

002 2837 02	
TA DE LE REPORT DE LE RECEI	

. • . · · · · ·

TEMPERATURE AND CONCENTRATION DEPENDENCE

OF

LIQUID PHASE DIFFUSION COEFFICIENTS

by

MYO THANT TYN

M.Sc. (Loughborough), B.E. (Rangoon)

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Ph.D. of the Loughborough University of Technology

August 1974

Supervisor:

W.F. Calus

Department of Chemical Engineering

(C) by Myo Thant Tyn, 1974

Loug of	<mark>jhborou</mark> g Technol	h Uni logy L	niversi Librer
Date	Der.	.74	
Closs	5		
Acc. No.	0228	37/02	2

· ·

.

· · ·

ACKNOWLEDGEMENTS

The author is very grateful to his supervisor, Mr. W.F. Calus, for the valuable advice and guidance he provided throughout this work. Without his kind help this work would not have been completed.

Gratitude is also extended to Professor D.C. Freshwater for providing the research facilities, to the Government of the Socialist Republic of the Union of Burma for granting the author study leave and to the British Council (Colombo Plan) for a study fellow award.

The author would also like to thank his father for his moral support and the many other people who helped him during the course of his studies at Loughborough University.

Myo Thant Tyn

August, 1974

ii

To my dearest wife "Dr. Mya Lay Thant" for her

love and understanding.

	CONTENTS	Page
Acknowledg	ements	ii
List of Figu	res	viii
List of Tabl	es	xi.
ABSTRACT		1
PART 1	INTRODUCTION	3
PART 2	LITERATURE SURVEY	6
2-1	Structural models of liquid phase.	7
2-2	Self-diffusion in liquids	10
2-3	Diffusion coefficients at infinite dilution.	17
2-4	Concentration dependence of diffusion coefficients.	28
2-5	Temperature dependence of diffusion coefficients.	34
2-6	Diffusion coefficients and viscosity.	37
2-7	Pressure dependence of diffusion coefficients.	39
2-8	Diaphragm cell method.	42
PART 3	DEVELOPMENT OF CORRELATIONS	
3-1	Diffusion coefficients for concentrated binary	
•	liquid mixtures.	46
3-2	Diffusion coefficients at infinite dilution.	62
3-3	Self-diffusion coefficients.	71
3-3.	1 An additive method for estimating self-diffusion	
	coefficients.	71
3-3.	2 Modification of Dullien's equation.	80
3-4	Effect of temperature on liquid diffusion coefficients.	84
3-4.	1 Self-diffusion coefficients.	85
3-4.	2 Diffusion coefficients at infinite dilution.	91
3-5	Molal volumes at normal boiling points.	94

د بندهم میا ا

1.2.5 1.

. . . . iv

.

PART	4	EXPERIMENTAL APPARATUS AND METHODS	rage
· · · · · ·	4-1	Three-compartment diaphragm cell.	99
	4-1.1	Requirements for a successful cell.	99
	4-1.2	2 Description of diaphragm cell.	100
	4-1.3	Auxiliary apparatus.	103
•	4-2	Experimental procedure.	113
	4-2.1	Charging the cell with test liquids.	113
•	4-2.2	2 Transfer of the test liquid L_{B} to the compartment B.	116
	4-2.3	B Termination of the run.	117
	4-2.4	Time scale of the experiments.	118
	4-3	Method for calculating experimental data.	120
	4-3.1	Cell constant &.	121
	4-3.2	Integral diffusion coefficient.	127
	4-3.3	Conversion of integral diffusion coefficient into	
		differential diffusion coefficient.	140
	4-4	Error analysis.	141

PART 5	MATERIALS AND THEIR PHYSICAL PROPERTIES	
5-1	Suppliers of the chemicals used	148
5-2	Physical properties of pure liquids.	148
5-3	Physical properties of binary mixtures.	153

PART	6
------	---

.1.-

.

.;

. . .

.

ŧ.

ar hà

1.1.

C. G. LANDIN

14

EXPERIMENTAL RESULTS

6-1	Presentation of experimental results.	167
1997 - 19	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	

1--

.....

		Page
PART 7	DISCUSSION	•
7-1	Comparison of the data of this work with that	•
	of other workers.	203
7-1.1	Ethanol-water system.	203
7-1.2	Acetone-water system.	207
7-1.3	Acetone-chloroform system.	207
7-2	Concentration dependence of activation energies	
	and $\left(\frac{D_{AB} \mu_{AB}}{\alpha_{A}}\right)$.	207
7-3	Test of correlations with the experimental data	•
	of this work.	227
7-3.1	Correlations for diffusion coefficients in	-
	concentrated solutions.	227
7-3.2	Correlations for diffusion coefficients at infinite	
	dilution.	228
7-3.3	Correlations for temperature dependence of	
	diffusion coefficients at infinite dilution.	228
		•
PART 8	CONCLUSIONS	249
8-1	Suggestions for further work.	252
		·
PART 9	APPENDICES	
3-2.1	Physical properties of organic compounds	253
3-2.2	Comparison of correlations for estimating	
	diffusion coefficients in various solvents	
$\tau \cdot 3$	at infinite dilution.	261
	A And Barton and Anna	

