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Abstract 

Pulsed laser deposition from a compound target in an oxygen atmosphere has been used to 

produce sub-stoichiometric WOx films of 30 nm thickness on Si(100) and SrTiO3(100) 

substrates. The growth temperature was 500°C and the pressure of the O2 background was 

2.5×10-2 mbar. The films have been assessed using X-ray photoelectron spectroscopy, X-ray 

reflectivity, X-ray diffraction and scanning electron microscopy. The chemical shift of the 

tungsten 4f states showed that the tungsten was close to fully oxidised. X-ray reflectivity 

measurements and scanning electron micrographs showed the films on SrTiO3(100) to be 

much smoother than those on Si(100) which were granular. X-ray diffraction in the Bragg-

Brentano geometry combined with texture analysis showed that the films were textured with 

the [001], [010], [100] directions normal to the surface. The films on SrTiO3(100) were found 

to be biaxially textured with the film directions aligning with those in the substrate. The 

nature of the texture was sensitive to the laser fluence used. Higher fluence promoted [001] 

texture whereas lower fluence promoted [010] and [100]. Intermediate fluences produced 

smooth, highly ordered films with biaxial texture. Investigations using the laser repetition rate 

indicate that the mechanism for the difference is the overall deposition rate, which is affected 

by fluence. On Si(100) the films were rougher and exhibited only uniaxial texture. 
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1. Introduction 

Stoichiometric WO3 is an n-type wide-band-gap semiconducting oxide. The band gap in thin 

film WO3, however, is dependent on the grain structure; increasing the crystallite size 

decreases the band gap. Consequently adjusting the deposition parameters can tune absorption 

properties, and so thin film WO3 is transparent to the majority of the visible light spectrum. 

WO3 is also electro-chromic and gas-chromic so the visible colour of WO3 thin films can be 

reversibly changed. These properties have made thin film WO3 the focus of various 

applications studies such as: thin film gas sensors [1], electro-chromic devices [2] and solar 

cell production [3, 4].  

Given its potential technological importance, there have been several reports of the 

production of thin films of the material by various physical vapour deposition methods, 

including evaporation and magnetron sputter deposition. Pulsed laser deposition (PLD) is 

known to be an important method for the deposition of oxide materials [5], but there have 

been relatively fewer investigations of its utility in the deposition of WO3 and sub-

stoichiometric WOx 

Following deposition using PLD from a WO3 target using 308 nm radiation the 

microstructure and subsequent electrical properties of WO3 thin films have been investigated 

[6, 7], in particular the influence of substrate temperature and oxygen pressure. The films 

were deposited onto ITO coated glass and Si(111) substrates. Increasing oxygen background 

pressure during deposition was found to raise the resistance of the film; an atmosphere of 7 Pa 

of O2 gave films that were conducting, 10 Pa semiconducting, and 15 Pa highly resistive [6]. 

The oxygen deficiency induced by low pressures results in greater conduction between 

tungsten atoms. Pressure also influenced microstructure: at lower pressures the films were 

found to be amorphous, but for O2 pressures between 15 and 20 Pa they became 

polycrystalline. In the second study [7] WO3 was deposited onto Si(111) at 200°C and post-

deposition annealing was used which again converted the films from amorphous into 

polycrystalline. 

The influence of substrate temperature on the microstructure of thin films deposited onto 

glass substrates by PLD using 532 nm radiation has also been investigated [8]. Three films 

were deposited at substrate temperatures of 300 K, 523 K and 673 K from a WO3 target 

within an oxygen background. Films deposited at 300 K were found to be translucent, but 

deposition at 523 K and 673 K resulted in transparency. All conditions gave triclinic 

contributions but films were predominantly orthorhombic in structure, exhibiting preferred 

orientation texture of [001]. The grain size and surface roughness was found to decrease with 
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increasing substrate temperatures. At 300 K the film exhibited porous gaps at the crystallite 

grain boundaries but these decreased in size at the higher deposition temperatures.  

There have been few studies of epitaxial growth of WO3 on SrTiO3(100). The influence of 

substrate temperature on the epitaxy of magnetron sputtered WO3 thin films grown on SrTiO3 

substrates has been studied [9]; it was observed that at all substrate temperatures in the range 

500°C to 850°C the films exhibited strong preferential [001] texture and that substrate 

temperatures higher than 500°C gave a secondary [020] texture, the degree of which was 

dependent on the substrate temperature. Pole figure analysis of the [222] WO3 lattice 

reflection demonstrated four-fold symmetry, which confirmed [001] epitaxy. Further pole 

figure analysis of the [112] WO3 lattice reflection allowed the degree of epitaxy to be 

quantified. The four-fold symmetry was observed but additional poles were present in films 

grown at substrate temperatures higher than 500°C. This indicated that additional orientations 

were present within these films and that the greatest degree of epitaxy occurred at 500°C. 

