 0 

!l' 
S_ijq(:,:,l) = 

2 0 1 0 1 0 0 

0 0 0 0 0 0 0 

1 0 0 1 1 0 0 

9N"",3) = [! 
0 0 1 0 0 1 

[l' 
0 0 0 0 0 0 

0 0 0 0 0 2 

0 0 0 0 0 0 

9,;.",,3) = [! 0 0 1 1 1 0 

!l 
1 0 2 0 1 0 

1 0 1 1 2 0 

1 0 0 1 0 0 

Moreover, S_ij will also be obtained where each entry is produced by summing up for 

all cells all machine instances of machine type i used by certain part j. The result is 

6This mapping is only performed in order to be able to define later on the total set-up cost within 
the objective function (see equation (5.32) presented in page 120). 
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shown below: 

[

2 0 1 3 2 1 1 0] 
S_i' = 2 1 1 2 1 1 0 0 

J 01011221 
1 101 2 0 0 0 

5.5.3 Calculation of Part Cell Later Revisits 

The third component within the objective function that needs to be determined is the 

number of later revisits of parts to already visited cells. The strategy employed is 

described in Routine 15. 

Routine 15: Later part revisits estimation 

• Initialise a vector, i.e. extra_moves for keeping the total number of revisits for each 

part; 

• for all parts in UTIL..13ortedi sequence 

1. Find the segment from part-moves that corresponds to current part and store 

it in parLmoves.temp1; 

2. Take the second column (i.e. cell column) from part-moves.templ and store 

it in parLmoves_temp2 

3. if length of parLmoves.iemp2 is equal to one continue with next part in se­

quence 

end if 

4. Initialise a scalar vector, i.e. EXTRA; 

5. Set up a counter, i.e. x = 1; 

6. while x is less than the length of part_moves_temp2 

(a) for w equal to x + 1 up to length part_moves.iemp2 

- if part.moves_temp2 of w is equal to parLmoves.iemp2 of x & the 

distance between wand x is greater than one 

i. Accumulate EXTRA; 

ii. Set x equal to w - 1; 

end if 

end for 

(b) Accumulate x; 
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end while 

7. Store EXTRA values for each round in extra_moves; 

end for 

From example (Il) and matrix (5.31) assume part 5. When Routine 15 is employed 

parLmaves_temp1 and parLmave_temp2 are formed as follows: 

5 3 1 5 

5 1 1 2 

5 1 2 2 
parLmaves_temp1 = 

5 3 3 4 

5 3 4 2 

5 1 4 1 

parLmaves.J;emp2 = [3 1 1 3 3 1J 

By applying Routine 15 for current data the number of later revisits counted will be 

equal to 2 as part returns to both cells 3 and 1 that initially visited. 

Given a nnmber of key elements (parameters, matrices, etc.) presented within Routines 

13 to 15, an attempt was made to express the objective value, following the pattern 

of mathematical model's objective function, i.e. equation (5.1), with a formulae which 

can be seen below. 

OBJVAL = (Mj,q x sum(sum(W_jq)) + sum(sum(SETUP. x S_ij)) 

+ Aj x sum( extra_maves)) (5.32) 

Please note that SETU P"S_ij produces an element-by-element product ofthe matrices 

SETUP and S3j. Also the 'sum' feature in Mat Lab returns the sum of elements. If 

B = sum(A) and A is a matrix then sum(A) treats the columns of A as vectors, 

returning a row vector of the sums of each column. 

5.6 Summary 

This chapter presented a three stage heuristic approach for designing and setting up 

an initial starting framework representing the CF problem. The first stage involved a 

preliminary allocation of machines to cells. In the second stage parts were allocated 

to cells based upon the machine cell allocation and a number of key constraints. The 

- 120-



Chapter 5 Heuristic Approaches for CF - Initial Solution 

final stage involved mainly the evaluation of the objective value and the corresponding 

problem solution. The most complex stage of all was the design of the allocation of 

parts to machine cells since part machine operation sequence was taken into account. 

This stage had to be designed very carefully in order to obtain a good starting point, 

which can become the foundation for additional study. More specifically, this heuristic 

procedure will serve the basis for the design of more advanced searching strategies 

presented in the next two chapters. 
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Chapter 6 

An Iterative Heuristic "Approach 
• 

for CF 

6.1 Introduction 

An initial solution strictly following the CF problem requirements and developed via 

a number of heuristic strategies (see Chapter 5) cannot represent the CF system in 

its full operation. For this reason other heuristic procedures need to be developed for 

investigating a significant number of good quality solutions on a different searching 

level. The initial solution in combination with the latter strategies can prove to be 

very useful when the decision maker attempts to design a CF system involving data 

sets of significant sizes, thus incorporating realism into the system. 

For the purpose of this chapter, a first attempt was made for proposing an iterative 

heuristic procedure in the presence of an ordered part machine sequence forming a 

number of solutions when transitions of machines are considered between cells. At 

each stage machine cells allocation will be updated and part machine cell allocation 

will be re-implemented for a better cell system configuration. Moreover, computational 

results will be presented for a variety of problem sizes. 

6.2 Heuristic Components 

Before introducing the actual design of the proposed heuristic algorithm, it is useful to 

recall for a moment the well-known descent local search (LS) heuristic (also known as 

hill climbing). The descent LS algorithm starts from an initial (maybe randomly gen­

erated) solution. Further, the search process continues by performing some sequential 
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transformations of solutions, i.e. making moves from solutions to solutions. A move 

is applied to the current initial solution in order to get a new solution. The moves 

are controlled, i.e. decisions about moving to other solutions, or not, from the current 

one are taken depending upon the qualities of solutions (the values of the objective 

functions involved). 80, if the decision is 'positive', i.e. a better objective value is 

found, then the current solution is replaced by the neighbouring one, which will be 

used as a 'starting point' for the subsequent trials; otherwise the search continues from 

the current solution. The whole process continues until the current solution found at 

each stage becomes locally optimal, which means that no other better solution exists 

within the neighborhood of the current solution. 

The central idea of the proposed algorithm will follow the operation of a descent L8 

heuristic where an iterative form, with certain strategies built in it, will be employed 

enhancing the searching process. Before going into more details about the design of 

the algorithm it is important to identify the type of transitions which will be involved 

in the current approach for investigating a number of solutions within a pre-specified 

number of iterations. 

Two types of moves will be considered in the search procedure: (a) a single move, 

and (b) an interchange move. The single move is an operation that moves a machine 

instance pair, (i, k), from its current cell q (source cell) to a new cell q' (destination cell). 

The interchange move is an operation which consists of two independent single moves. 

If a machine instance pair (i, k) is moved from its source cell q to another cell q' (first 

single move), then another machine of type i'l of instance k' will be moved from the 

destination cell q' of the first move to the source cell q of the first move (second single 

move) in exchange. Thus the two moves generated are «i,k), q') and «i',k'), q). 

6.3 Heuristic Algorithm Design 

The algorithm proposed based on the local search operative principle (see for instance 

[GYZ02j) will be split into different phases for better illustration. These phases namely 

are as follows: 

• Initialisation Process; 

1 Please note that the machine of type if in destination cell q' could happen to be of the same type 
as the machine of type i in the source cell q. However, these machines will be different instances as 
each instance is unique in the system. Also the way that this exchange might improve the current 
solution is down to the candidate part/machine requirements. 
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• Iterative Procedure; 

• Ending Process. 

6.3.1 Initialisation Process 

In order to present the iterative procedure, certain elements need to be initialised, 

therefore some additional information/notation will be used and is presented below. 

As stated already the notation used in Chapter 5 will be adopted here as well. 

SOL.1emp2 

OBJV AL.1emp 
INIT_OBJVAL 

INIT..80L 

GELLMATRIX2_temp 

P ARTM ATRIX.1emp 

PCMATRIX.1emp 

parLmoves_temp 

W_jq_temp 

BEST-COST 

BEST..80L 

BEST-GELLMATRIX2 

BESTJ'ARTMATRIX 

BEST J'CMATRIX 

BEST .:part..moves 

BEST-W _jq_temp 

CELLMATRIX.1empO 

PART M AT RI X .1empO 

PCMATRIX.1empO 
parLmoves_tempO 

current system solution 

current value of objective function 

initial objective value 

initial solution 

current allocation of machines to cells 

current utilisation allocation of parts to machines 

current allocation of parts to machines cells 

(used for evaluating part machine set-up cost) 

current part machine cell allocation relative to part 

machine sequence 

current distinct allocation of parts to cells 

best objective value found so far 

best solution found so far 

best machine cell allocation 

best part machine allocation 

best 4D matrix presenting part machine cell allocation 

array recording best part machine cell 

allocation relative to part machine sequence 

best distinct allocation of parts to cells 

used as starting point when objective value does not improve 

as above respectively 

as above respectively 

as above respectively 

The initialisation stage involves storing certain elements before the iterative approach 

2S0L-temp is a cell array with three matrices stored in it: W _jq_temp (current distinct allocation of 
parts to cells), S..ij_temp (current number of machines of type i used by part j) and extra...moves...temp 
(current total number of revisits for each part). In addition, BEST -SOL and INIT ..sOL are the best 
and initial values of the objective function respectively. 
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commences. Besides recording best cost and corresponding solution, a number of tem­

porary matrices created will be given the values found in the initial solution in order 

to be able to navigate the search space by knowing, for instance, the allocation of ma­

chines to cells together with the allocation of parts to machines and the exact path that 

each part follows within cells when its sequence is preserved. Initially these matrices 

are recorded as the best found so far as well. Please note that within the iterative 

procedure all values either best or temporary will be continuously updated as will be 

seen later. 

For the starting point however, best single values together with best and temporary 

matrices are initialised and described in Routine 1. 

Routine 1: Initialisation phase for Heuristic Algorithm 

• initialise BEST_COST to be equal to INIT_OBJVAL; 

• initialise BEST ..sOL to be equal to INIT ..sOL; 

• initialise CELLMATRIX2_temp to be equal to CELLMATRIX2; 

• initialise CELLMATRIX2_tempO to be equal to CELLMATRIX2_temp; 

• initially assume that BEST _C ELLM AT RI X2 is equal to C ELLM AT RI X2_temp; 

• initialise PCMATRIX.1emp to be equal to PCMATRIX; 

• initialise PCMATRIX.1empO to be equal to PCMATRIX_temp; 

• initially assume that BEST ..PCMATRIX is equal to PCMATRIX.1emp; 

• initialise PARTMATRIX.1emp to be equal to PARTMATRIX; 

• initialise PARTMATRIX.1empO to be equal to PARTMATRIX_temp; 

• initially assume that BEST ..PARTMATRIX is equal to PARTMATRIX_temp; 

• initialise parLmoves.1emp to be equal to part_moves <as determined in the initial 

solution); 

• initialise parLmoves_tempO to be equal to part_moves_temp; 

• initially assume that BEST _part_moves is equal to parLmoves.1emp; 

• initialise W _jq.1emp to be equal to W _jq; 

• initially assume that BEST _W _jq is equal to W _jq.1emp; 

• initialise W _jq.1empO to be equal to W _jq_temp; 
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6.3.2 Iterative Procedure 

The iterative procedure is the main phase of the heuristic algorithm where investigation 

of better solutions is sought. It mainly consists of two approaches each representing 

single and interchange transitions of machine instance pairs. Both of these processes 

are independent from each other as the algorithm has been designed such that when a 

single transition takes place for a machine instance pair an interchange is not consid­

ered and vice versa. The decision of which transition type to consider is based upon 

the cell machine capacity of the candidate chosen cells where the transition is going to 

take place. 

The algorithm begins by considering the parts in the system and more specifically the 

part that causes the majority of the intercellular movements in the initial solution. 

Given the distinct allocation of parts to cells (W -jq), as produced from the initial 

starting solution (see Chapter 5), parts are ordered in descending order relative to the 

number of intercellular movements. This decision was made based on the fact that the 

distinct allocations of parts to cells in the objective function (see equation (5.1)) is iden­

tified as the most important element when trying to minimise the objective function. 

The better the allocation of parts to cells the better the value of the objective function 

in the system. The values of the two remaining elements of the objective function, i.e. 

total part/machine set-up cost and total revisits of parts to already visited cells mostly 

depend upon the distinct allocation of parts to cells. 

Moreover, with reference to the current part in operation, the segment corresponding 

to its cell machine instance pair allocation relative to its machine sequence is found 

in part_moves_temp and stored in a vector named qik. Each machine instance pair in 

the latter, is a candidate for moving it from the cell currently in use, i.e. source cell, 

to the remaining cells, i.e. destination cells, visiting them one at a time. For each of 

these pairs either a single or interchange transition takes place and new solutions are 

investigated. 

Before continuing with the description of the two transition types included within the 

heuristic approach, a foundation framework for the iterative procedure based on the 

overall discussion above is presented next in Routine 2. 

Routine 2: Iterative Heuristic Framework 

• Initialise i-part equal to zero; 

• while Lpart less than or equal to w (w defined in section 6.3.3 - Ending Process) 
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• Sort the parts in descending order of the intercellular movements caused, and return 

their indices in wi and the actual parts in wy; 

• for each part in wi 

- Set i (iterations index) equal to zero; 

- while i is less than>. (>. defined in section 6.3.3 - Ending Process) 

• Find the segment for current part corresponding to cell no q. machine type 

i, machine instance k in part_moves..temp and store it in qik; 

* for cl equal to one up to the length of qik 

1. Assign all cells in a vector named alLcells; 

2. Take the first row in qik, find the cell where the first machine instance 

pair is allocated and store it in a vector named cc; 

3. Delete this from all_cells; 

4. for c2i equal to one up to the length of alLcells (all remaining cells) 

(a) Store the cell corresponding to c2i index in c2; 

(b) if capacity of machines stored in c2 (destination cell) cell is less than 

EMAX & capacity of qik(c1, I) (source cell) is less than or equal to 

EMAX & greater than EMIN 

. Single move commences; 

else if capacity of machines stored in c2 (destination cell) cell is 

greater than EMIN & equal to EMAX & capacity of qik(c1, 1) 

(source cell) is greater than EMIN 

. Interchange move commences; 

end if 

end for 

end for 

• Accumulate i; 

end while 

end for 

Accumulate Lpart; 

end while 

• Single Move 

The approach adopted for a single transition within the search procedure can be out· 

lined by the following steps: 
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1. single transition execution; 

2. update of relevant elements; 

3. reallocation of parts to machine cells; 

4. evaluation of objective value; 

5. update on the best values if objective value improves; 

Item four has been described extensively within section 5.5, thus only some extra 

comments will be provided here. However, for the remaining steps more details are 

presented next. 

More specifically, when a single move is taken into account a candidate machine instance 

pair' i.e. (i,k) of a part will be moved from a source cell, i.e. q, where this machine 

instance pair is currently allocated, to a destination cell, i.e. t/ (first cell in the sequence 

of the remaining cells). While this happens a number of updates will be considered for 

the system, with the first update taking place on the current machine cell allocation, 

i.e. CELLMATRIX2_temp, as shown below: 

CELLMATRIX2_temp(i,k,q') = 1 and CELLMATRIX2.temp(i,k,q) = 0 

Moving a machine instance from a current cell to a different one, won't only affect the 

current part's situation but it will also have an effect on other part(s) occupying the 

same machine instance within the current cell. As already mentioned, part machine 

operation sequence forms a key constraint in the system, therefore, a machine of a spe­

cific type might be included within the sequence of other parts, besides the current one. 

For this reason when a single transition takes place, part..moves_temp is in question 

as it keeps a record of all parts machine instance cell allocation relative to each part's 

machine operation sequence. Moreover, for similar reasons with the part..moves_temp, 

PC M AT RI X _temp will be affected as well. 

Since an update on machine cell allocation has been already examined, a re-allocation 

of parts to machine cells is performed at this stage. Via the latter, updates are ob­

tained immediately for both PCMATRIX_temp and part_moves_temp (see section 

5.4) and possibilities of getting a better solution are highly increased. It is worth men­

tioning that initially, the algorithm was designed in such a way that updates to both 

part_moves_temp and PC M AT RI X _temp were taking place after the transition with­

out any reallocation of parts to machine cells. Although this update was operational 

there were less possibilities for the cost to be improved when compared with the value 
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of cost produced when reallocation of parts to machine cells was occurring. Part reallo­

cation acts as extra processing to the already allocated machines to cells, thus offering 

better chances for an improved output. 

Having both machine cell allocation and part machine cell allocation updated, an eval­

uation of the value of the objective function occurs following the approach described in 

section 5.5. !fthe current objective value OBJVAL.iemp is better than the best found 

so far, Le. BEST_COST, then the latter takes the value of OBJVAL_temp and best 

solution, BEST -BOL, is replaced by current solution, SOL.iemp. Also a number of 

other elements are stored before moving onto the next iteration and are shown below: 

• BESLCELLMATRIX2 takes the value of CELLMATRIX2.iemp; 

• BEST ..PARTMATRIX takes the value of PARTMATRIX.iemp 

• BEST ..PCMATRIX takes the value of PCMATRIX_temp; 

• BEST _part_moves takes the value of parLmoves.iemp. 

Moreover, an update on another set of elements, whose role is to hold the best values 

in order to use them as a reference point from where the search will continue when 

objective value does not improve, takes place and is illustrated below: 

• update CELLMATRIX2.iempO with BESLCELLMATRIX2; 

• update PARTMATRIX.iempO with BEST ..PARTMATRIX 

• update PCMATRIX.iempO with BEST ..PCMATRIX; 

• update parLmoves_tempO with BEST -parLmoves. 

As already stated if the objective value does not improve the search continues from the 

situation where the best solution was found. Therefore all current/temporary values 

are replaced by the "0" temporary values shown above. For example, 

C ELLM AT RI X2_temp takes the value of C ELLM AT RI X2.iempO and so on for the 

rest of the elements. By doing this, the search process changes direction from a not 

very promising area to the point where the best solution was found . 

• Interchange 

The strategy employed for an interchange transition is similar to the single as it con­

sists of two single transitions performed within two cells. When the interchange move 

occurs reallocation of parts to machine cells takes place together with the evaluation 
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of the value of the objective function and updates on certain elements similar to the 

single transition. 

It is worth presenting the process of the interchange transition as it has some special 

characteristics. As already mentioned, if a machine instance pair, (i, k), belonging to 

the sequence of the current part, is moved from source cell q to a destination cell r/ then 

another machine instance pair (i', k') will be moved from the destination cell q' (of the 

first single move) to a source cell q. The question arising at this point is which machine 

instance pair to send back to the source cell as there might be machine instance pairs 

used by the current part as its sequence indicates. 

For this reason a specific strategy was employed in order to have a donation of a machine 

instance pair from the destination cell back to source which is not required by current 

part. This is done in order to avoid unnecessary intercellular movements caused by the 

. current part. The first step involved is to identify all machine instance pairs (including 

those used by the current part, if any) in destination cell q' via CELLMATRIX2_temp 

and store them in a vector named machine_pairs_temp (first index refers to machine 

type whereas second to its instance). Once this is achieved the segment corresponding 

to current part in part.movesJemp that holds information about machine pairs cell 

allocation is also identified and the machine pairs currently located in destination cell q' 

are marked and stored in a vector named qik.:receiver. Later a comparison takes place 

between qik.:receiver and machine_pairsJemp. Common pairs found are deleted from 

machine_pairs_temp so that no more elements used by current part exist in the latter. 

The first element found in machine_pair s_temp is donated to the source cell of the first 

. single move. In case that machine_pairsJemp is empty, i.e. all machine instance pairs 

in destination cell are also used by the part in question then the process is interrupted, 

and a continuation from the outer loop where transition to a different cell (the next in 

sequence of all_cells) for the current machine instance pair is considered. 

After this operation, the interchange transition leads to an update in the allocati9n of 

machine instance pairs to cells as follows: 

GELLMATRIX2_temp{i,k,q') = 1 and GELLMATRIX2_teinp{i,k,q) = 0 

GELLM ATRIX2_temp{machine_pairs_temp{1, 1), machine_pairs_temp{1, 2), q) = 1 

GELLM AT RIX2_temp{machine_pairs_temp{1, 1), machine_pairsJemp{1, 2), r/) = 0 

The above moves are implemented when the objective value improves. If the objective 

value does not improve, the next iteration commences but before the ''0'' temporary 
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values are updated in a similar way to the single transition. 

It is worth mentioning that in the majority of cases, interchange transitions are con­

sidered more for implementation rather than single. This is happening because of the 

available capacity of both source and candidate destination cells. 

6.3.3 Ending Process 

The algorithm stops when a maximum number of iterations has been reached. The 

latter could be determined based upon certain data and parameters involved within 

the heuristic pseudo code (see Routine 2 where all required outer loops are presented). 

An attempt was made to derive a formulae determining the total number of iterations 

required. This can be seen in equation (6.1). 

NP 

Total Heuristic Iterations = w x {A x L[length(qik(:, 1)) x (Ne -I)]} (6.1) 
j=! 

The number of iterations depend upon the length of qik 3 which corresponds to the 

current part's cell machine instance allocation, the number of destination cells involved 

and the total number of parts in the system. 

The above elements are also included within two loops the duration of which is defined 

explicitly via parameters A and w. The value of A refers to the number of times the 

machine operation sequence of a certain part is considered, whereas w to the number 

of times the parts listed in descending order relative to the intercellular movements 

caused are taking into account. 

After certain experimentation it was decided for the majority of problems the values 

for w and A to be one and two respectively. w set to one implies that the parts are con­

sidered only once and with the descending ordered sequence obtained from the initial 

solution. A set to two entails the examination of possible transitions for current part 

with specific machine instance pair cell allocation relative to part machine sequence 

two times. 

Before continuing with the testing of the heuristic approach it is useful to discuss the 

data sets generated since no available problem instances that could match the current 

3The length of qik can be greater than the length of machine sequence denoted in ZTYPES for 
each part as multiple cells might be visited given a specific part machine operation sequence. 

- 131 -



Chapter 6 An Iterative Heuristic Approach for OF 

mathematical model requirements, by providing values of all the necessary parameters, 

can be found in the existing literature. 

6.4 Generation of Data Sets 

The proposed heuristic approach will be tested using a number of problem sets. The 

data elements required for each problem are: number of parts (N P) and number of 

machines (NM) involved, part/machine utilisation (UTIL), part/machine set-up costs 

(SETUP), number of operations required to produce each part (ZOPER), part ma­

chine operation sequence (L), number of multiple machine instances required by each 

machine (KTYPES), total number of machine instances (TMI), cells to be formed 

(NO), maximum (EMAX) and minimum (EMIN) number of machines allowed in each 

cell. 

A number of data sets for small, medium and large data sets (twenty nine in total) were 

used in the test. The number of machines and parts involved in each of the data sets 

were adapted from problems previously used in the literature (except for problem in­

stances twenty seven to twenty nine whose size was on purpose chosen to be four times 

six, in order to consider some very small problem instances). Tables 6.1 and 6.2 (pages 

133 and 134) show the reference for each problem, the number of parts and the number 

of machines included in the system for medium to large and small data sets respectively. 

Please note that, although, some of the problem sizes are used more than once they 

differ as their data each time are hypothetical and randomly generated. More specifi­

cally, part/machine utilisation, part/machine set-up costs and part machine operation 

sequences are randomly generated, whereas the number of multiple machine instances 

required by each part is found once the part/machine utilisation matrix is formed. 

Concerning the number of cells to be created in the system together with the upper 

bound, Le the maximum number of machines allowed in each cell, are determined as 

soon as the total machine instances in the system are known given a certain problem 

size. The number of operations for each part is determined prior to the random data 

generation by the decision maker. For the purpose of this study the latter has been 

decided to take the value five for the majority of problem instances, Le. a part can 

have up to five machines in its operation sequence in order to be fully processed. Please 

note that for problem instances twenty seven to twenty nine the number of operations 

was set to four since only four machine types are included in the system. 
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Table 6.1: Size Sources for Medium and Large Data Sets 
11 Problem Size Source No of Machine Types (NM) No of Parts (NP) 11 

1. [ASV97J 10 19 
2. [FFW06J 7 10 
3. [Sta85J 14 24 
4. [Sta85J 30 50 
5. [VN92J 15 30 
6. [VKS6J 30 41 
7. [KKVS6J 23 20 
S. [CR86aJ 8 20 
9. [CMS2J 10 15 
10. [CHS1J 9 9 
11. [CHS1J 9 9 
12. [KNS2J 36 90 
13. [Kin80J 14 24 
14. [BC91J 20 35 
15. [ACGV91J 16 43 
16. [DWSOJ 12 19 
17. [BurS9J 16 43 
IS. [MSW72J 27 27 
19. [ARS97J 26 37 

It is worth providing at this stage some more information on the random data genera­

tion. For example, for each machine type required by each part, the utilisation amount 

was generated using a uniform distribution with parameters [0.0, 1.2J and rounded to 
the nearest integer. The resulting output was the creation of the UTIL matrix of size 

(NM x NP). Also the set-up cost of each machine to be used by a certain part was 

also generated using a uniform distribution with parameters [0.00, 6.00J and rounded to 
the nearest integer, where the matrix SETUP was formed of size (N M x N P) similar 

to UTIL. 