•

A star we we we have a first of the set of

vi

			Page
	3-3.18	Sample calculation for estimating D* from	
		additive method.	287
•	3-3.1b	Comparison of predicted values of self-diffusion	
		coefficients from additive method with the	
-		experimental values.	289
•	3-3.2	Sample calculation for D* from eq. (3-3.6)	296
	3-4.1	Sample calculation for estimating the temperature	•
		dependence of D* from eq. (3-4.6).	297
	4-3.1	Sample calculation for β .	298
	4-3.2	Sample calculation for \overline{D}_{AB} for	
		acetone-water at 55°C.	299
	4-4.1	Sample calculation for possible error in cell	
• • • • • • • •		constant.	300
	4-4.2	Sample calculation for possible error in D_{AB}	
		from the determination of concentration by	
		density measurement.	301
	4-4.3	Sample calculation of $\overline{\mathrm{D}}_{\mathrm{AB}}$ for	
•	· · • •	ethanol-water at 85 ⁰ C.	302
	7-3.1	Sample calculation of D_{AB} using eq. (3-1.21).	304
۲۰۰۰ میلید ۱۰۰۰ م	7-3.2	Sample calculation of D^{O}_{AB} using eq. (3-2.4).	308
	7.3.3	Sample calculation for estimating the temperature	
х 		dependence of D^{O}_{AB} using eq. (3-4.7).	309
			•
	NOMEN	CLATURE	310
	REFER	ENCES	316
	~~~~ <b>~</b> ~~		

Information about the author  $\gamma_1$ .

۰.

327

vii

·		LIST OF FIGURES	Page
Figure	2-7.1	Dependence of diffusion coefficient on pressure for benzene.	39
	2-7.2	Pressure dependence of self-diffusion coefficients in aqueous sulphate solutions.	40
	2-8.1 to 18	Diaphragm cell designs.	44
•	3-1.1	Notation in the model representing a lattice type of structure of the liquid phase.	47
	3-1.2	Potential energy barrier for viscous flow, with and without shearing force.	. 49
	3-2.1	Comparison of experimental diffusion coefficients with the coefficients predicted by eq. (3-2.4).	65
	3-2.2	Correlation of viscosity of alcohol solvents with association factor.	70
	3-3.1	Correlation of self-diffusion coefficient for pure liquids.	82
• • • • • • • • • • • • • • • • • • •	3-4.1 (a to c)	Correlation of self-diffusion coefficient with critical temperature function (T _c -T).	86
· ·	3-5.1	Relationship between liquid molal volume at normal boiling point and critical volume .	96
	4-1.1	Three-compartment diaphragm cell.	100
	4-1.2	Three way valve of type GSTT.	102
÷.,	4-1.3	Details of the cap E for compartment C of diffusion cell.	103
	4-1.4	Valve openers.	104
	4-1.5	Cell clamp.	106
	4.1.6	Cell support.	108
	4-1.7	Pressure connections.	109
* .	4-1.8	Filling appliance.	110
	4-1.9	General assembly of the diffusion apparatus.	112
	4-1.10	General arrangement of the diffusion cell and the operating procedure.	113

۰.

viii

;

Page

Figure 4-1.11	Degassing procedure of the diaphragm pores.	114
4-3.1	Initial and final concentrations in the diaphragm cell.	120
4-3.2	Integral diffusion coefficients of aqueous KCl solutions at 25 [°] C.	122
4-3.3 to 6	Wear of the diaphragm of cells R, H, D and G in terms of cell constant $\beta$ .	123
4-3.7 & 8	Densities of aqueous ethanol and aqueous acetone solutions at $25$ °C.	129
4-3.9	Refractive angle vs weight fraction concentration for acetone-chloroform mixtures.	131
4-3.10 to 12	Conversion charts for ethanol-water, acetone- water and acetone-chloroform mixtures.	132
4-3.13	Concentration profiles within the diaphragm.	139
4-4.1	Purification of mercury.	143
5-2.1	Self-diffusion coefficients of pure liquids.	150
5-2.2	Molal volumes of pure liquids.	151
5-2.3	Heats of vaporisation and heats of vaporisation due to hydrogen bonding for pure liquids at various temperatures.	152
$\left.\begin{array}{c}5-3 \ (1a,2a\\ and 3a)\end{array}\right\}$	Viscosity of ethanol-water, acetone-water and acetone-chloroform mixtures.	155
$\left.\begin{array}{c} 5-3 \ (1b, \ 2b \\ and \ 3b) \end{array}\right\}$	Thermodynamic factor for ethanol-water, acetone- water and acetone-chloroform mixtures.	158
5-3.1c	Calculation of thermodynamic factor for ethanol-water mixtures at 60°C.	159
6-1.1	Integral diffusion coefficients vs volumetric concentrations for ethanol-water mixtures.	168
6-1.2	Differential diffusion coefficients vs mole fr. concentrations for ethanol-water mixtures.	169

/ix

	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Page
Figure	9 6-1.3	Variation of $\ln D_{AB}$ with (1/T) for ethanol-water mixture (this work).	170
	6-1.4	Differential diffusion coefficients at normal boiling points for ethanol-water mixtures.	171
	6-2.1	Integral diffusion coefficients vs volumetric concentrations for acetone-water mixtures.	172
	6-2.2	Differential diffusion coefficients vs mole fr. concentration for acetone-water.	173
	6-2.3	Variation of $\ln D_{AB}$ with (1/T) for acetone-water mixtures.	174
	6-2.4	Differential diffusion coefficients at normal boiling points for acetone-water mixtures.	175
	6-3.1	Integral diffusion coefficients vs volumetric concentrations for acetone-chloroform mixtures.	176
	6-3.2	Differential diffusion coefficients vs mole fr. concentrations for acetone-chloroform mixtures.	177
	6-3.3	Variation of $\ln D_{AB}$ with (1/T) for acetone- chloroform mixtures.	178
	6-3.4	Differential diffusion coefficients at normal boiling points for acetone-chloroform mixtures.	179
	7-1.1	Differential diffusion coefficients of various authors for the ethanol-water system at 25°C.	204
1 4	7-1.2	Variation of differential diffusion coefficient with reciprocal of absolute temperature for	- -
		Wakeham (158).	205
	7-1.3	Diffusion coefficient of ethanol-water mixtures (from ref. 158).	206
	7-2.1 (a,b,c)	Variation of viscosity with reciprocal of absolute temperature for ethanol-water, acetone- water and acetone-chloroform systems.	215
	7-2.2(a,b,c)	Experimental activation energies for viscosity and diffusivity for ethanol-water, acetone-water and acetone-chloroform mixtures.	218
	7-2.3(a,b,c)	Concentration dependence of $(D_{AB} \mu_{AB})$ and $(D_{AB} \mu_{AB} / \alpha_A)$ for ethanol water, acetone-water and acetone-chloroform mixtures.	224
	7-3.1(a,b,c)	Comparison of experimental diffusion coefficients with the predicted coefficients for ethanol-water acetone-water and acetone-chloroform mixtures.	230

.

·

x

		LIST OF TABLES	Page
Table	2-2.1	Equations for estimating self-diffusion	
	۰ ، .	coefficients	11
	2-3.1	Equations for estimating diffusion coefficients	
		at infinite dilution.	18
	2-4.1	Some of the equations defining the concentration	
		dependence of diffusion coefficients in liquid	
• • •	•	binary mixtures.	31
	2-6.1	Some of the empirical equations defining the	
· · · ·	•	relationship between the diffusion coefficient	
		and viscosity.	37
•	2-7.1	Some of the equations defining the relationship	
		between diffusion coefficient and pressure.	41
•	2-8.1	Some of the diaphragm diffusion cell designs	· -
	•	employed by various authors.	44
•	3-2.1	Comparison of correlations for estimating diffusion	
	· • • • • • • • • • • • • • • • • • • •	coefficients at infinite dilution.	66
1	3-3.1	Values of [M] for liquid methane and benzene	•
		obtained from eq. (3-3.4).	73
1999 1997 - 1999 1997 - 1997 1997 - 1997	3-3.2	Values of the bond and structural contributions	
		for [M] .	75
	3-3.3	Comparison of the estimated and experimental	
	، ر ب	values of [M] and the deviation of the calculated	
	· · ·	D* from the experimental D*	76
بر المراجع الم مراجع المراجع ال مراجع المراجع ال	3-3.4	Percentage deviations of the estimated self-	
		diffusion coefficients of eq. (3-3.6) from the	83
		experimental coefficients.	

.

xi

			Page
Table	3-4.1	Some of the equations defining the relationship	
	/ 	between various physical properties of liquids	
		and the critical temperature function $(T_c-T)$ .	84
	3-4.2	Values of exponent in eq. (3-4.5) for self-	•
		diffusion coefficients.	89
• •	3-4.3	Percentage deviations of the estimated from the	•
		experimental values of liquid self-diffusion	
		coefficients.	90
	3-4.4	Percentage deviations of the estimated from	н 1 - Пробессиональной 1 - Пробессиональной странование странование странование странование странование странование странование странов 1 - Пробессиональной странование странование странование странование странование странование странование странов
	•	the experimental values of binary liquid	
		diffusion coefficients at infinite dilution.	92
	3-5.1	Percentage deviations of the estimated from the	и. -
		experimental values of liquid molal volume at the	
•	· · · · · ·	normal boiling point.	97
	4-1.1	Specifications of the three-compartment diaphragm	•
		cell.	101
a Sanata Angalan Angalan	4-3.1	$\overline{D}_{AB}$ for KCl-H ₂ O solutions at 25 [°] C.	122
	4-3.2	Density and volumetric concentration, ethanol-	• • • •
	•	water mixtures.	135
	4-3.3	Density and volumetric concentration, acetone-	•
•		water mixtures.	137
	4-3.4	Density and volumetric concentration, acetone-	•
		chloroform mixtures.	138
	4-4.1	Probable experimental error in the diffusion	
		coefficient; ethanol-water mixtures at 25°C.	143
	4-4.2	Summary of runs at constant temperature and	•
х м.	ی کار ۲۰۱۸ - ۲۰۱۸ ۱۹۹۰ - ۲۰۱۹ - ۲۰۱۹ ۱۹۹۰ - ۲۰۱۹ - ۲۰۱۹	varying pressures with the three-compartment	
		cell.	147

xii

•			Page
Table	5-1.1	Sources and quality of test liquids.	148
	5-2.1	Physical properties of pure liquids.	149
	5-3. (1a)	Viscosity of ethanol-water, acetone-water and	
	Zawsaj	acetone-chloroform mixtures.	162
	5-3. (1b,	Thermodynamic factor for ethanol-water,	
	2b&3b)	acetone-water and acetone-chloroform mixtures.	•
•	-		163
	5-3.1c	Data for calculation of thermodynamic factor for	
		ethanol-water at 60°C.	164
<b>,</b>	6-1.(1,	Experimental data for diffusion coefficients	
• • • • • • • • •	2,3 & 4)	obtained by the cells R, H, G and D.	180
	6-1.5	Calibration of the cells R, H, D and G.	188
	6-2.1	Conversion of $\overline{D}_{AB}$ to $D_{AB}$ for	:
		ethanol-water.	190
	6-2.2	Smoothed $D_{AB}$ for ethanol-water system.	194
	6-2.3	Conversion of $\overline{D}_{AB}$ to $D_{AB}$ for	
••••••		acetone-water.	194
	6-2.4	Smoothed $D_{AB}$ for acetone-water system.	198
*	6-2.5	Conversion of $\overline{D}_{AB}^{}$ to $D_{AB}^{}$ for	•
	· · · · · · · · · · · · · · · · · · ·	acetone-chloroform.	199
	6-2.6	Smoothed $D_{AB}$ for acetone-chloroform mixture.	201
	6-3.1	$D_{AB}$ at normal boiling points for ethanol-water,	
		acetone-water and acetone-chloroform mixtures.	202
	7 <b>-1.</b> 1a	Differential diffusion coefficients of various	
		authors for the ethanol-water system at 25°C.	209

George - Charles Collins for a market makes

xiii

				-
	Table	7 <b>-1.1</b> b	A comparison of the differential diffusion	Page
-			coefficients of various authors for the ethanol-	
			water system.	210
•		7-1.1c	Comparison of the differential diffusion	
•	•		coefficients (at boiling points) of various authors	
. •. · ·			for the ethanol-water system.	212
	•	7-1.2	Comparison of the data of this work with that of	
			Anderson et al (6) for acetone-water system at	
			25 ⁰ C.	213
•	· · ·	7-1.3	Comparison of the data of this work with that of	-
			Anderson et al (6) for acetone-chloroform system	• · ·
н н н 2 и	· · · · · · · · · · · · · · · · · · ·		at 25°C and 40°C.	213
و.		7-2.1	Concentration dependence of experimental activation	
			energies for diffusive flow and viscous flow for	
			binary liquid mixtures.	214
		7-2.2	Concentration dependence of (D $_{AB}$ $\mu_{AB}$ ) and	
	12	(a,b&c)	$(D_{AB} \mu_{AB} / \alpha_{A})$ for ethanol-water, acetone-water and	
	,		acetone-chloroform systems.	221
		7-3.1	Comparison of the experimental diffusion coefficients	
*		(a,b&c)	with the predicted coefficients for ethanol-water,	
			acetone-water and acetone-chloroform systems.	•
•				235
- - -		7-3.2	Comparison of the predicted coefficients with the	· · · · · · · · · · · · · · · · · · ·
		(a,b&c)	experimental coefficients for dilute solution of	* . •
•			ethanol-water, acetone-water and acetone-chloroform	

1. 19

4 ( )

xtures.

mi

243

**xi**v

XV

Table 7-3.3 (a,b&c) Comparison of the predicted coefficients from (a,b&c) equations (3-4.7) and (2-5.1) with the experimental coefficients at infinite dilution for ethanol-water, acetone-water and acetone-chloroform mixtures.

246

÷.,



#### ABSTRACT

A study of experimental techniques for the determination of diffusion coefficients for binary mixtures and a study of the existing relationships for these coefficients were carried out.

A new three-compartment diffusion cell was developed capable of measuring diffusion coefficients at temperatures up to the normal boiling point (24). By means of this cell, diffusion coefficients were measured for the systems ethanol-water, acetone-water and acetonechloroform for a range of temperatures up to the normal boiling points. Thus diffusion coefficients for the above mixtures including those at boiling points and at infinite dilution are presented.

A relationship was developed to relate diffusion coefficients with temperature and concentration (equation 3-1.21) in binary systems. It agrees better with the experimental data for the associated systems than some literature correlations.

By application of parachors a new equation (3-2.4) was developed for the prediction of diffusion coefficients at infinite dilution (201). This equation, because of the ease of calculating parachors, is more convenient to use than other equations based on the Stokes-

An additive method for the prediction of self-diffusion coefficients was introduced and a correlating equation (3-3.4) was developed. The bond and structural contributions to the constant of the equation were calculated on the basis of a limited amount of experimental data. Despite this the correlation gives reasonable predictions for the temperature range between melting point and boiling point.

hearing points and all problem admitted are presided if p

a nah belah bara belaharan

ya egitetii fedir oogustaate)∫ foa egit

Another correlation for the prediction of self-diffusion coefficients was developed (203) (equation 3-3.6) by modifying an existing equation. This was possible by applying the relationship between the molal volume at the boiling point and the critical molal volume developed in this work (202). The new equation is more convenient to use. 2

The correlating property of the critical temperature was used to devise a relationship between diffusion coefficients, critical temperature and the working temperature. The two correlating equations (3-4.6)and (3-4.7) can predict diffusion coefficients at various temperatures if one value of the diffusion coefficient at a single temperature is known.

a a succession of

the second s

is the state of the second second

with the sys

a line provide the second and a second and a second provide second spectra and a second second second second s

19 일종가 동안 가슴이 이미지 않는 것을 물건을 가지만 물건을 가지 않는다. 이 거선은 사람 경험에서 이미지 않는 것을 물건을 받으며 감독하게 많이 가지 않는다.

# PART 1 INTRODUCTION

#### PART 1 INTRODUCTION

A knowledge of diffusion coefficients is required in the design of chemical engineering equipment in which mass transfer or simultaneous heat transfer and mass transfer take place. So far the most reliable diffusion coefficients in the liquid phase are derived experimentally. Most of the methods available for the experimental determination of diffusion coefficients are designed for work at ambient temperature atmospheric pressure. and Since chemical engineering processes occur mainly, at temperatures higher than ambient, there is a need for a reliable method for the experimental determination of mass diffusion coefficients at elevated temperatures. In this work a three-compartment diaphragm cell was developed for experimental determinations of diffusion coefficients at elevated temperatures, up to the normal boiling point. Using this diaphragm cell, diffusion coefficients for three binary liquid systems i.e. ethanol-water, acetonewater and acetone-chloroform were determined for various temperatures up to the neighbourhood of their normal boiling points over the complete. concentration range. The values of diffusion coefficients at normal boiling points for these binary systems were obtained by interpolation and extrapolation. The diffusion coefficients at infinite dilution for these mixtures were also obtained by extrapolation.

3

Experimental methods of obtaining diffusion coefficients are tedious. Therefore many attempts have been made by research workers to develop methods for predicting diffusion coefficients as a function of temperature and concentration. Out of many such correlations available those of Leffler and Cullinan (111), of Vignes (210) and of Gainer (61) are promising. A new correlation of this type is developed in this work and it appears that this correlation gives better predictions for

associated binary systems.

Literature correlations for the prediction of diffusion coefficients at infinite dilution and self-diffusion coefficients are usually difficult to use because of the lack of physical properties available . It was found that the most reliable correlations in this group are those of Wilke and Chang (219), of King et al (104) and of Sitaraman et al (182). In this work an effort was made to devise a new correlation employing parachors instead of such properties as latent heats of vaporisation etc. The advantage of this equation is in the fact that parachors are easier to obtain from literature.

Self-diffusion coefficients are important as they are used in many correlations in the same way as other physical properties of liquids. Hence many empirical correlations for the prediction of self-diffusion coefficients are available. Those of Dullien (43) and of Vadovic and Colver (206) have the reputation of giving reasonable predictions. Their equations, to be used, require a knowledge of critical molal volume and molal volume at melting point respectively. In this work the Dullien equation is modified so that molal volume at the boiling point can be used.

In this work an attempt is made to develop an additive method for the prediction of self-diffusion coefficients. A large number of experimental self-diffusion coefficients are needed to define accurately the bond contributions. So far these contributions are determined on the basis of 46 available experimental self-diffusion coefficients. The correlation developed gives predictions comparable with experimental coefficients.

al an Alland

the ended of the states of gates

correlations in the second by the clother dealers in

Waltered.

Transport properties of liquids are strongly temperature dependent. It appears from a literature search that this temperature dependence can be correlated by introducing the critical temperature. This method is applied, in this work, to develop one empirical equation for the prediction of self-diffusion coefficients and another for the prediction of diffusion coefficients at infinite dilution at other temperatures when a single value of the coefficient at one temperature is available.

e e gire

Cart Sugar a la fin la serie la fin de la contra la serie de la

apparent in this work is the best of the best from the set of the set of the set of the set of the set

.

### PART 2 LITERATURE SURVEY

6

The various theories for diffusion in liquids may be listed as (a) Hydrodynamic theory (b) Statistical-Mechanical theory (c) Irreversible Thermodynamics theory (d) Eyring's (absolute reaction rate ) theory and (e) Lamm-Dullien theory. Each theory is based on a specific structural model. The basis of the structural models of liquids are briefly described below.

None of the theories is described in detail except those on which the correlations of Leffler and Cullinan (111), Vignes (210) and Gainer and Metzner (60) are based. When discussing these correlations the relevant theory will be referred to.

and the state of the second second

Reprint Sector Sector Sector and Sector Se

່. 1. ເປັນ ເປັນເປັນ

e XXII - Alexandra A

should be considered on the Letter and Calliforn (1920). Such a constant

#### 2-1 Structural models of liquid phase

The theory of the liquid state is only partially developed when compared to the well established theories of the gaseous and solid states. The theoretical knowledge of gases and solids is more advanced because the gaseous state exhibits complete molecular disorder, and the solid state possesses a regular crystalline structure.

In the case of liquids neither the complete randomness of gases, nor the rigid geometrical structure of solids is observed. There is no definite structural description for liquids other than the very gross explanation that the properties of liquids lie between those of gases and solids. However, taking advantage of the latter explanation, attempts have been made to formulate a theory of liquid state from the presumption that liquids are either condensed gases or disordered solids. The theories developed from the assumption of condensed gases are called "distribution function" theories (10), because they are described by certain distribution functions specifying the probability of finding sets of molecules in particular configurations. The theories developed from the assumption of disordered solids are known as "lattice" theories (10), because they assume a certain structure which bears some relation to the regular lattice structure of a crystalline solid.

Both of these approaches are useful in describing the liquid state properties, there is no 'a priori' reason to suppose that either approach is more correct or more fundamental than the other. However, the lattice theories are usually more convenient to use as they involve less complex mathematics than do the distribution function theories.

A brief description of a few theories, based on the lattice structure of the liquid phase, will be given below.

#### 2-1.1 : The cell model (10, 159, 93, 87)

In this model each molecule in the liquid may be regarded as confined to a comparatively restricted region, designated as a 'cell' or a 'cage', formed by its surrounding molecules. According to this view the main difference between a solid and a liquid is that a molecule in a cell has a little more freedom of movement in the liquid than in the solid, due to the increase in volume on melting.

In developing this cell model the molecules are assumed to move entirely independently of one another within their cells, i.e. the positions of neighbouring molecules remain fixed while the central molecule moves around. This assumption involves a paradox as any molecule may be regarded either as a neighbouring molecule or a central molecule. All the cells are assumed to be identical and each contains just one central molecule, usually called a "wanderer". The molecules are assumed to behave as hard, non-attracting, spheres. During the melting process the lattice is assumed to expand uniformly.

With this structural model it is difficult to suggest the mechanism of a solute molecule moving through the solvent molecules.

#### 2-1.2 <u>The "hole model"</u> (69, 57)

The hole model of the structure of the liquid phase pictures the configuration of molecules as a cubical lattice structure. In this structure there are missing random molecules and the vacant spaces are called "holes". The location of the holes is not permanent, they are supposed to be moving as a vapour bubble in a liquid. This theory explains the diffusional motion and viscous motion in a liquid quite well. The process of jumping of a molecule from the neighbouring layer into that hole constitutes the process of diffusion. The sliding motion of a row of molecules to occupy the

L. O. L :

vacated space represents the process of viscous motion. The hole theory is very suitable as a foundation for the theories stating that diffusion and viscosity are two interlinked processes. 9

#### 2-1.3 <u>The significant structure theory model</u> (53)

As in the hole theory the lattice structure is assumed but the molecules are divided at least into two groups. One group consists of solid-like molecules possessing vibrational motion and the other group of molecules is supposed to exhibit translational motion like molecules in a gas phase. The lattice structure is subject to expansion and contraction on changes in temperatures. These are the main differences between the hole model and the significant structure theory. The significant liquid structure theory constitutes a better basis for various theories of fluid physical properties.

#### 2-1.4 The tunnel model (10)

This model attempts to picture the structure of the liquid phase more realistically. The molecules are imagined as behaving as beads on long strings. These strings are supposed to move in parallel and a sufficient space is available between the neighbouring strings to make the motion possible. Each string of molecules behaves like a single cell in the cell model.

#### 2.1-5 Other models

Most of the other structural models are modifications of the models mentioned above and have been described comprehensively in the following references: (10, 53, 57, 69, 87, 93, 129, 159).

g (18) an faoir fan Salacha a Christian a bhfar aigt sala

#### 2-2 Self-diffusion in Liquids

Self-diffusion is diffusion in a single component fluid i.e. diffusion of molecules through an assembly of molecules of the same species. Selfdiffusion coefficients are obtained experimentally in the same way as the mutual diffusion coefficients except that radio active tracers are used to mark the diffusing molecule. A large number of mathematical models and empirical equations for the prediction of self-diffusion coefficients have been developed. Some of these equations are summarised in Table 2-2.1. One group of these correlations is based on the Stokes-Einstein equation, which is a result of the Einstein-Sutherland hydrodynamic theory of diffusion. The other group of correlations is based on the Eyring theory of absolute reaction Some of the correlations, particularly those of a mainly empirical rate. nature, are based partly on the hydrodynamic theory and partly on the Eyring theory. It can be seen from Table 2-2.1 that very few of these correlations were checked with experimental data , therefore there is no basis for recommending any of these equations.

No one has yet attempted to predict self-diffusion coefficients from the group additive properties ; this method was tried successfully in the calculation of molecular volumes e.g. Le Bas method (109), in the prediction of surface tension by means of parachors (188) and in the prediction of viscosity by rheochors (58, 59).

and the second second

and a second second

in the second second second

# Table 2-2.1 Equations for estimating self-diffusion coefficients

Author, year and reference	Equation	Liquids tested	% error	Equation number
Einstein- Sutherland, 1905 (49, 189)	$D^* = \frac{kT}{f}$ where $f = 6\pi\mu \hbar \left[ \frac{2\mu + \hbar \Theta}{2\mu + \hbar \Theta} \right]$ , viscous	-	-	2-2.1
	$[3\mu + \lambda (b]]$ resistance per molecule or frictional coefficient (3 = coefficient of sliding friction) between molecules.			
Stokes-Einstein,	$D^* = \frac{kT}{kT}$	34	10	2-2.2
1905 (187, 49)	$4\pi\pi\mu$ (modification of eq.(2-2.1)by introducing the value of 'f' with (3 = 0).			
Ottar, 1935 (149)	D* = RT Q $V^{\frac{2}{3}} / (4\sqrt{2} \mu M)$ (a modification of Eyring's theory).	<b>-</b>	16	2-2.3
Stern et al, 1940 (184)	$\mathbf{D^*} = \frac{\lambda^2}{\mathbf{V_f}^{\frac{1}{2}}} \left(\frac{\mathbf{RT}}{2\pi \mathbf{M}}\right)^{\frac{1}{2}} \exp\left(-\frac{\Delta \mathbf{E_D}}{\mathbf{RT}}\right)$	-	-	2-2.4
	(derived from absolute reaction rate theory).			
Eyring, 1941 (69)	$^{D^*} = \frac{\lambda_1}{\lambda_2 \lambda_3} \qquad \frac{kT}{\mu}$	-	poor	2-2.5
• •	(derived from absolute reaction rate theory).			
Gierer-Wirtz, 1953 (68)	$D^* = \frac{1}{6\pi \pi g} \frac{kT}{\mu}$	<b>-</b>	-	2-2.6
·····	where $g = 0.16 + 0.4 \left(\frac{\pi}{R_B}\right)$			
ະມີແມ່ນເປັນເຊິ່ງຊີ່ມີ ເຊິ່ງຊີ່ ເອຍ ເຊິ່ງຊີ່	$\pi$ = radius of the solute molecule $\pi_{B}$ = radius of the solvent molecule.			
Li-Chang, 1955 (115)	$D^* = \frac{1}{2}(1 - \frac{\xi}{z})  \frac{kT}{\mu}  \left(\frac{N}{V_b}\right)^{\frac{1}{3}}$	-	12	2-2.7
	where $\xi$ = number of nearest neighbours in one plane		• • •	
				і

11

Ì

Ĺ

Author, year and reference	Equation	Liquids tested	% error	Equation number
	$\mathbf{z}$ = number of all nearest neighbours (developed from the hydrodynamic and Eyring's theory).			
Longuet-Huggins -Pople, 1956 (119)	$D^* = \frac{\pi}{2} \left(\frac{\pi kT}{M}\right)^{\frac{1}{2}} \left(\frac{P\bar{V}}{RT} - 1\right)^{-1}$	-	-	2-2.8
Mackenzee- Hillig, 1958 (126)	$D^* = \frac{1 \cdot 29 \times 10^{-14}}{10^{-14}} \left(\frac{V_b}{\hbar}\right)^{\frac{2}{3}} \left(\frac{T_m}{M}\right)$	-		2-2.9
	where $T_m = melting point temperature, K.$			
Longuet-Huggins -Valleau,1958 (120)	$D^* = \frac{2?}{32} \sqrt{\frac{RT}{\pi M}} \left[ \varkappa_1 a_1^2 + \varkappa_2 a_2^2 \overline{z} \right]^{-1}$		-	2-2.10
	for notation see ref. (51).	-		-
Panchenkov, 1958 (150)	$D^{*} = 4 \left(\frac{3V}{4\pi N}\right)^{\frac{1}{3}} \left(\frac{2RT}{\pi M}\right)^{\frac{1}{2}} \left[\frac{\epsilon_{\bullet}}{2RT} + 1\right] x$		-	2-2.11
	$\exp\left[-\frac{2 \Delta E}{\Im RT} - \frac{\epsilon}{2RT}\right]$			
· · · · · · · · · · · · · · · · · · ·	where $\epsilon_{\bullet}$ = the energy of one bond between the liquid molecules per mole $\Upsilon$ = co-ordination number of the liquid at T			
Oshen Wumhull	$\Delta E = \Delta H - RT$ , energy of vaporization.			
1959 (28)	$B'' = g \ 6 \ \sqrt{\frac{3KT}{M}}  exp \left[ -\frac{\sqrt{V}}{V_f} \right]$ where $g = geometric factor$	-	-	2-2.12
	<pre>6 = molecular diameter V_f = free volume</pre>	r I		
Swalin, 1959 (190)	$D^* = \frac{CT^2}{\Delta H \alpha^2} \approx C^1 T^2$ where $\alpha =$ thermal expansion coefficient $C, C^1 =$ constants.		-	2-2.13

Author, year	Equation	Liquids	%	Equation
and reference		tested	error	number
McLaughlin, 1959 (129)	$D^{*} = \left(\frac{kT}{2\pi M}\right)^{\frac{1}{2}} \frac{\lambda^{2}}{V_{f}^{\frac{1}{2}}} \left(\frac{n_{h}}{M}\right) \exp\left[-\frac{\Phi_{o}}{3NkT}\right]$	6	10	2-2.14
	where $n_h =$ number of holes in a gmole of liquid $\phi_a =$ lattice energy defined in ref. (129).			
Douglass-McCall,	D* $2\lambda^2 kT$ [P* $\bar{v}$ , ] ⁻¹	-	_	2-2.15
1959 (41)	$= \frac{5 \sqrt[3]{\mu}}{5 \sqrt[3]{\mu}} \left[ \frac{RT}{RT} - 1 \right]$ where $\lambda = 0.56 (V/N)^{\frac{1}{3}}$	•		
	$P^* = \text{ thermal pressure defined as} \\ T\left(\frac{\partial P}{\partial T}\right).$			
Eyring-Ree, 1961 (54)	$D^* = \frac{\lambda_1}{\xi \lambda_2 \lambda_3} \qquad \frac{kT}{\mu} \cdot  .$	-	12	2-2.16
Houghton, 1964	$\mathbf{D}^*$ $\mathbf{BT}\Theta$ $(\mathbf{X})^{\frac{2}{3}}$	95	0	9_9 17
(31)	$D = \frac{M}{6\mu M} \left(\frac{v_{\rm b}}{\rm N}\right)$	40	J	2-2.11
Walls- Upthegrove,1964 (213)	$D^* = \frac{kT}{2\pi \pi (2b+1)\mu}$	-	-	2-2.18
	where b = ratio of atomic radius to intermolecular distance.		10	
van Geet- Adamson, 1965 (208)	$\log D^* = \begin{bmatrix} -3.28 & - & \Delta E_D \\ -3.38 & - & -2.38 \end{bmatrix} \left( \frac{10^3}{T} - 0.88 \right)$	2)	-	2-2-19
Adam Cikha	<b>X 10 .</b>			
Auam-Gibbs, 1965 (1)	$D^* = A \exp \left[ \frac{-B}{T - To} \right]$	- 10 - 10 - 10 - 10 - 10	-	2-2.20
	where A, B = constants To = temperature at which the configurational entropy vanishes, ^O K.			

 $|\mathbf{f}|$ 

į

.

Author, year	Equation	Liquids	%	Equation
and reference		tested	error	number
Macedo-Litovitz				
1965 (125)	$D^* = A \exp \left[ - \Delta E v - \gamma V^* \right]$			
	$\begin{bmatrix} -\frac{1}{RT} & \frac{1}{V_f} \end{bmatrix}$	-	-	2-2.21
	where $AE = activation energy at constant$		1 . <b>.</b>	
	volume			a a
•	$V^* \approx approximately equal to van der Waals volume of molecule$			•
•	$\mathbf{\tilde{x}} = \text{constant}$			
	$A \propto T^{\frac{1}{2}}$ .			
				•
Ravdel-			· · · ·	
Poraikoshits,	$D^* = 1.246 \times 10^{-15}$ T			
1967 (165)	$\mu R_{D}^{\frac{1}{3}}$	12	5	2-2.22
	where $\mathbf{R}_{\mathbf{p}}$ = molecular refraction.			
	D			
	· · · ·	-		
Ascarelli -	$D^* = 0.28 \ b_m \sqrt{\pi kT} \ (\xi_m) \ [10T_m c]$	ן ו		
Paskin, 1968	$M \sqrt{M} \left(\frac{\epsilon}{\epsilon}\right) \left[\frac{m}{T} e_{m}\right]^{-1}$	J -	-	2-2.23
(9)	where m - subscript indicating molting			·
	point temperature			
	Q = density			
	$\xi = \text{packing fraction}$			
	$\mathbf{D}_{\mathbf{m}}^{\mathbf{m}} = \begin{bmatrix} \frac{3}{4\pi} & \mathbf{V}_{\mathbf{m}} \end{bmatrix}^{\frac{1}{3}}$			
	based on the ideal gas diffusion theory			1.000000
	using Enskog high density correction (9)	•••		
New Second S	for liquid. Good for liquid metals).			
•		1	· .	-
Panchenkov et	$D_{*}$ 1 $D_{*}$ $\Delta T_{3}^{\frac{2}{3}}$ 1 $D_{*}$ $\Omega_{3}^{\frac{1}{3}}$		·	4 T 1
al, 1970 (150)	$D^{\mu} = \frac{1}{A} \frac{RI}{\mu} \frac{e_{V_{b}}}{M} = \frac{1}{A} \frac{RI}{\mu} \frac{e_{1}}{M^{2} N^{2}}$	-	-	2-2.24
	when $A = \frac{1}{6}$ error $\pm 11.2\%$			
	$A = \frac{1}{4\sqrt{2}}$ error ± 6.0%		•	
	(a modification of Stokes-Einstein equation).			· · · · · · · · ·
turni. I garage			· · ·	
Portukoslatis				
				• •

Author, year and reference	Equation	Liquids tested	% error	Equation
				humber
D'yakonov, 1970 (47)	$D^{*} = \frac{4.21 \times 10^{-14} \left[ \left( \frac{T}{M} \right)^{\frac{1}{2}} \exp \left( \frac{Sq}{R} \right) \right] / R6_{x}^{2}}$		-	2-2.25
	where <u>Sq</u> = the number of states of the R "microcanonic ensemble" as defined in ref. (47). R = gas constant in J/Kg ^O K			
	€ _g = in cm.			•
Dullien, 1972 (43)	$D^* = 0.124 \times 10^{-16} \left(\frac{RT}{\mu \bar{\nu}}\right) V_c^{\frac{2}{3}} = 0.129 \times 10^{-16}$	31	4	2-2.26
	× $6^2$ ( $\Omega_D \Omega_\mu$ ) ( $\frac{RT}{\mu \overline{\nu}}$ ) $T_c^{\frac{1}{2}}$			
	where $6$ = Lennard-Jones distance parameter $\Omega_D \Omega_\mu$ = generalised collision potentials for diffusion and for viscosity	r		
	$R = 8.314 \times 10^{\prime}$			
Vadovic-Colver, 1972 (206)	$D^* = 0.219 \times 10^{-8} \frac{T}{\mu \bar{V}} V_{\rm m}^{\frac{2}{3}}$	20	6	2-2.27
Ertl-Dullien, 1973 (50)	$\mathbf{D^*} = \frac{\mathbf{RT}}{\mu \bar{\mathbf{V}}} \left(\frac{\mathbf{d}}{\mathbf{d_{\min}}}\right)^2 \left(-1.42 + 0.152 \ \mathbf{V_c}^{\frac{2}{3}}\right)$	31	4	2-2.28
	where $\frac{d}{d_{\min}} = \begin{bmatrix} 0.179 + 0.35 T_r + (2.55) \\ 0.73 - 4 \end{bmatrix}$	1		,
(1)				
	(a modification of Dullien's eq. (2-2.26) to include the temperature dependence of the molecular diameter).			
	1 <u></u>	••••••••••••••••••••••••••••••••••••••		

15

ļ
Author, year	Equation		%	Equation
and reference		liquids tested	error	Number
Collings, 1973	D* kT			
(29)	$= \frac{\mathbf{\xi}^{\mathrm{H}} + \boldsymbol{\xi}^{\mathrm{S}}}{\mathbf{\xi}^{\mathrm{H}} + \boldsymbol{\xi}^{\mathrm{S}}}$			2-2.29
	where $\xi_{L}^{H} = \frac{8.66^{2}}{3V}$ ( $\pi mkT$ ) ² g(6)			
	and $\mathcal{E}_{L}^{S} = \frac{8  \mathcal{C}  6^2}{3 V}  (\pi  \text{mkT})^2  \left[ \frac{\epsilon}{k T} \right]$			
	$\times \left\{ \mathbf{F}(\mathbf{r}) \mid \left\{ \mathbf{g}(\mathbf{r}) - 1 \right\} \right\}$			
	(the nomenclature is given in ref. (29)).			
Dremond 1974				
(48)	D*= 2.306 x 10 ⁻⁵ $\left(\frac{T}{M}\right)^{\frac{1}{2}} \left[\frac{V_{b}-1.384 V_{0}}{V_{0}^{\frac{2}{3}}}\right]$		-	2-2.30
	where $V_0 = N \frac{\pi^3}{\sqrt{2}}$ , hard sphere closed packed volume		1	
	(based upon Enskog's theory ( 87) of dense fluid).			
This work (203)	$V D^* = 0.229 \times 10^{-8} \left( \frac{T}{\mu \bar{v}} \right) V_b^{0.636}$	31	4.8	3-3.6
	(similar to eq. (2-2.26) and $V_c$ is replaced by $V_b$ ).		• •	
This work	$\mathbf{D}^* = \mathbf{T} \left[ \underbrace{\mathbf{V}}_{\mathbf{V}} \right]^{7.7}$	48	12	3-3.4
	where [M] is a constant and may be estimated by summing the bond contributions given in Table (3-3.2)			
	of this work.		•	
	Symboles used in this Table are explained in the section ''Nomenclature'' unless			
	otherwise specified.	$\sum_{i=1}^{n-1} \lambda_i = \sum_{i=1}^{n-1} \lambda_i$		

#### 2-3 Diffusion coefficient at infinite dilution

A number of correlations from theliterature are presented in Table 2-3.1. The majority of these correlations can be classified into two groups, on the basis of their theoretical background:

(a) those developed from Stokes-Einstein equation and

(b) those developed from Eyring's theory of absolute reaction rate. In group (a) the expression  $(D^{O}_{AB} / \mu_{B}^{A} / T)$  is usually correlated with the relative size of the molecules, i.e.

(i) For colloidal solutions where  $V_A \gg V_B$ 

 $\frac{D_{AB}^{o} \mu_{B}}{T} = f \text{ (size of the solute molecule, A)}$ 

(ii) For ideal liquid mixtures where the sizes of the molecules are of the same order of magnitude

$$\frac{D_{AB}^{O} \mu_{B}}{T} = f \text{ (ratio of the dimensions of the pure components)}}$$

(iii) For non-ideal and associated mixtures

The state of the states

 $\frac{D_{AB}^{o} \mu_{B}}{T} = f \text{ (ratio of the dimensions of the pure components and correction factor for association)}$ 

The correction factor for association is introduced to account for the changes in the sizes of the molecules due to association. In group (b) the variation of activation energy for diffusion with temperature constitutes the basis of the Eyring theory. Diffusion coefficients, according to this theory, vary exponentially with the energy of activation and the temperature. Correlations based on the Eyring theory are more suitable for systems in which the sizes of solute and solvent molecules are of the same order of magnitude.

> ing the second secon The second sec The second se

#### Table 2-3.1

## Equations for estimating diffusion coefficients at infinite dilution

Author, year and reference	Equation	Systems tested	% error	Equation Number
Einstein- Sutherland,	$D^{O}_{AB} = \frac{kT}{f}$	-	-	2-3.1
1905 (49, 189)	where f = viscous resistance per molecule or frictional coefficient (derived from hydrodynamic theory of			
	liquid).			
Stokes-Einstei 1905 (187,49)	${}^{n,D}{}^{0}AB = \frac{1}{6\pi \eta} \left( \frac{3\mu B + \eta A \theta}{2\mu B + \eta A} \right) \cdot \frac{kT}{\mu B}$	-	• • •	2-3.2
	$D^{O}_{AB} = \frac{1}{4\pi n_{A}} \frac{kT}{\mu_{B}}  \text{when } \Theta = 0$			
	$D^{O}_{AB} = \frac{1}{6\pi \pi_{A}} \frac{kT}{\mu_{B}}$ when $\beta = \infty$			
	where $eee = \text{coefficient of sliding friction}$ between the solute molecule and the solvent molecules.			
Herzog, 1930 (84)	${}^{D}{}^{O}_{AB} = \frac{2RT}{6\pi N^{0.67} \mu_{B} (V_{A}-b)^{0.33}}$		-	2-3.4
	where b = van der Waal's volume constant			
Arnold, 1930 (8)	$D_{AB}^{0} = \frac{\left[(M_{A}+M_{B})/M_{A}M_{B}\right]^{0.5} \times 10^{-3}}{A_{A}A_{B}\mu_{B}^{0.5} (V_{A}^{0.33} + V_{B}^{0.33})^{2}})^{2}$	-	15	2-3.4a
	where A _A , A _B = 'abnormality factors' whi correct for association and abnormal intermolecular forces	ch ונג in		
	(developed by extending the kinetic theory of gases to liquids. Its application is limited to a temperature of 20°C and to relatively	of ed		
	low boiling solvents).			
Eyring, 1936 (52)	$D^{o}_{AB} = \frac{\lambda_{1}}{\lambda_{2} \lambda_{3}}  \frac{kT}{\mu_{B}}$		1 <b>—</b>	2-3.5
	where $\mu_{\rm B}$ = in poises		. ·	
	(based on the absolute reaction rate theory	)• 1		

W.

Author, year and reference	Equation	Systems tested	% error	Equation Number
Powell et al, 1941 (155)	$D^{O}_{AB} = \frac{kT}{a(2\pi)} \mu_{B}$			
	where $a = 3\pi$ for spherical solute molecule $a = 2\pi$ for cylindrical solute molecules $\mu_B = in poises$	8	-	2-3.6
	(modification of Stokes-Einstein equation, applicable only for $N_A \gg V_B$ ).			
Wilke, 1949 (218)	$\mathbf{D}^{\mathbf{O}}_{\mathbf{AB}} = \frac{1}{\mathbf{F}}  \frac{\mathbf{T}}{\mu}_{\mathbf{B}}$			1
	where $\mathbf{F} \propto \mathbf{V}_{\mathbf{A}}^{3}$	-		2-3.7
	$\mu_{\rm B}$ - in poises (derived from Stokes-Einstein equation and Eyring's theory).		· ·	
Polson, 1950 (168)	$D_{AB}^{0} = 2.74 \times 10^{-5} M_{A}^{-\frac{1}{3}}$		_	2.3.8
	(obtained empirically for systems where wate is the solvent and $M_A > 1000$ ).	er	, , ,	
Olson-Walton, 1951 (146)	A plot of $D^{O}_{AB}$ or $(\frac{D^{O}_{AB} \mu_{B}}{T}) vs(\Delta \epsilon)$ with	11	5	2-3.9
	surface-tension of pure solutes as parameter where $\Delta \hat{G}$ = slope of the curve from the plo	<b>1</b> <b>1</b> <b>1</b> <b>1</b>		
1707 xu 1707 xu 1911 - 1917	$\sigma_{A}$ for surface tension against the molar concentration $\sigma_{A}$ = in dynes/cm $C_{A}$ = in g-moles/litre.			
Longeworth, 1952 (117)	$D^{O}_{AB} = \frac{A}{M_{A}^{v_{2}}} + \frac{B}{M_{A}^{2/3}} + \frac{C}{M_{A}}$	-		2-3.10
	where A, B, C = characteric constants for the solute		-	
Sherwood- Pigford , 1952 (177)	$D^{o}_{AB} = 4 \times 10^{-7} \frac{T}{\mu_{B} (V_{A}^{//3} - C)}$	125	15	2-3.11
2	where $\mu_{\mathbf{B}} = \text{ in centipoises}$ $\mathbf{T} = \text{ in }^{\mathbf{O}}\mathbf{R}$			
	C = 2 for the solvent, water C = 2.46 for the solvent, methanol C = 2.84 for the solvent, benzene.			-

ł

Author, year	Equation	Systems	%	Equation
and reference	I a first and the second s	tested	error	Number
				(
Othmer-Thak	^{er} , -5Γ 0.6.0. (1.1ΔH ₂ /ΔH)	1		I !
1953 (148)	$D_{AB} = 14 \times 10  [V_A  \mu_B \mu_W  B  w]$	50	28	2-3.12
	$\frac{1}{2}$ = $\frac{1}{2}$ of column at 20°C in		.	1 1 1
	where $\mu_B = $ viscosity of solvent at 20 0, in	1	ľ. 1	1
	u = viscositv of water at T. centipoises		1 1	ł '
	$\Lambda H_{\Lambda H} = $ latent heats of vaporization of the			1
	solvent and of water at T, cal/gmole	i ie		1 '
	For dilute aqueous solutions eq.(2-3.12)reduces			'
	to_o		1 1	'
	$D_{AB} = \frac{14 \times 10}{0.6 \times 1}$	40	13	2-3,12a
		<b>4</b> 0		4-0.12
			/	l '
Coulson-	$D^{0}_{AD} = 7.7 \times 10^{-10} $ T 1			!
Richardson,	$\overline{\mu}_{\mathbf{B}} (\mathbf{V}_{\mathbf{A}}^{v_{3}} - \mathbf{K}^{\overline{3}})$	125	15	2-3.13
1954 (33)		l - 1	!	l !
	where $\mu_{\rm B}$ = in poises		'	1
1	K = 8 for the solvent, water	l	,°	'
1	K = 14.9 for the solvent, methanol	1 '	'	
	K = 22.8 for the solvent, benzene.	l , '	'	
Scheihle, 1954		1	'	ł
(178)	$D^{\circ}_{} = 8.2 \times 10^{-8} T \frac{1+(3 V_{s} / V_{A})^{\frac{5}{3}}}{1}$		'	
	$\mu_{\rm R} = \frac{1}{\sqrt{3}}$	50	11-27	2-3.14
		<b>l</b> 1 1 1	l - 1	
	(a modification of Wilke's equation (2-3. 1)).		'	
	It simplifies for special cases w:	1.84		· •
	$D^{O}_{AB} = \phi_{\mu} \frac{1}{V} \frac{1}{3}$		1	
	'B'A			
	where $\phi = 25.2$ , when water is the solvent and $\pi / \pi$		(	1
Commentation of	^v A [∧] ^v B			
SUNG THE .	$\phi = 18.9$ , when benzene is the solvent and			
l de la companya de la	$v_A < 2v_B$	1	1	
	$\phi = 17.5$ , for all other solvents and			-
	$V_A < 2.5 V_B$			1
	$\mu_{_{\mathbf{D}}}$ = in centipoises.	. 1		
		•		
Collins-Raffe	$\mathbf{LD}^{0} = \mathbf{kT}$			2-3.15
1955 (32)	$\langle AB \langle \overline{S}_{AB} \rangle [\pi (M_A M_B) ]$			
	where $S_{1} = 3\left[2\left(\frac{MA^{M}B}{MA^{M}B}\right)\right]^{K1}$			1
:	$\pi G_{1} \int \left[ \frac{1}{\sqrt{2}} \right]^{\frac{1}{2}}$	• /1		
		² ิ้า	la ser en la	1
	$M_{\rm H} = 1 + (M_{\rm A}^{+}M_{\rm B}) (M_{\rm A}) (M_{\rm B}) (1 + (M_{\rm A} + M_{\rm B}))$	B		<b>.</b>
	$M_{\rm M} = \frac{1}{M_{\rm M}} = \frac{1}{M_{\rm M}} + \frac{1}{M_{\rm M}} + \frac{1}{M_{\rm M}} = \frac{1}{M_{\rm M}}$	1/2		
		A 1 1	•	•
	$\begin{bmatrix} \mathbf{X} & \mathbf{A} & \mathbf{A} & \mathbf{B} & \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{B} & \mathbf{A} & \mathbf{B} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{A} & \mathbf{A} \end{bmatrix} \end{bmatrix} $	.) J		

.

Author, year	Equation	Systems	%	Equation
and reference		tostod	Arror	Number
		icoleu	61101	TATIMET
Collins-Raffel	6 =  collision diameter. cm			
	AB		1	
1955 (32)				
continued	$\langle \mathbf{v} \rangle$			
	$\left(\frac{1}{V_{c}}\right)$ = ratio of molecular and incompression	ble in the		
	^{VI} A volumes estimated from velocity of			
	gound			
	1			
Wilke-Chang,	$-0$ $-1$ $-8$ $(x_M)^2$ $-$			
1955 (219)	$D_{AB} = 7.4 \times 10 \qquad \underline{B}  \underline{B'}  \underline{T}$	535	16.5	2-3.16
1000 (210)	$\mu_v$ 0.6			
	/ B A			а. С
				•
	(a modification of Wilke's equation (2-3.7))			Ŋ.
and the second	where $\mu_{-}$ = in centipoises			
	/~~ts ~			
	$X_{n}$ = association parameter used to			
	define the effective molecular weight			
	define the effective molecular weight			
	of solvent with respect to the			
	diffusion process.		· I	1. A.
	Performended values for X			
	B B B		1	
	Non-associated solvent = $-1$	1.1	1	
	Water as solvent = 2.6	•		
	Mathemal as solvent = 1.0			
	Methanol as solvent = 1.9			
	Ethanol as solvent $= 1.5$	· · ·		
	Otherwise the following empirical equation is			
	recommended (3) to estimate the value of $\mathbf{x}$			
	for agaaalated galventa.			
	for associated solvents:			
	$\nabla = (\Delta H_{\rm p})^{0.0}$			
	$A_{B} = \left(\frac{B}{B}\right)$			2-3.16a
	$- \sqrt{\Delta H_n *}$			
	<b>B</b>		. •	
	whoma ATT * - the latent heat of rememi-ation			1997 - A. S.
· · · · ·	where $\Delta H_{B}^{*}$ - the latent heat of vaporization	1. A. S.		1 A 1
	of the homomorph** of the			
	solvent.	a de presente		
	(**the homomorph is the compound home " OTT		-	1
	and nonionorph is the compound where "-OH"	a status At		
	group is replaced by "-CH ₂ " group).		ľ	
i i i i i i i i i i i i i i i i i i i	J			
Li-Chang	G GAD I-T		. ł	
DI-OIRING,	$D'_{1} = 1 \left(1 - \frac{V_{AD}}{V_{AD}}\right) \frac{KI}{V_{AD}} 1$			0 0 10
1955 (115)	$AB = \frac{1}{2} = 2AB / \mu_{D} / V_{A} $		-	2-3.17
	$\frac{2}{1-D}\left(\frac{1}{2N}\right)$			
		. 1	, í	
	where $\mu_{\rm p}$ = in poises		}	
	$\neg$ $\neg$ AB = number of nearest neighbours in the	- <u>1</u>		1
	same plane.			
	ZAD		1	
	AB = number of all nearest neighbours.		. 1	
	(developed from the hydrodynamic theory and	· · · · ·	1	
	Evring theory)			
	al and movel i		·	

Author, year	Equation	Systems	%	Equation
and reference		tested	error	Number
Innes-Allbrig	$ht_{n}$	~~	10	0 0 10
1957 (95)	$D_{AB} = A T \exp \left(-\frac{B}{m}\right)$	30	10	2-3.18
	$\begin{bmatrix} 1 \\ - \end{bmatrix}$			
	where $n = constant$ depending on solvent			
	A, B – characteristic constants for the			
	Bolute.		. •	•
Panchenkov.				
1958(150)	$\begin{bmatrix} D \\ AB \end{bmatrix} = 4 \left( \frac{3VA}{2N} \right) \left( \frac{2RT}{2N} \right)^2 \left( \frac{Eo}{2N} + 1 \right) \exp \left[ - \frac{2\Delta E}{2N} \right] = -$	EO	-	2-3.19
	$4 \text{ N} \sqrt{\pi M_B} 2RT. $	ZRTJ		
	where $\Upsilon = $ co-ordination number			
	Eo = the energy of a single bond between			1
	the molecules in the liquid			
	$\Delta E = \Delta H$ -RT, energy of vaporization.			
Ree-Eyring,	$\mathbf{p}^{o} = \lambda_{1} \mathbf{k}$	-	_ ·	2-3.20
1958 (167)	$AB = \frac{1}{\varepsilon_{1-1}} $	1. A.		
	where $\mu_{\rm p}$ = in poises .		/	
	B - number of nearest neighbourg in			
	AB one plane.			
	(modification of Evring (2-3, 5)).			
Thomaes-	$\mathbf{p}^{\prime}$ $\mathbf{p}^{0}$ $\mathbf{p}^{0}$ $\mathbf{p}^{1}$ $\mathbf{p}^{1}$			
Itterbreek,	$\begin{bmatrix} \mathbf{D} & \mathbf{AB} \end{bmatrix} \mathbf{RB} \begin{pmatrix} \mathbf{C} & \mathbf{A} \\ \mathbf{A} & \mathbf{R} \end{pmatrix}^{-} \begin{pmatrix} \mathbf{M} & \mathbf{A} \\ \mathbf{A} & \mathbf{R} \end{pmatrix} \begin{pmatrix} \mathbf{M} & \mathbf{A} \\ \mathbf{M} & \mathbf{A} \end{bmatrix} \mathbf{T}$	-	-	2-3.21
1959 (194)	$\left( \begin{array}{c} \hline \epsilon_{A} \end{array} \right) \left( \begin{array}{c} M_{A} \end{array} \right) \left( \begin{array}{c} \eta_{A} \end{array} \right)$			
• • • • •				20
	where $\mathbf{R}$ = subscript indicating the reference			
	solute diffusing into the same solvent			·
	$\epsilon_{A}$ = Lennard-Jones force constant			
	$\mathcal{H}_{A}$ = distance at which the minimum in			
	A Lennard-Jones' potential curve occur	8.		
i. d.e				
Adamson-	$\lambda^2 k = \frac{1}{2} - \Delta G_D$		_	2-3.22
Irani, 1960	$AB = \frac{1}{V[. V_1]} \frac{1}{h} \frac{1}{RT}$		1 1	
(2)	$B\left[1+\overline{\mathbf{v}}_{k}\right]$			
	(developed from Eyring's absolute reaction rate			
	theory).	${\bf A}_{\rm eff}$		
Tyrell, 1960	$D^{O}_{A} = kT$		_	2-3.23
(204)	$AB = \overline{\mu_n} \propto$			۰ ۱
	/ B			
	$\mu^{\text{wnere}} \mu_{\text{B}} = \frac{11 \text{ poises}}{10 \text{ poises}}$	I .		1 [°] .
	$\alpha$ = a parameter having a dimension of $\beta$	ength		
	(modification of eq. (2-3.1) where 'f' is separate	ed	•	
	into $\propto$ and $\mu_{\rm B}$ ).			

22

· '

Author, year	Equation	Systems	%	Equation
and reference		tested	error	Number
Ibrahim– Kuloor, 1960 (94)	Sc' = $\frac{\mu_{\rm B}V_{\rm B}}{D_{\rm AB}}$ = aM + b	4	10	2-3.24
	a,b = parameter related to the propertie of the solvent and may be estimated from surface tension.	8		
Wilke-Chang- Olander, 1961 (145)	$D^{0}_{AB} = 7.4 \times 10^{-8} \frac{(x_{B} M_{B})^{\frac{1}{2}} T}{\mu_{B} (4V_{A})^{0.6}}$		16	2-3.25
	where $\mu_{B}$ = in centipoises $x_{B}$ = association parameter of solvent. (a modification of Wilke-Chang eq. (2-3.16) for systems where water is the solute).			
Kamal–Canjar 1962 (100)	$D_{AB}^{o} = B f (\Delta H)$	56	12	2-6.26
	where B = 1.2021 x 10 ⁻⁸ $\left(\frac{\text{RT}}{\pi \text{M}}\right)^{\frac{1}{2}} V_{\text{B}}^{\frac{1}{3}} \text{A}$			
	$A = \begin{bmatrix} 1.6\overline{v}_{B} + 2.56(\overline{v}_{B})^{2} \{ 1+2.5\overline{v}_{B} + 4.5864(\overline{v}_{B})^{2} \} \\ \overline{v}_{B} = \frac{v_{B}}{v_{B}}$	$\left  3 \right\rangle^{2} \right] (\overline{v}_{1})$	₿_₹	
	incompressible volume. $f(\Delta H) = BT$			
	$\frac{1}{24 \Delta H_A} - 39RT$	· · · ·		
Sitaraman et´al, 1963 (182)	$D^{o}_{AB} = 5.4 \times 10^{-8} \left[ \frac{M_{B}^{\frac{1}{2}} (\Delta L_{B})^{\frac{1}{3}} T}{\mu_{B} V_{A}^{\circ.5} (\Delta L_{A})^{\circ.5}} \right]^{0.93}$	499	16	2-3.27