As part of a larger growth study of WO3 on glass [10] the influence of background O2 

pressure on the growth of epitaxial WO3 on SrTiO3 substrates by PLD using WO3 target and 

248 nm radiation has been reported. The films investigated were grown at 600°C and were 

found to texture predominantly in the [002] WO3 lattice reflection, but were found to have a 

contribution from the [020] lattice reflection - the strength of which appeared to reduce with 

increasing O2 deposition pressure. The contribution from the [020] lattice reflection was 

almost fully suppressed at O2 pressures above 150 mTorr, indicating improved epitaxy with 

respect to films deposited at lower pressures.  

The effect of laser fluence is known to have subtle effects on the structure and microstructure 

of thin films grown by PLD [11] through changes in the instantaneous deposition rate, overall 

rate, or energy of deposited species, but as yet little work has been done in this area for the 

case of WO3. A preliminary work (as part of a larger investigation) on the effect of laser 

fluence on the surface morphology of WO3 thin films has been reported [12]. In this 

investigation films were deposited from a metal tungsten target using RF assisted PLD. The 

films grown for the purpose of fluence comparison were deposited at 400°C on Corning glass 

substrates. With reducing fluence, the morphology was found to become smoother and more 

compact with a reduction in droplet density. No investigation of orientation texture was 

reported. 

In this manuscript we report an investigation into the growth of sub-stoichiometric WOx thin 

films on both Si(100) and SrTiO3(100) substrates using PLD. The study focusses on the 

crystallinity and microstructure of the film and the effect of varying fluence. We show that 
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films may be produced with distinct biaxial texture and that the precise value of the fluence 

has an important effect on film properties. 

2. Experimental 

The experimental work was carried out in the laboratories of Loughborough University. An 

ultrahigh vacuum system was used to deposit the films onto single crystal substrates using 

visible light of various fluences. The resulting thin films were analysed for crystal structure, 

microstructure and composition using X-ray diffraction and spectroscopy, and electron 

imaging methods. 

The PLD system used for this work [13] was constructed by Cryogenic and Vacuum 

Technology Ltd and incorporates a PLD process designed by the IWS Dresden [14]. The 

vacuum hardware is a three chamber MBE type UHV with a base pressure of 2×10-10 mbar 

after bake-out. The deposition chamber is a double-skinned, water-cooled domed cylinder 

with ion and titanium sublimation pumps. It may also be pumped by a turbomolecular and 

mechanical pump combination during rough pumping or when reactive gases are to be used. 

The targets are mounted horizontally in the base of the chamber and may be translated, 

rotated and changed under stepper-motor control. The substrate is mounted vertically above 

the targets at a distance of 110 mm and may be heated using a silicon carbide wander track 

controlled by a thermocouple that is behind the heater at a similar distance as the substrate. 

The calibration of the substrate temperature has been verified previously using another 

thermocouple attached to the substrate platen.  

The PLD system is equipped with a 10 W pulsed Nd:YAG laser manufactured by Quanta 

Ray. The pulse repetition rate is 10 Hz and the power of each pulse may be controlled by a Q-

switch. The laser is equipped with non-linear optics to frequency double the infra-red 

fundamental into the visible at 532 nm. Further frequency selection is achieved by two 

wavelength selective thin-film mirrors and a lens is used to focus the beam into the chamber 

through a fused silica viewport. 

The film deposition employed oxide targets of stoichiometric WO3 manufactured to 99.95% 

purity and supplied by Pi-Kem Ltd. The films were deposited onto two different substrates: 

polished and pre-diced Si(100) 10×10 mm wafer segments and polished SrTiO3(100) of the 

same size. The substrates were cleaned ex situ using acetone. For the silicon substrates this 

involved immersion for three minutes to remove the protective film, a rinse in clean acetone 

and then immediate insertion into the load-lock. SrTiO3 substrates received only the rinse. 

The substrates were baked under high vacuum in the load-lock at 120°C for four hours before 
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transfer into the deposition chamber. Prior to deposition, the substrates underwent further 

outgassing at the deposition temperature until the chamber pressure had fallen to 2×10-8 mbar. 