For generating the machine operation sequence for each part in the system, the matrix 

L was initialised of size NP x max(ZTYPES). For identifying each part the machine 

operations involved, the indices of the non-zero elements in UTI L matrix working 

column-wise were found and stored. Before adding the actual elements (corresponding 

to these indices) for each part as they appear to matrix L, an extra manipulation was 

carried for each machine sequence in order to perform some kind of perturbation and 

obtain a randomly generated sequence of machines. For doing the latter a MatLab 

- 133 -



Chapter 6 An Iterative Heuristic Approach for GF 

Table 6.2: !':ize !':ollrees for !':mall DAta !':et. 
Problem Size Source No. of Machine Types (NM) No. of Parts (NP) 

20. [S~93] 6 8 
21. [SK93] 6 8 
22. [SK93] 6 8 
23. [SK93] 6 8 
24. [FFW06] 5 7 
25. [FFW06] 5 7 
26. [FFW06] 5 7 

27-29. N/A 4 6 

function named circshift04 was employed. shift size was decided to- be of a range 

type whose values were also randomly generated where two consecutive shifts were 

performed ensuring a random sequence. For more details on the actual code developed 

for the generation of random data involved, see Appendix C. 

6.5 Computational Results for the Heuristic Approach 

Testing the heuristic algorithm is very important in order to be able to identify its 

operational and computational advantage when compared with the output produced 

via the mathematical solver, i.e. XPRESS-MP, when both its behaviour and required 

CPU time are examined especially when large .scale data sets are taken into account. 

Via this process, an opportunity is offered for discussing, for example, the behaviour 

of the initial starting solution, designed prior. to the heuristic to act as a basic in­

put into the latter, and also commenting on the actual heuristic and the number of 

iterations involved within the iterative procedure. Please note, that the heuristic al­

gorithm presented in this study was coded in Mat Lab and run on a personal computer 

(Genuine Intel{R) 1.66 GHz, 1.00 GB of RAM), whereas the optimum or best known 

integer programming solutions, which required much longer runs, were obtained from 

the XPRESS-MP general purpose mathematical programming solver running on a Linux 

machine {Intel (P4 Xeon) 3GHz, 1.00 GB of RAM) and accessed remotely. It is also 

, worth noting that for the initial solution which is fed into the heuristic, the second 

4circshift: shift array Circularly. More specifically, this function has the form: 

B = circshift(A, shiftsize) 

which implies: circularly shift the values in the array A by shijtsize elements. shijtsize is a vector of 
integer scalars where the Nth element specifies the shift amount for the Nth dimension of array A. If 
an element in shiftsize is positive, the values of A are shifted down (or to the right). If it is negative, 
the values of A are shifted up (or to the left). 
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approach (see section 5.4.3) designed to identify a cell sequence preserving a maximum 

continuous sequence of machines relative to part machine sequence is employed here 

since better results are produced. 

For all problem instances involved the minimum number of machines in the system is 

defined prior to any work to be equal to four except for problem instance twenty seven 

whose value is set to three and for the last two small problem instances whose value 

is set to two. As the latter two mentioned problems are very small a way is needed to 

guarantee that at least three cells will be created so that both XPRESS-MP solver and 

heuristic approach to be of interest in the current study. 

The medium and large data sets will be examined first concentrating on the compu­

tational results via which a number of elements will be discussed further such as: the 

behaviour of both the iterative procedure and the initial starting solution, the number 

of iterations considered in the system and the processing CPU times. 

6.5.1 Computational Results for Medium and Large Sized Problems 

The computational results for medium and large data sets are presented in Table 6.3 

(page 137). The elements determined are: number of cells in the system, total number 

of machine instances, the best known objective value obtained (including the optimum 

when reached) via XPRESS-MP and the corresponding CPU time. In a similar way the 

best value of the objective function together with the value of the initial objective value 

obtained from the heuristic approach are also recorded. In addition, the required CPU 

time for only one run of the heuristic algorithm is also recorded. Please note that a 

number of runs 5 are tried for the heuristic algorithm which approximately take the 

same time, however only the results from the best run for each instance, including 

CPU time, are shown in the table. Moreover, a comparison is made between the 

value of the initial objective function and the best found and the percentage of im­

provement/deviation from the initial is included. In addition, the percentage deviation 

of each solution obtained via the heuristic approach from the optimum or best known 

obtained via XPRESS-MP is indicated. Moreover, the mean CPU time and the mean 

deviation values together with the mean number of heuristic algorithm runs are found 

and presented at the bottom of the table. Finally, the number of parts and machine 

5Each run of the heuristic algorithm produces a different CF configuration since it is based on a 
random generated initial solution. As already stated in Chapter 5, machines are initially allocated 
to cells randomly and then parts are allocated to machines cells following a certain part before the 
iterative heuristic procedure commences, thus a different machine cell allocation leads to a different 
CF configuration. 
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types involved in each problem are also listed within Table 6.3 for completeness. 

As can be seen from Table 6.3, and when XPRESS-MP is employed, the optimum solution 

is only found in two problem instances (two and sixteen) whereas for the rest of the 

instances the best known solutions 6 were recorded as no optimum values were found 

within a certain time limit. In current study this limit was set to be equal to thirty 

hours. 

On the contrary, the results from the heuristic algorithm were more promising since for 

almost half of the problem instances the percentage deviation of the heuristic from the 

best known solutions was small in magnitude and the required CPU time for most of 

them did not exceed six hundred seconds overall (problem twelve is currently excluded, 

as been the largest data of all needs a substantial CPU time in order for the iterative 

procedure to end). More specifically, some small deviations in magnitude obtained are 

three, five, seven, eight and nine. 

Moreover, the deviation percentage between the initial objective value obtained, when 

the CF initial solution was employed, and the best cost found, via the iterative process, 

is for the majority of problems substantially significant meaning that a large increment 

in the value of objective function is taking place via the iterations. This implies that 

via the iterative heuristic approach a number of machine instance pair transitions is 

considered with respect to the number of iterations involved leading to the investigation 

of better solutions. The trend on the objective values involved will become clearer in 

the section where the behaviour of the heuristic approach is examined. 

In addition, it is worth commenting on problems fourteen, eighteen, and nineteen which 

can be classified as large sized problems whose percentage deviation is estimated to be 

three, three and seven percent respectively from the best known values and required 

CPU time less than four hundred seconds. 

6Please note that when the best known solutions were recorded the optimality gap indicated via 
XPRESS-MP it was still large which does not necessarily imply that solutions were still far from the 
optimum as lots of nodes could turn out to be of no interest. Thus it was decided not to tabulate the 
gap as it was large. 
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Table 6.3: Problem Data and Computational Results for Medium & Large Sized Problems .§ 
I XPRESS-MP I Heuristic Algo. I 

Prob. NM NP NC TMI EMAX I Obj. CPU time I Init. Obj. Best Obj. Dev.TTT CPU time (secs) Runs I Dev.n Pl 

l. 10 19 5 40 9 444.131 > 30 hrs 664.89 484.93 27% 47.281 4 9% 
2. 7 10 5 20 6 219.92" 141 secs 312.35 243.51 22% 4.9375 5 11% 
3. 14 24 5 37 8 383.78' > 30 hrs 590.05 428.4 27% 34.188 10 12% 
4. 30 50 8 99 13 1100.02' > 30 hrs 1697.8 1207 29% 758.48 9 10% 
5. 15 30 7 47 7 582.71' > 30 hrs 948.13 659.99 30% 123.5 10 13% 
6. 30 41 7 94 14 893.28' > 30 hrs 1452.8 972.26 33% 529.09 6 9% 
7. 23 20 6 42 8 390.51' > 30 hrs 645.63 411.51 36% 47.625 4 5% 
8. 8 20 5 31 7 333.82' > 30 hrs 606.36 395.72 35% 25.094 11 19% 
9. 10 15 5 30 7 302.25' > 30 hrs 529.77 342.82 35% 20.578 7 13% 
10. 9 9 5 29 6 242.13' > 30 hrs 424.3 285.14 33% 18.578 12 18% 
11. 9 9 5 28 6 269.11' > 30 hrs 424.93 304.74 28% 17.219 5 13% 
12. 36 90 10 147 17 1441.62' > 30 hrs 2853.2 1912.4 33% 2839.6 15 33% 
13. 14 24 5 45 10 508.82' > 30 hrs 822.92 557.96 32% 68.063 5 10% 
14. 20 35 7 64 11 732.37' > 30 hrs 1090.6 754.7 31% 174.41 2 3% " 15. 16 43 9 65 11 799.08' > 30 hrs 1307.5 862.51 34% 281.42 3 8% '" 16. 12 19 5 29 7 293.85" 196 secs 386.65 322.79 17% 14.344 8 10% ;:l 

713.97' 26% 19% 
~ 

17. 16 43 8 61 10 > 30 hrs 1147.3 851.39 182.88 12 " '" 18. 27 27 8 76 10 763.51' > 30 hrs 1212.8 787.65 35% 354.89 2 3% 
644.41' 39% '" 19. 26 37 8 64 10 > 30 hrs 1125 689.24 203.11 5 7% " ;l 

Mean Rounded Values '" ~ 
Dev. CPU Runs Dev. " 
31% 302 secs 7 12% ~ 

* Optimum solution. ~ 
t Best known solution. " 
It Percentage deviation of each solution from the optimum or best known solution, obtained via XPRESS-MP, and produced as follows: c .., 

Dev - round«H'"'. B", 0o/,;.-XPRESS-MP B .. , Obt·) x 100) 
· - XPR SS-MP Best Obj. · . ttt Heunstlc Percentage of Improvement. lmt. ObJ. vs. Best ObJ. as follows. 

Dev = round«In". Obt·-B'~' Obt·) x 100) · lmt. Ob]. 
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Some additional observations, involve problem instances eight and seventeen whose 

deviation from the best known solution for both is nineteen percent. Although there 

are other problems which are of a similar size and of similar resulting deviation, these 

two have a similarity in their behaviour for a certain reason. More specifically, for 

both of these problems the number of machine types included are eight and sixteen, 

whereas their complementary parts are recorded to be twenty and forty three respec­

tively. Therefore there are only a few machine types to be used by many parts, or in 

other words the majority of the machine types have a high probability to be included 

within the machine operation sequence of each part. The latter could cause a difficulty 

to the iterative procedure to converge to a value close to the best known as at each time 

that a transition takes place for a machine instance pair of a certain part, a number 

of other parts using this machine instance pair is also affected since the cell allocation 

of the latter could change causing possibly an additional intercellular movement. This 

might .also occur in other problem instances with similar resulting deviations from the 

best known value found . 

• Heuristic Iterative Procedure Behaviour 

The heuristic approach commences once the initial random solution is obtained. Within 

the actual iterative process a number of transitions, either single or interchange, are 

taking place for each part in the system. During this procedure the objective value 

evolves with respect to the specified number of iterations, and a number of significant 

fluctuations to the former is observed. At iteration zero the objective value is assumed 

to be equal to the value of the objective function obtained via the initial solution. For 

illustrating the trend on the objective value, problem instance nineteen on Table 6.3 

(page 137) is employed and the results are displayed in Figure 6.1 (page 139). 

Although this problem involves a significant number of iterations, an attempt to display 

the objective function values corresponding to the iterations is made and the result is 

shown on Table 6.4 (page 140). Please note that some of the iterations are not shown 

due to the lack of space. 

Both Table 6.4 and Figure 6.1 show that the number of iterations involved is 1188. 

The best objective, as recorded in Table 6.3, has a value of 689.24 units which was first 

found at iteration number 925 and also in other iterations later on. In Figure 6.1 this 

value is the closest to the iterations axis. It is also worth commenting on the value 

of the initial objective value recorded at iteration zero and the level of improvement 

through the iterative procedure. The deviation between initial and best objective found 
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Figure 6.1: Problem instance 19: Objective Function Value Evolution 
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Table 6 4' Objective Function Value Evolution for Problem 19 
ter. ter. J. ter. j. ter. bj. ter. J. ter. J. ter. J. ter. J. ter. J. ter. 

~ 0 
:~ ~~~~:: ~; :~~:~1 

44 
9;i.~4 !~; 8~~:~; 2:~ ;~;:;~ ~~ ;i;:~; .. 1~~:!~ '" ~~~:2: !~:2 1 1109.8 145 949 997 

2 1119.8 50 1015 98 931.66 146 926.66 19. 898.4 242 882.28 902 105.85 950 113.03 '98 699.24 1143 112.65 
3 1110.8 .. 1005.8 .. 946.51 147 938.84 195 881.8 243 902.28 903 103.85 951 717.82 99' 699.24 1144 141.11 

• 1099.4 52 1010.6 100 921.66 148 916.66 '" 899.4 24. 892.28 90. 723.85 952 121.82 1000 109.24 1145 722.65 

• 1085.1 53 1039.4 101 921.66 "9 936.66 197 899.4 245 892.28 905 146.41 953 117.82 1001 699.24 1146 736.84 

• 1125 54 1031.2 102 939.74 150 912.15 198 914.73 24. 896.29 90' 113.85 95' 727.82 1002 709.24 1147 724.78 
7 1079.2 " 1020.8 103 920.66 151 938.65 "9 887.23 247 859.6 907 719.73 '" 714.99 1003 713.03 1148 712.65 
8 1070.2 " 1031.8 10' 919.66 '" 909.65 20' 877.97 248 869.6 908 715.46 95. 704.99 1004 716.82 1149 712.65 
9 1070.2 " 1016.3 10' 918.48 l53 931.83 201 872.32 249 889.6 .. 9 119.73 9" 715.24 1005 734.35 1150 725.66 
10 1053 OS 1010.1 106 923.39 164 899.65 202 817.97 250 819.6 910 739.13 .. 8 125.24 1006 731.82 1151 689.24 
11 1054.3 .. 1034.6 107 909.48 155 909.65 203 817.97 25l 819.6 9ll 125.46 95. 125.24 1007 727.82 1152 718.02 
12 1054 '0 1026.5 108 908.35 156 885.79 20. 881.98 252 883.61 912 744 960 135.24 1008 756.47 1153 711.37 
13 1039.8 61 1005.8 10' 923.62 157 907.79 205 906.31 253 842.19 913 101.61 961 114.24 1009 132.59 1Hi4 699.24 
14 1064.7 62 1029.8 110 930.53 158 885.79 206 890.4 254 832.19 91' 101.61 962 114.24 1010 699.24 1155 699.24 
15 1040.8 63 990.69 111 923.5 159 901.91 207 940.24 '" 846.46 ". 691.61 963 700.49 1011 100.24 1156 712.25 
1. 1054.7 •• 1015.8 112 921.34. 160 815.79 208 889.85 25. 842.19 " . 711.67 •• 4 725.24 1012 710.24 1157 704.61 
17 1053 65 1020 113 918.05 161 885.79 209 886.01 '" 842.19 917 711.61 .. , 725.24 1013 711.59 1158 712.65 
18 1030.8 ,. 1005.8 11. 931.79 16' 875.79 210 920.52 258 866.85 "8 701.67 ... 135.24 1014 713.41 1159 700.37 
19 1059.2 " 996.84 115 918.35 163 904.44 211 862.32 259 842.19 "9 113.54 9" 710.24 1015 132.59 1160 710.37 
20 1049.1 .8 974.16 11. 918.35 164 896.19 212 872.32 260 842.19 920 123.54 0" 710.24 1016 699.24 1161 110.37 
21 1073.6 '9 980.69 117 963.09 165 908.97 213 871.8 261 846.46 921 123.54 969 110.24 1011 700.24 1162 110.37 
22 1034.8 70 990.69 ll8 918.35 '" 877.07 214 871.07 262 842.19 922 723.54 970 732.37 1018 710.24 1163 110.37 
23 1046.4 71 996.33 119 933.26 167 896.79 215 881.07 253 842.19 92' 733.08 97l 712.41 1019 111.59 1164 712.65 
24 1043.8 72 990.69 120 923.01 "8 896.87 21. 910.08 26. 866.85 '" 723.62 972 723.41 1020 713.41 1165 711.42 
25 1069.2 73 964.16 121 939.91 169 904.44 217 872.32 26' 832.19 9" 689.24 97' 699.24 1021 698.52 1166 703.42 
2. 1093.1 74 998.07 122 939.91 170 896.79 218 898.32 26. 822.19 "6 699.24 974 699.24 1022 698.52 1167 701.42 
27 1016.S 75 942.4 123 952.09 171 908.91 219 877.59 267 832.19 "7 699.24 975 699.24 1023 709.24 1168 721.42 
28 1070.1 76 914.16 124 939.91 172 877.07 220 878.01 "8 832.19 "8 710.37 97. 699.24 1024 719.24 1169 7U.42 
2' 1038.7 77 974.16 125 964.82 173 896.79 221 872.32 "0 832.19 92' 691.67 977 704.15 1025 702.98 1170 711.42 
30 104' 78 914.16 12. 929.91 174 896.81 222 895.33 270 855.2 930 120.37 '78 715.15 1026 722.98 1171 699.24 
31 1069.1 79 942.4 127 930.33 175 923.04 223 855.06 271 842.19 931 732.42 079 699.24 1027 732.59 1172 699.24 
32 1081.1 80 944.4 128 0" 176 934.66 224 894.06 272 858.19 932 730.8 980 699.24 1028 699.24 1173 690.24 
33 1040.8 81 954.13 12. 926.39 177 946.84 225 926.17 273 811.4 93' 742.42 081 699.24 1029 100.24 1114 699.24 
34 1070.7 82 942.4 130 932.01 178 903.94 226 862.32 274 846.94 93( 765.43 082 699.24 1030 710.24 1175 714.61 
35 1058.7 8' 952.4 131 936.92 179 944.66 227 842.19 275 853.55 935 721.42 983 704.115 1031 711.59 1176 714.06 
36 10515 8' 942.4 132 923.01 "0 925.01 228 876.01 27. 811.4 936 739.69 98. 715.15 1032 713.41 1171 117.3 
37 1029.8 8' 942.4 133 916.35 181 908.3 229 876.06 277 817.4 937 740.65 985 720.97 1033 732.59 1178 713.03 
'8 1030.8 86 944.' 13( 927.35 182 898.65 230 852.19 278 843.4 938 722.68 986 699.24 1034 699.24 1179 117.3 
39 1055.7 87 954.13 135 929.53 18' 910.83 231 852.44 27' 835.84 939 732.68 987 712.91 1035 700.24 1180 137.3 
40 1056.7 88 942.4 I.' 918.35 18. 877.93 232 811.49 280 807.4 940 755.69 988 709.24 1036 710.24 1181 713.03 
41 1035.7 89 95:;1.4 137 909.43 18. 898.65 233 853.32 281 817.4 941 732.68 08. 714.98 1037 711.59 1182 741.57 
42 1047.2 90 942.4 138 901.65 18. 898.65 234 816.33 282 807 942 134.68 990 710.89 1038 113.41 1183 119.56 

" 1019.5 91 945.57 139 899.65 187 875.19 235 885.37 283 798 9" 723.18 991 699.24 1039 699.24 1184 733.35 
44 1025.6 92 973.t!i7 140 925.18 "8 873.18 236 861.69 284 798 '44 723.18 '92 699.24 1040 699.24 1185 710.04 
45 1016.5 93 978.48 141 910.65 189 811.97 237 905.37 285 807 '45 723.18 99' 699.24 1041 699.24 1186 753.35 

" 1037.5 .. 983.57 142 901.65 190 892.72 238 895.31 286 788 946 756.19 0 .. 709.24 1042 691.24 1187 743.35 
47 1047.4 95 953.57 143 90' 191 899.33 239 874.37 ... ... 947 733.18 9 .. 699.24 ... .. .. 1188 744.715 
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for problem instance nineteen is about thirty nine percent which is quite significant. 

Within the iterative procedure a number of fluctuations in the objective values are . 

observed with the most significant happening when after finishing with the current part 

and all the possible transitions for the machine instance pairs belonging to its machine 

operation sequence, the next part in the sequence is considered. When a new part is 

considered with another machine operation sequence the future moves could be more 

promising for investigating unexplored areas since new machine instance pairs are now 

under consideration. The latter can be more efficient if each part's machine operation 

sequence is in its majority different from sequences of other parts in the system. In the 

current study the latter cannot be guaranteed since all data are randomly generated, 

which of course makes the system realistic . 

• Heuristic Approach vs. Initial Solution 

At this stage it is important to refer to the initial solution and how this affects the 

heuristic algorithm's operation and the best solution found. The strategy employed for 

the generation of the initial solution consists of the allocation of machines to cells the 

allocation of parts to machine cells and the evaluation of the value of the corresponding 

objective function. As can be seen for problem nineteen in Table 6.4, the initial value 

is 1125. Fe~ding this solution into the iterative heuristic results in a best cost of magni­

tude 689.24 units. The trend of the objective value as shown in Figure 6.1 could change 

if the number of iterations are of different size. For example some more repetition of 

values might occur if the inner loop lasts for longer and also some new values might be 

produced as additional areas might be investigated. Overall though, this won't affect 

much the final best cost as a value of similar or of the same magnitude with the pre­

vious will be obtained. However, if the initial solution changes, the picture produced 

from the heuristic approach will be different. For illustration purposes of the latter see 

the objective value fluctuation in Figure 6.2 (page 142) when a different initial solution 

is generated and fed into the iterative procedure. Also the number of iterations for 

the inner and outer loop are defined to be of the same size as before. Please note that 

the total number of iterations might differ slightly from the total number as shown on 

Table 6.4, and this is happening due to the different part machine cell allocation stored 

in qik examined within the inner loop. 

As shown in Figure 6.2 the best cost produced is 700.85 units whereas the initial cost 

is 1064.2 units. Moreover, the deviation from the best known solution is recorded to 

be nine percent. Overall, a different initial solution produces a different cell formation 

configuration. Since the initial solution is randomly generated a few trials are needed 
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till the iterative procedure in conjunction with its input part machine cell allocation 

work efficiently and the least possible deviation from the best known solution is found. 

1200 
Iteration 

Figure 6.2: Problem 19: Objective Function Value Evolution when Initial Solution 
Differs 

• Additional Trends in the Objective Values 

For more information on the overall trend of the objective values for other problem 

instances, see Figures 6.3 and 6.4 (pages 143 and 144 respectively). Figure 6.3 refers 

to objective values fluctuation of problem instance eighteen and Figure 6.4 to problem 

instance six. Due to the fact that both problems, eighteen and six, involve large scale 

data a siguificant number of iterations will be involved. As can be seen from Figure 

6.3 the total number of iterations for problem instance eighteen is 1750, whereas from 

Figure 6.4 the number of iterations involved for problem instance six are more than 

1908. For both problems the cost of the initial solution starts at a high magnitude level 

and then as the iterations progress it gradually begins descending, arriving at the lower 

cost level (best cost). The latter is obtained almost half way through the iterations 

involved. Moreover, the fluctuations in the value of the objective function continue 

indicating that the transitions considered lead to the investigation of many areas with 

new solutions, from which only those producing better costs are only implemented. 
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Figure 6.3: Problem instance 18: Objective Function Value Evolution 
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Figure 6.4: Problem instance 6: Objective Function Value Evolution 
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6.5.2 Computational Results for Small Sized Problems 

For the small sized problem instances, presented earlier in Table 6.2, their corresponding 

computational results are shown in Table 6.5 (page 146). In a similar way to the large 

problem instances a number of elements are included here as well such as: number of 

parts and machines types, number of cells, total number of machine instances and the 

maximum value of machines allowed in each cell. For the mathematical solver the best 

solution found and its required running time are displayed. For the heuristic approach, 

values like the initial and the best cost found, together with the required CPU time for 

the best run 7 are also recorded. Finally, the mean values for some of the elements as 

in large problem instances are added here for completeness. 

An important observation that could be made, and which is something to be expected 

since small problems are employed at this stage, is that for all of them XPRESS-MP finds 

the optimum value. For almost half of the problems the latter is obtained in less than 

a hundred seconds, whereas for the rest a significant amount of CPU time is required. 

For example, problem instance twenty needs more than twenty three hours to find the 

optimum for a data size of six machines and eight parts. On the other hand, the heuris­

tic approach finds the optimum in two data sets of small size and the mean value of 

best solution obtained overall deviates by eight percent from the optimum. Moreover, 

the average value of the required CPU time within the iterative procedure does not 

exceed forty seven seconds. 

Additional comments can be made regarding the overall improvement in the value of 

the initial objective function made within the iterative procedure. The mean deviation 

for the value of the best objective function, found via the heuristic approach, from the 

initial cost is twenty four percent. This implies that in the majority of cases the level 

of improvement is significant. For example, for problem instance twenty one, forty five 

percent is the deviation of the best cost from the initial value of the objective function, 

achieved in approximately four seconds of CPU time. 