	where $\mu_{\rm B}$ is in centipoises, $\Delta L_{\rm A}$ and $\Delta L_{\rm B}$ in calculation of Willies (here on (2.2) 10) by reals	al/gm.		
	the empirical constant ' $\mathbf{x}_{B}$ ' (i.e. association path by the ratio of the latent "heats of vaporization and solute).	arameter) of solven	t	
Olander 1963 (144)	$D^{O}_{AB} = \left(\frac{N}{V_{B}}\right)^{\frac{1}{3}} \frac{k}{5.6 \mu_{B}} \exp\left[\frac{\Delta G_{\mu,AB} - \Delta G_{D}O}{RT}\right]$	AB_	•	
	where $\Delta G_{\mu;AB} \approx \Delta G_{\mu,B}$ , $\mu_B$ in poises.	40 .	15	2-3.28
	(derived from Eyring's absolute reaction rate theory).			•

ł

Author, year	Equation	Systems	92	Equation
and reference		tested	error	Number
King et al 1965 (104)	$D^{O}_{AB} = 4.4 \times 10^{-8} \left(\frac{V_{B}}{V_{A}}\right)^{\frac{1}{6}} \left(\frac{\Delta H_{B}}{\Delta H_{A}}\right)^{\frac{1}{2}} \frac{T}{\mu B}$	499	15	2-3.29
	where $\mu_{\rm B}$ is in centipoises.		•	
Gainer- Metzner, 1966 (60)	$D^{O}_{AB} = \frac{kT}{\xi \mu_{B}} \left(\frac{N}{V_{B}}\right)^{\frac{1}{3}} \exp \left[\frac{\Delta E_{\mu,B} - \Delta E_{D,A}}{RT}\right]$	B • • • • • • • • • • • • • • • • • • •		-
	where $\mu_{\rm B}$ is in poises.	19	18	2-3.30
•	(a modification of Eyring's absolute reaction rate theory; recommended for high viscosity solvents).			A
Reddy– Doraiswamy, 1967 (166)	$D^{O}_{AB} = \phi \frac{M_{B}^{\frac{1}{2}} T}{\mu_{B} V_{A}^{\frac{1}{3}} V_{B}^{\frac{1}{3}}}$	23	18	2-3.31
	where $\phi = 10 \times 10^{-8}$ when $\frac{V_B}{V_A} \leq 1.5$ $\phi = 8.5 \times 10^{-8}$ when $\frac{V_B}{V_A} > 1.5$			
	$\mu_{\rm B}$ = in centipoises. (a modification of Wilke-Chang eq. (2-3.16)).			
Pratap- Doraiswamy, 1967 (157)	$D_{AB}^{o} = 2.015 \times 10^{-3}  u_{1} V_{A}^{\frac{1}{3}} \left[ \frac{M_{A} + M_{B}}{M_{A} M_{B}} \right] T^{\frac{1}{2}}$	$\exp\left[\frac{1 x}{\Delta H}\right]$	10 ⁷	
	where $u_1 =$ velocity of sound in liquid	9	25	2-3.32
i and the association of the second sec	(derived from Eyring's theory).			
Ravdel' Porai–Koshits 1967 (165)	$D^{0}_{AB} = \frac{kT}{A\mu_{B}\pi\pi_{A}}$		-	2-3.33
	where A is a constant and estimated empirically from $A = 5.08 \times 10^{-15}$			
	$\frac{1}{D_B * \mu_B (R_D)_B^{\frac{1}{3}}}$			
	where $\mathbf{R}_{\mathbf{D}}$ = molecular refraction			
	$\mu_{\rm B} = \text{ in poises}$ (for non-polar liquids A $\approx 4.8 \stackrel{+}{-} 0.2$ ).	-		
1				

Author, year  
and referenceEquationSystems  
tested
$$\mathcal{C}_{error}$$
Equation  
NumberLusia-  
Rateliff,  
1968 (123) $D^{0}_{AB} = 8.52 \times 10^{-10} \frac{1}{V_{B}^{\frac{1}{3}}} \left[ 1.4 \left( \frac{V_{B}}{V_{A}} \right)^{\frac{1}{3}} + \left( \frac{V_{B}}{V_{A}} \right) \right] \frac{T}{\mu_{B}}$   
where  $\mu_{B}$  = in poises.8162-3.34Loflin-  
MoLaughlin,  
1969 (116) $\frac{2(D^{*}_{B}/D^{0}_{AB})^{2}}{1+(D^{*}_{B}/D^{0}_{AB})} = \left( \frac{\zeta_{B}}{\zeta_{A}} \right)^{\frac{1}{2}} \left( 1 + \frac{G_{B}}{5_{A}} \right) \left[ \frac{M_{B}}{M_{A}^{+M}}_{A} \right]$ --2-3.35Laddha-Smith,  
1969 (106) $D^{0}_{AB} = 1.892 \times 10^{-9} \frac{(V_{B}/V_{A})^{0}}{V_{A}^{\frac{1}{3}}} \frac{T}{\mu_{B}}$ 26382-3.36Mitchells,  
et al, 1971  
(135) $D^{0}_{AB} = \frac{kT}{\xi_{B}h} \left[ \frac{(2)^{\frac{1}{3}}V_{B}}{h} \right]^{\frac{3}{2}} \exp \left[ -\frac{\Delta G_{D}}{RT} \right]$ 6132-3.37Hiranuma,  
1971 (66) $D^{0}_{AB} = 7.4 \times 10^{-8} \left( \frac{K_{B}}{M_{A}} \right)^{\frac{1}{3}}$ ,  $G = \frac{T}{\mu_{B}}$ --2-3.38where  $\mu_{B}$  = in centipoises  
 $X_{A} \times x_{B}$  = association parameters for the  
solute and the solvent  
respectively.  
(a modification of Wilke-Chang eq. (2-3.16)  
by introducing additional association  
parameter,  $x_{A}$ , for the solute molecule).--2-3.39Lusis, 1971  
(122) $D^{0}_{AB} = -\frac{kT}{6 \tau (T_{A} + T_{B})} \mu_{B}$   
where  $\mu_{B}$  = in poises.--2-3.39

Author, year and reference	Equation	Systems tested	% error	Equation Number
Lusis–Ratcliff 1971 (123)	, $D_{AB}^{0} = \frac{1}{1 + K} D_{A_{1}} + K D_{A_{1}} B_{1}$		6	2-3.40
	where $K = \frac{1 - \sqrt[3]{A}}{\sqrt[3]{A}}$			
	$^{\circ}A$ dilution DA ₁ and D _{A1} B ₁ are found from			
	$\frac{\text{Di}\mu_{\text{B}}}{\text{T}} = 8.52 \times 10^{-8} \frac{1}{\text{V}^{\frac{1}{3}}} \left[1.4\text{R}_{i}^{\frac{1}{3}} + \text{R}_{i}\right]$			$\sim$
	where $R_i = \frac{V_B}{V_A}$ if $i = A_1$			:
	$\mathbf{R}_{\mathbf{i}} = \frac{\mathbf{V}_{\mathbf{B}}}{\mathbf{V}_{\mathbf{A}} + \mathbf{V}_{\mathbf{B}}}  \text{if } \mathbf{i} = \mathbf{A}_{1} \mathbf{B}_{1}$			
	$\mu_{\rm B}$ = in poises			
	(recommended for complex forming substances defined in ref. (123)).			
Hayduk- Cheng, 1971	$\mathbf{D}^{\mathbf{o}}_{\mathbf{A}\mathbf{B}} = \mathbf{m}\boldsymbol{\mu}_{\mathbf{B}}^{\mathbf{n}}$	-	18	2-3.41
(01)	where m and n are constants applying to the solute.			
Nîr-Stein, 1971-(142)	$D^{O}_{A\overline{B}} \left[ D^{O}_{AB,fl} \exp\left(\frac{-\Delta G_{D,fl}}{RT}\right) \right] + \left[ D^{O}_{AB,lat.} \exp\left(\frac{-\Delta G_{D,fl}}{RT}\right) \right]$	$\left( \begin{array}{c} \Delta G_{D, lat} \\ RT \end{array} \right)$	)	2-3.42
	where subscripts fl = indicates the contribution due to the flow mechanism of the matrix			
	and lat. = indicates the contribution due to the mechanism of lattice diffusion as defined in ref. (142)			
	(a modification of Eyring's absolute reaction rate theory).			

1.

ĸ

Author, year and reference	Equation	Systems tested	% error	Equation number
Akgerman- Gainer, 1972 (3)	${}^{D}{}^{O}_{AB} = \frac{kT}{\xi \mu_{B}} \left(\frac{N}{V_{B}}\right)^{\frac{1}{3}} \left(\frac{M_{B}}{M_{A}}\right)^{\frac{1}{3}} \exp\left[\frac{\Delta E_{\mu,B}}{R'}\right]^{\frac{1}{3}}$	$\begin{bmatrix} \Delta E \\ \mathbf{D}, \mathbf{A} \mathbf{B} \\ \mathbf{T} \end{bmatrix}$		
	where $\mu_{B}$ = in poises.	52* 7**	15 33	2-3.43
	(a modification of Gainer-Metzner eq. (2-3.30), recommended for the estimation of diffusion coefficients of gases into liquids)			
	(* gas-liquid system; **liquid-liquid syste	m).		
Vadovic- Colver, 1973 (206)	$D_{AB}^{0} = 0.103 \times 10^{-6} \left(\frac{V_{Bc}}{V_{Bc}}\right)^{\frac{\beta}{3}} \left(\frac{M_{A}+M_{B}}{2M_{A}}\right)^{\frac{m}{2}} x$			V
	$\mathbf{v_{Bc}}^{\frac{2}{3}} \left( \frac{\boldsymbol{\mathcal{P}_B}^{\mathbf{T}}}{\boldsymbol{\mu}_{\mathbf{B}}^{\mathbf{M}} \mathbf{M}_{\mathbf{B}}} \right)$	50	9	2-3.44
	where $\mu_{\mathbf{B}}$ = in centipoises .		1	
	$V_{Ac}$ , $V_{Bc}$ = critical volume of pure A and B respectively, cm ³ /gmole.			
	<ul> <li>m = 1, for non-associated systems.</li> <li>m = 0, for associated systems.</li> <li>For the systems where water is the solvent,</li> </ul>			
	the constant $(1.08 \times 10^{-6})$ is to be used in the place of $(0.103 \times 10^{-6})$ .			
This work (201)	$\mathbf{D}_{\mathbf{AB}}^{0} = 8.93 \times 10^{-8} \frac{\mathbf{V}_{\mathbf{A}}^{\prime_{\mathbf{b}}}}{\mathbf{W}_{\mathbf{B}}^{\prime_{\mathbf{b}}}} \left( \frac{\left[\mathbf{P}_{\mathbf{B}}\right]}{\left[\mathbf{P}_{\mathbf{A}}\right]} \right)^{0.6} \frac{\mathbf{T}}{\mu_{\mathbf{B}}}$	535	12	3-2.4
(1) The second s second second secon second second sec	where $\mu_{B}$ = in centipoises			
	$\begin{bmatrix} P \\ A \end{bmatrix}$ , $\begin{bmatrix} P \\ B \end{bmatrix} = \begin{array}{c} parachors of pure A and B \\ respectively. \end{array}$			
	(for the development of this equation see section 3-3).			
	Symboles used in this Table are explained in the section "Nomenclature" unless otherwise specified.			
				J

27

11

ļ

#### Concentration dependence of diffusion coefficient

Correlations available for the prediction of diffusion coefficients for concentrated binary mixtures originate mainly from hydrodynamic theory, theory of absolute reaction rate, or a combination of the two theories. A few have purely empirical origins, however.

Table 2-4.1 gives a list of the more common correlations.

Only the equation of Vignes (210) and equation of Leffler and Cullinan (111) were found to agree reasonably well with experimental data. The equation of Vignes (210) is regarded as one of the experimentally derived equations, however, Cullinan (36) showed that this equation can be derived from the principles of the Eyring absolute reaction rate theory (69). Leffler and Cullinan (111) applied the Eyring absolute reaction rate theory to diffusion in concentrated solution making a number of assumptions. As the derivation of the Leffler and Cullinan equation (2-4.16) has a considerable amount of theoretical concepts some of these assumptions are listed and discussed below.

(1) Leffler and Cullinan assume the following relationship between the free energy of activation for a mixture and those for diffusion at

i.e.  $\Delta G_{D,AB} = x_A \Delta G_{D^0,BA} + x_B \Delta G_{D^0,AB}$ 

This relationship is linear and therefore should be correct for an ideal solution but not for solutions departing from ideality.

(2) Leffler and Cullinan (111) adopted the expression for the mixture viscosity of Glasstone et al (69)

i.e. 
$$\mu_{AB} = \frac{h}{\lambda_{\mu}^2} \left( \frac{\lambda_1}{\lambda_2 \lambda_3} \right)_{AB} \exp \left[ \frac{\Delta G_{\mu,AB}}{RT} \right]$$

in the derivation of their correlation and then assumed that the various

infinite dilution.

distances appearing in the group  $\left(\frac{\lambda_1}{\lambda_2 \lambda_3}\right)$  are the same

i.e. 
$$\lambda_{1=} \lambda_{2} = \lambda_{3}$$
.

This assumption is reasonable only if the group  $\left(\frac{\lambda_1}{\lambda_2 \lambda_3}\right)$  contains the number of nearest neighbours,  $\mathcal{E}$ . This group should have the form

 $\begin{pmatrix} \lambda_1 \\ \xi \\ \lambda_2 \\ \lambda_3 \end{pmatrix}$  as was found by Li and Chang (115), Ree and Eyring (167) and Olander (144).

(3) The distance between successive equilibrium positions for the diffusional process in a binary mixture will be related to those of the pure components , Glasstone et al (69) used the following equation to define this distance

Leffler and Cullinan (111) found that if the  $\lambda_{D,AB}$  is defined as

i.e.  $\lambda_{D,AB} = x_A \lambda_{D,A+XB} \lambda_{D,B}$ 

$$\lambda_{\mathrm{D,AB}} = \left(\lambda_{\mathrm{D,A}}\right)^{n_{\mathrm{A}}} \left(\lambda_{\mathrm{D,B}}\right)$$

the resulting correlation agrees better with the experimental data.

(4) Most of the theories of transport properties of the liquid state, such as Eyring's absolute reaction rate theory (69), the significant liquid structure theory (53) and others (20, 87, 168) indicate some inter-relationship between diffusional flow and viscous flow, in addition experimental evidence (38) confirms the prediction of the above theories. Leffler and Cullinan (111) therefore introduced the viscosity of the mixture and of the individual components into their correlation. This may be the reason that their correlation gives better agreement, in most cases, with experimental data than the equation of Vignes (210).
(5) Leffler and Cullinan (111), in the course of the derivation of their

equation, obtained an exponential term in which the exponent is

 $(\Delta G_{\mu,AB} \Delta G_{D,AB})$ 

They assumed that this expression does not vary with the composition of a binary mixture. This assumption allows them to eliminate this term from their correlation, which is an over-simplification as this assumption is approximately correct for an ideal solution only. In case of non-ideal solutions this assumption is incorrect, as shown by Anderson et al (6).

> و می از این از با در این از این محمد می این این این از ا

nto a character

Table 2-4.1	Some of the equations defining the concentration dependence
	of diffusion coefficients in liquid binary mixtures.

Author, year and reference	Equation	Equation Number
Stearn et al, 1940 (184)	$D_{AB} = \frac{kT}{6\pi \mu_{A} - 2\pi} \qquad \left[ \frac{x_{A} \bar{V}_{A} + x_{B} \bar{V}_{B}}{x_{B} \bar{V}_{A}^{2}} \right] \propto_{A}^{2}$	
Powell, et al 1941	$D_{AB} = D_{AB}^{0} \propto A$	2-4.1
(155) Gordon, 1945 (70)	$D_{AB} = D_{AB}^{O} \qquad \frac{\mu_{B}}{\mu_{AB}} \propto_{A}$	2-4.3
Darken, 1948 (37)	$D_{AB} = \left( D_{A}^{*} \times_{A}^{*} + D_{B}^{*} \times_{B}^{*} \right) \propto_{A}^{*}$	2-4.4
	$D_{AB} = \frac{RT}{\mu_{AB}N} \left[ \frac{x_B}{6_A} + \frac{x_A}{6_B} \right] \propto_A$	2-4.5
Wilke, 1949 (218)	$\frac{\mathbf{D}_{\mathbf{A}\mathbf{B}}\boldsymbol{\mu}_{\mathbf{A}\mathbf{B}}}{\mathbf{T}} = \left\{ \left[ \left( \frac{\mathbf{D}^{0}\mathbf{B}\mathbf{A}\boldsymbol{\mu}\mathbf{A}}{\mathbf{T}} \right) - \left( \frac{\mathbf{D}^{0}\mathbf{A}\mathbf{B}\boldsymbol{\mu}\mathbf{B}}{\mathbf{T}} \right) \right] \times_{\mathbf{A}} + \left( \frac{\mathbf{D}^{0}\mathbf{A}\mathbf{B}\boldsymbol{\mu}\mathbf{B}}{\mathbf{T}} \right) \right\} \boldsymbol{\alpha}_{\mathbf{A}}$	2-4.6
Prager, 1953 (156)	$D_{AB} = D_A^* \propto_A$	2-4.7
Carman- Stein, 1956 (26)	$\mathbf{D}_{\mathbf{A}\mathbf{B}} = \left(\mathbf{D}^{0}_{\mathbf{B}\mathbf{A}}  \boldsymbol{\mu}_{\mathbf{A}}  \mathbf{X}_{\mathbf{A}} + \mathbf{D}^{0}_{\mathbf{A}\mathbf{B}} \boldsymbol{\mu}_{\mathbf{B}} \times \mathbf{B}\right)  \frac{\boldsymbol{\alpha}_{\mathbf{A}}}{\boldsymbol{\mu}_{\mathbf{A}\mathbf{B}}}$	2-4.8
Bearman, 1961 (13)	$\mathbf{D}_{AB} = \frac{\mathbf{D}_{AB}^{0} \boldsymbol{\mu}_{B}}{\boldsymbol{\mu}_{AB}} \left[ 1 - \left( \frac{\mathbf{\bar{v}}_{A}}{\mathbf{\bar{v}}_{B}} - 1 \right) \right] \boldsymbol{\alpha}_{A}$	2-4.9
Pyun- Fixman, 1964 (160)	$D_{AB} = \frac{RT}{6\pi\mu_{B}N \kappa_{A}} \left[ \approx A - 7.16 \phi_{A} + (\phi_{A}^{2}) \right]$ where $\phi_{A}$ = volume fraction	2-4.10

Author, year and reference	Equation	Equation Number
Rathbun- Babb, 1966 (164)	$D_{AB} = \left(D_{AB}^{o} \times_{B}^{} + D_{BA}^{o} \times_{A}^{}\right) \propto_{A}^{S}$ where S = 0.6 for binary systems containing an associated	2-4.11
-	component and a non-polar component. or S = 0.3 for binary systems with negative deviation from Raoult's law.	
Vignes, 1966 (210)	$D_{AB} = \left( D^{o}_{BA} \right)^{A} \left( D^{o}_{AB} \right)^{B} \propto_{A}$	2-4.12
Schroff, 1968(179)	$\ln\left(\frac{D_{AB}}{\alpha_{A}}\right) = \underset{A}{\times} \ln D_{BA}^{o} + \underset{B}{\times} \ln D_{BA}^{o} + \underset{A}{\times} \ln D'$	2-4.13a
Arnen Anne Arnen Anne Arnen Anne	where $\mathbf{D}' = \left  \exp \left  \mathbf{D}_{BA}^{\mathbf{o}} - \mathbf{D}_{AB}^{\mathbf{o}} \right  \right  - \frac{1}{2} \left( \mathbf{D}_{AB}^{\mathbf{o}} + \mathbf{D}_{BA}^{\mathbf{o}} \right)$ $\mathbf{D}_{AB} = \frac{\mathbf{RT}}{\mu_{AB}^{\mathbf{N}}} \left[ \frac{\mathbf{X}_{A}}{\mathbf{G}_{B}} + \frac{\mathbf{X}_{B}}{\mathbf{G}_{A}} \right] \qquad \mathbf{A}_{A}^{\mathbf{o},\mathbf{f}}$	2-4.13b
<b>\</b> * \\$* a	where $6_{A}$ , $6_{B}$ = friction coefficients of pure A and B respectively.	
Vasenin, 1969 (209)	$D_{AB} = D^*_A \left[ 1 - \left( 1 - \frac{\vec{v}_A}{\vec{v}_B} \right) C_A \vec{v}_A - 2 \omega C_A C_B \vec{v}_A \vec{v}_B \right]$	2 <b>-</b> 4.14a
	or $\mathbf{D}_{\mathbf{AB}} = \mathbf{D}^{*}_{\mathbf{B}} \left[ 1 - \left( 1 - \frac{\bar{\mathbf{V}}_{\mathbf{A}}}{\bar{\mathbf{V}}_{\mathbf{B}}} \right) \mathbf{C}_{\mathbf{B}} \mathbf{\bar{V}}_{\mathbf{B}} - 2 \boldsymbol{\omega} \mathbf{C}_{\mathbf{A}} \mathbf{C}_{\mathbf{B}} \mathbf{\bar{V}}_{\mathbf{B}}^{2} \right]$	2-4.14b
1997 - 19 <b>9</b> 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	where $C_A$ , $C_B$ = concentrations, gm/cm ³ $\omega = \Delta E$ , energy parameter as defined	
Toflin	$\overline{\mathbf{kT}}$ in ref (209).	
McLaughlin, 1969 (116)	${}^{D}_{AB} = \frac{\begin{pmatrix} D_{B} & X_{A} + & D_{A} & X_{B} \end{pmatrix} & X_{A}}{\begin{pmatrix} X_{A} & G_{AB} \\ X_{A} & G_{AB+} & X_{B} & G_{BB} \end{pmatrix}} + \frac{X_{B} & G_{AB}}{X_{A} & G_{AA+} & X_{B} & G_{AB}} \end{pmatrix}$	2-4.15
V	where $\tilde{O}_{AB}$ = friction coefficient of the binary mixture $\tilde{O}_{AA}$ , $\tilde{O}_{BB}$ = friction coefficients of pure A and B respectively.	
	and the first of the second of	

J

ł.

.

۰,

Author, year and reference	Equation	Equation number
Leffler- Cullinan, 1970 (111)	$D_{AB} = \left( D_{BA}^{o} \mu_{A} \right)^{X_{A}} \left( D_{AB}^{o} \mu_{B} \right)^{X_{B}} \frac{\alpha_{A}}{\mu_{AB}}$	2-4.16
Gainer, 1970 (61),	$D_{AB} = D_{AB}^{o} (\mu_{A}^{XA} (\mu_{B}^{XB}) (K)^{XA} (K)^{A} (\mu_{A}^{XA} (\mu_{B}^{XA}) (K)^{A} (K)^{A} (K)^{A} (\mu_{A}^{XA} (\mu_{A}^{XA}) (\mu_{A}^{XA} (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA} (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA} (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA}) (\mu_{A}^{XA} (\mu_{A}^{XA}) (\mu_{A}^{XA}$	2-4.17
	where $K = \left(\frac{\mu_B}{\mu_A}\right)^{\frac{1}{2}} \left(\frac{M_B}{M_A}\right)^{\frac{1}{2}} \left(\frac{\Delta E_A}{\Delta E_B}\right)^{\frac{1}{2}}$	
	$\Delta E_A$ , $\Delta E_B$ = energy of vaporization for pure A and B respectively.	•
Haluska- Colver, 1971 (75)	$D_{AB} = \frac{\mu_A \mu_B \operatorname{RT} (v_A \times_A + v_B \times_B)}{(\times_A \mu_A \ \mathfrak{S}_{BA}^\circ + \times_B \mu_B \ \mathfrak{S}_{AB}^\circ)} \frac{\alpha_A}{\mu_{AB}}$ where $\mathfrak{S}_{AB}^\circ \mathfrak{S}_{BA}^\circ = $ friction coefficients at infinite	2-4.18
This work	dilution of A and B respectively. $D = \left( D^{*} \right)^{X_{A}} \left( D^{*} \right)^{X_{B}} \propto A$	
	$\begin{array}{c} \Delta \mathbf{B} & \left( \begin{array}{c} \mathbf{B} & \mathbf{A} \end{array} \right) & \left( \begin{array}{c} \mathbf{B} & \mathbf{B} \end{array} \right) & \frac{\mathbf{A}}{\mu_{AB}} \\ \times \exp \left[ \begin{array}{c} \Delta \mathbf{G}_{\mu,AB} - \Delta \mathbf{G}_{D,AB} \\ \hline \mathbf{RT} \end{array} \right]. \end{array}$	3-1.21
	Symboles used in this Table are explained in the section "Nomenclature" unless otherwise specified.	
	"Nomonstature" units is otherward to get affect	

#### 2-5

#### Temperature dependence of diffusion coefficient

Experimental data on diffusion coefficients, as reported in the literature, are usually given at ambient temperatures. There are a few reports giving diffusion coefficients at elevated temperatures (19, 21, 55, 131, 135, 175). Experimental data on the diffusion coefficients at normal boiling points are very scarce (25, 183).

A brief review of the experimental data for binary liquid diffusion coefficients of non-electrolytes at elevated temperatures has been given in reference (200). Only a few methods of predicting the diffusion coefficients at elevated temperatures will be discussed here.

Generally, all correlations for the prediction of diffusion coefficients contain temperature as a variable , therefore they can be used for the calculation of diffusion coefficients at specific temperatures. To this class of correlations belong all those given in Tables (2-2.1) (2-3.1) (2-4.1) and (2-6.1). Some of these equations can be adapted for the calculation of diffusion coefficients at varying temperatures provided that experimental values of the coefficient for a given concentration, at one or more temperatures, are available.

(1) Thus it is usual to transform the Stokes-Einstein equation (2-3.2) into the following form:

 $\begin{bmatrix} D^{o}_{AB} \end{bmatrix}_{2} = \begin{bmatrix} \frac{D^{o}_{AB} \ \mu_{B}}{T} \end{bmatrix}_{1} \begin{bmatrix} T \\ \mu_{B} \end{bmatrix}_{2}$ (2-5.1)

in which 1 and 2 indicate the properties at different temperatures. This equation was tested for various systems and gives an average accuracy of  $\frac{+}{2}$  10% (218).

(2) The group  $(D^{O}_{AB} \mu_{B}^{\prime}/T)$  however varies slightly with temperature and Marinin (20) used this fact to improve equation (2-5.1).

He devised the following relationship

$$\frac{D^{O}_{AB}\mu_{B}}{T} = A + B\mu_{B} \qquad (2-5.2)$$

To find the constants A and B experimental values of the diffusion coefficients at two temperatures at least should be known.

(3) It may be deduced from the Eyring absolute reaction rate theory that for a given binary mixture the following relationship holds

i.e. 
$$D_{AB} = A e T$$
 (2-5.3)

where A and B are constants.

From this relationship it follows that a plot of  $\ln D_{AB}$  vs  $\frac{1}{T}$  should give a straight line. Equation (2-5.3) requires at least two experimental points in order to use it.

(4) Inns and Albright (95) modified equation (2-5.3) to the form  $D_{AB}^{O} = A T^{n} e T^{n}$  (2-3.18)

where A, B and n are constants.

wher

These authors regard this relationship as an improvement on the equation (2.5.3) but in order to use it at least three experimental values are needed.

(5) Arnold (8) suggested the following empirical correlation for estimation of the temperature dependence of the diffusion coefficient over short temperature ranges:

$$\begin{bmatrix} D^{o}_{AB} \end{bmatrix}_{t} = \begin{bmatrix} D^{o}_{AB} \end{bmatrix}_{20} O_{C} \qquad \begin{bmatrix} 1 + b (t - 20) \end{bmatrix} \qquad (2-5.4)$$

$$e \qquad b = 0.02 \mu_{B}^{\frac{1}{2}} O_{B}^{\frac{1}{3}}$$

$$t = temperature in ^{O}C$$

$$\mu_{B} = solvent viscosity at 20 ^{O}C, c.p.$$

$$Q_{B} = solvent density at 20 ^{O}C, gm/cc$$

(6) Kincaid, Eyring and Stearn (103) pointed out that a plot of specific volume vs either  $(D^{0}_{AB}/T)$  or  $(D^{0}_{AB}/T^{1.5})$  displays good linearity. These relationships have not been thoroughly tested. Of these two, the latter i.e.  $(D_{AB}/T^{1.5})$  is probably preferable (63).

المراجع المراجع

In 1858 Wiedemann (217) observed that solutes show low values of diffusivity in highly viscous solvent and proposed the relationship

$${}^{D^{o}}_{AB} \propto \frac{1}{\mu_{B}}$$

The relationship between the diffusion coefficient and viscosity is more complicated than equation (2-6.1) suggests. It is better defined by the Stokes-Einstein equation and the equations resulting from other theories of diffusion in the liquid phase.

There are a relatively large number of various empirical equations relating diffusion coefficient to viscosity. These equations are not universally valid. Some examples of these equations are given in Table

(2-6.1).

ю.

Table 2-6.1Some of the empirical equations defining the relationship between<br/>the diffusion coefficient and viscosity.

Equation	Equation number
$D^{o}_{AB} \propto \frac{1}{\mu_{B}}$	2-6.1
$D_{AB}^{o} = 14.0 \times 10^{-5} \frac{1}{V_{A}^{o.s} \mu_{B}^{h}}$	2-6.2
where $\mu_{B}$ = in centipoises (recommended for systems in which water is the solvent).	•
$D^{o}_{AB} = 1.37 \times 10^{-5} \frac{1}{\mu_{B}}$	2-6.3
where $\mu_{B}$ = in centipoises (recommended for diffusion of water in organic solvents).	1
	Equation $D^{0}_{AB} \propto \frac{1}{\mu_{B}}$ $D^{0}_{AB} = 14.0 \times 10^{-5} \frac{1}{V_{A}^{\circ \circ} \mu_{B}^{\circ \circ}}$ where $\mu_{B}$ = in centipoises (recommended for systems in which water is the solvent). $D^{0}_{AB} = 1.37 \times 10^{-5} \frac{1}{\mu_{B}}$ where $\mu_{B}$ = in centipoises (recommended for diffusion of water in organic solvents).

(2-6.1)

.

•

• --- •

÷,

1994 B. 1997

Author, year and reference	Equation	Equation number
Hayduck– Cheng, 1971 (81)	$D^{o}_{AB} = m \mu^{n}_{B}$	2-6.4
	(separate constants m and n apply to each diffusion substance).	
Lusis, 1972 (121,122)	$D^{0}_{AB} = 5.2 \times 10^{-10}  \frac{T}{\mu_{B}}  \left(\frac{\mu_{B}  \Delta \bar{H}_{B}}{\mu_{A}  \Delta \bar{H}_{A}}\right)^{\frac{1}{4}}$	2-6.5
	where $\mu_{\mathbf{B}}$ in poises.	
	(for diffusing of hydrogen bonding solutes in viscous associated solvents, especially the mono- and poly- hydroxy alcohols).	N
(ibid)	$D^{O}_{AB} = 7.5 \times 10^{-14} \frac{T}{\mu^{0.6}}$	2-6.6
	where $\mu_{\mathbf{B}}$ in poises $I^{\mathbf{B}}$	
	(for diffusion in unassociated solvents if no solute- solvent complex are formed and for $V_A > 80$ cc/gmole).	
Hayduck et al, 1973	$D_{AB}^{0} = 0.591 \times 10^{-10} - \mu_{B}^{-0.545}$	2-6.7
(82)	where $\mu_{\mathbf{B}}$ in poises	
	(for diffusion of propane in n-hexane, n-heptane, n-octane, hexadecane, n-butanol and chlorobenzene at 0°C to 50°C).	
McManamey- Woolen, 1973 (130)	$D_{AB}^{o} = 1.41 \times 10^{-10} \ \mu_{B}^{-0.47}$	2-6.8
	where $\mu_{\mathbf{B}}$ in poises	
	(for diffusion of CO ₂ into organic liquids from $25^{\circ}C$ to $50^{\circ}C$ ).	
Hiss-Cussler 1973 (88)	$D^{O}_{AB} \mu_{B}^{\frac{2}{3}} = constant$	2-6.9
	(for diffusion of n-hezane and naphthalene in high viscosity liquids, 0.5 to 5000 centipoises).	-
	Symboles used in this. Table are explained in the section "Nomenclature" unless otherwise specified.	

#### Pressure dependence of diffusion coefficients

39

The liquid phase is to a certain extent, compressible and therefore increased pressure tends to reduce the intermolecular distances. This suggests the pressure will slow down diffusional motion. Experimental evidence shows that below a pressure of 1000 atm the effect of pressure on the mechanism of diffusion is negligible (40). Barton and Speedy (11) conducted a review of experimental methods for determination of diffusion coefficients at higher pressures , they also listed the references in which self-diffusion coefficients in pure liquids and binary liquid mixtures at high pressures may be found. From this review it may be deduced that at least two patterns of pressure dependence are observed.





2-7

#### Diffusion coefficients for hydrocarbon systems decrease approximately

Julium

linearly with increase in pressure, as illustrated in Fig. 2-7.1.



#### Fig. 2-7.2 Pressure dependence of self-diffusion coefficients in aqueous sulphate solutions (35).

Diffusion coefficients of salt solutions, on the other hand, vary irregularly with increase in pressure, as illustrated in Fig. 2-7.2. Some of the equations relating self-diffusion coefficients with pressure found in the

ha i li dh

saljaa words moediade, ensent der das tege egendig fahige witch passer, weer fahret. Nichter

literature are shown in Table 2-7.1.

Transfersive Alvie in the State Field

# Table 2-7.1 Some of the equations defining the relationship between diffusion coefficient and pressure

.

Author, year and reference	Equation	Equation number
Koeller- Drickamer, 1953 (105)	$\frac{\mathbf{D}^*\mathbf{p}}{\mathbf{D}^*\mathbf{o}} = \frac{\mu_{\mathbf{o}}}{\mu_{\mathbf{p}}} \left(\frac{\mathbf{v}_{\mathbf{o}}}{\mathbf{v}_{\mathbf{p}}}\right)^{\frac{1}{3}}$	2-7.1
	where D*p = diffusion coefficient at pressure P D*o = diffusion coefficient at reference pressure. (based on the Stokes-Einstein eq. (2-2.2))	
Koeller- Drickamer, 1953 (105)	$\frac{\mathbf{D}^{*}\mathbf{p}}{\mathbf{D}^{*}\mathbf{o}} = \left(\frac{\mu_{o}}{\mu_{p}}\right)^{\frac{1}{2}} \left(\frac{\mathbf{V}_{o}}{\mathbf{V}_{p}}\right)^{\frac{1}{3}} \qquad \text{but}$	2-7.2
Koeller- Drickamer,	(based on the Arnold eq. ref. 8). $\frac{\partial \ln D^*}{\partial P} = \frac{2}{3} \frac{1}{\bar{V}} \frac{\partial V}{\partial P} - \frac{\partial \Delta G_D}{RT \partial P}$	2-7.3
	or $\frac{\partial \ln D^*}{\partial P} = \frac{2}{3} \frac{1}{\tilde{V}} \frac{\partial V}{\partial P} - \frac{\Delta V_D^{\dagger}}{RT}$ . $\Delta G_D = \text{free energy of activation}$	
	$\Delta V_{D}^{\dagger} = $ activation volume interpreted as the local volume change associated with motion.	
Longuet- Higgin-Pople, 1956 (119)	$D^* = \frac{\chi}{2} \left(\frac{\pi kT}{M}\right)^2 \left[\frac{P\vec{V}}{RT} - 1\right]^2$	2-2.8
Nachtrieb_ Petit, 1956 (138)	$\log_{10} D^* = 4.7889 - 9.637 \times 10^{-6} P$	2-7.4
Dirizenini. 1958. (105)	empirical equation valid only for liquid mercury up to 8366 Kg/cm ² .	к , 1 1 1
	$\Delta \omega_{\rm p}$ , where $\omega_{\rm p}$ is the set of	
	evA The second se The second se	

41

ļ

#### Diaphragm cell methods (66, 99, 134, 170, 199, 209)

42

One of the most popular methods of experimental determination of diffusion coefficient is the diaphragm cell method. Generally, diaphragm cells consist of two compartments, one containing the more concentrated liquid and the other the dilute liquid. The diffusion takes place through the pores of the diaphragm in which the liquid is supposed to be stationary. The liquid concentration in the two compartments, on the otherhand, is maintained uniform by various methods.

In the earlier cells a density stirring method was used. This was effected by placing the heavier liquid in the upper cell and the lighter liquid in the lower cell. This resulted in mixing by the bulk flow of the two liquids. In the most recent diaphragm cells mixing is achieved by special stirrers placed one in each cell and bulk flow through the diaphragm is no longer present.

Table 2-8.1 lists, chronologically, the diaphragm cells used from Graham (71) onwards and shows the most important features of each cell. The earliest cells reported in the literature employed animal bladders, intestines or parchment papers as the diaphragm, Figs. (2-8.1),( 2-8.2) and (2-8.14). In the most recent diaphragm cells sintered glass diaphragms are employed, Figs. (2-8.3) and (2-8.4).

Despite the efforts of many workers, the precise measurement of the diffusion coefficient was still not possible before the mid-1940's. The first diaphragm cell which gave reasonable results was developed by Stokes (185). This diaphragm cell, Fig. (2-8.8), consists of two almost identical compartments divided by the sintered glass diaphragm. The homogeneity of the compartment solutions is maintained by magnetic stirring. The lighter liquid is placed in the upper compartment while

2-8

the heavier liquid occupies the lower one. Procedures for diffusion measurements, as well as the calibration method outlined by Stokes (185), have now become standard. This contribution of Stokes to the diaphragm cell method constitutes a landmark in the historical evolution of the diaphragm cell (134).

The latest designs are modifications of Stokes' two-compartment diaphragm cell in order to satisfy particular conditions. One such modification of Stokes' cell is to adapt it for measurements at elevated In this case the design must allow for thermal expansion temperatures. of the liquid and must prevent boiling. Calus and Tyn (25) modified Stokes' two-compartment cell, Fig. (2-8.18), by employing pressure to prevent the boiling of test liquids during experiments at elevated One weak point of their design is that the bulk flow of temperatures. the test liquid during the preheating period cannot be prevented. Another modification of Stokes' cell for higher temperature measurements was due to Sanni and Hutchison (175). They introduced a third compartment to store one of the test liquids during the preheating period. One disadvantage of their design is that it cannot be used for measurements at or near the boiling point of the test liquids due to boiling effects.





Table 2-8.1 (contd.)



÷. .

0.20

c,

## PART 3 DEVELOPMENT OF CORRELATIONS

#### 3-1 Diffusion coefficients for concentrated binary liquid mixtures

The most recent mathematical models for diffusion in nonideal and non-associating binary liquid mixtures were developed by Vignes (210) and by Leffler and Cullinan (111). They agree reasonably well with experimental data. Gainer and Metzner (60) developed another model which they recommend for dilute solutions. The latter model is fairly complicated as it allows for the variation of the free energies of activation for viscosity and = diffusivity. However, this model does not agree with the experimental data for solutions of higher concentration, as was expected. The correlation of Leffler and Cullinan is based on the mathematical model of viscosity, which was found by Li and Chang (115) and Eyring and Jhon (53) to contain a faulty definition of the shear stress area between neighbouring layers of molecules. In this work the correlation of Leffler and Cullinan is modified by incorporating the corrected model for viscosity and including the free energies of activation for viscosity and diffusivity.

Before this , a physical model of the liquid structure, on which all the above models are based, is briefly described.

#### 3-1.1 A physical model for diffusive and viscous processes in the liquid phase

In considering the mechanism of diffusive and viscous flows the model of the liquid structure proposed by Eyring (69) will be assumed. This model assumes the liquid to have a quasi-crystalline structure, i.e. molecules are arranged in layers of fairly regular configuration. The irregularities are due to the existence of 'holes' of approximately molecular size. This model, together with the notation assumed to describe the distances between molecules, is shown in Fig. 3-1.1.



Fig. 3-1.1 Notation in the model representing a lattice type of structure of the liquid phase.

The molecular structure in Fig. 3-1.1, with all the molecules being of the same size, represents a pure liquid. It can be used to illustrate self-diffusion and viscous flow. To illustrate a mutual diffusion the lattice in Fig. 3-1.1 must be composed of two types of molecules but the mechanism of the diffusive and viscous flows will be the same. The distances between the layers are considered to be larger than the size of the molecules. Thus the process of jumping, e.g. of the molecule "i", into the vacant space "h" represents the diffusion or self-diffusion process. On the other hand the sliding action of the whole layer of molecules in the  $y_1$  row to fill the position vacated by the molecule "i" represents the viscous flow.

#### 3-1.2 Viscosity of binary liquid mixtures

The equation of viscosity for a binary mixture used by Leffer and Cullinan (111) and presented by Eyring (69) is

(3-1.1)

$$\mu_{AB} = \frac{h}{\lambda_{\mu}^{2}} \left(\frac{\lambda_{1}}{\lambda_{2}\lambda_{3}}\right)_{AB} \exp\left[\frac{\Delta G_{\mu,AB}}{RT}\right]$$

In this equation the length parameter  $\left(\frac{\lambda_1}{\lambda_2 \ \lambda_3}\right)_{AB}$  is not correct, and

the derivation of eq. (3-1.1) is repeated here to introduce a correct value for this parameter.

Following a diffusive jump, Fig. 3-1.1, of 'i' from the row  $y_i$  to  $y_2$  the layer of molecules in the row  $y_i$  will move to occupy the vacated space. This motion requires a force in x-direction. Eyring and Jhon (53) and Li and Chang (115) defined the surface area on which this force is acting as

$$A = \epsilon \lambda_2 \lambda_3 \qquad (3-1.2)$$

Thus the shear stress in the x-direction is

$$f_{x} = \frac{F_{x}}{\lambda_{2} \lambda_{3} \mathcal{E}}$$
(3-1.3)

where  $F_x$  is the force acting on the area A. Eq. (3-1.2) denotes the surface area, this includes some of the space between the neighbouring molecules in the plane of the motion which was not taken into account by earlier investigators. The symbol  $\mathcal{E}$  denotes here the number of nearest molecule-neighbours in the plane of motion. In this model Newton's Law of viscosity is also applicable which applied to this geometry it gives

$$\mathbf{f}_{\mathbf{x}} = -\mu \, \frac{\mathrm{d}\mathbf{u}_{\mathbf{x}}}{\mathrm{d}\mathbf{y}} = -\mu \, \frac{\Delta \mathbf{u}_{\mathbf{x}}}{\lambda_1} \tag{3-1.4}$$

where  $\Delta u_x$  is the difference in the velocity between the two neighbouring layers of molecules, Fig. 3-1.1.





The various energies concerned with viscous motion are shown in Fig. 3-1.2. Equations (3-1.5) and (3-1.6) below represent the free energies of activation for the forward and backward movements of the individual molecule, respectively

i.e. 
$$\frac{\Delta G_{\mu}, AB}{N} = \frac{\Delta G_{\mu,AB}}{N} - \frac{1}{2} f_{x} \xi \lambda_{2} \lambda_{3} \lambda_{\mu} \quad (3-1.5)$$
  
and 
$$\frac{\Delta G_{\mu,AB}}{N} = \frac{\Delta G_{\mu,AB}}{N} + \frac{1}{2} f_{x} \xi \lambda_{2} \lambda_{3} \lambda_{\mu} \quad (3-1.6)$$

These equations (3-1.5) and (3-1.6) are written on the basis of a single molecule.

The frequencies of forward and backward motions of a molecule are given by (69)  $\overline{V}^{+} = \frac{kT}{h} \exp \left(-\frac{\Delta G_{\mu,AB}^{+}}{RT}\right) \qquad (3-1.7)$ 

(3-1.8)

and  $\overline{V} = \frac{kT}{h} \exp\left(-\frac{\Delta G_{\mu}}{RT}\right)$ 

The change of velocity is the product of the distance between two equilibrium positions in the direction of motion of the moving molecule and the difference in the two frequencies

i.e. 
$$\Delta u_x = \lambda_\mu (\overline{v}^+ - \overline{v}^-)$$
 (3-1.9)

Rearranging equations (3-1.5) and (3-1.6)

i.e. 
$$\Delta G^{+}\mu$$
,  $AB^{=\Delta G}\mu$ ,  $AB^{-\frac{1}{2}}f_{x} \in \lambda_{2}\lambda_{3}\lambda_{\mu}N$  (3-1.5a)  
and  $\Delta G^{-}\mu$ ,  $AB^{=\Delta G}\mu$ ,  $AB^{+\frac{1}{2}}f_{x} \in \lambda_{2}\lambda_{3}\lambda_{\mu}N$  (3-1.6a)

and combining them with equations (3-1.7) and (3-1.8) we obtain

$$\overline{\mathcal{V}}^{+} = \frac{kT}{h} \exp \left[ -\frac{\Delta G \mu, AB}{RT} + \frac{\frac{1}{2} f_x \xi \lambda_2 \lambda_3 \lambda_{\mu N}}{RT} \right] (3-1.7a)$$
  
and  $\overline{\mathcal{V}}^{-} = \frac{kT}{h} \exp \left[ -\frac{\Delta G \mu, AB}{RT} - \frac{\frac{1}{2} f_x \xi \lambda_2 \lambda_3 \lambda_{\mu N}}{RT} \right] (3-1.8a)$ 

These equations combined with eq. (3-1.9) gives

By expansion of the last two exponential terms in eq. (3-1.10) and neglecting insignificant groups we get

$$\Delta u_{x} = \lambda_{\mu}^{2} \left(\frac{k}{R}\right) \left(\frac{N}{h}\right) f_{x} \in \lambda_{2} \lambda_{3} \exp\left(\frac{-\Delta G_{\mu,AB}}{RT}\right)$$
(3-1.11)

but  $\underline{k} = \underline{1}$  and therefore  $\overline{R}$  N

$$\Delta u_{x} = \lambda_{\mu}^{2} \frac{f_{x} \in \lambda_{2} \lambda_{3}}{h} \exp \left(\frac{-\Delta G_{\mu,AB}}{RT}\right) \quad (3-1.12)$$
Combining eq. (3-1.12) with Newton's law of viscosity, i.e. eq. (3-1.4), and rearranging we get

$$\mu_{AB} = \frac{h}{\lambda_{\mu}^{2}} \left(\frac{\lambda_{1}}{\xi \lambda_{2} \lambda_{3}}\right)_{AB} \exp\left(\frac{\Delta G \mu, AB}{RT}\right) (3-1.13)$$

where subscript 'AB' indicates a binary mixture.

Equation (3-1.13) will now replace eq. (3-1.1) in developing a correlation for the diffusion in binary liquid mixtures.

#### 3-1.3 <u>Development of the correlation</u>

Equation (3-1.13) developed, in the previous section, contains a length parameter for a binary liquid mixture  $\left(\frac{\lambda_1}{\xi \lambda_2 \ \lambda_3}\right)$ .

This is made up of the length parameters of the two pure components and it will be assumed that the binary parameter will be, in some way, related to the two parameters of the pure components. Cullinan's(36) method of estimating a parametric mean value will be applied here. Therefore

$$\left(\frac{\lambda_{1}}{\xi\lambda_{2}\lambda_{3}}\right)_{AB} = \left(\frac{\lambda_{1}}{\xi\lambda_{2}\lambda_{3}}\right)_{A} \left(\frac{\lambda_{1}}{\xi\lambda_{2}\lambda_{3}}\right)_{A} \left(\frac{\lambda_{1}}{\xi\lambda_{2}\lambda_{3}}\right)_{B} \left(3-1.14\right)$$

Next a relationship between the length parameter and the self-diffusion coefficient for a single component liquid, established by Eyring and Jhon (53), will be applied

i.e. 
$$\left(\frac{\lambda_{1}}{\epsilon_{1}\lambda_{2}\lambda_{3}}\right)_{A} = \frac{D^{*}_{A}\mu_{A}}{kT}$$
 (3-1.15)  
and  $\left(\frac{\lambda_{1}}{\epsilon_{1}\lambda_{2}\lambda_{3}}\right)_{B} = \frac{D^{*}_{B}\mu_{B}}{kT}$  (3-1.16)

The length parameter for the binary mixture is then obtained by combining equations (3-1.14), (3-1.15), and (3-1.16) giving

$$\begin{pmatrix} \frac{\lambda_1}{\varepsilon_1 \lambda_2 \lambda_3} \end{pmatrix}_{AB} = (D^*_A \mu_A)^{X_A} (D^*_B \mu_B)^{X_B} \frac{1}{kT} (3-1.17)$$

This value of the length parameter is inserted into equation (3-1.13) to transform it into the following form

$$\mu_{AB} = \frac{1}{\lambda_{\mu}^{2}} \frac{h}{kT} \quad (D^{*}{}_{A} \mu_{A})^{*} \quad (D^{*}{}_{B} \mu_{B})^{*} \exp \left(\frac{\Delta G_{\mu,AB}}{RT}\right)$$

$$(3-1.18)$$

On the basis of the absolute reaction rate theory Leffler and Cullinan (111) obtained the following equation for the binary diffusion coefficient

i.e. 
$$\frac{D_{AB}}{\alpha_A} = \frac{kT}{h} \qquad \lambda_D^2 \exp\left(-\frac{\Delta G_{D,AB}}{RT}\right)$$
 (3-1.19)

Now combining equation (3-1.19) with equation (3-1.18) we have

$$\frac{\mathbf{D}_{AB} \ \mu_{AB}}{\boldsymbol{\alpha}_{A}} = \left(\frac{\lambda_{D}}{\lambda_{\mu}}\right)^{2} \left(\mathbf{D}_{A}^{*} \ \mu_{A}\right)^{\mathbf{X}A} \left(\mathbf{D}_{B}^{*} \ \mu_{B}\right)^{\mathbf{X}B}$$
$$\times \exp\left[\frac{\Delta G_{\mu,AB} - \Delta G_{D,AB}}{RT}\right] \qquad (3-1.20)$$

in which  $\lambda_D$  and  $\lambda_\mu$  are the distances between the successive equilibrium positions in the diffusional and viscous processes respectively. It will be assumed that  $\lambda_D$  and  $\lambda_\mu$  are approximately equal and therefore equation (3-1.20) simplifies to

$$\frac{D_{AB}\mu_{AB}}{\alpha_{A}} = \left(D^{*}_{A}\mu_{A}\right)^{*A} \left(D^{*}_{B}\mu_{B}\right)^{*B} \exp\left[\frac{\Delta G_{\mu,A\bar{B}}\Delta G_{D,AB}}{RT}\right]$$
(3-1.21)

Evaluation of  $\left[\Delta G_{\mu,AB} - \Delta G_{D,AB}\right]$ 

The exponential term in equation (3-1.21) was already present in the original correlation of Leffler and Cullinan (111) , but they dropped it on account of that, for non associated mixtures, it is almost constant. Gainer and Metzner (60), on the other hand, made an attempt to evaluate this quantity , in doing so they assumed that their correlation would be used for dilute solution only. In this work an attempt has been made to modify Leffler and Cullinan's (111) and Gainer and Metzner's (60) results so that the resulting correlation will be suitable for the prediction of the diffusion coefficient for associated binary mixtures of any concentration.

In the evaluation of the term,  $\left[ \Delta G_{\mu,AB} - \Delta G_{D,AB} \right]$  most of the assumptions of the previous workers (60, 111, 144) will be taken to be correct. Thus the free energy of activation for viscous flow consists of a part required to form a "hole" and another part for "jumping" stage so that for a binary mixture we have

$$\Delta G_{\mu,AB} = \Delta G^{h}_{\mu,AB} + \Delta G^{j}_{\mu,AB} \qquad (3-1.22)$$

A similar relationship may be written for the free energy of activation for the diffusive process

i.e. 
$$\Delta G_{D,AB}' = \Delta G_{D,AB}^{n} + \Delta G_{D,AB}^{j}$$
 (3-1.23)

Gainer and Metzner (60) and Leffler and Cullinan (111) assume that for the viscous process the hole making and jumping stage need the same amount of energy. Therefore

$$\Delta G^{h}_{\mu,AB} = \Delta G^{j}_{\mu,AB} = \frac{1}{2} \Delta G_{\mu,AB} \qquad (3-1.24)$$

The same authors assume that the hole making process requires the same amount of energy whether the flow is viscous or diffusive. Therefore

$$\Delta G^{n}_{\mu,AB} = \Delta G^{n}_{D,AB} = \frac{1}{2} \Delta G_{\mu,AB} \qquad (3-1.25)$$

It may be deduced from equations (3-1.24) and (3-1.25) that

$$\Delta G_{\mu,AB} - \Delta G_{D,AB} = \frac{1}{2} \Delta G_{\mu,AB} - \Delta G_{D,AB}$$
(3-1.26)

It remains now to establish the method of computation for the quantities  $\triangle G_{\mu,AB}$  and  $\triangle G_{D,AB}^{j}$  in order to use equation (3-1.21).

Free energy of activation for the viscous flow,  $\Delta G_{\mu,AB}$ 

Glasstone et al (69) recommended the following relationship for the calculation of the free energy of activation for viscous flow

i.e.  $\Delta G_{\mu,AB} = x_A \Delta G_{\mu,A} + x_B \Delta G_{\mu,B}^+ \Delta G_m$ (3-1.27)

in which  $\triangle G_{\mu,A}$ ,  $\triangle G_{\mu,B}$  are free energies of activation for pure components A and B respectively.  $\triangle G_m$  is the excess free energy of mixing. Glasstone et al (69) reported the following relationshipsbetween the free energy of activation for viscous flow and the latent heats of vaporisation of the pure components.

i.e. 
$$\Delta G_{\mu,A} = \frac{\Delta E_A}{2.45} = \frac{\Delta \bar{H}_A^{-RT}}{2.45}$$
 (3-1.28)  
and  $\Delta G_{\mu,B} = \frac{\Delta E_B}{2.45} = \frac{\Delta \bar{H}_B^{-RT}}{2.45}$  (3.1.29)

Dumas et al (46) recommended the following equation for the calculation of the excess free energy of activation for mixing

i.e. 
$$\Delta G_{m} = RT \left[ \ln \mu_{AB} - \left( x_{A} \ln \mu_{A} + x_{B} \ln \mu_{B} \right) \right]$$
  
(3-1.30)

The last three equations (3-1.28), (3-1.29) and (3-1.30) are sufficient to calculate the  $\Delta G_{\mu,AB}$  term in equation (3-1.27).

Free energy of activation of  $\triangle G_{D,AB}^{J}$ 

The method for estimating  $\triangle G^{j}_{D,AB}$  used by Gainer and Metzner (60) gave good results when tested by them on dilute solutions  $\,$  , but when tested on concentrated solutions of ethanol and water by this author the agreement was unsatisfactory. Therefore, a different approach is used in this work for estimation of  $\triangle G^{j}_{D,AB}$ . In agreement with Gainer and Metzner (60) it is assumed that the free energy of activation for the jumping stage in the diffusive process may be split into the jumping stage in breaking the hydrogen bonding and the jumping stage in resisting the dispersion forces. The dispersion forces are assumed to be the dominant component of the intermolecular forces. Thus the other intermolecular forces are ignored in this derivation as insignificant. Therefore

$$\Delta G_{D,AB}^{j} = \Delta G_{D,AB-H}^{j} + \Delta G_{D,AB-I}^{j}$$
(3-1.31)

The activation energy for the jumping stage will be found from the activation energies of the pure components using the simple mixing rule recommended by Glasstone et al (69). Therefore

$$\begin{bmatrix} \sqrt{A} & G_{D,AB-H} \end{bmatrix} \propto \begin{bmatrix} x_A & \sqrt{A} & G_{D,A-H}^j \\ x_A & \sqrt{A} & G_{D,A-H}^j \end{bmatrix} + x_B \sqrt{A} & G_{D^*,B-H}^j \end{bmatrix} (3-1.32)$$
$$\begin{bmatrix} \sqrt{A} & \sqrt{A} & \sqrt{A} & \sqrt{A} & G_{D^*A-H}^j \\ x_A & \sqrt{A} & \sqrt{A} & \frac{1}{A} &$$

According to Gainer and Metzner (60) the potential energy between molecules for hydrogen bonding varies inversely as the first power of the intermolecular distance. Therefore equation (3-1.32) may be written as follows

$$\sqrt{\Delta G_{D,AB-H}^{j}} = x_A \sqrt{\delta_A \Delta G_{D^*,A-H}^{j}} + x_B \sqrt{\delta_B \Delta G_{D^*,B-H}^{j}}$$

(3-1.34)

In this equation (3-1.34)  $S_A$  and  $S_B$  are the intermolecular distances defined by the following equations

$$\delta_{A} = \frac{2 \ \mathcal{H}_{A}}{\mathcal{H}_{A} + \mathcal{H}_{B}}$$
(3-1.35)  
$$\delta_{B} = \frac{2 \ \mathcal{H}_{B}}{\mathcal{H}_{A} + \mathcal{H}_{B}}$$
(3-1.36)

$$\mathcal{H}_{A} = \left(\frac{\bar{V}_{A}}{N}\right)^{\frac{1}{3}} \text{ and } \mathcal{H}_{B} = \left(\frac{\bar{V}_{B}}{N}\right)^{\frac{1}{3}}$$
 (3-1.37)

According to Gainer and Metzner (60) the dispersion forces are inversely proportional to the twelfth power of the intermolecular distance. This exponent gives a correlation which does not agree with the experimental results for ethanol-water mixtures (24, 45, 76). After lengthy trial and error calculation it has been found empirically that the exponent should be "two". Therefore the equation for  $\Delta G_{D,AB-I}^{j}$  takes the form

$$\sqrt[]{\Delta G_{D,AB-I}^{j}} = \frac{x_{A}}{\sqrt{\left(\frac{1}{\delta_{A}}\right)^{2} G_{D^{*}-I}^{j}}} + \frac{x_{B}}{\sqrt{\left(\frac{1}{\delta_{B}}\right)^{2} G_{D,*B-I}^{j}}}$$

(3-1.38)

57

Computation of 
$$\triangle G_{D^*, X-H}^{j}$$
 and  $\triangle G_{D^*, X-H}^{j}$ 

By analogy to equation (3-1.31) we can write, for the pure

component X

$$\Delta G_{D^*,X}^{j} = \Delta G_{D^*,X-H}^{j} + \Delta G_{D^*,X-I}^{j}$$
(3-1.39)  
$$\Delta G_{\mu,X}^{j} = \Delta G_{\mu,X-H}^{j} + \Delta G_{\mu,X-I}^{j}$$
(3.1.39a)

Rewriting equation (3-1.24) for a single component and combining it with equation (3-1.39a) results in the following relationship

$$\Delta G^{j}_{\mu,X} = \Delta G^{j}_{\mu,X-H} + \Delta G^{j}_{\mu,X-I} = \frac{1}{2} \Delta G_{\mu,X}$$
(3-1.40)

Glasstone et al (69), Gainer and Metzner (60) and Olander (144) establish that the free energy of activation of the jumping stage in a single component liquid is the same for the diffusional process as for the viscous process. Therefore

$$\Delta G_{D^*,X}^{j} = \Delta G_{\mu,X}^{j} = \frac{1}{2} \Delta G_{\mu,X}^{(3-1.41)}$$

An assumption is made here, that, in a single component liquid, the hydrogen bond contribution to the free energy of activation is the same for the diffusional process as for the viscous process:

i.e. 
$$\triangle G^{J}_{D^{*},X-H} = \triangle G^{J}_{\mu,X-H} = \frac{1}{2} \triangle G^{(3-1.42)}_{\mu,X-H}$$

 $\Delta G_{\mu,X-H}$  is the hydrogen bond contribution to the free energy of activation for viscosity and the computation of it was suggested by Olander (144) in the following relationship

$$\frac{\Delta G_{\mu, X-H}}{\Delta G_{\mu, X}} = \frac{\Delta \tilde{H}_{X-H}}{\Delta \tilde{H}_{X}}$$
(3-1.43)

In this equation (3-1.43)  $\triangle G_{\mu,X}$  is the total free energy of activation of viscosity for a single component liquid X and  $\triangle \overline{H}_{X-H}$  is the difference between the heat of vaporisation of the pure liquid X and the heat of vaporisation of its homomorph. This difference is found by the method recommended by Bondi and Simkin (18). The above equations (3-1.42), (3-1.41) and (3-1.39) make it possible to calculate  $\triangle G_{DX-H}^{i}$ , (3-1.41) and (3-1.39) make it possible to calculate  $\triangle G_{DX-H}^{i}$ , (3-1.41) and (3-1.39) make it possible to calculate  $\triangle G_{DX-H}^{i}$ , (3-1.41) and (3-1.39) make it possible to calculate  $\triangle G_{DX-H}^{i}$ , (3-1.41) and (3-1.39) make it possible to calculate  $\triangle G_{DX-H}^{i}$ , (3-1.41), (3-1.38) and (3-1.31)  $\triangle G_{D,AB}^{i}$  is finally calculated.