The thin films were deposited in an oxygen pressure of 2.5×10-2 mbar of oxygen (99.9995% 

BOC) which was continuously replenished using a combination of leak valve and baffled 

turbomolecular pump to maintain flow. This pressure was selected to give slightly sub-

stoichiometric films but so that fully stoichiometric films could be produced by slight increase 

in pressure, thus putting the experiment in the region where control is possible. This choice 

was influenced by previous reports [10, 15] and our preliminary experiments at different 

oxygen pressures. The temperature during deposition was 500ºC, a temperature that was 

found to produce good crystalline structure. This was again selected following some 

preliminary experiments, and is consistent with growth temperatures used in deposition by 

other techniques [8]. Directly after deposition the substrates were allowed to cool 

immediately down to 50ºC in the oxygen environment.  

The films were deposited at five different fluences, namely 5.3, 7.6, 10.1, 12.4 and 14.7 J cm-

2, which had previously been determined using a laser power meter and measurement of crater 

size from one shot and ten. Following preliminary experiments, the number of pulses 

employed was adjusted to give film thickness 30 nm for each fluence. The mean deposition 

rates for SrTiO3 substrates for these fluences were 0.73, 1.09, 1.45, 1.74 and 2.49 nm min-1 

respectively. This film thickness was determined by grazing incidence X-ray reflectivity 

(XRR) described below. Investigating the effect of laser fluence on film structure requires 

some caution: the fluence can modify the target surface, which in turn affects growth [16]. 

Each nominal fluence was allocated to a different region of the target and the fresh surface of 

the target was pre-conditioned using the same fluence before any deposition. In this way the 

target surface was in the steady state condition achieved by each fluence before deposition 

commenced. 

The films were analysed ex situ by various forms of X-ray diffraction (XRD), by electron 

microscopy and by X-ray photoelectron spectroscopy (XPS). Structural analysis was 

performed using XRD in the Bragg-Brentano θ-2θ geometry symmetrically about the surface 

normal utilising a Bruker D2 Phaser and the filtered Cu Kα line at 0.154 nm. Pole figure of 

selected films were collected in the reflection geometry employing the [220] and [112] 

reflections of WO3; the former to investigate four-fold symmetry and the latter to determine 

the orientation and presence of [001], [010] and [100] textures. Measurement of pole figures 

was accomplished using a D8 diffractometer configured with the tube positioned in the point 

focus mode, a light tube collimator and a quarter-circle Eulerian cradle with three-axis 
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translation. Scattered X-rays were detected using both graphite monochromated scintillation 

counter ([220] figures) and a Bruker Sol-X energy dispersive detector ([112] figures). Grazing 

incidence XRR curves were collected using the D8 and a specially modified D5000 to 

quantify film thickness The XRR data was modelled and fitted using the Bruker Leptos 

software package [17]. 

The microstructure of the films was imaged using a Leo 1530FE high resolution field 

emission gun scanning electron microscope (FEGSEM). This instrument has a primary 

energy of 5 keV and was used at magnifications of 105. Compositional profiles were obtained 

by XPS using a Thermo K Alpha with X-ray energy 1486.7 eV. All of the equipment is 

located in the laboratories of Loughborough University, the FEGSEM, D8 and XPS are 

operated by the Loughborough Materials Characterisation Centre and the remaining 

equipment is based in the Department of Physics. 

3. Results and Discussion 

3.1 Film Composition and Thickness 

All of the films deposited here are optically flat and smooth and have no obvious colouration. 

We have performed analysis of the films using XPS and grazing incidence XRR. Figure 1(a) 

shows an XPS survey scan of a film deposited using 7.6 Jcm-2 fluence onto SrTiO3(100), 

which was typical of all the films and Figure 1(b) shows XRR scans of films deposited at the 

same power onto both substrates. 

The XPS analysis, Figure 1(a), shows that the film comprises almost entirely oxygen and 

tungsten, with the tungsten being close to fully oxidised. The oxidation state of tungsten may 

be determined by the binding energy of the 4f electron states; the binding energy of the 4f7/2 is 

31.6 eV in metal and 36.1 eV in WO3, with a similar chemical shift in the 4f5/2 state 

[18, 19, 20, 21]. The XPS spectra showed no evidence of any tungsten in the metallic state, 

and quantification of the survey scan using the Schofield sensitivity factors was consistent 

with a composition ratio close to 1:3.  