The ideal for the heuristic approach would be for the majority of cases to reach the 

optimum solution. Although the data sets involved here are not large, the aim is 

unreasonable since the part machine operation sequence is included adding a significant 

constraint to the system. As stated before, but here it is easier to observe since the 

7In contrast with the medium and large sized problem instances, only a few runs were attempted 
for the small problem instances. More specifically, an average of three to four runs were generated for 
each and the CPU time of the best run was recorded. 
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Table 6 5' Problem Data and Computational Results on Small Problems . 
I XPRESS-MP I 

Problem NM NP NC TMI EMAX I Opt.' CPU time I Init. Obj. 
20. 6 8 5 22 6 
21. 6 8 4 19 6 
22. 6 8 5 23 6 
23. 6 8 5 28 6 
24. 5 7 3 17 6 
25. 5 7 4 20 6 
26. 5 7 3 17 6 
27. 4 6 3 13 5 
28. 4 6 3 10 4 
29. 4 6 3 9 '4 

, OptImum solutIOn obtamed vIa XPRESS-MP. 
t Dev. = round{{ 8", g~t-Op,,) x 100) 

213.70 23.80 hrs 
143.04 71 secs 
204.25 3210 secs 
229.09 4167 secs 
153.36 52 secs 
183.14 2871 secs 
153.19 25 secs 
117.82 1 sec 
113.26 16 secs 
103.08 1 sec 

tt TS Percentage of improvement: lnit. Obj. vs. Best Obj. as follows: 
Dev. = round((Init, Obl--8,,' Obi,) x 100) 

Jmt. Ob}. 

257.85 
282.97 
314.96 
354.61 
177.59 
289.71 
195.85 
155.76 
157.73 
140.05 

Heuristic Algo. I 
Best Obj. Dev.n CPU time (secs) I Dev.T 

231.71 10% 8.2969 8% 
155.58 45% 3.7813 9% 
211.63 33% 8.625 4% 
244.5 31% 11.75 7% 
164.7 7% 2.7031 7% 
201.56 30% 5.2188 9% 
164.7 16% 2.9219 8% 

132.69 15% 1.6563 13% 
113.26 28% 1.1875 0% 
103.08 26% 1.0313 0% 

Mean Rounded Values 
Dev. CPU Dev. 
24% 47 secs 7% 



Chapter 6 An Iterative Heuristic Approach for CF . 

parts and the machines involved are only a few, every time a transition takes place 

within the iterative procedure the majority of the parts get affected leading to an up­

date of their cell machine instance pair allocation. Additionally, part reallocation takes 

place after the latter update so that a better reconfiguration of the system could be 

obtained. 

For illustration purposes on the trend of the objective values involved, while transitions 

take place, problem instance twenty will first be considered. Table 6.6 shows the 

objective function values corresponding to the heuristic iterations and Figure 6.5 (page 

148) this data set plotted. 

Table 6 6' Objective Function Value Evolution for Problem Instance Twenty .. 
Iteration Objective Iteration Objective Iteration Objective Iteration Objective 

0 257.85 28 245.68 56 277.6 84 231.71 
1 341.43 29 277.6 57 258.21 85 320.11 
2 280.89 30 258.21 58 238.68 86 284.03 
3 304.64 31 258.12 59 244.76 87 231.71 
4 241.71 32 242.94 60 259.62 88 286.03 
5 268.08 33 297.32 61 265.08 89 283.98 
6 289.46 34 265.08 62 257.08 90 283.14 
7 257.73 35 257.08 63 287.46 91 289.61 
8 335.63 36 287.46 64 233.71 92 245.64 
9 262.83 37 241.82 65 245.68 93 321.51 

10 271.74 38 240.9 66 259.79 94 289.61 
11 233.71 39 262.28 67 264.71 95 245,64 
12 282.25 40 231.71 68 256.2 96 321.51 
13 231.71 41 241.71 69 279.57 97 266,64 
14 245.68 42 277,33 70 248.72 98 281.65 
15 259,79 43 245.68 71 269.94 99 267.83 
16 264.71 44 277.6 72 256.57 100 262.64 
17 256.2 45 258.21 73 248.72 101 301.53 
18 279.57 46 258.12 74 269.94 102 252.83 
19 262,64 47 242.94 75 256.57 103 231.71 
20 301.53 48 297.32 76 260,53 104 289,52 
21 252.83 49 241.82 77 265.78 105 267,79 
22 231.71 50 240.9 78 285.13 106 231.71 
23 289,52 51 262.28 79 289.61 107 289.52 
24 267.79 52 265,08 80 245,64 108 267.79 
25 231.71 53 257.08 81 321.51 
26 241.71 54 287.46 82 320.11 
27 277.33 55 245.68 83 284.03 

As can be seen the total number of iterations involved is only 108 and the best value of 

the objective function is first found at iteration number 13. Also the deviation of the 

best value from the initial value is ten percent. The values of the objective functions 

range between the best value to others of higher magnitude of the initial value of the 

objective function. The latter can easily be seen in Figure 6.5. 
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~OO~--~2~O----~~---OO=----=80~--7.1070--~'~ 
IterallDn 

Figure 6.5: Problem instance 20: Objective Function Value Evolution 

6.6 Concluding Remarks - Heuristic Algorithm Limita­

tions 

Although the heuristic approach has proved to be very effective for a variety of different 

sized problem instances, it has certain limitations. A number of conclusions including 

specific heuristic procedure restrictions are drawn at this point and listed below . 

• Overall the iterative heuristic approach produce good solutions, in reasonable 

computational times, with deviations of small magnitude from the best known 

solutions for the majority of the problem instances as shown in Tables 6.3 and 

6.5 respectively; 

• In order to obtain a deviation value of small magnitude from the best known 

or optimum solution a number of running trials are needed for the heuristic 

approach, as shown especially for medium and large scale data sets (Table 6.3). 

The latter implies that the iterative heuristic approach won't produce a good 

solution unless the randomly generated starting solution, i.e. the allocation of 

machines to cells, for the current problem 'suits' the iterative procedure thus, 

leading to the investigation of the smallest deviation value within the pre·specified 

iteration limit for the heuristic approach; 
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• The reason for the above is due to the heuristic algorithm operation. The iterative 

procedure follows a certain path of exploration, i.e. at each step, where a new 

transition is taken into account, the iterative procedure continues from the best 

solution found so far without allowing a number of other areas which might not 

be very promising within the search space to be investigated, thus the search is 

limited; 

• The iterative heuristic procedure could get stuck to a local optimum especially 

when a large sized problem with complex part machine operation sequence is 

taken into account; 

• Last but not least, the part machine operation sequence has been identified as a 

key constraint within the mathematical model in previous chapters. Its operation 

within the iterative heuristic approach fulfills the latter, since every operation 

depends upon this sequence and certain elements need to get updated, e.g. the 

part machine cell allocation relative to part machine sequence is updated every­

time a transition, either single or interchange is implemented. 

6.7 Summary 

This chapter presented an iterative heuristic approach for the CF problem. The central 

idea of the heuristic was mainly based on the operation of a descent algorithm where 

a number of solutions was obtained via single or interchange transitions of machine 

instance pairs among cells. At each stage the value of the objective function was 

evaluated; if this was better than the global best then the iterative procedure continued 

from current solution else the global best was recalled. The computational results for 

this iterative procedure when a number of problem instances were generated proved to 

be very promising, however certain limitations were identified. In order to overcome 

these limitations another approach, based on the principles of an already established 

methodology, will be proposed for the CF and presented next in Chapter 7. 
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Chapter 7 

A Tabu Search Algorithm in the 

Presence of Part Machine 

7.1 Introduction 

In the current chapter an extension to the heuristic algorithm described in Chapter 6 

will be proposed for searching the space on a different level. In the last twenty years, a 

new kind of approximate algorithm has emerged which tries to combine basic heuristic 

methods in higher level frameworks aimed at efficiently and effectively exploring the 

search space. These methods are nowadays commonly called metaheuristics. The term 

metaheuristic, first introduced by Glover [GI086], comes from the composition of two 

Greek words; heuristic, which derives from the verb "heurisko" (tup(ax",) that means 

"to search" and meta ([It",,) which means "beyond on a higher level". The employment 

of a metaheuristic algorithm will prove to be promising and very effective for the CF 

problem. 

7.2 Metaheuristics 

In general, there is no commonly accepted definition of the term metaheuristic. How­

ever, some researchers in the field tried to propose a definition a few years ago. Two 

definitions of interest are quoted below. 

Osman and Laporte [OL96] wrote: 

"A metaheuristic is formally defined as an iterative process which guides a 
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subordinate heuristic by combining intelligently different concepts for ex­

ploring and exploiting the search space, learning strategies are used to struc­

ture information in order to find efficiently near-optimal solutions." 

VoB et al. [VMOR99] stated: 

"A metaheuristic is an iterative master process that guides and modifies 

the operations of subordinate heuristics to efficiently produce high-quality 

solutions. It may manipulate a complete (or incomplete) single solution 

at each iteration. The subordinate heuristics may be a high (or low) level 

procedures, or a simple local search, or just a construction method." 

Over the past two decades, metaheuristics have been particularly popular and effective 

in obtaining solutions to the CF problem. Some of the most popular metaheuristic ap­

proaches employed, as already presented in Chapter 2, are Simulated Annealing (SA), 

Genetic Algorithms (GAs), Tabu Search (TS) and Ant Colony Optimisation (ACO). 

Common fundamental properties which characterize all the above approaches are as 

follows: 

• Metaheuristics are strategies that "guide" the search process; 

• The goal is to efficiently explore the search space in order to find (near) optimal 

solutions; 

• Techniques implemented could range from simple local search procedures to com­

plex learning processes; 

• They may incorporate mechanisms to avoid getting trapped in local minima; 

• The basic concepts of metaheuristics permit an abstract level of description; 

• Metaheuristics are not problem specific. 

For the purpose of this research Tabu Search method is chosen for the following reasons 

[Gl086]: 

• Tabu search is a meta-heuristic that has the ability to overcome local optimality; 

• This strategy unlike simulated annealing has no stochastic elements; 

• Tabu search combines the aggressiveness of descent methods and the diversity 

(the ability to explore the solution space extensively) of simulated annealing; 
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• Tabu search seems to have more success than GAs in building and improving 

solutions when there are many feasible solutions; 

• Tabu search allows considerable freedom to implement refinements of this method; 

there is no standard way of implementing tabu search; 

• Tabu search can be embedded within an existing model formulation by amending 

and not altering the system's requirements; 

• Last but not least tabu search methods have been applied successfully for finding 

optimum or near optimum solutions to a number of combinatorial optimisations 

problems such as planning and scheduling, telecommunications, parallel comput­

ing, transportation rout!ng. For a thorough list of applications the reader is 

referred to Glover and Laguna [GL97]. 

7.2.1 Tabu Search 

Tabu search is one of the most successful metaheuristics for application to combinatorial 

problems and it can be viewed as a metaheuristic superimposed on another heuristic. 

The basic ideas of TS were introduced by Glover [Gl086]. A description of the method 

and its concepts can be found in Glover and Laguna [GL97], Glover [Gl089a], and 

[Gl089b]. The basic idea of TS is the explicit use of search history, both to escape local 

minima and to implement an explorative strategy. 

In general terms, a TS algorithm is an iterative search that starts from some initial 

feasible solution randomly set and determined by the decision maker strictly following 

all problem specifications/constraints. Further, it attempts to determine a better so­

lution in the manner of a hill-climbing algorithm similar to the policy of LC, described 

in Chapter 6, but goes beyond that paradigm. At each step the tabu method functions 

with only one "current configuration" (at the beginning, any solution), which gets to 

be updated at each iteration. In each iteration, the "mechanism of a passage" of a 

configuration, called x, to the next one called y, comprises the following two stages: 

• the construction ofthe neighbor set of x, i.e. the set of all accessible configurations 

from only one elementary movement of x (if a problem is too large only a subset 

of neighbors is defined). Let N. be the set of these neighbors; 

• the evaluation of the objective function / for each configuration belonging to N •. 

A configuration y can succeed in the series of solutions built by the tabu method 

if the configuration of N. takes the minimal value /. If for a number of iterations 
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/ does not improve then a configuration y is selected as the current best even 

if /(y) ;::: /(x); the latter operation is adopted by the tabu method in order to 

avoid / getting trapped in a local minimum. 

Moreover, TS employs a short term memory which maintains the information about 

the past step of the search and uses it to create and exploit better solutions. The 

following description presents the short term memory's operation via its components. 

• Accepting a best configuration created from a move at anyone time there is 

a significant risk to return to a configuration already retained at the time of 

a precessing iteration, which generates a cycle. In order to prevent cycling, it 

requires updating at each iteration a list of prohibited moves, the tabu list (TL). 

TL stores all the tabu moves that cannot be applied to the current solution Le. 

it stores m movements (y --+ x), which are the opposite of the last m movements 

(x --+ y) carried out. 

• The number of iterations a move is kept to be tabu is called the tabu tenure 

(TT). In other words, TT is the length of the TL. TT controls the memory of 

the search process and can be either fixed or it can vary. 

• Another key issue of TS arises when a move under consideration to be imple­

mented has been found to be tabu. The tabu status of a move is not absolute, 

but can be overruled if certain conditions are met, expressed in the form of an 

aspiration criterion (AC). If appropriate AC is satisfied the move will be accepted 

despite tabu classification. Roughly speaking, AC is designed to override tabu 

status if a move is "good enough" [Gl089a]; e.g. if the objective value of a candi­

date move, which happens to be tabu, is better than the current best stored then 

tabu status of the candidate will be overruled and accepted as the current best. 

• Last but not least, there may be several possible stopping conditions for the 

search. For example, a common criterion for terminating a tabu search algorithm 

is when the maximum allowed number of iterations is reached or an optimal 

solution is found. 

A flowchart of a "simple" tabu search algorithm can be seen in Figure 7.1. 

Additional mechanisms, named intensification and diversification are often imple­

mented to also equip the algorithm with a long term memory [GL97j, [BR03j. This 

process does not exploit further the temporal proximity of particular events, but rather 

the frequency of their occurrence over a longer period. The intensification consists in 
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Selection of best nelghbor y 

New CUI,ent configuration x:y 

Update best known solullon 

Insertion of move y->x In TL 

no SlopJIing '-----=-------< Crnarion 
Reeclled? 

Figure 7.1: Flowchart of a "simple" tabu search algorithm 

looking further into the exploitation of certain areas of the solution space, identified as 

particularly promising ones. Diversification is on the contrary the periodic reorienta­

tion of the search to explore areas rarely visited until now. 

The basic form of TS where short term memory is only employed comprises fewer 

parameters of adjustment which makes it easier to use. In contrast, long term memory 

mechanisms bring a notable complexity . 

• Tabu Search Illustration 

Consider an example with a minimum spanning tree (MST)l and additional constraints 

[Gl090J as shown in Figure 7.2. The graph consists of five nodes, hence its spanning 

trees consist of four edges. The cost of the edges is indicated next to the name of 

the edges Le a, b, etc. The neighborhood solution is defined by edge exchange moves 

where an added edge to the tree is added to the TL and remains tabu for two iterations 

and is then removed from TL. Thus TT is equal to 2. The AC criterion selected to 

override tabu status is the one that allows the current move to include a tabu edge if 

lGiven a connected, undirected graph, a spanning tree of that graph is a subgraph which is a tree 
and connects all vertices (nodes) together. A minimum spanning tree is a spanning tree with weight 
less than or equal to the weight of every other spanning tree. 
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f8 9 12 

CONSTRAINTS: 

1. Only one edge among a, b, f is 
allowed; 

2. edge a can be selected only 
i~ edge c is selected too 

Figure 7.2: TS model: Minimum Spanning Tree 

the resulting tree is better (cost improves) than the best tree produced so far. The 

cost of the tree consists of two elements: the sum of the edge costs for the tree plus a 

penalty of 50 for a single constraint violation. 

Figure 7.3 below illustrates the tabu search operation. At iteration one an initial solu­

tion is presented which violates both of the constraints indicated in Figure 7.2 of the 

system thus the solution is infeasible. At iteration two a best cost change is produced 

by adding edge c and dropping a. This eliminates the violation of both constraints 

reducing the penalty from 100 to 0, while increasing the remaining component cost 

from 16 to 28. Also edge c is added to the tabu list, therefore not allowing it to be 

dropped for two iterations to follow. 

Among the remaining moves the best selected is by adding edge 9 and dropping f as 

shown at iteration three. The selected move is the most attractive as no violation of 

constraints occur. The cost of the tree worsens indicating that the current tree is a 

local optimum, since no available moves lead to a better solution. Edge 9 now joins 

edge c in becoming tabu. 

At this stage the best of the available moves is to add edge b and drop c, a move 

that normally would be disallowed since c is tabu. However, the move satisfies the 

AC by producing a tree with the better cost obtained so far, and consequently the 

move is selected as indicated at iteration 4. Edge b joins edge 9 to constitute the 

two most recently added edges and hence is designated tabu. The current tree is a 

new local optimum and also the new current best. Although further iterations are not 

shown here, the tabu search algorithm will continue functioning in a similar way until 

a desired iteration cut off will be reached. 
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a ......... 1( 18 ~" b 9 '" 

a 

02 

f8 

, , , 
b91 , 

..... " 

Edge In the MSP 

Edge removed from MSr by an 
e)Cchange move 

Edge in the Tl 

Iter 1: Initial solution (minimum cost 
obtained by disregarding constraints) 

Cost = (6 + 2 + 8 + 0) + 100 = 116 

Iter 2: edge a exchanged with edge c 

New current best, local optimum 
Cost=2+8+18=28 

Iter 3: f exchanged with g 
(worsening) 

New solution: 
Cost=2 + 18 + 12= 32 

Iter 4: c exchanged with b 

AC overrides tabu status 

Global optimum solution: 
Cost=2+9+12=23 

Figure 7.3: Minimum Spanning Tree: Iterations 1 to 4 

7.3 Tabu Search and Short Term Memory 

The cell formation problem has been described extensively in previous chapters, and a 

comprehensive description on forming an initial random solution, when part machine 

sequence is taken into account, has been presented in Chapter 5. This solution will be 

fed into the TS algorithm, via which better solutions will be investigated. As already 

mentioned, TS can either employ short term memory and be characterised as a 'simple' 

searching process, or long term memory and become more complex. For the current 

work, short term memory will be utilised and act as the main framework for the TS 

development. Moreover, a number of technical decisions will be made together with 

some strategies which will be formulated in order to improve the system's efficiency 
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while the current memory framework is underlined. Before proceeding with the actual 

development of the TS algorithm, a number of its key elements and tools need to be 

presented. The specifications for some of these tools won't vary much from their de­

fault definition, however certain aspects need to be reconsidered in order to meet the 

system's requirements. 

Please, note that the TS algorithm for CF is implemented using Mat Lab, similarly 

to the initial starting solution software utilisation. Also the notation employed in 

Chapter 5 will be preserved here together with some additional which is needed for the 

TS implementation. This new notation will follow later in this chapter. 

7.3.1 Main TS Components 

The identification process of the basic elements for TS when short term memory is 

employed goes in parallel with the actual CF problem as has been already presented 

(see Chapter 3). A key constraint like part machine operation sequence has taken a 

primal role for the design of part allocation in machine cells while forming an initial 

starting solution for the TS. The latter in conjunction with the model's operation and 

its parameters will also play an important role in the formulation of the short term 

memory and its components. Some of these main concepts for TS and short term 

memory components are described in the sections that follow next . 

• Definition of a Feasible Solution 

In the context of the current CF problem, a feasible solution consists of an assignment 

of machines to cells and an assignment of parts to machine cells when ·part machine 

operation sequence is taken into account. As already described in Chapter 5, while 

machines are allocated to cells certain elements are stored, holding information about 

the capacity used for each cell and to which cell each machine is allocated. This calcu­

lation provides all the information needed for the next step which is the allocation of 

parts to machine cells. The latter as the most complex and key stage for the formation 

of the solution involves a significant number of parameters and matrices in order to 

store information while every part (starting with the part having the majority of pro­

cessing requirements), following strictly its machine sequence, is allocated to machines 

in cells. After parts are fully allocated, which is indicated by the fact that a temporary 

part/machine utilisation matrix becomes empty, the calculation of the relevant costs 

within the objective function can be carried out. The assignment of parts to cells al­

lows for the calculation of the number of distinct cells used by each part and also the 

later revisits of parts to already visited cells. Finally, depending upon the number of 
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machines of a specific type used by a part in a particular cell the machine set-up costs 

can also be determined leading to the total cost calculation for CF . 

• Neighborhood Generation - Moves Definition 

In TS methods, each iteration of the search process focuses on finding a good neigh­

borhood solution with better quality than the current solution. The neighborhood of 

a current solution is defined as a set of feasible solutions that can be reached by a 

transition move. 

In the TS process, theoretically speaking, the neighborhood of each solution contains 

all solutions to be explored. However, the size of the neighborhood is determined by 

several considerations and it can be subject to change because: either the problem is 

too big for all neighboring solutions to be found, or some of the neighboring solutions 

are eliminated as their corresponding moves are forbidden (see tabu list definition, page 

159). In any case, the size of the neighborhood should allow a thorough search within 

the neighborhood so that promising regions are investigated. 

Similar to the design of the heuristic algorithm in Chapter 6, two types of transitions, 

either single or interchange, will be used for TS to generate neighboring solutions for 

each configuration in the system. 

Each neighborhood will comprise of solutions produced by moves of machine instance 

pairs belonging to a certain part. When a different machine instance pair is taken 

into account another neighborhood with a certain set of solutions will be generated. 

From each neighborhood a solution will be chosen, based on some criteria as will be 

explained later, to become the current one from where the search will continue and 

move onto another neighborhood of solutions generated by another configuration, i.e. 

another machine instance pair. This process continues until the number of iterations 

is reached. In order to illustrate the neighborhood generation operation Figure 7.4 is 

produced where only a small number of generated neighborhoods is shown, i.e. only a 

few number of iterations is assumed. The dotted line represents the solutions chosen 

from neighborhood to neighborhood and the actual flow of the search. Once a solution 

is chosen from current neighborhood another set of neighboring solutions is generated 

for a different machine instance pair and a solution is chosen. This process continues 

till the iteration limit is reached. Assume that from each neighborhood the solution 

indicated by the letter x and the corresponding neighborhood as a subscript is imple­

mented. Moreover, the starting solution is produced by the random initial solution 
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strategy as shown in Chapter 5. 

Figure 7.4: TS Neighborhood Generation 

As stated already, all solutions generated are produced from either single or interchange 

moves. Both transitions employed follow the specifications presented in Chapter 6. 

However, for a complete description of the two transition types and the solutions gen­

erated within the tabu search algorithm see the design of the tabu search procedure 

presented in section 7.4 . 

• Short Term Memory: Aspiration Criterion 

Before describing the tabu list operation it is worth mentioning the aspiration criterion 

(AC) and its value [GL97J. When certain conditions are satisfied, it is desirable to 

override the tabu status and allow tabu moves to be candidates. The AC employed 

here resembles the typical and customarily used global form of aspiration by objective, 

where the tabu status of a move is overridden when the move improves the best value 

found so far . 

• Short Term Memory: Tabu List & Tabu Tenure 

The short term memory employed is the history of recent moves (recency memory) and 

aims primarily at preventing moving back to these moves, avoiding being trapped at 

local optima or causing cycling. The most common implementation of the short term 

memory is based upon the storage/update of the move attributes that were recently 

visited. 
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As already mentioned for each machine instance pair a neighborhood will be gener­

ated with solutions produced by considering moving the current machine instance pair 

either by performing single or interchange transition. At this stage of the search pro­

cess, where no moves are implemented yet, a temporary tabu list referring to current 

neighborhood and named tUempx is created. Elements such as cell assignment, cur­

rent mschine instance pair and tabu tenure referring to each transition involved within 

current neighborhood are stored in tUempx. These elements involve both the reverse 

and forward attributes of the current move. For each newly added entry (row) in 

tUempx, the maximum tabu tenure, i.e. TMAX is also recorded. Moreover, each row 

within the temporary tabu list has another entry added in the first position to denote 

the neighboring number solution generated within current neighborhood. For example, 

for the first solution generated within a specific neighborhood the temporary tabu list 

will have the entity one stored as the first entry for all the rows involved listing both 

forward and reverse attributes for current solution. This will be used for identification 

purposes when moves within the current neighborhood will be considered for imple­

mentation later on. In order to be able to illustrate the temporary tabu list's operation 

an example is presented next. 

Assume in the first instance that a single move is considered for the machine of type 

i and instance k from a source cell cl to a destination cell c2, as shown in Figure 

7.5, generating the first neighboring solution within the current neighborhood. The 

temporary tabu list will be updated and the following entries will be added as shown 

in matrix (7.1). Please note that neighbor 1 is assigned the value one. 

source cell c1 destination cell c2 

(i,k) 
single move c1->c2 

Figure 7.5: Single Transition 

I 
[
neighbOr 1 cl i k TM AX] 

t ..tempx= 
neighbor 1 c2 i k TMAX 

(7.1) 

Later on, assume that for the same machine instance pair another neighbor solution 
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will be generated when an interchange move is to be taken into account. More specif­

ically, a machine of type i and instance k is moved from source cell cl to destination 

cell c2' and another machine of type i' and instance k' is moved from its source cell 

c2' (Le. destination cell of first move) to the destination cell cl (source cell of the first 

move) as shown in Figure 7.6. 