# Correction factor to $\triangle G_{D,AB}^{J}$

In the calculation of the free energy of activation for the jumping stage in the diffusive flow,  $\triangle G_{D,AB}^{j}$ , only the dispersion forces are taken into account. The other intermolecular forces such as electrostatic, induction and resonance forces are relatively small, as indicated by To account for these Hirschfelder et al (87), but they are not negligible. forces in the correlation analytically is not possible, on the account of the complexity of the problem. Gainer and Metzner (60), in their paper limited to dilute solution, used the argument that the number of A-B bonds broken during the diffusional process is probably not the same as the number of B-B bondsbroken in the viscous process. They suggested that this assumption calls for a correction factor consisting of a ratio of the number of nearest neighbours in the pure A,  $\epsilon_A$ , to the number of nearest neighbour in the pure B,  $\xi_{B}$ . They were satisfied that this correction factor i.e.  $(\xi_A^{\prime}, \xi_B)$  correlated their data for dilute

solutions. In this work, however, there was no agreement between the correlation and the experimental data for the full range of concentration of binary mixture.

It was decided, in this work, to obtain a bond breaking factor,  $f_{AB}$ , which is made up of the bond breaking factors for the pure components. It is suggested that  $f_{AB}$  is related to the pure component factors  $f_A$  and  $f_B$  by the type of relationship recommended by Cullinan (36). i.e.  $f_{AB} = (f_A^{X_A} \cdot f_B^{X_B})$  (3-1.44) The bond breaking factor  $f_{AB}$  is used as a multiplier to the free energy of activation for the jumping stage in the diffusive flow  $\Delta G_{D,AB}^{j}$ . The individual bond breaking factors  $f_A$  and  $f_B$  are obtained as follows. For the factor  $f_A$  equation (3-1.21) is rewritten for an infinite dilution of component B and the correction factor  $f_A$  included. The modified equation (3-1.21) is combined with equation (3-1.26) to obtain

$$D^{o}_{BA} = D^{*}_{A} \exp \left[ \frac{\frac{1}{2} \Delta G_{\mu,A} - f_{A} \Delta G_{D}^{j}}{RT} \right] \qquad (3-1.45a)$$

This equation (3-1.45) rearranged gives

$$f_{A} = \frac{1}{\Delta G^{j}_{D} O^{o}, BA} \begin{bmatrix} \frac{1}{2} \Delta G_{\mu, A} - RT \ln \left( \frac{D^{o}_{BA}}{D^{*}_{A}} \right) \end{bmatrix}$$
(3-1.46a)

in which

$$\Delta G_{D^{o},BA}^{j} = S_{A} \Delta G_{D^{*},A-H}^{j} + \left(\frac{1}{S_{A}}\right)^{2} \Delta G_{D^{*},A-I}^{j}$$

(3.1.47a)

Equation (3-1.47a) is obtained by combining equations (3-1.34), (3-1.38) with equation (3-1.31).

In a similar way we get

$$D^{O}_{AB} = D^{*}_{B} \exp \left[ \frac{\frac{1}{2} \Delta G_{\mu,B} - f_{B} \Delta G_{D}^{O}_{,AB}}{RT} \right] (3-1.45b)$$

from which

$$\mathbf{f}_{B} = \frac{1}{\Delta G_{D}^{\mathbf{j}} \mathbf{o}_{,AB}} \begin{bmatrix} \frac{1}{2} \Delta G_{\mu,B} - RT & \ln \left( \frac{D_{AB}^{\mathbf{o}}}{\frac{D^{*}}{B}} \right) & (3+1.46b) \end{bmatrix}$$

where

$$\Delta G_{D}^{j} \circ_{,AB} = \mathcal{S}_{B} \Delta G_{D^{*},B-H}^{j} + \left(\frac{1}{\mathcal{S}_{B}}\right)^{2} \Delta G_{D^{*},B-I}^{j}$$
(3-1.47b)

Thus equation (3-1.26) with the bond breaking factor  $f_{AB}$  included takes the form

$$\Delta G_{\mu,AB} - \Delta G_{D,AB} = \frac{1}{2} \Delta G_{\mu,AB} - f_{AB} \Delta G_{D,AB}^{J}$$
(3-1.26a)

#### Concluding remarks

It may be seen from this derivation that, in order to use equation (3-1.21) for the prediction of the diffusion coefficient of a binary mixture the following physical properties are required : self-diffusion coefficients of the pure components, mutual diffusion coefficients at infinite dilution. molal volumes, latent heat of vaporisation of pure components, the hydrogen bond contribution to the latent heat of vaporisation, viscosity of the pure components and of mixtures of them, and the isothermal vapourliquid equilibrium data. Before equation (3-1.21) is used all the information required in it is obtained from equations (3-1,28), (3.1.29), (3-1.30), (3-1.27), (3-1.41), (3-1.43), (3-1.42), (3-1.39), (3-1.37),(3-1.35), (3-1.36), (3-1.34), (3-1.38), (3-1.31), (3-1.47a), (3-1.47b),(3-1.46a), (3-1.46b), (3-1.44) and (3-1.26a) which are listed in the order in which they are required for computation. An example of using equation (3-1.21) is given in Appendix (7-3.1).

The comparison of the values of diffusion coefficients predicted by equation (3-1.21), and by the equations of Vignes (210) and Leffler and section 7-3.1 under the heading "Discussion".

## 3-2.1 Diffusion coefficients at infinite dilution

Inspection of the Stokes-Einstein relationship and of the equations based on it i.e.  $\frac{D_{AB}^{0} \mu_{B}}{T} = \frac{1}{6 \pi \mathcal{H}_{A}} \qquad (2-3.2)$  $\frac{D_{AB}^{0} \mu_{B}}{T} = 7.4 \times 10^{-8} \left( \frac{X_{B} M_{B}}{V_{A}^{0.6}} \right)^{\frac{1}{2}} \qquad (2-3.16)$  $D_{AB}^{0} = 5.4 \times 10^{-8} \left[ \frac{M_{B}^{\frac{1}{2}} \Delta L_{B}^{\frac{1}{3}}}{\mu_{B} V_{A}^{0.5} \Delta L_{A}^{0.3}} \right]^{0.93} \qquad (2-3.27)$  $\frac{D_{AB}^{0} \mu_{B}}{T} = 4.4 \times 10^{-8} \left[ \frac{V_{B}}{V_{A}} \right]^{\frac{1}{6}} \left[ \frac{\Delta H_{B}}{\Delta H_{A}} \right]^{\frac{1}{2}} \qquad (2-3.29)$ 

leads to the following conclusions:

(1) The Stokes-Einstein equation itself agrees well with experimental data obtained with liquid phase systems answering the description of the physical model assumed in the derivation of (2-3.2). The size of the solute molecules is an important variable in (2-3.2) and the solvent is treated as a continuum.

(2) For most of the binary systems the size of the solute and solvent molecules is of the same order of magnitude. Thus any attempt to adapt the Stokes-Einstein equation would make it necessary to introduce the size of the solvent molecules as an additional variable. This could take the form of such ratios as  $(\frac{\pi_A^e}{\pi_B^g})$  or  $(V_A^s/V_B^q)$ .

(3) An association factor, which is different for every polar solvent and almost certainly temperature dependent, was introduced in eq (2-3.16). In equation (2-3.27) and (2-3.29) a ratio of the latent heats of

vaporisation was introduced in the belief that it would account for the association phenomenon.

· 62

Unfortunately these equations do not show any marked improvement over eq. (2-3.16) as demonstrated in Table 3-2.1.

Ibrahim and Kuloor (94) and Olson and Walton (146) indicated that a relationship exists between the property of surface tension and the intermolecular forces. It is suggested that the relationship between surface tension and diffusion coefficient be examined. Surface tension reflects the strength of the intermolecular forces, probably better than the latent heats of vaporisation, if it is considered as a component of a A parachor is a secondary derived function dependent on parachor. the primary properties of surface tension, density and molecular weight (161). It can be regarded as a sum of constants characteristic of the individual atoms or groups within the molecule (87). According to Sugden (188) a parachor is in some degree a measure of the effect of the forces due to molecular attraction on the molecular volumes. There are a number of quantitative definitions of the parachor which reflect the above features. Thus in Hirschfelder et al (87) it is defined as

 $[P] = 7.1 \times 10^{23} \quad \epsilon^{\frac{1}{4}} \quad \delta^{5/2} \qquad (3-2.1)$ Quayle (161) also defines parachors as molecular volumes at corresponding states of the same value of surface tension and suggests the following definition:

(3-2.2)

 $[\mathbf{P}] = \mathbf{6}^{\frac{1}{4}} \mathbf{\overline{V}}$ 

According to Hirschfelder et al (87) the parachor for any given substance remains nearly independent of temperature over a wide temperature range. The last property makes it possible to use the parachor in conjunction with the group  $(D_{AB}^{\circ} \mu_{B}^{\prime}/T)$ . Thus it is obvious that parachors are more dependent on molecular structures and sizes than the latent heats of vaporisation and would be expected to be more sensitive indicators of the intermolecular forces, particularly with polar

compounds. It is therefore suggested that the correlating equation

should assume the form:

$$\frac{\mathbf{D}_{AB}\boldsymbol{\mu}^{\mathbf{H}B}}{\mathbf{T}} = \mathbf{K} \quad \frac{\mathbf{V}_{A}^{\mathbf{S}}}{\mathbf{V}_{B}^{\mathbf{q}}} \quad \left[ \begin{array}{c} \mathbf{P}_{B} \\ \mathbf{P}_{B} \end{array} \right]^{\mathbf{m}} \tag{3-2.3}$$

This equation was tested with a large variety of literature experimental data in order to evaluate the constant K and the exponents s, q and m. The optimisation routine NELM (140) and an ICL 1904A computer were used. With a total of 883 data points at infinite dilution and 113 data points for self-diffusion (see Appendice 3-2.1 and 3-2.2) the constants were established, giving the following correlation:

$$\frac{D_{AB} \mu_{B}}{T} = 8.93 \times 10^{-8} \frac{V_{A}}{V_{B}^{1_{3}}} \left[ \frac{P_{B}}{P_{A}} \right]^{0.6} (3-2.4)$$

The constant of the equation has dimensions and therefore the set of units defined in the nomenclature should be used with eq. (3-2.4).

Table 3-2.1 gives a summary of the binary systems used to establish the constant and the exponents in eq. (3-2.4). The parachors required in eq. (3-2.4) were obtained either from Quayle (161) or were calculated by the Sugden (188) additive method. Also the deviations of the diffusivities predicted by equations (2-3.16), (2-3.27), (2-3.29) and (3-2.4) from the experimental values are reported. A comparison of the values predicted by eq. (3-2.4) with the experimental values is made in Fig. (3-2.1). It follows from Table 3-2.1 that eq. (3-2.4) compares favourably with equations (2-3.16), (2-3.27) and (2-3.29).



 $D_{AB}^{*} \times 10^{5} \text{cm}^{2}/\text{sec}$  (experimental)

Figure 3-2.1 Comparison of experimental diffusion coefficients with the coefficients predicted by eq.(3-2.4)

Table 3-2.1 Comparison of correlations for estimating diffusion coefficients

at infinite dilution,  $D_{AB}^{\circ} \times 10^5 \text{ cm}^2/\text{sec}$ 

No.	Solvent	Temp. range	Number of	Number of	% Erro	$r^*$ in $D_{AB}^{\circ}$	estimated	l by
		(°C)	svstems	data	This work	₩-C [†]	King	Sitar.
			~,	points	eg.(3_2.4)	ea(2-3.16)	ea(2-3.29)	en(2-397)
			· 华卒	*¥	1(0-2-1)	- 1(~ 0.10)	-1(-0.20)	-1(- 52)
1	Water	0-70	91 (75)	287(253)	13.1	10.3	19.4	12.9
2	Methanol	5-55	90(79)	104 ( 93)	14.0	17.2	13.1	13.3
3	Ethanol	7-65	27(26)	43(42)	18.1	25.8	18.5	16.7
4	n-Propanol	15-30	10	11	12.2	32.9	24.8	22.6
5	i-Propanol	30	,5	5.	5.3	24.6	36.7	29.9
6	n-Butanol	25-45	11(9)	13(11)	11.2	21.7	14.8	15.5
7	i-Butanol	20-30	· 7 ·	8	19.1	33.7	19.0	19.0
- 8 -	n-Pentanol	25	3	3	11.7	48.6	48.0	51.5
9	Heptanol	25	<b>3</b>	2	12.3	41.5	44.5	51.1
	1SO-AMYI ALCONOL	19	25	76	) <u>)</u> .0	11 5	40.0	47.6
12	n-Hentane	7-100	4) 7	22 32	フ•ノ フ フ	10 7	17.2	22 2
12	n-nep tane	0-100	5	21,	1•1 1.h	11.5	15.2	16.8
1	n-Decane	20-25	2	3	12.9	14.0	12.2	20_8
15	n-Dodecane	25	5	5	16.5	14.5	11.6	19.7
16	n-Tetradecane	25	2	2	25.3	18.4	9.1	23.1
17	n-Hexadecane	25	4	4	27.2	22.1	17.4	26.6
18	Benzene	5-85	59(53)	110(108)	10.1	12.2	10.8	17.8
19	Toluene	6-110	23	50	8.9	17.1	10.0	17.5
20	Cyclohexane	7-100	7	28	11.6	10.5	12.1	16.1
21	Acotome	10-50	5	10	10.0	15.5	12.0	
22	Nothylethylketone	25	1	• 1	13.5	15.9	26.0	11, 3
21	Methylisobutylketone	25	-	1	23.5	39.3	LU.9	29.6
25	Cvclohexanone	25-90	2	4	9.7	15.6	5.2	17.9
26	Carbontetrachloride	6-60	48	78	10.1	32.5	10.7	14.1
27	Chloroform	10-40	11	15	9.6	27.8	9.7	11.3
28	Bromoform	20-25	4	. 4	11.4	66.3	16.5	15.4
29	Methylene chloride	7.5	1	<b>1</b>	13.0	58.4	26.9	47.6
20 74	Ethylene chloride	j (•) ⊑∩		1	1.0	22.Z	1.9	20.1
וכ גי	Chlorohonzene	10-10	3	7	83	11	101	10.8
J2 33	Brouobenzene	7-40		8	10.0	21.2	2.2	10.7
34	Ethylbenzene	7.3	1	1	1.1	8.0	10.5	6.7
35	Nitrobenzene	17-20	. 4	- 44	9.4	12.3	4.1	7.2
36	Ethylbenzoate	15-20	4	4	17.5	9.0	9.5	16.8
37	m-Xylene	7-25	2	3	18.7	44.9	20.7	43.9
<u>38</u>	Methyl acetate	30	1	1	14.6	14.9	17.8	6.9
29	LTNYL ACETATE	20-30	Ŭ A	<b>7</b>	14.9	24.2 21 E	. 10•4 31 ∩	10.4 2 E
+∪ .1	LOO-FFUDYL acetate	20-30			11.6	31.7	22-1	13.7
2	Ethyl ether	7-25	5	Ğ	29.5	30.0	25.0	17.1
+3	Aniline	20-60	5	7	27.5	25.0	21.2	23.2
$\mu_{+}$	Mesitylene	7.3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	6.5	17.5	21.9	15.4
+5	Tetralin	7	2 <b>2</b>	2	10.9	20.7	24.2	29.4
+6	Transdecalin	7-25	3	3	12.6	.11.4	9.0	12.9
+7	Dioxane	25	2	2	2.6	13.4	9.0	24.2
β4	m-Uymene	1.3	1		22.9	17.9 z o	. 11 ₀4 · z ).	74.1
+7 50	ACETIC COLO	20	4	4	J2•4 11.0	16.6	12.3	22.3
ľ	UTTOATC	20			• • • • • • • • • • • • • • • • • • •			

### Table 3-2.1 (continued)

No.	Solvent	Temp. range	Number of	Number of	% Err	ror in $D_{AB}^{o}$ estimated t			
		(°c)	systems **	data points **	This work <b>eq</b> (3-2.4)	₩ <u>−</u> C † eq(2-3.16)	King <b>eq</b> (2-3 <b>.</b> 29)	Sitar. eq(2-3:27)	
51 52 53 54 55	Methylnaphthalene Carbon disulphide Ethyleneglycol Diethyleneglycol Propyleneglycol	7•5 16-19 25-40 25-40 25-50	1 2 2 2 2	1 2 7 6 7	11.8 6.2 12.2 5.6 13.7	2.6 15.9 8.7 9.7 10.3	2.2 20.4 19.5 13.3 23.3	9.8 21.1 20.8 18.7 24.1	
0ve	rall absolute average	% error	الما وي الله عنه الله عنه الله الله		12.0	16.5	15.2	15.9	
Per	centage of data point	within -	95.1%	83.2%	87.8%	87.2%			

67

The total number of data points = 996(946) and

the total number of systems = 535(499).

% Error = ( Calculated - Experimental ) × 100 / Experimental

The Wilke and Chang association parameter  $x_B$  was assumed to be 2.6 for water, 1.9 for methanol and 1.5 for other alcohols. All the other solvents were allocated unity as the association parameter. Water was treated as a tetramer in eq.(2-3.46) when diffusing in organic solvents. The quantities in the brackets indicate the data points and the systems used

with eqs. (2-3.29) and (2-3.27).

#### 3-2.2 Limitations of equation (3-2.4)

#### Highly viscous solvents

All the equations tested (Table 3-2.1) underpredict the diffusion coefficients in highly viscous solvents, such as glycerol, chrysene, hendecane and others of similarly high viscosity. The predicted coefficients were up to 80% below the experimental ones. Thus equation (3-2.4) is not recommended for this type of binary system. Of the solvents in Table 3-2.1 propyleneglycol has the highest viscosity of 43 centipoises at  $25^{\circ}$ C. The upper limit of solvent viscosity for which eq. (3-2.4) may be used is probably higher if a larger deviation than 13.7% in the predicted coefficient can be tolerated.

#### Diffusion of water in organic solvents

Equation (3-2.4) predicts coefficients within  $\stackrel{+}{-}$  10% accuracy limits for these systems provided that water molecules are treated as dimers, i.e. a double molal volume (2V_A) and double parachor (2[P_A]) is used in eq. (3-2.4).

#### Acids diffusing in organic solvents

The best results were obtained if the acid solutes, such as acetic acid, formic acid, benzoic acid and similar acids were treated as dimers (123, 117) when diffusing in such solvents as benzene, toluene, carbontetrachloride, acetone, ethanol and others. But an exception should be made for acids diffusing in water, methanol and butanol, when the acids should be treated as monomers (123).

#### Diffusion of inert solutes in monohydroxy solvents

For the diffusion of such inert solutes as benzene and carbontetrachloride in monohydroxy alcohols all the equations predict

coefficients about 45% lower than the experimental ones. This is

ascribed to the association of the solvent molecules. For these systems an empirical formula was devised (see Fig. 3-2.2) for the estimation of the association factor

$$n = 8 \mu_B$$
 (3-2.5)

where the viscosity of the solvent is in centipoises. The factor n is used in eq. (3-2.4) as a multiplier to the molal volume and to the parachor of the solvent. The application of this association factor reduced the prediction error from 45% to 10% for the appropriate systems in Table 3-2.1.

With these limitations eq. (3-2.4) predicts diffusion coefficients at infinite dilution and self-diffusion coefficients which are slightly more accurate than those predicted by equations (2-3.16), (2-3.27) and (2-3.29). This is demonstrated in Table 3-2.1. Moreover Fig. (3-2.1) shows that 95.1% of the data points fall within the  $\frac{+}{-}$  30% accuracy lines. The corresponding percentages for the other equations are : 83.2% for the Wilke and Chang eq(2-3.16), 87.2% for the Sitaraman et al eq. (2-3.27) and 87.8% for the King et al eq. (2-3.29).

Equation (3-2.4) besides giving more accurate predictions, is also more convenient to use on account of the ease of estimating the parachors. These can be obtained by means of such relationships as those given by equation (3-2.2) or by the addition of the parachors of the individual atoms and groups of a given compound (188).

It is sometimes not possible to use equations (2-3.27) and (2-3.29)for the prediction of diffusion coefficients because some solutes do not form a liquid phase and therefore their latent heat of vaporisation cannot be defined uniquely. This difficulty does not arise with eq. (3-2.4)as it employs parachors instead which can be defined uniquely. Out of the total of 996 data points in Table 3-2.1, 113 represent self-diffusion coefficients. The values predicted by eq. (3-2.4) are more accurate because the molal volumes of the solute and the solvent are fitted with different exponents.



Fig. 3-2.2

Correlation of viscosity of monohydroxy alcohol solvents with association factor, n, for eq.(3-2.4).

1	nert solutes:	· · · ·	
0	Benzene	$\nabla$	J
x	Toluene	8	]
•	Carbontetrachl	oride 🔳	1
Λ	Binhenvl	<b>.</b>	1

- p-dichlorobenzene
- Ethyl bromide
- Ethyl iodide
  - Bromobenzene

# 3-3 Self-diffusion coefficients

# 3-3.1 An additive method for estimating self-diffusion coefficient

71

By analogy to the concept of parachor and rheochor an additive method of estimating self-diffusion coefficient is developed below. As a starting point the Dullien (44) equation for self-diffusion coefficient determination is used:

i.e. 
$$\underline{D^* \mu \bar{V}}_{T} = \left(\frac{R}{2}\right) \mathcal{S}^2$$
 (3-3.1)  
in which  $\mathcal{S} = \left(\frac{0.6}{N^{\frac{1}{3}}}\right) (\bar{V})^{\frac{1}{3}}$  (3-3.2)

where D* is the self-diffusion coefficient in cm²/sec,  $\mu$  the viscosity in poises,  $\bar{V}$  molal volume in cm³/gmole, T the absolute temperature in⁰K and S the mean distance of momentum transfer in cm. Combining equations (3-3.1) and (3-3.2) gives

$$\frac{D^{*}\mu \, \vec{V}}{T} = K \, (\vec{V})^{\frac{2}{3}} \qquad (3-3.3)$$

where K = 0.18R $N^{\frac{1}{3}}$ 

or

The viscosity term in equation (3-3.3) will be replaced by the rheochor [Rh], defined by Friend (58) as  $\mu^{4}$   $\vec{v}$ .

With this substitution equation (3-3.3) can be rearranged as follows:-

$$\left(\frac{T}{D^*}\right)^{\frac{3}{23}} \vec{\nabla} = \frac{\left[\frac{Rh}{M}\right]^{\frac{2}{23}}}{K^{\frac{3}{23}}} = [M]$$

$$\left(\frac{T}{D^*}\right)^{0.13} \quad \vec{\nabla} = [M]$$

$$(3-3.4)$$

Where [M] is approximately constant for an individual liquid for temperatures ranging from above the melting point to below the normal boiling point. To prove experimentally that the value of [M] is constant 46 pure liquids, for which the experimental self-diffusion coefficients and  $\Im$  molal volumes are known, were used. An example of these calculations given in Table 3-3.1 for pure methane and pure benzene and it can be seen that the variation in the value of [M] with temperature is very low. Methane and benzene were chosen for this illustration as their experimental self-diffusion coefficients and molal volumes are regarded as most reliable (43, 50). The list of pure compounds in the liquid phase which were used in proving that the value of [M] is approximately constant is given in Table 3-3.3.

By analogy with the procedure adopted by Sugden (188) the value of the constant [M] is compared with the critical molal volume i.e.  $[M] = \emptyset \quad V_c$  (3-3.5) By reference to Table 3-3.3 it is obvious that  $\phi$  is approximately constant for the various groups of chemical compounds in the liquid phase. But the average value for each group of chemical species differ slightly. The average value of  $\phi$  for paraffins is fairly well established because it is based on a large number of hydrocarbon compounds. The other groups of chemical compounds are not so well represented.

The close relationship between the critical molal volume and the constant [M] and also the constancy of the value of [M] for such isomerics as  $C_5 H_{12}$  and  $C_6 H_{14}$  (Table 3-3.3) suggest that the constant [M] is a constitutive property in a similar way as the parachor and the rheochor. On this assumption trial and error calculations were performed to obtain the "bond contribution" and "structural contribution" components to the value of [M] . For these trial and error calculations the values of [M] from equation (3-3.4), obtained by using experimental molal volumes and

Table 3-3.1Values of [M]for liquid methane and benzene obtained fromequation (3-3.4)

								D*. calcul	lated
Liquid	Т	D* x 10		(exper	.)	[M]	%deviation*		@
	o _K	(exper.)	Incf	3/2001			from [hr]	27	<i>a</i>
		cm ⁻ /sec.	ref.	cm /gmole	rei.	eq. (3-3.4)	irom [M] avg.	cm /sec.	%erro
		•							
Methane	90.7	2.60	43	35.24	43	55.93	0.2	2.57	-1.0
	95.2	3.05	43	35.74	43	55.90	0.1	3.01	-1.4
	100.0	3.70	43	36.29	43	55.71	0.0	3.55	-3.9
	106.1	4.45	43	37.06	43	55.96	0.2	4.43	-0.4
	110.5	5.45	43	37.65	43	55.68	-0.3	5.21	-4.4
	111.1	5.23	48	37.74	43	56.14	0.5	5.32	1.8
	Avoro		ן ד (הא	ไร่อมีพไ	·	55 94	0.22		
	AVEIA	ige value u	ι ν. Τωί	, 1. C. (141)		55.64	0.22		4.4
				avg.					
Benzene	283.2	1.65	150	87.81	196	171.41	+1.3	1.84	11.4
	288.2	1.87	43	88.34	43	170.05	+0.5	1.96	4.8
	288.2	1.88	129	88.34	43	169.93	+0.4	1.96	4.3
	298.2	2.22	43	89.40	43	169.05	-0.1	2.22	0.0
	298.2	2.15	129	89.40	43	169.75	+0.3	2.22	3.3
	308.2	2.59	43	90.51	43	168.48	-0.4	2.53	-2.4
	308.2	2.40	129	90.51	43	170.15	+0.6	2.53	-5.4
	313.2	2.58	150	91.08	196	169.97	0.5	2.69	4.5
	318.2	3.01	31	91.66	43	168.00	-0.7	2.88	<b>-4.4</b>
	318.2	3.04	43	91.66	.43	167.78	-0.8	2.88	-5.3
	318.2	2.67	129	91.66	43	170.58	0.8	2.88	7.9
	328.2	3.50	43	92.87	43	167.58	-1.0	3.28	-6.2
	338.2	4.03	43	94.12	43	167.41	-1.1	3.75	-7.0
	353.2	4.37	150	95.90	196	169.75	0.3	4.51	3.2
	373.2	6.15	43	98.50	43	167.97	-0.7	5.87	-4.6
	Avera	ge value o	fÍM	i.e. [M]		169.20	0,60		5.0
			- [-'-']	avg.					
ļ									

@ Calculated from eq. (3-3.4) by using the values of [M] from Table 3-3.2

$$\begin{bmatrix} \underline{[M]} & - & \underline{[M]} & \text{avg.} \end{bmatrix} \times 100$$

experimental self-diffusion coefficients, were used. The results are reported in Table 3-3.2. It is to be noted that only 46 species, the same as shown in Table 3-3.3, were used to obtain Table 3-3.2. The scarcity of experimental self-diffusion coefficients and molal volumes does not allow for a better accuracy in Table 3-3.2.

After Table 3-3.2 has been completed the values of bond contributions in it were used to predict the constant [M]. These calculated constants are compared with the experimental values of [M], i.e. calculated from equation (3-3.4), and the deviations from the experimental values are reported in column 10 of Table 3-3.3. For 90% of these compounds the deviations are within  $\frac{1}{2}$  3% accuracy limits.

The values of the constant [M] as determined from Table 3-3.2 were tested by predicting self-diffusion coefficients from equation (3-3.4) and comparing them with the experimental coefficients. Both the calculated and the experimental D* are reported in Appendix 3-3.1b, and the average percentage deviation for each compound is also given in Table 3-3.3. The average deviation for all the 42 tested liquids is  $\frac{+}{12\%}$ . The corresponding deviation for the Stokes-Einstein equation (2-2.2) based on 34 compounds is  $\frac{+}{-10\%}$ . The Dullien equation (2-2.26) has an accuracy of  $\pm 4\%$  for the liquids other than methanol and ethanol. It was possible to obtain this small deviation (43) by not taking into account the deviations for methanol and ethanol which are 43\% and 42\% respectively.

The method of calculating self-diffusion coefficients by means of the constant [M] gives quick results but is perhaps not as accurate as the Stokes-Einstein equation. This might be because there is not enough experimental data available from which more accurate values of the bond and structural contributions to the constant [M] could be calculated.

Table 3-3.2	Values of the bond and structural contributio	ns for	[M]	

Bond	Contribution
C-H (number of n of carbons in chain)	
n 🐇 7	14.0
$12 \geqslant n \geqslant 8$	14.5
n 🔪 12	17.5
C-C	7.0
C-C(in alcohols)	17.0
C=C	19.0
О-Н	33.0
O-H (in water)	17.0
<b>C-0</b>	9.5
<b>C</b> =0	28.0
C-Cl	48.5
C-Br	58.0
C-I	76.0
C-S (in carbondisulphide)	(53.0)*
N-H ( in ammonia)	(14.0)*
Rings: 5 membered 6 membered	-2.0 7.0

* The values given are obtained from a single compound

-											
			Temp.	No. of	References	Exper. [M]	V	Ø=	Calcula	ted [M]	% error in
	Liquids	Formulae	range for D*,	data	for D*	from		exper. [M]	from Ta	able(3-3.2)	estimated D*
			°K	points		eq. (3-3.4)	ref. (168)				using [M]
• • •				for D*				C	[М]	% dev.	from Table
						· · · · · · · · · · · · · · · · · · ·					(3-3.2)
	1	2	3	4	5	6	7	8	9	10	11
	Paraffins:									_	
•	Methane	CH ₄	90-111	5	43	55.8	99.5	0.56	56	0.3	2.2
	Ethane	C ₂ Ĥ ₆	103-183	5	150	86.8	148.0	0.59	91	4.9	27.7
	n-Pentane	$C_{5}H_{12}$	195-309	13	41,43,150	193.0	311.0	0.62	196	1.5	18.3
	Isopentane	$C_{5H_{12}}$	273-298	4	56,204	197.3	-	-	196	-0.6	9.1
	Neopentane	$C_{5}H_{12}$	298	1	43	210.6	303.0	0.69	196		
	2-Methyl	$C_5H_{12}$	298	1	43	198.1	308.0	0.64	196	-1.1	-5.5
	n-butane	0.11									
	n-Hexane	$C_{6}H_{14}$	233-353	10	43,150	231.0	368.0	0.63	231	0.0	6.0
	2-Methyl	$C_{6H_{14}}$ -	273-313	6	43,150	232.3	367.0	0.63	231	-0.6	4.6
•	pentane		and the second second								
	3-Methyl	C _c H ₁₄	273-313	5	43,150	231.9	367.0	0.63	231	0.4	2.0
	pentane	0 14			4 -	•					
	2,2-Dimethyl	C _c H ₁	298	1	43	239.0	359.0	0.67	231	-3.3	29.9
	butane	0 14			•						
	2,3-Dimethyl	C _H	273-313	6	43,150	233.9	358.0	0.65	231	-1.2	10.1
	butane	0 14									
	n-Heptane	$C_7H_{16}$	233-369	14	43,150	269.9	426.0	0.63	266	-1.4	10.0
	n-Octane	$C_8H_{18}$	273-393	18	43,150	310.5	486.0	0.64	310	-0.2	6.0
-	n-Nonane	C _o H ₂₀	273-373	11	43,150	349.8	543.0	0.64	346	-1.1	8.6
	n-Decane	C10H22	273-298	3	43,150	395.0	602.0	0.67	382	-3.3	45.4
	n-Dodecane	$C_{12}H_{26}^{22}$	298	1	-	446.9	718.0	0.62	454	1.6	-11.5
	n-Octadecane	C	323	1	43	785.1	1100.0	0.71	784	-0.1	1.1
	•	18 38	·					0.64			10.7
		I	I				L i				

Table 3-3.3Comparison of the estimated and experimental values of [M] and the deviation of the calculated D* from<br/>the experimental D*.

Liquids	Formulae	Temp. range for	No. of data	References for D*	Exper. [M] avg.		$\phi = \\ exper.[M]$	Calcula from I	ated[M] able (3-3.2)	% error
		D*, ⁰ K	points for D*		eq. (3-3.4)	rei. (168)	V _c	[M]	% dev.	using [N from Ta (3-3.2)
Cwalong raffing										
Cyclopentane	C-H10	273-313	3	56	173.6	260.0	0.67	173	-0.3	1.5
Cyclohexane Meth vlcvclo	$C_{6}^{5-10}$	293-353	5	43,150	217.8	308.0	0.71	217	-0.4	5.0
hexane	C ₇ H ₁₄	273-373	7	150	247.3	344.0	<u>0.72</u> 0.70	252	1.9	<u>15.3</u> 9.1
Aromatics: Benzene	с ₆ н ₆	283-373	15	31,43,129, 150	169.2	260.0	0.65	169	-0.1	5.0
Toluene	С ₇ Н ₈	283-373	6	150	199.8	316.0	$\frac{0.63}{0.64}$	204	2.1	$\frac{14.7}{7.8}$
Alcohols: Methyl		an An Anna Anna Anna An Anna Anna Anna A	•	· .						
alcohol Ethyl alcohol	СН ₃ ОН С ₂ Н ₅ ОН	278-298 280-338	10 13	43,96,150 43,72,96,	76.4	118.0	0.65	74	-1.8	13.7
n-Propyl				106	120.6	167.0	0.72	120	-0.5	21.1
alcohol Isopropyl	с ₃ н ₇ он	288-318	4	43,152	165.5	218.2	0.76	165	-0.3	12.7
alcohol n-Butyl	С ₃ н ₇ Он	288-318	4	43,152	168.5	220.4	0,76	165	-2.1	22.0
alcohol tert-Butyl	с ₄ н ₉ он	298-318	3	152	207.7	274.6	0.75	210	1.4	12.1
alcohol	с ₄ н ₉ он	308-328	3	152	214-6	274-5	$\frac{0.78}{0.74}$	210.0	-2.1	$\frac{25.0}{18.0}$
Organic halide	28:			• •				• .		
Methyl iodide	CH ₃ I	270-294	2	106	115.8	190	0.61	117.0	1.9	7.6
Ethyl bromide	$C_2H_5Br$	296-303	3	72	133.0	215.0	0.62	135.0	1.5	16.0
Ethyl iodide	C ₂ H ₅ I	293		43	152.3	300.0	0.51	153.0	-0.5	-3.6

Liquids	Formulae	Temp. range for D*. ⁰ K	No. of data points	References for D*	Exper. [M] avg. from	V c ref. (168)	$\phi = \underline{exper.[M]}$	Calculat from Ta	ted[M] 1ble(3-3.2)	% error in estimated D*
			for D*		eq. (3-3.4)		v _c	[M]	% dev.	from Table (3-3.2)
Organic halide	s contd.									
Butyl iodide	C ₄ H ₉ I	293	1	26	229.3	-	- '	223.0	-2.8	22.9
Chloroform	CĤCI ₃	200–298	3	43	150.2	240.0	0.63	159.0	6.2	29.9
Carbontetra-										
chloride	CC14	293-333	23	31,43,129,						
				150	195.4	276.0	0.71	194	-0.8	5.9
Chlorobenzene	C ₆ H ₅ Cl	298	1	147	198.7	308.0	0.65	204	2.7	-18.4
Bromobenzene	C ₆ H ₅ B r	298	1	43	217.0	324.0	$\frac{0.67}{0.65}$	213	-1.9	$\frac{15.6}{11.8}$
Ketones:										
Acetone	с ₃ н ₅ он	298-333	3	43,106	127.9	211.0	0.61	126	-1.5	12.4
Ethers:						۲.				
Di-ethylether	C'H' O	287-240	3	106	168.0	274.0	0.61	173	2.9	21.6
p-Dioxan	$C_{4}H_{0}O_{0}$	307	1	43	172.7	238.0	0.72	171	-1.0	7.8
1.1-Diethoxy-	402					-				
methane	C-H100	295-333	3	106	226.2	-	_	220	-2.7	23.9
1.2-Dimethoxy	- 512 Z		. •							
ethane	C_H_O	293	1	106	189.4		_	185	-2.3	19.2
	30		•				0.66			$\frac{1}{20.4}$
Nitrogen comp	ounds:		· · · ·							
Nitromethane	ICH ₂ NO ₂	293	1	43	98.2	173.0	0.57	-	_	
Ammonia	NH ₂ ²	213-287	2	43	40.8	72.5	0.56	-	_	-
	3									
Sulphur compo	ounds:		· .							
Carbondi-	1									
sulphide	cs	273 - 313	4	105	107.0	170.0	0.63	-	_ 1	-
Acids										
Acetic Acid	$C_2H_4O_2$	290-357	4	106	119.5	171.0	0.69	119.5	1.3	18.3

. ....

• •

.

# Table 3-3.3 (contd.)

Liquids	Formulae	Temp. range for	No. of data	References for D*	Exper. [M] avg. from	V c ref. (168)	$\phi =$ exper.[M]	Calculat from Ta	ted[M] ible(3-3.2)	% error in estimated D*
		D+, K	for D*		eq. (3-3.4)		v _c	[M]	% dev.	using[M] from Table (3-3.2)
<u>Miscellaneous</u> Water Tetrahydro- furan	н ₂ 0 с ₄ н ₈ 0	273_373 293	38 1	43 106	33.5 147.4	56.0 224.0	0.60 0.66	34.0 150.0	- 1.8	- -12.8
	Overall % a	iverage devi	ation						1.6	12.0

#### 3-3.2 Modification of Dullien's equation (203)

There are in literature two semi-empirical equations for the prediction of self-diffusion coefficients. Dullien (43) used the molecular-kinetic-model of liquids devised by Lamm and Dullien (44) and the experimental self-diffusion coefficient and viscosity to derive the following relationship

$$\frac{D^* \mu \bar{V}}{T} = 0.103 \times 10^{-8} V_c^{\frac{2}{3}} \qquad (2-2.26)$$

The units to be used in this equation are  $D^*$  in  $cm^2/sec,\mu$  in poises, T in ^OK and  $\overline{V}$  and  $V_c$  in  $cm^3/gmole$ . This equation was tested on 29 pure liquids mainly hydrocarbons giving an average deviation of 4% from the experimental self-diffusion coefficients. But this equation gave poor prediction for the self-diffusion coefficients for methanol and ethanol.

Vadovic and Colver (206) based the derivation of their equation on the hard sphere model of Longuet-Higgins and Pople (119). Their equation is of the form

$$\frac{D^* \mu \bar{V}}{T} = 0.216 \times 10^{-8} V_m^{\frac{2}{3}} \qquad (2-2.27)$$

and the units to be used are the same as in eq. (2.2.26). It may be shown that equations (2-2.26) and (2-2.27) are identical if the following relationship between molal volume at melting point and critical molal volume i.e.  $V_m = 0.310 V_c$  is assumed (206). These authors tested the equation (2-2.27) with the experimental D* of pure liquids used by Dullien (43) and with a few molten metals and found that the average deviation from the experimental self-diffusion coefficients was  $\frac{+}{-}$  6%. Again this equation also give poor prediction for ethanol and methanol.

Equations (2-2.26) and (2-2.27) employ critical molal volume and molal volume at melting point respectively. It will be shown that the first of the two equations may be modified by replacing the critical molal volume by the molal volume at normal boiling point.

To do this the equation

developed in another section

$$V_{b} = 0.285 V_{c}^{1.048}$$
 (3-5.2)

is used to elimiate  $V_c$  from equation (2-2.26). The resulting correlation is

$$\frac{D^* \mu \bar{V}}{T} = 0.229 \times 10^{-8} V_b^{0.636}$$
(3-3.6)

This equation was tested on the pure liquids used by Dullien (43) and shown in Table 3-3.4. The average deviation of the predicted self-diffusion coefficients, with methanol and ethanol excepted, is 4.8%.

Eq. (3-3.6) is also shown in Fig. 3-3.1.

Eq. (3-3.6) gives predictions of approximately the same accuracy as the other two equations and is convenient to use when no reliable values of  $V_c$  and  $V_m$  are available.



Figure 3-3.1 Correlation of self-diffusion coefficient for pure liquids, eq.(3-3.6)

Table 3-3.4Percentage deviations of the estimated self-diffusion coefficientsof eq. (3-3.6) from the experimental coefficients,  $D^* \times 10^5$  cm²/sec.

·			
Liquids	Temp. range K	@ Number of data	% error in D* estimated by eq. (3-3.6)
Argon	84	1	1 7
Methane	90-111	6	11 1
CCl.	293-333	5	79
Chloroform	200-298	2	7.4 9 1
n-Dontano	250-200	<u>л</u>	2.1
n-Hovano	200-000	1	1•1 9 7
n-Hentané	250-369	7	4•1 9 9
n-Octane	298		1.5
n-Nonane	298	•	1.9
n-Decane	298	1	0.7
n-Octadecane	323	1	2.4
2-Methylbutane	298	1	2.1
Neopentane	298	1	0.8
3-Methylpentane	298	1	8.1
2.3-Dimethyl		•	0.1
butane	298	1	7.0
n-Dioxan	307	1	5.6
2.2-Dimethyl			0.0
butane	298	1	3.7
2-Methylnentane	298	1	0.5
Bromoethane	303		6.7
Nitromethane	293	n an the second s	8.0
Benzene	288-423	8	3.2
Cyclohexane	298	1	3.4
Bromohenzene	298	1	5.5
Acetone	298	<b>1</b>	1.3
Water	273-373	7	9.5
Ammonia	213-287	2	5.2
Methanol	268-328	7	39.9 [†]
Ethanol	280-338	7	41.5
n-Propanol	288	1	14.5
i-Propanol	288	1	5.9
t-butanol	308	1	9.0
		•	
	A		
	Average % e	error	4.8

@ Experimental data are taken from Dullien (43)

† Not included in calculating the percentage average error.

#### The effect of temperature on liquid diffusion coefficients

Liquid diffusion coefficients, like other transport properties, are temperature sensitive. Diffusion coefficients in liquids increase with temperature. A literature search shows that the relationship between some of the physical properties and temperature is usually a function of the critical temperature. Table 3-4.1 shows some of these relationships:

Table 3-4.1Some of the equations defining the relationship betweenvarious physical properties of liquids and the critical temperaturefunction  $(T_c - T)$ .

Author and Reference	Property	Equation .	Equation Number
van der Waals (207)	Surface tension	$6 = k_{g} (T_{c} - T)^{1.2}$	3-4.1
Theisein (193)	Heat of vaporization	$\Delta \bar{H} = k_1 (T_c - T)^{0.38}$	3-4.2
Narsimhan (139)	Densities	$(e_1 - e_c) = k_d (T_c - T)^{0.74}$	3-4.3
Pettinelli (154)	Viscosity	$\mu = \mathbf{k}_{\mathbf{v}} \left( \frac{2^3}{M^2} \right) (\mathbf{T}_{\mathbf{c}} - \mathbf{T})^{\cdot 5}$	3-4.4
		where k _s , k _l , k _d and k _v are constants	

3-4

An attempt will be made to find a similar relationship between diffusion coefficients and temperature. The type of relationship reported in Table 3-4.1 is of the form

$$D = k (T_c - T)^{-n}$$
 (3-4.5)

This relationship is verified below with respect to the diffusivity in the liquid phase.

#### 3-4.1 <u>Self-diffusion coefficient</u>

In agreement with eq. (3-4.5) self-diffusion coefficients at various temperatures for 26 liquids, found in literature, were plotted on the log-log paper in Figures 3-4.1 (a, b and c). It may be observed from these plots that the diffusion coefficients for each liquid lie fairly close to a straight line and that the liquids can be divided into groups, each having the same slope. Thus three groups can be defined and these are tabulated in Table 3-4.2. The fact that the constant k is different for each liquid makes it possible to adapt eq. (3-4.5) in order to self-diffusion coefficients for a given liquid at another predict temperature if a coefficient at one temperature is available. The modified equation will have the form

(3-4.6)

$$\frac{\mathbf{D}^*}{\mathbf{D}^*_2} = \left[\frac{\mathbf{T}_c - \mathbf{T}_2}{\mathbf{T}_c - \mathbf{T}_1}\right]^{\mathbf{T}}$$

where n is taken from Table 3-4.2.



Figure 3-4.1a

D*x10⁵, cm²/sec

Correlation of self-diffusion coefficient with critical temperature function; for the group of liquids where the slope n=3

#### Numbers on lines indicate

- 1 º Methane
- 2 Ethane
- 3 **A** Pentane
- 4 △ 2,3-dimethylbutane 5 × 2-methylpentane 6 × 3-methylpentane

- 7 ⊽ Hexane
- 8 ø Heptane
- 9 + Octane
- 10 v Nonane


87

Figure

3-4.1b

Correlation of self-diffusion coefficient with critical temperature function; for the group of liquids where the slope n=4

Numbers on lines indicate

- 1 o Ethanol
- 2 A Methanol
- 3 Carbontetrachloride
- 4 + Cyclohexane
- 5 × Benzene
- 6 v Methylcyclohexane
- 7 Decane 8 Ø Dodecane.



Figure 3-4.1c

Correlation of self-diffusion coefficient with critical temperature function; for the group of liquids where n=6

Numbers on lines indicate

- l △ t-Butanol
- 2 × i-Propanol
- 3 ⊽ n-Propanol
- 4 + n-Butanol
- 5 º Water

# Table 3-4.2Values of exponent 'n' in eq. (3-4.5) for self-diffusion<br/>coefficients.

	Group of compounds	n
I	Lower paraffins (C $\leq 9$ ), cyclopentane, chloroform, toluene and acetone.	3
Ш	Higher paraffins (C $\geq$ 10), cyclohexane, methyl cyclohexane, methanol, ethanol, benzene and carbontetrachloride.	4
ш	Water, isopropanol, n-propanol, n-butanol and t-butanol.	6

Equation (3-4.6) was used to predict the coefficients for the 26 liquids and the average percentage deviation for each liquid is shown in Table 3-4.3. In the same Table the deviations of the coefficients predicted from the Stokes-Einstein eq. (2-5.1) are shown. The experimental values of self-diffusion coefficient for the 26 liquids in Table 3-4.3 are reported in Appendix 3-3.1b. In using eq. (3-4.6)the reference values of the coefficient were, in most cases, the values at 25°C. The average deviation for the Stokes-Einstein eq. (2-5.1) and eq. (3-4.6) is about the same, but the deviations for the individual liquids are much closer to the average value for eq. (3-4.6). A further advantage of using eq. (3-4.6) is that no knowledge of viscosity is required.

### Table 3-4.3: <u>Percentage deviations of the estimated from the experimental</u> values[†] of liquid self-diffusion coefficients, $(D^* \times 10^5, \text{ cm}^2/\text{sec})$

Liquids	¥ Value	Temp, range	No. of	% error in D	estimated
midman	ofn		data	hy	
		·/		This work	Stokes-
				eq. (3-4.6)	Einstein
		•		- 1- ()	eq. (2-5.1)
				<u>-</u> ·	-4. (,
Methane	3	90-111	5	2.78	3.20
Ethane	3	123-183	3	11.40	3.40
n-Pentane	3	195-309	4	7.35	30.60
n-Hexane	3	273-333	4	7.60	3.08
n-Heptane	3	250-369	6.	8.80	12.70
n-Octane	3	273-373	6	5.94	6.59
2-3 Dimethyl					
butane	3	273-313	5	3.78	4.60
2-Methylpentane	3	273-313	5	4.90	2.20
3-Methylpentane	3	273-313	5	3.64	1.90
Acetone	3	238-333	3	7.07	8.90
Toluene	3	283-383	6	3.53	10.57
Cyclopentane	3	273-313	2	4.14	2.70
n-Nonane	4	298-413	6	10.20	1.1
n-Decane	4	293-353	<b>5 1 1 1</b>	10.72	-
CCl,	4	288-333	6	1.88	3.31
Benzene	4	288-338	<b>4</b> • • •	2.15	1.00
Methanol	4	268_328	7	5.20	2.70
Ethanol	4	280-338	6	12.18	6.47
Cyclohexane	4	283-353	5	4.50	6.80
Methylcyclo					
hexane	4	273-373	6	8.10	3.69
Carbondisulphide	4	273-313	2	1.41	11.12
n-Propanol	6	288-318	3	3.39	9.36
i-propanol	6	288-318	3	2.40	3.00
t-butanol	6	308-328	2	6.58	5.40
n-butanol	6	298-318	2	1.29	3.44
Water	6	293-373	5	7.79	1.27
	Matal anna da Maria			6.00	5.04
	1 Total ave	rage % error		0.00	0.94
	I	1 · · · · · · · · · · · · · · · · · · ·		1	

* Values of exponent 'n' in eq. (3-4.6)

+ Experimental values of D* are found in Appendix 3.3.1b, of viscosity in ref. (20, 42, 168, 196) and of the critical temperature in ref. (168).

### 3-4.2 Diffusion coefficient at infinite dilution

Equation (3-4.5) was also found to be applicable in estimating the values of the diffusion coefficients of binary liquid mixtures at infinite dilution. The corresponding equation for this case can be written as

$$\frac{\begin{pmatrix} \mathbf{D}^{\mathbf{O}}_{\mathbf{A}\mathbf{B}} \end{pmatrix}_{1}}{\begin{pmatrix} \mathbf{D}^{\mathbf{O}}_{\mathbf{A}\mathbf{B}} \end{pmatrix}_{2}} = \begin{bmatrix} \frac{\mathbf{T}_{\mathbf{c}} - \mathbf{T}_{2}}{\mathbf{T}_{\mathbf{c}} - \mathbf{T}_{1}} \end{bmatrix}_{\mathbf{B}}^{\mathbf{n}}$$
(3-4.7)

Here the value of exponent 'n' is that of the pure solvent and is taken from Table 3-4.2. It was found that Table 3-4.2 does not apply to toluene for which n = 4 and not '3' as indicated in that Table. The values of  $T_{a}$  in eq. (3-4.7) are those of the pure solvents. An accuracy of eq. (3-4.7) was tested with 44 binary mixtures, involving 10 solvents and 24 solutes and consisting of both associated and non-associated Table 3-4.4 shows the percentage deviations of the liquids. coefficients predicted by eq. (3-4.7) from the experimental coefficients. The corresponding deviations for the coefficients predicted by the Stokes-Einstein eq. (2-5.1) are also reported in Table 3-4.4. It is to be noted that the Stokes-Einstein equation gives slightly better predictions aqueous binary mixtures, however eq.(3-4.7) is more particularly for convenient to use if the values of viscosity are not very reliable.

Equations (3-4.6) and (3-4.7) are valid if used in the temperature range  $10^{\circ}$ C above the melting point to  $10^{\circ}$ C below the boiling point. Outside these limits equations (3-4.6) and (3-4.7) give predictions with an average deviation of +20% for all the liquids tested.

Table 3-4.4Percentage deviations of the estimated from the experimental<br/>values[†] of binary liquid diffusion coefficients at infinite<br/>dilution,  $(D^{O}_{AB} \times 10^{5}, \text{ cm}^{2}/\text{sec})$ 

	r	Value of *	Temp.	No. of	% error in D	estimated by
Solute	Solvent	'n' for	range	data		AB
(A)	(B)				This work	Stokes-Einstein
(~~)	(2)	solvent	(,		eq. (3-4.7)	eq. (2-5.1)
			288-313			
Acetic acid	Acetone	3		2	1.6	
Water	Acetone	3	298-318	2	12.1	8.0
Benzoic -			000 010			
acid	Acetone	3	286-313	2	6.6	3.9
Chloroform	Acetone	3	298-328	2	9.4	3.2
Benzene	Heptane	3	298-358	5	8.7	8.5
Toluene	Heptane	3	280-313	2	2.8	3.9
Acetone	Chloroform	3	298-328	2		3.4
Acetic acid	Toluene	4	280-298	3	5.7	2.3
Benzene	Toluene	4	298-313	1	3.1	1.4
Cyclohexane	Toluene	4	298-328	2	2.3	2.0
Methylcyclo-					• •	0.5
hexane	Toluene	4	298-333	2	2.8	3.5
Aniline	Toluene	4	298-333	2		3.3
Benzoic acid	Toluene	4	289-313	3	7.3	7.2
Heptane	Benzene	4	298-348	5	7.9	4.8
Toluene	Benzene	4	298-313	1	2.1	0.1
Methanol	Benzene	4	284-313	2	5.7	3.7
Ethanol	Benzene	4	288-313	3	5.2	4.8
Acetone	Benzene	4	313-327	1	10.5	7.6
Benzoic acid	Benzene	4	284-313	2	2.6	5.4
Acetic acid	Carbontetra-					
	chloride	4	279-313	3	.1.3	5.9
Formic acid	Carbontetra-					
_ ·	chloride	4	281-298	2	5.5	9.7
Benzene	Carbontetra-					
	chloride	4	283-313	3	3.7	2.6
Cyclohexane	Carbontetra-					
	chloride	4	298-328	3	3.1	2.6
Carbontetra-	Cyclohexane	4	298-328	2	1.3	4.4
chloride						
Iodine	Cyclohexane	4	288-313	2	1.5	4.8
Benzene	Cyclohexane	4	298-333	3	2.1	4.7
Toluene	Cyclohexane	4	298-328	2	6.0	10.1
Iddine	Methylcyclo-					
	hexane	4	303-313	1	1.2	1•Z
Toluene	Methylcyclo-					
	hexane	4	298-318	1	2.5	7.5
lodine	n-Octane	4	288-313		4.7	4.5
lodine	Ethanol	4	281-313	2	4.7	1.6
Water	Ethanol	4	298-346	3	2.0	1.7
Methane	water	6	293-333	Z	11.8	2.4
Ethane	water	б	293-333	2	14.2	U.9
Propane	Water	6	293-333	2	24.3	11.0

### Table 3-4.4 (continued)

Solute	(B) Value of 'n' for solvent	Value of* 'n' for	* Temp. range ( ⁰ K)	No. of data	$\%$ error in $D^{O}_{AB}$ estimated by	
(A)		solvent			This work eq. (3-4.7)	Stokes-Einstein eq. (2-5.1)
Butane	Water	6	293-333	2	23.8	10.9
Pentane	Water	6	293-333	2	20.7	82
Cyclopentane	Water	6	293-333	3	17.4	2.7
Cyclohexane	Water	6	283-333	3	14.3	6.8
Butene	Water	6	298-333	2	4.6	6.5
Benzene	Water	6	283-333	4	11.4	5.9
Toluene Ethyl	Water	6	283-333	3	14.9	3.1
benzene	Water	6	283-333	3	12.8	1.5
Methanol	Water	6	288-370	2	10.0	3.1
Ethanol	Water	6	298-346	4	5.9	9.9
Acetone	Water	6	298-346	6	10.5	20.2
					<u> </u>	
					7.8	5.7

* Values of exponent 'n' in eq. (3-4.7)

+ Experimental values of  $D^{O}_{AB}$  are found in Appendix 3-2.2, of solvents

viscosity in ref. (20, 42, 168, 196) and of the critical temperature of

solvents in ref. (168).

### Molal volumes at normal boiling points (202)

94

The molal volume of liquid at the normal boiling point is of practical interest to Chemical Engineers as it is frequently employed in estimating various physical properties, such as diffusion coefficients, latent heat of vaporisation and boiling point temperatures (20, 168), which are essential for the design of chemical engineering equipment.

The experimental liquid volumes at normal boiling point are somewhat scarce and it is customary to estimate this quantity either from the additive method of LeBas (109) or Schroeder (168) or from the empirical equation of Benson (14). Both the additive methods give poorer results than the Benson method as shown in Table 3.5 of reference (168). The failure of the additive methods is due to the fact that most chemical compounds appear in an associated form and the extent of association is a function of temperature. The degree of association at the normal boiling point is still appreciable. As the association effects are negligible at the critical temperature, the critical volume estimated by additive methods is normally reliable (168). Therefore it is not surprising that the estimated values of liquid molal volume at the normal boiling point,  $V_{b}$  (in cm³/gmole), from the Benson equation

$$\frac{V_{c}}{V_{b}} = 0.422 \log_{10} P_{c} + 1.981 \qquad (3-5.1)$$

employing the critical volume,  $V_c$  (in cm³/gmole), and critical pressure,  $P_c$  (in atm), compare very favourably with both the additive methods. Table 3.5 in reference (168) shows that the average

3-5

deviation of the predicted volume  $V_b$  from the experimental one is 2% for the Benson (14) method, 2.8% for the additive method of Schroeder (168) and 4.7% for the additive method of LeBas (168). All the 34 compounds shown in the table of reference (168) are taken into account in compiling Table 3-5.1 of this work.

### 3-5.1 <u>Correlation of the literature data</u>

From the fact that the ratio of  $V_c$  to  $V_b$  is approximately 2.68 (14) for most of the liquids, a simple relationship is expected to exist between  $V_c$  and  $V_b$  itself without incorporating any other physical properties. Experimental values of the molal volumes at the critical point  $V_c$  and at the normal boiling points  $V_b$  were found for a number of compounds in references (14, 20, 42, 59, 151, 168). These were plotted on a log-log graph paper as shown in Fig. 3-5.1. A vast majority of the experimental data points is very well correlated by a single straight line. The best (least square method) straight line drawn through these points gave the following relationship

 $V_{b} = 0.285 V_{c}^{1.048}$  (3-5.2)

#### 3-5.2

### Test of the correlations

To check the accuracy of the correlation the values of  $V_b$ , for all the compounds shown in Fig. 3-5.1, were predicted by Benson's equation (3-5.1) and equation (3-5.2) using the critical volumes and critical pressures from references (14, 20, 42, 168). The predicted values were compared with the experimental ones and the average deviations for each class of compounds were calculated and recorded in Table 3-5.1.



++

Figure 3-5.1 Relationship between liquid molal volume at normal boiling point and critical volume

+ Nitrils are included in calculating
 average percentage error
 A Not included in calculating average

percentage error

### Table 3-5.1 : Percentage deviations of the estimated from the experimental

Class of liquid	No. of data	Proposed Eq.(3-5.2) % Error*	Benson Eq. (3-5.1) % Error*	
Elements	7	2.65	4.42	
Inorganic Compounds	13	2.30	2.37	
Organic Compounds:		<b>▲</b>		
Paraffins	10	1.54	0.96	
Cyclopa <b>raffins</b>	5	0.50	0.32	
Olefins	4	3.12	1.12	
Ketones	2'	1.20	2.15	
Organic acids	5	1.10	1.06	
Aromatics	5	0.70	0.34	
Aldehydes	2	1.45	1.75	
Ethers	6	1.20	1.32	
 Sulphur Compounds 	4	1.25	1.32	
l Nitrogen Compound	s 11	4.12	4.20	
Esters	17	1.84	2.40	
Alcohols	9	1.84	1.54	
Organic halides	15	1.22	0.99	
Average % error	115	1.88	1.90	

values of liquid molal volume at the normal boiling point ( in  $cm^3/gmole$ )

* % Error = [(Calculated - Experimental)]x 100/Experimental

Experimental data of  $V_b$  obtained from references (14, 20, 42, 59, 151, 168) ** Data of  $V_c$  and P: 96 experimental values of  $V_c$  and 115 experimental values of  $P_c$  were found in references (168, 14, 42).  $V_c$  for the remaining 19 compounds were found estimated either by Vowle or Lydersen