It is not unusual for WO3 thin films to be prepared sub-stoichiometric [22], and the aim of this 

research was to aim for deposition conditions that would make films slightly sub-

stoichiometric but that could achieve full stoichiometry with small adjustment of the oxygen 

pressure. Detail of the photoemission from the tungsten 4f states is shown in the inset to 

Figure 1. It can be seen that the peaks are chemically shifted to the binding energy consistent 

with a +6 oxidation state. However a slight asymmetry is apparent on the low binding energy 
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side of the 4f7/2 emission peak. This shoulder is consistent with a small fraction of the 

sampled tungsten being in the +5 oxidation state [10, 21] as desired. Fitted peaks are shown in 

the figure but as the sample was transferred ex situ, quantification is not appropriate. 

XPS analysis of the sample revealed some contamination that was restricted to the very 

surface layer of the film: no contamination was found at the film-substrate interface or within 

the film. Surface contamination included carbon (18 at%) which is common for surfaces 

analysed ex-situ, molybdenum (1 at%), and sodium (0.6 at%). A very short etch with an argon 

ion beam revealed that these elements were entirely confined to the surface layer. The 

molybdenum contamination probably occurred during sample transfer within the vacuum 

system. Aside from these three elements the only elements detectable by XPS were tungsten, 

oxygen and the substrate elements. Depth profiling of some metal oxides using XPS is 

problematic [18, 23], because the action of the argon ion beam causes the compound to 

disintegrate and the film enriches with the metallic element. However, comparison with a 

piece of WO3 target that was etched under the same conditions was also consistent with a film 

that was close to full oxidation. 

Analysis using XRR indicates that all the films have thickness around 30 nm, as intended. 

The thickness distribution for the films deposited onto SrTiO3(100) was particularly narrow at 

28-33 nm with no systematic variation across the fluence range. Roughness of surface and 

interface was in 1-1.5 nm for all films except the one deposited at highest fluence, which had 

roughness of 2 nm. The scatter in these values for the lower fluence films probably reflects 

the accuracy of the determination rather than systematic variation. Inclusion of a carbon 

contamination layer in the model made only a marginal difference to the values. For the films 

deposited onto Si(100) the scatter in measured thickness and roughness was larger, being 27-

37 nm and 3-4 nm respectively. This wider scatter in the determination of values probably 

reflects the poorer quality of the growth surface. A comparison between the XRR scans for 

films deposited on both substrates at 7.6 Jcm-2 fluence is shown in Figure 1. 

3.2 θ-2θ X-ray Diffraction 

The XRD collected in the θ-2θ geometry is a common method for determining the orientation 

texture of thin films. Figure 2 shows scans collected from five WOx films deposited onto 

Si(100) substrates. These scans are consistent with an approximately pseudocubic [001] 

predominant orientation texture as is demonstrated by the presence of the (002) or related 

lattice reflection for all the films: however, the detail differs. The scan at the bottom of the 

figure is from the polycrystalline WO3 target and is equivalent to powder diffraction. The 
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triplet of reflections between 23° and 24.5° is characteristic of the stable monoclinic γ-WO3 

phase [24]; the [002] reflection is at a 2θ angle of 23.117°, the [020] is at 23.583°, and the 

[200] at 24.387°. All three of these orders have similar structure factors. A higher temperature 

phase, orthorhombic β- WO3 [25], gives respective 2θ angles of 22.920°, 23.485° and 

24.229°. These two phases are unlikely to be distinguished by XRD alone as thin films are 

typically strained. Given that the films may be slightly sub-stoichiometric as revealed by 

XPS, we need to consider XRD from these phases. X-ray analysis of monoclinic WO2.90 

[26, 27] gives a series of six peaks of varying intensity between 20.6582° and 24.4204°. We 

do not see evidence of all these peaks and again the phases would be difficult to distinguish in 

a strained film, so the structure of the films is probably most correctly described as a defected 

bulk phase of WO3. Certainly the pole plots presented later are consistent with this.  

The first thing to notice is that the films are textured to a higher degree than many previous 

PLD studies of deposition onto glass or silicon substrates, exhibiting one predominant set of 

diffracted orders. This is most probably due to the growth temperature of 500°C, which 

appears to be the best compromise in giving crystalline growth whilst retaining preferred 

texture. Our preliminary experiments indicated that 500°C was the minimum temperature 

required to produce the strongest diffracted orders, however higher temperatures offered no 

further improvement. 

Looking first at the lowest fluence 5.3 J cm-2 film, shown in Figure 2(a), it can be seen that all 

three of the principal reflections, [002], [020] and [200] are present, but in different 

proportions than in a powder sample. This indicates that the preferred orientational texture of 

this film is [001], but that smaller amounts of [010] and [100] are present. The peaks are 

broader than for powder diffraction, suggesting smaller crystallite size which in this geometry 

is limited by the thickness of the film. The angular positions of the reflections correspond 

closely with those from the target, suggesting the film is not strained. The narrow reflection at 

33.1° is a weak order associated with the Si(100) substrate. 