After the generation of the second solution within the current neighborhood for config­

uration (i, k) the tabu list will be updated and will have the form of the matrix (7.2). 
Please note here also that neighbor 2 is assigned the value two. 

source cell c1 destination cell cZ 

single move c2'->c1 

('.k·) 

single move c1->c2' 

Figure 7.6: Interchange Transition 

[~'-' 
cl i • TM~1 I neighbor 2 c2' i k TMAX 

t _tempx = 
c2' ;' k' TMAX neighbor 2 

neighbor 2 cl ;' k' TMAX 

(7.2) 

Please note, that for either single or interchange moves, odd entries in the tabu list 

represent the reverse of the move and even entries the forward. 

In a similar way, the remaining neighboring solutions for the machine of type i, in­

stance k, when source cell is cl, will be generated and the temporarily tabu list will be 

updated accordingly. 

Once the entire neighborhood or a subset of it (depending upon the size of the prob­

lem) is generated, the moves are starting to be considered for implementation and 

another tabu list named tl (permanent this time) is initialised with three entries in it: 

cell assignment, machine instance pairs, and tabu tenure. Tabu tenure remains fixed 

during the entire search, therefore all attributes will remain tabu-active for the same 

number of iterations as the search goes along. However when a certain move becomes 
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admissible a certain update will take place in tl as will be seen later on. 

For a theoretical description on the decision of a candidate move to become admissible 

for implementation when short term memory is employed see Figure 7.7 (page 162). 

Move 

I 
Does the move contain 
tabu-active attributeS?~ 

No 
Is the move tabu? 

Ves 

No Does the move 
satisfiy AC? 

~NO 
Move is admissible Move is not admissible 

Figure 7.7: Tabu Decision Tree 

But how will a certain solution be selected from the neighboring ones for the current 

study? Initially, all the solutions found within a neighborhood are sorted in ascending 

order of their corresponding objective values. If the solution with the smallest objective 

value happens to be less than the best value found so far then its corresponding move 

will become admissible for implementation no matter what the tabu status is of its 

related attributes because of the aspiration criterion. If this is not the case, then the 

procedure will continue locally, within current neighborhood, in search of the move to ' 

implement. The solution with the least worst objective value will be examined first to 

check whether the tabu status of the corresponding move is still active. If the latter 

is happening then the search will continue examining the solution that follows next in 

the sorted sequence and so on till a move that can become admissible is found. 

It is worth presenting in more details the operation of the tabu list and see the interac­

tion between tUempx and tl. Steps 1 to 3, below, describe the update on the tabu list 

tl when a move becomes admissible since its corresponding value satisfies the aspiration 

criterion, i.e. objective value for current solution is better than the best found so far. 

1. Find in tUempx the segment referring to the current admissible move, i.e. all 

move attributes (forward and reverse), and also the segments referring to the 
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remaining non-implemented moveSj 

2. Check tl: 

(a) if it is empty add for the admissible move both reverse and forward attributes 

as found in tUempx; 

(b) else, add in tl both reverse and forward attributes of the admissible move 

found in tLtempx as above, and also check the forward attributes of the 

remaining moves if they exist in tl from previous transitions. If they do, i.e. 

they are still tabu active, leave the entries as they are with their current 

tabu tenure; Otherwise place them in tl with tabu tenure equal to TM AX. 

The latter is happening so that re-consideration of these will be avoided for 

a substantial time interval as these moves are of no interest for the near 

future; 

3. For ·completion of processes 2 (a) and 2 (b), subtract one unit from tabu tenures 

of the other entries in tabu list and remove those entries whose tabu tenure is 

zero. 

If the AC is not satisfied, then the search will take place locally, as already stated, 

considering to implement the best solution in the neighborhood caused by a move 

whose forward attribute 2 is not tabu. If the tabu list is empty then the best solution 

within the neighborhood can become admissible for implementation. In this case both 

attributes, reverse and forward of the current move, are added into the tabu list tl 

with tabu tenure equal to TM AX similar to the process described above. Also for the 

remaining segments of the non-admissible moves their forward moves are also added to 

the tabu list tl and their tabu tenure is set to TM AX unless they are already in tl so no 

update takes place. Also step 3 above is implemented last as well. 

In the case where the tabu list is not empty then the search continues exploring all 

solutions in the neighborhood (starting from the least worst) whose forward attribute 

is non-tabu and can become admissible. Once this solution is found the tabu list is 

updated as shown above in steps 2 (a) and 2 (b) and 3. 

In case that all solutions in the neighborhood still have tabu active forward attributes 

the search process will continue with any of the following three solutions depending 

upon the nature of the data set employed: 

2Please note that when an interchange move is encountered only the forward attribute of the first 
single move, Le. from source to destination cell, is examined. 
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1. current least worst found locally; 

2. current worst found locally; 

3. best solution found so far . 

• Stopping Criterion 

The tabu search procedure stops when a predetermined number of iterations has been 

reached; or the solution has not been improved after a certain number of consecutive 

iterations [Gl090j. In the current study the iterative tabu search process is terminated 

after a certain number of iterations is reached as will be seen in section 7.4.3. But 

before, the actual TS algorithm is presented next. 

7.4 Tabu Search Algorithm Design 

The actual design of the tabu search forms the key stage for the investigation of better 

solutions for CF when larger data sets are to be taken into account. In order to build 

this algorithm all of its components, as described in the previous section, are assembled 

together within an iterative procedure aiming to search the neighboring space. Moving 

transitions, either single or interchanges, are included within the iterative procedure, 

and some additional heuristic approaches are proposed within the latter to produce a 

better and a more efficient algorithm. 

Similarly to the heuristic algorithm presented in Chapter 6 the tabu search proposed 

here will be split into different phases for better illustration. These phases are as 

follows: 

• Initialisation Process; 

• Iterative Procedure; 

• Termination. 

7.4.1 Initialisation Process 

In order to present the iterative procedure, certain elements need to be initialised with 

most of them having been specified in previous chapters. More specifically, and for 

the need of the tabu search algorithm the initialisation presented in Routine 1 will be 

employed. 
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Routine 1: Initialisation phase for TS 

• initialise BEST_COST to be equal to INIT_OBJVAL; 

• initialise BEST ..sOL to be equal to INIT ..sOL; 

• initially assume that BEST_CELLMATRIX2 is equal to CELLMATRIX2.1emp; 

• initially assume that BEST .partJTIoves is equal to parLmoves.1emp; 

• initially assume that BEST _W _jq is equal to W _jq_temp; 

• initialise CELLM ATRIX2_temp to be equal to CELLMATRIX2; 

• initialise parLmoves_temp to be equal to parLmoves; 

• initialise W_jq.temp to be equal to W_jq. 

It is also worth commenting on the creation of an additional 4D matrix, named 

CELLMATRIX2AD. This matrix will be used in order to be able to store for current 

generated neighborhood its associated solutions and more specifically the allocation of 

machines to cells. The size ofthe matrix is (NM x KMAX x NC x length(alLcells)). 

The first three dimensions match the size of CELL MATRIX initially formed in Chap­

ter 5, whereas the last refers to the number of the solution, within current neighborhood, 

that is currently explored. 

7.4.2 Iterative Procedure 

The iterative procedure is the main phase of the TS algorithm where investigation of 

better solutions close to optimum are sought. It mainly consists of two different stages. 

The first stage involves the consideration of a machine instance pair belonging to a 

certain part's machine operation sequence and its transition to other cells where either 

a single or an interchange transition takes place. The latter, as the heuristic approach 

presented in Chapter 6, depends upon the capacity of the associated source and candi­

date destination cells. Each transition entails the creation of a unique solution within 

the neighborhood. Then a part reallocation is performed and finally the evaluation of 

the objective value takes place. Moreover, as described previously a temporary tabu 

list is updated within this stage. 

The second stage within the iterative procedure comprises the main stage within the 

search process since the principles of the tabu search algorithm are adopted and de­

cisions are made concerning the direction of the search. More specifically, once the 
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neighborhood has been generated from the first stage, a process commences searching 

which move within the current neighborhood to actually implement. 

Similarly to the heuristic algorithm the tabu search algorithm begins by considering 

the parts in the system and more specifically the part that causes the majority of the 

intercellular movements in the initial solution. Given the distinct allocation of parts to 

cells (W -jq) , as produced from the initial starting solution (see Chapter 5), parts are 

ordered in descending order relative to. the number of intercellular movements. The 

reasons for doing this were presented in section 6.3.2. 

Moreover, with reference to the current part in operation, the segment corresponding 

to its cell machine instance pair allocation relative to its machine sequence is found in 

part..moves_temp and stored in vector qik. Each machine instance pair in the latter, is 

a candidate for moving it from the cell currently in use, Le. source cell, to the remain­

ing cells, Le. destination cells, investigating for current configuration the associated 

neighborhood. 

The pseudo code presented next, in Routines 2-4, includes the main steps and relevant 

loops involved within the iterative tabu search approach. For more information on the 

actual code involved see Appendix E. Please note that Routine 3 is briefly described 

as the transitions types either single or interchange have already been presented within 

section 6.3.2. 

Routine 2: TS Iterative Framework 

• Initialise a tabu list, i.e. tl, to be empty; 

• Initialise Lglobal to zero; 

• while Lgloballess than 0 (0 defined in section 7.4.3 - Termination) 

1. Order the parts in descending order of the intercellular movements caused; Re­

turn the sorted parts in wi and number of intercellular movements for each 

sorted part in wy; 

2. Initialise a counter, Le counter _part, for choosing part; 

3. Initialise Lpart to zero; 

4. while Lpart less than ('I'xlength(wi)) ('I' defined in section 7.4.3 - Termination) 

- if counter_part is greater than or equal to length(wi) then counter_part 

becomes equal to zero; end if 
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- Current part index. i.e. j2. becomes equal to counter_part + 1; 

- Initialise i-1Jource to be equal to zero 

- Initialise a counter. i.e. counter _source. for choosing source cell index; 

- Initialise a counter. i.e. counter _objval. for counting the iterations that 

the obj. value does not improve; 

• while i-source less than (X x length(wi)) (X defined in section 7.4.3 

- Termination) 

(a) iffor ",3 iterations the objective value does not improve. i.e. 

counter..objval ~ '" then break the current loop and continue with 

another part; 

CELLMATRIX2_temp equals BESLCELLMATRIX2; 

Update part_moves_temp and W_jq_temp; 

Continue with next part in the sequence; 

end if 

(b) For actual part. i.e. wi(j2). find the corresponding segment in 

parLmoves..temp and store it in qik; 

(c) if counter -1Jource is greater than or equal to length(qik) then counter 

becomes equal to zero; end if 

(d) The index ofthe row of qik. i.e. cl. is now is equal to counter -1JOUTce+ 

1; 

(e) The actual source cell is: source...cell = qik(c1, 1); 

(f) Assign all cells in a vector named all_cells; 

(g) Take the first row in qik. find the cell where the first machine instance 

pair is allocated and store it in a vector named cc; 

(h) Delete this from all-cells; 

(i) Initialise a 4D matrix named CELLMATRIX2AD; 

U) Initialise a vector. i.e. OBJV ALM. for storing the objective values 

of all neighbors in current neighborhood of length equal to one up 

to the length of all...cells; 

(k) Initialise the temporary tabu list. i.e. tLtempx equal to empty; 

(I) Continue with Routine 3: Neighborhood Generation; 

(m) Continue with Routine 4: Selection of Admissible Move from the 

generated neighborhood in Routine 3; 

(n) counter -1Jource becomes equal to cl; 

30: is a parameter whose value varies depending upon the problem used each time. 
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(0) Accumulate i.source; 

end while Lsource 

- counter _part becomes equal to j2; 

- Accumulate Lpart; 

end while Lpart 

5. Accumulate i_global; 

end while Lglobal 

Routine 3: Neighborhood Generation 

1. for i..dest equal to one up to the length of all..cells 

• Store the cell corresponding to i..dest index in dest_cell; 

• if capacity of machines stored in dest..cell (destination cell) cell is less than 

EMAX & capacity of qik(cl, 1) (source cell) is less than or equal to EMAX & 

greater than EMIN 

- Single move commences as presented in section 6.3.2; 

- Reallocate parts to machine cells for current transition; 

- Evaluate current Objective Value named OBJV AL_tempx; 

- Store objective value corresponding to current Ldest in OBJV ALM; 

- Update tLtempx; 

else 

- Interchange move commences as presented in section 6.3.2; 

- Reallocate parts to machine cells for current transition; 

- Evaluate current Objective Value named OBJV AL..tempx; 

- Store objective value corresponding to current i..dest in OBJV ALM; 

- Update tLtempx; 

end if 

Routine 4: Selection of Admissible Move 

1. Sort the objective values, found in OBJV ALM in ascending order. Store the latter 

in OBJVALM .sorted and their corresponding indices in OBJV ALM_sortedi; 

2. Sort also the CELLMATRIX2_4D using the OBJVALM_sortedi indices and 

return a 4D matrix named CELLMATRIX2AD_sorted; 
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3. Find the segments in tl.iempx corresponding to each generated OBJV ALM ..sortedi 

and sort them accordingly; 

4. if local best, i.e. OBJV AL..sorted(l), less than BEST-COST; 

• Update CELLMATRIX2_temp with the corresponding first solution stored 

in CELLMATRIX2AD_sorted 

• Perform part reallocation to receive updated part-moves.iemp & W _jq.iemp 

when machine cell allocation is equal to CELLMATRIX2_temp; 

• Update global best value, i.e. BEST _COST with local best; 

• Update BEST_CELLMATRIX2 with CELLMATRIX2_temp; 

• Update BEST _part-moves with current, i.e. part..moves.iemp; 

• Update BEST _W _jq with current W _jq_temp; 

• Update tabu list (see section 7.3.1); 

else if local best neigh boring solution worse than global best 

• Accumulate counter ..lJbjval; 

• if tabu list tl is not empty 

- Find those solutions with reference to their corresponding sorted objective 

values whose forward moves are in the tabu list and store them in a vector 

named colled_notimpl; 

- Identify those not in tl; Store them in a vector named imp_candidatei; 

else the candidate to implement is the first with the least worse objective value; 

end if 

• if imp_candidate is not empty, i.e. there is at least one candidate solution to 

become admissible 

- Choose the smallest of all (i.e. with the min. objective value) and update 

CELLMATRIX2.iemp; 

- Perform reallocation of parts to receive updated parLmoves_temp and 

W _jq_temp when machine cell allocation is equal to 

CELLMATRIX2_temp; 

- Update tabu list tl (see section 7.3.1); 

else if imp_candidate is empty, i.e. all related attributes for all moves are tabu 

active perform one of the following: 
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- Update CELLMATRIX2_kmp with 

CELLMATRIX2_4D(:,:,:, length(OBJV AL-sortedi}} (current worst); 

- Update CELLMATRIX2_temp with 

CELLMATRIX2AD_sorted(:,:,:,I)) (current least worst); 

- Update CELLMATRIX2_temp with BEST_CELLMATRIX2 (cur­

rent best); 

- For any of the above three cases chosen perform part reallocation with the 

corresponding machine cell allocation to receive the updated part..moves_temp 

and W _jq_temp; 

end if 

end if 

It is worth commenting on a few things in the above routines. In a similar way with 

the design of the heuristic algorithm, in Chapter 6, when a machine instance is moved 

from a source cell to a different one both current part's machine cell allocation and 

other part's situation might get affected because of the existence of the part machine 

operation sequence. For this reason any time a move is considered and before evaluating 

the value of the objective function part reallocation is performed, as shown in Routine 3, 

which outputs the updated part_moves.iemp and also increases the chances of receiving 

a better output value. Within routine 4 however, when a move becomes admissible part 

reallocation is only performed for reasons of receiving the updated part..moves_temp 

and W _jq_temp both to be used in the iteration that follows. Please note that the 

latter does not change the CF configuration since for each of the cases examined the 

updated machine cell allocation, after a certain move was considered, is revisited and 

acts as the basic input to the part re-allocation process. 

7.4.3 Termination 

The tabu search algorithm will terminate when a pre-specified total number of itera­

tions is reached. As already seen in the routine 2, three loops are considered whose 

duration depends upon the values of parameters 0, <p and X and the length of wy which 

is equal to the total number of parts employed each time. The outermost loop con­

centrates on the total number of parts and their order to be investigated. Within the 

nested loop, a part is chosen and within the innermost loop transitions of the machine 

instance pairs relative to current part's machine operation sequence between source 

and destination cells are taking place. 
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An attempt was made in order to illustrate with a formulae the total number of itera­

tions involved as shown in equation 7.3. 

Total TB Iterations = 8 x {(IP x length(wy)) x [(X x length(wy)) x 

length(NC - I)]} (7.3) 

7.5 Summary 

For investigation of a higher searching strategy possibly more promising than the heuris­

tic approach described in Chapter 6 an algorithm based on a metaheuristic approach 

such as TS was of need. This chapter presented a TS algorithm for the CF problem 

for investigating a significant number of solutions given an initial heuristically based 

random solution. The type of memory employed was short term memory whose com­

ponents such as tabu list, tabu tenure, aspiration and stoping criteria were designed to 

reflect on the CF's requirements and specifications. Within the iterative procedure two 

types of transitions, single and interchange, were considered for the creation of feasible 

solutions. Both transitions were designed to be independent from each other, however, 

both working towards the exploration of better solutions. For examining and criticis­

ing the tabu search algorithm's effectiveness, testing will be carried out in Chapter 8 

with an additional comparison between the latter and the heuristic approach for better 

clarification on the performance and the computational effectiveness of both. 
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Chapter 8 

Tabu Search Computational 

Results 

8.1 Introduction 

This Chapter presents a number of computational results for the metaheuristic ap­

proach, proposed in Chapter 7, where small, medium and large scale problem sizes, the 

same with those generated in Chapter 6, are employed. 

Similarly to the heuristic approach and in order to have a clear picture on the tabu 

search algorithm and its operation a thorough description will be provided examining 

its iterative behaviour, the efficiency of the initial solution within the latter and the 

quality of the solutions obtained together with the computational times required. 

Finally, a comparison between the heuristic approach and the tabu search algorithm 

will be presented for completeness. 

Please note that similar to the heuristic approach, the tabu search algorithm was also 

coded in MatLab and run on a personal computer (Genuine Intel(R) 1.66 GHz, 1.00 

GB of RAM). 

8.2 Computational Results for the TS Algorithm 

The medium and large data sets will be examined first concentrating on the compu­

tational results and then analysing a number of elements such as: the behaviour of 

the iterative procedure, the tabu search initial starting solution and the tabu list size 
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involved. 

8.2.1 Computational Results for Medium & Large Sized Problems 

The computational results for medium and large data sets are presented in Table 8.1 

(page 174). In a similar way to the presentation of the heuristic results, in Chapter 6, 

the elements determined here for each problem instance when the tabu search iterative 

procedure is employed are: number of cells in the system, total number of machine in­

stances, the best known objective value obtained via the mathematical solver and the 

corresponding CPU time. Moreover, the best value of the objective function obtained 

via TS and the required CPU time together with the value of the initial objective value 

are also included. Additionally, the deviation of TS from the optimum or best known 

solution obtained via XPRESS-MP is included together with the percentage of deviation 

of the best TS solution from the initial solution which was randomly generated. Fi­

nally, the mean values of both deviation percentages together with the mean value for 

the processing times are presented at the bottom of the table. Also, the number of 

parts and machine types involved in each problem are also listed within Table 8.1 for 

completeness. 

The results presented in Table 8.1 are very good compared to integer programming 

methods proving that the tabu search algorithm is very effective io obtaining rapidly 

high quality solutions. More specifically, the mean deviation value of TS algorithm 

from the best known objective value is ten percent. Moreover, the required CPU time 

for most of the problem instances does not exceed the two thousand seconds overall 

(problem twelve is currently excluded, as the largest data set of all needs a substantial 

CPU time in order for the iterative procedure to end). 
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T bI 81 P bl D a e .. ra em dC ata an . al R uI f Med' & L amputatIon es ts or mm arge P bl S ra em izes 

I XPRESS-MP I Tabu Search (TS) I 
Prob. NM NP NC TMI EMAX I Obj. CPU time I Init. Obj. Best Obj. Dey.m CPU time"" (secs) I Dey.TT 

1. 10 19 5 40 9 444.131 > 30 hrs 623.73 481.74 23% 102.52 8% 
2. 7 10 5 20 6 219.92' 141 secs 339.96 242.83 29% 18.953 9% 
3. 14 24 5 37 8 383.78' > 30 hrs 562.36 428.4 24% 133.97 12% 
4. 30 50 8 99 13 1100.02' > 30 hrs 1642.3 1178.8 28% 1945.5 7% 
5. 15 30 7 47 7 582.71' > 30 hrs 928.48 641.92 31% 333.3 10% 
6. 30 41 7 94 14 893.28' > 30 hrs 1643.6 968.3 41% 1206.2 8% 
7. 23 20 6 42 8 390.51' > 30 hrs 667.14 410.51 38% 275.11 5% 
8. 8 20 5 31 7 333.82' > 30 hrs 541.48 385.99 29% 75.938 16% 
9. 10 15 5 30 7 . 302.25' > 30 hrs 501.87 332.3 34% 58.563 10% 
10. 9 9 5 29 6 242.13' > 30 hrs 387.07 271.05 30% 30.422 12% 
11. 9 9 5 28 6 269.11' > 30 hrs 407.35 298.65 27% 33.969 11% 
12. 36 90 10 147 17 1441.62' > 30 hrs 2872.9 1755.2 39% 21405 22% 
13. 14 24 5 45 10 508.82' > 30 hrs 872.71 557.22 36% 168.83 10% 
14. 20 35 7 64 11 732.37' > 30 hrs 1068.6 743.19 30% 507.52 1% 
15. 16 43 9 65 11 799.08' > 30 hrs 1283.6 860.51 33% 825.67 8% 
16. 12 19 5 29 7 293.85' 196 secs 406.6 318.01 22% 55.422. 8% 
17. 16 43 8 61 10 713.97' > 30 hrs 1051.3 810.97 23% 742.47 14% 
18. 27 27 8 76 10 763.51' > 30 hrs 1223.5 816.07 33% 720.03 7% 
19. 26 37 8 64 10 644.41 , > 30 hrs 1131.3 671.61 41% 670.11 4% 

Mean Rounded Values 
Dey. CPU Dey. 
31% 1543 secs 10% 

" Optlmum solutlOn. 
"" CPU time needed when only one run of the algorithm was attempted. Problem 12 is currently excluded see remark 4 Section 8.3. 
I Best known solution. -
ft Percentage deviation of eacb solution from the optimum or best known solution, obtaIned via XPRESS-MP, and produced as follows: 

D - round«TS Bu' OIt XPRESS-MP B", Obj.) x 100) ev. - XP ESS MP Best Ob). 
1ft TS Percentage of improvement: Init. Obj. vs. Best Obj. as follows: 

Dev. = round«lnit. Obj.-B.~, Obj.) x 100) 
lmt. Ob). 
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• Tabu Search Iterative Procedure Behaviour 

As stated in Chapter 7 and before the commencement of the tabu search, the value of 

the objective value becomes equal to the value of the initial solution that is fed into the 

system. Within the iterative procedure and for each machine instance pair belonging to 

the current part's machine instance cell situation, which is relative to the part machine 

operation sequence, its neighborhood is generated and a number of solutions with their 

corresponding objective values are obtained. Later on, a decision is made in order to de­

cide which move to implement from all the possible included within the neighborhood. 

From the set of solutions the least worse solution, that is not tabu active, becomes 

admissible for implementation unless the AC criterion is met. The procedure continues 

with the next machine instance pair in sequence for the current part till it reaches the· 

iteration limit (i.e. the value of X) where the next part in sequence is taken ii:tto account. 

In order to illustrate the behaviour of the TS iterative procedure problem instance 

fourteen is employed where the deviation of the TS from the best known value is one 

percent. Figure 8.1{a) shows the fluctuation of the objective values with respect to the 

iterations involved. Please note, that in the latter all objective values including those 

produced from the non-admissible moves in each generated neighborhood are displayed 

in order to have a clear picture of the TS and how it evolves within the search space. 

Also Figure 8.1{b) presents a portion of the trend on the objective values of Figure 

8.1{a) only for the implemented moves between iterations 2000 and 2500. It can be 

seen from Figure 8.1{a) that the total number of iterations needed is approximately 

2600. Moreover, the best objective value of magnitude 743.19 units, as specified on 

Table 8.1, is first obtained at iteration number 2326 and then appears again at later 

iterations. 