additive methods (168).

In calculating the deviations for the groups of elements and compounds shown in Table 3-5.1 the following were excluded: Ne, Kr,  $H_2$ , He, Ar, hydrogen cyanide and phosphine. The average deviation for this group is about 25%. Benson (14) ascribes this abnormality to "the quantum effect" in the case of the lighter compounds and to association in the case of hydrogen cyanide. The phenomenon of association of the heavier gases could be appreciable even in the neighbourhood of the critical point. In the case of phosphine the deviation could be due to an error in the experimental value of  $V_b$ .

Nitriles and nitromethane gave deviations ranging from 6% to 9% from the experimental values and they are included in obtaining the average deviations shown in Table 3-5.1. As similar abnormal deviations are also observed in the other physical properties of nitriles / and nitro compounds, such as high dipole moments (14), they are presumed to be a special class of compounds which show abnormalities owing to their unusually large electrostatic forces.

The average deviations shown in Table 3-5.1 are based on 115 compounds. Equations (3-5.1) and (3-5.2) give practically the same results and both considerably better than any of the additive methods, as pointed out earlier.

Equation (3-5.2) is more convenient to use because it requires only one physical property, i.e. the molal volume at the critical point,  $V_c$ , to determine the molal volume  $V_b$  at the normal boiling point. Equation (3-5.2) is more reliable than equation (3-5.1) if the values of the critical volumes and critical pressures are to be obtained by one of the additive methods. The critical pressure obtained in this way has an error of about 4% (168), thus lowering the accuracy of the value of  $V_b$ predicted by equation (3-5.1) considerably. · 98

PART

4

### EXPERIMENTAL APPARATUS AND METHODS

### **PART 4** EXPERIMENTAL APPARATUS AND METHODS (24)

The experimental apparatus employed in this work for operating at elevated temperatures is an adaptation of the two-compartment diaphragm cell used by Stokes (185). An attempt to construct a cell for such a duty was made by Calus and Tyn (25). The cell developed in this work is a further modification of the Calus and Tyn cell and constitutes a considerable improvement.

4-1 Three-compartment diaphragm cell

4-1.1: Requirements for a successful cell :

(1) A provision of space for thermal expansion during the preheating period in which the test liquids are being brought to the required temperature.

(2) Prevention of diffusion and bulk flow due to thermal expansion during the preheating period.

(3) Prevention of evaporation of the test liquids during the run, as this would alter the concentrations.

(4) Establishment of an initial concentration gradient in the diaphragm or to design the cell so that the initial concentration gradient is unimportant.

(5) Prevention of boiling of test liquids, as this would introduce convective mixing in the pores of the diaphragm and vapourlocking of some of the channels in the diaphragm.

In the cell described below the boiling of the test liquids is prevented by carrying out diffusion experiments under a pressure high enough to suppress boiling. The effect of minor changes in pressure on the diffusion coefficient is negligible, as was shown by Doane and Drickamer (40).

The requirements (1) to (4) are taken care of in the design of the cell and in the operating procedure, which are described below.





Fig. 4-1.1 Three-compartment diaphragm cell

The three compartment cell finally developed is shown in Fig. 4-1.1 with the values set as for a normal run carried out at an elevated temperature and at some pressure greater than atmospheric. Compartment A contains about 45 cm³ of the lighter test liquid, compartment B, down to the mark M, contains exactly the same volume of the heavier test liquid. The space below the mark M, and also below the mark N in the leg H, is occupied by mercury. The level of

mercury at N is predetermined in order to balance the columns of test liquids in A and B and the mercury below the mark M.

Compartment C contains mercury which, in the preheating stage, occupied compartment B while the heavier test liquid was being preheated in compartment C. The mercury in compartment C can be expanded into the leg G.

With the dimensions given in Fig. 4-1.1, the volume of each compartment A and B is approximately 45 cm³ net plus the volume of the stirrers and the volume of compartment C is about 65 cm³. The diaphragm is a sintered glass disc, manufactured by Jencons Scientific Limited, 4cm. in diameter with a porosity number of 4 and a pore size range of 5-10 microns. Four cells were used in this work and their individual specifications are given in Table 4-1.1. The initial volume of the pores in the diaphragm varied, from cell to cell, in the range 0.8 to  $1.0 \text{ cm}^3$ , due to a small variation in cell diameter and, of course, the diaphragm wearing out with time. The ratio of the pore volume to the cell compartment volume was approximately 0.02 which agrees with the recommendation of Holmes (89).

 Table 4-1.1
 Specifications of the three-compartment diaphragm cells:

Cell code number	V ₁ =V ₂ * (up to mark M) cm ³	$v_{\rm D}^{\dagger}$ cm ³	$\lambda = \frac{v_{\rm D}}{v_{\rm 1}}$
R	46.2	1.100	0.02380
D	44.8	0.890	0.01986
H	41.8	0.850	0.02033
G	45.2	0.920	0.02035

 $V_2$  is the predetermined volume of lighter test liquid which will have the same volume as  $V_1$  at a given operating temperature.

 $\mathbf{v}_{\mathbf{D}}$  is the average volume of the pores of the diaphragm.

The stirrers are made of glass tubes with soft iron wires sealed in them. The upper stirrer is heavy enough to rest on the diaphragm and the lower one is light enough to float on top of the heavier liquid in the lower compartment. Both stirrers are wrapped with a thin PTFE sheet to reduce the rate of attrition of the diaphragm. The stirrers are operated by a pair of magnets fixed to a rotating U-shaped yoke.

The three-way values,  $V_1$  and  $V_2$ , are constructed of glass with the PTFE core and washers secured by a brass nut, as shown in



b = Brass nut
w = PTFE washers
o = PTFE O-ring
g = Glass casing
p = PTFE core with
4mm. bore

Figure 4-1.2 : Three way valve of type GSTT (manufactured by Fison Scientific Ltd.)

These valves are spring loaded by O-rings and no lubricants are

necessary.

Fig. 4-1.2.

The cap E of compartment C is designed to withstand the weight

of mercury plus any applied pressure during a run. A detailed

drawing of this cap is shown in Figure 4-1.3.



s = knurled screw cap, SQ13

n = Neoprene washer

p = Thick PTFE circular disc

t = Thin PTFE circular disc

Figure 4-1.3 : Details of the cap E for compartment C of diffusion cell.

#### 4-1.3 : Auxiliary Apparatus

The operation of the three-compartment cell requires some auxiliary laboratory equipment and its design will be described in some detail.

#### Valve openers

The operation of the cell requires precise manipulation of the cell values (i.e.  $V_1$  and  $V_2$  of Fig. 4-1.1) while the cell is immersed in the hot oil bath. A special valve opening mechanical jig was constructed, as shown in Fig. 4-1.4, for each valve to allow remote manipulation from above the surface of the oil. This valve opener consists of two brass rods, A and B. The rod B has a socket C which can slide and be secured at any position on the rod A. The rod A has a socket on each end and a gear-wheel (Meccano no. 27) is attached to each of these sockets using a brass shaft. A plastic knob E is attached to the upper shaft and a clamp F, with two Terry clips't'on each end, is attached to the bottom PTFE washers are provided at the shaft as shown in Fig. 4-1.4. connections of these shafts to the rod A for smooth operation. An endless chain H is attached to the gear-wheels G which allows a synchronized



Figure 4-1.4 Valve opener

movement of the knob E and the clamp F. To allow for easy assembly of the whole jig, and also to facilitate adjustment of the tension in the chain, the rod A is made in two sections joined together at i by the screw j. The cell valve is operated by attaching the Terry clips t of the damp F to the handle of the valve and manipulating the knob E from above the oil surface while the whole jig is secured to the rigid frame using rod B.

### Cell clamp

As the cell, with its contents, has to be precisely fixed in position throughout the experimental run and is also required to be able to be turned upside down after the run, a specially designed cell clamp is Such a clamp is shown in Fig. 4-1.5. necessary. The clamp consists of a T-shaped brass rod M with a ring support H at its lower end and a clip F at its upper end. The middle arm of the rod M is attached to the brass block B of the cell support (see Fig. 4-1.6) by the lock nuts The rod M can rotate within the block B and n and PTFE washers w. can be secured at any position by the screw k. Two movable brass ringsupports N are provided which can slide on the rod M and also can be secured at any required position. A gap G is made in each ring N to allow passage of the cell. A clip D, made from brass sheet, is also provided to secure the middle neck of the cell (i.e. K of Fig. 4-1.1) using the screws t. Another clip F, which has three sockets r is used to secure the three capillaries of the pressure connectors (of In Fig. 4-1.5 the cell is shown in the position as Fig. 4-1.7). during a normal run, i.e. with the various supports and clips in the correct locations.



B Brass block
M Brass rod with ring support H
N Movable ring supports with gap G
D' Clip for the neck K of diaphragm cell
F Clip for pressure connectors
n Lock nuts
w PTFE washers

### Figure 4-1.5 Cell clamp

### Cell support

The starting and terminating operations on the cell for an elevated temperature run require the cell to be handled while it is under pressure. This requirement makes it necessary to design a suitable 'cell-support' which can hold the assembled pressurized cell during these operations.

The cell support consists of a solid metal rod A with a brass block B at its lower end. Its upper end is attached to a counter balance weight of about 2 lb. by a tough nylon string 'S' passing over two pulleys (H and G ) as shown in Fig. 4-1.6. The two cylindrical guides C are mounted coaxially with the rod A on the rigid frame, in order to assist the vertical movement of the rod A. The brass block B has a horizontal hole into which the cell clamp (of Fig. 4-1.5) can be fixed. The assembled pressurized cell, accommodated in the cell clamp, can be lowered or raised with ease using this counter-balanced cell-support and its position can be secured at any required place by locking the sliding rod A by the screw 'l' at the lower cylindrical guide C.

### Pressure connections

Three pressure connectors, made of 1mm diameter x 15cm long glass capillaries, C are used for applying pressure to the cell. Each of the capillaries has a spring loaded valve near its upper end. The upper terminals of the capillaries are joined onto a single outlet which leads, either to a nitrogen cylinder, or to an aspirator bottle through the long flexible plastic tubing t and the reducing valves p, q, r, as shown in Fig. 4-1.7. The use of the aspirator bottle, for depressurizing the cell, is necessary for two reasons: (1) it can control the rate of release of pressure and (2) the water inside the bottle can absorb the harmful



Figure 4-1.6 Cell support



С Knurled screw caps, SQ13 S i,j,k Spring loaded valves I, J, K Necks of diaphragm cell p,q,r Reducing valves Neoprene washer n · gi. PTFE gasket **b**____ Glass thickening a Aspirator bottle We Lt Water 1.12

Figure 4-1.7 Pressure connections

mercury vapour that could come out from the cell. Correct manipulation of the reducing valves r,p and q allows either the cell to be pressurised, from the nitrogen cylinder, or the depressurised by means of the aspirator bottle. Each of the three lower terminals of the capillaries has a knurled screw cap s with a neoprene washer n and a PTFE gasket g to secure the capillaries to the three necks, (I, J and K) of the cell (Fig. 4-1.1). A detail of the cap s is also shown in Fig. 4-1.7. Filling appliance :

**Glass** thickening PTFE gasket Neoprene washer Knurled screw cop, SQ 4/13 PTFE too interfilm

Fig. 4-1.8 Filling appliance for the upper compartment of the diffusion cell.

It is important to degass the pores of the diaphragm properly. Air locking of the diaphragm pores would cause a serious error in the measured fliffusion coefficient. A filling appliance, as shown in Fig. 4-1.8, is used to remove the air from the pores of the diaphragm. It consists of a glass tube with a knurled screw cap together with a neoprene washer and PTFE gasket on one end. A PTFE tap is located in the middle of its length.

### Magnetic rotating mechanism and oil bath :

The stirrers of the cell are operated by a pair of magnets fixed to a rotating U-shaped yoke. The yoke is operated by an endless chain which is connected to the main gear, driven by a speed controlled motor (manufactured by Allspeeds Ltd., Accrington, England, type MSRZVD and input H. P. 0.25). The yoke, together with the chain and the driven gear, is immersed in a bridge-controlled oil bath (manufactured by Townsen & Mercer Ltd., Croydon, England, Type E-270, major bath) containing a transparent, high boiling point oil (manufactured by Mobil Oil Co. Ltd., England, Type "Whiterex 307"). The temperature of the bath can be controlled to an accuracy of  $\stackrel{+}{-}$  0.1^oC. A general view of the oil bath, together with rotating mechanism, is given in Fig. 4-1.9.



Figure 4-1.9 General assembly of diffusion apparatus

### 4-2 EXPERIMENTAL PROCEDURE

The design of the cell outlined above requires that the following operating procedure is observed. The procedure is described with the aid of Fig. 4-1.10 and reasons for various actions are also given when appropriate.



Fig. 4-1.10 General arrangement of the diffusion cell and the operating procedure

4-2.1 Charging the cell with test liquids

The cell is put into an inverted position with the filling appliance attached (as shown in Fig. 4-1.11). The test liquid is sucked into the compartment A and then into approximately  $\frac{1}{4}$  of the compartment B. The supply of the liquid  $L_A$  is closed and the compartments A and B maintained under vacuum for a few minutes. This procedure should remove any air present in the diaphragm.

The cell is put in the upright position, the filling appliance removed, and then the top K of the compartment A is closed with a cap making sure that no air has been trapped. Then the cell is put again into the inverted position.



LA Upper compartment solution

F Filling appliance

 $\{p_i\}_{i \in \mathbb{N}}$ 

Figure 4-1.11 Degassing procedure of the diaphragm

pores

Approximately  $\frac{1}{4}$  of the compartment B is filled with mercury (when the valve V1 connects B with C as in Fig. 4-1.10 (dl). The test liquid  $L_A$  is sucked out, by means of a small bore flexible PTFE tube (the inside of the valve V2 is removed to accommodate the flexible tube). To remove the traces of the liquid  $L_A$  the compartments B and C and the mercury should be rinsed with the test liquid  $L_B$ .

The value V2 is reassembled and put into the position to connect B and G as in Fig. 4-1.10 (c2). Enough mercury is added to obtain an overflow from V2. Now the space remaining in the compartment C is just enough to accommodate the test liquid  $L_{\rm B}$  with some small excess.

The values V1 and V2 are closed (Fig. 4-1.10 (al) and Fig. 4-1.10 (a2)) and the compartment C filled with the test liquid  $L_B$ . At this stage the remainder of any air trapped in the values should be removed. Finally the end E of the compartment C should be sealed without trapping any air. At this stage a sample of the test liquid  $L_B$  should be taken.

The cell is put into the upright position. Some liquid  $L_B$  is inserted into the tubes G and H to seal the values V1 and V2. At this stage any air still present in the compartment C should be expelled by opening V1 and V2 to form a U-tube combination of the tubes H, G and the compartment C, Fig. 4-1.10 (cl) and 4-1.10 (e2). More mercury is added into tube G, enough to balance the weight of liquids in the compartments A and B, closing first the values V1 and V2 as shown in Fig. 4-1.10 (bl) and 4-1.10 (a2).

The compartment A is opened at K, and all the test liquid is removed and replaced with a predetermined volume of the fresh test liquid  $L_A$ . This step is necessary because some change in the composition of the test liquid  $L_A$  would occur in an earlier stage when a vacuum was applied to remove the air from the diaphragm. At this stage a sample of the test liquid  $L_A$  should be taken.

The cell is now placed in its cage above the thermostat bath. The valve V2 is set so that the compartments A and B and the tube G form a U-tube combination, Fig. 4-1.10 (c2), the compartment C being isolated. The valve V1 is set so that the compartment C is vented through the tube H, Fig. 4-1.10 (cl), but the compartments A and B are isolated. Now the outlets J, K and I are connected to the manifold supplying the nitrogen gas. The nitrogen gas pressure is set to the required level and the cage containing the cell is lowered into the bath which had already attained the required temperature.

## 4-2.2 Transfer of the test liquid $L_B$ to the compartment B

The transfer is made after the test liquids have attained the temperature of the bath. In this operation the valves V1 and V2 are operated by means of two mechanical appliances controlled remotely from above the bath. The following procedure is used. The valve V1 is set as in Fig. 4-1.10 (b1) and the valve V2 is set as in Fig. 4-1.10 (b2). Then V1 is put in a position to connect B and C and to isolate the tube H as in Fig. 4-1.10 (d1). Next V2 is gradually opened to allow a slow flow of mercury into the compartment C while the test liquid  $L_{B}$  takes its place in the compartment B. During this operation tube G is isolated. The valve V2 is closed after the mercury has dropped to a predetermined level at the bottom of the compartment B, as in Fig. 4-1.10 (b2). The volume of the compartment B, down to the mark M shown in Fig. 4-1.10, is known from direct measurement.

Next V1 is set to connect the tube H with the compartment C, the compartment B being isolated as in Fig. 4-1.10 (cl). By means of V2, Fig. 4-1.10 (e2), some of the mercury from the tube G is transferred into the tube H to a predetermined level to balance the liquids in A and B. Once this is obtained V1 is set to form a U-tube combination consisting of H, A and B as in Fig. 4-1.10 (el). Next the valve V2 is set to connect the compartment C and the tube G, the compartment B being isolated as in Fig. 4-1.10 (e2). Now the run is commenced by starting the magnetic stirrers. A stirring speed of 40 r.p.m. is used. The setting of the valves is shown in Fig. 4-1.10 (el) and Fig. 4-1.10 (e2).

#### 4-2.3 Termination of the run

The run may be terminated by one of two methods: one is more suitable for the operation at ambient temperatures and the other for the operation at higher temperatures.

### Ambient temperature operation

The stirrers are stopped. The cell is removed from the bath and suspended above it to drain the bath oil and to cool. The cooling is done by passing a fast stream of cooling air. At this stage any condensate that might have collected on the walls of the capillary tube of the compartment A descends into the compartment.

When the test liquids are sufficiently cold the pressure is released, the valves V1 and V2 are set as in Fig. 4-1.10 (al) and Fig. 4-1.10 (b2) i.e. the compartments A and B are isolated from C, G and H. The capillary tubes are removed from the cell terminals J, K and I and replaced by screwed caps.

Three samples of the test liquid  $L_A$  are taken from various levels within the compartment A avoiding the liquid in the immediate neighbourhood of the diaphragm.

The values V1 and V2 are set as shown in Fig. 4-1.10 (b1) and Fig. 4-1.10 (b2) and the cell is put into the inverted position. Any test liquid or mercury, present above the values, drains from the tubes G and H.

Now the cap E is removed from the compartment C. To transfer the test liquid to C the valve V2 is opened as shown in Fig. 4-1.10 (d2) (B connected to C but G is isolated), with valve V1 as shown in Fig. 4-1.10 (d1), letting the test liquid flow slowly to C. The first few cubic cemtimeters of that liquid are discarded and then three samples taken from the incoming stream.

#### Elevated temperature operation

The stirrers are stopped. The cell is lifted from the bath and secured above it. The valves V1 and V2 are closed (as in Fig. 4-1.10 (b1) and Fig. 4-1.10 (b2)). The cocks j,k,i on the capillaries (Fig. 4-1.10) are closed and the cell is put in the inverted position. By manipulating the valves V1 and V2, in the manner described earlier, the test liquid  $L_B$  is transferred to the compartment C and the valves V1 and V2 are closed again as in Fig. 4-1.10 (b1) and Fig. 4-1.10 (b2).

The cell is returned to the upright position and the values V1 and V2 to the same position as during the run (Fig. 4-1.10 (e1) and Fig. 4-1.10 (e2)). The cocks j,k,i on the capillaries are opened, the cell is cooled in a stream of cold air. When the test liquids have reached ambient temperature the pressure is released and samples of the test liquids  $L_A$  and  $L_B$  are taken in the manner described earlier.

### 4-2.4 <u>Time scale of the experiments</u>

In the experiments carried out with this cell the following were the approximate times taken for the various steps:

(a)	Charging of the cell with test solutions (washing the compartments,					
:	de-aerating the diaphragm, filling the compartments with the test					
	liquids, e.t.c.)	•••••	1.00 hrs.			
(b)	Preheating to the temperature	of the experiment	0.50 hrs.			
(c)	Run time	•••••	24.00 hrs.			
(d)	Cooling down after the run	•••••	0.25 hrs.			
(e)	Sampling	•••••	0.25 hrs.			

Total 26.00 hrs.

### Methods for calculating experimental data

The following equation was used to calculate integral diffusion coefficients from the experimental data obtained from the cell, shown diagrammatically in Fig. 4-3.1 (The notation used in the equations below is also given in Fig. 4-3.1)



Figure 4-3.1 Initial and final concentrations in the diaphragm cell.

$$\overline{D}_{AB} = \frac{1}{\beta t} \log_{10} \left( \frac{C1 - C2}{C_3 - C_4} \right)$$
(4-3.1)  
$$\beta = \frac{A}{1} \left( \frac{1}{V_1} + \frac{1}{V_2} \right), \text{ cell constant}$$
(4-3.2)

where

t = time, sec.

 $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  = concentrations in gm/cm³ at T^oC A = effective mass transfer area of the diaphragm, cm² 1 = effective length, cm.

 $V_1 \text{ and } V_2 = \text{volumes of compartments, cm}^3$  $\overline{D}_{AB} = \text{ integral diffusion coefficients, cm}^2/\text{sec.}$ Equation (4-3.1) was derived from Ficks' laws as shown by Mills and

Woolf (134).

### 4-3.1 : Cell constant 3

The cell constant  $(3 \text{ was obtained by calibration using the KCl-H}_2O$  system of known diffusion coefficient and eq. (4-3.1), recommended by Holmes (89),

i.e. 
$$(3 = \frac{1}{\overline{D}_{AB}t} \log_{10} \left(\frac{C_1 - C_2}{C_3 - C_4}\right)$$
 (4-3.1)

(concentrations are in gm/litre at  $25^{\circ}C$ , t in seconds and  $\overline{D}_{AB}$  in cm²/sec.).

The experimental work with 0.1N KCl (in the lower compartment) and double distilled water (in the upper compartment) was carried out at  $25^{\circ}$ C; the procedure described in section 4-2 being used. The initial and final concentrations of the test solutions were obtained using Mohr's method (212) i.e. by titrating them against 0.05 N Ag NO₃ standard solution with potassium dichromate solution (4.2 gm. of A.R. potassium chromate and 0.7 gm. of A.R. Potassium dichromate in 100 cm³ of distilled water) as the indicator.

The integral diffusion coefficient  $\overline{D}_{AB}$ , to be used in equation (4-3.1),was obtained from

$$\bar{D}_{AB} = \frac{C_B \bar{D}_{CB} - C_T \bar{D}_{CT}}{C_B - C_T}$$
(4-3.3)

where  $C_B = \frac{C_1 + C_3}{2}$  and  $C_T = \frac{C_2 + C_4}{2}$  (4-3.4)

 $\overline{D}_{CB}$  is an integral diffusion coefficient which would be found in a run of vanishingly short duration with the initial concentrations  $C_B$  and zero on the two sides of the diaphraghm.  $\overline{D}_{CT}$  is defined similarly for the initial concentrations  $C_T$  and zero. The values of  $\overline{D}_{CB}$  and  $\overline{D}_{CT}$  have been calculated from the differential diffusion coefficients and tabulated by Mills and Woolf (134) for a range of concentrations of KCl - H₂O




Figure 4-3.3 Wear of the diaphragm of cell 'R' in terms of the cell constant  $\beta$ .



Working life of the cell, t (hours)

Figure 4-3.4 Wear of the diaphragm of cell 'H' in terms of cell constant  $\beta$ .



Figure 4-3.5 Wear of the diaphragm of cell 'D' in terms of cell constant  $\beta$  .



Figure 4-3.6 Wear of the diaphragm of cell 'G' in terms of cell constant  $\beta$  .

system at  $25^{\circ}$ C. These data are represented in Table 4-3.1 and Figure 4-3.2.

The abrasive action of the stirrers gradually wears out the diaphragm thus causing an increase in the value of the quantity  $\beta$ . This change in  $\beta$  is allowed for by frequent recalibrations of the cell and by the use of a plot of  $\beta$  against the working life of the cell (see Fig. 4-3.3 to 4-3.6); to interpolate the cell constant for each run. This variation of the constant  $\beta$  with time is also tabulated in Table 6-1.5, pg.188.

From the definition of the cell constant,  $\beta$ , in equation (4-3.2) it is obvious that the temperature dependence of ' $\beta$ ' is due to the variations of V₁ and V₂, as changes in the values of A and 1 are negligible in comparison.

Since the design of the diaphragm cell developed and the operating procedure outlined above , can maintain constant values of  $V_1$  and  $V_2$ , irrespective of temperature, the cell constant  $\beta$  is regarded as constant with temperature. Therefore the values of  $\beta$  at 25^oC from Figures (4-3.3 to 4-3.6) are used in calculating the diffusion coefficients of the test liquids for the elevated temperatures.

A sample calculation for  $\beta$  is given in Appendix 4-3.1.

## 4-3.2 : Integral diffusion coefficient

The integral diffusion coefficients are calculated from equation (4-3.1). The cell constants  $\beta$  corresponding to the working life of the cell are obtained from Figures (4-3.3 to 4-3.6). Here,  $\beta$  is assumed to be independent of temperature as indicated above. The volumetric concentration unit (i.e. gm solute/100cm³ of solution) is used for  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$ . This type of concentration unit, of course, applies only to a specified operating temperature. Since eq.(4-3.1) is derived from Fick's law (134) i.e.  $J = -D_{AB} \frac{\partial c}{\partial t}$  (4-3.5) (where J in gm/cm² sec, C in gm/cm³, t in sec and  $D_{AB}$  in cm²/sec) for a given temperature, it is therefore more appropriate to use the values of  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  at the operating temperature.

# Analysis of test solutions

The test liquids are analysed by two methods to measure their concentrations. For the ethanol-water and acetone-water systems their densities are measured at 25°C by Lypkin's (5 cc) pycnometer using the method described by Lypkin (124). Then the corresponding weight fraction concentration  $W_{A}$ is read directly from a calibration charts, Fig. (4-3.7 and 4-3.8), for that system . For the acetone-chloroform system the refractive angle of the test solution at 25°C is measured by the Abbe - refractometer and then converted to weight fraction concentration by a calibration chart, Fig. (4-3.9), Once the weight fraction concentrations of the test for that system . solutions are known, the corresponding volumetric concentrations (gm/100cm³ at T) are read, for the required operating temperature, from the conversion charts i.e. Figures (4-3.10 to 4-3.12).

# Material balance equation for $C_3$ :

It was mentioned earlier that, at the termination of an elevated temperature run, there is a possible bulk flow of test liquid, through the diaphragm, from the upper compartment to the lower one. Therefore the final lower compartment concentration  $C_3$  should be obtained from a







Figure 4-3.9 Refractive angles vs weight fr. concentration for acetone-chloroform mixtures at 25^oC









	• • • • •							cm	100cm	<b>.</b>
Wt. fr. acetone	25 ⁰ 0	; *	40 ⁰	C *	58 ⁰ 0	; **	73 ⁰ C	** 、	85 ⁰ C	**
WA	9	C _A	6	C _A	9	C _A	6	CA	9	C _A
0.000	0.9971	0.000	0.9923	0.000	0.9815	0.000	0.9715	0.000	0.9687	0.000
0.050	0.9882	4.941	0.9831	4.916	0.9750	4.865	0.9660	4.820	0.9580	4.780
0.100	0.9804	9.804	0.9748	9.748	0.9660	9.644	0.9575	9.573	0.9500	9.484
0.150	0.9733	14.600	0.9667	14.501	-	-	-	- 1	-	-
0.165	-	-	-	- 1	0.9450	15.611	0.9440	15.595	0.9350	15.446
0.195		-	-	· -	0.9485	18.505	0.9380	18.300	0.9290	18.125
0.200	0.9664	19.328	0.9586	19.171	-		-	-	-	-
0.250	0.9600	23.974	0.9499	23.748	-	-	-	_	-	<b>—</b> .
0.300	0.9507	28.520	0.9406	28.217	0.9275	27.819	0.9155	27.460	0.9060	27.175
0.350	0.9415	32.9511	0.9305	32.568	-	<b>–</b>	-	-	-	_
0.400	0.9315	37.259	0.9199	36.797	0.9055	36.093	0.8925	35.575	0.8820	35.157
0.450	0.9209	41.438	0.9088	40.898		_	-	-	-	-
0.460	-	-	-		0.8920	41.039	0.8790	40.441	0.8680	39.935
0.500	0.9099	45.493	0.8975	44.875	0.8823	44.016	0.8690	43.382	0.8580	42.833
<b>0.5</b> 50	0.8985	49.418	0.8859	48.724		-	-	-	-	-
0.596	-	-	-	-	0.8590	51.201	0.8445	50.336	0.8320	49.591
0.600	0.8870	53.219	0.8742	52.450	-	-	·] _		-	- 1
0.650	0.8753	56.893	0.8623	56.048	-	-	-	-	-	-
0.698	-	l · -	-	-	0.8340	58.187	0.8200	57.211	0.8080	56.373
0.700	0.8634	60.438	0.8503	59.518	-	-	-		-	1 -
0.750	0.8513	63.851	0.8381	62.857	- '	-	-	-		-
0.800	0.8391	67.129	0.8258	66.062	<b>-</b> ·	-	-	-	<b>-</b> .	-
		L		[	1 ·	1 · · · ·			1	

Table 4-3.2 Density and volumetric concentration, ethanol-water mixtures, (Q in gm and C_A in gm solute)

Wt. fr.	25 ⁰ C	*	40 ⁰ C	*	58 ⁰ C	**	73 ⁰ C	**	85 ⁰ C	**
WA	6	с _А	6	с _А	6	с _А	୧	C _A	6	C _A
0.806	-	-		-	0.8076	65.110	0.7925	63.893	0.7800	62.885
0.850	0.8266	70.261	0.8182	69.124	-	-		-	_	-
0.899	-	-	<b>-</b>	-	0.7835	70.442	0.7675	69.004	0.7540	67.790
0.900	0.8136	73.226	0.8003	72.025	-		-	<b>–</b> ·	-	-
0.936	-	-	-	-	0.7730	72.314	0.7580	70.911	0.7460	69.788
0.950	0.7999	75.992	0.7867	74.737	_	-	_	-	-	-
1.000	0.7851	78.506	0.7720	77.203	0.7550	75.50	0.7415	74.150	-	

Density and volumetric concentration, ethanol-water mixtures, ( $Oin \frac{gm}{cm^3}$  and  $C_A in \frac{gm \ solute}{100 cm^3}$ Table 4-3.2 (continued)

Reference (153)

**

Data obtained by extrapolation or interpolation of the data of Schwers (1909)

from reference (197)

C _A 707 0.00	<b>e</b> 0.9942	C _A	6	с _А	9	° _A
707 0.00	0.9942	0.00		-		
	0.9942	I <u>A AA</u> .				
01 0 00		<b>0.00</b> ·	0.9905	0.00	0.9860	0.00
9T   9.09	0.9791	9.79	0.9743	9.74	0.9690	9.69
93   19.39	0.9639	19.28	0.9578	19.16	0.9462	1,8.92
37 28.61	0.9473	28.42	0.9400	28.20	0.9325	27.98
61 37.44	0.9285	37.14	0.9200	36.80	0.9110	36.44
59 45.80	0.9077	45.39	0.8982	44.91	0.8888	44.44
41 53.65	0.8846	53.08	0.8742	52.45	0.8638	51.83
98 60.89	0.8601	60.21	0.8496	59.47	0.8389	58.72
32 67.46	0.8336	66.69	0.8226	65.81	0.8117	64.94
55 73.40	0.8055	72.50	0.7939	71.45	0.7820	70.38
505 78.51	0.7740	77.40	0.7620	76.20	0.7501	75.01
	93       19.39         37       28.61         61       37.44         59       45.80         41       53.65         98       60.89         32       67.46         55       73.40         505       78.51	9319.390.96393728.610.94736137.440.92855945.800.90774153.650.88469860.890.86013267.460.83365573.400.805550578.510.7740	9319.390.963919.283728.610.947328.426137.440.928537.145945.800.907745.394153.650.884653.089860.890.860160.213267.460.805572.5050578.510.774077.40	9319.390.963919.280.95783728.610.947328.420.94006137.440.928537.140.92005945.800.907745.390.89824153.650.884653.080.87429860.890.860160.210.84963267.460.833666.690.82265573.400.774077.400.7620	9319.390.963919.280.957819.163728.610.947328.420.940028.206137.440.928537.140.920036.805945.800.907745.390.898244.914153.650.884653.080.874252.459860.890.860160.210.849659.473267.460.833666.690.822665.815573.400.774077.400.762076.20	9319.390.963919.280.957819.160.94623728.610.947328.420.940028.200.93256137.440.928537.140.920036.800.91105945.800.907745.390.898244.910.88884153.650.884653.080.874252.450.86389860.890.860160.210.849659.470.83893267.460.833666.690.822665.810.81175573.400.805572.500.793971.450.782050578.510.774077.400.762076.200.7501

Table 4-3.3 Density and volumetric concentration, acetone-water mixtures (ref. 195

) ( $\operatorname{Qin}_{\mathrm{cm}^3}$  and  $\operatorname{C}_{\mathrm{A}}$  in <u>gm acetone</u>) 100 cm³

					•	
Wt. fr. acetone	65 ⁰ (	)	75 ⁰ C			C
w _A	.6	C _A	9	C _A	6	C _A
0.0	0.9805	0.00	0.9743	0.00	0.9684	0.00
0.1	0.9630	9.63	0.9562	9.56	0.9497	9.50
0.2	0.9436	18.87	0.9353	18.71	0.9276	18.55
0.3	0.9250	27.75	0.9181	27.54	0.9111	27.33
0.4	0.9020	36.08	0.8930	35.72	0.8832	35.33

@ = this work

Wt.fr. acetone	25 ⁰	°C *	40 ⁰ C		50 ⁰ C	@	55 ⁰	C @
WA	ç	´ ^C A	6	C _A	6	CA	6	CA
W _A 0.000 0.030 0.062 0.071 0.112 0.129 0.137 0.189 0.209 0.246 0.267 0.354 0.357 0.354 0.357 0.374 0.420 0.450 0.505 0.520 0.563	Q 1.4787 1.4419 - 1.3929 - 1.3298 1.3219 - 1.2499 1.2166 - - 1.1255 1.1130 1.0775 - 1.0223 1.0137 -	C _A 0.000 4.365 - 9.900 - 17.113 18.065 - 26.098 29.869 - - 40.150 41.575 45.227 - 51.600 52.605 -	Q 1.4450 1.3693 1.3156 - 1.2395 - 1.1700 1.1014 - - 1.0343 - 0.9652	C _A 0.000 - 8.490 - 14.735 - 23.427 - 31.238 38.990 - - 46.545 - - 54.341	<i>Q</i> 1.4172 1.3463 1.2934 - 1.21990 - 1.1521 1.0845 - 1.0183 - 0.9500	C _A 0.000 - 8.347 - 14.486 - 23.056 - 30.760 38.392 - - 45.825 - - 53.478	Q 1.4114 1.3369 1.2843 - 1.2110 - 1.1440 1.0766 - - 1.0115 - 0.943	C _A 0.000 - 8.289 - 14.384 - - 22.886 - - 30.543 38.113 - - 45.518 - - 53.108
0.642 0.687 0.690 0.803 0.818 0.838	0.9418 0.9194 - 0.8639 - 0.8486	60.501 63.153 - 69.346 - 71.107	- 0.8973 - 0.8352 -	- 61.949 - 68.319 -	- - 0.8831 - 0.8203 -	- 60.969 - 67.101 -	- 0.8771 - 0.8140 -	- 60.555 - 66.585 -
1.00	0.7840	78.400	0.7670	76.700	0.7555	75.55	0.7496	74.96

Table 4-3.4	Density and volumetric concentration,	acetone-chloroform mixtures.
· .	$( \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	

k

Karr, Bowes and Scheible (1951) (Ref. 197)

@

This work.

material balance. The equation for this material balance is given below.

The initial and final concentration profiles within the diaphragm are shown in Fig. (4-3.13)



Figure 4-3.13 : Concentration profiles within the diaphragm.

From the principle of conservation of mass the following overall material balance can be made

$$C_1 V_1 + C_2 V_2 + C_D^0 V_D = C_3 V_3 + C_4 V_4 + C_D V_D (4-3.6)$$

The following assumptions are made in the above equation

 $v_1 = v_2 = v_3 = v_4 = v_B$ (1)

(2)

(3)

The material balance is made at the operating temperature.

A linear concentration gradient within the diaphragm at the end of the 24 hour diffusion period is assumed,

i.e. 
$$C_{D}^{o} = C_{2} \text{ and } C_{D} = (C_{3} + C_{4})/2$$

According to the above assumptions the concentration  $C_3$  can be calculated from the equation

$$C_3 = \frac{C_1 + C_2(1 + \lambda)}{(1 + 0.5\lambda)} - C_4$$

where  $\lambda = \frac{V_B}{V_D}$ 

A sample calculation for the integral diffusion coefficient for the

(4-3.7)

acetone-water system is given in Appendix 4-3.2.

## 4-3.3 : Conversion of integral diffusion coefficient to differential diffusion

## coefficient

The integral diffusion coefficients  $\overline{D}_{AB}$  obtained from equation (4-3.1) are converted to the differential diffusion coefficients  $D_{AB}$  by means of the following relationship

$$\vec{D}_{AB} = \frac{1}{C' - C''} \int_{C}^{C} D_{AB} dC$$
 (4-3.8)

where  $C' = \frac{C_2 + C_4}{2}$ ,  $C'' = \frac{C_1 + C_3}{2}$ 

The concentrations  $C_1$ ,  $C_2$ ,  $C_3$  and  $C_4$  are those shown in Fig. 4-3.1.

The differential diffusion coefficients  $D_{AB}$  were obtained from equation (4-3.8) over the complete concentration and temperature range by the graphical method recommended by Dullien and Shemilt (45). In this method the curve of best fit is drawn through the measured integral diffusion coefficients, as shown in Figures 6-1.1, 6-2.1 and 6-3.1. Integral diffusion coefficients were calculated by graphical integration for each run listed in Tables 6-2.1, 6-2.3 and 6-2.5 using equation (4-3.8). Next the average concentration corresponding to this new integral coefficient was found from Figures 6-1.1, 6-2.1, and 6-3.1. The concentration corresponding to this new integral coefficient is the concentration at which the integral coefficients from Tables 6-1.1, 6-1.3, and 6-1.5 become differential coefficients. Thus in Tables 6-2.1, 6-2.2 and 6-2.3 columns 8 and 10 represent differential diffusion coefficients and corresponding concentrations respectively.

## Error analysis

4-4

The apparatus described constitutes a new development and therefore it is necessary to point out its strong and its weak points. Knowledge of the latter will make it possible to estimate the experimental error for a given binary system. Experimental errors in the diffusion coefficients have three sources: (i) errors in measurement, (ii) errors inherent in the construction of the cell and in the operating procedure; (iii) errors due to the impurity of the materials and to the inaccuracy of the physical properties reported in the literature.

## 4-4.1 Errors in measurement

Any errors of measurement such as in the analysis of solutions, in the volumes of test liquids charged and in the setting of the levels in the cell, ultimately contribute to an error in the concentration of the test liquid used. Three methods of determining concentration are used: (a) Mohr's (212) titration method for determination of the concentration of KCl (b) concentrations of ethanol and acetone in mixtures with water are obtained from density measurement at  $25^{\circ}C$  (c) the concentration of acetone in solution with chloroform was obtained using refractive angle measurements.

The error in the diffusion coefficient may be calculated from the

formula :  $\delta D_{AB} = \frac{D_{AB}}{\log_{10} \binom{\Delta C_i}{I}} \left[ \frac{\delta \Delta C_i}{\Delta C_i} \right]^2 + \left( \frac{\delta \Delta C_f}{\Delta C_f} \right)^2 \right]^4 (4-4.1)$ 

C_)

where

ક

$$\begin{split} \delta \Delta C_{i} &= \left[ (\Delta C_{1})^{2} + (\Delta C_{2})^{2} \right]^{\frac{1}{2}} \\ \delta \Delta C_{f} &= \left[ (\Delta C_{3})^{2} + (\Delta C_{4})^{2} \right]^{\frac{1}{2}} \\ \Delta C_{i} &= (C_{1} - C_{2}); \quad \Delta C_{f} = (C_{3})^{2} \end{split}$$

and

i.e.

This method is an application of the principle recommended by Levitt (114). The percentage error in the experimental coefficient as calculated by this method depends on the difference in the concentrations in the two compartments of the cell and on the absolute value of the diffusion coefficient.

#### Error in the cell constant, @ (a)

The error in the constant  $\beta$  was estimated from an equation similar to equation (4-4.1).

$$\delta \beta = \frac{\beta}{\log_{10} \left(\frac{\Delta C_{i}}{\Delta C_{f}}\right)} \left[ \left(\frac{\delta \Delta C_{i}}{\Delta C_{i}}\right)^{2} + \left(\frac{\delta \Delta C_{f}}{\Delta C_{f}}\right)^{2} \right]^{\frac{1}{2}} (4-4.2)$$

The error in the volume measurement with the burette is about  $0.05 \text{ cm}^3$  which gives a maximum error in the concentration of 0.0002g mole/litre. This in turn would give a maximum error of 2% in the In the plot of  $\beta$  against time it was found, for a given cell, value of  $\beta$ . that the average deviation of experimental values of  $\boldsymbol{\beta}$  from the best line through the data points was 0.7%. A sample calculation of the main error in the value of  $\beta$  is given in Appendix 4-4.1.

#### Error in $D_{AB}$ resulting from density measurement **(b)**

In the case of ethanol-water and acetone-water solutions the error With the analytical balance used originates in weighing the pycnometers. the maximum error made in the density determination is  $\frac{+}{-}$  0.00005 gm/cm³.

$(C_1 + C_2)$ g/100 cm ³ )	$\frac{1}{2}(C_2 + C_4) - \frac{1}{2}(C_1 + C_3)$ (g/100 cm ³ )	$D_{AB} \times 10^5$ (cm ² s ⁻¹ )	$\delta D_{AB} \times 10^{7}$ (cm ² s ⁻¹ )	• % probable error
6·225	9.7055	1.0755	0.4956	0.4608
41.565	12.6060	0.3675	0.3909	1.0637
55-460	12-7840	0.4050	0.4587	1.1327
70.304	3.7520	0.7446	1-1889	1.5968
70.101	3.7240	0.7432	1.1908	1.6020
70-115	3.7805	0.7433	1.3437	1.8080
75·858	1.5660	1.0468	3.4069	3.2545
77.700	1-2800	1.1305	3.7996	3.3610



Figure 4-4.1 Purification of mercury

Using this error and applying equation (4-4.1) the error in the diffusion coefficient is calculated. It is easy to deduce that the magnitude of the error calculated by this method depends on the difference in the concentrations in the compartments of the cell and the absolute value of the diffusion coefficient. This is shown in Table 4-4.1. A sample calculation is given in Appendix 4-4.2

(C)

# Error in $D_{AB}$ due to error in refractive angle measurement

The possible error in a refractive angle measurement is

+ 0.001 degrees. This gives a maximum error of 0.00005 gm/cm³ in the concentration. Using equation(4-4.1)the error in the diffusion coefficient is calculated. This error also depends on the concentrations in the two compartments of the cell and on the absolute value of the diffusion coefficient.

## 4-4.2 Errors inherent in the design and operating procedure

In the experiments conducted at elevated temperatures some (a) evaporation takes place from the surface of the meniscus in compartment Therefore the tube K above meniscus is kept in a stream of cold air Α. in order to condense any vapour produced and to return it to the bulk of the At the highest temperature investigated (i.e. 85°C) the test liquid. hold-up of the condensate in the lower part of the tube K was estimated as  $0.05 \text{ cm}^3$ . Because of the air cooling no condensate was noticed in The condensate hold-up above the meniscus is never lost the capillary. as, at the end of the run, it is returned to the bulk of the liquid  $L_A$  by a gentle swirling motion of the whole cell. Thus the error resulting from this effect . can be regarded as negligible.

(b) During the process of diffusion itself some changes in the volume of the test liquids in the two compartments occur. These changes are usually not significant because diffusion is a two-way process: the solute diffusing into one compartment and the solvent diffusing in the opposite direction from that compartment. Figure 4-1.1 shows that tube H provides an expansion space for compartment B and tube K for compartment A. This provision for expansion is necessary but it does not not prevent a small amount of bulk flow through the diaphragm, if the molecular weights of the solvent and the solute differ considerably. It is estimated that for the systems studied in this work this change of volume could amount to approximately 0.05 cm³ in a 24 hrs. run. As mentioned earlier, the error in the diffusion coefficient due to this bulk flow was approximately 1%.

(c)The most serious error due to the experimental procedure can result if the ambient temperature method of terminating a run is applied to a run conducted at an elevated temperature. In this case a bulk flow of liquid L_A to compartment B can occur during after the run' cooling This would not effect the concentration of the test liquid  $L_A$ operations. but it could alter the concentration of the liquid in compartment B. In this case the concentration of test liquid  $L_{B}^{}$  (i.e.  $C_{3}^{}$  ) should be obtained by a material balance as mentioned earlier and not by methods of chemical An example of this is given in Appendix 4-4.3 for a run at analysis.  $85^{\circ}C$  with the ethanol-water system where the ambient temperature method of In the calculation of the diffusion coefficient, the shut-down was used. concentrations from specific gravity measurements and from a material balance were used. This resulted in a deviation of 1.3% in the calculated diffusion coefficients. Thus it is advisable to use the material balance

equation to obtain the final lower compartment liquid concentration i.e.  $C_3$ when the ambient temperature operation method of terminating was applied to terminate a high temperature run.

(d) To verify the literature information (Doane and Drickamer (40)) that pressure variations up to 25 lb./in² gauge have practically no effect on the diffusion coefficient, tests are carried out with the cell described above. The experiments were conducted with a 50 mole % solution of benzene in n-heptane at  $25^{\circ}$ C (see Table 4-4.2). The experimental coefficient determined at 25 lb./in² gauge was 0.06% smaller than that determined at atmospheric pressure. The discrepancy between the two results is not sufficient to class it as being due to the effect of pressure. The experimental error is considerably higher i.e.  $\frac{+}{-}2\%$ .

(e) It is not recommended that a short pre-run be carried out for the establishment of a steady state concentration gradient in the diaphragm. The reasons for this are given by Holmes (89). This is justified if the following structural features of the cell and the operating conditions are observed: the ratio of the pore volume in the diaphragm to one compartment volume is about 0.02; the ratio  $\left( \Delta C_{i} \atop \Delta C_{c} \right)$  is about 2.

Also the determinations of the cell constant  $\hat{\varphi}$  should be carried out under the same operating conditions as those to be used in the subsequent determination of the diffusion coefficients, the temperature effect being made negligible due to the design of the cell.

(f) The requirement of chemical purity of the test liquids and of mercury used in the operation of a cell is self-evident. In this work the mercury was purified after every run (i) by filtering through filter paper with a pin hole and (ii) first washing with 0.25% nitric acid for 6 hrs. and then with distilled water as shown in Fig. 4-4.1, p.143. The other important fact to be pointed out is the requirement of the test liquids to be free of dissolved gases. The slightest trace of air or other inert gas in any of the liquids is sufficient to air-lock the diaphragm pores in operations at elevated temperatures. To avoid this the test liquids must be refluxed, for a sufficiently long period, before the run.

Table 4-4.2

<u>Summary of runs at constant temperature and varying pressures</u> with the cell developed in this work.

Experimental diffusion coefficient of benzene-n-heptane system for the concentration of 50 mole percent at  $25^{\circ}$ C.

Stirrer speed = 40 r.p.m. ; run time = 24 hrs. Cell used = D

Run	Date	Psig		Concen	tration	<b>e</b>	Cavg.,	×A	Elapsed	в	D _{AB} x10 ⁵
Code			с ₁	^C 2	C ₃	C4	$\frac{\text{gm}}{100\text{cm}}^3$	m.f.	time t (hr.)	Fig(4-3.5)	$cm^2/sec.$
D1	12.2.73	Ő	39.066	28.008	35.212	32.357	33.537	0.5055	72	0.27125	2.5094
D2	20.2.73	25	39.066	28.008	35.0145	32.1597	33.537	0.5055	96	0.27142	2.5079

% deviation =  $\begin{bmatrix} \overline{D}_{AB} & \text{at 0 Psig} & - & D_{AB} & \text{at 25 Psig} \\ \hline & D_{AB} & \text{at 25 Psig} \end{bmatrix} x \ 100 = 0.0593\%$ 

@ Concentration in (gm-benzene/100cm³ at 25^oC)



## Materials and their physical properties

## 5-1 Suppliers of the Chemicals used

The chemicals used were obtained from the sources shown in Table 5-1.1. All chemicals were used without further purification, as all of them were of the "analytical reagent" grade.

 Table 5-1.1
 Sources and quality of test liquids

Chemical (grade)	Source
Acetone (A.R.)	Fisons Scientific Apparatus Ltd., Loughborough, England.
Ethanol (A.R.)	James Burrough Ltd., 60, Montford Place, London S.E.11.
Chloroform (A.R.)	B.D.H. Chemicals Ltd., Poole, England.
AgNO3 solution (A.R.)	B.D.H. Chemicals Ltd., Poole, England.
KCl (A.R.)	B.D.H. Chemicals Ltd., Poole, England.
Mercury	Harrison, Clark Ltd., Benfleet, London.

### 5-2

## Physical properties of pure liquids

Table 5-2.1 shows some of the physical properties for pure acetone, chloroform, ethanol and water at various temperatures. These properties are self-diffusion coefficients, molal volumes, latent heats of vaporization and latent heats of vaporization due to hydrogen bonding. The sources of the data are indicated by the references also given in this Table.

т	D*	x 10 ⁵	Ŷ		∆Ĥ _x		∆Ĥ x-F	Ŧ
οĊ	cm ² /sec.	ref.	cm ³ /gmole	ref.	cal/gmole	ref.	cal/gmole	ref.
	Acatoma							
25	$\frac{\text{Acetone:}}{4,835}$	43	74 01	106	7608	106	_	
35	5.380*		75.06	196	7498	196	-	
40	5.660*		75.75	106	7439	106	· _	•
45	5,980*		76.25	196	7373	196	-	
55	6.750*	_	77.46	196	• 7245	196	-	