With increasing fluence, there are changes in the relative and absolute intensities of these 

reflections. Figure 2(a-e) shows the sequence of increasing fluence of 5.3, 7.6, 10.1, 12.4 and 

14.7 J cm-2 respectively. Increased fluence results in an increase in the [001] orientational 

texture at the expense of the [010] and the [100]. There is also a variation in the [001] 

intensity suggesting that the overall degree of crystallinity varies. The small diffraction order 

at 47.2° is the [004] reflection. 
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Although the film deposited using a fluence of 7.6 J cm-2, Figure 2(b), shows the strongest 

[002] reflection it has shoulders corresponding to residual amounts of [020] and [200] 

orientations. These orders are less apparent at higher fluence, where the film is primarily 

[001] textured. Given that all the films have the same thickness and therefore the same 

sampling volume, the intensity of the [002] reflection can be associated with the degree of 

crystallinity. Variations in intensity may in principle be influenced by sample alignment in 

XRD, but care was taken over this and the large mosaic structure typical of thin films means 

that the intensity is relatively insensitive to alignment. Thus it would appear that the highest 

degree of crystallinity is associated with intermediate fluences. 

The θ-2θ scans for films deposited under similar conditions but onto SrTiO3(100) substrates 

are shown in Figure 3. The behaviour here shows some similarities with the behaviour on 

Si(100) substrates, but also some important differences. The apparent crystallinity also 

maximises at low to medium fluence and high fluence again produces films that have a [001] 

preferred orientational texture. However, the angular position of the reflections at low fluence 

is very different. The detail of these scans is really quite different from those of films grown 

by magnetron sputtering [9] and shows a definite progression with fluence. 

The θ-2θ scan from the lowest fluence of 5.3 J cm-2 is shown in Figure 3(a). The relative 

strength of the reflection is quite high and the angle of the main peak corresponds to an 

interplanar distance that is slightly larger than that of the [200]. Although the peak has 

asymmetry towards lower angle indicating that there is some mixture of reflections, it is clear 

that this data cannot be described as a simple mixture of [002], [020] and [200] in the same 

way that the equivalent film on Si(100) can be. Note that the strong reflection at 22.783º 

arises from the substrate SrTiO3 [100] reflection and the second order of this can be seen at 

46.535°. 

With increasing fluence, the XRD changes markedly. The film deposited with fluence of 7.6 J 

cm-2, Figure 3(b), has a broad peak that appears to comprise a mixture of the [200], [020] and 

[002] reflections. By 10.1 J cm-2, Figure 3(c), the preferred orientation texture is [001], a 

picture that is repeated in the higher fluence films. By the highest fluence of 14.7 J cm-2 the 

film is almost entirely of [001] orientation but does not show a very strong reflection. 

SrTiO3(100) has a very close lattice match with WO3: the lattice constant is 0.3905 nm which 

is about half the repeat unit of γ-WO3 and similar to the pseudo-cubic lattice constant. In the 

lowest fluence film, Figure 3(a), the strong reflection at 24.039º requires some comment. This 

lies between and may be due to two equal [020] and [200] contributions with peak broadening 
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due to small crystal size. If the peak is due to a single reflection then the angle of 24.039º 

corresponds interplanar distance of 0.740 nm. For γ-WO3, the interplanar distances for [001], 

[010] and [100] are 0.7692, 0.7540 and 0.7306 nm respectively [24], inviting the hypothesis 

that we have strained epitaxial matching to the [100]. Figure 3 also shows evidence of a 

second order reflection, visible at 49.169º. For β-WO3 these would be [004], [040] and [400] 

reflections visible at 46.828, 48.037º and 48.434° respectively [25].  

The possible reasons for the variation in texture with fluence require some consideration. 

There are at least three growth parameters that may be affected by fluence, including 

instantaneous deposition rate, mean deposition rate and the average energy of the incident 

species. All of these potentially influence the kinetics of the film formation on the growing 

surface and so affect the competition between deposition and diffusion that has a strong effect 

on nucleation and growth [28]. Additional energy in the deposited species may activate 

diffusion and film crystallisation processes, however a higher rate reduces the time available 

for these processes to take place.  