Although a rapid descent flow of the objective values is shown in Figure 8.1{a) a signif­

icant number of solutions is investigated in the search space increasing the possibilities 

of receiving a better TS deviation from the best known objective value. Moreover, since 

the search does not always continue from the best solution found, unless the AC is met, 

leads to the investigation of areas that might not sound very promising but could lead 

later. on to very useful results when certain moves are implemented. Moreover, the 

deviation between the initial objective value and the best cost obtained has magni­

tude 30% which is very significant, thus the iterative tabu· search algorithm operates 

effectively. 
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• Tabu Search vs. Initial Solution 

As already discussed in Chapter 7, the initial solution is randomly generated and fed 

into TS before the iterative procedure begins. From Table 8.1 can be seen that for 

problem instance fourteen the value of the initial objective value is 1068.6, which is 

produced with a certain allocation of machines to cells, whereas the value of the best 

cost obtained via the TS, which is based on the initial solution, is 743.19 units. If a 

different initial allocation of machines to cells is fed into the system a different output 

will be produced, however its value won't differ much from the first obtained. The 

reason for the latter is the neighborhood generation for each candidate machine in­

stance pair where an investigation of many areas/solutions is taking place increasing 

the possibilities of receiving good and stable results. 

In order to illustrate the above, Figure 8.2 (page 178) is presented where a different 

initial solution is generated for problem instance fourteen and the iterative procedure 

is run only once. Please note that both the total number of iterations and the value of 

tabu tenure remain the same. 

From Figure 8.2 it can be seen that the total number of iterations is approximately 

2600, same as before. The deviation of the TS from the best known solutions is 3%, 

when the value of the initial solution is 1134.1 and the best cost found is 752.37 units . 

• Tabu Search: Tabu Tenure Size 

There are no general guidelines to determine the optimal sizes of tabu tenures. In 

practice the search process should be constructed with different values of tabu tenures. 

From the computation of the large scale problems, it is observed that for sizes suggested 

by Glover and Laguna [GL97] which are five to ten, the evaluated solutions did work 

well in solving the current problems. As stated in Chapter 7 the length of tabu tenure 

which is utilised for each element in the tabu list is to be of fixed size for each problem 

instance. The values used most for all problem instances range between five and fifteen. 

For the objective value evolution of problem instance fourteen as shown in Figures 8.1(a) 

and 8.2 the size of the tabu tenure employed was equal to ten. What will happen if 

the value of the latter changes? Assume problem instance fourteen with tabu tenure 

equal to fifteen, same initial solution, which was used to produce Figure 8.2, and also 

the same total number of iterations. The result is shown in Figure 8.3 (page 179). 
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The output generated in Figure 8.3 is different from the one shown in Figure 8.2 as the 

estimated deviation is five percent and the best cost encountered 768.26 units. Thus a 

different value of tabu tenure produces different evolution on the objective value with 

respect to the iterations and different TS deviation from the best known value. After 

a number of experiments it was decided that for medium to large problems the value 

of tabu tenure should be ten . 

• Additional Objective Value Fluctuations 

For the purpose of this section problem instance twelve will be employed as it happens 

to be the largest of all with 147 total number of machines and 90 parts. The deviation 

produced via TS from the best known value is of magnitude twenty two percent with 

tabu tenure equal to twelve and total number of iterations increased significantly from 

the rest of the problem instances. The fluctuation on the objective value can be seen 

in Figure 8.4 (page 181). 
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8.2.2 Computational Results for Small Sized Problems 

In a similar way with the heuristic approach that was tested with small sized problem 

instances, the tabu search algorithm is tested here with the same problem instances 

and the results are shown in Table 8.2 (page 183). It is worth noting that the mean 

deviation value of the tabu search from the best known solution is six percent, whereas 

the mean deviation of the best cost found from the initial value is t;;'enty seven percent. 

Moreover, the mean processing time is only ten seconds. Please note also that simi­

larly with the heuristic approach, the optimum value is found for two of the problem 

instances when tabu search was employed. Moreover, all results were obtained with 

only one trial, Le the algorithm was run only once. 

In order to illustrate the operation of the tabu search algorithm, problem instances 

twenty two and twenty three will be employed and the evolution on their objective 

values wi1\ be examined. Figure 8.5 (page 185) shows the trend on the objective value 

for both problems when total number of iterations needed is 366 and 357 respectively. 

Figure 8.5(a) shows that the best value of the objective value for problem twenty two 

is found only once at iteration number 344, whereas from Figure 8.5(b) the best value 

for problem twenty three is first found at iteration number 170 and to later iterations 

as well. 

For both problems, twenty two and twenty three, the value of the tabu tenure used is 

equal to five. If the value of tabu tenure changes the evolution of the objective value 

should differ. In order to illustrate the latter, assume that for both problems the value 

of tabu tenure is set up equal to ten. Please note that the initial solutions initia1\y fed 

into the system are used here as well. The new evolution on the objective value for 

both problems, can be seen in Figure 8.6 (page 186). The deviation of TS from the 

best known solution is recorded to be fourteen percent for problem twenty two and nine 

percent for problem twenty three. Both values are much greater than the deviation 

values initially found as shown in Table 8.2. In conclusion, for sma1\ problems, tabu 

tenure values close to five seem to be more suitable. The latter is true, since within a 

sma11 problem the candidate moves are ouly a few and the more restricted these are 

the more difficult it is for the algorithm to converge to a value close to optimum when 

a simulation is run. 
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Table 8 2' Problem Data and Computational Results for Small Problems 

I XPRESS-MP . I 
Problem NM NP NC TMI EMAX I Opt" CPU time I Init. Obj. 

20. 6 8 5 22 6 213.70 23.80 hrs 
21. 6 8 4 19 6 143.04 71 secs 
22. 6 8 5 23 6 204.25 3210 secs 
23. 6 8 5 28 6 229.09 4167 secs 
24. 5 7 3 17 6 153.36 52 secs 
25. 5 7 4 20 6 183.14 2871 secs 
26. 5 7 3 17 6 153.19 25 secs 
27. 4 6 3 13 5 117.82 1 sec 
28. 4 6 3 10 4 113.26 16 secs 
29. 4 6 3 9 4 103.08 1 sec 

" OptImum solutIOn obtamed vIa XPRESS-MP. 
"" CPU time needed when only one run of the algorithm was attempted. 
I Dev. = round« B", ~~tOp,.) x 100) 

II TS Percentage of improvement: Init. Obj. vs. Best Obj. as follows: 
Dev. = round« Init. ~bii-g:~' Obj.) x 100) 

m. J. 

328 
235.87 
294.06 
334.81 
181.37 
265.38 
212.11 
195.47 
156.73 
142.06 

Tabu Search (TS) I 
Best Obj. Dev.n CPU time"" (secs) I Dev. 1 

231.69 29% 15.766 8% 
154.35 35% 7.875 8% 
211.63 28% 15.422 4% 
237.53 29% 17.297 4% 
161.23 11% 16.813 5% 
200.59 24% 11.172 9% 
164.7 22% 6.6875 8% 

132.69 32% 4.7344 13% 
113.26 28% 4.0313 0% 
103.08 27% 3.625 0% 

Mean Rounded Values 
Dev. CPU Dev. 
27% 10 secs 6% 

o 

f 
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8.3 Tabu Search Algorithm vs. Heuristic Approach 

As already presented in Chapter 6, although the proposed heuristic algorithm is effec­

tive as the results recorded for a variety of problem sizes are very good, it has certain 

limitations in its operation as described in section 6.6. On the other hand the tabu 

search algorithm, proposed in Chapter 7, is currently proved to be better in most cases 

and more effective both in its functionality and in the quality of the solutions produced. 

At this point a number of concluding remarks can be drawn summarising the basic op­

erations for the developed tabu search algorithm via which its advantages against the 

heuristic approach will be identified. These are described below as follows: 

1. The results of testing when medium and large scale problems employed showed 

that the tabu search procedure is very effective and the quality of the solutions 

generated adequate. The mean deviation value of the tabu search best cost from 

the best known solution obtained with XPRESS-MP was found to be of magnitude 

equal to ten which was better than the mean value produced via, the heuristic 

approach which was twelve. Comparing the results for all problem instances for 

both the TS and the heuristic approach it can be observed that for the majority of 

them smaller deviations were obtained when TS was employed. Only for problem 

instance nineteen the heuristic approach performed slightly better than the TS 

algorithm since the deviation produced was of smaller magnitude. 

2. For the small sized problems the results gave also a good indication of the tabu 

search algorithm's effectiveness and its advantage over the heuristic approach. 

More specifically, only six percent was the mean deviation value of the best cost 

from the optimum solution found, whereas seven percent was the mean value for 

the heuristic. 

3. Within the TS iterative procedure the mean deviation value of the best cost from 

the initial value of the objective function is significantly high. The latter indicates 

that within the iterative procedure and the neighborhood generation for each 

candidate machine instance pair, exploration of many areas occur implying the 

investigation of many non-visited solutions. In achieving the latter the utilisation 

of short term memory and more specifically the use of a tabu list played an 

important role. 

4. An important point in the operation of the tabu search iterative procedure is 

its robustness when an initial solution is fed into it. More specifically, once the 

initial solution is generated the iterative procedure commences and it finishes 

when the total number of iterations is reached producing a certain output. If 
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Figure 8.5: Objective Value Evolution when TT = 5 

- 185 -



Chapter 8 Tabu Search Computational Results 

220 O~-50=--::10=0--:'~50:---=20=O--:2~50:---=30=0--:3~50:---:!400 
Iteration 

(a) Problem 22 

280 

260 

240 OO---50=--::10=0--:'~50:---=20=O--:2~50:---=30=0--:3~50:--7.400 
Iteration 

(b) Problem 23 

Figure 8.6: Objective Value Evolution when TT = 10 
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another initial solution is fed into the iterative procedure, another solution will 

be produced whose deviation from the best known value won't differ much from 

the deviation obtained via the first attempt. Overall, different runs with different 

initial solutions produce solutions whose deviation values don't differ much in 

magnitude from each other; something that is not happening in the heuristic 

algorithm. In case, of course, that the problem is too big, e.g. problem instance 

twelve, multiple runs might be needed, with the same or different initial solution 

each time, till suitable adjustments to either the number of iterations or the 

value of the tabu tenure employed will be made in order for a good solution to 

be obtained. 

5. Considering the number of iterations within the TS iterative procedure their 

total number depends upon the size of the problem employed each time. More 

specifically, the majority of the parameters within the loops, as already described 

in section 7.4.3, are defined in relation with the number of parts involved each 

time; As stated earlier, if the problem is too big then adjustment in the loop 

parameters is needed. 

6. The processing time required for each problem for either the TS or the heuristic 

approach is mainly affected by the nature of the iterative procedure, the size 

of the problem employed and the total number of iterations specified. It would 

be reasonable though for the tabu search algorithm to need more computational 

time than the heuristic approach since neighborhood generation is taking place 

at each step. Indeed, as seen already, the mean CPU time needed for TS when 

large scale data sets were employed was 1543 seconds, whereas for the heuristic 

only 302 seconds. The computational requirements for both were not so different 

when small sized data sets were taken into account. 

7. After a number of experiments the tabu list size was decided to be fixed of 

magnitude five to fifteen depending upon the size of the problem tested each 

time. For small problem instances the value of the latter was kept relatively 

small, i.e. five or similar, whereas for bigger problems the value of tabu tenure 

needed to be bigger, i.e. ten or greater in order to force the system to move 

onto unexplored areas. Overall, the value of tabu tenure affects the exploration 

of the search space, thus different values of it produce different objective value 

fluctuation. 

8. A few comments on the part machine operation sequence .. When designing the 

initial solution, part machine sequence was one of the most important constraints 
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to be included and to be taken into account for almost all the heuristic approaches 

implemented within the initial search. Also a number of elements, such as, which 

cell to choose to start allocating certain part (Le. cell sequence identification 

based on maximum continuous sequence of machines relative to part machine 

sequence), were designed to meet this constraint, and hence make the system 

more effective. Later in the design of the tabu search, the part machine operation 

sequence acted as a key element since with every transition of a specific machine 

instance pair certain updates were taking place for the part machine cell allocation 

relative to the part machine sequence of all parts involved. Although, the part 

machine operation sequence made the initial solution more complex and the tabu 

search more difficult to converge to a value very close to the optimum after 

exploring a number of areas in the search space, it incorporated realism and 

produced a very practical CF system. 

9. Finally, a point can be made concerning both heuristic approach and tabu search 

algorithm. The use of both is very useful for medium and large scale data sets. 

Especially, the tabu search algorithm is very efficient for large sized problems. 

Although for the small problem instances both approaches produce good results, 

the mathematical solver finds the optimum solutions for all problems in reasonable 

computational times, thus it is more preferable for these type of problems. 

From the concluding remarks one important point that could arise concerns the op­

eration on the tabu search and how its output could be improved when a re-run is 

attempted with an initial solution fed into it is not totally random but the actual 

output from the heuristic approach whose deviation value from the best known value 

happens to be of smaller magnitude than TS. 

To examine the above problem instance eighteen will be employed whose deviation 

value obtained when TS is employed happens to be worse (Table 8.1, page 174) than 

the deviation value obtained via the heuristic approach (Table 6.3, page 137). 

For problem instance eighteen, when the output from the simpler heuristic approach 

is fed into the TS iterative procedure the deviation obtained is of magnitude three 

. percent, instead of seven that it was initially. More specifically, the iterative procedure 

starts from an initial objective value of magnitude 787.65 and fluctuates as can be seen 

in Figure 8.7(a) (page 190). The best value found happens to be equal to the initial, 

Le. 787.65, that the TS started with. To compare the latter with the trend on the 

objective value when the deviation initially obtained was seven percent consult Figure 
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8.7(b) (page 190). 

Overall, some improvement can be achieved in the deviation value obtained via TS 

when the simpler heuristic approach acts as an intermediate stage and its final solution 

is fed into the TS. On the other hand, the TS cannot achieve more improvement than 

its initial solution fed into it, for this particular problem, and this could be due to the 

part machine operation sequence. The latter seems to constrain the system to a great 

extent (see remark eight), thus not allowing the algorithm to converge more towards 

the best known value obtained via the mathematical solver. 

Finally, some additional comments will be made concerning remark four in order to il­

lustrate the robustness of the tabu search algorithm over the simpler heuristic approach 

when the same randomly generated initial solution is fed into both, thus not allowing 

more than one trials to be executed. The initial solution used for problem instance 

one that produced within only one running trial the result shown in Table 8.1 will be 

used here as input to the heuristic approach. Please note that the deviation obtained 

for TS was of magnitude 8% and the values of both the initial solution and the best 

cost found were 623.73 and 481.74 units respectively. The latter can be seen in Figure 

8.8(a) (page 191). 

When the same initial solution is fed into the heuristic strategy the deviation produced 

from the best known value is 15 percent, which is much greater than the deviation ini­

tially produced from the heuristic approach (see Table 6.3) and also significantly bigger 

than the output generated via the TS as shown in Figure 8.8(a). For better illustration 

on the produced output see Figure 8.8(b) (page 191), which shows the evolution on the 

objective values involved. Please note that the initial solution has a value of 623.73 

units, whereas the best cost found is of magnitude 510.57. 

The comparison made, on the basis of employing the same initial solution for both 

strategies, verifies the robustness of the proposed tabu search and also its effectiveness 

over the simpler heuristic approach. 
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Figure 8.7: Objective Value Evolution for Problem Instance 18 
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8.4 Summary 

This chapter presented the computational results for the tabu search algorithm when 

a number of problem instances small, medium and large were taken into account. The 

majority of problem sizes was adapted from the literature with their additional param­

eters randomly generated. A number of elements were examined such as the behaviour 

of the iterative procedure including the number of iterations specified within the sys­

tem, the initial random solution and how this affected the result when fed into the 

tabu search and finally the tabu list size. Also the fluctuation of the objective val­

ues within the iterative procedure was checked and a number of graphs produced to 

illustrate the trend in the objective value with respect to the number of iterations in­

volved. Finally, several conclusions were drawn evaluating the tabu search effectiveness 

and also identifying its operational and computational advantage towards the heuristic 

approach. 
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Conclusions and Future Work 

9.1 Conclusions 

Cellular Manufacturing (CM) is an application of Group Technology and has emerged 

in the early seventies as a promising alternative of a manufacturing system, linking the 

advantages of both jobbing and mass production approaches applied at that time. As 

the name states itself CM concentrates on the design and operation of manufacturing 

cells, i.e. Cell Formation (CF), where parts are grouped into families and machines 

into cells. A number of surveys have been conducted and a number of benefits have 

been identified for CM. The clear benefits are reduced set-up and throughput times, 

reduced finished goods inventory and work-in-progress, reduced material handling cost, 

simplified flow of products, scheduling and improved quality. 

A number of production based methods have been used for designing cellular manu­

facturing systems such as clustering techniques, graph partitioning approaches, math­

ematical programming methods, heuristic and metaheuristic approaches, and fuzzy 

methodologies. The main objective of clustering techniques is to group either objects 

or entities or attributes into clusters such that individual elements within a cluster have 

a high degree of "natural" association among themselves and a very little "natural as­

sociation" between clusters. Graph partitioning approaches employ graph or network 

representation for the CF problem, where machines and/or parts are treated as vertices 

and the processing of parts as edges connecting these nodes. Both clustering and graph 

partitioning approaches share a common limitation since no production data reflect­

ing CF real systems can be encountered at the design stage. The latter is overcome 

when mathematical programming models are modelled consisting of certain objective 

functions and constraints where parts are grouped into families and machines into cells 
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simultaneously. Due to the nature of the combinatorial complexity of the CF systems, 

obtaining optimal solutions for large scale systems when mathematical programming 

methods are employed can be infeasible. For this reason heuristic approaches have been 

proposed for finding solutions close to optimum. Also metaheuristic algorithms have 

been developed where search is carried out on a higher level following the disciplines 

of an established methodology, i.e. tabu search. Finally, fuzzy theory has been utilised 

where fuzziness is taken under consideration via a number of methodologies. 

Although, the literature for cell formation is very extensive, there are still areas of great 

research interest such as the development of a sophisticated mixed integer mathemat­

ical programming model representing a real and a practical CF system. The latter 

can further be studied with a number of advanced methodologies in order to prove 

the system's efficiency and stability in real situations when uncertainty is taken into 

account and large scale systems are utilised. 

This thesis re-visits the idea of iotercellular movements in CF via mathematical pro­

gramming and concentrates further on the inclusion and design of other attributes, 

non-addressed in the current literature, so that a more realistic CF system could be de­

veloped which could be useful for the production planners. Fuzzy theory is investigated 

thoroughly so that a certain type of uncertainty could be measured via a traditional 

mathematical programming software when certain types of membership functions and 

aggregation operators are taken into account. Some very interesting results are ob­

tained when fuzzy models obtained are tested and compared with the deterministic 

model. In addition, this thesis work concentrates on the development of an efficient 

initial three stage heuristic approach addressing the model in its full operation when 

entities like part machioe utilisation amounts, multiple machine instances and part 

machine operation sequences are taken into account leading to a novel design for the 

CF problem when compared with the existing literature. Moreover, the initial method­

ology for generating good starting solutions is fed into an iterative heuristic approach 

proposed later on in this research work. The latter is tested with a significant number 

of data sets and the results obtained although prove the heuristic algorithms' effec­

tiveness they also identify a few operational limitations. For overcoming any problems 

encountered, a metaheuristic approach and more specifically a tabu search algorithm is 

proposed and the iterative heuristic algorithm is extended to adapt on the principles of 

the tabu search. The latter proves to be suitable and very effective for the CF problem 

producing very good results even when large scale data sets are taken into account. 
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More importantly, the tabu search algorithm proves to be stable and robust while ex­

ploring the search space extensively, and be significantly better in its operation when 

, compared with the simpler iterative heuristic algorithm. 

In general, cell formation mathematical programming models concentrated on a num­

ber of production data such as part type production volume, processing times, machine 

capacity, tooling etc. In the author's knowledge no work in the existing literature exam­

ined the CF system when part machine operation sequence and part machine utilisation 

amounts and multiple machines of the same type were taken into account as key con­

straints while the objective function involved the minimisation of the distinct allocation 

of parts to cells, the part/machine set-up costs and the later revisits of parts to already 

visited cells. This model was built in steps by considering first, within the objective 

function, the distinct allocation of parts to cells, later the latter plus the machine set­

up costs and finally all previous elements together with the later revisits of parts to 

already visited cells. This was done in order to be able to identify the differences in 

the model's operation when set-up costs and finally part machine operation sequence 

were added in a CF system where only the intercellular movements feature was taken 

into account. In conclusion, the better the distinct allocation of parts to cells is, when 

part/machine utilisation is taken into account, the better usage of part/machine set­

up costs and improved configuration on the later revisits of parts to already visited cells. 

Given the complete form of the mixed integer programming model with part machine 

operation sequence in there, the author concentrated her research work on employing 

fuzzy theory in order to be able to 'handle' the uncertainty appearing when trying 

to define the maximum number of machines allowed in each cell. Please note that 

although in the current system many other elements could also be examined for their 

fuzziness such as set-up costs and utilisation amounts, the former is chosen based upon 

the model's main operation which is the creation of cells with a specific number of 

machines in them. Moreover, the goal was also assumed to be fuzzy and the model 

obtained had a symmetrical form since both constraints and goal were treated in the 

same way. For the fuzzy incorporation within the model, triangular and linear mem­

bership functions were considered. For further manipulation and transformation of the 

fuzzy model to a deterministic one solvable by a mathematical solver three aggregation 

operations were employed: 'min', 'fuzzy and' and 'min-bounded-sum'. 

All fuzzy models were assessed via XPRESS-MP with a number of randomly generated 

data sets where the results produced were very promising taking into account that 
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no trials were needed till a good solution was obtained like in the deterministic case. 

The three operators were compared, with best been identified the 'fuzzy and' operator 

because of the quality of the solutions obtained, and less worse the 'min-bounded-sum' 

because of the limited amount of CPU time needed. The 'min' operator did not per­

form well despite its frequent use in the literature. Moreover, the bigger the data set 

employed the more useful the fuzzy models were, since the tolerance value of the con­

straints became bigger. Although the latter is true not very large scale models could be 

considered as the mathematical solver for the fuzzy models needed an excessive amount 

of time to produce an output because of the combinatorial complexity of CF. 

The inability to address greater problem instances for the CF modelled to the develop­

ment of a heuristic algorithm via which solutions close to optimum even for large scale 

data sets could be obtained. Prior work to the development of the heuristic approach 

was the implementation of an efficient randomly generated initial solution where all 

goals and constraints of the mathematical model had to be fulfilled. The design of 

the initial solution was a three stage approach where. machines had to be randomly 

allocated to cells first, parts had to be allocated to machine cells next and finally the 

evaluation of the objective value for the current solution obtained had to carried out. 

The allocation of machines to cells consisted further of two phases; the random selection 

of the capacity for the currently chosen cell and the random selection of the machine 

instance pair to be allocated to the chosen cell. 

The allocation of parts to machines cells was the most complex phase to be designed 

since the machine operation sequence for each part together with the part/machine 

utilisation had to be taken into account. For allocating part to cells, parts were or­

ganised in ascending order of their total processing requirements such that the part 

with the maximum demand in utilisation would be allocated first. Having obtained 

the current part, candidate cells for allocation were organised in a way that a max­

imum continuous sequence relative to part machine sequence was preserved assisting 

the allocation process. The first cell in sequence was further explored and the machine 

instances of current interest were found together with their available capacity. The 

values of the latter together with the part/machine utilisation were combined and a 

number of cases had to be examined in order for the allocation to commence. The 

allocation was finishing when a temporary utilisation matrix holding the remaining of 

utilisation units from each step was equal zero. Overall, the allocation of parts to ma­

chine cells had to be designed very carefully in order to obtain a good initial solution 

ready to be employed by the iterative heuristic approach designed next. 
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The proposed heuristic algorithm was the first attempt to produce good solutions for a 

variety of data sets when randomly generated initial solutions were fed into it. For gen­

erating a number of solutions an iterative procedure was formed within which the parts 

were initially sorted in descending order of their intercellular movements. For each part 

a number of transitions for the machine instance pairs belonging to its machine cell 

sequence, relative to the current part's machine operation sequence, was explored. Two 

transition types either single or interchange were considered for each machine instance 

pair together with a part reallocation before the evaluation of current objective value 

was taking place. In case that the objective value produced was better than the best 

found so far, the current solution was stored as the best encountered and the proce­

dure was continued from there; otherwise the iterative procedure continued from the 

situation where the best solution had been found. 

The heuristic approach was tested with a variety of data sets, small medium and large, 

which were randomly generated. In order to examine the heuristic's behaviour a num­

ber of elements were determined such as the deviation of the heuristic approach from 

the best known solution, the processing time and the deviation of the heuristic output 

from the value of the objective function of the solution initially fed into the system. 