60	7.000	106	78.00	196	7174	196	· 🗕 ·	· ·
	Chlorofor	m:						
25	2.580	43	80.75	43	7442	196	-	1 1
40	3.110*	-	82.63	196	7274	196	<b></b> .	
55	3.700*	_	84.60	196	7100	196	-	
	Ethanol:				•		•	
25	1.01	43	58.68	196	10010.0	196	5500	18
40	1.50	43	59.67	196	9905.5	196	5380 ,	18
58	2.25	43	61.02	196	9710.0	196	5180	
73	3.04*	-	62.13	190	9495.0	190	5100	
85	3.68*	-	-	-	9300.0	196	5000	18
	Water:	100	10.07	100	10404 5	100	5950	
25	2.236	133	18.07	196		196	5250	18
35	2.900	13 T33		130	10305.0	196	5190	18
40	3.300	40	18.10	4.5	10338.4	106	5160	10
45	3.680	43	18.19	43	10200.0	190	5140	10
50	4.000	43	10.47	43	10194.0	106	5010	
00	4.000	43	10.00	43	10101.0	196	5000	18
70	6 260	43	18 54	196	10008 0	196	4970	18
75	6 420	43	18 56	196	9989.6	196	4960	18
85	7 410	43	18.60	196	9886.3	196	4900	18
	1.710		10.00				1000	_

Table 5-2.1Physical properties of pure liquids

* D^{*} are estimated from eq.(2-5.1) using the known value of D^{*} at 25^oC



Figure 5-2.1 Self-diffusion coefficients of pure liquids (ref.43,106 and also see Appendix 3-3.1a)



Figure 5-2.2 Molal volume of pure liquids (ref.43,196)



Figure 5-2.3 Heats of vaporisation and heats of vaporisation due to hydrogen bonding for pure liquids (ref.196,153,214, 168 and 18)

## 5-3 Physical properties of binary mixtures

The physical properties of the binary liquid mixtures studied in this work i.e. ethanol-water, acetone-water and acetone-chloroform, are presented in Tables specified below.

Viscosity : Viscosity data at various temperatures are presented in

Tables 5-3.1a, 5-3.2a, and 5-3.3a, p162-165. They were obtained by extrapolation or interpolation of the data found in literature and presented in Figures 5-3.1a, 5-3.2a and 5-3.3a,p155-157. <u>Density</u>: Densities for the three binary mixtures for a range of concentrations at various temperatures are reported in Tables 4-3.2, 4-3.3, 4-3.3a, and 4-3.4, p135-138.

The densities of acetone-water mixtures at 25°C and the acetonechloroform mixtures at 40°C, 50°C and 55°C were determined experimentally by this author. The densities at other temperatures for these two binary systems and for the ethanol-water system were obtained from the literature.

<u>Thermodynamic factor</u> : The values of the thermodynamic factor for the three binary mixtures and for various temperatures are presented in Tables 5-3.1b, 5-3.2b and 5-3.3b, p 163-166; and Figures 5-3.1b, 5-3.2b, and 5-3.3b, p 158-161. The value of the thermodynamic factor for the mixtures of ethanol-water at  $25^{\circ}$ C was found in the literature (73). The thermodynamic factor for the ethanol-water mixtures as well as the thermodynamic factors for acetone-water mixtures and for acetone-chloroform mixtures for all the temperatures required were calculated from the vapour pressure data or activity coefficients found in the literature. The method of calculation is shown in Table 5-3.1c for

ethanol-water at  $60^{\circ}$ C. The ratio  $\left(\frac{\partial \ln r_A}{\partial \ln x_A}\right)$  in each case is obtained graphically from the plot of  $\ln r_A$  against  $\ln x_A$  as illustrated in Figure 5-2.1c. The sources of vapour pressure data, concentrations in the liquid and vapour phase or of the activity coefficients are given in the appropriate tables.



Figure 5-3.1a Viscosity of ethanol-water mixtures (obtained by extrapolation or interpolation from experimental data given in ref.197)








Figure 5-3.1b Thermodynamic factor for ethanol-water mixtures (ref.73,74,98,214)



Figure 5-3.1c Calculation of thermodynamic factor for ethanolwater mixture at 60°C

> Δ Udovenko, V. V., Fatkulina, L.G., (1952) (ref.74) Jones, C.A., Schoenborn, E.M., Colburn, A.P., 0. (1943) (ref.98)



Figure 5-3.2b Thermodynamic factor for acetone-water mixtures (ref.191)



Figure 5-3.3b Thermodynamic factor for acetone-chloroform mixtures (ref.137,172)

×	Viscosity in c.p. at T ^O C *									
m.f. ethanol	25 ⁰ C	40 ⁰ C	58 ⁰ C	73 ⁰ C	85 ⁰ C					
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	0.895 1.880 2.310 2.280 2.180 1.870 1.700 1.490 1.310 1.190	0.6565 1.210 1.456 1.500 1.422 1.314 1.220 1.108 1.008 0.914 0.926	0.486 0.790 0.926 0.950 0.922 0.871 0.820 0.770 0.716 0.665 0.615	0.390 0.590 0.680 0.696 0.678 0.650 0.616 0.586 0.551 0.516 0.479	0.335 0.471 0.544 0.569 0.550 0.530 0.510 0.490 0.466 0.440 0.409					

Table 5-3.1aViscosity of ethanol-water mixtures (ref.197)

Data obtained from Figure 5-3.12

Malo fr		0	A		Molo fr	حA			
$\mathbf{x}_{A}^{\text{Mole IP.}}$	25 [°] C	** 40 ⁰ C	** 60 ⁰ C	** 75 ⁰ C	$\overset{\text{More II.}}{\boldsymbol{x}_{A}}$	* 25 ⁰ C	** 40 ⁰ C	** 60 ⁰ C	,** 75 ⁰ C
0.0 0.1 0.2 0.3 0.4 0.5	1.00 0.760 0.410 0.370 0.355 0.410	1.00 <b>6</b> 0.750 0.425 0.445 0.520 0.585	1.000 0.713 0.505 0.410 0.505 0.565	1.000 0.465 0.360 0.360 0.410 0.495	0.6 0.7 0.8 0.9 1.0	0.530 0.655 0.770 0.915 1.000	0.620 0.705 0.795 0.925 1.000	0.628 0.720 0.800 0.885 1.000	0.565 0.715 0.855 0.928 1.000

Table 5-3.1b	Thermodynamic fac	tor for ethano	l-water mixtures.
--------------	-------------------	----------------	-------------------

*

*  $\propto_A$  at 25°C from reference (73) **  $\propto_A$  at 40°C, 60°C and 75°C are calculated from the vapour liquid equilibrium data of references (74, 98, 214).

Mole fr.		μ	AB in c.p.	,	Mole fr.	$\mu_{AB}$ in c.p.			
$\mathbf{x}_{A}^{acetone}$	25 ⁰ C	35 [°] C	45 [°] C	55 [°] C	$\mathbf{x}_{A}$	25 ⁰ C	35 ⁰ C	45 ⁰ C	55 ⁰ C
0.0 0.1 0.2 0.3 0.4 0.5	0.8905 1.346 1.310 1.090 0.822 0.683	0.721 1.040 1.021 0.867 0.670 0.570	0.596 0.831 0.816 0.705 0.560 0.484	0.504 0.682 0.670 0.590 0.475 0.422	0.6 0.7 0.8 0.9 1.0	0.535 0.442 0.381 0.330 0.3012	0.468 0.392 0.339 0.299 0.275	0.407 0.350 0.305 0.274 0.251	0.362 0.313 0.275 0.250 0.2318

Table 5-3.2a         Viscosity of actone-water mixtur	es (ref. 92)	
-------------------------------------------------------	--------------	--

Data obtained from Figure 5-3.22.

Table 5-3.1c Thermodynamic factor for ethanol-water system at 60°C

				· · · · · · · · · · · · · · · · · · ·					
×A mole fr. ethanol	$\mathbf{P}_{\mathbf{A}} = \mathbf{y}_{\mathbf{A}} \mathbf{P}$ mm Hg	$\mathbf{\tilde{b}}_{\mathbf{A}} = \frac{\mathbf{P}_{\mathbf{A}}}{\mathbf{X}_{\mathbf{A}}\mathbf{P}_{\mathbf{A}}^{\mathbf{o}}}$	Ref.	ln × _A	ln Y _A	× _A mole fr ethanol	ln × _A	$\frac{\partial \ln \gamma_A}{\partial \ln x_A}$	$\frac{\partial A=1+}{\partial \ln x_A}$
0.033	45.6	3.926	a	-3.411	1.368	0.0	-	-	1.000
0.051	69 <b>.</b> 2	3.845	Ъ	-2.976	1.347	0.1	-2.303	0.287	0.713
0.086	97.9	3.135	b	-2.453	1.143	0.2	-1.609	0.495	0.505
0.125	120.4	2.736	a	-2.079	1.007	0.3	-1.204	0.590	0.410
0.197	154.1	2.155	b	-1.625	0.768	0.4	-0.916	0.495	0.505
0.267	156.6	1.666	a	-1.321	0.511	0.5	-0.693	0.435	0.565
0.375	193.7	1.421	b	-0.981	0.351	0.6	-0.511	0.372	0.628
0.459	191.9	1.188	a	-0.779	0.172	0.7	-0.357	0.280	0.720
0.509	221.6	1.198	b	-0.675	0.181	0.8	- <b>0.</b> 223	0.200	0.800
0.527	227.0	1.181	b	-0.641	0.166	• 0.9	-0.1054	0.115	0.885
0.545	230.2	1.171	b	-0.607	0.158	1.0	0.0	-	1.00
0.597	227.8	1.084	a	-0.516	0.081	i			
0.682	257.9	1.074	a	-0.383	0.072				
0.808	299.8	1.022	b	-0.213	0.022				
0.851	313.8	1.015	b ·	-0.161	0.015			•	
0.860	317.3	1.010	b	-0.151	0.00995				
0.865	309.9	1.018	a	-0.145	0.0176		•		
0.891	316.3	1.0085	a	-0.1154	0.0085				
0.928	329.4	1.0084	a	-0.0747	0.0084		•		
0.949	335.9	1.0055	a	-0.0523	0.0055			•	
0.972	351.9	0.998	b	-0.028	-0.002			•	
1.000	352.0	1.000	a	0.00	0.00		•	-	
					1	ll			- · · · ·

a

Udovenko, V.V., Fatkulina, L.6, (1952), (ref. 74)

b

Jones, C.A., Schoenborn, E.M., and Colburn, A.P., (1943), (ref. 98)

- P Total pressure
- $P_A$  Partial pressure of A
- $P_A^O$  Vapour pressure of A
- $\mathbf{y}_{\mathbf{A}}$  Mole fr. of A in vapour phase

Mole fr.		×,	× A Mole fr.		Mole fr.	≪A			
$\mathbf{x}_{A}$	25 ⁰ C	35 ⁰ C	45 ⁰ C	55 ⁰ C	$\mathbf{x}_{A}$	25 ⁰ C	35 ⁰ C	45 ⁰ C	55 ⁰ C
0.0 0.1 0.2 0.3 0.4 0.5	1.000 0.637 0.430 0.320 0.300 0.310	1.000 0.615 0.429 0.320 0.315 0.305	1.000 0.576 0.390 0.295 0.285 0.325	1.000 0.545 0.370 0.300 0.255 0.275	0.6 0.7 0.8 0.9 1.0	0.333 0.420 0.525 0.710 1.000	0.345 0.430 0.515 0.698 1.00	0.345 0.445 0.550 0.700 1.00	0.300 0.400 0.547 0.700 1.00

Table 5-3.2bThermodynamic factor for acetone-water mixtures (ref.191)

 Table 5-3.3a
 Viscosity of acetone-chloroform mixtures

Mole fr.	h	AB in c.	p.	Mole fr.	μ	AB in c.p	).
$\mathbf{x}_{A}$	25 [°] C [*]	40°C	55 ⁰ C **	acetone <b>SC</b> A	25°C*	40 [°] C *	55 [°] C **
0.0	0.541	0.472	0.416	0.6	0.450	0.384	0.335
0.1	0.556	0.473	0.410	0.7	0.412	0.355	0.308
0.2	0.552	0.469	0.411	0.8	0.380	0.323	0.280
0.3	0.540	0.458	0.400	0.9	0.350	0.299	0.260
0.4	0.516	0.439	0.381	1.0	0.315	0.272	0.239
0.5	0.486	0.412	0.357		. •		

* Nigham (141)

* Anderson (6)

****** Obtained by extrapolation

Mole fr.		≪ _A	· · · · •	Mole fr.		∝ _A	
$\mathbf{\hat{x}}_{\mathrm{A}}^{\mathrm{acetone}}$	25 ⁰ C*	40 ⁰ C**	55 ⁰ C**	A	25 ⁰ C*	40 ⁰ C**	55 ⁰ C**
0.0	1.00	1.000	1.00	0.6	1.376	1.350	1.30
0.1	1.09	1.166	1.12	0.7	1.253	1.240	1.240
0.2	1.17	1.300	1.23	0.8	1.121	1.160	1.14
0.3	1.45	1.400	1.300	0.9	1.060	1.100	1.03
0.4	1.60	1.480	1.37	1.0	1.000	1.0000	1.000
0.5	1.51	1.45	1.37			• .	· ·

Table 5-3.3b Thermodynamic factor for ac	etone-chloroform mixtures.
------------------------------------------	----------------------------

Mueller & Kearns, 1958 (ref.137) Röck & Schröder, 1957 (ref.172) * **

PART 6

EXPERIMENTAL RESULTS

## PART 6-1 Presentation of experimental results

The primary experimental results, together with the experimental integral diffusion coefficients calculated from them, are reported in Tables 6-1.1, 6-1.2, 6-1.3 and 6-1.4. They are also shown graphically in Figures6-1.1, 6-2.1, 6-3.1. The experimental integral diffusion coefficients were converted into differential diffusion coefficients in Tables 6-2.1, 6-2.3 and 6-2.5 and then plotted in Figures 6-1.2, 6-2.2 and 6-3.2 as differential diffusion coefficients against mole fraction concentrations. These Figures (i.e. 6-1.2, 6-2.2, and 6-3.2) were then used to obtain smoothed differential diffusion coefficients which subsequently were recorded in Tables 6-2.2, 6-2.4, and 6-2.6. The smoothed differential diffusion coefficients were extrapolated or interpolated in order to obtain differential diffusion coefficients at normal boiling points. The interpolation or extrapolation was done in Figures 6-1.3, 6-2.3 and 6-3.3 by plotting  $D_{AB}$  against the reciprocal of absolute temperature. This type of plot ln gives a straight line from which the differential diffusion coefficient is read off from the reciprocal of the boiling point temperature. The differential diffusion coefficients obtained by this method, for all three binary systems, are recorded in Table 6-3.1 and are also shown in Figures 6-1.4, 6-2.4 and 6-3.4.

Figures 6-1.1, 6-2.1 and 6-3.1 were used to obtain, by extrapolation, the diffusion coefficients at infinite dilution. In accordance with the method of Dullien and Shemilt (45) for obtaining differential diffusion coefficients these coefficients at infinite dilution are identical with integral coefficients.





Value of  $\overline{D}_{AB}^{}$  for pure ethanol. Three data points



Figure 6-1.2 Differential diffusion coefficients vs mole fr. concentration for ethanol-water mixtures.





Figure 6-1.3 Variation of  $lnD_{AB}$  with (1/T) for ethanol-water mixtures (data of this work)

> indicate boiling point ł ŧ

Numbers on lines indicate concentration of ethanol, m.f.



Figure 6-1.4 Differential diffusion coefficients at normal boiling points for ethanol-water mixtures.

- $\Delta$  Pratt and Wakeham (158)
- ∇ Smith and Storrow (183)





 $\varphi$  indicate the value of  $\bar{D}_{AB}$  for pure acetone







+ indicate boiling point
Numbers on lines indicate concentration of acetone
in mole fr.





Figure 6-3.1 Integral diffusion coefficients vs volumetric concentration for acetone-chloroform mixtures.



Figure 6-3.2 Differential diffusion coefficients vs mole fr. concentration for acetone-chloroform mixtures.

0	This worl	k i	
Δ	Anderson	et al	(6)
	and the second second	1	· · ·





ln  $D_{A5}$  with (l/T) for acetone-Figure 6-3.3 Variation of chloroform mixtures

indicate boiling point

Number on lines indicate concentration of acetone in mole fr.



Figure 6-3.4

Differential diffusion coefficients at normal boiling points for acetone-chloroform mixtures.

-Table 6-1-1 : Experimental data for diffusion coefficients obtained with the cell 'R'

Stirrer speed = 40 rpm, Run time for each run = 24 hours

(R1 to R35) and (R73 to R75) = Ethanol - water system.

(R36 to R60) = Acetone - water system.

(R61 to R72)

= Acetone - Chloroform system.

Run	Date	Concentrati	Concentration (gm solute/100cm ³ at T				Т	Elapsed	$\beta, cm^{-2}$	$\overline{D}_{AB} \times 10^{5}$
No.		01	<b>C</b> 2	<b>C</b> 2		psig	°C	time	from	2
		01	02	Co	04			hrs.	Fig. 4-3.3	cm /sec.
	<u>Ethanol – W</u>	ater System								
R 1	16. 3.73	0.000	12.112	2.875	9.379	0	25	72	0.2327	1.3431
R 2	19. 3.73	0.000	12.300	3.145	9.300	4	40	96	0.2330	1.4935
R 3	21. 3.73	0.000	12.050	3.892	8.300	6	58	120	0.2334	2.1657
R4	26. 3.73	0.000	11.800	4.250	7.800	6	73	144	0.2337	2.5836
R 5	30. 3.73	0.000	11.850	4.689	7.300	7	85	168	0.2340	3.2496
R 6	2. 4.73	0.000	11.620	4.6067	7.150	7	85	192	0.2344	3.2580
R 7	9. 4.73	0.000	48.723	6.296	43.000	0	25	240 ·	0.2352	0.6054
R 8	12. 4.73	0.000	48.100	8.666	40.000	4	40	264	0.2355	0.9148
R 9	25. 4.73	0.000	46.800	10.050	37.300	6	58	288	0.2358	1.1529
R10	27. 4.73	34.719	48.411	35.805	47.325	0	25	312	0.2362	0.3675
R11	30. 4.73	48.456	62.463	49.771	61.332	0	25	336	0.2365	0.4079
R12	2. 5.73	74.885	76.830	75.300	76.488	0	25	360	0.2369	1.0460
R13	14. 5.73	0.000	46.40	10.346	36.600	6	58	408	0.2376	1.2048
R14	16. 5.73	0.000	44.50	13.850	33.840	7	73	432	0.2380	1.6902
R15	25. 5.73	67.895	72.335	71.645	68.534	0	25	456	0.2383	0.743
R16	30. 5.73	0.00	45.00	15.600	32.200	12	85	480	0.2387	2.100
R17	4. 6.73	47.550	61.80	49.518	60.00	5	40	504	0.2391	0.6450
R18	6. 6.73	46.600	60.60	49.365	58.00	- 8	58	528	0.2394	1.0143
R19	9. 6.73	-	-	-	-	-	-		SPOILT R	UN
R20	22. 6.73	46.300	59.700	49.707	56.450	10	73	582	0.2404	1.4362

## Table 6-1.1 (continued)

Run	Date	Con centrat	on centration (gm solute		³ at T ^O C )	Р	T	Elapsed	<b>B</b> , cm ⁻²	$\overline{D}_{\Delta R} \times 10^5$
No.		-01	C 2	<b>C</b> 3	C1	psig	°C	time	from	
			04	0.5	04			hrs.	Fig.4-3.3	cm ² /sec.
			-							
R21	26. 6.73	45.100	59.000	49.463	54.800	15	85	606	0.2406	2.001
R22	28. 6.73	37.000	47.800	38.477	46.450	5	40	630	0.2409	0.6333
R23	4. 7.73	36.100	47.000	38.128	45.100	10	58	654	0.2413	0.9309
R24	6. 7.73	36.500	45.100	38.500	43.100	9	73	678	0.2416	1.3481
R25	9. 7.73	34.800	45.500	37.876	42.550	13	85	702	0.2420	1.7404
R26	12. 7.73	66.700	70.520	67.465	69.800	7	40	726	0.2423	1.0211
R27	16. 7.73	65.700	69.100	66.620	68.220	9 -	58	750	0.2427	1.5612
<b>R2</b> 8	18. 7.73	64.400	67.900	65.540	66.800	13	73	774	0.2430	2.1133
R29	7. 8.73	63.400	66.500	64.586	65.350	15	85	822	0.2438	2.8889
R30	9. 8.73	73.500	75.500	74.023	75.000	10	40	846	0.2440	1.4770
R31	13. 8.73	72.100	73.980	72.702	73.400	13	58	870	0.2444	2.0381
R32	15. 8.73	70.700	72.500	71.371	71.850	15	73	894 🔒	0.2448	2.7191
R33	20. 8.73	75.680	77.200	76.098	76.800	10	40	918	0.2451	1.584
R34	22. 8.73	74.000	75.500	74.5076	75.010 [·]	14	58	942	0.2455	2.2398
R35	30. 8.73	72.600	74.000	73.200	73.470	15	73	966	0.2459	2.9946
		l ·								
Ace	tone - Wate	r system		• • • •						
R36	14. 9.73	0.000	13.500	3.758	9.900	8	45	1014	0.2466	1.6055
R37	16. 9.73	0.000	23.700	6.929	17.050	10	55	1038	0.2469	1.7322
R38	19. 9.73	0.000	14.200	4.767	9.600	12	65	1062	0.2473	2.1907
R39	22. 9.73	0.000	13.600	4.860	8.900	15	75	1086	0.2476	2.4642
R40	25. 9.73	0.000	13.500	5.309	8.350	18	85	1110	0.2480	3.0209
R41	9.10.73	24.500	40.500	27.388	37.800	6	35	1158	0.2487	0.8680
R42	11.10.73	24.500	40.350	27.636	37.400	9	45	1182	0.2491	0.9780
R43	16.10.73	24.200	39.900	27.735	36.550	12	55	1206	0.2493	1.1637
	1.		5	E .	1 · · ·	1	1	2 · ·		

Table 6-1.1 (continued)

Run	Date	Concentration	(gm solut	$e/100 \mathrm{cm}^3$	at T ^O C)	Р	T	Elapsed	<b>B</b> , cm ⁻²	$\overline{D}_{AD} \times 10^5$
No.		C	C	C	C	psig	°C	time	from	AD
· ·		<u> </u>	<u> </u>	- ⁰ 3	<u> </u>			hrs.	Fig.4-3.3	$cm^2/sec.$
R44	18.10.73	40.000	57.650	43.708	54.150	13	55	1230	0.2498	1.0562
R45	23.10.73	40.100	58.350	43.465	55.200	11	45	1254	0.2501	0.8875
R46	25.10.73	40.500	58.950	43.517	56.150	10	35	1278	0.2505	0.7600
R47	2.11.73	59.435	69.211	61.100	67.661	0	25	1326	0.2512	0.7980
R48	6.11.73	58.800	68.600	60.765	66.750	10	35	1350	0.2516	0.9853
R49	8.11.73	58.100	67.500	60.311	65.400	12	45	1374	0.2519	1.2243
R50	12.11.73	57.400	66.700	59.859	64.350	15	55	1398	0.2522	1.4510
R51	15.11.73	66.400	73.250	68.281	71.450	10	35	1422	0.2526	1.5336
R52	19.11.73	65.800	72.350	67.827	70.400	12	45	1446	0.2529	1.8572
R53	21.11.73	64.700	71.200	66.926	69.050	17	55	1470	0.2533	2.2200
R54	28.11.73	72.139	77.447	73.948	75.700	4	25	1518	0.2540	2.1941
R55	4.12.73	70.450	74.600	72.069	73.030	13	45	1542	0.2544	2.8901
R56	7.12.73	69.400	73.600	71.149	71.900	17	55	1566	0.2547	3.3983
R57	14.12.73	76.831	78.505	77.576	77.780 ·	5	25	1590	0.2550	4.1466
<b>R58</b>	17.12.73	75.800	77.400	76.529	76.690	10	35	1614	0.2554	4.5173
R59	19.12.73	74.600	76.200	75.349	75.470	13	45	1638	0.2558	5.1289
<b>R60</b>	1. 1.74	73.600	75.010	74.277	74.350	17	55	1662	0.2564	5.7936
				× .			· ·			
Aceto	ne - Chloro	oform system								
R61	8. 1.74	0.000	6.950	2.572	4.460	3	255	1710	0.2568	2.5507
R62	12. 1.74	0.000	6.450	2.775	3.750	15	55	1734	0.2572	3.6942
R63	14.1.74	0.000	6.550	2.827	3.800	15	55	1758	0.2576	3.7209

Table 6-1.1 (continued)

						r				•
Run	Date	Concentratio	on (gm solut	e/100cm ³	at T ^C )	Р	T	Elapsed	$\mathbf{B},  \mathrm{cm}^{-2}$	$D_{AD} \times 10^{5}$
No.		C,	C C	C	C,	psig	°C	time	from	
		L	4	3	4			hrs.	Fig.4-3.3	cm /sec.
R64	16. 1.74	6.100	28.500	16.313	18.550	15	55	1782	0.2579	4.4909
<b>R65</b>	18. 1.74	6.200	29.200	16.170	19.500	10	40	1806	0.2582	3.7625
<b>R66</b>	21. 1.74	6.000	29.600	15.428	20.45	3	25	1830	0.2586	3.0076
R67	23. 1.74	28.900	41.650	34.600	36.100	10	40	1854	0.2590	4.1534
<b>R6</b> 8	1. 2.74	28.400	40.650	34.094	35.100	16	55	1878	0.2592	4.84756
<b>R69</b>	5. 2.74	41.250	60.650	49.979	52.150	10	40	1902	0.2596	4.2399
R70	7. 2.74	39.450	59.300	48.733	50.250	17	55	1926	0.2600	4.9720
R71	10. 2.74	68.100	76.500	71.899	72.800	13	40	1950	0.2603	4.3108
<b>R72</b>	12. 2.74	66.300	74.860	70.3107	70.9500	18	55	1974	0.2607	5.0024
	• <u> </u>	•			• *					
Ethan	ol - Water s	system								
<b>R73</b>	21. 2.74	19,600	35 800	23 591	32 000	8	58	2022	0.9614	1 9607
R74	23. 2.74	19,700	35 850	25 140	30 600	15	85	2016	0.2014	1.2007
2075	95 9 74	59 900	66 600	61 949	64 950 .	17	79	2010	0.2017	4.0000 1.0000
L 12	40. 4.14	30.000	00.000	01.242	04.200	17	-73	2070	0.2020	1.8280
-	1	. I	I .		1					

Table 6-1.2: Experimental data for diffusion coefficients obtained with the cell 'H'

Run time for each run = 24 hours. Stirrer speed = 40 r.p.m.

(H1 to H12)

= Ethanol - water system. (H51 to H53)

(H13 to H41) = Acetone - Water system.

(H42 to H50) = Acetone - Chloroform system.

Run	Date	Concentratio	on (gm solu	ite/100 cm	³ at T ^O C)	Р	Т	Elapsed	$\beta$ , cm ⁻²	$\overline{D}_{4}$ $\overline{D}_{4}$ $\overline{D}_{5}$
No.	•	C,	C,	C,	C	psig	°C	time	from	AB
			4	<u>э</u>	4			hrs.	Fig.4-3.4	$cm^2/sec.$
<u>Ethan</u>	ol – water sy	rstem.								
H 1	22. 3.73	0.000	12.000	4.071	8.050	6	58	24	0.2630	2.1097
H 2	28.3. 73	0.000	11.800	4.369	7.550	6	73	48	0.2648	2.4884
H 3	10. 4.73	0.000	48.630	9.720	39.400	· 4	40	96	0,2672	0.9288
H 4	1. 5.73	67.990	72.550	68.763	71.824	0	25	120	0.2690	0.7446
H 5	3. 5.73	- 1	-	-	-	- 1	-	-	-	SPOILT RUN
H 6	10. 5.73	76.870	78.530	77.250	78.150	0	25	166	0.2712	1.1305
H 7	15. 5.73	0.000	46.300	14.550	32.800	7	73	214	0.2750	1.6441
H 8	18. 5.73	0.000	45.400	15.357	30.500	12	85	238	0.2760	1.9997
H 9	26. 5.73	67.912	72.390	68.681	71.652	0	25	262	0.2774	0.7432
H10	1. 6.73	47.600	61.950	49.845	59.850	.5	<b>40</b>	286	0.2782	0.65163
H11	5. 6.73	46.600	60.900	49.744	57.900	8	58	310	0.2800	1.0081
H12	7. 6.73	46.000	59.750	49.740	56.100	10	73	334	0.2814	1.3914
	l, i	ł							. •	
Aceto	ne - Water s	ystem								
H13	10. 9.73	0.000	13.206	3.218	10.121	0	25	382	0.2841	1.1478
H14	12. 9.73	0.000	13.500	3.786	9.850	0	35	406	0.2858	1.4076
H15	15. 9.73	0.000	21.200	6.163	12.250	8	45	430	0.2870	1.4839

Table 6-1.2 (continued)

Run	Date	Concentration (gm solute/100 cm ³		³ at T ^O C)	Р	Т	Elapsed	$\beta$ , cm ⁻²	$D_{AD} \times 10^5$	
No.		C,	C	C,	C,	psig	0	time	from	AB
		1	Z	3	4			hrs.	Fig.4-3.4	$cm^2/sec.$
					-					
. H16	18. 9.73	0.000	15.700	5.281	10.600	10	55	454	0.2882	1.9161
<u>.</u> H17	20. 9.73	0.000	13.900	5.090	8.950	12	65	478	0.2898	2.2220
H18	24. 9.73	0.000	13.500	5.236	8.400	15	75	502	0.2912	2.5040
H19	26. 9.73	0.000	13.200	5.533	7.800	18	85	526	0.2923	3.0296
H20	8.10.73	24.967	40.674	27.770	38.029	0,	25	574	0.2952	0.7252
H21	10,10,73	24.500	40.300	27.659	37.300	6	35	598	0.2963	0.8381
H22	15.10.73	40.250	24.700	28.207	36.900	9	45	622	0.2981	0.9806
H23	17.10.73	24.300	39.900	28.357	36.000	12	55	646	0.2998	1.1963
H24	19.10.73	39.700	57.45	43.979	53.350	13	55	670	0.3080	1.0425
H25	22.10.73	39.900	58.300	43.886	54.500	11	45	694	0.3021	0.9154
H26	24.10.73	40.700	59.00	44.185	55.700	10	35	718	0.3036	0.7669
H27	29.10.73	40.832	59.640	44.012	56.650	0	25	742	0.3065	0.65202
H28	5.11.73	58.850	68.550	61.098	66.400	10	35	790 •	0.3080	0.9859
H29	7.11.73	58.100	67.600	60.696	65.100	12	45	814	0.3092	1.2499
H30	9.11.73	57.450	66.700	60.244	64.000	15	55	838	0.3106	1.5332
H31	13.11.73	67.056	73.897	68.973	72.050	0	25	862	0.3121	1.2870
H32	16.11.73	66.400	73.350	68.571	71.250	10	35	886	0.3134	1.5288
H33	20.11.73	65.600	72.300	67.918	70.050	12	45	910	0.3150	1.8153
H34	22.11.73	64.700	71.250	67.167	68.850	17	55	934	0.3162	2.1599
H35	29.11.73	71.300	75.850	73.147	74.050	10	35	982	0.3186	2.5155
H36	2.12.73	71.300	75.700	73.065	73.980	10	35	1006	0.3201	2.4661
H37	6.12.73	70.500	74.630	72.252	72.920	13	45	1030	0.3218	2.8463
H38	10.12.73	69.500	73.650	71.352	71.840	17	55	1054	0.3232	3.3306
H39	18.12.73	75,900	77.400	76.621	76.695	10	35	1078	0.3244	4.6598
H40	20.12.73	76.200	74.700	75.431	75.485	13	45	1102	0.3260	5.1214
H41	31.12.73	75.010	73.600	74.295	74.330	17	55	1126	0.3274	5.6712

Table 6-1.2 (continued)

Run	Date	Concentration	(gm solut	$e/100 \text{ cm}^3$	at T ^O C)	Р	Т	Elansed	$\mathbf{B} \ \mathrm{cm}^{-2}$	$\bar{D} = \pm 105$
No.		С	C	C	C	nsia		time	from	AB
		1	2	<b>3</b>	<b>4</b>	P218	°C	hra		2
			·····					nrs.	F1g.4-3.4	cm / sec.
A 4 -		6								
Aceto	ne – Chioro	form system								
H42	10. 1.74	0.000	6.850	3.019	3,900	10	40	1174	0.3307	3,1170
H43	15.1. 74	6.300	28.450	16.923	18,050	15	55	1198	0.3320	4.5093
H44	22. 1.74	29.000	42.850	35.240	36.750	3 /	25	1222	0.3335	3.3400
H45	24 .1.74	-	-	- <b>-</b>	-	-	-	-	-	SPOILT RUN
H46	31. 1.74	28.200	40.400	33.123	34.600	15	55	1270	0.3362	4.8471
H47	4. 2.74	42.400	61,950	51.347	53.200	5	25	1294	0.3377	3.5073
H48	6. 2.74	40.200	58.950	49.339	50.000	17	55	1318	0.3390	4.9610
H49	9. 2.74	69.200	77.850	73.950	73.188	5	25	1342	0.3405	3.5859
H50	11. 2.74	66.000	74.650	70.228	70.510	18	55	1366	0.3420	5.0303
		-	•							
Ethan	ol - Water :	system	•					•		
1451	20 2 74	10 500	26 200	22 060	22 0001	E	40	1414	0.0450	
TIED		10.500	30.300	23.009	32.900	. D.	40	1414	0.3458	0.7789
<b>H</b> 52	22. 2.14	19.000	35.200	24.758	30.100	11	73	1438	0.3460	1.5663
H53	24. 2.74	66.600	72,200	68.907	69.950	16	73	1462	0.3475	2.4311
	L	I	1			· · · ·				

			· · ·								
Run	Date	Concentrati	on (gm solut	$e/100 \text{ cm}^3$	³ at T ^o C)	Р	Т	Run	Elapsed	$\beta$ , cm ⁻²	$\overline{D}_{n} \times 10^{5}$
No.		C,	C _c	C,	C,	psig		time	time	from	AB
			z	3	4		°C	(hr)	(hr)	Fig.4-3.6	$cm^2/sec.$
									<u>/</u>		· · · · · · · · · · · · · · · · · · ·
Ethan	ol - Water	svstem -									
<u>I</u> fullui		I									
G 1	17. 7.73	65.45	69.10	66.490	68.100	8	58	24	24	0.2674	1.5385
G 2	19. 7.73	64.30	67.60	65.436	66.50	10	73	24	48	0.2686	2.1189
G 3	26. 7.73	63.50	66.40	64.652	65.28	13	85	24	72	0.2696	2.854
G 4	10. 8.73	73.85	75.80	73.389	75.285	10	40	24	144	0.2730	1.4311
G 5	14. 8.73	72.00	74.00	72.674	73.35	12	58	24	168	0.2742	1.989
G 6	16. 8.73	70.60	72.55	71.373	71.80	15	73	24	192	0.2754	2.774
G 7	21. 8.73	75.65	77.18	76.0993	76.750	10	40	24	216	0.2765	1.518
G 8	23. 8.73	74.05	75.45	74.558	74.960	13.5	58	24	240	0.2776	2.260
G 9	31. 8.73	72.60	74.00	73.168	73.450	13.5	73	24	264	0.2788	2.953
G10	11. 9.73	13.50	0.00	3.733	9,900	0	35	24	312	0.2810	1.4014
											A

Table 6-1.3 :	Experimental	data for diffusior	coefficients	obtained with	the cell	'G'

Stirrer speed = 40 rpm

Run time for each run = 24 hours

Table 6-1.4 : Experimental data for diffusion coefficients obtained with the cell 'D'

Stirrers speed = 40 r.p.m.

Run time for each run = 24 hours

Ethanol - Water system

D 3	14. 3.73	0.000	12.450	2.750	9.705	0	25	24	144	0.27182 *	1.076
D 4	17. 3.73	0.000	12.600	3.377	9.350	. 0 .	35	24	168	0.2720	1.379
D 5	20. 3.73	0.000	12.470	3.545	9.050	2	40	24	192	0.2722	1.510
• D 6	25. 6.73	45.250	58.650	49.732	54.300	10	85	24	240	0.2726	1.985
D 6	25. 6.73	45.250	58,650	49.732	54.300	10	85	24	240	0.2726	1.985

* Fig.4-3.5

Table	6-1•4 (	(continued

	ate	Concentration	<u>ı (gm solut</u>	e/100cm	at T ^O C)	. P	Т	Run	Elapsed	$\beta$ , cm ⁻²	$\tilde{D}_{AD} \ge 10^5$
No.	a dan sa	C ₁	С ₂ `	C ₃	C4	psig	0_	time	time	from	AB 2.
				_	_		<u> </u>	<u>(hr)</u>	_(hr)	Fig.4-3.5	cm ⁻ /sec.
D -7 - 27	7. 6.73	· · 36 <b>.</b> 800	47.800	38.459	42.250	5	40	24	264	0.2728	0.6355
D8 2	2. 7.73	36.100	46.050	38.148	44.100	6.5	58	24	288	0.2730	0.9462
D95	5. 7.73	36.00	46.00	38.700	43.400	8.5	73	24	312	0.2732	1.389
D10 7	7.73	-	-	· _		10	85	24	336	-	<b></b>
D11 10	. 7.73	34.730	45.40	38.036	42.200	10	85	24	360	0.2736	1.729
D12 13	8. 7.73	67.00	70.60	67.783	69.850	6.4	40	24	384	0.2738	1.0185

Table 6-1.5 : Calibration of the cells : R, H, D and G

Stirrers speed = 40 r.p.m.Temperature =  $25^{\circ}C$ 

Run time for each run = 24 hours

Run	Date	Concentratio	n (gm/)	litre)		Elapsed	D _{AB} x10 ⁵	₽ cm ⁻²	
No.		°1	C ₂	C ₃	C ₄	time (hr)	used Fig. 4-3.2		
RC 1 RC 2 RC 3 RC 4 RC 5 RC 6 RC 7	8. 2.73 14. 2.73 4. 4.73 8. 5.73 15. 6.73 2. 8.73 3. 9.73	0.09923 0.09838 0.10048 0.101541 0.101546 0.100998 0.101826	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.070656 0.06945 0.071333 0.071667 0.071583 0.0710 0.07133	0.02876 0.02893 0.02915 0.02987 0.029963 0.029938 0.029938	24 48 216 384 558 798 990	1.86911 1.86981 1.8687 1.86835 1.86831 1.86829 1.86831	0.231896 0.231958 0.23347 0.23887 0.239963 0.242539 0.24579	

Table	6-1•5	(continu	eđ)
-------	-------	----------	-----

Run	Date	Concentratio	n (gm/litre	e)	Elapsed	$\overline{D}_{AB} \times 10^5$	B	
No.		C,	C,	C,	C,	time	used	cm ⁻²
	1	L	4	3	4	(11)	Fig.4-3.2	· .
RC 8	4.10.73	0.091083	0.00	0.063583	0.03608	1134	1.8719	0.24864
RC 9	30.10.73	0.09933	0.00	0.069166	0.030166	1302	1.8692	0.25141
RC10	26.11.73	0.09900	00 <b>°</b> 0	0.06883	0.030166	1494	1.8690	0.25284
RC11	4. 1.73	0.10158	. 0.00	0.07042	0.0311667	1686	1.8680	0.25588
RC12	14. 2.74	0.10166	0.00	0.0700	0.03166	1998	1.8682	0.26237
HC 1	5. 4.73	0.10041	0.0000	0.06875	0.03166	72	1.8683	0.26794
HC 2	12. 5.73	0.10159	0.0000	0.06933	0.03226	190	1.8681	0.271243
HC 3	8. 9.73	0.10095	0.0000	0.0682	0.03275	358	1.8680	0.28159
HC 4	1.10.73	0.09982	0.0000	0.0666	0.03316	550	1.8684	0.29373
HC5	31.10.73	0.10066	0.0000	0.06633	0,03433	766	1.8680	0.30837
HC 6	27.11.73	0.09942	0.000	0.06500	0.03442	958 •	1.8685	0.31714
HC 7	3. 1.74	0.09999	0.000	0.06483	0.03500	1150	1.8683	0.32542
HC 8	15. 2.74	0.10033	0.000	0.06433	0.03600	1390	1.8678	0.34060
DC 1	5. 2.73	0.10056	0.000	0.06858	0.031837	24	1.8684	0.270875
DC 2	6. 2.73	0.09999	0.000	0.06833	0.03184	48	1.8685	0.271145
DC 3	22. 2.73	0.09993	0.000	0.06808	0.031671	120	1.86861	0.27159
DC 4	20. 6.73	0.101086	0.000	0.06892	0.03217	216	1.86825	0.27245
DC 5	7. 9.73	0.10140	0.000	0.06900	0.03240	408	1.8704	0.27384
GC 1	31. 7.73	0.09965	0.000	0.06800	0.03165	96	1.8684	0.2713
GC 2	3. 8.73	0.09973	0.000	0.06800	0.03173	120	1.86861	0.27208
GC 3	5. 9.73	0.10110	0.000	0.06842	0.032683	288	1.86806	0.27985
	£	<u> </u>	L	·	l			

<b></b>				· · · · · · · · · · · · · · · · · · ·						
No	Dum		_	Concentrat	10n,gm EtOH	/100cm ³ at T ⁰ C	$D_{AB} \times 10^{\circ}$ ,	$\bar{D}_{AB} = c''$	Cavg.,T	∞ _A ‡
NO.	No	P		Cavg -			2,	1 D. dc	gmEtOH	mole fr.
	NO.	parg	-0	$(c_1 + c_2)$	$(C_1 + C_3)$	$(C_2 + C_4)$	cm /sec	AB"	100cm ³	corresp.
				2	2	2			at T ^o C	to Cavg.
								°C'	ł	-
1	2	3	4	5	6	7	8	9	10	11
										1
1 1	-	-	25	0.00	-	-	1.250	-	0.000	0.000
2	D 3	0	_ 25	6.225	1.373	11.078	1.076	1.070	6.400	0.026
3	D 7	0	25	24.482	3.148	45.862	0.605	-	-	-
4	R10	0	25	41.565	35.262	47.868	. 0.368	0.325	44.00	0.266
5	R11	0	25	55.460	49.114	61.898	0.405	0.412	56.00	0.408
<u>;</u> 6	H4	0	25	70.300	68.411	72.163	0.745	0.720	70.00	0.680
7	H 9	0	25	70.101	68.297	72.021	0.743	0.725	70.00	0.680
8	<b>R15</b>	0	25	70.115	68.215	71.980	0.743	0.717	70.00	0.680
9	R12	0	25	75.858	75.093	76.659	1.047	1.047	75.86	0.880
10	H 6	-0	25	77.700	77.060	78.340	1.131	1.130	77.50	0.944
11	-	<b>]</b>	25	78.510	· -	-	1.220	_	78.51	1,000
		ļ	]							
12	-	-	40	0.000	-	_	1.700	-	0.00	0.000
13	R 2	4	40	6.150	1.573	10.800	1.494	1.500	0.62	0.025
14	D 5	4	40	6.235	1.773	10.760	1.510	1.510	0.61	0.024
15	R 8	4	40	24.050	4.353	44.050	0.917	-	-	-
16	Н 3	4	40	24.315	4.960	44.015	0.929	· _	_	
17	H51	4	40	27.900	21.285	34.600	0.779	0.775	28.10	0.143
18 ·	R22	5	40	42.400	37.739	47.125	0.633	0,630	42.10	0.255
19	D 7	5	40	42.300	37.628	47.025	0,636	0.632	12 00	0.050
L	<u> </u>							. 0.052	44.00	0.253

 Table 6-2.1 : Conversion of integral diffusion coefficients to differential diffusion coefficients for the mixtures of ethanol and water.

Table 6-2.1 (continued)

oncer	ira:		0120 ²		Concentrati	on,gm EtOH/	/100cm ³ at T ^O C	$\cdot D_{AD} \times 10^5$	$\overline{D}_{A} = c''$	Cavg., +	∞ _A +
	No.	Run	Р	Т	Cavg =	$C^1 =$	$C^{11} =$			gmEtOH	mole fr.
		No.	psig	°C	$(C_1 + C_2)$	(C ₁ +C ₃ )	$(C_{2}+C_{4})$	cm ² /sec	$1$ $D_{AB}$ dC	$100 \mathrm{cm}^3$	corresp.
			• •						c''-c'	at T ^O C	to Cavg.
						4	4		Jei		
	1	2	3	4	5 (	6	7	8	9	10	11
	20	R17	5	40	54.675	48.534	60.900	0.645	0.640	54.80	0.403
	21	H10	5	40	54.775	48.723	60.900	0.636	0.638	54.75	0.402
	22	D12	7	40	68.800	67.392	70.225	1.019	1.020	68.80	0.680
	23	R26	7	40	68.610	67.083	70.160	1.021	1.020	68.80	0.680
10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	24	R30	10	40	74.500	73.762	75.250	1.477	1.460	75.00	0.898
	25	G 4	10	40	74.825	73.620	75.543	1.431	1.435	74.40	0.872
	26	G 7	10	40	76.415	75.875	76.965	1.518	1.540	76.20	0.952
	27	R33	10	40	76.440	75.885	77.000	1.584	1.570	76.60	0.973
	28	-	-	40	77.200	- '	-	1.640	-	77.20	1.000
	1.1						•.				
	29	. 🖬		58	0.000	.—	-	2.400	-	0.000	0.000
	30	R 3	6	58	6.025	1.946	10.175	2.166	2.160	0.580	0.024
	31	H 1	6	58	6.000	2.036	10.025	2.110	2.120	0.620	0.025
. :	32	R 9	6	58	23.400	5.025	42.050	1.153	<b>–</b> '	· -	-
	33	R13	6	58	23.200	5.173	41.500	1.205	. <b>–</b> 1	-	-
÷.,	34	R73	8	58	27.700	21.595	33.900	<b>1.261</b>	1.200	27.00	0.136
	35	R23	7	58	41.55	27.114	-46.050	0.931	0.940	41.50	0.255
•	36	D 8	7	58	41.075	37.124	45.075	0.946	0.941	41.20	0.252
ta ta sa	37	R18	8	58	53.600	48.000	59.300	1.023	1.020	53.60	0.399
	38	H11	8	58	53.650	48.300	59.350	1.017	1.020	53.60	0.399
	39	R27	9	58	67.400	66.160	68.660	1.561	1.550	67.35	0.682
•		1		L	1	1	1				
Table 6-2.1 (continued)

	<u>г                                    </u>			a	THOM	(100 3 1 000	D 105			<u>~</u>
	_			Concentrat	10n,gm EtOH	1/100cm ³ at T ⁻ C	$^{\mathrm{D}}\mathrm{AB}^{\mathrm{X}103}$		Cavg., +	
No.	Run	Р	T	Cavg =	C1 =	$C_{TT} =$	2,		gmEtOH'	mole fr.
	No.	psig	٥C	(C ₁ +C ₂ )	(C ₁ +C ₃ )	(C ₂ +C ₄ )	cm ⁻ /sec	$1$ $D_{AB}$ dC	$100 \mathrm{cm}^3$	corresp.
				2	2	2		c''-c' )	at T ^o C	to Cavg.
L				-	-			C'		
1	2	3	4	5	6	7	8	9	10	11
									1	
40	G 1	9	58	67.275	65.970	68.600	1.539	1.540	67.30	0.681
41	R31	13	58	73.040	72.401	73.690	2.038	2.030	73.15	0.888
42	G 5	13	58	73.000	72.337	73.675	1.989	2.00	73.10	0.882
43	R34	-14	58	74.750	74.254	75.255	2.240	2.245	74.80	0.962
44	G 8	14	58	74.750	74.300	75.200	2.260	2.250	74.80	0.962
45	L	-	58	75.500	-	-	2.360	-	75.50	1.000
46	-	-	73	0.000	· •	-	2.95	-	0.00	0.000
47	R 4	6	73	5.900	2.125	9.800	2.584	2.560	5.700	0.024
48	H 2	6	73	5.900	2.185	9.675	2.488	2.510	6.300	0.025
49	R14	7	73	22.250	6.925	39.170	1.690	-	i -	· _
50	H 7*	7	73	23.150	7.275	39,550	1.667	<b>-</b> .	-	÷.
51	H52	7	73	27.350	22.129	32.650	1.566	1.550	28.20	1.48
52	R24	9	73	40.800	37.500	44.100	1.348	1.350	40.70	0.253
53	D 9	' 9	73	41.000	37.350	44.700	1.389	1.360	40.90	0.255
54	R20	10	73	53.000	48.000	58.075	1.436	1.420	52.80	0.400
55	H12	10	73	52.875	48.050	57.925	1.391	1.400	52.40	0.394
56	R75	13	73	62.700	60.021	65.425	1.828	1.830	62.75	0.589
57	R28	13	73	66.150	65.025	67.350	2.113	2.150	66.00	0.680
58	G 2	13	73	65.950	64.868	67.050	2.119	2.200	66.10	0.684
59	H53	13	73	69.400	67.754	71.075	2.431	2.450	69.30	0.792
60	<b>R</b> 32	15	73	71,600	71 060	72 175	2 719	9 790	71 50	0.976
1					11.000	12,110	. 4. 110	4.140	(1.90	0.870

.

 Table 6-2.1 (continued)

*

		· · ·		Concentration, gm EtOH/100cm ³ at T ^o		$D_{AB} \times 10^5$	$\bar{D}_{AB} = c''$	Cavg., +	$\infty_{A}$ +	
No.	Run	P	Т	Cavg. =	$C^1 =$	$C^{11} =$	2 AD	AB (	gmEtOH	mole fr <del>.</del> +
	No.	psig	°C	$(C_1 + C_2)$	(C ₁ +C ₃ )	$(C_2 + C_4)$	cm ² /sec	$1$ $D_{AB}$ dC	$100 \mathrm{cm}^3$	corresp.
	[ 1			$\left  \frac{-}{2} \right $				C''-C'	at T ^O C	to Cavg.
		L		4	'	<u> </u>		°c'		
1	2	3	4	5	6	7	8	9	10	11
	1 '			1	<b>i</b> '	1				-
61	G16	15	73	71.575	70.987	72.175	2.774	2.750	71.80	0.887
62	R35	15	73	73.300	72.900	73.735	2.995	2.980	73.40	0.966
63	G19	15	73	73.300	72.884	73.725	2.953	2.960	73.20	0.952
<b>64</b>	-	-	73	74.150	<b>I</b> - '	- '	3.100	-	74.15	1.000
• • · ·					1	· · · · · · · · · · · · · · · · · · ·				
65		-	85	0.000	<b>i</b> - '	<b> </b> – '	3.503	-	0.000	0.000
66	R 5	7	85	5.925	2.375	9.575	3.250	3.252	5.920	0.025
67	R 6	7	85	5.810	2.390	9.385	3.258	3.256	5.920	0.025
68	R16	12	85	22.500	7.800	38.600	2.100	-	_	1 -
69	Н 8	12	85	22.700	7.679	37.950	2.000	· •	_	-
70	R74	13	85	27.775	22.420	33.225	2.0830	2.080	27.790	0.147
71	R25	13	85	40.150	36.338	44.025	1.720	1.721	40.10	0.253
72	D11	13	85	40.065	36.383	43.800	1.729	1.724	40.15	0.255
73	R21	15	85	52.050	47.282	56.900	2.001	2.000	52.10	0.403
74	D 6	15	85	51.950	47.491	56.475	1.985	1.990	52.00	0.402
75	G 3	15	85	64.950	64.076	65.840	2.854	2.860	64.80	0.679
76	R29	15	85	64.950	63,993	65.925	2.889	2.880	65.00	0.684
77	R 1	0	35	6.056	1.438	10.746	1.343	_	<b>I</b> – ł	0.024
78	D 4	0	35	6.300	1.688	10.975	1.380	-	<b>i</b> - !	0.025
	1	1		1		• · · · · · · · · · · · · · · · · · · ·		1		1 · · · ·

+ Concentration of ethanol (gm EtOH/100cm³) at which the integral diffusion coefficient in column 8, equals the differential diffusion coefficient.

**±** Concentration in column 10 converted to mole fraction.

These points are not included in calculating differential diffusion coefficients as their accuracy is uncertain.

Differential diffusion coefficient, $D_{AB} \times 10^5$ , cm ² /sec.										
25 ⁰ C	40 ⁰ C	58 ⁰ C	73 ⁰ C	85 ⁰ C						
1.250	1.700	2.400	2.950	3.503						
0.660	1.000	1.500	1.900	2.470						
0,405	0.680	1.020	1.420	1.835						
0.370	0.610	0.930	1.340	1.740						
0.415	0.640	1.020	1.420	1.980						
0.500	0.730	1.185	1.610	2.285						
0.615	0.865	1.380	1.860	2.600						
0.760	1.060	1.590	2.170	2.930						
0.920	1.275	1.810	2.490	-						
1.070	1.475	2.060	2.800	-						
1.220	1.640	2.360	3.100	-						
	Different 25°C 1.250 0.660 0.405 0.370 0.415 0.500 0.615 0.760 0.920 1.070 1.220	Differential diffusion           25°C         40°C           1.250         1.700           0.660         1.000           0.405         0.680           0.370         0.610           0.415         0.640           0.500         0.730           0.615         0.865           0.760         1.060           0.920         1.275           1.070         1.475           1.220         1.640	Differential diffusion coefficient $25^{\circ}C$ $40^{\circ}C$ $58^{\circ}C$ 1.2501.7002.4000.6601.0001.5000.4050.6801.0200.3700.6100.9300.4150.6401.0200.5000.7301.1850.6150.8651.3800.7601.0601.5900.9201.2751.8101.0701.4752.0601.2201.6402.360	Differential diffusion coefficient, $D_{AB} \times 10^5$ $25^{\circ}C$ $40^{\circ}C$ $58^{\circ}C$ $73^{\circ}C$ 1.2501.7002.4002.9500.6601.0001.5001.9000.4050.6801.0201.4200.3700.6100.9301.3400.4150.6401.0201.4200.5000.7301.1851.6100.6150.8651.3801.8600.7601.0601.5902.1700.9201.2751.8102.4901.0701.4752.0602.8001.2201.6402.3603.100						

Table 6-2.2 : Smoothed differential diffusion coefficients for ethanol - water system.

Table 6-2.3 : Conversion of integral diffusion coefficients to differential diffusion coefficients for the mixtures of acetone-water.

.

No.	Run No.	P psig	т °С	$\frac{\frac{\text{Concentra}}{\text{Cavg}}}{\frac{(C_1+C_2)}{2}}$	$\frac{\text{c1} = (C_1 + C_3)}{2}$	$\frac{\frac{\text{one}/100\text{cm}^3 \text{ at } \text{T}^{\text{O}}\text{C}}{\text{C}^{11} =}}{\frac{(\text{C}_2 + \text{C}_4)}{2}}$	$D_{AB} \times 10^5$ , cm ² /sec.	$\overline{D}_{AB} = \int_{as}^{c''} \frac{1}{c''-c'} \int_{as}^{DdC} \frac{DdC}{c'}$	$\frac{\text{Cavg., } + }{\frac{\text{gm AcOH}}{100 \text{cm}^3}}$ at T ^o C	∞A mole fr. corresp. to Cavg.
1	2	3	4	5	6	7	8	9	10	11
1 2 3	- H13 H20	0 0	25 25 25	0.000 6.603 32.820	- 1.609 26.368	- 11.663 39.352	1.300 1.148 0.725	- 1.140 0.720	0.000 6.750 32.850	0.00 0.022 0.140

Table 6-2.3 (continued)

			_				<del>x</del>	Y		
				Concentrat	tion,gm acet	one/100cm ³ at T ^O C	$D_{AB} \times 10^{\circ}$ ,	$\overline{D}_{AB} = c''$	Cavg., †	$  {}^{\infty}_{A} \ddagger$
No.	Run	P	Т	Cavg. =	$C^1 =$	$C^{11} =$			gm AcOH	mole fr.
	No.	psig	°C	$(C_1 + C_2)$	$(C_1 + C_2)$	$(C_2+C_4)$	cm ² /sec.		$100 \mathrm{cm}^3$	corresp.
					<u> </u>			c''-c' DdC	at T ^O C	to Cavg.
				2	2	2		J AB		
								<u> </u>	10	
<u>├</u>	2	3	4	5	6	<u> </u>	8	9	10	<u>_</u>
					(0, (0))	50 1/5	0.050	0.010	<b>T</b> O 100	
4	H27	0	25	50.236	42.422	58.145	0.652	0.649	50.400	0.282
5	R47	0	25	64.323	60.268	68.436	0.798	0.800	64.400	0.482
6	H31	0	25	70.477	68.015	72.974	1.287	1.290	70.520	0.632
7	R54	4	25	74.793	73.044	76.574	2.194	2.200	74.800	0.772
8	R57	5	25	77.668	77.203	78.143	4.147	4.120	77.660	0.939
9	<b>—</b>	-	25	78.505	-	-	5.220	-	78.500	1.00
	ł					· ·				
10	-	-	35	0.00	-	-	1.600	<b>–</b> ,	0.000	0.000
11	G10	0	35	6.750	1.866	11.700	1.401	1.402	6.740	0.024
12	H14	0	35	6.750	1.893	11.675	1.408	1.406	6.760	0.025
13	R41	6	35	32.500	25.944	39.150	0.868	0.862	32.00	0.139
14	H21	6	35	32.400	26.080	38.800	0.838	0.834	32.80	0.143
15	R46	10	35	49.725	42.009	57.550	0.760	0.761	49.73	0.280
16	H26	10	35	49.850	42.442	57.350	0.767	0.766	49.80	0.281
17	H28	10	35	63.700	59.974	67.475	0.986	0.987	63.80	0.486
18	R48	10	35	63,800	59.783	67.675	0,985	0.983	63.70	0.482
19	R51	10	35	69,825	67.340	72.350	1.534	1.540	69,90	0.644
20	H32	10	35	69,875	67.485	72,300	1.529	1.527	69.60	0.634
21	H35	10	35	73.575	72, 223	74.950	2.515	2.513	73 575	0.780
22	H36	10	35	73 500	72 183	74 840	2 466	2 468	73 505	0.779
22	1100	10	35	76 650	76 960	77 048	1 660	1 600	76 690	0.050
20	1109			10.000	10.200		7.000	4.000	10,000	0,300
L	E			I	1	· · · · · · · · · · · · · · · · · · ·	<b>I</b>			

## Table 6-2.3 (continued)

			•• • •		Concentra	tion,gm aceto	one/100cm ³ at T ^o C	$D_{AD} \times 10^5$ ,	$\vec{D}_{AD} = c''$	Cavg., +	- × _A ±	
	No.	Run	Р	Т	Cavg. =	$C^1 =$	$C^{11} = .$	AD 9		gm AcOH	mole fr.	
	•	No.	psig	°C	(C ₁ +C ₂ )	(C ₁ +C ₃ )	(C ₂ +C ₄ )	cm ² /sec.		$100 \mathrm{cm}^3$	corresp.	
			1997 <b>-</b>				$\frac{1}{2}$			at T [°] C	to Cavg.	
	1	2	3	4	5	6	7	8	9	10	11	
										<u>+</u> v	· · · · ·	
	- 24	<b>R58</b>	10	35	76.600	76.164	77.045	4.517	4.512	76.58	0.942	
	25	-	-	35	77.40	-	-	5.600	-	77.40	1.000	
	2 - E						•	•				
	26	-	-	45	0.000	- -	-	1.820	· _	0.00	0.00	
	27	R36	8	45	6.750	1.879	11.700	1.606	1.604	6.750	0.023	
	28	H15	8	45	10.600	3.082	18.225	1.484	1.486	10.600	0.036	
	29	R42	9	45	32.425	26.068	38.875	0.978	0.979	32.430	0.143	
	30	H22	9	45	32.475	26.454	38.575	0.981	0.983	32.460	0.144	
	31	R45	11	45	49.225	41.783	56.775	0.887 ₅	0.889	49.200	0.278	
	32	H25	11	45	49.100	41.893	56.400	0.915	0.913	49.300	0.280	
	33	H29	12	45	62.850	59.398	66.350	1.250	1.246	62.850	0.482	
	34	R49	12	45	62.800	59.205	66.450	1.224	1.222	62.750	0.480	
	35	R52	12	45	69.075	66.814	71.375	1.857	1.859	69.090	0.647	
•	36	H33	12	45	68.950	66.759	71.175	1.815	1.812	68,800	0.638	
	37	R55	13	45	72.525	71.259	73.815	2.890	2.900	72.750	0.792	
	38	H37	13	45	72.565	71.376	73.775	2.846	2.849	72.600	0.785	
	39	H40	13	45	75.450	75.065	75.843	5.121	5.120	75.450	0.948	
	40	R59	13	45	75.400	74.974	75.835	5.071	5.070	75.400	0.946	
	41	-	-	45	76.200	-	-	6.050	-	76.200	1.000	
					•							
	42	-	-	55	0.000	-	-	2.140	- 1	0.000	0.000	
	43	R37	10	55	11.850	3.465	20.375	1.732	1.736	11.700	0.040	
	44	H16	10	55	7.850	2.640	13.150	1.880	1.890	7.770	0.025	

Table 6-2.3 (continued)

1						•		,			· · · · · · · · · · · · · · · · · · ·	
0.0.2	12 No	- Bun	D		Concentra	tion,gm aceto	$me/100 cm^3$	at T ^o C	$D_{\Lambda P} \times 10^5$ ,	$\overline{D}_{AB} = c''$	Cavg., T	[∞] A ‡
	140.	No.	nsig	oc	Cave, =	$c^1 =$	$c^{11} =$	. <b>.</b>	2.		gm AcOH	mole fr.
		1.00	P	·	(C + C)	$(\mathbf{C}_{+} + \mathbf{C}_{+})$	(C +C )		cm ⁻ /sec.	1 DdC	$100 \mathrm{cm}^3$	corresp
				e I	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{4}$			$c^{ii}-c^{i}$	at T [°] C	to Cavg.
2			<u></u>		2	2	<u>2</u>					
	1	G <b>2</b>	3	4	5	6	7		8	9		11
	3	;						÷			· .	
	45	R43	12	55	32.050	25.967	38.225	2 <b>•</b>	1.164	1.160	32.800	0.147
а (1 <b>.</b>	46	H23	12	55	32.100	26.329	37.950		1.196	1.195	32.150	0.143
<b>•</b>	47	R44	13	55	48.825	41.854	55,900	÷.	1.056	1.054	48.800	0.281
	48	H24	13	55	48.575	41.840	55.400		1.042	1.048	48.560	0.274
	49	_H30	15	55	62.075	58.847	65.350		1.458	1.459	62.080	0.484
n an	50	R50	15	55	62.050	58.630	65.525		1.451	1.455	62.060	0.483
-	51	R53	17	55	67.950	65.813	70,125	· .	2.220	2.228	67.990	0.644
<b>*</b> ••	52	H34	17	55	67.975	65.933	70.050		2.160	2.172	67.965	0.641
Artista	53	R56	17	55	71.500	70.275	72.750	4	3.398	3.399	71.550	0.787
-	54	H38	17	55	71.575	70.426	72.745		3.331	3.336	71.500	0.782
•	55	H41	17	55	74.350	73.947	74.670		5.671	5.674	74.300	0.944
	56	R60	17	55	74.305	73.938	74.680		5.794	5.797	74.32	0.945
	57 -	-	- 1	55	75.010	-	-		6.700	. –	75.01	1.000
					1		:					
	58 -	- 1		65	0.000		-		2.4500	-	0.000	0.000
	59	R38	12	65	7.100	2.383	11.900		2.191	2.186	7.45	0.024
	60	H17	12	65	6.950	2.545	11.425		2.222	2,226	6.850	0,022
	}								-			••••
	61	-		75	0.000	-	-		2.740	· _	0.000	0.000
•	62	<b>R</b> 39	15	75	6.800	2.430	11.250		2.464	2.460	7.100	0.023
	63	H18	15	75	6.750	2.618	10.950		2.504	2.500	6.550	0.021
	I	1	1			1						
	L		L	1	L	1	<u>I</u>		I			

Table	6-2•3	(continued)
-------	-------	-------------

No.	Run No.	P psig	T °C	$\frac{\text{Concentra}}{\text{Cavg.}} = \frac{(C_1 + C_2)}{2}$	$\begin{array}{c} \text{tion,gm acet} \\ \text{C}^1 = \\ (\text{C}_1 + \text{C}_3) \\ \underline{-2} \end{array}$	$\begin{array}{c} \text{one/100cm}^3\\ \text{C}^{11} =\\ (\frac{\text{C}_2 + \text{C}_4}{2})\\ \hline 2 \end{array}$	at T ^O C	$D_{AB} \ge 10^5$ , $cm^2/sec$ .	$\vec{\mathbf{D}}_{AB} = \int_{AB}^{C''} \vec{\mathbf{D}}_{AB}$	$\begin{array}{c} \text{Cavg., } \uparrow \\ \frac{\text{gm AcOH}}{100\text{cm}^3} \\ \text{at T}^{\circ}\text{C} \end{array}$	The second secon
1	2	3	4	5	6	7	·	8	9	10	11
64 65 66	- R40 H19	- 18 18	85 85 85	0.000 6.750 6.600	- 2.654 2.767	- 10.925 10.500		3.250 3.021 3.030	- 3.020 3.030	0.000 6.700 6.650	0.000 0.021 0.020

Concentration of acetone (gm acetone/100cm³) at which the integral diffusion coefficient in column 8, equals differential diffusion coefficient.

Concentration in column 10 converted to mole fraction.

Table 6-2.4 : Smoothed differential diffusion coefficients for acetone-water system.

∞ ^	Dif	Differential diffusion coefficient, $D_{AB} \ge 10^5 \text{ cm}^2/\text{sec.}$													
Mole fr. Acetone	25 ⁰ C	35 ⁰ C	45 ⁰ C	55 ⁰ C	65 ⁰ C	75 ⁰ C	85 ⁰ C								
0.00	1.300	1.600	1.820	2.140	2.450	2.740	3.250								
0.05	1.000	1.230	1.390	1.655	1.960	2.220	2.730								
0.10	0.810	0.990	1.120	1.350	-	-	-								
0.20	0.665	0.780	0.910	1.070	-	-									
0.30	0.650	0.780	0.910	1.060	-	- 1	-								
0.40	0.690	0.858	1.040	1.230	-		-								

Table 6-2.4 (continued)

×	ם	Differential diffusion coefficient, $D_{AB} \times 10^5 \text{ cm}^2/\text{sec.}$											
Mole fr. Acetone	25 ⁰ C	35 ⁰ C	45 [°] C	55 ⁰ C	65 ⁰ C	75 ⁰ C	85 [°] C						
0.50	0.820	1.025	1.290	1.510	_		_						
0.60	1.130	1.365	1.640	1.940	-	<b>-</b> ·	-						
0.70	1.680	1.898	2.170	2.600	-		-						
0.80	2.440	2,700	2.990	3.540	-	-	-						
0.90	3.560	3.900	4.310	4.990	-	-	. –						
1.00	5.220	5.600	6.050	6.700	-	-	-						

Table 6-2.5 :	Conversion	of integral	diffusion	coefficient	to	differential	diffusion	coefficient	for th	e mixtu:	res c	эf
acetone-chloro	form		· · · · · · ·									

No.	Run No.	P psig	т °С	$\frac{\text{Concentrat}}{\begin{array}{c}\text{Cavg.} = \\ (C_1 + C_2) \\ \hline 2 \end{array}}$	$\frac{\text{C}^{1} = (C_{1}^{+}C_{3})}{2}$	$\frac{\operatorname{cone}/100 \operatorname{cm}^{3} \operatorname{at} \operatorname{T}^{0} \operatorname{C}}{\operatorname{C}^{11}} = \frac{(\operatorname{C}_{2}+\operatorname{C}_{4})}{2}$	D _{AB} x 10 ⁵ , cm ² /sec.	$\vec{\overline{D}}_{AB}^{T} = \int_{AB}^{C''} \int_{AB}^{DdC} C_{C'}$	Cavg., † <u>gm AcOH</u> 100cm ³ at T [°] C	$\mathbf{x}_{A}$ mole fr. corresp. to Cavg.
1	2	3	4	5	6	7	8	9	10	11
1 2 3 4 5 6	- R61 R66 H44 H47 H49	- 3 3 5	25 25 25 25 25 25 25	0.00 3.475 17.800 35.925 52.175 73.523	- 1.286 10.714 32.120 46.874 71.194	5.705 25.025 39.800 57.575 75.900	2.330 2.551 3.008 3.340 3.507 3.586	- 2.565 3.022 3.354 3.502 3.590	4.300 17.500 35.000 53.500 72.75	0.000 0.058 0.240 0.465 0.702 0.935

Table 6-2.5	5 (continued)	
-------------	---------------	--

Т

No.	Run No.	P psig	Т _о С	$ConcentraCavg. = (C_1+C_2)$	$\underbrace{\begin{array}{c} \text{tion,gm ace} \\ \text{C}^{1_{\pm}} \\ (\text{C}_{1} + \text{C}_{3}) \\ \underline{2} \end{array}}_{2}$	$\frac{\text{tone}/100\text{cm}^3 \text{ at } \text{T}^{\text{O}}\text{C}}{\text{C}^{11}} = (\underbrace{\frac{(\text{C}_2 + \text{C}_4)}{2}}_{2}$	$D_{AB} \times 10^5$ , cm ² /sec.	$\overline{D}_{AB} = \int_{AB}^{C''} \frac{1}{c''-c'} \int_{C'}^{DdC} \frac{DdC}{c'}$	$\begin{array}{c} \text{Cavg., } \dagger \\ \underline{\text{gm AcOH}} \\ 100 \text{cm}^3 \\ \text{at T}^{\circ} \text{C} \end{array}$	$\begin{array}{c} \boldsymbol{\varkappa}_{A} \ddagger \\ \text{mole fr.} \\ \text{corresp.} \\ \text{to Cavg.} \end{array}$
1	2	3	4	5	6	7	8	9	10	11
1 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2 - H42 R65 R67 R69 R71 - R62 R63 R64 H43 H46	3 - - 10 10 10 10 13 - 15 15 15 15 15	4 25 40 40 40 40 40 40 40 55 55 55 55 55 55	5 78.400 0.000 3.425 17.700 35.275 50.990 72.300 76.700 0.00 3.225 3.275 17.300 17.375 34.300	6 - 1.509 11.185 31.750 45.615 69.999 - - 1.388 1.414 14.257 11.612 30.662	7 	8         3.620         2.880         3.117         3.763         4.153         4.240         4.311         4.320         3.470         3.694         3.721         4.491         4.509         4.847	9 - - 3.110 3.750 4.150 4.255 4.308 - - - 3.700 3.710 4.500 4.512 4.842	$ \begin{array}{r} 10 \\ 78.40 \\ - \\ 3.75 \\ 18.00 \\ 35.270 \\ 50.50 \\ 72.00 \\ 72.00 \\ 76.70 \\ - \\ 3.250 \\ 3.250 \\ 17.350 \\ 17.350 \\ 17.750 \\ 33.750 \\ \end{array} $	$ \begin{array}{c} 11\\ 1.000\\ 0.000\\ 0.052\\ 0.250\\ 0.482\\ 0.680\\ 0.947\\ 1.000\\ 0.045\\ 0.045\\ 0.045\\ 0.046\\ 0.242\\ 0.256\\ 0.473\\ \end{array} $
21	R68	16	55	34.525	31.247	37.875	4.848	4.847	34.300	0.480
22	R70 H48		55 55	49.375	44.092	54.775	4.972	4.970	49.00	0.673
23 24	H50	18	55	70.325	44.770 68.114	04.475 72.580	4.961 5.030	4.968	48.50	0.667
25	R72	18	55	70.580	68.305	72.905	5,002	5.025	70.320	0.948
26	-	-	55 [:]	74.96	-	-	5.03	-	74.96	1.000

+ Concentration of acetone (gm acetone/100 cm³) at which the integral diffusion coefficient  $D_{AB}$  in column 8, equals the differential diffusion coefficient.

Concentration in column 10 converted to mole fraction.

~	Differential diffusion co	efficients, D	AB $\times 10^5$ , cm ² /sec.
Marcetone	25 ⁰ C	40 ⁰ C	55 ⁰ C
0.00 0.10	2.330 2.685	2.880 3.300	3.470 3.965
0.20	2.926	3.624	4.355
0.30	3.110	3.880	4.620
0.40	3.26	4.060	4.779
0.50	3.380	4.160	4.861
0.60	3.448	4.212	4.932
0.70	3.500	4.248	4:988
0.80	3.572	4.282	<b>5.</b> 01 <b>0</b>
0.90	3.582	4.301	5.020
1.00	3.620	4.320	<b>5.</b> 030

Table 6-2.6 : Smoothed differential diffusion coefficients for acetone-chloroform system.

Ì

Mole fr.	Ethanol	(A) - Water	r (B)	Acetone	(A) - Wate	r (B)	Acetone	(A) - Chlor	oform (B)
of 'A'	Tb *	$\frac{1}{2}$ x10 ³ , K ⁻¹	$D_{AB}^{X10^5}$	т _b **	$\frac{1}{2}$ x10 ³ ;K ⁻¹	D _{AB} ^{x105}	т _b ***	$\frac{1}{2} \times 10^3$ , K ⁻¹	$D_{AB} \times 10^5$
$\boldsymbol{x}_{\mathrm{A}}$	Č	d.T.D	Fig. 6-1.3	°C	тр	<b>Fig.</b> 6-2.3	°c	тр	Fig.6-3.3
0.0	100	0 690	1 20	100	2 690	2 96	61 5	9 000	9.75
0.0	100	2.000	4.34	100	2.000	.3.00	6.10	2.900	3.75
0.1	86.4	2.781	2.50	66.72	2.941	1.60	62.60	2.978	4.34
0.2	83.2	2.805	1.75	62.20	2.981	1.18	63.60	2.969	4.85
0.3	81.7	2.818	1.61	61.00	2.992	1.14	63.80	2.967	5.05
0.4	80.8	2.825	1.76	60.40	2.997	1.35	64.32	2.963	5.23
0.5	80.0	2.832	2.05	59.80	3.003	1.69	63.55	2.970	5.26
0.6	79.5	2.838	2.20	59.30	3.007	2.06	62.50	2.979	5.28
0.7	79.2	2.842	2.45	58.80	3.012	2.76	61.15	2.991	5.28
0.8	78.8	2.844	2.69	58.20	3.017	3.70	59.50	3.006	<b>5.</b> 25