The deposition of oxides usually requires the use of a reactive oxygen atmosphere that also 

affects the plume. Between about 1×10-2 mbar and 10×10-2 mbar is a transition region in 

which the plume forms a shock-front and is broadened, attenuated and decelerated 

[29, 30, 31]. There is also the possibility of the formation of molecular complexes which will 

influence surface growth kinetics [29]. The pressure that we have selected is near the start of 

this transition region, so while there is significant deceleration the plume is not expected to 

fully thermalise [31] and the broadening will be small. A previous study on PLD of WO3 [10] 

found evidence of a O2 pressure dependence of the (010) to (100) transition at pressures 

several times higher than found here. At 150 mTorr (far higher than that used here) the films 

on SrTiO3(100) still showed mixed texture and more than 200 mTorr was required to induce a 

single (100) texture. This report and our experience of some preliminary experiments with 

pressure indicate that the influence of deceleration and attenuation by the background gas is 

not the principal mechanism for the texture change with fluence. 

In addition to the deceleration by the background gas, the mean kinetic energy of the 

depositing species is also affected by the fluence [32]; increasing the fluence will increase the 

kinetic energy of the species alighting on the growing film, so increasing the activation of 

surface diffusion. However, there is evidence that the largest changes to kinetic energy occur 

at low fluences and increases in fluence in the intermediate region have a smaller relative 

effect [33]. The other effect of fluence is to increase the deposition rate, which acts in 



Caruana and Cropper, PLD of WO3 
 

11 
 

opposition to the kinetic energy in its effect on growth kinetics, giving less time for diffusion 

to occur. 

To shed some light on the mechanism by which the fluence affects the film texture, we have 

deposited another film onto SrTiO3(100) using a lower laser repetition rate of 5 Hz for 

comparison. This film was deposited using the intermediate fluence of 10.1 J cm-2 and all 

other parameters were kept the same. A comparison of the θ-2θ scans for this film is shown in 

Figure 4 compared with the 10 Hz film, where it can clearly be seen that the pulse rate affects 

the texture. In this comparison, the only parameter that will have been affected is the mean 

deposition rate, as pulse fluence is the same, both instantaneous deposition rate and the mean 

energy of the depositing species is the same.  

As can be seen from figure 4, the film grown with the lower mean deposition rate exhibits 

both (001) and (010) orientational textures, whereas the higher rate favours (001) – as does 

higher fluence. This indicates that the mechanism for fluence affecting orientational texture is 

related to mean deposition rate. This suggests that the most commonly observed (001) texture 

is produced by kinetic limitations on surface diffusion and the other orientations are favoured 

by shifting the balance between deposition and diffusion towards greater diffusion. This 

conclusion would be consistent with very high O2 pressures favouring (001) texture [10] as 

deceleration of the plume would reduce the energy available to activate diffusion. This would 

indicate that the (001) orientation is a metastable phase promoted by kinetic limitations and 

that the other orientations occur when a relatively lower deposition rate enables diffusion to 

dominate. 

In common with all deposition techniques, PLD creates a supersaturation at the substrate 

surface. However, the supersaturation induced by PLD is instantaneously many times that 

produced by other physical vapour deposition methods reducing the critical size of 

nucleations at the surface and increasing dramatically the nucleation density. This 

phenomenon is the reason why PLD can deposit smooth, epitaxial films at relatively low 

substrate temperature.  The high nucleation density when combined with a high deposition 

rate can promote the stabilisation of metastable structures by depositing material at a higher 

rate than the rate of surface diffusion which enables the film to relax. This mechanism also 

promotes better microstructure such as surface smoothness [34] by enabling better filling of 

condensed layers prior to the nucleation of the next layer. 

However, depositing at lower overall rates by reducing fluence or repetition rate can provide 

time for surface diffusion to enable the film to relax into a better matched or otherwise more 
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optimal epitaxial structure. This process is also controlled by surface mobility promoted by 

use of a suitable substrate temperature and by the energy delivered to the growing film by the 

depositing species. The variation of structure with fluence that we report here is reminiscent 

of the variation of lattice parameter and surface morphology that has been reported in the 

deposition of other oxide materials [35, 36, 37]. Hence, as found here, adjustment of the laser 

fluence and repetition rate can be used to promote better epitaxial growth.  