Overall, the iterative heuristic procedure produced good solutions in terms of the de­

viation values obtained and the CPU times needed, however certain limitations were 

identified. More specifically, a lot of running trials were needed till the algorithm was 

able to produce good results. The latter was happening as the iterative procedure de­

pended mostly on the form of the initial solution and less on the transitions happening 

within, thus overall it was not either stable or robust. Moreover, via the transitions 

a certain path of exploration, following each part's machine operation sequence, was 

carried out with a number of movements repeating very often causing the algorithm to 

get stuck to local minima and not been able to escape especially when larger problem 

instances were taken into account. 

In order to overcome the heuristic algorithm's limitations and to obtain a more effec­

tive approach an extension was proposed which was based on a higher level strategy, 

i.e. a metaheuristic which explores the search space very efficiently and finds (near) 

optimum solutions. In the open literature a number of metaheuristic algorithms exist 

with the most popular such as Simulated Annealing (SA), Genetic Algorithms (GAs), 

Ant Colony Optimisation (ACO) and Tabu Search (TS). Both GAs and ACO share a 

common characteristic as they start searching the space not from a single point but 
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from a population of points in parallel which is not very useful for the CF problem since 

only one randomly generated initial solution was created. Moreover, both SA and TS 

search the space starting from a single point, however TS unlike SA has no stochastic 

elements. Because of the latter and the fact that TS allows a considerable amount of 

freedom to be developed and adjust to the problem requirements it was chosen to be 

the candidate metaheuristic for the development of the new proposed algorithm. 

In a similar way with the heuristic approach initially developed, the proposed tabu 

search algorithm commenced once an initial solution randomly generated was fed into 

its iterative procedure where the search of the space began until a pra-specified number 

of iterations was reached. Within the iterative procedure a number of transitions for 

each machine instance pair, belonging each time to certain part's machine operation 

sequence, was considered. For each machine instance its neighborhood solutions were 

found together with their corresponding values which were shorted in ascending order. 

Moreover, for every neighboring solution a temporarily tabu list was updated by stor­

ing all related attributes for current machine instance pair. Later a decision was made 

on which move to become admissible from the generated neighborhood. The sorted sa­

quence with the objective values was examined by checking first whether the first entry 

has a value less than the global best stored. If that was the case then the correspond­

ing move becomes admissible despite its tabu status because of the aspiration criterion 

employed. In case that none of the latter was happening the search of which move to 

become admissible was concentrated locally and the decision was made based on which 

move's tabu status is not tabu active. Every time a move was admissible a tabu list, 

permanent this time, was updated by storing all attributes of the implemented moves 

and only the forward moves of the remaining ones. Moreover, every move was kept 

tabu active for a certain number of iterations which were pra-specified by the decision 

maker. The magnitude of the latter was decided to take values between five and fifteen 

depending upon the size of the problem instance employed each time. 

Computational results for the tabu search algorithm were also presented when the 

problem instances initially generated for the heuristic approach were employed. A 

key observation was concentrated on the effectiveness of the tabu search algorithm 

and its stability no matter what the initial solution was. In addition, the space was 

searched extensively via the iterative procedure avoiding frequent repetition of moves 

and getting stuck to local minima even when larger problem instances were taken 

into account. Overall, the tabu search algorithm performed better than the heuristic 

approach in terms of the quality of the solutions produced despite the inclusion of the 
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part machine operation and the added complexity that the latter was causing. 

9.2 Suggestions for Future Work 

For the purpose of this study the considered aspects of fuzziness concentrated only on 

the maximum number of machines allowed in a cell because of the operation of the 

mathematical programming model which is the creation of cells with a specific number 

of machines in them. An extension of the concept would be to introduce fuzziness 

in other parameters of the mathematical model such as the part/machine utilisation 

amounts and the set-up costs. Moreover, additional objectives such as part/machine 

utilisation could also be added in the mathematical model and be examined further as 

a fuzzy equation converting the problem into a multiple fuzzy linear objective function. 

The design of the initial randomly generated solution consisted of a very important 

stage that of part allocation. For allocating parts to machine cells a 'single' path was 

followed with specific rules related to remaining capacities and candidate part machine 

utilisations taking into account the part machine operation sequence at each step. 

Based upon this, an extension to the part allocation could be proposed by relaxing the 

key constraint, Le.' the part machine operation sequence, within the part allocation 

process by searching first the machine instances in the system. The latter could be 

achieved by performing an overall search of the machine instances in the system that 

could best accommodate current part before the actual allocation which will be carried 

out in agreement with the part machine sequence. 

From the results obtained via the tabu search algorithm it was seen that the method 

provides an efficient way of tackling the cell formation problem when part machine 

operation sequence is included and when a variety of problem instances and especially 

large scale data sets are taken into account. Moreover, from the performance of the 

fuzzy models formed to measure the uncertainty encountered in the maximum number 

of machines allowed in a cell it was proved their advantage towards the deterministic 

models. An important next step would be the combination of the tabu search algorithm 

and the fuzzy models so that flexibility and consideration of large scale models within 

a robust and stable system could be achieved incorporating more realism within the 

CF problem. 

As seen already, the heuristic approach can work as an intermediate mechanism for 

improving the solution produced via the tabu search when the output of the former 
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is fed into the latter. This was applied only when the initial output from the tabu 

search happened to be worse than those obtained via the heuristic approach. The 

above could be generalised leading to a continuous combination of the tabu search 

with another heuristic or metaheuristic to form a hybrid search approach for the cell 

formation problem. 
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,-------- --------

A.I Initial Model: Solution 
Cost - 12 

x(i,j,q) values: 
x(1 2 4) 0.3 
x(l 4 4) 0.1 
x(1 8 4) 0.1 
x(2 4 2) 1 
x(2 5 2) 0.5 
x(2 7 3) 0.9 
x(2 9 3) 0.1 
x(2 10 1) 0.6 
x(3 3 3) 0.9 
x(3 8 4) 0.2 
x(S 9 3) 0.1 
x(4 2 1) 0.6 
x(4 2 4) 0.6 
x(4 4: 2) 0.5 
x(4 4 4) 0.4 
x(4 5 2) 0.6 
x(4 6 1) 0.4 
x(5 1 3) 0.4 
x(5 2 1) 0.2 
x(5 4: 2) 0.8 
x(5 5 2) 1.1 
x(5 6 1) 1 
x(6 7 3) 0.6 
x(S 8 4) 1 
x(S 9 3) 1 
x(6 2 1) 0.7 
x(6 7 3) 0.8 
x(6 10 1) 0.3 
x(74 2) 0.2 
x(7 5 2) 0.2 

v(q) values: 
vU) 1 
v(2) 1 
v(3) 1 
v(4) 1 

y(i,k.q) values: 
y(1 1 4) 1 
y(211)1 
y(2 2 2) 1 
y(2 3 2) 1 
y(2 4 3) 1 
y(3 1 3) 1 
y(3 2 4) 1 
y(411)1 
y(4 2 2) 1 
y(4 3 4) 1 
y(5 1 1) 1 
y(5 2 1) 1 

y(5 3 2) 1 
y(5 4 2) 1 
y(5 5 3) 1 
y(5 6 3) 1 
y(5 7 4) 1 
y(6 1 1) 1 
y(6 2 3) 1 
y(7 1 2) 1 

w(j,q) values: 
vCl 3) 1 
v(2 1) 1 
v(2 4) 1 
v(3 3) 1 
w(4 2} 1 . 
w(4 4) 1 
w(5 2) 1 
w(B 1) 1 
wC7 3) 1 
10'(8 4) 1 
w(9 3) 1 
w(tO 1) 1 

A.2 Extended Model: Solution 
Cost • 219.92 

x(i.j,q) values: 
x(1 2 2) 0.3 
x(1 4 2) 0.1 
x(1 8 2) 0.1 
x(2 4 3) 1 
x(2 6 3) 0.5 
x(2 7 4) 0.9 
x(2 9 4) 0.1 
x(2 10 1) 0.6 
x(3 3 4) 0.9 
x(3 8 2) 0.2 
x(3 9 4) 0.1 
x(4 2 1) 0.6 
x(4 2 2) 0.6 
x(4 4 2) 0.4 
x(4 4 3) O.S 
x(4 5 3) O.S 
x(4 6 1) 0.4 
x(S 1 4) 0.4 
x(S 2 1) 0.2 
x(S 4 3) 0.8 
x(S S 3) 1.1 
x(S 6 1) 1 
x(S 7 4) 0.6 
x(S 8 2) 1 



, 
'" ..... ... 

x(5 9 4) 1 
x(6 2 1) 0.7 
x(6 7 4) O.B 
x(6 10 1) 0.3 
x(7 4 3) 0.2 
x(7 S 3) 0.2 

v(q) values: 
vU) 1 
v(2) 1 
v(3) 1 
v(4) 1 

s(i,j,q) values: 
s(l 2 2) 1 
s(l 4 2) 1 
s(l 8 2) 1 
8(2 4 3) 1 
8(2 5 3) 1 
8(2 7 4) 1 
8(2 9 4) 1 
s(2101) 1 
s(3 3 4) 1 
8(3 8 2) 1 
s(3 9 4) 1 
8(4 2 1) 1 
8(4 2 2) 1 
8(4 4 2) 1 
8(4 4 3) 1 
8(4 5 3) 1 
8(4 6 1) 1 
8(5 1 4) 1 
8(5 2 1) 1 
8(5 4 3) 1 
8(5 5 3) 2 
s(561)1 
s (5 7 4) 1 
8 (5 8 2) 1 
8(5 9 4) 1 
s(6 2 1) 1 
s(6 7 4) 1 
s(6 10 1) 1 
s (7 4 3) 1 
8 (7 5 3) 1 

y(1.k,q) values: 
y(1 1 2) 1 
y(2 1 1) 1 
y(2 2 3) 1 
y(2 3 3) 1 
y(2 4 4) 1 
y(3 1 2) 1 
y(3 2 4) 1 
y(4 1 I) 1 
y(4 2 2) 1 

y(4 3 3) 1 
y(5 1 I) 1 
y(5 2 I) 1 
y(5 3 2) 1 
y(5 4 3) 1 
y(5 5 3) 1 
y(5 6 4) 1 
y(5 7 4) 1 
y(6 1 I) 1 
y(6 2 4) 1 
y(7 1 3) 1 

w(j,q} values: 
w(l 4) 1 
w(2 1) 1 
w(2 2) 1 
v(3 4) 1 
w(4 2) 1 
w(4 3) 1 
v(5 3) 1 
w(6 1) 1 
w(7 4) 1 
w(8 2) 1 
v(9 4) 1 
101'(10 1) 1 

A.3 Complete Model - XPRESS-MP Code 
Cl ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

Hosel CF Problem 

Objective: minimise distinct allocation ot parts to cells. 
part/machine set-up costs and later revisits of 
parts to already visited cells 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 1) 
model HCELL/BLOCKS FORMATION-

uses "mmxprs" 

declarations 

1 no. of parts in the plant 
HP - 10 
PARTS - 1 •• NP 

1 no. of machines in the plant 
NM • 7 
MACH - 1. .NM. 

1 number of machines operations 
ZOPER - 1..6 



• 

! number of machines of the same type 
KHU • 1..7 

I maximum number of cells to be created 
NC - 5 
CELLS - 1. .NC 

! minimum and maximum restrictions OD the number of machines allowed 
in a cell-
UPMAX • 1..2 

I biggest amount of machine utilisation used 
UTILRAX: real 

I smallest amount of machine utilisation used 
UTILHIH: real 

I utilization of part j to be processed in machine 1 
UTIL: array(MACH,PARTS) of real 

I set-up time of machine 1 needed to process part j SETUP: 
array(MACH,PARTS) of real 

I number of different machine operations required by part j 
ZTYPES: array(PARTS) of integer 

I for part j the zth machine operation in sequence 
L: array (PARTS , ZOPER) of integer 

I array for indexing the no. of machines of the same type 
KTYPES: array(MACH) of integer 

I max. and min. limits OD the no. of machines allowed In a cell 
UPDOWN: array(UPMAX) of integer 

I no. of machines i or fraction thereof that process part j 
lin cell q 
x: array(MACH,PARTS,CELLS) of mpvar 

I 1 if kth machine of type i is assigned to cell q 
y:array(HACH,KHAX,CELLS) of mpvar 

I No. of machines of type 1 that will be used by part j 
lincellq '. 
s: array(HACH,PARTS,CELLS) of mpvar 

I 1 if cell q is formed 
v: array(CELLS) of mpvar 

I 1 if part j is processed in cell q, 0 otherwise 
v:array(PARTS,CELLS) of mpvar 

I 1 if after the zth operation of part j in cell q, 
I part leaves cell q but returns later; 0 otherwise 
extra: array(CELLS,PARTS,CELLS) of mpvar 

1'1 if part j is processed in cell q (zth machine operation), 
I 0 otherwise 
xx: array(HACH,PARTS,CELLS) of mpvar 

end-declarations 

initializations from "CF.dat" 
UTIL SETUP L KTYPES ZTYPES UPDOWN UTILMAX UTILHIN 

end-initializations 

forall(i in MACH. k in KMAX," q in CELLS) y(i,k,q) Is_binary 

forall(j in PARTS, q in CELLS) w(j ,q) is_binary 

forall(q in CELLS) v(q) is_binary 

forall(q in CELLS, j in PARTS, 1 in MACH) extra(q,j,i) is_binary 

forall(i in MACH, j in PARTS, q in CELLS) xX(i,j,q) is_binary 

forall(i in MACH. j in PARTS, q in CELLS) s(t,j,q) is_integer 

COST :- sum(j in PARTS, q in CELLS) 10*w(j,q) • 
sum(i in MACH, j in PARTS)(SETUP(i,j) • sum(q in CELLS) s(i,j,q» + 
sum(q in CELLS, j in PARTS, i in MACH) extra(q,j,i) 

I Constraint 1: kth machine of type i must be assigned to exactly 
,------------ one cell 
forall(i in MACH, k in KMAX I k<-KTYPES(i» 

sum(q in CELLS) y(i,k,q) - 1 

, Constraint 2: total no. of machines required to process part j in 
,------------ cell q 
forall(i in HACH, j in PARTS I UTIL(l,j»O,O) 
sum(q in CELLS) x(l,J,q)-UTIL(i,j)-O.O 

I Constraint 3: , •........... 
forall(i in HACH) do 
forall(j In PARTS) do 
forall(q in CELLS) do 
x(i,j,q)-s(i,j,q)<-O.O 

end-do 
end-do 

end-do 

! Constraint 4: 
,------------ if x is zero then 8 bas to become a 
zero forall(i in MACH) do 
forall(j in PARTS) do 
forall(q in CELLS) do 
x(i,j,q)-UTILMIN*s(i.j,q»-O.O 

end-do 
end-do 



, 
'" .... 
<0 

end-do 

IConstraint 6: total number ot machines of type 1 assigned to cell 
1------------ q Is les8 than or equal to the k no. of machines of 
!type i assigned to cell q. 
forall(! in MACH) do 
foral1(q in CELLS) do 

sum(j in PARTS I UTIL(i.j»O.O) x(i,j.q)-
sum(k in KMAXlk<-KTYPES(l» y(i.k,q)<-O.O 

end-do 
end-do 

I Constraint 6: the number of machines included in a cell, when cell 
,------------ is formed should be at most emax machines 
forall(q in CELLS) 
sum(! in MACH, kin KHAX I k<-KTYPES(i» yU,k,q)<-v(q)*UPDOWN(t) 

I Constraint 7: the number of machines included in a cell 
, .. ----------- when cell is formed should be at least emin machines 
torall(q in CELLS) 

sum(1 in MACH, k in KMAX I k<- KTYPES(1» y(i.k,q»-v(q)*UPDOWN(2) 

I Constraint 8: cells are formed in Buccessive numerical order I 
1------------forall(q in CELLS I q<5) v(q+l)<-v(q) 

I Constraint 9: duplicate machines when needed are allocated ! 
I~~~~~~~~_w~w to lowered numbered cells in successive numerical 
order forall(i inHACH) do 
forall(k in KMAX I KTYPES(i)<>1 and k<KTYPES(i» do 

sum(q in CELLS) q*y(i,k,q)-sum(q in CELLS) q*y(1,k+l,q)<- 0.0 
end-do 

end-do 

I Constraint 10: 
1 ------------
forall(i 1n MACH} do 
forall(j 1n PARTS) do 
forall(q in CELLS) do 
x(i,j,q)-UTIL(i,j)*w(j,q)<-O.O 

end-do 
end-do 

end-do 

I Constraint 11: I w~w __ ~~ __ • __ _ 

I define xx(i,j,q) 
I when the value of x is greater than 0, xx variable is equal to 1 
forall(i in MACH) do 
forall(j in PARTS) do 
forall(q in CELLS) do 
x(i,j,q) - UTILMAX*xx(i,j,q) <- 0.0 

end-do 
end-do 

end-do 

I g~~!~~~~~~ .. !3: 
1 
I define xx(i.j ,q) 
I when the value of x ia greater than 0, xx variable ia equal to 1 
forall(i in MACH) do 
forall(j in PARTS) do 
forall(q in CELLS) do 
x(i,j,q) - UTILMIN*xx(i,j,q) >- 0.0 

end-do 
end-do 

end-do 

I Constraint 13: I ........ _ .... _-_ .. _-

fora1l0 in PARTS, q in CELLS) do 
forall(z in ZOPERlz<-ZTYPES(j) and ZTYPES(j»-3 and L(j,z»-O.O) do 
forall(r in ZOPERlr<-ZTYPES(j) and r>-z+2 and L(j,r»-O.O) do 
xx(L(j,z),j,q) + xx(L(j,r),j,q)-
sum(zz in z+1 •• r-1Izz<-ZTYPES(j) and L(j,zz»O.O) xx(L(j,zz),j,q) -
extra(q,j,L(j,z» -1 <- 0 

end-do 
end-do 

end-do 

setparam("XPRS_VERBOSE", true) 

minimize (COST) 
fopen("OUT.dat", F_OUTPUT) 

writeln("Cost - ", getobjvaU 
writeln(") 
writeln(1x(i,j ,q) 
values:') 
forall(i in MACH) do 
forall(j in PARTS) do 
forall(q in CELLS) do 
if (getsol(x(i.j,q» > 0.0) then 
writeln('x(', .i,' ',j,' '.q,') ',getsol(x(i,j,q») 

end-if 
end-do 

end-do 
end-do 
writeln(" ) 
writeln('v(q) values: ') 
forall(q in CELLS) do 
if (getsol(v(q» > 0.0) then 
writeln('v(',q,') • ,getsol(v(q») 

end-if 
end-do 
writeln(") 
writeln('s(i,j,q) values: .) 
forall(i in MACH) do 
forall(j in PARTS) do 
forall(q in CELLS) do 



it (getsol(s(1,j,q» >0.0) then 
wr1teln('s(', i,' ',j,' ',q,') ',getsol(s(i,j,q») 

snd-it 
end-do 

end-do 
snd-do 
vrite1n(") 
vriteln('xx(i,j.q) values: ') 
forall(1 in MACH) do -... " 
forall(j in PARTS) do 
forall (q in CELLS) do :; 
if (getsol(xx(i,j,q» >0.0) then 
vriteln('xx(',i,' '.j,' '.q,') ',getsol(xxCi.j,q») 

end-if 
end-do 

end-do 
end-do 
writeln(") 
writeln('e,xtra(q,j,i) values: ') 
torall(q in CELLS) do 
forall(j in PARTS) do 
forall(i in MACH) do 
if (getsol(extra(q,j.i» > 0.0) then 
vriteln('extra(', q,' ',j,' '.i,') ',getsol(extra(q.j,i») 

end-if 
end-do 

end-do 
end-do 
vriteln(") 
.... r1teln('y(i,k.q) values: ') 
forall(i in MACH) do 
forall(k in KMAX) do 
forall(q in CELLS) do 
it (getsol(y(i,k,q»> 0.0) then 

.... riteln('y(',i.' ',k,' '.q,') " getsol(y(i,k.q») 
end-it 

end-do 
end-do 

end-do 
writeln(") 
writeln('w(j,q) values: I) 
forall(j in PARTS) do 
forall(q in CELLS) do 
if (getsol(w(j,q»> 0.0) then 
vriteln('w('.j.' ',q.') " getsol(w(j,q») 

end-if 
end-do 

end-do 

fclose (F .OUTPUT) 
end-model 

A.3.l Complete Model: Solution 

Cost - 219.92 

x(i.j,q) values: 
x(1 2 1) 0.3 
x(1 4 1) 0.1 
x(1 8 1) 0.1 
x(2 4 1) 1 
x(2 6 4} 0.5 
x(2 7 2} 0.9 
x(2 9 2) 0.1 
x(2 10 3) 0.6 
x(3 3 2) 0.9 
x(3 8 1) 0.2 
x(3 9 2) 0.1 
x(4 2 1) 0.2 
x(4 2 3) 1 
x(4 4 1) 0.4 
x(4 4 4) 0.5 
x(4 6 4) 0.5 
x(4 6 1} 0.4 
x(6 1 3) 0.4 
x(S 2 3) 0.2 
x(5 4 4) 0.8 
x(5 6 4) 1.1 
x(5 6 1) 1 
x(5 7 2) 0.6 
x(5 8 1) 1 
x(5 9 2) 1 
x(6 2 3) 0.7 
x(6 7 2) 0.8 
x(6 10 3) 0.3 
x(7 4 4) 0.2 
x(7 6 4) 0.2 

v(q) 
v(1l 
v(2) 
v(3) 
v(4) 

values: 
1 
1 
1 
1 

sCi,j,q) values: 
8(1 2 1) 1 
s(1 4 1) 1 
s(l 8 1) 1 
s(2 4 1) 1 
s(2 6 4} 1 
s(2 7 2) 1 
s (2 9 2) 1 
s(2 10 3) 1 
s(3 3 2) 1 
s(381)1 
s(3 9 2) 1 
8(4 2 1) 1 
s(4 2 3) 1 
s(4 4 1) 1 



._--------------------------:--------------------------------------

8(4 4 4) 1 
8(4 5 4) 1 
8(4 6 1) 1 
8(613)1 
a(5 2 3) 1 
s(5 4 4) 1 
8(5 6 4) 2 
8(5 6 1) 1 
,(5 7 2) 1 
8(6 8 1) 1 
s(6 9 2) 1 
8(6 2 3) 1 
s(6 7 2) 1 
s(6 10 3) 1 
8(7 4 4) 1 
s(7 5 4) 1 

xx(l,j,q) values: 
xx(1 2 1) 1 
xx(1 4 1) 1 
xx(1 8 1) 1 
xx(2 4 1) 1 
xx(2 5 4) 1 
xx(2 7 2) 1 
xx(2 9 2} 1 
xx(2 10 3} 1 
xx(3 3 2} 1 
xx(3 8 1) 1 
xx(3 9 2) 1 
xx(4 2 1) 1 
xx(4 2 3) 1 
xx(4 4 1) 1 
xx(4 4 4) 1 
xx(4 5 4) 1 
xx(4 6 1) 1 
xx(S 1 3) 1 
xx(S 2 3) 1 
xx(S 4 4) 1 
xx(S 5 4) 1 
xx(S 6 1) 1 
xx(S 7 2) 1 
xx(S 8 1) 1 
xx(S 9 2) 1 
xx(6 2 3) 1 
xx(6 7 2) 1 
xx(6 10 3) 1 
xx(7 4 4l 1 
xx(7 5 4 1 

extra(q,j,l) values: 

y(i,k,q) values: 
yO 1 1) 1 
y(2 1 1) 1 
y(2 2 2) 1 
y(2 3 3) 1 
y(2 4 4) 1 

y(3 1 1) 1 
y(3 2 2) 1 
y(4 1 1) 1 
y(4 2 3) 1 
y(4 3 4) 1 
y(5 1 1) 1 
y(5 2 1) 1 
y(5 3 2) 1 
y(5 4 2) 1 
y(5 5 3) 1 
y(5 6 4) 1 
y(5 7 4) 1 
y(6 1 2) 1 
y(6 2 3) 1 
y(7 1 4) 1 

v(j,q) values: 
vU 3) 1 
v(2 1) 1 
..,(2 3) 1 
v(3 2) 1 
v(4 1) 1 
v(4 4) 1 
v(5 4} 1 
v(6 1) 1 
v(7 2) 1 
v(8 1) 1 
v(9 2) 1 
v(10 3) 1 

A.3.2 Illustration of Later Revisits of Parts 
Cost· 220.79 

x(i,j .q) values: 
x(1 2 1) 0.3 
x(1 4 1) 0.1 
xCi 8 1) 0.1 
x(2 4 I} 1 
x(2 5 3) 0.5 
x(2 7 3) 0.9 
x(29 2) 0.1 
x(2 10 2) 0.6 
x(3 3 2) 0.9 
x(3 8 1) 0.2 
x(3 9 2) 0.1 
x(4 2 1) 0.6 
x(4 2 2) 0.6 
x(4 4 1) 0.9 
x(4 6 1) 0.6 
x(4 6 2) 0.4 
x(6 1 3) 0.4 



· - ----- - -. ---------------------------------------------------------

x(5 2 1) 0.2 
x(5 4 1} 0.8 
x(5 5 3) 1.1 
x(5 6 2) 1 
x(5 7 3) 0.6 
x(5 8 1) 1 
x(5 9 2) 1 
x(6 2 2) 0.7 
x(S 7 3) 0.8 
x(6 10 2) 0.3 
x(7 2 1) 0.5 
x(7 4 1) 0.2 
x(7 5 1) 0.2 

v(q) values; 
vel) 1 
v(2) 1 
v(3) 1 

s(l,j,q) values: 
s(l 2 1) 1 
s(l 4 I} 1 
8(1 8 I} 1 
8(2 4 1) 1 612 5 3} 1 
s 2 7 3) 1 
8292)1 
8(2 10 2) 1 
8(3 3 2} 1 
8(3 8 1) 1 
8(3 9 2) 1 
s(4 2 1) 1 
s(4 2 2) 1 
s(4 4 1) 1 
s(4 5 1) 1 
s(4 6 2) 1 
8(5 1 3) 1 
s(5 2 1) 1 
8(6 4 1) 1 
s(6 5 3) 2 
8(5 6 2) 1 
a(5 7 3) 1 
s(5 8 1) 1 
a(5 9 2) 1 
s(6 2 2) 1 
s(6 7 3) 1 
s(6 10 2) 1 
8(721)1 
s(7 4 1) 1 
s(7 5 1) 1 

xx(i,j,q) values: 
xx(1 2 1) 1 
xx(1 4 1) 1 
xx(1 8 1) 1 
xx(2 4 1) 1 
xx(2 5 3) 1 

xx(2 7 3) 1 
xx(2 9 2) 1 
xx(2- 10 2) 1 
xx(3 3 2) 1 
xx(3 8 1) 1 
xx(3 9 2) 1 

:.. xx(4 2 1) 1 
xx(4 2 2) 1 
xx(4 4 1) 1 
xx(4 5 1) 1 
xx(4 6 2) 1 
xx(S 1 3) 1 
xx(5 2 1) 1 
xx(S 4 1) 1 
xx(S 5 3) 1 
xx(5 6 2) 1 
xx(6 7 3) 1 
xx(s 8 1) 1 
xx(S 9 2) 1 
xx(6 2 2) 1 
xxes 7 3) 1 
xx(6 10 2} 1 
xx(7 2 1) 1 
xx(7 4 1) 1 
xx(7 6 1) 1 

extra(q.j.l) values: 
extra(2 2 4) 1 

y(i,k,q) values: 
y(1 1 1) 1 
y(2 1 1) 1 
y(2 2 2) 1 
y(2 3 3) 1 
y(2 4 3) 1 
y(3 1 1) 1 
y(3 2 2) 1 
y(4 1 1) 1 
y(4 2 1) 1 
y(4 3 2) 1 
y(5 1 1) 1 
y(5 2 1) 1 
y(5 3 2) 1 
y(5 4 2) 1 
y(5 5 3) 1 
y(5 6 3) 1 
y(5 7 3) 1 
y(6 1 2) 1 
y(6 2 3) 1 
y(7 1 1) 1 

w(j Iq) values: 
w(l 3) 1 
w(2 1) 1 
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Appendix B 

Generic Forms of Selected Fuzzy 

Aggregation Operators 

The following notation is used in the transformation of fuzzy models. The notation has 

been adapted from Zimmermann [Zim91]. 