0.9	78.5	2.845	2.97	57.40	3.024	5.13	57.76	3.022	5.20
1.0	78.5	2.845	3.33	56.20	3.035	6.79	56.20	3.036	5.16
		1							·

Table 6-3.1 : Differential diffusion coefficients at normal boiling points obtained in Figs. 6-1.3, 6-2.3, 6-3.3by interpolation or extrapolation,  $(D_{AB} \times 10^5 \text{ cm}^2/\text{sec.})$ 

Boiling points from Smith and Storrow (183)

.

**

***

Boiling points from Thomas and McAlister (195)

Boiling points from Reinders and Minjer (1947) taken from ref. (197)

.

### PART 7 DISCUSSION

#### DISCUSSION

# 7-1 <u>Comparison of the data of this work with that of other workers</u> 7-1.1 Ethanol-water system

Four previous workers (45, 76, 158, 183) measured diffusion coefficients of ethanol-water mixtures over the complete concentration range: Hammond and Stokes (76) and Dullien and Shemilt (45) at a temperature of 25°C, Smith and Storrow (183) at temperatures 25°C, 40°C, 58°C and 73°C and Pratt and Wakeham (158) at temperatures of 25°C, 35°C, 45°C, 55°C and 65°C. The data of these workers at 25°C are plotted in Fig. 7-1.1 and the best correlating line is drawn. Three data points of Smith and Storrow (183) at high ethanol concentrations deviate so much from the rest of the data / that they are not on Fig. 7-1.1 and have not been taken into account in drawing the best line. The deviations from this line of all the experimental data are reported in Table 7-1.1a. Table 7-1.1a shows that the experimental data of this work have the smallest deviations and agree very closely with the data of Dullien and Shemilt (43). The data of Smith and Storrow (183) have an exceptionally large average deviation of 50%.

There are only two reports giving experimental diffusion coefficients for the ethanol-water system at elevated temperatures. The data of Smith and Storrow (183) were obtained at the same temperatures as in this work. The data of Pratt and Wakeham (158) were obtained at temperatures slightly lower which makes the comparison more difficult. To interpolate or extrapolate the latter data to the temperatures used in this work the method of plotting  $\ln D_{AB}$  against  $\frac{1}{T}$  was used in Fig. 7-1.2. These plots are practically straight lines and the extrapolating or interpolating range is very short so that the distortion of the data is negligible. All the experimental data of this work and from these two



Figure 7-1.1 Differential diffusion coefficients of various authors for ethanol-water mixtures at 25°C





Figure 7-1.2 Variation of  $\ln D_{AB}$  with (1/T) for ethanol-water mixtures (data of Pratt and Wakeham, ref.158)

> indicate boiling point ¥

Numbers on lines indicate concentration of ethanol in mole fr.

papers (183, 158) are assembled in Table 7-1.1b. The percentage average deviation of the other two sets of data from the data of this work was employed in comparing them. Generally the data of Pratt and Wakeham (158) are considerably more consistent with the data of this work than those of Smith and Storrow (183). The latter data deviate up to 100% at high alcohol concentrations range. The experimental coefficients of Pratt and Wakeham (158) exhibit a convexity around the concentration of 0.6 mole fraction at all temperatures. This is illustrated in Fig. 7-1.3 which is taken from Pratt and Wakeham paper (158).



• Pratt and Wakeham (158)

A Hammond and Stokes (76).

Fig. 7-1.3 Diffusion coefficient of ethanol-water mixtures (from reference 158)

This descrepancy increases with temperature, being 12% at 25°C and 36% at 73°C. It should be noticed that none of the authors (24, 43, 76) who contributed data at 25°C reported a convexity, as may be seen in Fig. 7-1.1. In view of the lack of agreement with the other data shown by the data of Pratt and Wakeham (158) and of Smith and Storrow (183) an experimental determination of the diffusion coefficients at 73°C was repeated for the concentrations 0.59 and 0.79 mole fractions (run R75 and H53 in Table 6-2.1) the results confirmed all the earlier ones. Diffusion coefficients at boiling points obtained in this work are compared with those of Pratt and Wakeham (158) and of Smith and Storrow (183) in Fig. 6-1.4 and Table 7-1.1c. All these results were obtained by extrapolation or interpolation from experimental data at temperatures close to boiling points. They exhibit the same type of deviation as the results at all other temperatures.

### 7-1.2 Acetone-water system

A comparison of the data of this work with that of Anderson et al 6 for the acetone-water system at 25[°]C is given in Table 7-1.2 and Fig. 6-2.2. It can be observed that the agreement is very good. No literature data are available for this system at higher temperatures and therefore no comparison is possible.

### 7-1.3 Acetone-chloroform system

Data of Anderson et al (6) for this system at 25^oC and 40^oC are compared with that of the author in Table 7-1.2 and Fig. 6-3.2. The agreement is very good.

The experimental data of Anderson et al (6) were obtained by the Mach-Zehnder type diffusiometer (23) regarded as the most accurate measuring technique. The small deviations between the Anderson et al (6) data and the data of this work constitute a good verification of the accuracy of the three-compartment cell used in this work.

# 7-2 The effect of concentration on the activation energies and on the group $(D_{AB} \mu_{AB} / \alpha_{A})$

Leffler and Cullinan (111), in deriving their correlation for the concentration dependence of diffusion coefficient, assumed that the difference

in the free energies of activation for viscosity and diffusivity is constant i.e.  $(\Delta \bar{E}_{\mu,AB} - \Delta \bar{E}_{D,AB}) = \text{constant}$ . In this work this correlation was modified on the assumption that the difference between the free energies of activation for viscosity and diffusivity is not constant. This can be proved by using the result of Anderson et al (6). They deduced from the Eyring theory that the free energy of activation can be calculated from the following equations

$$\Delta \vec{E}_{\mu,AB} = R \frac{d(\ln \mu_{AB})}{d(\frac{1}{T})}$$
(7-2.1)  
and  $\Delta \vec{E}_{D,AB} = -R \frac{d(\ln D_{AB})}{d(\frac{1}{T})}$ (7-2.2)

The experimental data of viscosity and diffusivity for ethanol-water acetone-water and acetone-chloroform systems will be used to verify assumptions made in this work. By plotting  $\ln \mu_{AB}$  against  $\frac{1}{T}$ in Figures 7-2.1 (a, b and c) free energy of activation for viscosity is obtained from the slopes of the lines. Similarly from the plot of  $\ln D_{AB}$ against  $\frac{1}{T}$  in Figures 6-1.3, 6-2.3 and 6-3.3 free energy of activation for diffusivity is obtained. When the values of free energies of activation are plotted against mole fraction concentration in Figures 7-2.2 (a, b and c) it becomes quite obvious that ( $\Delta E = \mu, AB = \Delta E_{D,AB}$ ) varies with concentration. The values of the free energies of activation are also recorded in Table 7-2.1.

Anderson et al (6) ascribed to Eyring et al (155) the statement that  $(D_{AB} \ \mu_{AB} / \ \alpha_{A})$  varies linearly with concentration. The plot of  $(D_{AB} \ \mu_{AB} / \ \alpha_{A})$  against mole fraction concentration in Figures 7-2.3 (a, b and c) again does not confirm this statement.

Table 7-1.1aDifferential diffusion coefficients of various authors for the<br/>ethanol-water system at 25°C, ( $D_{AB} \times 10^5$ , cm²/sec.)

Mole fr. Differential diffusion coefficient, D _{AB} D											DAD
×	ļ	r	r	<del></del>	····						from
	T-W	%dev.	D-S	%dev.	H-S	%dev.	P-W	%dev.	s-s	%dev.	Fig. (7-1-1)
	1 050	.1 .00	1 000	1.05	1						-
0.000	1.250	+1.08	1.220	-1.35	1.240	+0.27	1.240	+0.270	1.313	+5.0	1.237
0.014	-	. –	1.096	-3.01	-		-		-		1.130
0.020	-		-		1.080	0.00	-		-		1.080
0.026	1.076	+2.97	-		-		-		-		1.045
0.050	-		-		-		0.900	-0.55	-		0.905
0.152	]		-		-	•	0.460	-6.12	-		0.490
0.229			1			· ·	0.390	0.52			0.388
0.266	0.368	-1.87	-		-		-		-		0.375
0.276	-		0.377	0.00	0.362	-3.78	-		-		0.377
0.279	-		-		-		-		0.403	+8.92	0.370
0.308	-		-		-		0.335	-10.67	-		0.375
0.390	-								0.520	+27.45	0.408
0.394	-		0.423	+3.17	0.407	-0.73	1				0.410
0.408	0.405	-3.57	-		-		-		-		0.420
0.439	-		-		-		0.500	+12.36	-		0.445
0.635	-		-		-		0.755	+12.69	-		0.670
0.680	0.745	+1.36	0.747	+1.63	0.766	+4.22	-		-		0.735
0.680	0.743	+1.09	-		-		-		-		0.735
0.680	0.743	+1.09	-	-	-		-		· -		0.735
0.742	-		-		-		-		1.480	+78.30	0.830
0.812	-		-		-	· · .	0.930	-1.06	-		0.940
0.842	-		1.01	+2.54	-		-		-		0.985
0.844	-		-		0.981	-0.71	-		-		0.988
0.880,	1.047	0.00	-		-		-		-		1.047
0.944	1.131	0.00	-		-		-		-		1.131
0.948									2.150	+88.6	1.140
1.00	1.220	0.00	1.220	0.00	1.132	-7.21	1.08	-11.50	2.360	+93.4	1.220
Avg. %	dev.	1.18		1.46		2.46		6.20		50.28	

T-W

This work

D-S Dullien and Shemilt (43)

H-S Hammond and Stokes (76)

P-W Pratt and Wakeham (158)

S-S Smith and Storrow (183)

					·	<b>.</b>	· · · · · · · · · · · · · · · · · · ·			
Mole fr. of ethanol		. D _A	B at 25°C					$D_{AB}$ at 40	)°C	
×A	T-W	. <b>P-</b> W	% dev.	S <b>-S</b>	% dev.	T-W	. <b>P-W</b>	%dev.	S- <b>S</b>	%dev.
0.000	1.25	1.24	-0.8	1.313	5.0	1.70	1.72	+1.2	1.880	10.6
0.050	0.91	0.90	-1.1	-	-	1.32	1.26	-4.5	-	-
0.152	0.49	0.46	-5.7	-	-	0.78	0.70	-10.3	-	-
0.229	0.38	0.39	+2.6	-	-	0.65	0.60	-7.6	-	-
0.245	-	. –		-	. –		-	- 1	-	-
0.269	-	-	-	-	<b>-</b> .	- 1	-	-	-	-
0.279	0.365	-	-	0.403	10.4	-	-	-	-	-
0.291	-	-	-	. <b>-</b>	· <b>-</b>	0.61	-	-	0.594	-2.6
0.308	0.37	0.37	0.0	-		0.610	0.59	-3.3	<b>-</b> .	-
0.390	0.41	-	-	0.52	26.8	<b>—</b> .	-	-	-	· -
0.439	0.43	0.50	16.3	-	-	0.67	0.78 .	16.1	-	-
0.450	-	-	-	-	-	-	-	-	- 1	-
0.472	-	-	<b></b>	-	- •	· –	-	-		-
0.488	-	-	-	-	-	0.71	-	-	0.815	
0.635	0.66	0.74	12.1	·	-	0.93	1.15	23.7	-	-
0.718	-	-	-	-	-	-	-	-	-	-
0.742	0.81	-	-	1.48	82.7	-	-	<b>-</b> '	- 1	-
0.766		-	-	-	-	-	-	-		-
0.770	` <b>-</b>	-	-	-	-	1.21	-	-	1.81	14.8
0.812	0.94	0.93	-1.1	-	<b>-</b>	1.30	1.39	6.9	<b>–</b>	-
0.948	1.14	<b>-</b> .	-	2.15	88.6	<b>–</b> ·	-	_	· _	-
0.955	-	-	-	-	-	-	-	-	-	
0.956	-	-	-	-	-	-	-	<b>–</b> .		-
0.959	-	. –	-	- 1	-	1.56	-	-	2.91	86.5
1.000	1.22	1.08	-11.5	2.36	93.4	1.64	1.54	-6.1	3.20	107.8
Avg. % dev	viation		5•7		51.2			8.9		44.46

	Mole fr.	-	]	AB at 58°C	0				DAB at 73	°C	
-	∞ _A	T-W	P-W	% dev.	S-S	% dev.	T-W	P-W	%dev.	S- <b>S</b>	% dev.
-	0.000	2.40	2.40	0.0	2.63	9.6	2.82	3.26	15.6	3.16	12.0
	0.050	1.90	1.82	-4.2	-	-	2.30	2.40	4.3	· –	-
	0.152	1.18	1.09	-7.6	-	-	1.58	1.54	-2.5	-	
	0.229	0.965	0.942	-2.4	-	-	1.38	1.33	-3.6	-	-
	0.245	-	-	-	· <b>-</b>	<b>-</b>	1.37	-	-	1.69	23.4
	0.269	0.925	. –	-	0.882	-4.6		-	-	· –	-
	0.279	. –	-	-	-	-	-	-	-	-	-
	0.291	_	-	-	-	-	-	-	-	-	-
	0.308	0.93	0.97	4.3	-	<b>-</b>	1.34	1.41	5.2	-	-
	0.390	-	-	-	-	-	-	-	-	-	-
	0.439	1.08	1.22	13.0	-	-	1.48	1.74	17.6	-	-
	0.450	1.10	-	- '	0.912	17.1	-	-	- `	-	-
	0.472		-	-	. 🗕	-	1.55		-	1.41	-9.0
	0.488		<b>-</b> '	-	-	- ·	· -	· _	<b></b>	-	-
	0.635	1.454	1.870	28.6	-	-	1.97	2.68	36.0	-	
	0.718	1.64		-	1.99	21.3	-	-	. –	-	· _
	0.742	-	· –	-	-	-	-	-	-	-	. –
	0.766	-	-	<b>–</b> .	-	-	2.38	-	-	2.70	13.4
	0.770	-	-	-	-	-	-	-	-	-	-
	0.812	1.84	2.18	18.5	-	-	2.53	3.02	19.4	-	<b>_</b> `
	0.948	-		-	· <b>_</b>	-	-	-	-	-	-
	0.955	2.23	-	-	3.91	75.3	-	-	-	-	-
	0.956	-	-	-	-	-	2.97	-	-	4.80	61.6
	0.959	-	-		-	-	-	-	-	-	-
	1.000	2.36	2.21	-6.4	4.40	86.4	3.10	3.11	0.3	5.40	74.2
	Avg. % d	eviation		9.4		35.7			17.4		32.3

Table 7-1.1 b : A comparison of the differential diffusion coefficients of various authors for the ethanol-water system, $(D_{AB} \times 10^5 \text{ cm}^2/\text{sec.})$ 

T-W = This work P-W = Pratt and Wakeham (from Fig. (7-1.2)); S-S=Smith and Storrow (183); % error =  $\begin{bmatrix} D_{AB} & (others) - D_{AB} & (this work) \end{bmatrix} \times 100/D_{AB}$  (this work)

Table 7-1.1cComparison of the differential diffusion coefficients (at boiling points) of various authors<br/>for the ethanol - water system,  $(D_{AB} \times 10^5, cm^2/sec.)$ 

Mole fr.	$D_{AB} \times 10^5$ , cm ² /sec.									
ethanol SC A	T-W	P-W	% dev.	S-S	% dev.					
0.0	4.32	5.05°	16.90	3.47	-20					
0.1	2.50	2.50	0.00	2.87	15					
0.2	1.75	1.70	-2.86	1.96	9					
0.3	1.61	1.70	5.59	1.61	0					
0.4	1.76	1.90	7.95	1.57	-16					
0.5	2.05	2.40	17.07	1.26	-39					
0.6	2.20	3.05	38.64	2.04	-8					
0.7	2.45	3.30	34.69	2.60	6					
0.8	2.69	3.40	26.39	3.19	19					
0.9	2.97	3.45	16.16	3.63	22					
1.0	3.33	3.48	4.50	6.30	89					
Avg. % devi	ation		15.5		22.09					

See Fig. 6-1.4

Mole fr.	D _{AB} × 10	⁵ , cm ² /sec.	
acetone <b>c</b> A	T-W	* A-B	% dev.
0.0 0.0022 0.0831 0.2392 0.4893 0.6653 0.8036 0.9265 0.9696 1.000	1.230 1.280 0.860 0.650 0.800 1.460 2.470 3.940 4.650 5.200	1.285 1.28 0.854 0.635 0.819 1.430 2.390 3.800 4.560 5.10	$\begin{array}{r} 4.47 \\ 0.00 \\ -0.69 \\ -2.31 \\ 2.38 \\ -2.05 \\ -3.24 \\ -3.55 \\ -1.94 \\ -1.92 \end{array}$
Avg. % de	viation		2.26

Table 7-1-2 : Comparison of the data of this work with that of Anderson et al (6) for acetone-water system at 25  $^{\circ}C$  (D AB  $\frac{x \ 10^5}{, \ cm^2/sec.}$ )

._____ l

A-B : Anderson et al (

Table 7-1-3 :	Comparison of the data of this work with that of Anderson et al (	6)
	for acetone-chloroform system at 25°C and 40°C (D , x10 ⁵ , cm ² /se	ec.)

	·····							
Mole fr.	D _{AB} a	t 25 ⁰ C		D _{AB} at 40 ⁰ C				
<b>x</b> A	T-W	А-В	% dev.	T-W	А-В	% dev.		
0.0055 0.2013 0.2081 0.3903 0.3984 0.4989 0.6040 0.7472 0.8592 0.8641 0.9948 0.9953	2.349 - 2.942 3.250 - 3.45 3.52 - 3.57 3.616 3.617	2.35 - 2.97 3.29 - 3.45 3.52 - 3.59 3.63 3.63	0.04 - 0.95 1.23 - 0.0 0.0 0.0 - 0.56 0.39 0.36	2.905 $3.630$ $-$ $-$ $4.055$ $4.160$ $4.215$ $-$ $4.295$ $4.298$ $4.320$ $-$	2.89 $3.58$ $-$ $4.05$ $4.15$ $4.24$ $-$ $4.27$ $4.28$ $4.31$ $-$	-0.52 -1.38 - - -0.12 -0.24 0.59 - - 0.58 -0.42 -0.23 -		
Avg. % de	viation	·	0.44			0.51		

213

6

)

 Table 7-2.1
 Concentration dependence of experimental activation energies

 for diffusive flow and viscous flow for binary liquid mixtures.

$$(\Delta \vec{E}_{D,AB} \text{ and } \Delta \vec{E}_{\mu,AB} \text{ in Kcal/gmole})$$

	Ethanol (A) and		Acetone	(A) and	Acetone (A) and		
Mole fr.	water	(B)	water	· (B)	chloroform (B)		
A	^{∆Ē} D, AB [*]	ΔĒ ** μ, AB	$\Delta \tilde{E} *$ D,AB	ΔĒ ** μ,ΑΒ	^{∆ Ē} * D,AB	ΔĒ ** μ,ΑΒ	
0.0	3.642	3.444	3.168	3.444	2.607	1.696	
0.1	4.474	4.860	3.262	4.393	2.544	1.891	
0.2	5.102	5.152	3.076	4.319	2.549	1.799	
0.3	5.356	5.029	3.123	3.886	2.546	1.827	
0.4	5.467	4.841	3.328	3.551	2.482	1.852	
0.5	5.452	4.499	4.081	3.109	2.381	1.861	
0.6	5.073	4.350	3.500	2.562	2.418	1.836	
0.7	4.631	4.006	2.838	2.245	2.360	1.885	
0.8	4.179	3.744	2.387	2.090	2.3700	1.868	
0.9	4.056	3.600	1.906	1.817	2.357	1.774	
1.0	4.000	3.508	1.653	1.692	2.384	1.692	

From Figures (6-1.3), (6-2.3), and (6-3.3) and equation (7-2.2) From Figures (7-2.1a), (7-2.1b) and (7-2.1c) and equation (7-2.1)



Figure 7-2.1a Variation of ln  $\mu_{\rm AB}$  with (l/T) for ethanol-water mixtures (from Table 5-3.1a)

Numbers on lines indicate concentration of ethanol in mole fr.





Figure 7-2.1b Variation of  $\ln \mu_{AB}$  with (1/T) for acetonewater mixtures (from Table 5-3.2a)

> Numbers on lines indicate concentration of acetone in mole fr.





+ ↑ indicate boiling point
Numbers on lines indicate concentration of acetone
in mole fr.

217



Figure 7-2.2a Experimental activation energies for viscosity and diffusion for ethanol-water mixtures (from Table 7-2.1).



Figure 7-2.2b Experimental activation energies for viscosity and diffusion for acetone-water mixtures (from Table 7-2.1).



Figure 7-2.2c Experimental activation energies for viscosity and diffusion for acetone-chloroform mixtures (from Table 7-2.1).

Table 7-2.2a Concentration dependence of  $(D_{AB} \ \mu_{AB})$  and  $(D_{AB} \ \mu_{AB}/\alpha_A)$ for ethanol-water mixtures.  $(D_{AB} \ x \ 10^5 \ \text{in cm}^2/\text{sec} \ ; \ \mu_{AB} \ \text{in centipoises})$ 

Mole fr. ethanol ^X A	25 ⁰ C		40 ⁰ C		58 ⁰ C		73 [°] C		
	D _{AB} μ _{AB}	$rac{D_{AB}\mu_{AB}}{\sigma_A}$	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\alpha_{A}}$	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\alpha_{A}}$	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\propto_A}$	
	0.0	1.1098	1.1098	1.1161	1.116	1.1664	1.166	1.1505	1.150
	0.1	1.2596	1,657	1.2100	1.613	1.1850	1.662	1.1210	2.411
	0.2	0.9471	2.310	0.9901	2.330	0.9445	1.870	0.9656	2.682
	0.3	0.8436	2.280	0.9150	2.056	0.8835	2.155	0.9326	2.591
	0.4	0.8829	2.487	0.9101	1.750	0.9404	1.862	0.9628	2.348
	0.5	0.9163	2.235	0.9563	1.635	1.0321	1.827	1.0465	2.1141
	0.6	1.0370	1.957	1.0553	1.702	1.1316	1.802	1.1458	2.028
	0.7	1.1175	1.706	1.1745	1.666	1.2243	1.700	1.2716	1.779
	0.8	1.1790	1.531	1.2852	1.617	1.2960	1.620	1.3720	1.605
	0.9	1.2733	1.392	1.3482	1.457	1.3699	1.548	1.4448	1.557
	1.0	1.3176	1.318	1.3710	1.371	1.4514	1.451	1.4849	1.485
•								•	

Values of  $D_{AB}$ ,  $\mu_{AB}$  and  $\propto_A$  are found from Tables 6-2.2, 5-3.1a and 5-3.1b respectively.

221

Table 7-2.2b Concentration dependence of  $(D_{AB} \ \mu_{AB})$  and  $(D_{AB} \ \mu_{AB} \ \alpha_{A})$ for acetone-water mixtures,  $(D_{AB} \ x \ 10^5, \ cm^2/sec, \ \mu_{AB}$  in centipoises)

Mole fr. Acetone [×] A	25 ⁰ C		^{35°} C		45 ⁰ C		55 ⁰ C	
	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\alpha_A}$	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\alpha_{A}}$	D _{AB} µ _{AB}	$\frac{D_{AB}\mu_{AB}}{\alpha_{A}}$	D _{AB} µ _{AB}	$rac{\mathbf{D}_{\mathbf{A}\mathbf{B}}\boldsymbol{\mu}_{\mathbf{A}\mathbf{B}}}{\boldsymbol{lpha}_{\mathbf{A}}}$
0.00	1.1501	1.150	1.1536	1.154	1.0847	1.085	1.0786	1.079
0.10	1.0773	1.691	1.0296	1.674	0.9307	1.616	0.9207	1.689
0.20	0.8010	1.863	0.7964	1.856	0.7426	1.904	0.7169	1.938
0.30	0.7056	2.205	0.6763	2.113	0.6416	2.175	0.6254	2.085
0.40	0.6195	2.065	0.5749	1.825	0.5824	2.044	0.5843	2.291
0.50	0.5950	1.919	0.5843	1.916	0.6244	1,915	0.6372	2.317
0.60	0.6418	1.945	0.6388	1.852	0.6675	1.935	0.7023	2.341
0.70	0.7680	1.873	0.7440	1.730	0.7595	1.707	0.8138	2.035
0.80	0.9635	1.853	0.9153	1.777	0.9120	1.658	0.9735	1.780
0.90	1.2580	1.772	1.1661	1.772	1.1809	1.687	1.2475	1.782
1.00	1.7888	1.789	1.5400	1.540	1.5186	1.519	1.5531	1.553

Values of  $\rm D_{AB}$  ,  $\mu_{AB}$  and  $\alpha_{A}$  are found from Tables 6-2.4, 5-3.2a and 5-3.2b respectively.

Table 7-2.2c Concentration dependence of  $(D_{AB} \mu_{AB})$  and  $(D_{AB} \mu_{AB} / \alpha_{A})$ for acetone-chloroform mixtures,  $(D_{AB} \times 10^5 \text{ in cm}^2/\text{sec. } \mu_{AB}$ in centipoises)

<b></b>	······································							
Mole fr	25 ⁰ C		4	0 ⁰ C	55 ⁰ C			
acetone	$D_{AB} \mu_{AB}$	$\underline{D}_{AB}\mu_{AB}$	$D_{AB} \mu_{AB}$	DAB AB	$D_{AB} \mu_{AB}$	$D_{AB}\mu_{AB}$		
Α		$\infty_{\mathbf{A}}$		$\propto_{\rm A}$		$\propto_{\rm A}$		
0.0	1.2605	1.261	1.3594	1.359	1.4435	1.444		
0.1	1.4929	1.367	1.5609	1.346	1.6277	1.453		
0.2	1.6152	1.378	1.6978	1.306	1.7920	1.457		
0.3	1.6794	1.155	1.7770	1.269	1.8480	1.422		
0.4	1.6822	1.049	1.7823	1.204	1.8212	1.329		
0.5	1.6427	1.083	1.7139	1.182	1.7350	1.266		
0.6	1.5516	1.128	1.6166	1.198	1.6516	1.270		
0.7	1.4420	1.151	1.5088	1.217	1.5369	1.239		
0.8	1.3460	1.201	1.3824	1.192	1.4280	1.253		
. 0.9	1.2537	1.183	1.2857	1.169	1.3520	1.313		
1.0	1.1403	1.140	1.1750	1.175	1.2667	1.267		

Values of  $D_{AB}$ ,  $\mu_{AB}$  and  $\propto_A$  are found from Tables 6-2.6, 5-3.31 and 5-3.3b respectively.



Figure 7-2.3a Concentration dependence of (  $D_{AB}^{\mu}\mu_{AB}^{\mu}$  ) and ( $D_{AB}^{\mu}\mu_{AB}^{\mu}/\alpha_{A}^{\mu}$ ) for ethanol-water mixtures.



Figure 7-2.3b Concentration dependence of  $(D_{AB}^{\mu}\mu_{AB})$  and  $(D_{AB}^{\mu}\mu_{AB}^{\mu}/\alpha_{A})$  for acetone-water mixtures.



Figure 7-2.3c Concentration dependence of  $(D_{AB}\mu_{AB})$  and  $(D_{AB}\mu_{AB}/\alpha_A)$  for acetone-chloroform mixtures.
#### 7-3 Testing the correlations with experimental data

#### 7-3.1 Correlations for diffusion coefficients in concentrated solutions

The correlation developed in this work i.e. eq. (3-1.21) as well as the correlation of Leffler and Cullinan i.e. eq. (2-4.16) and that of Vignes i.e. eq. (2-4.12) were tested with the experimental data of this work for ethanol-water, acetone-water and acetone-chloroform mixtures at all temperatures studied. The necessary physical properties required for these calculations are given in section 5. The comparisons of the predicted values, by means of these equations, with the experimental data are given in Tables 7-3.1 (a, b and c) and in Figures 7-3.1 (a, b and c).

For ethanol-water the Leffler and Cullinan equation (2-4.16) consistently underpredicts for all temperatures giving an average deviation of -30%, the Vignes equation (2-4.12) overpredicts at temperatures of 25°C, 40°C and 58°C with an average deviation of +14% while it gives a negative deviation of -12% at 73°C, and equation (3-1.21) gives an average deviation of 9% for all the results and has a tendency to underpredict.

For the acetone-water the Leffler and Cullinan equation (2-4.16) consistantly underpredicts with an average deviation of about 29%, the Vignes equation (2-4.12) mainly underpredicts with an average deviation of about 14% and equation (3-1.21) mainly underpredicts with an average deviation of 10%.

For acetone-chloroform the Leffler and Cullinan equation (2-4.16) gives slightly better predictions than the other two equations, the average deviation being 4.6%, the Vignes equation (2-4.12) and equation (3-1.21) give an average deviation of 13.4% and 8.3% respectively. It emerges from this comparison of the experimental data with the predicted diffusion coefficients that eq. (3-1.21) gives better predictions than the other two equations in the case of systems when both components, or one of them, have the property of association. The Leffler and Cullinan eq. (2-4.16), on the other hand, predicts best in the case of binary systems in which both components are non-associating.

#### 7-3.2 Correlations for diffusion coefficients at infinite dilution

Equation (3-2.4) developed in section 3-2 for the prediction of diffusion coefficients at infinite dilution was tested, together with the equations of Wilke and Chang, eq. (2-3.16), Sitaraman et al, eq (2-3.27) and King et al (2-3.29), with the experimental data of this work for ethanolwater, acetone-water and acetone-chloroform mixtures. The necessary physical properties for these calculations are given in Appendices 3-2.1 and 3-2.2. The equations are tested for all temperatures up to the normal boiling points of the test solvents. The predicted values are compared with the experimental values in Tables 7-3.2 (a, b and c). Inspection of these tables shows that eq. (3-2.4) compares quite favourably with the other equations.

# 7-3.3 <u>Correlation for temperature dependence of diffusion coefficients</u> at infinite dilution

In section 3-4.2, a correlation was presented for predicting the diffusion coefficients of dilute binary mixtures at various temperatures from a single value of a diffusion coefficient at one temperature. To test eq. (3-4.7) diffusion coefficients at infinite dilution for the systems, ethanol-water, acetone-water and acetone-chloroform, at 25^oC were

treated as reference coefficients. The critical temperatures for the solvents involved were taken from reference (168). The values of the predicted coefficients are recorded in Table 7-3.3 (a, b and c) and compared with the corresponding experimental values. In the same Table diffusion coefficients predicted by the Stokes-Einstein eq. (2-5.1) are also given and compared with the experimental ones. The deviations of the predicted coefficients from the experimental coefficients for both equations are comparable. It is to be noted that the values of the coefficients at temperatures close to boiling points were not taken into account when calculating the average deviations.



Figure 7-3.la Comparison of the experimental diffusion coefficients with the predicted coefficients for ethanol-water system.

۰.	 2

Vignes eq.(2-4.12) Leffler & Cullinan eq.(2-4.16) This work, eq.(3-1.21) Experimental, from Table (6-2.2)



Figure 7-3.1a (continued)



Figure 7-3.1b Comparison of the experimental diffusion coefficients with the predicted coefficients for acetone-water system.

______ Vignes eq.(2-4.12)
______ Leffler & Cullinan eq.(2-4.16)
______ This work, eq.(3.1.21)
______ Experimental, from Table 6-2.4







Figure 7-3.1c

Comparison of the experimental diffusion coefficients with the predicted coefficients for acetone-chloroform system

• •	Vignes eq. (2-4.12)
	Leffler & Cullinan eq. (2-4.16)
	This work, eq. (3-1.21)
	Experimental, from Table 6-2.6

conc. of	Exper. DAD	This wo	rk, calculated	Calculate	d from	Calculate	ed from
ethanol	from AB	from eq	. ( 3-1.21 )	Leffler-C	ullinan	Vignes e	<b>1.</b> (2-4.12)
$\boldsymbol{x}_{\mathrm{A}}$	Fig. (6-1.2)	ת	% error	eq. (2-4	.16)		
		^D AB	<i>/</i> 0 CIIOI .	D _{AB}	% error	D _{AB}	% error
-	<u>Temperature =</u>	<u>25°C</u>				-	
0.0	1.240	1.240	<b>-</b> '	1.240	-	1.240	-
0.1	0.670	0.678	1.3	0.457	-31.0	0.942	40.6
0.2	0.410	0.348	-15.0	0.205	-50.0	0.508	23.9
0.3	0.370	0.326	-11.0	0.191	-48.0	0.459	24.1
0.4	0.405	0.334	-17.6	0.202	-50.0	0.440	8.6
0.5	0.490	0.414	-15.4	0.267	-45.0	0.508	3.7
0.6	0.610	0.564	-7.5	0.387	-36.0	0.657	7.7
0.7	0.750	0.741	-1.0	0.556	-26.0	0.812	8.3
0.8	0.900	0.916	1.8	0.758	-15.5	0.955	6.1
0.9	1.070	1.117	4.4	1.011	-5.6	1.135	6.1
1.0	1.220	1.220	-	1.220	-	1.220	-
% averag	e deviation	e de la composición d	8.3		34.0		14.3
	<u>Temperature =</u>	<u>40°C</u>				!	
0.0	1.700	1.700	0.00	1.700	0.00	1.700	0.0
0.1	1.000	0.986	-1.37	0.706	-29.40	1.270	27.0
0.2	0.680	0.530	-22.04	0.339	-50.1	0.717	5.5
0.3	0.610	0.564	-7.6	0.352	-42.3	0.748	22.7
0.4	0.640	0.692	8.0	0.443	-30.8	0.871	36.2
0.5	0.730	0.820	12.3	0.551	-24.6	0.977	33.8

Table 7-3.1aComparison of the experimental differential diffusion coefficients with the predicted coefficients for<br/>ethanol-water system,  $(D_{AB} \times 10^5, \text{ cm}^2/\text{sec.})$ 

Table 7-3.1a (continued)

conc. of ethanol $\mathbf{x}_{\mathbf{A}}$	Exper.D _{AB} from	This wor from eq.	k, calculated (3-1.21)	Calculate Leffler-C	d from ullinan	Calculate Vignes eq	d from 1. (2-4.12)
A	F1G• (0-1•2)	D _{AB}	% error	D _{AB}	% error	DAB 7	% error
	<u>Temperature =</u>	$40^{\circ}C$ (con	itinued)				
0.6	0.865	0.905	4.6	0.642	-25.8	1.032	19.3
0.7	1.060	1.074	1.4	0.820	-22.6	1.169	10.3
0.8	1.275	1.253	-1.7	1.038	-18.6	1.313	3.0
0.9	1.475	1.497	1.4	1.359	-7.9	1.522	3.2
1.0	1.640	1.640	-0.00	1.640	0.00	1.640	0.0
% averag	e deviation		6.7		28.0		17.9
	Temperature =	58 ⁰ C					
0.0	2.400	2.400	0.00	2.400	0.00	2.400	. 0.0
0.1	1.500	1.409	-6.1	1.076	-28.3	1.708	13.9
0.2	1.020	0.959	-6.00	0.665 ·	-34.9	1.208	18.4
0.3	0.930	0.793	-14.8	0.538	-42.20	0.979	5.3
0.4	1.020	1.014	-0.6	0.697	-31.6	1.204	18.0
0.5	1.185	1.183	-0.1	0.844	-28.8	1.345	13.5
0.6	1.380	1.363	-1.2	1.018	-26.20	1.492	8.1
0.7	1.590	1.608	1.2	1.271	-20.1	1.708	7.4
0.8	1.810	1.833	1.3	1.552	-14.2	<b>1</b> .894	4.7
0.9	2,060	2.064	0.20	1.890	-8.36	2.092	1.6
1.0	2.360	2.360	0.00	2.360	0.00	2.360	0.0
% averag	e deviation		3.6		26.1		10.1

Table 7-3.1a (continued)

$conc. of ethanol \mathbf{x}_{A}$	Exper.D _{AB} from Fig. (6-1.2)	This wor from eq.	k, calculated . (3-1.21)	Calculated Leffler-Cu eq. (2-4	from Illinan .16)	Calculate Vignes eq	d from 1. (2-4.12)
		D _{AB}	% error	D _{AB}	% error	DAB	% error
Tempera	$ture = 73^{\circ}C$	0.050	0.00	9 050	0.00	9 050	0.0
0.0	2.950	2.950	-38.0	2.950 0.930	-51.0	1.379	-27.4
0.2	1.420	0.889	-37.4	0.641	-54.9	1.073	-24.5
0.3	1.340	0.911	-32.00	0.642	-52.1	1.078	-19.6
0.4	1.420	1.081	-23.9	0.770	-45.7	1.234	-13.1
0.5	1.610	1.359	-15.6	0.995	-38.2	1.497	-7.0
0.6	1.860	1.610	-13.5	1.230	-33.9	1.717	-7.7
0.7	2.170	2.093	-3.6	1.678	-22.7	2.184	0.6
0.8	2.490	2.565	3.0	2.190	-12.1	2.624	0.4 0.0
0.9	2.800	2.835	1.3	2.603	-7.0	2.003	• 4.4
1.0	3.100	3.100	0.00	3.100		3.100	
% averag	e deviation		18.7		35.3		11.9

Conc. of acetone $\mathbf{x}_{A}$	Exper.D _{AB} from Fig.(6-2.2)	This wor from eq.	rk, calculated (3-1.21)	Calculate Leffler-C eq. (2-2	ed from Cullinan 4.16)	Calculated Vignes eq.	from (2-4.12)
¹ 4		D _{AB}	% error	D _{AB}	% error	D _{AB}	% error
	Temperature =	= 25 ⁰ C					
0.0	1.295	1.285	-0.0	1.285	0.0	1.285	0.0
0.1	0.810	0.771	-4.8	0.575	-29.1	0.940	16.0
0.2	0.620	0.604	-2.5	0.416	-32.8	0.728	17.4
0.3	0.630	0.550	-12.8	0.373	-40.8	0.622	-1.3
0.4	0.700	0.654	-6.6	0.462	-34.1	0.669	-4.4
0.5	0.850	0.848	-0.2	0.629	-26.0	0.794	-6.6
0.6	1.120	1.099	-1.9	0.853	-23.8	0.970	-13.4
0.7	1.600	1.614	0.9	1.320	-17.5	1.383	-13.6
0.8	2.350	2.345	-0.2	2.045	-13.0	2.013	-14.3
0.9	3.400	3.482	2.4	3.227	-5.1	3.155	-7.2
1.0	5.200	.5.200	0.0	5.200	0.0	5.200	0.0
% averag	e deviation		3.6		24.7		10.5
	Temperature =	= 35 ⁰ C					
0.0	1.600	1.600	0.00	1.600	0.00	1.600	0.0
0.1	0.990	0.928	-6.3	0.702	-29.1	1.115	12.7
0.2	0.780	0.737	-5.6	0.514	-34.2	0.882	13.1
0.3	0.780	0.669	-14.2	0.464	-40.5	0.746	-4.4
0.4	0.858	0.823	-2.9	0.609	-29.0	0.832	-3.0
0.5	1.025	0.963	-6.0	0.713	-30.4	0.913	-10.9

Table 7-3.1bComparison of the experimental differential diffusion coefficients with the predicted coefficients for<br/>acetone-water system,  $(D_{AB} \times 10^5, \text{ cm}^2/\text{sec.})$ 

Table 7-3.1b (continued)

Conc. of acetone $\mathbf{x}_{A}$	Exper. D _{AB} from Fig.(6-2.2)	This wo from Eq	rk, calculated 1. (3_1.21)	Calculate Leffler-C eq. (2-2	d from Cullinan 4.16)	Calculated Vignes eq.	from (2-4.12)
		D _{AB}	% error	D _{AB}	% error	D _{AB}	% error
	Temperature =	<u>35⁰C</u> (c	ontinued)				
0.6	1.365	1.306	-4.3	1.011	-25.9	1.171	-14.2
0.7	1.898	1.900	0.10	1.549	-18.4	1.654	-12.9
0.8	2.700	2.561	-5.2	2.208	-18.2	2.245	-16.9
0.9	3.900	3.559	-8.7	3.293	-15.6	3.251	-16.6
1.0	5.600	5.600	0	5.600	-0.00	5.600	0.0
% averag	e deviation		5.9		26.8		11.6
	Temperature =	45 [°] C					
0.0	1.820	1.820	-0.0	1.820	0.0	1.820	0.0
0.1	1.120	1.006	-10.2	0.778	-30.6	1.182	5.5
0.2	0.910	0.776	-14.7	0.555	-39.1	0.903	-0.8
0.3	0.910	0.709	-22.1	0.502	-44.8	0.770	-15.4
0.4	1.040	0.854	-17.8	0.632	-39.3	0.839	-19.4
0.5	1.290	1.157	-10.3	0.864	-33.0	1.082	-16.1
0.6	1.640	1.449	-11.7	1.125	-31.4	1.291	-21.3
0.7	2.170	2.150	-0.9	1.745	-19.6	1.878	-13.5
0.8	2.990	2.978	-0.4	2.560	-14.4	2.617	-12.5
0.9	4.310	4.082	-5.3	3.751	-13.0	3.756	-12.9
1.0	6.050	6.050	-0.00	6.050	0.00	6.050	0.0
% averag	e deviation	· .	10.4		29.5		13.0

Table 7-3.1b (continued)

Conc. of acetone $\mathbf{SC}_{A}$	Exper. D _{AB} from Fig. (6-2.2)	This wor from Eq	k, calculated • (3-1.21)	Calculated Leffler-Cu eq.(2-4.	l from ullinan 16)	Calculated Vignes eq	l from •(2-4.12)
		D _{AB}	% error	D _{AB}	% error	D _{AB}	% error
Tempera 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	$ture = 55^{\circ}C$ 2.140 1.350 1.070 1.060 1.230 1.510 1.940 2.600 3.540 4.990 C.700	2.140 1.133 0.874 0.845 0.888 1.116 1.424 2.175 3.316 4.544 c.700	$\begin{array}{c} 0.0\\ -16.0\\ -18.3\\ -20.3\\ -27.8\\ -26.1\\ -26.6\\ -16.3\\ -6.3\\ -8.9\\ 0.0 \end{array}$	2.140 0.894 0.641 0.612 0.670 0.843 1.112 1.779 2.872 4.193 c.700	$\begin{array}{c} 0.0\\ -33.8\\ -40.1\\ -42.3\\ -45.5\\ -44.2\\ -42.7\\ -31.6\\ -18.9\\ -16.0\\ 0.0\\ \end{array}$	2.140 1.307 0.995 0.904 0.861 1.041 1.273 1.903 2.917 4.184	$\begin{array}{c} 0.0 \\ -3.2 \\ -7.0 \\ -14.7 \\ -30.0 \\ -31.0 \\ -34.4 \\ -26.8 \\ -17.6 \\ -16.1 \\ 0.0 \end{array}$
1.0 % averag	e deviation	6.700	<u> </u>	6.700	<u> </u>	6.700	<u> </u>

Conc. of acetone	Exper.D from AB	This wor from eq.	rk, calculated	Calculate Cullinan	ed from Leffler- eq.(2-4.16)	Calculated eq. $(2-4)$	from Vignes .12 )
$\boldsymbol{z}_{\mathrm{A}}$	Fig. (6-3.2)	D _{AB}	% error	D _{AB}	% error	D _{AB}	% error
	Temperature	= 25 ⁰ C					,
.0.0	2.330	2.330	0.0	2.330	0.0	2.330	0.0
0.1	2.685	2.555	-4.9	2.451	-8.7	2.659	-1.0
0.2	2.926	2.800	-4.3	2.623	-10.3	2.982	1.9
0.3	3.110	3.574	14.9	3.294	5.9	3.867	24.3
0.4	3.260	4.101	25.8	3.762	15.4	4.455	36.7
0.5	3.380	4.068	20.4	3.742	10.7	4.406	30.3
0.6	3.448	3.900	13.1	3.629	5.3	4.176	21.1
0.7	3.500	3.774	7.8	3.574	2.1	3.974	13.5
0.8	3.542	3.575	0.9	3.432	-3.1	3.716 •	4.9
0.9	3.582	3.581	0.0	3.488	-2.6	3.672	2.5
1.0	3.620	3.620	0.0	3.620	<u>0.0</u>	3.620	0.0
	% average de	viation	10.2		7.1		15.1
	Temperature	$=40^{\circ}C$					
0.0	2.880	2.880	0.0	2.880	0.0	2.880	0.0
0.1	3.300	3.384	2.5	3.286	-0.4	3.479	5.4
0.2	3.620	3.860	6.6	3.660	1.1	4.060	12.2
0.3	3.880	4.264	9.9	3.978	2.5	4.554	17.4
0.4	4.060	4.665	14.9	4.323	6.5	5.013	23.5
0.5	4.160	4.780	14.9	4.448	6.9	5.115	22.9

Table 7-3.1cComparison of the experimental differential diffusion coefficients with the predicted diffusion coefficients<br/>for acetone-chloroform system,  $(D_{AB} \times 10^5, \text{ cm}^2/\text{sec.})$ 

Table 7-3.1c (continued)

Conc. of acetone	Exper.D from	This worl from eq.	c, calculated $(3-1.21)$	Calculate Cullinan e	d from Leffler- eq. (2-4.16)	Calculated from Vignes eq.(2-4.12)	
α _A	Fig. (6-3.2)	D _{AB}	% error	D _{AB}	% error	D _{AB}	% error
0.6	Temperature 4.210	$a = 40^{\circ}C$ (co	ontinued)	4.379	4.0	4.959	17.8
·0.7	4.250	4.518	0.3	4.288	1.5	4.743 1`691	11.0
0.8	4.280	4.401	4.0	4.345	2.0	4.563	6.1
	4.300	4.320	0.0	4.320	0.0	4.320	0.0
1.0	% average de	eviation	8.1		2.9		13.7
	Temperature	$e = 55^{\circ}C$					
0.0	3.470	3.470	0.0	3.470	0.0	3.470	0.0
0.1	3.970	3.975	0.1	3.892	2.0	4.055	2.1
0.2	4.360	4.427	1.5	4.209	-3.5	4.645	6.5
0.3	4.620	4.815	4.2	4.511	-2.4	5.122	10.9
0.4	4.780	5.277	10.4	4.926	3.1	5.632	17.8
0.5	4.860	5.532	13.8	5.189	6.8	5.875	20.9
0.6	4.930	5.499	11.5	5.179	5.1	5.816	18.0
0.7	4.990	5.549	11.2	5.304	6.3	5.788	16.0
0.8	5.01.0	5.428	6.4	5.294	3.8	5.551	8.8
0.9	5.020	5.161	-0.7	5.084	-2.2	5.233	0.6
1.0	5.030	5.030	0.0	5.030	<u>0.0</u>	5.030	0.0
÷	% average de	eviation I	6.7		3.9		11.3

т °С	$D_{AB}^{\bullet} \times 10^{5}$ exper.	This v Eq. (	work 3–2.4 )	W & ( Eq. (2	C 2_3.16)	King e Eq. (2	t al 2_3.29)	Sitar. Eq. (	et al 2-3.27)
•	(A→0)	D _{AB}	% error	DAB	% error	D _{AB}	% error	D _{AB}	% error
25	1.25	1.28	2.4	1,49	19.2	1.23	-1.6	1.08	-13.6
40	1.70	1.85	8.8	2.13	25.3	1.76	3.5	1.50	-11.8
58	2.40	2.67	11.3	3.07	27.9	2.54	5.8	2.11	-12.1
73	2.95	3.47	20.1	3.99	35.3	3.30	11.9	2.69	- 8.8
85	3.503	4.17	19.0	4.79	36.7	3.96	13.1	3.19	- 8.9
100*	4.32	5.0	15.7	5.78	33.8	4.79	10.9	3.80	-12.0
% ave	rage error		12.9		29.7		7.8		11.2
Т	$D_{BA}^{o} \times 10^5$	This Eq. (3-2	work 2.4)	W & Eq. (2-3	C 1.16)	King e Eq. (2	t al _3.29)	Sitar. Eq. (2-	et al 3.27).
°C	$\mathbf{x}_{A-1}$	D ^O BA	% error	D ^O BA	% error	D ^O BA	% error	D ⁰ BA	% error
05	1 00	1 00	- <i>7</i>	1 05	10.7	1.45	10.0	1 07	10.0
25	1.22	1.29	5.7	1.35	10.7	1.45	18.9	1 09	
40 58	2 36	2.52	79	2 64	11 0	1.99	41.3 20.3	1.03	11.0 8.5
73	3.10	3.37	8.7	3.52	13.5	3.78	21.9	3.34	7.7
78.5*	3.33	3.76	12.9	3.91	17.4	4.21	26.4	3.69	10.8
% ave	rage error	I <u></u>	8.5	<b>₽</b>	13.1	*	21.8	<b></b>	10.2

Table 7-3.2aComparison of the predicted coefficients with the experimental coefficients for dilute solution of<br/>ethanol-water mixtures,  $(D^{\bullet}_{AB} \times 10^5, \text{ cm}^2/\text{sec.})$ 

* bolling point temperature

т °С	D ^o AB ^{x10⁵} Exper.	This w Eq. (3	ork -2.4)	W & C Eq. (2	; 2-3.16)	King e Eq. (2	et al 2_3.29)	Sitar. Eq. (2	et al , -3.27)
	$\mathbf{x}_{A} = 0$	D ^O AB	% error	D ^O AB	% error	D ^O AB	% error	D ^O AB	% error
25	1.30	1.18	-9,2	1.31	0.8	1.37	5.4	1.13	-13.1
35	1.60	1.50	-6.3	1.67	4.4	1.74	8.8	1.41	-11.9
45	1.82	1.88	3.3	2.09	14.8	2.19	20.3	1.74	- 4.4
55	2.14	2.29	7.0	2.55	19.2	2.67	24.8	2.09	- 2.3
65	2.45	2.73	11.4	3.05	24.5	3.19	30.2	2.47	0.8
75	2.74	3.24	18.2	3.62	32.0	3.78	38.0	2.89	5.5
85	3.25	3.78	16.3	4.22	29.8	4.42	36.0	3.34	2.8
100*	3.86	4.56	18.1	5.09	31.9	5.32	37.8	3.98	3.1
% ave	rage error	•	11.2		19.7		25.2		5.5
	$\begin{array}{c c} T & D^{0}_{BA} \times 10^{5} \\ \hline \end{array} $ This work $ F_{T} \times (2, 0, 4) \\ \hline \end{array}$			W & C Eq. (2-3.16)		King et al Eq. (2-3.29)		Sitar. et al Eq. (2-3.27)	
т °С	D ^o BAx10 ⁵ Exper.	This w Eq. (3	ork -2.4)	W & C Eq. (	; 2_3.16)	King e Eq. (2	et al 2-3.29)	Sitar. Eq. (2	et al 3.27)
т °С	$\mathbf{\hat{x}_{BA}^{o}}_{zA} = 1$	This w Eq. (3 D ⁰ BA	ork 2-2.4) % error	W & C Eq. ( D ^o _{BA}	2_3.16 ) % error	King e Eq. (2 D ⁰ BA	et al 2-3.29) % error	Sitar. Eq. (2 D ^o _{BA}	et al -3.27) % error
то С 25	$\mathbf{x}_{A}^{0} = 1$ $\mathbf{x}_{A}^{0} = 1$ $\mathbf{x}_{A}^{0} = 1$	This w Eq. (3 D ⁰ BA 4.83	ork -2.4) % error -7.5	W & C Eq. ( D ⁰ BA 4.32	2_3.16) % error -17.2	King e Eq. (2 D ⁰ BA 4.57	et al 2-3.29) % error -12.5	Sitar. Eq. (2 D ⁰ BA 4.17	et al -3.27) % error -20.1
тос С 25 35	$D^{0}_{BA} \times 10^{5}$ Exper. $C_{A} = 1$ 5.22 5.60	This w Eq. (3 D ^O BA 4.83 5.50	ork -2.4) % error -7.5 -1.8	$     W & C \\     Eq. (     D^{O}_{BA} \\     4.32 \\     4.90   $	2_3.16) % error -17.2 -12.5	King e Eq. (2 D ⁰ BA 4.57 5.19	et al 2-3.29) % error -12.5 - 7.3	Sitar. Eq. (2 D ⁰ BA 4.17 4.70	et al -3.27) % error -20.1 -16.1
т С 25 35 45	$D^{0}_{BA} \times 10^{5}$ Exper. $\infty_{A} = 1$ 5.22 5.60 6.05	This w Eq. (3 D ^O BA 4.83 5.50 6.09	ork -2.4) % error -7.5 -1.8 0.7	W & C Eq. ( D ⁰ BA 4.32 4.90 5.44	2-3.16) % error -17.2 -12.5 -10.1	King e Eq. (2 D ⁰ BA 4.57 5.19 5.75	et al 2-3.29) % error -12.5 - 7.3 - 5.0	Sitar. Eq. (2 D ⁰ BA 4.17 4.70 5.17	et al -3.27) % error -20.1 -16.1 -14.5
Т С 25 35 45 55	$D^{0}_{BA} \times 10^{5}$ Exper. $C_{A} = 1$ 5.22 5.60 6.05 6.70	This w Eq. (3 D ^O BA 4.83 5.50 6.09 6.66	ork -2.4) % error -7.5 -1.8 0.7 -0.6	W & C Eq. ( D ⁰ BA 4.32 4.90 5.44 5.96	2-3.16) % error -17.2 -12.5 -10.1 -11.0	King e Eq. (2 D ^o BA 4.57 5.19 5.75 6.29	et al 2-3.29) % error -12.5 - 7.3 - 5.0 - 6.1	Sitar. Eq. (2 D ⁰ BA 4.17 4.70 5.17 5.62	et al -3.27) % error -20.1 -16.1 -14.5 -16.1
T 25 35 45 55 56.2*	$D^{0}_{BA} \times 10^{5}$ Exper. $C_{A} = 1$ 5.22 5.60 6.05 6.70 6.79	This w Eq. (3 D ^O BA 4.83 5.50 6.09 6.66 6.71	-7.5 -1.8 0.7 -1.2	W & C Eq. ( D ⁰ BA 4.32 4.90 5.44 5.96 6.00	2-3.16) % error -17.2 -12.5 -10.1 -11.0 -11.5	King e Eq. (2 D ^o BA 4.57 5.19 5.75 6.29 6.34	et al 2-3.29) % error -12.5 - 7.3 - 5.0 - 6.1 - 6.6	Sitar. Eq. (2 D ⁰ BA 4.17 4.70 5.17 5.62 5.66	et al -3.27) % error -20.1 -16.1 -14.5 -16.1 -16.6

Table 7-3.2bComparison of the predicted coefficients with the experimental coefficients for dilute solution of<br/>acetone-water mixtures ( $D^{O}_{AB} \times 10^{5}$ ,  $cm^{2}/sec.$ )

т °С	D ^o AB ^{x10⁵} Exper.	This w Eq. (3	This workVEq. (3-2.4 )HDo% errorH	W & ( Eq. (2	C 2-3.16)	King e Eq. (2	t al 2-3.29)	Sitar. et 21 Eq. (2-3.27)		
	$\mathbf{\hat{A}} = 0$	D ^O AB	% error	D ^O AB	% error	D ^O AB	% error	D ^O AB	% error	
25 40 55 61.5*	2.33 2.88 3.47 3.75	2.49 2.99 <b>3.</b> 57 3.83	6.9 3.8 2.9 2.1	3.28 3.94 4.69 5.02	40.8 36.8 35.2 33.9	2.45 2.93 3.58 3.83	5.2 1.7 3.2 0.0	2.16 2.56 3.01 3.21	-7.3 -11.1 -13.3 -14.4	
% avei	rage error		3.9		36.7	L	2.5		11.5	
ToC	D ^o BA ^{x10⁵}	This w Eq. (3	ork 3–2 <b>.</b> 4)	W & C Eq. (2	2-3.16)	King e Eq. (2	t al 2_3.29)	Sitar. Eq. (9	et al 2-3.27)	
т _о с ́	$D^{o}_{BA} \times 10^{5}$ Exper. $C^{A} = 1$	This w Eq. (3 D ⁰ BA	ork 3–2.4) % error	W & C Eq. (2 D ⁰ BA	2–3.16 ) % error	King e Eq. (2 D ⁰ BA	t al 2-3.29) % error	Sitar. Eq. (9 D ⁰ BA	et al 2–3.27) % error	
Тос 25 40 55 56.2*	$D^{0}_{BA} \times 10^{5}$ Exper. CA = 1 3.62 4.32 5.03 5.16	This w Eq. (3 D ^O BA 3.85 4.69 5.59 5.68	ork 3-2.4) % error 6.4 8.6 11.1 10.1	W & C Eq. (2 D ^O BA 3.84 4.52 5.39 5.48	2-3.16) % error 5.9 4.6 7.2 6.2	King e Eq. (2 D ^o BA 4.27 5.03 6.00 6.10	t al 2-3.29) % error 17.7 16.4 19.3 18.2	Sitar. Eq. (9 D ⁰ BA 3.90 4.54 5.35 5.43	et al 2-3.27) % error 7.3 5.1 6.4 5.2	

Table 7-3.2cComparison of the predicted coefficients with the experimental coefficients for dilute solution of<br/>acetone-chloroform mixtures  $(D^{0}_{AB} \times 10^{5}, cm^{2}/sec.)$ 

T °C	D ^o ABx10 ⁵	Eq. ( with n	3-4.7 ) = 6	Eq. (	2-5.1 )	$- \begin{array}{c c} T & D^{0}_{BA} \times 10^{5} \\ {}^{0}C & exper. \end{array}$		3-4.7 ) =4	Eq. (2-5.1)	
	∞A=0	D ^o AB	% error	D ^O AB	% error	$\mathbf{x}_{A} =$	1 D ^o _{BA}	% error	D ^o BA	% error
25 40 58 73 85 100*	1.25 1.70 2.40 2.95 3.50 4.32*	- 1.63 2.27 3.04 3.88 5.34*	-4.1 -5.4 3.1 10.9 23.6*	- 1.79 2.56 3.33 4.01 4.93*	- 5.3 6.7 12.9 14.6 14.12*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 1.62 2.35 3.29 3.76*	- -1.2 -0.4 6.1 12.9*	- 1.66 2.38 3.19 3.40*	- 1.2 0.8 -3.0 2.1*
% av	erage error		5.9		9.9	% average	error	2.6		1.7

Table 7-3.3aComparison of the coefficients predicted from Equations (3-4.7) and (2-5.1) with the experimental coefficients<br/>at infinite dilution for ethanol-water mixtures,  $(D^{O}_{AB} \times 10^{5}, cm^{2}/sec)$ 

* Values not used in the computation of the average deviation because of nearness to boiling point temperature.

A mole fr. of ethanol.

				•.							
T °C	D ^o AB ^{x10⁵}	Eq. (s with n	9-4.7) = 6	Eq.(2-5	i.1 )	т °с	D ⁰ _{BA} x10 ⁵	Eq.( 3 with n	-4.7 ) = 3	Eq.( 2-	-5.1 )
	$\mathbf{x}_{a}^{\text{exper.}}$	D ^o AB	% error.	D ^o AB	% error		$\mathbf{x}_{A} = 1$	D ^o BA	% error	D ^O BA	% error
25 35 45 55 65 75 85 100*	1.30 1.60 1.82 2.14 2.45 2.74 3.25 3.86*	- 1.55 1.85 2.23 2.70 3.29 4.03 5.57*	-3.1 +1.6 4.2 10.2 20.1 24.0 44.3*	- 1.67 2.08 2.54 3.03 3.59 4.20 5.06*	- 4.4 14.3 18.7 23.7 31.0 29.23 31.1*	25 35 45 55* 56.2*	5.22 5.60 6.05 6.70* 6.79*	- 6.04 7.04 8.27* 8.44*	- 7.8 16.4 23.4* 24.3*	- 5.91 6.68 7.47* 7.52*	- 5.5 10.4 11.5* 10.8*
% av	erage error		10.5		20.2	• % av	erage error	8	12.1		8.0

Table 7-3.3bComparison of the coefficients predicted from equations (3-4.7) and (2-5.1) with the experimental<br/>coefficients at infinite dilution for acetone-water mixtures. (D<br/>AB $x 10^5$ ,  $cm^2 / sec.$ )

 $\approx_{A}$  = mole fr. of acetone.

T °	D ^O AB ^{x10⁵}	Eq. ( with n =	3-4.7) = 3	Eq.(2-5.1) T	T °C	$D_{BA}^{o} x 10^{5}$	Eq. (3 with n	3-4:7) = 3	57) Eq.(2-5		
. U mini	$\mathbf{x}_{A=0}$	D ^O AB	% error	D ^o AB	% error		$\mathbf{A} = 1$	D ⁰ BA	% error	D ^o BA	% error
25	2.33	-		· -	:	25	3.62	-			
40 55 61.5*	2.88 3.47 3.75*	2.83 3.49 3.84*	-1.7 0.6 2.4*	2.80 3.33 3.57*	-2.8 -4.0 -4.8*	40 55 56.2*	4.32 5.03 5.16*	4.52 5.74 5.85*	4.6 14.1 11.8*	4.40 5.25 5.45*	1.9 4.4 5.3*
% ave	erage error		1.2		3.4	% ave	rage error		9.4	· ·	3.2

Table 7-3.3cComparison of the coefficients predicted from equations (3-4.7) and (2-5.1) with the experimental<br/>coefficients at infinite dilution for acetone-chloroform  $(D^{O}_{AB} \times 10^{5}, \text{ cm}^{2}/\text{sec.})$ 

 $\mathbf{A}$  = mole fr. of acetone.

### PART 8 CONCLUSIONS

(1) The three-compartment diaphragm cell developed and the experimental procedure described in this work were successfully employed in the determination of diffusion coefficients for three binary mixtures (i.e. ethanol-water, acetone-water and acetone-chloroform). The full concentration range was investigated in each case at temperatures up to the neighbourhood of the normal boiling points.

(2) The values of diffusion coefficients for these systems at their normal boiling points were found by extrapolation or interpolation from the respective plots of  $\ln D_{AB} vs \frac{1}{T}$ . The values of  $D_{AB}^{o}$  for these systems, at all temperatures studied, were also found by extrapolation from the plots of  $D_{AB}^{o}vs x_{A}^{o}$ .

(3) The following correlation for the estimation of concentration and temperature dependence of  $D_{AB}$  was developed

$$\frac{D_{AB} \ \mu_{AB}}{\mathcal{A}_{A}} = \begin{pmatrix} D^{*}_{A} \ \mu_{A} \end{pmatrix}^{*}_{A} \qquad \begin{pmatrix} D^{*}_{B} \ \mu_{B} \end{pmatrix}^{*}_{B} \exp \left[ \frac{\Delta G \ \mu, AB}{RT} - \Delta G \ D, AB \right]$$
(2-1.21)

It was tested with the experimental data of this work. The overall average accuracies obtained are  $\stackrel{+}{-}$  9.6% for ethanol-water system,  $\stackrel{+}{-}$  9.3% for acetone-water system and  $\stackrel{+}{-}$  8.3% for acetone-chloroform system. These accuracies compare well with those of the correlations of Vignes eq. (2-4.12) and of Leffler-Cullinan eq. (2-4.16). (4) A correlation was developed for the prediction of diffusion coefficients at infinite dilution

$$\frac{D_{AB}^{0} \mu_{B}}{T} = 8.93 \times 10^{-8} \frac{V_{A}^{1/3}}{V_{B}^{1/3}} \left[ \frac{[P_{B}]}{[P_{A}]} \right]^{0.6} (3-2.4)$$

It gives better predictions than most of the existing literature correlations. The use of parachors in eq. (3-2.4), it is believed, gives good accuracy because parachors account better for the effect of the intermolecular forces on the diffusion process.

(5) The following correlation was developed for the prediction of the selfdiffusion coefficient 0.13

$$[\mathbf{M}] = \mathbf{\tilde{V}} \quad \left[\frac{\mathbf{T}}{\mathbf{D}^*}\right] \tag{3-3.4}$$

This equation employs an additive type of constant [M]. The bond and structural contributions, to the constant [M], of a number of atoms and groups of atoms, were calculated on the basis of 46 liquids for which experimental self-diffusion coefficients were available. Despite the small number of experimental data for the calculation of these contributions, eq. (3-3.4) gives an accuracy only slightly lower than the equation of Stokes and Einstein (2-2.2). More experimental data is required to define more accurately the various bond contributions to the value of the constant [M].

(6) Dullien's equation (2-2.26) for prediction of self-diffusion coefficient was modified by replacing the critical molal volume by the molal volume at boiling point. This modification makes the equation more convenient to use because molal volumes at boiling points are easier to obtain. The equation has the form

(3-3.6)

 $\frac{D^* \ \mu \ \bar{V}}{T} = 0.229 \ x \ 10^{-8} \qquad V_b^{0.636}$ 

and predicts self-diffusion coefficients with the same accuracy as eq(2-2.26).

(7) The following equations were developed for estimating diffusion coefficients at other temperatures from a known value at a single temperature

$$\frac{D^{*}_{2}}{D^{*}_{1}} = \left(\frac{T_{c} - T_{1}}{T_{c} - T_{2}}\right)^{n}$$
(3-4.6)

$$\begin{pmatrix} D^{o}_{AB} \end{pmatrix}_{2} \\ \begin{pmatrix} D^{o}_{AB} \end{pmatrix}_{1} \end{pmatrix} = \begin{pmatrix} T_{c} - T_{1} \\ T_{c} - T_{2} \end{pmatrix}_{B}$$
 (3-4.7)

Each of these equations may be used as an alternative to the Stokes-Einstein eq. (2-5.1) when no reliable values of viscosity are available. Equations (3-4.6) and (3-4.7) were tested with the limited amount of available data give an accuracy about the same as equation (2-5.1)(Stokes and Einstein). These equations are recommended only for the temperature range from  $10^{\circ}$ C above the melting point to  $10^{\circ}$ C below the boiling point.

#### 8-1 SUGGESTIONS FOR FURTHER WORK

- (1) It is desirable to incorporate in the design of this cell an "in situ" method of measuring concentrations of the test solutions. This would speed up considerably the experimental work. The "in situ" method used by Sanni and Hutchison (175) is recommended.
- (2) More experimental data should be obtained for such non-ideal and associated systems as methanol-benzene, ethanol-benzene, methanol-water, propanol-water, butanolwater etc. These data are needed to test the correlations developed in this work.

#### PART 9

APPENDICES

Appendix 3-2.1 Physical Properties of Organic Compounds

			·····					
Name	Formulae	Mol.	V.b		[P]		∆ ^H ź	
		wt.	<u>cm</u> ³ g mole	Ref.	$\frac{\frac{1}{g' \text{ cm}^3}}{\text{mole sec}^{\frac{1}{2}}}$	Ref.	g mole	Ref.
Acetal	C6H1402	118.17	160.4	L	306.9	161	7829.8	153
Acetal Salicylic Acid	^C 9 ^H 8 ^O 4	180.17	-		-		-	
Acetamide	C ₂ H ₅ NO	59.07	70.6	L	148	161	12239	GL
Acetanilide	C _B H _Q NO	135.16	154.5	L	321.8	161	16043	GL
Acetic Acid	C2HAO2	60.05	64.1	168	131.4	161	9529	168
Acetone	C ₃ H ₆ O	58.08	77.5	168	161.7	161	6952	168
Acetoin	C ₄ H ₈ O ₂	88.12	103.6	Ŀ	213.4	S	12086	GL
Acetonitrile	CH ₃ CN	41.05	57•4	168	121.2	161	7500	168
Acetyldiphenyl- amine	C ₁₄ H ₁₃ NO	211.27	243•2	L	496.6	S	-	Sub.
Acetylene	^C 2 ^H 2	26.04	42.0	168	90.4	42	4007.6	G
Aconitine	^C 34 ^H 47 ^{NO} 11	645.76	-		-		. –	
Adipic Acod	^C 6 ^H 10 ⁰ 4	146.14	173.8	L	308.2	S	17106	<b>G</b> TJA
≪-Alanine	C3H7NO2	89.09	104.8	L	200.8	S	12560	GLA@
Alloxan	C4H2N2O4	142.07	123.6	.L	257.3	S	-	Sub.
Allyl Alcohol	C ₃ H ₆ O	58.08	74.0	L	154.2	161	9490.8	153
∢—Amino Acetic Acid (Glycine)	C2H5NO2	75.07	78.0	L .	161.8	S	-	
←AminoButyricAcid	^C 4 ^H 9 ^{NO} 2	103.12	122.4	$\mathbf{L}^{+}$	239.8	S	-	Sub.
<pre>d-AminoCaporicAcid</pre>	^C 6 ^H 13 ^{NO} 2	131.18	166.8	L	317.8	S	-	Sub.
d-AminoValaricAcid	^C 5 ^H 11 ^{NO} 2	117.15	144.6	L	278.8	S	-	Sub.
Ammonia	NH ₃	17.0	25.0	14	63.8	42	5581	168
Amyl Alcohol	C5H120	88.15	125.8	L	244.2	161	10030	G:
Aniline	C ₆ H ₇ N	93.12	109.1	59	235.7	161	10360	214
Anisole	^с 7 ^н 8 ⁰	108.13	128.1	L	265.5	101	8808.3	214
Anthranilic Acid	C7H7NO2	137.13	149.0	L	296.2	s	_	Sub.
Anthracene	C ₁₄ H ₁₀	178.24	195.3	Ъ	399.6	s	13499.5	GL
(Argon)	Ar	39.94	28.5	14	54.3	42	1590	153
Azobenzene	C12H10N2	182.22	215.8	L	429.5	161	14399	GL .
Benzaldehyde	с ₆ н ₅ сно	106.12	118.2 .	L	256.2	161	9181.3	214
Benzene	^с 6 ^н 6	78.11	96.5	168	207•4	161	7353	168
Benzoic Acid	C7H602	122.12	134.8	L	266.1	s	12888	GL
Benzyl Alcohol	C7H80	108.13	125.6	L	259.6	161	12140	153
Benzyl Ether	C14H140	198.27	229.0	L	478.0	S	13230	GL
Biphenyl	C ₁₂ H ₁₀	154.20	184.6	L	380.0	S	11519	G

		Mol.	v _b	L	[P]		∆H _t	)
Name	Formulae	wt.	g mole	Ref.	$\frac{e^{\frac{1}{4}} cm^{3}}{mole sec^{2}}$	Ref	<u>cal.</u> g mole	Ref.
Bromine	Br ₂	159.83	53.2	219	130.1	42	7420.0	153
Biphenylmethane	C13H12	168.24	206.8	L	416.0	42	12050.8	G
Bromoaniline	C ₆ H ₆ NBr	172.03	133.5	ъ	287.6	s	7563.2	GL