3.3  Texture Analysis using Pole Figures 

To investigate the orientational texture of the films further, we have collected pole figures of 

all the films using both the [220] and [122] reflections of WO3. These are illustrated in 

Figures 5 to 7. Figure 5 shows the (220) pole figures for WOx films deposited onto Si(100) 

for the series of fluences low (a) to high (e). It can be seen that these measurements when 

taken in combination with θ-2θ scans are consistent with a fibre texture. There is a tendency 

for the crystallites to order with the (001) direction normal to the substrate, but there is no 

preferred in-plane orientation. The degree of this out-of-plane alignment is strongest for the 

film deposited using a fluence of 7.6 Jcm-2, illustrated in Figure 5(b). 

The pole figures for the (220) reflections for the films deposited onto SrTiO3(100) are shown 

in order of increasing fluence in Figure 6(a-e), and the pole figure for the (110) reflection of a 

SrTiO3(100) substrate is shown in Figure 6(f) for comparison. Inspection of the figures 

reveals that in all cases the films are biaxially textured; that is there are preferred in-plane and 

out-of-plane orientations. This is evidenced by the four-fold symmetry, which would be 

consistent with an epitaxial texture.  

In a previous work on sputter-deposited films [9], the orientation of WO3 films was 

investigated using (112) pole figures which can distinguish between the similar (002), (020) 

and (200) orientations. We have determined the (112) pole figures for our films deposited 

onto the single crystal substrate, SrTiO3(100), which are illustrated in Figure 7(a-e) in order of 

increasing fluence. The (112) pole figure from the substrate is shown in Figure 7(f) for 

comparison. The pole figure for the substrate is consistent with a cubic system: there are 

twelve reflections, four in an inner ring and eight in an outer ring. For WO3, which is distorted 

from cubic, these reflections are non-equivalent. The four inner reflections indicate (001) 

orientation normal to the substrate and the two pairs of four outer reflections indicate (010) 

and (100) orientations. The probable existence of domains with two rotational orientations 

within the film means that the outer reflections will be symmetric regardless of preferred 

orientation between (010) and (100). 
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Looking at the fluence series of WOx films in Figure 7 it can be seen that there is a systematic 

progression in the strength of the orders. For the film deposited at the lowest fluence of 5.3 J 

cm-2 Figure 7(a), the reflections indicating (010) and (100) orientations are strongest but the 

pole figure of the film deposited using the highest fluence of 14.7 J cm-2, Figure 7(e) is 

dominated by the (001) related reflection. This behaviour is consistent with the observations 

made in the θ-2θ geometry: the higher angle peak seen in the low fluence film, Figure 3(a), is 

consistent with (200) preferred orientation, whereas the peak position for the higher fluence 

film, Figure 3(e) is consistent with a (001) texture.  

Note that pole figures collected from biaxially textured two-fold rotationally symmetric films 

on a four-fold rotationally symmetric substrate will not exhibit any variation between the 

reflections related to (010) or (100) oriented films due to the formation of domains with 90° 

relative azimuthal rotation. Thus it is not possible to distinguish equal quantities of the two 

orientations from a single strained tetragonal structure in the case of Figure 7(a). 

So to summarise, the combination of θ-2θ scans and pole plots reveals that low laser fluence 

favours the formation of (100) or (010) oriented biaxially textured films, but using a higher 

fluence changes this to (001) orientation. Note that in all cases the in-plane principal 

pseudocubic directions in the film are parallel with similar cubic directions in the substrate. 

The low power preferred orientation (100) puts the two larger lattice parameters of the WOx 

in-plane, which will ensure better matching with the larger substrate net. However, use of 

higher power produces films that match less well. This interpretation is consistent with the 

conclusion that the mechanism for the texture effect of fluence is related to the increased 

deposition rate. 

3.4  Scanning Electron Microscopy 

Scanning electron micrographs collected from the films are shown in Figures 8 and 9. Figure 

8 shows those for films deposited onto Si(100) with 8(a) being the lowest fluence and 8(e) the 

highest. It can be seen that the typical grain size is around 20 nm and that there are no 

preferred azimuthal orientations to the crystallites. There is also a tendency to smaller grains 

with increasing fluence; consistent with a higher nucleation density induced by higher 

instantaneous deposited flux. 

As can be seen from Figure 9, the microstructure of the films deposited onto SrTiO3(100) 

differs greatly from that on silicon. In this case, although distinct crystallites are visible in 
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some of the films, the films are also largely continuous, albeit with some clear boundaries and 

pits. The smoothest and most continuous film is shown in Figure 9(b) and corresponds to that 

deposited using 7.6 J cm-2 fluence. At the highest fluence, 11 J cm-2, the film structure has 

changed to be more reminiscent of that found on Si(100) with small distinct crystallites; this 

is consistent with the finding of higher roughness for this sample. 