IlG(X) : the membership function of the objective function. For the linear non­

increasing membership function used in Chapter 4 the value for objective 

function is: IlG(X) = 1-(rl"x-DO)/po 

1l0,(X) : the membership function of the constraints. Two function types are consid­

ered in Chapter 4: 

(a) Linear non-increasing. The membership function is 

1l0,(x) = 1-(Ax-b)/ PR! where PRl is the tolerance value for this constraint. 

(b) Triangular. The following two formulae are used: 

Ilo,(x) = 1- (Ax - b)/PR! for the upper bound, and 

1l0,(x) = 1 - (b - Ax)/Pm for the lower bound, 

where Pm is the tolerance value for the lower bound and PR! is the tolerance 

value for the upper bound. 

B.l 'Min' Operator 

Zadeb [Zad65] proposed 'min' operator to define the intersection of the following ag­

gregated rule: 

IlD(X) = IlG(x) A 110, (x) = IlG(x) n 110, (x) (B.l) 
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Appendix B Generic Forms of Selected Fuzzy Aggregation Operators 

The aggregated membership function becomes 

/LD(X) = min[/LG(x),/Lc,(x)] V I 

To find the maximum value of /LD(X), the model can be defined as: 

subject to 

max >. 

>. ~ /LG{x) 

>. ~/LO,(x) V I 

O~>'~1 

B.2 'Min-bounded-sum' Operator 

Luhandjula [Luh82] proposed the following aggregation rule: 

/LD = 'Y x /LGnc, + (1 - 'Y) x /LGUO, 

(B.2) 

(B.3) 

(BA) 

(B.5) 

(B.6) 

(B.7) 

If the intersection and the union are represented by the 'min' and 'bounded-sum' op­

erators the aggregated membership function becomes: 

T 

/LD = 'Y x min~=o /L8 + (1 - 'Y) x min(l, L /L8) 
8=0 

The equivalent form after using the operator is: 

subject to 

max 'YW + (1 - 'Y)'U 

W ~ /LG(x) 

w ~/Lc,(x) V I 

'U~1 

'U ~ /LG(x) + L/LO,(x) 
I 

O~W ~ 1 
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(B.13) 

(B.14) 
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Appendix B Generic Forms of Selected Fuzzy Aggregation Operators 

B.3 'Fuzzy and' Operator 

Werners [Wer88) suggested modification ofaggregation rule (B.7) proposed by Luhand­

jula. The membership function of the resulting fuzzy set has the following form: 

T 

f.LD = iminJ=o PS + (1 - i)/(T + 1) x L PS 
8=0 

The equivalent model after this operation is performed becomes: 

subject to 

t 

max w+(I-i)/(t+I)xLas 

w + ao $ JLa(x) 

w+a/$pc,(x) V 

w+as $ 1 V s 
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Appendix C 

Random Data Generation 

function rurIL,SETUP.L,KTYPES.TM,ZTYPES] ~ 

RanciData(NM ,NP I ZOPER. UTILRANGE. SETUPRANGE) 
% function [UTIL I SETUP J L. KTYPES.!HI, ZTYPES] co 

RandData(NM.NP.ZOPER.UTILRANGE.SETUPRANGE) 
r. RandData: Generate pseudo-random utilisation matrix (for cell formation). 
% set-up cost matrix, array of part machine sequence operations 
7-
% output arguments: 
% .****.****.* ••••• 
Y. UTIL: generated NM x NP utilisation matrix 
Y. SETUP: set-up cost for part machine assignment 
r. KTYPES: number of machines used by each part (i.e. sum of each row of UTIL) 
r. ZTYPES: number of machine operations required for each part 
1. L: part machine sequence 
1. !HI: total number of machine instances 
7-
Ye input arguments: 

1. ** •••••• ******** 
r. NM: number of machine types 
1. HP: number of parts/components 
1. ZOPER: number of part operations (relative to columns) 
r. UTILRANGE: utilisation range [r(l) r(2)]. r(l) min. r(2) max 
Y. SEUPRANGE: set-up cost range [r(l) r(2»). r(l) min. r(2) max 
r. 
r. Note: based on Uniform Pseudo-Random Number Generation. 

Y. initial random generation. no ZOPER considered yet 
init_gen • round«UTILRANGE(l) + 
(UTILRANGE(2)-UTILRANGE(I».*rand(NM.NP»*10)/10; 

r. The entries in inft_gen (column-vise) should not exceed ZQPER. thus: 
r. (a) set up the vector of part operations from 1 up to y 
errl = [l:i:ZQPER]; r. (l:p:yJ: from I up to Y vith step p 
r. (b) set up the probabilities relative to each element of vector err1 
r. This is used for randerr. i.e. random binary matrix [0 1] generation 

r. first create a random rov vector with integer numbers in a range. 
r. this is flexible: use any. in this case range [0 99) used; 
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Appendix C Random Data Generation 

err2a· randlnt(l.1ength(errl).[O 99]); 
r. sum(err2a) is different than 1 usually. Make sum(err2) equal to 1, as 
1. it will used in randerr i.e. the elements of the probability vector err2 
r. must add up to 1. 
err2 • err2a/sum(err2a)j 

out = randerr(NP,NH.(errl;err2])'; X generate NH by NP random binary matrix 
r. note that in order to avoid baving all zeros in any of the columns we 
Y. must first generate the mxn matrix out and then take the transpose. This 
Y. is because randerr works with rovs and not columns. 

r. generate the finalised random matrix UTIL with the utilisation included. 
r. perform an element by element multiplication 
UTIL· init_gen .• out; 

X find KTYPES 
KTYPES ~ ce11(sum(UTIL'»; 

TH=sum(KTYPES) ; 

7. find ZTYPES 
ZTYPES • sum(UTIL>O); 

SETUP=zeros(NM.NP); 
for t=l:NM 
for j>1 :NP 

if UTIL(1,j»O 
SETUP(i,j)=round«SETUPRANGE(1) + 

(SETUPRANGE(2)-SETUPRANGE(1»*rand(1»*100)/100; 
end 

end 
end 

L~zeros(NP,max(ZTYPES»j 

for yy~l:NP X work along the rows of L 

end 

% find indices of nonzero elements in UTIL column 
[u]=f1nd(UTIL(:,yy»0.O); 
r. rrl and rr2 is an attempt of slightly perturbing the sequence of L 
7. random generation of shift register for circshift 1 
rr1 • (-1)-(cell(length(u) .*rand(1,l»)*cell(length(u) .*rand(1,1»; 
1. random generation of shift register for circsbift 2 
rr2 • (-l)~(floor(length(u).*rand(l,l»)*floor(length(u).*rand(l .1»; 

L(yy,l: lengtheu) )=circshlft (u I I [rrt rr2]); 
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Part Allocation - MatLab Code 
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function [PARTMATRIX,PCMATRIX,part_moves] -
PartAllocatlon(UTIL_sortedl,CELLMATRIX2,NP,NC,EMAX,NM,KMAX,L,UTIL) 

Y.functlon [PARTMATRIX,PCMATRIX,part_moves] - PartAllocation(UTIL_sortedi,CELLMATRIX2,NP.NC.EMAX,NM,KMAX,L,UTIL) 
Y. Allocate parts to machine cells 
r. Inputs: UTIL_sortedl, CELLHATRIX2, NP. NC, EMU. HM. KHAX. L. UTIL 
r. Outputs: PARTHATRIX (i,k.j) part j uses kth machine of type i 
X PCMATRIX (i.k.J Iq) part j uses kth machine of type 1 in cell q 
X part_moves (j,q,i,k) 

y. initialise 3-D matrix (i,k,j) machine no., machine instance, part. 
PARTMATRIX - zeros(NM,KHAX,NP)I 

1. Find which machines appear at each cell using CELLMATRIX2 
MACHINENUMBERq - zeros(NC,EMAX); Y. initialise matrix for storing machine types per cell 
temp_matrix2· []; Y. initialise temp matrix for sorting out 
for q-l:NC 

temp_matrix2 ,. CELLMATRIX2(: ,: ,q) i 
r. find row·col indices of the current i-to·l relation of machines 
r. and machine instances for each cell q 
[HACHi,INSTANCEil • find(temp.matrix2); 
MACHINENUHBERq (q, 1: len~h(MACHi» ,. MACHi'; 

end MACHINENUHBERq.o;MACHIRENUMBERqi 

pm. sequence • [l; r. initialise temp vector for part machine sequence manipulation 
UTIL.temp-UTIL; r. used to account for possible splits 
PCMATRIX • zeros(NM,KHAX,NP,NC)j r. initialise 40 matrix (machine no., instance no., part no., cell no.) 
part.moves-(J; r. initialise vector for keeping part no, cell no, machine no., instance no. 
if all(UTIL_temp~~O) r. check 

warning('Before allocation: The UTIL matrix is a ZERO matrix I ') 
end 

for j • [UTIL.sortedi(1:l:lengtb(UTIL.sortedi»] Ye LOOP J 
Y.disp('LOOP J') 
r. remove zero entities from the current part machine sequence vector, see L 
pDLsequence • rvze(L(j,:»; Ye for current part 
r. .----------------------------------.---------------------------------r. APPROACH 1: Sequence of cells based on majority of machine in cells 
r. relative to the part machine sequence 

r. ------------------------------.--.----------------------------------- Ye Ye Ye total part machine sequence 
r. machines_in_cell - []; r. initialise temp vector for keeping machines in cells 
r. cells_and.machineno - [] i Ye initialise temp vector for keeping cell and its number of machines relative 
r. r. to pDl.sequence (machine sequence for the current part). 
Ye Ye check for each cell how many machines are the same with those held in pm_sequence and sum them up 
Ye for q-l:NC r. for each cell 
Ye machines.iD.ceU - rvme(rvze(MACHINENUMBERq(q,:»), r. remove zeros" multiples of a machine in each row 
Ye machines.sUID - 0, Ye initialise SUID of machines for each cell in the next loop 
r. for w • i:length(machines.in_cell) 
r. machines_sum - machines_sum + sum(machines_in_cell(w) _. pm.sequence), 



~~~~--------------------------------------

x 
x 
2 
x x 
x 
x 
x 
x 
x 
x 

.nd 

.nd 

Y. compare each entry of the machines.in-cells with the part 
Y. machine operation sequence(machine.operation.sequences) 

cells.and.machineno. [cells.and.machineno ; q machines.suml; 

(machines.per.cell, machines.per.cellil - sort(cells.and.machlneno(:,2),'descend')i 
Y. machines.per.cell returns the sum of the machines relative to the machine 
1. operation sequence, with respect to cell numbers. 
Y. machine.per.celli returns the corresponding indices. 
cells.machines.sorted - [cells.and.machineno(machines.per.celli,1) machines.per.celll: 
temp_cell.seq - cells.machines.sorted(:,1)'; Y. make it a row vector 

x --------------------------------------------------------------------_ 'l. APPROACH 2: cell sequence based on maximum continuous sequence of machines relative to the 
.'lo part machine sequence 
y. Approach 2 vas chosen instead of 1 
r. ------------------------------------------------------______________ _ 
r. sort cells preserving the sequence of machines relative to part machine sequence 
jj-l; Y. pointer relative to part machine sequence, cbanges based upon the latest zero elements in ae 
qq-(1,NC1; 
qq_used-[] ; 
temp_cell_seq • (J; X initialise temp vector for classifying cells 
while jj<-length(pm_sequence) 

i_set1-[)j X initialize index for keeping the non-zero indices column wise. in ac_all 
r. find ac_all relative to part's machine sequence 
[ac_all] • ContMacSeq(HACHlNENUMBERq.~sequence,NC); 
i.set1 • find(ac.all(:,jj)--(pm.sequence(jj).ones(lengtb(ac.all(:,jj»,1»); 
Y.keyboard 
X if i.set1 is empty break while loop 
if isempty(i.set1) 

break 
.nd 
Y. if jj has reached the last element of the part machine sequence 
if jj--length(pm.sequence) 

Y.keyboard 
Y. store in temp.cell.seq the cell where the first index of i.set1, last column 
Y. of ac.all.temp, is located e.g. cell 2 
temp.cell.seq. [temp.cell.seq;qq(i.set1(1»li Y. fill cells 
Y. and add this cell in the vector of cells used 
qq.used-[qq.usediqq(i.set1(1»li 
break Y. give control to the loop that follows 

elSe 
Y.keyboard 
Y. find zi.al11 from ac.all (zi.a1l1 matrix partially defined depending upon the jj value) 
zi.all1-RetZerolnd(ac.all(i.set1,jj:length(ac.all(1,:»),pm.sequence); 
Y. yz1.temp indices relative to the partial matrix 
(yz1.temp.indexl.templ - sort(z!.a1l1(: .1), 'descend') i 

Y. yZl.temp indices relatiVe to the original matrix; 
Y. when jj-1. yz1.temp value is the same either lOCally and globally 
yz1.temp-yz1.temp+(length(ac.all(1,:»-length(ac.all(l,jj:length(ac.all(l,:»»); 



end 

y. keyboard 
Y. fill cells 
temp_cell_seq - [temp_cell_seqiqq(i_setl(indexi_temp(l»)]; 
qq_used-(qq_used iqq(i_seti(indexl_temp(l»)]i 
Y. jj is assigned the value of the yzCtemp(l) with respect to 
Y. global update 
U·yzCtemp(1) i 

end 
y'keyboard 

the original matrix 

y. add all remaining cells not involved in the arranged sequence 
for i-i:length(qq) 

if isempty(find(temp_cell_seq~-qq(i») 
temp_cell_seqe[temp_cell_seqiqq(i)]: 

end 
end 
temp_cell_seq-temp_cell_seq'i 
Y.keyboard 
for d-l:1ength(pm_sequence) y. LOOP D 

%disp('LOOP D') 
q2-1i Y. initialise counter for navigating through cells 
while q2 <- length(temp_cell_seq) y. les8 or equal to the current sorted cells 

Y.disp('LOOP Q2') 
Yokeyboard 
pm_sequence(d) _. rvme(rvze(MACHINENUMBERq(temp_cell_seq(q2),:»); 
if any(pm_sequence(d) -- rvme(rvze(HACHINENUMBERq(temp_cell_seq(q2),:» »--1 r. IF Q2(l) 

r.dlSp('IF Q2(1)') 
y. any returns a logical true (1) when the expression - vector evaluates to at least one non-zero entry 
Y. for the current part, for the current cell, for the current machine find its machine instances 
mach_instances - [l; r. initialize vector for keeping machine instances ot a specific 
r. machine type within one cell 
mach_instances • CELLHATRIX2(plII-sequence(d).:,temp_cell_seq(q2»j 
[instance_no, instance_noi] • tind(mach_instances--l); 
y. for the current machine instance of type pm_sequence(d) perform a number of checks 
k2-1j r. initialise counter for navigating through machine instances 
while k2<-lengthC1nstance_noi) y. LOOP k2 

Y.disp('LOOP K2') 
r.keyboard 
flagl"'Oj 
flag2-0i 
if sum(PARTHATRIX(pm_sequence(d),instanc8_noi(k2).:»<1 & UTIL_temp(p~sequ8nce(d).j»sl 

r.keyboard 
%disp('IF k2(t)I) 
UTIL_l • 1-sum(PARTMATRIX(pm_sequence(d).instance_Dol(k2),:», 
PARTMATRIX(plII-sequence(d).instanc8_noi(k2).j)=UTIL_1. 
UTIL_temp(pm_sequence(d).j)-UTIL_temp(pm_ssquence(d),j)-UTIL_i; 
part~ovss·[part-llloves; j,temp_cell_seq(q2),pm_sequence(d),instance_Doi(k2)]. 
y. assign 1 to PCMATRIX when part j. uses machine instance k2 ot type pm_sequence(d) 
y. in cell temp_cell_seq(q2) 
PCMATRIX (pm_sequence (d) ,instance_noi(k2) ,j ,temp_cell_seq (q2»-1; 
flagi-1. 

:> 
:g 

~ 
tJ 



--------------------------------------------------------------------------------

it UTIL-temp(p~sequence(d).j).-O.O 
break y. exit this while loop and move onto the outer loop 

end 
elsei! flagl--0 t sum(PARTMATRIX(pm.sequence(d},lnstancs.Dol(k2),:»<1 t UTIL.temp(pm.sequence(d),j)<l 

Y.disp(IIF k2(2)') 
Y.keyboard 
if sum(PARTHATRIX(pm.sequence(d),instanc8.Do!(k2),:»<-UTIL.temp(pm.sequence(d).j) 

Y.dispC'IF k2(2.1)') 
if (sum(PARTHATRIX(pm.sequence(d),instance.Dol(k2),:»+UTIL.temp(pm_sequence(d),j»--l 

Y.disp(IIF k2(2.1.1}') 
PARTMATRIX(pm.sequence(d),instance.Dol(k2),j)-UTIL.temp(pm.sequence(d),j)i 
UTIL.temp(pm.sequence(d),j)-O; 
paIt.moves-(part.moves; j,temp.cell.seq(q2),pm.sequence(d),lnstance.Dol(k2»)j 
r. assign 1 to PCHATRIX when part j, uses machine instance k2 of type pm.sequence(d) 
X in cell temp.cell.seq(q2) 
PCMATRIX (pm.sequence (d) ,instance.noi(k2) ,j ,temp.cell.ssq( q2»el. 

else if (sum(PARTMATRIX(pm.sequence(d),instance.noi(k2),:»+UTIL.temp(pm.sequence(d),j»>l 
Xdisp('IF k2(2.1.2)') 
7Jteyboard 
UTIL.le l·sum(PARTMATRIX(pm.sequence(d),instance.noi(k2),:». 
PARTMATRIX(pm.sequence(d),instance.n01(k2),j)-UTIL.l; 
UTIL.temp(pm.sequence(d) ,j)-UTIL.temp (pm.sequence (d) ,j). UTIL.l; 
part.moves-(part.moves; j,temp.cell.seq(q2),pm.sequence(d),instance.noi(k2»); 
X assign 1 to PCMATRIX when part j, uses machine instance k2 of type pm.sequence(d) 
X in cell temp.cell.seq(q2) 
PCMATRIX (pm.sequence (d) ,instance.DOi(k2) ,j ,temp.cell.seq( q2»-1. 
if UTIL.temp(pm.sequence(d),j)--O.O 

break X exit this while loop and move onto the outer loop 
end 

else 
7Jteyboard 
r.disp('IF k2(2.1.3)') 
PARTMATRIX(pm.sequence(d) ,instance.n01(k2) ,j)-UTIL.temp(pm .sequence(d),j). 
UTIL.temp(pm.sequence(d).j)-O; 
part.moves-(part.moves; j.temp.cell.seq(q2),pm.sequence(d),instance.noi(k2)]; 
X assign 1 to PCHATRIX when part j, uses machine instance k2 of type pm.sequence(d) 
X in cell temp.cell.seq(q2) 
PCMATRIX(pm.sequence(d),instance.noi(k2),j.temp.cell.seq(q2»-1; 
break 

end 
flag2-1; 

end 
end 
Y.keyboard 
if all«(flagl flag2)--O) & sum(PARTMATRIX(pm.sequence(d),instance.noi(k2),:»<t t 

sum(PARTMATRIX(pm.sequence(d).instance.noi(k2).:»>_UTIL.temp(pm.sequence(d).j); 
Yodisp('IF k2(3)') 
Yokeyboard 

if (sum(PARTMATRIX(pm.sequence(d).instance.noi(k2).:»+UTIL.temp(pm.sequence(d),j» •• t 
y'disp('IF k2(3.1)') 



, 
~ 

end 
end 

end 

end 

YJteyboard 
PARTMATRlX(pm_sequence(d).instance_noi(k2).j)-UTIL_temp(p~sequence(d),j); 
UTIL.temp{pm.sequence(d),j)-O; 
part.moves-[part.movesj j.temp.cell.seq(q2) ,pm.sequence(d) ,instance.noi(k2)] ; 
y. assign 1 to PCMATRIX when part J, uses machine instance k2 of type pm.sequence(d) 
Y. in cell temp_cell.seq(q2) 
PCMATRIX (pm.sequence (d) ,instanc8.nol(k2) ,J ,temp.cell.seq( q2»-1; 

elseit (sum(PARTMATRIX(pm.sequence(d),instance.uol(k2).:»+UTIL.temp(pm.sequence(d).j»>l 
Y.disp(IIF k2(3.2)') 
Y.keyboard 
UTIL.l-1-sum(PARTMATRlX(pm.sequence(d),instance.Doi(k2).:»; 
PARTMATRIX(pm.sequence(d),lnstanc8.nol(k2),j)-UTIL.1, 
UTIL.temp (pm.sequence (d) ,j)-UTIL.temp(pm.sequence(d) ,j)-UTIL.lj 
part_moves-[part_moves: j.temp_cell_seq(q2).pm_sequence(d).instance_noi(k2»): 
y. assign 1 to PCMATRIX when part j. uses machine instance k2 of type pm_sequence(d) 
Y. in cell temp_cell_seq(q2) 
PCMATRIX(pm_sequence(d),instance_noi(k2),j.temp_cell_seq(q2»-1: 
if UTIL_temp(pm_sequence(d),j)--O.O 

break Y. exit this while loop and movs onto the outer loop 
end 

else 

end 
end 
k2=k2+1; 

end 

Y.keyboard 
Y.dlsp('IF k2(3.3)') 
PARTMATRIX(pm_sequence(d),instance_noi(k2).j)_UTIL_temp(pm_sequence(d).j): 
UTIL_temp(pm_sequence(d),j)-O: 
part_moves-(part_moves: j.temp_cell_seq(q2).pm_sequence(d).instance_noi(k2»); 
1. assign 1 to PCMATRIX when part j. uses machine instance k2 of type pm.sequence(d) 
y. in cell temp_cell_seq(q2) 
PCMATRIX(pm_sequence(d).instance_noi(k2).j,temp_cell_seq(q2»-1: 
break 

if UTIL_temp(pm_sequence(d).j) •• O.O 
Y~eyboard 
break y. exit this while loop and move onto the outer loop 

end 
q2-q2+1: Y. accumulate cell counter 



Appendix E 

Tabu Search Algorithm - MatLab 

Code 
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function[BEST_COST,BEST_SOL.BEST.CELLKATRIX2,BEST.part_moves,BEST.V.jq,BEST.S.ij,BEST.PCMATRIX,BEST_PARTMATRIX,i.objvalprofile, •.• 
ObjVaIProfile,BestLocaIVector]- ••• 

TabuSearchv4tt(L.NP.NC,KKAX,NM,EMIN,EMAX,PARTKATRIX,UTIL.UTIL.sortedi.SETUP.INIT.OBJVAL.INIT_SOL.CELLHATRIX2.PCMATRIX •••• 
W.jq,S.ijq,S.ij ,extra.lIloves ,part.moves. tti) . 

x 
X 
X 
X 
X 

function (BEST.COST,BEST.SOL,BEST.CELLMATRIX2,BEST.part.moves,BEST.W.jq,BEST.S.ij.BEST-PCMATRIX,BEST.PARTMATRIX,i.objvalprofile ••. , 
ObjValProflle,BestLocalVector] -.,. 

TabuSearchv4tt(L,NP,NC,KMAX,NM,EMIN.EMAX,PARTMATRIX,UTIL,UTIL.sortedi.SETUP,INIT.OBJVAL,INIT.SOL,CELLMATRIX2,PCMATRIX, •.• 
W.jq,S.ijq,S.ij,extra.moves,part.moves,tti) 

Y. Tabu Search Iterative Procedure 
X 
Y. Inputs: 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
r. 
X 
Y. Outputs: 
X 
X 
1. 
1. 
1. 
X 
1. 
1. 
1. 
1. 

L part machine operation 
NP number of parts 
Ne number of cells to be created 
KHAX maximum part machine operation sequence 
MM number of machines 
EMIN minimum number of machines 
EMAX maximum number of machines in a cell 
PARTHATRIX (i,k,j) allocation of part j using kth instance of machine of type i in cell q 
UTIL.sortedi descending order of parts of total processing requirements 
SETUP set·up cost for part j using machine of type i 
INIT.OBJVAL initial objective value 
INIT.SOL initial solution 
CELLMATRIX2 initial allocation of machines to cells 
PCMATRIX (i,k,j.q) initial part machine cell allocation 
W_jq distinct allocation of parts to cells 
S.ijq integer number of machines of type i used by part j in cell q 
S.ij number of machines of type i for part j 
extra.moves number of later revisits of parts to already visited cell 
part.moves (j q i k) relative to part machine sequence 
tti tabu tenure 
BEST.COST global best cost 
BEST.SOL global best solution 
BEST.CELLMATRIX2 global best CELLMATRIX2 
BEST.part.moves the overall best (j,q.k,i) system configuration 
BEST.ICjq best distinct allocation of parts to cells 
BEST.S.ij best integer number of machines used by parts 
BEST.PCMATRIX (i,k,j.q) 
BEST.PARTMATRIX best allocation of parts to machine cells relative to part machine sequence 
i.objvalprofile number of iterations involved 
ObjValProfile value of the Objective function at each obtained 
BestLocalVector number of iterations involved together with objective function values of implemented moves only 

y. initialise best cost function equal to initial solution 
BEST.COST=INIT.OBJVAL; 
Y. the same for best solution (for the record) 
BEST.SOLRINIT.SOL; 
r. initialise CELLKATRIX2_temp matrix to navigate through moves 
CELLMATRIX2.temp-CELLMATRIX2; 



, 
~ 

Y. assume BEST_CELLMATRIX2 is initially the input CELLMATRIX2.temp 
BEST.CELLMATRIX2-CELLMATRIX2.temp; 
Y. initialise part.moves_temp (j q 1 k) 
part_moves_ temp - part.moves: 
BEST_part_moves-part_moves_temp; 
Y. initialise W_jq_temp 
W_Jq_t.mp - W_jq; 
SEST_W ... jq-W_jq_teIllPi 
r. initialise ve~tor to keep the DO. of intercellular moves 
INTERCELLHOVS_temp-[)j 
SOL_temp.{}; 
O.JVAL_temp - Cl; 
ObjValProfile-INIT_OBJVALj 
r. initialise matrix for keeping cell q. machine i and instance k. Cell q is the cell 
r. with the majority of machines of part's j sequence 
qik_recetver.[]j 
tl .. [] j 1. initialise tabu list 
tt=ttij r. initialise tabu tenure value 
r. insert a new iteration in order to allow parts to be reconsidered within the tabu 
i_global-O; i_objva1=Oj i_objvalprofile • [0]; warning_Bize1 - Oj 
BestLocal Vector- 0 i 
while i_global<2 Y. considers the parts sequence 

Y.keyboard 
Y. sort parts according in descending order of their intercellular movements caused 
X vi changes as W_j~temp keeps changing throughout the iterations 
[vy,vi] - sort(su.m(W_jq_temp')-l,Jdescend')j 
vi; Y. vi gives the index of the sorted elements 
counter _part-O; 
i_part-Oj 
while i_part < l*length(wy) % chooses the partj 

if counter_part>-length(wy) 
counter_part-O; 

end 
j2 - counter_part+l; 
i_source"'O; 
counter_source-O; %for donor 
counter_objval_-O; 
while i_source<2*length(wy) r. based upon the cUrrent part choose source cell 

if counter_objval_>-7 Y. length(qik(:,l» 
CELLHATRI12_temp - BEST_CELCMATRIX2i 

.nd 

[OBJVAL_temp,part_moves_temp,W_jq_temp,SOL_temp] - CalcObjValPA(UTIL_sortedi,CELLMATRIX2_temp,NP,NC,EMAX,NH,KHAX,L,UTIL,SETUP); 
break Y. if it does not improve, continue with next part 

i_source; 
II-find(wi(j2)·~art_moves_temp(:,l»; 
qik • part_moves_temp(II,2:4)l 
X counter for choosing donor indeX 
if counter_source>-length(qik(:,l» 

counter_souree-O; 
.nd 
cl - counter_source+l; r. choose the index of the row of the current qik (defines the current donor) 
source_cell-qik(el,l)i r. source_cell is the actual cell based on cl index 



all cells - [1:NC]; 
[ccj-find(qik(cl.1) •• all_cells): 1. find where the current qik(cl,l) exists in vector all_cells 
all_cells(cc)-O j r. remove donor 
8xzl-s1ze(CELLHATRJX2); 
CELLMATRIX23D • zeros (sxz1(l) ,8xz1(2). 8xz1(3) ,length(all_cells»; y. initialise matrh:: storage for the di1'ferent attempts 
OBJVALM • zeros(1.1ength(all_cel1s»; r. 1n1t objval vector storage 
tl_tempx. [l: 1. initialise a vector for keeping temporary keeping any forward or reverse moves of candidate transitions 
CELLMATRIX2_temp2 • CELLMATRIX2_temp; 
for i_dest-l:1ength(al1_cells) y. find destination cells I.e. neighboring solutions for current machine instance pair 

1. disp{IJust entered i_deat') 
CELLHlTRIX2_temp - CELLMATRIX2_temp2j 
dest_cell-all_cells(l_dest)j y. current receiver cell 
c2receiver-dest_cell; 
%keyboard 
receiver.sum-sum(sum(CELLMATRIX2_temp(:,:,dest.cell»); 
donor.sum -sum(sum(CELLMATRIX2_temp(:,:,qik(cl,l»»: 
temp_sum-sum(sum(sum(CELLMATRIX2_temp»): 
initl.sum=sum(sum(sum(CELLMATRIX2»): 
%keyboard 
if receiver.sum >EMAX I receiver.sum < EMIN I donor.sum < EMIN I donor.sum > EMAX I temp.sum--init1.sum 

warning.size1 - varning.size1+1 

end 
errore 'problem encountered I ') 

% SINGLE MOVE ••••••••••••••••••••••••••••••••••••••••• 
if sum(sum(CELLMATRIX2.temp(:,: ,dest.cell» )<EMAX t sum(sum(CELLMATRIX2.temp(:,: ,qik(c1.1») ) <-EMAX t •.. 

sum(sum(CELLMATRIX2.temp(:,:,qik(c1,1»»>EMIN 
%disp(' just entered single move') 
%keyboard 
% if target cell capacity < EMAX and donor cell capacity> EMIN do single move, 
% donate machine instance to target cell 
% target dest.cell cell receives a pair(destination cell} 
CELLMATRIX2.temp(qik(cl,2) ,qik(cl,3) ,dest.cell)*l; 
% remove machine instance pair from donor cell 
% qik(source cell} 
CELLMATRIX2.temp(qik(cl,2).qik(c1,3}.qik(cl,l})_O; 
% locally store the possible attempt of donor to 
% receiver using the receiver index in the 4th·dimension 
CELLMATRIX2.4D(:,:,:,i.dest)- CELLMATRIX2.tempi 
%temporarily find obj val 
(OBJVAL.tempx ,partJlloveB.tempx, W.jq. tempx, SOL. tempx) _ ••• 

CalcObjValPA(UTIL.sortedi,CELLKATRIX2.4D(:, = ,: ,i.dest},NP,NC, EMAX,NM.KMAX,L,UTIL.SETUP)j 
OBJVALM(i.dest)- OBJVAL.tempx; % store current objval 
ObjValProfile - [ObjValProfile; OBJVALM(i.dest»); 
1.objval-i.objval+li 
i.objvalprofile - (i.objvalprofileji.objval); 
tLtElmpx - [tl.tempxjU.dest qik(c1,:) ttiLdest dest.cell qik(c1,2) qik(cl,3) tti]]j 
%disp('before leaving single move'} 
%keyboard 
% INTERCHANGE ••••••••••••••••••••••••••••••••••••••••• 

else %i1 sum(sum(CELLMATRIX2.temp(:,:,dest.cell)})--EHAX t sum(sum(sum(CELLMATRIX2.temp»}--sum(sum(sum(CELLMATRIX2») 
%disp('just entered interchange') 



YJeeyboard 

r. receiver cell receives pair (i,k) needed and donates a pair not required by current 
r. part back to donor. Receiver cell receives a pair-i,k (belonging to its machine sequence) r. from donor cell 
r. find all machine-instance pairs in receiver cell including those utilised by current part 
[mach_temp, inst_templ-find(CELLHATRIX2_temp(:,:.dest_cell}}; 
machine_pairs-(maeh_temp inst_t.mp]j 
machine_pairs_temp-(mach_temp inst_temp]; 
if isempty(machine_pairs_temp) 

continue 
end 
Y. take each segment of current part from part~oves_temp 
ii-fiDd(wi(j2)-~part_moves_temp(:,1»; 
part_moves_temp2-part_moves_temp(ii.:); 
iiq-find(dest_cell--part_moves_temp2(:,2}}j 
Y. take the 2:4 columns of current part moves for the current indices 
qi~receiver - part_moves_temp2(iiq.2:4); 
Y. exclude pairs (i,k) used by receiver cell (current part)-store them in machine_pairs_temp 
r. receiver will sent back to donor a machine pair not used by current part 
for zz3-1:1ength(qik_receiver(:,1» 

end 

zz4-1: 
wbile zz4<-length(machine_pairs_temp(:.1» 

end 

if all(qik_receiver(zz3.2:3)--machine_pairs_temp(zz4,:» 
machine_pairs_temp(zz4,:)-[]; 

end 
zz4-zz4+1; 

if isempty(machine_pairs_temp) 
continue 

end 
macbine_pairs_donate-macbine_pairs_tempi 
r. assign pair i.k from donor cell to receiver 
Y.keyboard 
CELLMATRIX2_temp(qik(cl,2),qik(c1,3).dest_cell)-1; 
r. remove machine instance from donor cell 
CELLMATRIX2_temp(qik(c1.2}.qik(cl.3),qik(cl.l}}~O; 
r. target cell sends a pair -l,k (from machine_pairs_donate) to donor cell _> 
CELLMATRIX2_temp(machine_pairs_donate(1.1},machine_pairs_donate(1.2),qik(cl.1»-lj 
Y. remove this pair from receiver cell 
CELLMATRIX2_temp(machine_pairs_donate(1,1),machine_pairs_donate(l,2},dest_cell)-Oj 
Y. lOCally store the possible attempt of donor to 
Y. receiver using the receiver index in the 4th-dimension 
Y.keyboard 
CELLMATRIX2_4D(:,:.:,i_dest)- CELLMATRIX2_tempi 
Y.temporarily find obj val 
[OBJVAL_tempx,p&rt_moves_tempx,W_jq_tempx,SOL_tempx) _ ••• 

CalcObjValPA(UTIL_sortedi.CELLMATRJX2_40(:.=,:,l_dest).NP,NC,EMAX,NM,KMAX,L,UTIL.SETUP): 
OBJVALH(i_dest)- OBJVAL_tempx; Y. store current objval 
tl_tempx· [tl_tempxj[i_deat qik(cl.:) tt;l_dest deat_cell qik(cl,2} qik(cl,3} tt; ••. 



end 

i_dest dest_cell machine_pairs_donate(i.l).machine.pairs_donate(l,2) tt; ••• 
i_dest qik(cl.l) machine.pairs_donate(1.1),machine_pairs_donate(1.2) tt))j 

ObjValProfile - [ObjValProfilei OBJVALM(i_dest»)i 
i_objval-i_objval+li 
Lobjvalprofile - [LobjvalprofileiLobjval] i 

end 

X check tor empty n 
if -isempty(tl) 

end 

[tlf]-find(tl(:.4)--O)i 
tl(tlf.:)-Dl X if any remove 

X---- compare solutions before moving on and implement accordingly 
X classification of attempts based on OBJVAL 
[OBJVAUCsorted,OBJVALM_sortedi] - sort(OBJVALM.'ascend'); Xfrom local best to .... orst 
OBJVALM.Borted 
CELLMATRIX2_4D_sorted-CELLMATRIX2_4D(:.:.:,OBJVALH_sortedl)j 
ix2-[]iX sort the tl_tempx list according to the sorted objvala (mapping index multiplicities) 
'X3-[)j" 
ix3_-( i 
1x4-[) i 
ix6-D i 
X find the segments in tl_tempx corresponding to each generated OBJVALM_sortedi, 
X i.e. to each generated solution 
for ix-l:1ength(OBJVALM_sortedi) 

end 
ix2· [ix2:find(OBJVALH_sortedi(ix)--tl_tempx(:.1»]i 

X and sort them 
tl_tempx_sorted - tl_tempx(ix2.:)1 
X check if local best is better than the global best 
if OBJVALK_sorted(l)<BEST_COST 

BestLocalVector - [BestLocalVectori[(i_objval-length(all_cells»:l:i_objval]' ones(length(all_cells)+l.l)*OBJVALK_sorted(l)]: 
X in fact from theory we need to check if it is also in the 
X TL but due to the AC we can spare this checking statement 
Y. and implement directly and update Tt regardless 
y. update CELLKATRIX2_temp 
CELLHATRIX2_temp - CELLHATRIX2_4D_sorted(:,:,:,l)i 
X perform. a part reallocation 
[OBJVAL_temp,part_moves_temp,W_jq_temp,SOL_temp] - CalcObjVaIPA(UTIL_sortedi,CELLMATRIX2_temp,NP,NC,EMAX,NH,KMAX,L,UTIL,SETUP): 
Y. update global cost value 
BEST_COSTmOBJVAL_tempi 
X Please note that OBJVAL_temp and OBJVALH_sorted(l) are exactly the same as the first is produced 
X by employing the same CELLMATRIX2. Part reallocation is only performed to receive the updated 
X part_moves_temp and W_jq_temp needed within the iterative procedure 
X update global solution 
BEST_SOL-SOL_temp: 
Y. update machine cell allocation 
BEST_CELLMATRIX2-CELLMATRIX2_templ 
X update part machine cell allocation relative to the part machine sequence 
BEST_part_movea - part~ovea_temp; 
X update distinct allocation of parts to cella 
BESt_W_jq-W_j~templ 



clear OBJVAL_temp SOL~temp Z clear these two as they are of no further usage 
Z update tabu list 
Z find the segment in tl_tempx_sorted corresponding to the implemented move 
ix3-find(OBJVALM_sortedi(1).~tl_tempx_sorted(:.1»; 
Z find the segments for the remaining neighboring solutions in tl_tempx_sorted 
ix3_-find(OBJVALH.sortedi(1)-.tl_tempx_sorted(:.1», 
~ it tabu list 18 empty 
if isempty(tl) . 

1. place all moves for implemented (reverse and forward)and for the remaining 
1. only the forward (in the tabu list the reverse move is placed first and then the forward) 
tl-(tl_tempx_sorted(ix3.2:5),tl_tempx_sorted(ix3_(2):2:ix3_(length(ix3_».2:5);tIJ; 
1. tl_tempx_sorted(ix3_(2):2:ix3_(length(ix3_) meaning 
1. start from the second row and consider by step of two the next entry till the length has been reached 

else 
r. referring to local segment of implemented move (reverse and forward) 
for vx1-1:1ength(ix3) 

xx2"1; 
while xx2<-length(tl(:.1» 

1. if all entries both reverse and forward are in the tabu list delete them for nov .•• 
if all(tl_tempx_sorted(wx1.2:4).~tl(xx2.1:3» 

end 

end 
tl(xx2.:)-(); 

xx2-xx2+1; 
end Y. if not do not add in tabu list 

end 
y. referring to the remaining segments only for forward moves (even indices) 
for vx2-ix3_(2):2:ix3_(length(ix3_» 

xx3-1, 
move_exist1-(] ; 

end 

while xx3<~length(tl(:.1» 
1. if the forward moves exist increment 
1. move_exists1 by one 
if all(tl_tempx_sorted(vx2.2:4)-atl(xx3,l:3» 

move_exist1~ove_existl+1; 
end 
xx3s xx3+1j 

end 1. if not do not add in tabu list 
Y. if they don't exist add the forward moves in tl 
if isempty(move_exist1) 

tl-[tl_tempx.sorted(vx2,2:4) tt+l;tl]j 
end 

y'update all 
tl-(tl_tempx_sorted(ix3.2:5);tl(:.1:3) 

else Y. else if worst than BEST_COST find which one to implement from all neighboring 
Y. choose to implement that one whose forward move is not in tabu list 

counter_objval_- counter_objval_+l; 
collect_notimpl-[]i 
1£ -!sempty(tl) 

for vx3-1:lengtb(OBJVALM_sortedi) 
ix4s find(OBJVALH_sortedi(vx3)--tl_tempx_sorted(:.1»j r. 
xx4-1; 

solutions 



.nd 

while xx4<-length(tl(:,l» 
if all(tLtempx.sorted(ix4(2), 2:4)--tl(xx4, 1 :"3» 

1. put in collect.notimpl these object val. whose forward moves are in the tabu 
1. list, therefore they can't be implemented 
collect.notimpl - [OBJVALM.sortedi(wx3)jcollect.notimpll; 
break 

.nd 
xx4-xx4+1j 

.nd 

1. take all 
1. choose to implement the local solution not in TL 
[impl.candidate,impl.candid&tei] - setdiff(OBJVALH.sortedi,collect.notimpl): 
:t.[c1,c) - setdiff(A, B) returns the values in A that are not in B in c and the corresponding indices in ci 

% if the tabu list is empty that means that the neighboring solution with the smallest objective value can be 
1. implemented (the first elemenst in sorted OBJVALM) 
else " 

impl.candidatei-t; 
.nd 
1. if there is at least one neighboring solution that is not 
1. tabu 
if -isempty(impl.candidatei) 

1. take the minimum of all and update the allocation of machines to cella accordingly 
CELLHATRIX2.temp - CELLMATRIX2.4D(:,:,:.OBJVALH.sortedl(min(impl.candidatei»); 
1. perform part reallocation and evaluation of the objective value 
[OBJVAL.temp,part~oves.temp,W.jq.temp,SOL.templ - CalcObjValPA(UTIL.sortedi,CELLMATRIX2.temp,NP,NC,EMAX,NH,KHAX,L,UTIL,SETUP): 
BestLocalVector - [BestLocalVector:[(i.objval·length(all.cells»:l:i.objvall' ones(length(all.cells)+l,i)*OBJVAL.temp); 
clear OBJVAL.temp SOL.temp 
1. update Tt ••• 
% find the segment referring to the implemented move 
ix6~find(OBJVALH.sortedi(min(impl_candidatei»--tl.tempx.sorted(:.1»; 
1. find the segments of the remaining moves 
ixS.-find(OBJVALM.sortedi(min(lmpl.candidatel»--tl.tempx.sorted(:,1»: 
1. if tabu is empty place all moves: both reverse and forward of the implemented + the forward moves of the non implemented 
if fsempty(tl) r. if TL empty place all moves by default 

tl-(tl.tempx.sorted(lxS,2:6):tl.tempx.sorted(lxS.(2):2:ixS.(lengtb(lxS.»,2:S);tl]; 
else 

for wx4-1:length(ixS) 1. referring to local segment of implemented move (reverse and forward) 
%x5-1: 

,nd 

while xxS<-length(tl(:,1» 

,nd 

if all(tl.tempx.sorted(wx4.2:4)--tl(xxS,1:3» 
tUxxS, :).(]; 

.nd 
xxS-xx5+1; 
Y. if not do not add in tabu list 

for wxS-ix5.(2):2:1x5_(length(ix5.» X referring to the remaining segments only for forward moves (even indices) 
:t.wx5 
xx6-1i 
move.exist2- [] l 
1. check if the forward moves exist in tli if 
1. they do leave them as they are, do not update the .tt; otherwise place them witb tt-t.max 
while xx6<-length(tl(:,1» 



end 

end 

end 

end 

end 

Y,s1ze(tl_tempx) 
Yotl_tempx_sorted(vx5,2:4) 
Yokeyboard 
1f all(tl_tempx_sorted(vx5,2:4)--tl(xx6,l:3» 

move_exist2=move_6xist2+1; 
end 
xx6-xx6+1; 

end Yo if Dot do not add in tabu list 
if isempty(move_exist2) 

tl-(tl_tempx_sorted(wxS,2:4) tt+1ltl] I 
end 

Youpdate all (implemented placed in tl_tempx_sorted and rest are reduced by one) 
tl-[tl_tempx_sorted(h:6,2:S) itl(: ,1 :3) tl(: ,4)-1] ; 

else X if all local solutions are in TL continue from global best, or least worst among the neighbors 
Yo or worst neighbor (chose the more appropriate) 

Yokeyboard 

end 

XCELLMATRIX2_temp - CELLMATRIX23D(:,:;: ,length(OBJVALM_sortedi»; X current vorst 
XCELLMATRIX2_temp - CELLMATRIX2_4D_sorted(:,:,:,l)i X current least worst 
CELLMATRIX2_temp • BEST_CELLMATRIX2; X global best 
X perform reallocation and evaluation of the objective function 
[OBJVAL_temp,part_moves_temp,W_jq_temp,SOL_temp] - CalcObjValPA(UTIL_sortedi,CELLMATRIX2_temp,NP,NC,EMAX,NM,KMAX,L,UTIL.SETUP): 
BestLocalVector - (BestLocalVectori(i_objval-length(all_cells»:1:i_objva1]' ones(length(all_cells)+1,l)*OBJVAL_temp] ~ 
clear OBJVAL_temp SOL_temp 

Y,----
counter_source-c1i 
i_source-i_source+1; Yo accumulate iteration counter; move onto next move 

counter _part-j 2: 
i_part-i_part+l; 

i_global-i_global+1; Yo accumulate iteration counter for overall procedure 
end 

XYoY.Y.XYoXy.Yoy.1.1.1.1.1.r.r.r.r.r.r.r.r.Yor.r.r.r.Yoy.y.y.y.r.r.r.y.y.y.y.Yor.r.r.y.r.y.r.r.r.y.Yoy.r.YOYOY07. 
function (DVx,PMT.WJQ,SOLx) -
CalcObjValPA(UTIL_SI,CHTRX,NP,NC,EMAX,NK,KMAX,L.UTIL.SETUPx) 
y. calculate obj val for given problem with new part allocation 
r. do a part allocation 
[PMTRX,STP_matrix,PMT] -
PartAllocation(UTIL_SI,CMTRX,NP,NC.EHAX,NH,KHAX.L,UTIL); 
r. evaluate all elements encountered in the objective function 
(xtra1] - FindExtraMoves(UTIL_SI.PMT); 
r. S should be manipulated from PCHATRIX_temp 
(setup_costtx,S_ijq_x,S_ij_x] • SetupCostTotal(STP_matrix,SETUPx): 
[WJQ,W_x]BCalcW(PMT,UTIL_SI,NP,NC): SOLx-{WJQ, S_ijq_x, xtral}i 
r. evaluate current objective function 
OVx - 10*sum(sum(WJQ» + sum(sum(SETUPx.*S_ij_x» + sum(xtral); 
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