4. Conclusion 

PLD has been used to produce 30 nm films of WOx on Si(100) and SrTiO3(100) substrates. 

The films have no bulk contaminants that could be determined by XPS and the tungsten W 4f 

orbitals show a chemical shift consistent with WO3 but with a shoulder indicating the 

presence of a small fraction of W5+. XRR measurements give surface roughness of the order 

of 1-2 nm on SrTiO3(100) substrates but much larger on Si(100). This is confirmed by 

FEGSEM images showing the films grown on the former to be smooth but on the latter to be 

granular. 

XRD measurements show the films to possess an orientational texture: all the films are 

oriented with the [001], [010], [100] directions normal to the surface. The pole-plots indicate 

that the films on Si(100) are uniaxially textured but those on SrTiO3(100) are biaxially 

textured. The precise nature of the texture is affected by the laser fluence used to deposit: on 

SrTiO3(100) a fluences in the region of 5.3-7.6 Jcm-2 produce smooth, highly crystalline 

biaxially textured films, that are close to epitaxial texture. Higher fluence promotes [001] 

texture, whereas low fluence promotes the other two textures. Experiments using laser 

repetition rate indicate that the underlying mechanism for the texture change with fluence is 

the mean deposition rate, with higher deposition rates promoting [001] texture and lower rate 

allowing the [010] and [100] to form. 
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Figure Captions 

Figure 1: Surface analysis of the 7.6 Jcm-2 WOx film, (a) X-ray photoelectron spectroscopy 

survey scan of the film deposited onto SrTiO3(100) and (b) grazing incidence X-ray 

reflectivity measurements of WOx thin films deposited onto Si(100) and SrTiO3(100) 

substrates (the solid line is a computational fit). The inset to (a) shows detail of the W 4f 

emission peaks. 

Figure 2: θ/2θ X-ray diffraction scans for 30 nm WOx films deposited on Si(100) substrates at 

different laser fluence values: (a) 5.3 J cm-2; (b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and 

(e) 14.7 J cm-2. All films were deposited at a substrate temperature of 500°C with a constant 

O2 background pressure of 2.5×10-2 mbar. The X-ray diffraction scan of the WO3 target used 

for deposition is included for comparison. 

Figure 3: θ/2θ X-ray diffraction scans for 30 nm WOx films deposited on SrTiO3(100) 

substrates at different laser fluence values: (a) 5.3 J cm-2; (b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 

12.4 J cm-2 and (e) 14.7 J cm-2. All films were deposited at a substrate temperature of 500°C 

with a constant O2 background pressure of 2.5×10-2 mbar. The X-ray diffraction scan of the 

WO3 target used for deposition is included for comparison. 

Figure 4: Comparison of the θ/2θ X-ray diffraction scans for 30 nm WOx films deposited on 

SrTiO3(100) substrates using 10.1 J cm-2: the upper curve used a laser repetition rate of 10 Hz 

and the lower 5 Hz. Both films were deposited at a substrate temperature of 500°C with a 

constant O2 background pressure of 2.5×10-2 mbar. 

Figure 5: (220) pole figures for thin films of WOx deposited onto Si(100): (a) 5.3 J cm-2; (b) 

7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and (e) 14.7 J cm-2. Pole figures were collected to a 

maximum value of χ = 74 °. 

Figure 6: (220) pole figures for thin films of WOx deposited onto SrTiO3(100): (a) 5.3 J cm-2; 

(b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and (e) 14.7 J cm-2.  The substrate (110) pole 

figure is shown in (f) for comparison. Pole figures were collected to a maximum value of χ = 

74 °. 

Figure 7: (112) pole figures for thin films of WOx deposited onto SrTiO3(100): (a) 5.3 J cm-2; 

(b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and (e) 14.7 J cm-2.  The substrate (112) pole 
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figure is shown in (f) for comparison. Pole figures were collected to a maximum value of χ = 

74 °. 

Figure 8: Scanning electron micrographs of 30 nm WOx films deposited onto Si(100) 

substrates at fluence values of (a) 5.3 J cm-2; (b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and 

(e) 14.7 J cm-2. The contrast has been altered from the collected data for additional clarity. 

Figure 9: Scanning electron micrographs of 30 nm WOx films deposited on SrTiO3(100) 

substrates at fluence values of (a) 5.3 J cm-2; (b) 7.6 J cm-2; (c) 10.1 J cm-2; (d) 12.4 J cm-2 and 

(e) 14.7 J cm-2. The contrast has Figure 8 been altered from the collected data for additional 

clarity. 
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