Bromobenzene	C ₆ H ₅ Br	157.02	120.0	168	257.0	s	8966.0	168
Bromoform	CHBr ₃	252.77	- 99 <b>*</b> 5	· L	227.3	161	9077.4	GT.
Bromonaphthalene	C ₁₀ H ₇ Br	207.07	170.9	Ъ	362.0	161	12705.0	GL
Bromonitrobenzene	BrC6H4N02	202.01	138.7	Г	313.5	161	12555.0	GL
2-Bromo-2-Chloro, 1,1,1,Trichloro	C2HBrCL4	246.74	158.7	L	311.9	S	-	
Bromophenol	BrC_H_OH	173.02	126.7	L	272.2	S	12232.5	GL
Bromopropionic Acid	C ₃ H ₅ BrO ₂	152.98	113.9	L	222.1	S	11753.0	GL
3-Bromopropylene	C ₃ H ₅ Br	120.98	89.9 .	L	191.1	S	7417.0	GL
m-Bromotoluene	$C_7 H_7 Br$	171.04	141.5	L	296.0	161	9703.0	G
Brucine	^C 23 ^H 26 ^N 2 ^O 4	394.44	-		-		-	
i-Butanol	C4H10	74.12	103.6	L	201.9	161	10470.0	168
n-Butanol	C4H100	74.12	103.6	L ·	202.6	161	10470.0	168
1-Butene	C4H8	56.12	89.5	85	179.2	S	5237.0	152
nButyl Acetate	C6H12O2	116.16	155.2	ป	296.0	161	8730.0	G
Butyramide	C4H9NO	87.12	115.5	Ъ	228.8	ន	11535.0	GЪ
Butyric Acid	C4H802	88.10	107.8	168	209.0		10620.0	168
Caffeine	C8H1002N4	194.21	206.1	L	406.8	S		Sub.
Camphor	C ₁₀ H ₁₆ O	152.23	197.6	L	388.0	S	10812.3	GL
Caproic Acid	C6H1202	116.16	152.5	L	287.2	161	13311.0	GL
(Carbon Dioxide)	^{C0} 2	44.01	34.7	L	80.6	216	6030.0	168
Carbon Disulphide	CS2	76.13	60.4	14	144.7	161	6295.0	153
Carbontetrachlo- ride	CCL4	153.84	102.0	168	220.5	161	7154.0	168
Carbontetra- flouride	CF ₄	88.01	57•4	59	113.4	161	3110.0	153
Chlorine ·	CL2	70.91	45•5	14	108.6	42	4878.0	G
ChloroaceticAcid	C2H3CLO2	94•50	89.3	L	168.3	161	11410.0	GL
Chloral	ссі _з сно	147.40	114.5	L	232.8	S	7958.0	153
Chloral Hydrate	$^{\rm C}2^{\rm H}3^{\rm CL}3^{\rm O}2$	165.42	129.3	L	252.2	S	21814.0	153
Chloroaniline	Crc ⁶ H ⁶ N	127.57	131.1	L	273.9	S	11005.0	GL
Chlorobenzene	C6H5CL	112.56	115.0	168	244.5	161	8423.0	168
ChlorobenzoicAcid	^C 7 ^H 5 ⁰ 2 ^{CL}	156.57	155.7	$\mathbf{L}_{1}$	303.3	S	<del>.</del> .	Sub.

.

		Mol.	v.	o	[P]		∆H [`] b	
Name	Formulae	wt.	<u>cm³</u> g mole	Ref.	$\frac{g^{\frac{1}{4}} cm^{3}}{mole sec^{\frac{1}{2}}}$	Ref.	<u>cal</u> gmole	Ref.
Chlorobromo-	CH ₂ CLBr	129.39	73.8	L	161.3	S	7395.0	GL
Chlorobromo-	C6H4BrCL	191.46	140.2	L	295.2	S	10128.0	GL
Chloroform	CHCL	119.39	84.8	168	183.4	S	6841.0	168
«-Chloro-	C ₁₀ H ₇ CL	162.61	168.5	L	<b>∋3</b> 48₊4	161	11546.0	GL
Chloronitro-	C6H4CLNO2	157.56	140.3	L	300.0	161	12031.0	GL
Chlorophenol	C ₆ H ₄ CLOH	128.56	124.3	L	258.0	42	10729.0	GL
Chrysene	^C 18 ^H 12	228.28	250.8	$\mathbf{L}$	500.4	S	14415.0	GL
Cinnamic Acid	^С 9 ^Н 8 ⁰ 2	148.15	167.2	L	333.1	ទ	13526.0	GL
Cyclohexane	с ₆ н ₁₂	84.16	117.0	168	241.7	161	7895.0	168
Cyclohexanone	с ₆ н ₁₀ 0	98.14	120.7	L	251.4	161	9465.0	GL
Cyclohexanol	C ₆ H ₁₂ O	100.16	125.6	L	254.3	S	10917.0	GL
Cyclopentane	C ₅ H ₁₀	70.13	99•5	_ L	205.0	161	6529.0	168
m-Cymene	C ₁₀ H ₁₄	134.22	184.8	L	356.9	161	9524.0	G
Decaline	C ₁₀ H ₁₈	138.25	184.6	L	371.7	161	9641.0	G
TransDecaline	C ₁₀ H ₁₈	138.25	184.6	L	370.1	161	9360.0	G
n-Decane	C10H22	142.28	229•4	L	431.0	161	9390.0	168
Dibenzylamine	$C_{14}H_{15}N$	197-27	244-2	L	485.6	161	14154.0	GLA
p-Dibromobenzene	C _c H _a Br ₂	235.92	142.6	Г	305.2	42	10746.0	GL
Dibromonaphtha-	^{C, H} Br ₂	285.99	194.2	L	402.7	ន		
Dichloroacetic Acid	$^{\mathrm{C_2H_2CL_20_2}}$	128.94	104.2	L	206.6	S	11440.0	$\mathtt{GL}$
p-Dichloro- benzene	C6H4CL2	147.01	137.8	L	280.0	. 161	9366.0	G
Dichloronaphtha- lene	C ¹⁰ H ⁶ Cr ⁵	197.06	189.4	Ĺ	375.2	S	12361.0	GLA
Diethylamine	C ₄ H ₁₁ N	73.14	109.0	168	220.4	161	6975.0	168
Diiodomethane	CH2I2	26784	96.2	$\mathbf{L}$	225.8	42	9231.0	GL
Dimethyl- acetamide	C4H9NO	87.12	116.5	L	228.8	S	9658 <mark>.</mark> 6	GL
2-2-Dimethyl- butane	С ₆ Н ₁₄	86.17	141.0	. r	266.4	.161	6355.0	153
Dimethyl- propionamide	C5H11NO	101.15	134.0	L ·	267.8	S	-	
1,3-Dimethylurea	C ₃ H ₈ N ₂ 0	88.12	105.4	L	219.4	S	13415.0	GL
m-Dinitrobenzene	C ₆ H ₄ N ₂ O ₄	168.11	145.8	Ŀ.	301.1	S	14391.0	GL
Dinitronaphth- alen <del>g</del>	^C 10 ^H 6 ^N 2 ^O 4	218.16	197.4	L	398.0	S	-	Sub.

.

		Mol.	v _b		[P]		۸H	)
Name	Formulae	wt.	<u>cm</u> ³ g mole	Ref.	$\frac{g^{\frac{1}{4}} cm^{3}}{mole sec^{\frac{1}{2}}}$	Ref	<u>cal</u> gmole	Ref.
2,3-Dinitrophenol	C6H4N205	184.11	153.2	L	338.5	S	-	Sub.
Dioxane	C4H802	88.10	93.6	L	202.0	161	8087.0	G
Diphenylamine	C12 ^H 11 ^N	169.23	198,8	L	409.6	S	13288.0	GL
Docosane	C22 ^H 46	310.61	495.8	L	892.2	S	16327.0	GT,
Dodecane	C ₁₂ ^H 26	170.33	273.8	Ъ	510.0	161	10440.0	214
Dotriacotane	C ₃₂ ^H 66	450.89	717.8	L.	1282.2	S	14912.0	GL
Eicosane	C ₂₀ H ₄₂	282.56	451.4	L	814.2	S	13800.0	214
Erythritol		122.12	125.8	L	247.0	S	24986.0	Gī
Ethanol	C ₂ H ₅ OH	46.07	62.5	168	128.8	161	9220.0	168
Ethyl Acetate	C ₁ H ₈ O ₂	88.10	106.0	168	216.5	161	7744.0	168
Ethyl Benzene		106.17	140.4	L	284.4	161	8599.0	168
Ethyl Benzoate		150.17	175.0	L	. 350.0	161	9686.0	153
Ethyl Bromide	C ₂ H ₅ Br	108.98	75.1	L	165.4	S	6345.0	168
Ethylene Bromide	C ₂ H ₄ Br ₂	187.88	98.4	L.	215.2	161	8574.0	G
Ethylene Chloride	C ₂ H ₄ CL ₂	98.96	93.6	L	188.7	161	7728.0	G
Ethylene glycol	C_H_O_	62.07	66.6	Ъŗ	148.9	161	11863.0	153
Ethyl ether	C,H100	74.12	106.0	Ľ	212.3	161	6442.0	G
Ethyl iodide		155.98	85.1	L	187.8	161	7114.3	153
Ethylene iodide	C ₂ H ₁ I ₂	281.86	118.4	L	260.0	S	9695.6	GL
Ethyl nitrate	C ₂ H ₅ NO ₃	91.07	88.6	L	189.5	161	8407.0	GL
Formamide	CH _z ON	45.04	45.5	L	107.3	161	11171.0	GL
Formic acid	нсоон	46.03	46.2	Ъ	94.0	161	5520.4	153
Furfural	C_H ₀	96.08	92.1	L	209.4	161	10329.6	153
Glycerol	C _z H _c O _z	92.11	286.9	-	211.3	-	17000.0	-
Glycolamide	C _. H _E NO.	75.07	80.6	Ŀ	144,0	S	-	
(Helium)	Her	4.00	31.9	14	-		36.9	GL
Hendecane	C ₁₁ H ₂₄	156.32	251.6	L	463.2	S	10575.0	GL
Heptane	$C_{T}H_{1}C$	100.20	162.0	168	311.0	161	7575.0	168
1-Heptanol	C ₇ H ₁₅ OH	116.20	170.2	L	314.5	161	12187.1	153
n-Heptyl bromide	$C_{7}H_{1}Br$	179.11	186.1	L	362.8	161	10037.0	GL
Hexachlorobenzene		284.79	203.4	L	430.3	S	13457.0	GL@
Hexachloroethane		236.74	177.2	L	335.4	S	9343.0	GL
Hexachloro- cyclohexane	C ₆ H ₆ CL ₆	290.83	225.6	L	463.3	S	12942.0	GL

		Mol.	v _b		[P]	•	ΔH _b	
Name	Formulae	W <b>t</b> •	<u>cm</u> ³ g mole	Ref.	$\frac{\frac{1}{g^4} \text{ cm}^3}{\text{mole sec}^2}$	Ref	g mole	Ref.
Hexadecane	C16H34	226.43	362.6	L	671.8	161	13412.0	G
Hexadecanol	C ₁₆ H ₃₃ OH	242.45	370.0	L	672.4	S	17202.6	GL
n-Hexane	C ₆ H ₁₄	86.17	140.25	14	271.0	161	6896.0	153
n-Hexyl bromide	C _c H ₁₃ Br	165.08	163.9	· L	305.4	S.:	9390.0	GL
n-Hexyl alcohol	C ₆ H ₁₃ OH	102.18	148.0	L	282.4	S	11014.0	GL
(Hydrogen)	H ₂	2.02	28.4	14	35.0	42	216.0	153
Hydrogen chloride	HCT	36.47	30.6	14	59.1	42	3860.0	153
Hydrogen Iodide	HI	127.93	40.7	L	95.8	S	5089.7	GL
Hydrogen sulphide	H ₂ S	34.08	32.9	L	82.4	S	4463.0	153
Hydroquinone	C ₆ H ₄ (OH) ₂	110.11	110.8	L	235.5	S	15113.0	GL
Iodine	I ₂	253.82	71.6	L	182.0	S	10390.0	153
Iodobenzene	C ₆ H ₅ I	204.02	129.3 .	L	279.8	161	9548.0	168
Iodoform	HCI3	<u>39</u> 3.78	129 <b>.</b> 5	L	295.4	161	-	Sub.
Iodopropionic acid	C3H_102	199.98	123.9	L	245.1	S	15330.0	GLA@
3-Iodopropylene	C ₃ H ₅ I	167.98	,99•9	L	214.1	S	7982.5	GL
Lactic acid	C ₃ H ₆ O ₃	90.08	102.6	L	185.4	S	13953.0	GLA
Lauric acid	C ₁₂ H ₂₄ O ₂	200.31	290.4	L	522.2	S	15542.0	GLA
Linoleic acid	C ₁₈ H ₃₂ O ₂	280.44	408.8	L	734.2	S	18542.0	GLA
Malic acid	C ₄ H ₆ O ₅	134.09	141.4	Ŀ	244.4	Š		Dec.
Malonic acid		104.06	107.2	L	191.2	์ร	-	
Manitol	C6H1406	182.17	185.0	Ŀ	353.4	S	33455.0	GLA.
Mesitylene	C ₉ H ₁₂	120.18	162.6	L	• 322.0	161	9479.2	G
Methane	CHA	16.04	37.7	168	72.6	161	1955.0	168
Methanol	СНЗОН	32 <b>.</b> 04	42.5	168	.88.7	161	8491.0	168
Methyl acetate	C3H602	74.08	83.75	14	177.4	161	7266.5	153
Methylcyclohexane	C7H14	98.18	140.4	14	281.6	161	7580.0	168
Methylcyclopentane	C ₆ H ₁₂	84.16	120.2	14	242.8	161	7002.0	168
Methyl chloride	CH3CL	50.49	50.6	168	110.4	s	5162.6	168
Methylene chloride	CH2CL	84.94	85.8	59	147.6	s	6690.0	168
2-Methyl butane	C ₅ H ₁₂	72.15	118.0	L.	-230.0	161	5842.0	168
Methylethylketone	C4H80	72.10	97.43	59	200.2	161	7635.4	153
Methyl iodide	CH3I	141.95	62.9	L	146.5	161	6511.2	153
Methylisobutyl- ketone	C6H120	100.16	143.1	L	276.0	161	8459.0	G
≪-Methylnaphtha- lene	C ^{IIH} IO	142.19	169.8	L	339.8	S	10853.0	G

Namo	Formulae	Mol.	v _b		[P]		∆H	b
	TOTMUTUO		cm ³ g mole	Ref.	$\frac{\frac{1}{g^{4}}cm^{3}}{\text{mole sec}^{2}}$	Ref	cal g mole	Ref.
2-Methylpropene	$(C_{A}H_{B})_{3}$	168.30	266.4	L	537.6	s	9311.0	GL
Methylsalicylate	C ₈ H ₈ O ₃	152.14	160.3	L	323.0	161	12888.0	GL
1-Methyl urea	C ₂ H ₆ N ₂ O	74.08	83.2	L	180.4	S	-	Dec.
Myristic acid	C ₁₄ H ₂₈ O ₂	228.36	334.8	L	570.2	s	16669.0'	GLA
Naphthalene	C ₁₀ H ₈	128.16	142.9	5.7	312.4	161	10240.0	168
Nicotine	$C_{10}H_{14}N_{2}$	162.23	204.5	L	396.6	S	11587.0	GГЛ
Nitrobenzene	C ₆ H ₅ NO ₂	123.11	124.5	L	263.9	161	9735.5	153
m-Nitrobenzal-	C7H5NO3	151.12	146.7	Ъ	313.7	S	14015.0	GLA
(Nitrogen)	N	28.02	34.7	85	59.p	42	1336.0	153
Nitrous 'oxide	N ² O and h	44.02	36.0	85	64.6	42	3956.0	153
Nitromethane	CH ₂ O ₂ N	61.04	59.4	59	133.1	161	8438.0	G
«-Nitronaphtha-	C ₁₀ H ₇ NO ₂	173.16	171.0.	L	363.3	161	13550.0	GL
lene Nitrophenol	C'H_Nd_	139.11	131.9	L	284:0	161	12596.0	GL
n-Odtane Licylate		114:22	186:6	14	351.0	161	8224:0	168
Octadecane "en		254:51	407:0	Ĺ	752.0	: 42	14005.0	Ğ
Octacosane		394:78	629:0	Ľ	1126.2	s	16323:0	GL
n408tyl'alcohol		130:23	192:4	'L'	360:4	S.	12209:0	, GP
n-Octyle bromide	C _L H ₁ , Br	193:13	208:3	Ŀ	397:1	ŝ	10683:0	ĠL
- Öleic ^b adid ^{net}	6, HH 100,	282:45	416:2	Ĺ	763.7	161	18075:0	'GLA
Oxalic acidal-		¹ 90:04	186:4	t	159:0 L	161	112-112-20	Sub.
$(0xygen)_{(1)}$	02	32,00	27,9	85	53.4	216	1629.0	153
Palmatic acid	0 ₁₆ ^H 32 ⁰ 2	256,42	37.4.5	$[\mathbf{L}_{i}]$	693.2	×	18155.0	GLA
Pentaerythritol	C(CH2OH)4	136.15	148.0	Ţ,	286.0	៲ៜ៶	27370.0	GLA
Rentanol (usea am	yl alcohol	<b>)</b> 175.16	17 <b>1.</b> 02			1.1	-	
Phathalic acid	C8H604	166.13	173.6	L	325.1	S	-	Sub.
Phenathrene	C14 ^H 10	178.24	196.7	Ե	399.6	S	13499.5	GL
Phenetole	C8H10	122.17	151.4	L	305.1	S	9734.0	GL
Phenol Octacontaine	CH OH	94.11	101.4	59	222.7	161	10760-0	168
Phenolphthalein	C20 ^H 14 ^O 4	318.31	320.9	Ъ Г	662.6	S		
Phenyl acetate	C8 ^H 8 ^O 2	136.16	151.2	Ŀ	310.9	S;	10871.0	GL
Propane Obside india		44.09	74-5,	168	151.2	S	4487.0	168
<b>i-Propanol</b> Oxalia andid	C'H 0 (3 8)	60.09	82.5	168	164.4	161	9729.0	168
n-Propanol (Oxyseed)	C,H,O'	60.09	81.8	168	165.3	161	10030.0	168
Propionic acid	°,3 [⊞] 6 ⁰ 2	,74-08,	,85.3,	14	. 169.5	161	7319.8	153
Pentrythritot	$\left[ e(e_{0}, o_{1}) \right]_{A}$	136,15	143.0	· · ·	23 .0	· ;	1.79.01	C L

	,					1		······	
			Mol.	v	b	[P]		ΔH	
	Name	Formulae	wt.	$\frac{\text{cm}^3}{\text{g mole}}$	Ref.	$\frac{\underline{e^{\frac{1}{4}} \ cm^{3}}}{mole \ seo^{2}}$	Ref.	<u>cal</u> g mole	Ref
	Propionamide	C ₃ H ₇ NO	73.10	98.2	L	181.2	S	11453.0	GL
ł	Propyl acetate	$C_{5}H_{10}O_{2}$	102.13	128.9	14	255.0	161	8187.0	G.
	Propylene	C ₃ H ₆	42.08	68.8	59	139.9	161	4472.0	G
	Propyleneglycol	C ₃ H ₈ O ₂	76.09	88.8	Ъ.	179.6	S	12600.0	121
	Pyridine	C ₅ H ₅ N	79.10	93.1	L	197.7	S	8492.0	153
	Pyrogallol	C ₆ H ₆ O ₃	126.11	118.2	L	249.7	S	17743.0	GL
	Quinone	C ₆ H ₁ O ₂	108.09	103.4	L.	237.4	161	Pastor -	Sub
	Resorcinol	C ₆ H ₆ O ₂	110.11	110.8	L	·· 235•5	S	14883.0	GL
	Salicylaldehyde	C ₇ H ₆ O ₂	122.12	125.6	L	275.1	S	9132.1	153
	Saligenin	C ₇ H ₈ O ₂	124.13	133.0	L	274.5	S	<b>—</b>	Sub
	Salol	$C_{13}H_{10}O_{3}$	214.21	232.4	L	459.0	S	16168.4	GLA
	Serine	C ₃ H ₇ NO ₃	105.10	107.6	L	215.0	S	, <b></b>	
	Stearic acid	C18H3602	284.47	423.6	L	778.9	161	18044.0	GLA
	Sulphur dioxide	S0,	64.06	43.8	85	88.2	42	5955.0	153
	Sucrose	C ₁₂ H ₂₂ O ₁₁	342.30	313.9	L	622.0	S	_	
	Hexose	C6H12O6	180.16	177.6	L	319.2	S		
	Pentose	C ₅ H ₁₀ O ₅	150.13	148.0	Ъ	266.0	S	-	
	Tartaric acid	C ₄ H ₆ O ₆	150.09	153.4	L	258.6	S	-	
	Tetrabutylalcohol	C ₄ H ₁₀ O	74.12	108.2	L	201.3	161	8746.9	Ģ
	Tetrabromoethane	C ₂ H ₂ Br ₄	345.70	145.0	· L	310.0	161	10502.0	GL
	Tetrachloroethane	C_H_CL4	176.86	135.4	L	259.0	161	9244.0	153
	1,2,4,5-Tetra-	C ₆ H ₂ CL ₄	215.90	179.6	L	355.9	S	11595.0	GL
	chlorobenzene [.] Tetradecane	C ₁ ,H ₁	198.38	317.2	L	580.2	S	12047.0	G
	Tetrahydrofuran		72.12	84.7	L	184.5	S	6820.7	GL
l	Tetralin		132.20	162.4	L	336.4	161	10128.0	GL
	Thiourea	CHNS	76+12	79.2	L	169.6	S	-	Dec
	Threonint	C, H, NO,	119.12	129.8	L	254.0	s	-	
	Toluene		92.13	118.3	168	245.5	161	7933.0	168
	Tribromoacetic and acid	C2 ^{HO} 2 ^{Br} 3	296.76	138.3	Ъ	284.9	S	12128.0	GL
	2,4,6-Tribromo- phenol	C6 ^H 3 ^{OBr} 3	330.82	173.3	L	339.8	S	13076.0	GL
	Trichloroacetic acid	C202 ^{HCL} 3	163.40	131.1	L	241.3	161	11277.0	GL
	l,l,l-Trichloro- ethane	C2H3CL3	133.42	114.5	L	224.8	161 .	7125.0	GT

G

·		Mol.	v	Ъ	[P]		<b>Δ</b> H	b
Name	Formulae	wt.	g mole	Ref.	$\frac{\frac{1}{g^4} \text{ cm}^3}{\text{mole sec}^{\frac{1}{2}}}$	Ref.	cal g mole	Ref.
Trichloroethy- lene	C2HCL3.	131.40	107.1	L	209.0	161	7521.3	153
1,2,4-Trichloro-	^С 6 ^Н 3 ^{СL} 3	181.46	157.7	L	312.5	S	10512.0	G
2,4,6-Trichloro-	C6 ^H 3 ^{Br} 3 ^O	197.46	166.1	L	298.7	S	12570.0	GL
1,2,3-Trichloro-	C ₃ H ₅ CL ₃	147.43	136.7	Г	262.8	S	9140.0	GL
1,2,4-Trichloro-	^С 7 ^Н 5 ^{СТ,} 3	195.48	180.9	L	357•7	ន	11574.0	G.
Triethyleneglycol	C6 ^H 14 ^O 4	150.18	170.2	L	350.9	161	17927.0	GL
2,4,6-Trinitro-	C6 ^H 3 ^N 3 ^O 7	229.11	178.1	_L	396.9	S	-	Sub
Trinitrotoluene	$1^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-0.7} + 10^{-$	227.13	203.7	L	413.8	S	16089.0	GĿ@
Triphenylmethane	C19 ^H 16	244.32	295.4	Ъ	591.9	S	14534.0	GL
Urea	CHANO	60.06	61.0	L	141.4	S	-	Dec
Urethane	C ₃ H ₇ NO ₂	89.10	100.6	L	206.6	S	11170.0	GL
Vanillin	C _A H _A O ₃	152.14	155.2	Ъ	325.9	161	14617.0	GL
Valeric acid	C ₅ H ₁₀ O ₂	102.13;	130.0	L	248.2	161	11817.0	G
Water	H ₂ 0	18.02	18.7	168	52.0	'42	9717.0	168
m-Xylene	C ₈ H ₁₀	106.16	140.4	L	284.3	161	8705.0	168
<u> </u>	A							

= Values of  $V_{b}$  estimated by LeBas method ( 168 )

S = Values of [P] estimated by Sugden method (188)

- = Values of ' $\Delta H_{b}$ ' estimated by Giacalone equation (168) using experimental P_c, T_c and T_b.
- $GL = Value of '\Delta H_b'$  estimated by Giacalone equation (168) using estimated vales of P and T by Lydersen method (168); and experimental T_b.
- $GLA = Value of '\Delta H_b' \text{ estimated by Giacalone equation ( 168 ) using}$ estimated values of P_c and T_c by Lydersen method ( 168 ); and value of T_b obtained from lower pressure data which is corrected to normal pressure using Adam equation ( 151 ).

GLA@ and  $GL@ = Value of '\Delta H_b'$  estimated from the sublimation temperature or decomposing temperature; hence not reliable.
## Appendix 3-2.2 Comparison of correlations for estimating diffusion

coefficients in various solvents at infinite dilution,

$$\mathbf{D}_{AB}^{\mathbf{x}} \mathbf{10}^{5} \mathbf{cm}^{2} / \mathbf{sec}$$

Solvent = Water

									<del></del>	<del></del>	
•				This w	work	Wilke&	Chang	King e	t al	Sitara	. et al
Solute	т.°с	D.	Ref	Eq.(3-2	2.4)	Eq. (2-	3.16)	Eq. (2.	-3.29)	Eq.(2-	.3.27)
				0-1-	dramon	<u></u>	1 Eman		Tranon	<u>Cala</u>	0/Empon
	-	(exp.)		Carc.	%Error	varc.	%STLOI	care.	<i>%51101</i>	vare.	/%5F101
• .	05 0	1 050	0 5	1 275	10.0	1 71 3	26 9	1 797	40.0	1 632	24.7
rine	10 0	1.270	202	1.070	-0.7	1 077	10.7	1.076	46.9	1.020	27 7
ine	16.0	0.900	166	1 01075	- 2. 1	1.25/	1.9.1	1.125	-0.9	1.639	96.1
ne	23.0	1.840	19	1.800	7.0	1.015	94.8	1.544	82.8	0.868	2.3
ane	20.0	1.494	19	1.483	-9.5	1.67/	12.4	2.5/16	70.0	1.380	-7.9
	10.0	2.380	19	2.127	2.0	2.740	15.1	4.167	75.1	2.185	-8.9
	60.0	3.550	19	3.613	1.8	4.079	14.9	6.203	74.7	3.164	-10.9
no	4.0	a.89a	19	0.744	-16.4	0.808	-9.2	1.080	21.4	0.736	-17.3
	20.0	1.200	19	1.228	2.3	1.333	11.1	1.782	48.5	1.172	-2.3
	40.0	1.940	19	2.010	3.6	2.182	12.5	2.916	50.3	1.853	-4.5
	60.0	2.940	19	8.992	1.8	3.248	10.5	4.341	47.7	2.633	-8.8
ane	4.0	0.550	19	0.650	18.1	0.674	22.6	0.910	65.4	0.665	20.9
•	20.0	0.970	19	1.072	10.5	1.113	14.7	1.500	54•7	1.059	9.2
	40.0	1.770	19	1.754	-0.9	1.821	· 2.9	2.455	38 • 7	1.674	-5.4
	60.0	2.710	19	5•611	-3.7	2.710	0.0	3 • 655	34.9	2.424	-10.6
tane	4.0	0.500	19	0.590	17.9	0.579	15•7	ؕ798	59.6	0.601	21.4
	50.0	0.890	19	ؕ973	9•3	0.954	7.2	1+316	47.9	0.967	8.6
	40.0	1.590	19	1•592	ؕ1	1•562	-1.8	2.154	35•5	1.529	-3.9
	60.0	2.510	19	2.369	-5.6	8.325	-7.4	3.207	27.8	2.213	-11.3
ntane	4.0	0.460	19	0.542	17.7	0.512	11.2	0.719	56.3	() • 764	88.2
• • •	50•0	0.840	19	0.894	6.4	0.344	0.5	1.186	41.2	0.895	n•9
	40.0	1.490	19	1.462	-1.9	1+351	=7+3	1.941	30.3	1+419	-4.1
aharana	60.0	2.240	13	2.111	-2.0	2.000	-0-8 4 a	8.202	29.0	8 • 077 8 · 520	-3+3
ouexane	8•0 •a a	0 400 0 570	13	0.491	12.4	0.410	10.5	0.816	13.2	0.683	19.9
	20.0	0.310	19	0.871	1314	0.849	1.0	1.099	30.9	9.991	7.3
	40.0	1.310	19	1.425	8.8	1.389	6.0	1.799	37.3	1.425	8.8
	60.0	1.930	19	2.121	9.9	2.067	7.1	2.678	38.8	2.063	6.9
lonentene	2.0	0.560	19	0.526	-6.1	0.532	-5.0	0.670	19.6	0.561	0.1
ropentane	10.0	0.640	19	0.693	8.2	0.700	9.4	0.882	37.8.	0.724	13.2
$(a_1, \dots, a_{n-1}) \in \mathbb{R}^n$	20.0	0.930	19	0.933	0.3	0.944	1.5	1.185	27.8	0.955	2.7
	40.0	1.410	19	1.527	8.3	1.544	9.5	1.944	37.9	1 • 511	7.1
	60.0	2.180	19	2.273	4.3	2.299	5.4	2.895	32.8	2.187	ؕ3
hylcyclopentane	5•0	0.480	19	0.492	2•4	0.471	-1.9	0.625	30.3	ð•526	9.6
	10.0	0.590	19	0.647	9.7	0.620	5.0	0.823	39•5	0.680	15.2
•	20.0	0.850	-19	0.872	S• 6	0.835	-1-8	1.109	30.5	0.897	5.5
	60.0	1.920	19	2.125	10.7	2.034	.5•9	8.705	40.7	2.073	22 2
tylene	0.0	1.100	85	0.762	-30.8	0.820	-25.5	0.913	-17.0	0.673	- 30 • 0
	10.0	1.500	85	1.052	-27.9	1.165	-22.4	1.0.266	-13.5	0.934	- 23.3
_	30.0	2.190	85	1.002	-151	2.030	-7.2	2.200	21.0	1.930	-14.6
ry⊥ene	20.0	5 1 6 9		1.670	-10+1	0.670	-87.0	0.006	-82.4	0.689	-36.7
гсепе	25 0	6-610		1.130	-82-8	1.140	-82.8	1.541	-76.7	1.129	-82.9
	40.0	9.490	61	1.630	-32-8	1.631	-82.8	2.204	-76.3	1.575	-83.4
	69.0	12.500	61	2.427	-80.6	2.428	-80.6	3.281	-73.7	2.230	-81.8
rene	25.0	1.090	19	1.057	-3.0	1.089	-0.1	1.284	17.8	1.087	-0.3
	2.0	0.580	19	0.521	-10.2	0.537	-7.4	0.633	9•1	0.563	-2.9
	10.0	0.750	19	0.686	-8.5	0.707	-5.7	0.833	11.1	0.727	-3.0
54.	80.0	1.020	19	0.934	-9.4	ؕ953	-6+6	1.123	10.1	0.960	-5.9
			1		-		I	ا حديده ومحد وجود ا	l		pata ang salahang 🖡

r

## Solvent = Water

<u></u>				فسند محدد الادليمقيو						· · · · · · · · · · · · · · · · · · ·	
				This	work	Wilke	&Chang	King e	et al	Sitara	. et al
Solute	т, ^о с	D _{AB}	Ref	Eq. (3-	2.4)	Eq. (2-	3.16)	5q.(2-	3.29)	ह <b>q</b> •(2-	3.27)
		(Exp.,		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Error
enzene	40.0	1.500	19	1.512	-5.5	1.559	-2.6	1.837	14.8	1.517	-5.2
. 11	60.0	2.550	19	2.251	-11.7	2.321	-9.0	2•735	7.2	2.196	-13.9
oluene:	2.•Ø	0.450	19	0.497	8.3	0.475	.5•6	ؕ589	30.9	0.525	16.7
11	10.0	0.620	19	0.641	3•4	0.626	0.9	ؕ775	25.1	0.673	9.4
11	50.0	0.850	19	0.864	1.6	0.843	-0.5	1.045	22.9	0.895	5.3
17	40.0	1.340	19	1.414	5.5	1.350	2.9	1.719	27.6	1 • 41 5	5.6
11	60.0	2.150	.19	2.105	-2.1	2.054	-4.5	2.545	15.4	2.048	-4.7
thyl benzene	3.0	0.440	19	0.459	4.3	0.429	-2.0	0.550	23.0	0.493	
	10.0	0.610	19	0.604	-1.0	10 • 505	- / • 4	0.075	10.1	0.341	3.8
	20.0	0.810	19	0.514	0.5	0.045		W 9 15	20.8	1.220	
· •	40.0	1.300	19	1.083	2.0	1.957	-4.8	1.376	21.8	1.02/	-1.3
10	60•0	1.900	19	1.700	-/-9	0.846	10.4	0.653	-1/1.8	0.598	-22.0
ethanol	1.0		90	0.812	1.7	0.044	18.1	0.729	-8.9	0.662	-17.2
· · · ·	10 5	1.120	65	1.010	-7.2	1.218	7.9	0.939	-16.9	0.839	-25.8
11	15.0	1.260	168	1.162	-7.9	1.350	7.1	1.041	-17.4	0.923	-26.8
11	24.8	1.700	65	1.533	-9.3	1.780	• 4.7	1.373	-19.2	1.194	-29.8
17	25.0	1.587	96	1.535	-3.3	1.782	12.3	1.375	-13.4	1.195	-24.7
11	37.0	2.270	65	2.054	-9.5	2.385	5.0	1.840	-19.0	1.567	-31.0
thanol	4.0	0.670	65	0.694	3.5	0.750	11.9	0.653	-2.5	0.597	-10.8
11	10.0	0.840	168	0.849	1.1.1	0.918	9.2	0.800	-4.8	0.721	-14+1
11	12.5	0.890	65	1.894	0.5	0.966	. 8.6	0.842	-5.4	0.757	-15.0
11	15.0	1.000	168	0.991	-0.9	1.071	: 7 • 1	0.934	-6.6	0.833	-16.7
"	24.8	1.260	65	1.307	3.7	1.412	12.1	1.231	-2•3	1.077	-14.5
11	25.0	1.240	168	1.308	5 • 5	1.414	14.0	1.233	-0.6	1.073	-13-1
11	25.0	1.245	24	1.308	4.8	1.414	13.3	1.233	-1.2	1.073	-13.6
11	37.0	1.770	65	1.751	-1.1	1.892	6.9	1.650	-6.8	1 • 41 3	-20.1
llyl alcohol	15.0	0.903	168	0.916	1 • 7	0.968	7.5	0.895	-0.6	0.814	-9.5
-amyl alcohol	15.0	0.690	168	0.759	9.9	0.704	2.0	0.797	15•4	0.704	2.0
n-Propanol	4.0	0.570	65	0.624	9.5	0.639	12.1	0.605	6.1	0.555	-2.1
17	12.5	0.760	65	0.805	5.9	0.824	8.4	0.780	3.0	0.701	-10.6
**	15.0	0.870	168	0.892	2.5	0.913	5.0	9.564	-0.1	0.115	-10-5
	24.8	1.150	65	1.176	2.3	1.204	4.1	1.140	-0.9	1.201	-16.3
	37.0	1.560	65	1.576	1.0	1.013	3.4	1.000	11.0	1.557	- 1 )• )
ec-Propanol	4.0	0.540	65	0.025	17.1	0.031	10.4	0.770	6.7	0.705	-3.4
**	12.5	0.730	65	0.505	10.3	1 200	10.9	1.139	6.4	1.004	-6.2
79	24.5	1.010	60		2.3	1.608	5.8	1.525	0.3	1.317	-13.4
	37.0	1.020	00	1.515	18.4	1.496	13.9	0.505	16.0	0.470	8.0
H H	1.0	0 4.50	90	4.515	13.0	0.196	9.7	0.505	11.7	0.470	3.9
11		0.452	65	0.575	12.7	0.553	8.5	0.564	10.5	0.521	2.1
tt .	10.5	0.690	65	7/1	7.4	0.713	3.4	0.727	5.3	0.659	-4.5
H.	15.0	0.770	168	1.821	6.7	0.791	2.7	0.805	4.6	0.725	-5.8
11	24-8	1.000	65	1.084	8.3	1.043	4.3	1.062	6.2	0.938	-6.2
11	25.0	0.956	96	1.085	13.5	1.044	9.2	1.063	11.2	0.939	1+8
tt	25-0	1 9.972	96	.085	11.6	1.044	7.4	1.063	.9.4	0.939	- 3.4
11	37.0	1.420	65	1.451	2.3	1.397	-1.6	1.423	0.5	1.232	-13+3
-Butanol	20.0	0.790	168	0.951	20.4	0.913	15+5	0.930	17.7	ؕ829	4.9
11	20.0	0.840	168	13.951	13.2	ؕ913	8.7	0.930	10.7	0.829	-1+3
•	1	1	- <b>-</b>				-				

-

Solvent = Water

•								the second s	· · · · · · · · · · · · · · · · · · ·		
Solute	т, ^о с	DAB	Ref	This v Eq. <b>(3-2</b>	vork .4)	Wilke- Eq.(2-	-Chang 3.16)	King e Eq. <b>(2-</b>	et al 3.29)	Sitara Eq <b>.(2-</b>	. et al 3.27)
· · · ·		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Error
utenol	18.0	0.850	96	0.899	5.8	ؕ363	1.5	Ø.879	3•4	0.787	-7.5
utanol	4.0	0.390	65	0.352	-9.7	ؕ338	-13+4	0.357	-8.4	0.336	-13.9
II IIIIII	12.5	0.600	65	0.743	23.9	0.713	18.9	0.754	25.7	0.673	12.2
11	24.8	0.980	65	1.087	10.9	1.043	6.4	1.103	12.5	0.958	-2.2
11	37.0	1.310	65	1.456	11.1	1.397	6.6	1.478	12.5	1.258	-4.0
anl alcohol	20.0	0.820	168	0.844	.2.9	ؕ813	-0.8	0.836	2.0	0.808	-1-4
arol	15.0	0.720	168	0.778	8.0	0.879	22.0	0.651	-9.6	0.730	1.5
11	20.0	0.825	168	0.898	8.9	1.014	22.9	0.751	-8.9	0.835	1.2
T	20.0	0.830	60	0.898	8.2	1.014	22.2	ؕ751	-9.5	0.835	3.6
11	10.0	0.630	166	0.667	5.8	ؕ753	19.5	0.558	-11.5	0.633	0.4
	20.0	1.040	169	1.060	1.9	1.190	14.4	0.940	-9.6	0.936	-10.0
Areus Stacor	25.0	1.172	21	1.212	3.4	1.361	16.1	1.075	-8.3	1.060	-9.5
**	10.0	1.640	21	1.734	5.8	1.947	18.7	1.539	-6.2	1.479	-9.8
• • •	55.0	2.280	21	2.354	3.3	2.643	15.9	2.089	-8.4	1.966	-13.8
• •	70.0	2.780	21	3.070	10.4	3.447	24.0	2.723	-2.0	2.516	-9.5
	20.0	0.880	168	0.994	12.9	1.001	13.8	0.859	-2.3	0.346	-3.8
-ProbAreuegracor	15.0	1.220	168	0.896	-26.6	0.941	-22.9	1.037	-15.0	0.869	-28.7
tone	17.0	1.250	100	a. 950	-24.0	Ø.998	-20.2	1.100	-12.0	0.918	-26.5
11	200.0	1.160	168	1.034	-10.8	1.086	= 6 • 3	1.197	3.2	0.994	-14.3
**	05 0	1.080	168	1.183	-7.6	1.2/13	-2.9	1.370	7.0	1.126	-12.0
	00. a	1.000	168	1.012	-12.3	0.980	-5.8	0.954	-8.2	0.945	-9.2
iural	20.0	1 . 940	100	0.840	9.3	0.901	17.2	0.782	1.6	Ø.758	-1.4
tic acia	9.1	a 010	1.66	0.887	-2.5	Ø.952	4.6	0.825	-9.3	0.798	-12.3
	12.5	0.910	00	0.051	6.0	1.024	13.7	0.888	-1.4	0.854	-5.1
	14.0	a 010	1.00	0 0 9 3 4	8.0	1.055	15.9	0.915	0.5	0.878	-3.5
11	15.0	0.910	96	0.903	11.7	1.055	19.8	0.915	3.9	0.878	-0.2
	15•0	1 100	168	1.125	=/1-6	1.218	2.3	1.056	-11.3	1.003	-15.7
n .	20.0	1.050	100	1 0 0 8	2.0	1.203	11.4	1.208	-3.4	1.137	-9.1
11	25.0	1.200		1 000	0.0	1 202	9.6	1.908	-/1.9	1.137	-10.5
11	25.0	1.210		1.000	2 2 2	1 202	15:1	1.208	-9.2	1.137	-6.1
	25.0	1.210	211	1.290	122	a goi	8.0	1.017	11.3	0.851	3.2
yric acia	20.0	0.024		0.934	1.3•3	1 010	11.0	1.0/0	14.2	0.964	5.0
••	25.0	10.918	17	1.000	10+3	1.019	11.0	1 475	10.5	1.431	-5.6
mic acid	25.0	1.516	17	1.503	-0.9	1.095	11.0	1 214	20.0	1.126	12.6
pionic acid	25.0	1.009	17	1.109	10.0	1.173	10.0	1 1 1 19	07.0	1.002	11.6
17	20.0	0.895	17	1.022	13.0	1.020	14.6	1 • 1 40	19 0	1.000	9.4
eric acid	25.0	0.817	17	0.997	82.1	0.911	11+5	0.904	10.00	0.094. 0.720	9•4 0 2
11	20.0	0.767	17	0.872	13.7	0.191	3.9	1 207	-00 0	1 102	-21.8
yl acetate	30.0	1.750	145	1.187	-32.2	1.100	-33.2	1.0501	-16 7	10195	-31.0
tonitrile	15.0	1.260	168	1.013	-19.6	1.127	-10.0	1.020	-10.1	00000 1 000	- 37 - 0
onia	12.0	1.640	108	1.183	-87.8	1.694	3.3	1.810	-88.8	1 1 1 4 4	- 37 4
11	15.0	1.780	20	1.897	-84.8	1.856	4.2	1.398	-21.0	1 0 1 10	-51.0
line	120.0	0.920	168	10.873	<u></u>	<u>0.585</u>	-3.5	1.100	16 1	01.047 0.007	-6-0
thylamine	150.0	10.970	1168	0.909.	L.#6∎3. _o⊑	LИ•885 А ООО	.L. =.ă.+ 7.1 `0⊖0	LI.0129.	1.1 <u>7</u> ,0,43 5 <b>7</b> 99 <b>7</b> 2	0 025	
yl acetate	20.0	1.000	168	0.913			-222	1.702	1111	1.245	-11-5
rogen sulphide	15.5	1.430	95	1.167	-15.4	11+577	10.3	1.1.420	4.0	1.000	

. 27.

		Solv	vent	; = Wate	r						
- 1				This	work	Wilke-	Chang	King (	et al	Sitara	. et al
Solute	т, ^о с	DAB	Ref	. Eq(3-	2.4)	Eq.(2-3	3.16)	Eq <b>. (2 – 3</b>	.29)	Eq.(2_3	27)
· · ·		(exp.)	ł	Calc.	%Error	Calc.	Error	Calc.	%Error	Calc.	%Erro:
Hydrogen sulphide	16.0	1.770	3	1 • 1 9 9	-32.3	1.621	-8.4	1 • 538	-13.1	1.298	-26.7
11	25.0	1.360	85	1 • 537	13.0	2.078	52.8	1.972	45•0	1•635	53.5
Hydrogen chloride	20.0	2.640	153	1.447	-45.2	1.897	-28.1	1.876	-28.9	1 • 584	-40.0
Methyl chloride	55.1	1.390	85	1.280	-7.9	1.483	6.7	1 • 576	13•4	1.338	-4.1
Carbon dioxide	0.0	0.960	85	0.735	-23.4	0.880	-8.3	0.759	-20.9	0.735	-23.4
11	6.5	1.080	85	0.930	-13.9	1.144	3•1	0.960	-11+1	3 + 915	-10-0
**	10.0	1.170	65	1.045	-10.6	1.050	-2.7	1.070	-1.7.0	1.020	-21-6
11	15.0	1.370	05	1.010		1.460	-5.7	1.258	-8.2	1.176	-1/1.1
11	15.0	1.400	00	1.219	-12.9	1.460	4.3	1.258	-10.1	1.176	-16.0
11	15.8	1.490	85	1.255	-15.8	1.502	0.8	1.295	-13.1	1.205	-18.9
11	16.0	1.570	85	1.256	-20 0	1.503	-4.3	1.296	-17.5	1.209	-23.0
11	16.0	1.630	85	1.256	-23.0	1.503	-7.8	1.296	-20.5	1.209	-25.8
11	16.4	1.570	85	1.274	-15.9	1.525	-2.9	1.314	-16.3	1.225	-22.0
<b>H</b>	20.0	1.630	85	1.407	-13.7	1.685	3.4	1.452	-10.9	1.344	-17.5
11	20.4	1.850	.85	1.416	-23.4	1.696	-8.3	1.462	-21.0	1.352	-26.9
	25.0	2.000	85	1.610	-19.5	1.927	-3.6	1.661	-16.9	1.523	-23.8
11	30.0	2.060	85	1.826	-11.4	2.186	6•1	1.884	-8.5	1.713	-16.9
<b>H</b>	30.0	2.250	85	1.826	-18.8	2.186	-5•8	1.884	-16.2	1.713	-23.9
tt	35.0	2.260	85	2.058	-8.9	2.464	9.0	2.124	-6.0	1.914	-15.3
- 11	35.0	2.180	85	2.058	-5.6	2.464	13.0	2.124	-5.6	1.914	-12-2
11	52.0	3.610	85	2.952	-18.2	3.534.	-2.1	3.046	-15.6	2.677	-25.5
11	65.0	4.300	85	3.746	-12.9	4.485	4.3	3.866	-10.1	3.341	-22.3
Nitrogen	15.0	1.940	85	1.435	-26.0	1.524	-21.4	2.705	39.4	1.633	-15.8
11	21.7	2.300	85	1•748	-12.6	1.857	-7.2	3.295	64.8	1.902	-1.9
	25.0	2.250	85	1.895	-15.8	8.012	-10.0	3.720	77.0	0.773	2.7
	37.0	2.700	85	2.536	-6.1	2.093	-0.3	4.100	-3.6	1.345	-17.0
Nitrous oxide	15.0	1.620	85	1.300	-12+0	1 556	-0.0	1.631	-5-0	1.403	-10.3
11	16.2	1.500	85	1 570	-0.0	1.791	-18.4	1.804	-14.5	1.537	-27.1
17	20.0	2.570	85	1.952	-2/1.0	1.948	-24.2	2.057	-20.0	1.728	-32.8
0	15.0	1.670	- 65	1.469	-12.0	1.737	4.0	2.541	52.1	1.775	6.3
uxygen "	16.0	1.870	20	1.513	-19.1	1.789	-4.3	2.617	39.9	1.824	-2.4
11	18.2	1.990	85	1.606	-19.3	1.899	-4.6	2.777	39.5	1.925	-3+1
11	20.0	2.010	85	1.696	-15.6	2.006	-0.2	2.933	45.9	2.028	0.9
11	22.0	2.250	85	1.792	-20.4	2.119	-5.8	3.098	37.7	2.134	-5.1
. 11 🔍	55.Q	2.220	85	1.792	-19.3	2.119	-4.6	3.098	39.6	2.134	-3.9
11	25.0	2.600	85	1.940	-25.4	2.294	-11.8	3.354	29.0	8.538	-11.6
11	25.0	2.600	85	1.940	-25.4	2.294	-11.8	3.354	89.0	2.298	-11.6
11	25.0	2.420	85	1.940	-19.8	2.294	-5.2	3.354	38.6	2.298	-5.0
11	37.0	3.000	85	2.596	-13.5	3.070	2.3	4.489	49.6	3.013	0.4
Sulphur dioxide	20.0	1.400	85	1.353	-3.3	1.530	9•3	1.423	1.6	1.390	-0.7
¥9	80.0	1.460	85	1.353	-7.3	1.530	4.8	1.423	-2.5	11.390	-4-8
17	150.0	1.660	85	1.353	-18.5	1.530	-7.8	1.423	-14.3	1.390	-10.2
11	150.0	1.620	85	1.352	-16.6	1.536	-5.2	1.425	-12.1	1.395	-13.9
	25.0	2.040	85	1.548	-24.1	1 • 750	-14-2	1.627	5.08-	1.675	- 13.0
17	25.0	1.830	85	1.545	-15.4	1.750	= 4 • 4	1.244	-11.0	1.771	-14-8
	30.0	12.080	85	1.756	-15.0	1.900	-4.0	2.484	-10.7	1.979	-15-0
	35.0	8.330	85	1.910	-10.6	2.501	-4.0	2. 100	-10-1	2.198	-15-1
	40.0	18.240	05	6.814	1-1403	16.004		G JG7	1.0.1		1

÷ č.

264

#### Solvent = Water

الككافية الكسوي استنصب فبالبالك البري استنصب التبار	****										
				This	work	Wilke-	Chang	King (	et al	Sitara	et al
Solute	T.°C	D.,	Ref	Ea.(3_2	.4)	Ea. (2-3	3.16)	Eq. (2-	3.29)	Ea.(2-3	.27)
	-, -	(exp.)		· Calc.	%Error	Calc.	%Error	Calc.	Error	Calc.	Frror
Menitol	10.0	0.000	168	0.551	37.7	0.478	19.6	0.350	-12.4	9.446	11.5
II II	20 0	0.560	169	0.749	22.5	0.415	15.1	0.000	-15 7	0.599	
11	20.0	0.000	100	a 0/0	22.0	0.045	1.0.1	0.416	-10.1	9.000 4.954	5.1
11	30.0	0.120	160	9.903	33.1	W+030	10.2	0.013	-14.9	ؕ750	4•1
	40.0	0.900	168	1.814	34.9	1.055	17.2	0.113	-14•1	0.930	3.4
**	50.0	1.100	168	1.496	36.0	1.300	13.2	0.952	-13.4	1.130	2.7
	60.0	1•320	168	1.808	37.9	1.570	19.0	1.150	-12.9	1 • 3 4 7	2.0
	70.0	1.560	168	2.150	37•8	1.867	19•7	1.368	-12.3	1•582	1.4
	SQ•Q	ؕ673	168	ؕ742	10.3	ؕ645	-4.2	0.472	-29.8	0.588	-12.6
Resorcinol	20•0	0.770	168	0.869	12.9	ؕ877	13.9	ؕ771	0.1	ؕ813	5.6
Pentaerythritol	20•0	0.690	168	0.812	17.7	ؕ737	6.8	0.542	-21.5	0.636	-7.8
Pyrogallol	15.0	0.560	168	0.735	31.2	0.731	30.5	0.605	8.1	0.683	55.0
[riethyleneglycol]	30.0	0.875	131	0.954	9.0	0.879	0.5	0.849	-3.0	ؕ879	0.4
lycine	1.0	ؕ515	118	0.557	8.2	ؕ588	14.1		1		1
Ĩ II	25.0	1.055	168	1.174	11.3	1.238	17.3	-	·		1
Ervthritol	25.0	0.805	168	0.987	55.6	0.929	15.4	0.666	-17.2	0.774	-3.9
Aminobutvric acid	1.0	Ø.389	118	0.475	22.0	0.448	.15.3				}
11	25.0	0.529	118	1.000	20.6	0.945	13.9	1			ļ
Senzoic acid	25.0	1.210	168	0.955	-21.1	0.891	-26.3	ؕ917	-24.2	0.901	-25.5
lanrine	1.0	0.333	118	0.422	26.7	0.372	11.8			•	1
n n	25.0	a.725	118	0.889	22.6	0.785	8.2				·
leproie scid	25.0	0.784	17	0.031	18.7	Ø.828	5.6	0.884	12.8	0.832	6.1
valia acid	20.0	1.530	169	1.0/3	- 31 - 8	1.063	-30.5				1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
lonino	1 0	1.130	100	a. 511	18.2	0.506	17.0	0.463	7.3	0.477	10.5
	05 0	a 01a	118	1 076	18.9	1.065	17.0	a. 976	7.3	0.954	4.9
17	60.0 5 a	0.510	110	A 501	10.2	a. 585	16.0	0.536	7.9	0.546	9.3
**	15 a	0.200		a = 15	13.4	N • 303	17.2	a. 720	7.5	a. 727	7.1
11	15•0 25 d	0.000	110	0.010	10 • 4	1 249	17 0	1 0/0	7.0	1 100	2 3
monionio opid	33.0	1.104		1+375	10.1	1.1004	16 0	1 21 4	20.0	1 1 2 4	10 4
ropionie acid	22.0	1.009	17	1 • 1 59	14.9	1.1/3	10+3	1+314	30.2	1.130	
ropionic acid	20.0	0.898	17	1.014	12.9	1.020	14•8	1+140	27.9	1.003	
artaric acid	15.0	0.610	168	0.789	89.3	0.525	2.4	a		a 904	
aleric acid	25.0	0.817	17	0.989	81.1	0.911	11.5	0.904	15.0	0.094	9.4
	30.0	0.767	רי	0.865	12.8	0.797	3.9	9.543	9.9	0+789	5.2
-Varline	25.0	0.768	118	0.939	22•3	0.855	11.3	* *. 1			the second
erine	1.0	0.420	118	0.496	18.2	0.484	15+5				
N N	25•0	0.380	118	1.045	18•7	1•021	15•9		•		
hreonine	25.0	ؕ798	118	0.975	55.5	0.912	14.3		1		
lloxan	20.0	0.670	20	ؕ839 (	25.3	0.821	22•5	- -		·	-
cetamide	4.0	0.610	65	ؕ639	4.7	0.725	18.9	0.562	-7.9	ؕ577	-5.4
	12.5	0.830	65	0.823	-0.8	ؕ935	12.7	ؕ724	-12.7	ؕ731	-15.0
11	15.0	0.960	65	0.913	-4.9	1.036	8.0	0.803	-16.4	0+804	-16.3
11 11 11 11 11 11 11 11 11 11 11 11 11	20.0	1.050	65	1.054	0.3	1.196	13.9	ؕ927	-11.7	0.919	-12.5
11	24.8	1.320	65	1.204	-8.8	1.367	,3•6	1.059	-19.5	1.040	-21.2
H	25.0	1.252	65	1.205	-3.8	1.368	9.3	1.060	-15.3	1.041	-16.9
11	37.0	1.750	65	1.613	-7.9	1.831	4.6	1.419	-18.9	1.365	-55•0
utyramide	1.0	0.450	65	0.540	20.0	0.518	15.2	0.527	17.2	0.504	12.0
in s	12-5	0.650	65	0.696	7.1	0.668	2.8	0.680	4.6	0.638	-1.8
11	24-8	1.070	Gr	1.017	-4.9	0.977	-8.7	0.994	-7.1	0.908	-15.1
1	37.0	1.450	6	1.363	-6-0	1.309	-9.7	1.331	-8-2	1.192	-17.8
offino	10.0	0. 100	169	a. 515	22.7	Ø. 1/18	6. R				
RTTTUG	1000	0.460	100	N - 110	66.1	01440			I.,		

Solvent = Water

<u>.</u>											
				This	work	Wilke-(	Chang	King e	t al	Sitara	. et al
Solute	т,°с	DAB		Eq <b>. (3-2</b>	.4) -	Eq. <b>(2-3</b>	.16)	Eq.(2-3	.29)	Eq.(2-3	.27)
		(exp.)	Ref	Calc.	Error	Calc.	%Erroi	Calc.	%Error	Calc.	%Error
ormamide	4.0	0.850	65	9.724	-14.8	ؕ983	9•1	0.630	-25.9	0.664	-21.9
11	12.5	1 • 1 7 0	65	ؕ933	-30.5	1.196	5.5	ؕ812	-30.6	0.841	-23.1
11	24.3	1.720	65	1.364	-20.7	1•748	1.4	1•157	-31•0	1 • 1 9 7	-30.4
11	37•Ø	5.500	65	1.828	-16•9	2.342	6.4	1•590	-27.7	1 • 571	-28.6
11	25.0	1.603	168	1 • 366	-15.1	1.750	8.8	1•188	-86•1	1•198	-25.5
Lycoamide	25.0	1•142	118	1.266	10.9	1.214	6.3	.*			
11	5.0	0+637	96	0.695	9•1	0.666	4.6				
1	15.0	0.869	96	ؕ959	10.4	ؕ919	5.8				
M .	25•0	1.140	96	1.266	11.1	1.214	6.5				
. "	35.0	1 • 451	96	1.619	11.6	1.552	6.9				
"	45.0	1.794	96	2.017	12.4	1.933	7.1			a	
Lotine	10.0	0.490	168	0.523	6 • 7	0.451	-8.0	0.586	19.5	0.554	13.1
11	50•0	0.530	20	0.794	32.9	0.607	14.5	0.759	45.9	0 • 7:31 a cia	31.9
ropionamide	4.0	0.500	65	0.604	50.9	0.571	14.3	0.544	8.7	0 • 515 a <= 7	
	12.5	0.730	65	0.779	6.7	9.737	0.9	0.701	-4.0	0 • h 7 /	
**	24.8	1.200	65	1.139	- 5 • 1	1.077	-10.3	1.0020	-14.5	0.937	- 22 • 1
	22.0	1.093	168	1 • 1 40	4.3	1.0010	-1.4	1 272	-14 0	1 007	-14.4
	37.0	1.500	169	1.520	-4.0	1+443	-9.0	1.373	-14-2	1.000	- 6 3 • 3
vriuine	15.0	0.000		0.001	39.2	1 426	40.4	0.910	50.9	0.000	· · · · · · · · ·
rea n	22.0	[•352 a 702	110	1+222		1.0433	- 0 3				
17	5•0 • ⊑ _ ₫	1 063	90	a 004		1.087	- 0 - 3				
11	10.5 0	1.0003	26	1 000	-16.9	1.425	4.0				
H	20•0 25 a	1 7 2 1	56	1 666	-0.7	1.834	5.0	-			
	10.0	1.000	168	1.845	-14.6	0.992	Ø.2	1			
11	20.0	1.900	169	1-869	-10.9	1.254	4.5				
	20.0	1.378	168	1.222	-11-3	1.435	4.1	-			
nothana	15.0	a.800	168	1.801	0.2	0.805	0.6	0.783	-2.1	0.760	-5.0
II	15.0	0.870	20	a.801	-7.9	0.805	- 7 . 5	Ø.783	-9.9	0.760	-12.6
ntoses	20.0	a.700	119	Ø.848	21.1	0.737	5.3				
11	25.0	0.760	118	0.97Ø	27.6	0.843	10.9				
TOSES	1.0	0.320	118	Ø.425	32.9	0.359	12.1				
11	15.0	0.520	118	0.679	30.5	0.572	10.0				{
11	25.0	0.680	118	0.396	31.8	0.756	11.1				
saccharides	1.0	0.242	118	0.313	29.5	0.255	5.3				
11	12.0	0.360	119	0.457	26.8	0.371	3.1				1
H	25.0	0.523	118	0.660	26.2	ؕ537	2.6	1			· /
liourea	25.0	1.331	119	1.145	-14.0	1.227	-7.8				
thyl urea	25.0	1.168	118	1.112	-4.8	1.191	2.0				
3-Dimethylurea	25.0	0.998	118	1.929	3.1	1.033	- 3.5	0.937	=6-1	0-915	-8.6
ciethyleneglycol	45.0	1.310	1 35	1.339	5.5	1.234	-5.8	1.191	-9.1	1.205	-8.9
11	65.0	2.130	135	1.956	-10.3	1.804	-17.3	1.741	-20.1	$1 \cdot 714$	-21 • 4
•	I.	!	1	-			!!!			·	

* All four equations give consistently very high deviations for 1-butene.
 Unfortunately no other set of experimental coefficients for 1-butene was found to verify the coefficients used in this table. The deviations for 1-butene were not taken into account in computing the mean deviation.

ť

## Solvent = Methanol

· · · · · · · · · · · · · · · · · · ·								**************************************			
j	-			This w	work	Wilke-(	Chang	King e	t al	Sitara	. et al
Solute	т, ^о с	D _{AB}	Ref	Eq. <b>(3</b> -	2.4)	Eq. (2-3	.16)	Eq. (2-3	.29)	Eq.(2-3	.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	Error
enzene	27.0	2.760	123	2.715	-1.6	2.081	-24.6	2.306	-16.5	1.842	-33.3
oluene	25.0	2.560	123	2.448	-4:4	1.776	-30.6	2.073	-19.2	1•661	-35•1
iphenvl	25.0	1.590	123	2.029	7.4	1.360	-23.0	1 • 595	-15.6	1.405	-25.6
ethanol(self)	5.0	1.550	. 43	1.781	14.9	2.267	46.3	1+639	5.7	1 • 385	-10.6
"	15.0	1.910	43	2.160	13.1	2.750	44.0	1.958	4 • 1	1.657	-13-2
11	25.0	2.320	43	2.578	11.1	3.282	41.5	2.373	2.3	1.954	-15.8
11	25.0	2.270	152	2.578	13.6	3.282	44.6	2.373	4.5	1.954	-13.9
11	35.0	2.710	43	3.057	12.8	3.892	43.6	2.813	3.8	2.290	-15+5
11	35.0	2.740	150	3.057	11.6	3.892	42.1	2.813	2.7	8.890	-16-4
11	40.0	2.890	43	3.284	13.6	4.181	44.7	3•025	4.6	2.447	-15+3
11 .	45.0	3.370	43	3.554	5.5	4.526	34.3	3.271	-2.9	2•634	-21+8
11	55.0	3.880	43	4.151	7.0	5.285	36.2	3.820	-1.5	3.043	-21.6
llvl alcohol	15.0	1.800	168	1.701	-5.5	1.971	9.5	1 • 71 4	-4.8	1.466	-18.6
so-Amvl alcohol	15.0	1.340	168	1.409	5.2	1.434	7.0	1.526	13.9	1.267	; <del>-</del> 5• 5
-Propanol	30.0	1.970	123	2.155	9.6	2.393	81.5	2.154	9.4	1.778	-9.8
-Butanol	30.0	1.840	123	1.984	7.8	2.088	13.5	1.999	8.7	1•661	-9.7
Phenol	15.0	1.400	168	1.437	2.6	1.632	16.6	1.527	9.1	1•399	· -Ø•1
thylene glycol	25.0	1.640	123	2.036	24.2	2.507	52.9	1.863	13.6	1.737	: 5•9
ropylene glycol	15.0	1.240	165	1.599	29.0	1.767	42.5	1 • 426	15.0	1.333	7 • 5
lvcerol	15.0	1.150	169	1.445	25.7	1.790	55.7	1.247	8.4	1.315	14.3
ectoro	18.8	2.220	182	1.791	-19.3	2.062	-7.1	2.137	-3.7	1.674	-24.6
n n n n n n n n n n n n n n n n n n n	15.0	2.500	100	1.665	-33.4	1.918	-23.3	1.987	-20.5	1.565	-37.4
athyl athylkatona	30.0	1.870	4	1.975	5.6	2.191	17.2	2.379	27.2	1.870	-Ø•Ø
he ony reony reoute	15.0	1.700	169	1.467	-13.7	1.729	1 • 7	1.584	-6.8	1.488	-12.5
Sonzaldehyde	15.0	1.660	100	1.355	-18.4	1.489	-10.3	1.612	-2.9	1.408	-15.2
cetic acid	15.0	1.540	96	1.827	18.6	2.149	39.5	1.752	13.8	1.580	8.6
Butwric acid	30.0	1.810	4	1.963	8.4	2.038	12.6	1.921	6.1	1.678	-7.3
Propionic acid	15.0	1.620	100	1.633	0.8	1.810	11.7	1.624	0.2	1•444	-10.9
Sthyl acetate	17.8	1.720	182	1.667	-3.1	1.799	4.6	2.023	17.6	1.655	-3.8
Sthyl benzoate	16.0	1.280	182	1.223	-4.4	1.199	-6.3	1 • 498	17.1	1.296	1.3
Aniline	15.0	1.498	1 82	1.406	-5.6	1.562	4.8	1•534	3.0	1.360	-8.7
Acetonitrile	15.0	2.640	182	1.881	-28.8	<b>2.296</b>	-13.0	2.012	-23.8	1.599	- 39 • 4
Vitromethane	16.0	2.230	18:	1.796	-19.4	2.257	1.2	1.892	-15.2	1.706	-23.5
Vitrobenzene	16.8	1.480	182	1.391	-6.0	1.494	0.9	1.607	8.6	1.455	-1.7
11	15.0	1.560	168	1.343	-13.9	1.443	-7.5	1.552	-0.5	1.409	-9.7
Pvridine	15.0	1.580	100	1.512	-4.3	1.718	8.7	$1 \cdot 744$	10.4	1•481	-6.3
Jarbon tetra-	15.0	1.700	182	1.447	-14.9	1.626	-4.3	1.871	10.1	1.793	5.4
" chloride	25.0	2.250	123	1.727	-23.2	1.941	-13.7	2.234	-0.7	2.114	-6.1
11	25.0	2.300	123	31.727	-24.9	1.941	-15.6	2.234	-2.9	2.114	-8.1
bloroform	15.0	2.070	182	1.567	-24.3	1.817	-12.2	1.974	-4.7	1.843	-11.0
Sthvl bromide	15.0	2.400	182	1.640	-31.7	1.927	-19.7	2.082	-13.2	1.920	-50.0
Sthvl iodide	15.0	2.160	168	1.546	-28.4	1.813	-16.1	1.934	-10.5	1.961	-9.5
Sthylene iodide	15.0	1.950	168	1.460	-25.2	1.662	-14.8	1.720	-11.3	1.832	-6.0
Bromobenzene	15.0	1.750	100	1.356	-22.5	1.475	-15.7	1.627	-7.0	1.570	-10.3
odobenzene	15.0	1.650	161	1.305	-20.9	1.410	-14.5	1.557	-5+6	1•603	-2.9
-di bromobenzene	15.0	1.550	0 168	1.244	-19.8	1.355	-12.6	1 • 451	-6.4	1.565	1.0
-dichlorobenzene	25.0	2.350	169	1.576	-32.9	1.600	-31.9	1.850	-21.3	1.666	-29.1
hloral hydrate	15.0	1.160	16	81.389	19.7	1.410	21.6	1.030	-11.5	1.200	3.5
later	15.0	1.780	3 112	1.906	7.1	1.950.	9.9	2.130	19.7	1.991	111.9

267

1. T. S. L. 1

۰.

Solvent = Methanol

			1	This	work	Wilke-	Chang	King e	t al	Sitara	. et al
Solute	T,°C	D	Ref	Eq. (3-	-2.4)	Eq <b>.(2</b> -	.3.16)	Eq.(2-:	3.29)	Eq. (2-3	s.27)
		(exp)		Calc.	%Error	Calc.	%Error	Calc.	SError	Calc.	%Error
riphenvlmethane	25.0	1.160	123	1.140	-1.7	1.026	-11.6	1.313	13.2	1.203	3.7
Frvthritol	25.0	1.150	123	1 • 671	45.3	1.712	48.8	1.154	0.4	1.268	10.3
Salol	15.0	1.290	168	1.069	-17.1	0.992	-23.1	1.085	-15.9	1.068	-17.2
henetol	15.0	1.850	20	1.272	-31.3	1.283	-30.6	1.502	-18.3	1.284	-30.6
dipic acid	30.0	1.382	4	1.683	21.8	1.536	11.8	1.440	4.2	1.381	-0.1
nthranilic acid	30.0	1.380	103	1.680	21.7	1.685	22.1				
Bromopropionicacid	15.0	1.350	20	1 • 467	8.7	1•522	12.7	1.433	6.2	1.480	9.7
hloroacetic acid	15.0	1.520	168	1.664	9.5	1.761	15.9	1 • 515	-0.3	1.461	- 3.9
Chloroacetic acid	15.0	1.360	20	1.510	11.0	1.605	18.1	1.475	8.4	1.482	9.0
Chlorobenzoic acid	15.0	1.290	20	1•282	-0.6	1.262	-5.5	1.			
Cinnamic acid	30.0	2.520	4	1•596	-36.7	1 • 573	-37.6	1.630	-35•3	1•507	-40.2
[odopropionic acid	15.0	1.360	20	1.403	3.2	1•446	6.3	1.237	-9.0	1•424	4.7
actic acid	15.0	1.360	20	1.607	18.2	1•620	19.2	1•339	-1.6	1.278	=6.0
Jauric acid	30.0	1.420	108	1•336	-5.9	1•129	-20.5	1•387	-2•3	1•220	-14-1
Jinoleic acid	30.0	0.848	108	1 • 1 5 3	35•9	0.920	8•5	1.200	41 • 5	1.088	28.3
alic acid	30.0	1.712	20	1.869	9•1	1•739	1•6				
Ialonic acid	30.0	1.870	108	2.067	10.6	2.053	9.8				
yristic acid	30.0	1.070	108	1•251	16.9	1.037	-3.1	1.308	55•3	1.162	8.6
)leic acid	30.0	Ø•9Ø2	20	1•129	25.2	0.910	0.9	1.211	34•3	1.089	20.7
Phthalic acid	15.0	1.300	168	1.253	-3.7	1.182	• - 9 • 1				
fartaric acid	30.0	1•652	4	1.751	6.0	1.656	ؕ2	i	. ,		
Chloroacetic acid	30.0	1.560	4	1.859.	-0.0	1•82Ø	-5.5	1.859	-0.0	1.825	-1.9
11	15.0	1.450	20	1•429	-1.4	1•399	-3.5	1•429	-1•4	1.429	-1.5
Bromoacetic acid	15.0	1.230	20	1•305	6.1	1.355	10.1	<b>l.</b> •366	11.1	1.613	31.1
Phenyl acetate	15.0	1.620	168	1.257	-22.4	1.284	-20.7	1•422	-12-2	1.284	-20.3
Chloroaniline	15•Ø	1.370	168	1•353	-1.3	1 • 399	2.1	1.447	5•6	1.343	-5.0
11	15.0	1.340	20	1•353	1.0	1 • 399	4•4	1.447	8.0	1.343	0.2
Bromoaniline	15•Ø	1.410	20	1.290	-8.5	1.384	-1.9	1.740	23.4	1.607	14.0
nDinitrobenzene [.]	15.0	1.560	168	1.274	-18.3	1.312	-15.9	1.243	-20.3	1.281	-17.9
Bromonitrobenzene	15•0	1.430	20	1.233	-13.8	1.352	-5.4	1.342	= 6 • 1	1•433	0.2
Chloronitrobenzene	15.0	1.680	20	1.269	-24.5	1.343	-20.1	1.368	-18 • 5	1.346	-19.9
tyldiphenylamine	25.0	0.980	20	1.227	25.2	1.152	17.6		40 01		a h
Dibenzylamine	15.0	0.860	168	1 • 115	29.7	1.089	50.0	1.4825	42.0	1 20 4	30.4
tronaphthalene	15.0	1.320	168	1 • 1 33	-14.1	1.094		1+415	1•4	1.040	0.3
nNitrobenzaldenyde	15.0	1.240	168	1.244	0.3	1.308	2.2	1.200		1.261	-1-/
ltropnenol	15.0	1.380	168	1.284	-7.0	1.074	5.0	1.300	-1.0	1.301	-1.4.1
<b>,q</b> -Dinitrophenol	15.0	1.400	20	1.305	-0.0	1.274	-9.0				
46, Trinitrophenoi	15.0	1.410	20		-20.9	1 • 1 0 4	-1/+5	1 070	1.6	1.97/	1.9
iyaroquinone	15.0	1.250	20	1+411	18.9	1+040	63.1	1.410	1.0	1.614	
.00010rm	15.0	1.330	168	1.410	-4.9	1 • 409	0.0	1 661	-1.0	2.002	19.2
llodomethane	15.0	1.680	168	1 • 41 3	-13.9	1+004	-4 7	1 662	-1.0	1.910	15.6
thylene iodide	15.0	1.560	168	1.024	-13.9	1 0 6 7	-15.5	1.166	-22.3	1.138	-24.2
lcetanilide	15.0	1.500	168	1.030	-/ -/	1 2 / /		1.400	- 40 - 3	1./102	-10.3
lorobromomethane	15.0	8.500	165	1 • 200	-40 + 5	1 1 1 0 0		1 094	-40-5	1.027	-18.6
lichloronaphthaler	162.0	1.020	20		-63.3	1 1 1 0 5		1.604	-1.00.0	1.601	-10-0
libromonaphthalene	1.2.0	1. 100	100	1 0 1 0	8.0	1.182	5.6	1.967	13.1	1./166	30.9
46 tribromopheno	115•0	1 010	168	1 202	8.1	1.01/	0.3	1.302	7.6	1.300	8.2
4,6,1'richlorophenol	15.0	1 240	168	1.220	- (X, 1	1.408	6.6	1.380	3.0	1.449	7.6
romopneno1	10.0	1. 200	169	1.261	-0.1	1.444	0.0	1.470	12.0	1.389	5.2
nioropnenol	15.0	11.000	100	1.501	-30-1	1.75/	-21-0	1.877	-15.5	1.769	-20.7
Bromopropylene	15.0	10.000	20	1.469	-1/1-4	1.6/17	-/-2	1.778	3.4	1.799	4.6
lodopropy⊥ene	15.0	1.410	160	1.501	6.6	1.640	16.2	1.501	6.5	1.368	-3.0
ratnane	15.0	1.000	169	1.008	22.R	1.26/	26-1	1.221	22.1	1.204	20.4
aniiin thul nituate	18.0	19.000	169	1.5/8	-89.6	1.770	-19.6	1.767	-19.7	1.581	-28.2
tnyi nitrate	H D . H			1 - 140	an a	1 . 110	1 2 0 01				

#### Solvent = Ethanol

										and the spinors of the second s	-
				This	work	Wilke-	-Chang	King e	t al	Sitara	• et al
Solute	T.°c	D	Ref	Eq.(3-	2.4)	Eq. (2-	3.16)	Eq. (2-3	• <i>2</i> 9)	Eq.(2-3	.27)
		(exp.)		Calc.	Frror	Calc.	Frror	Calc.	SError	Calc.	%Error
	29.6	2.640	3	2.003	-24.1	2.515	- /1 • 7	3.608	36.7	2.378	-9.9
xygen	25.0	1.320	1.68	1. 010	-22.8	1.296	-1.8	1.108	-16.1	1.489	12.8
ogiue,	10.0	1.770	019	1.496	-20.6	1.700	1.0	1.520	-13.7	2.010	13.5
н	8.0	a.000	200	1.600	-00.4	0.880	-1.9	0.760	-15.6	1.9/0	16.5
	0•0 05 a	1 910	20	1 760	-2 5	1 084	-1.5	1 050	- 20 a	1 300	1.0.0
enzene	15 a	1 400	2	1 480	-7.5	1 004	-40.1	1.622	- 3000	1.020	- 13.2
oluene	7 0	1.000 0.619	1 1 2	7 9 9	20 /	0.020	= 51 • J	0.944	20 0	0 100 a 7da	- 50.0
tnanol (sell-)	1 5 0	0.010	40	a 000	08 0	1 170	17 0	0.074	30.0	N 100	1 D • J
**	05 0	9 • 1 10	45	0.996	01 2	1 107	20 2	1 000	10 1	1.010	0.0
11	20.0	1.010	43	1.510	21.0	1 • 407	37.3	1.400	1901	1 044	- 4 2
11	33.0	1.300	43	1.010	10.0	0 1 50	00 4	1 9 4 9 1	10.0	1 544	
	43.0		43	1.075	12.9	2.102	29.0	1.020	10.0		
· ••	100.0	8.000	43	102.501	10.1	2.010	27+1	2.239		1.0172	-167
" 	65.0	2.010	43	2.101	5.0	3.170	1.18	2 • /15	4.0	2 • 1 / 3	
liyi alconol	20.0	0.950	100	1.015	3.5	1.139	10.2	1.033	7 4	0.900	
	20.0	0.960	125	1.015	5.7	1.139	10.0	1+033		0.900	
-amyl alcohol	20.0	0.810	160	9.842	4.0	0.828	2.3	0.920		0.110	- 3.9
· •	20.0	0.780	215	0.842	8.0	0.525	5•3	0.920 0.920	17.9	0.770	- 0.2
	50.0	0.760	20	0.842	10.5	0.828	9.0	0.920	81.0	0.178	2.4
henol	50.0	9.800	20	0.857	7.1	0.943	.17.9	0.920	15.0	0.559	1.4
lycerol	50.0	0.530	168	0.862	62.7	1.034	.95•1	0 • 751	41.7	0.807	52.3
cetic acid	15.3	0.640	96	<b>u</b> .730	14•4	1.124	75•6	0.956	49.3	0.885	38.2
	25.0	1.500	3	1.710	14.4	1.048	-30-1	1.255	-16+1	1.219	-15.7
odobenzene	20•0	1.000	168	0.778	-22.2	0.815	-18.5	0.935	-6.2	0.954	-1.6
	20.0	0.970	3	0.778	-19.8	0.815	-16.0	0.938	-3.3	9934	1.5
hloroform	50.0	1.250	20	0.935	-25.2	1.050	-16•0	1+189	- 4.9	1.132	-9-4
niline	18•5	2.700	219	0.815	-69.5	0.877	-67.5	0.901	=66•6	0.815	-69.8
vridine `	SQ•Q	1.110	168	0.908	-18.2	0.992	-10.6	1.051	-5-3	0.910	-18.0
17	50.0	1.120	219	9.908	-19.0	0.992	-11-4	1.051	-6.2	0.910	-15.5
arbon dioxide	17.0	3.200	168	1.255	-60.8	1.615	-49.5	1.366	-57.3	1.888	= 01+0
ater	18.0	1.100	182	1.100	0.0	1.080		1.231	11.9	1.175	0+9
11	25.0	1.220	45	11.280	5.0	1.260	2.4	1.432	17.4	1.354	11.0
17	25.0	1.132	1.68	1.280	12.1	1.260	11.2	1.432	.86.5	1.354	19•7
etal	20.0	1•130	20	0.763	-32.5	0.716	-36•6	1.000	-11.5	0.808	-28+5
loral	50.0	0.614	20	0.852	38.7	0.877	42.8	1.049	70.8	1.001	63.0
iphenyl methane	25.0	0.718	3	0.635	-11.5	0.554	-22.9	0.739	3.0	0.694	- 3• 3 
sorcinol	[SQ•Q	ؕ451	20	9.841	86.5	0.894	98.2	0.771	71.0	0 • 787	74.4
omoform	80.0	0.970	168	9.844	-13.0	0.952	-1+9	1.005	3.6	1.195	83.8
omonaphthalene	50.0	0.760	219	0.693	-8.1	0.689	-9.3	0 • 776	5.5	0.802	5.5
11	50.0	0.740	20	0.699	-5.6	0.689	-6.9	0.776	4•9	0.805	5.3
ea	15.0	0.540	168	ؕ866	.60•3	1.071	98•3				
obenzene	50.0	0.740	168	0.655	-11-4	0.599	-19.0	0.703	-5.0	0.671	-9-3
etamide 🞋	150.0	0.670	20	1.020	58.8	1.550	.82•1	0.927	38•4	0.839	32.6
droquinone	20.0	0.488	20	0.841	72.4	0.894	83•2	0 • 765	56.8	0.783	60.5
mphor	32.2	ؕ700	168	0.687	-1.9	0.632	-9.7	0.822	17.4	0.719	5•8
phenyl	25.0	1.160	З	1.367	י17•8י	ؕ734	-36.7	ؕ898	-55•6	0.811	-30.1
etoin	50.0	0.556	20	0.882	58•7	ؕ931	67.4	0.865	55.6	0.808	45•4
earic acid	50.0	0.590	1 20	0.513	-13.0	0.400	-32.2	0.560	- 5 • 1	0•521	-11.7
ligenin	20.0	0.608	20	10.791	30.1	0.801	31.8	L			

.

Solvent =	Carbonte	trachloride
-----------	----------	-------------

				The second se							
				This	work	Wilke-	Chang	King e	et al	Sitara	. et al
Solute	т, ^о с	$D_{AB}^{\prime}$	Ref	Eq.(3-	.2.4)	Eq <b>.(2</b> –	3.16)	Eq.(2-	3.29)	Eq.(2-3	3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Error
thane	25.0	2.890	81	2.249	-22.2	3.430	18.7	3.277	13.4	1.965	-32.0
ethanol	25.0	2.610	-81	2.034	-22.1	3.192	22•3	1•547	-40.7	1.499	-42.6
7	25.0	2.040	81	1.846	-9.5	2.665	30.7	2.423	18.8	2.283	11.9
thanol	25.0	1.950	81	1.734	-11.1	2 • 533	29•9	1.387	-28.9	1.353	-30.6
cetone	20.0	1.860	168	1.434	-22.9	2.036	9•4	1.409	-24.2	1.300	-30.1
11	20•0	1.890	166	1.434	-24-1	2.036	7•7	1 • 409	-25•4	1.300	-31.2
17	25•0	·1•7ØØ	81	1 • 568	-7.7	2.226	30.9	1.541	-9.3	1•413	-16.9
lphurhexaflouride	25•Ø	1.710	81	1.358	-20.6	2.221	29.9	1 • 716	0•4	1.937	13.3
enzene	25•0	1.540	81	1 • 401	-9•0	1•952	26.7	1•445	-6.2	1.364	-11.4
CL ₄ (self-)	15.0	1.092	150	1.147	5•1	1.589	45.5	1.222	11.9	1.379	26.3
<del>11</del> 4	20.0	1.180	43	1.246	5.6	1.726	46.3	1.327	12.5	1.489	50.5
11	25.0	1.320	43	1.363	3.3	1.888	43.0	1•451	10.0	1.010	22.0
11	25.0	1.410	129	1 • 363	-3.3	1.888	33.9	1.451	2.9	1.018	14.0
- 11	25•0	1.296	150	1.363	5.2	1.888	45.7	1•451	12.0	1+018	24.9
11	30.0	1.428	31	1 • 48 3	3.8	2.053	43.8	1 • 5 7 9	10.0	1 • 7 50	22.0
11	35.0	1.750	125	1.604	-8+3	2.551	• 26•9	1.708	-2•4	1.003	1/+0
"	40.0	1.780	150	1.739	-2-3	2.409	33+3	1.052	4.1	0 0 0 0	20.6
11	40.0	1.683	31	1.739	3•4	2.409	43.1	1.052	10.1	2.030	0.0
11 .	45.0	2.000	43	1.878	-0.1	2.001	30.1	2.000	0.0	2 101	9.6
11	45.0	1.990	129	1.878	-5.0	2.001	30.1	2.000	2.7	2.101	16.8
	50.0	2.000	43	2.023	1.2	2.002	40.1	2.155	11.2	0.227	20.6
17 	50.0	1.937	31	2.023	4.5	2.005	44.7	2.135	11•6	2.664	0.2
	60.0	2.440	43	2.330	-4.5	3.220	28.2	401	-12.5	1.263	-7.8
henol	25.0	1.370	81	1.354	-16 0	1.812	· 1/1.8	1.103	- 24.5	1.230	-22.2
niline	25.0	1.500	1 81	1.364	-10-2	1.720	10.1	1.526	-2.8	1.276	-18.7
entane [,]	25.0	1.570		1. 240	-13-1	1.730	16-1	1.568	5.2	1.296	-1.3.1
-Metnyl butane	25.0	1 490		1.210	-6.4	1.797	23.4	1.345	-4.0	1.272	-9.1
oluene	25.0	1.400	81	1 200	-0.4	1.730	36.9	1.415	11.4	1.281	0.9
yclonexane	25.0	1.270	1 81	1 070	-0.0	1.666	30.2	1.076	-15.9	1.149	-10.2
enzyl alconol	22.0	1.200	1 81	1.070	-15.2	1.550	1.0	1.492	-6.5	1.199	-20.0
Hexane	25.0	1.500		1.070	-12.6	1.550	6.1	1.402	-4-6	1.199	-18.4
	25.0	1.470		1 094	-13.0	1.554	24.4	1.459	16.7	1.224	-2.1
,2-Dimetnyibutano	125.0	1.250	1 01	1 179	-1.8	1.503	25.2	1.139	-5-1	1.166	-2.8
aphtnalene	25.0	1.200		1.108	-10.6	1.430	6.7	1.306	-2.5	1.140	-15.0
eptane	25.0	1.340	1 81	1 175	-10.0	1.400	19.5	1.165	-2.1	1.121	-5.8
esitylene	25.0	1.190	1 81	1.1.0	-1.5	1.31/	1903	1.224	-2.8	1.982	-14-1
ctane	25.0	1.200	1 81	1 152	-9.0	1.201	16.9	1.201	14.3	1.118	-1.0
souctane	125.0	1.130		1.105	2.00	1.202	23.6	1.036	-3.2	1.076	0.6
ipnenyi	25.0	1.010	1 81	1.963	10.6	1.922	13.1	0.858	10.0	0.839	7.5
exadecane	125.0	0.100		Ø 003	12.8	0.882	15.3	0.858	12.2	0.839	9.6
actic noid	22.0	1.15	1 10	0.802	-27 1	1.748	51.9	0.952	-17.3	1.025	-11.0
CELTC ACTO	0.0	1.047	1 11	1 060	-16 1	2.074	63.7	1.130	-10.8	1.201	-5.2
1	14.0	1.00	1140	1,275	-10.2	2.495	75.7	1.359	-4.3	1.426	0.4
11 .	05.0	1.400	1 219	1 275	-14.5	2.495	67.4	1.359	-8.8	1.426	-4.3
H L L	10:0	1.780	1 200	1,626	-8.6	3.183	78.8	1.734	-2.6	1.789	ؕ5
ormic soid	90.0	1.619	2 210	1,171	-27.4	2.410	49.5	1.496	-7.2	1.448	-10.2
H actual a	25.0	1.888	1219	1.175	_21_9	3.036	60.8	1.885	-0.2	1.795	-4.9
11	15.0	1.673	3 219	1.212	-25.8	2.556	52.8	1.587	-5.2	1.530	-8.6
	11200		<u></u>	4-0-4-						· · · · · · · · · · · · · · · · · · ·	

The propriet of Line 19

e stable

Solvent = Carbontetrachloride

											•
				This	work	Wilke-(	Chang	King	et al	Sitara.	et a
Solute	т, ^о с	D _{AB}	Ref.	Eq. (3-	2.4)	Eq. (2-3.	.16)	Eq.(2-	3.29)	Eq.(2-	3.27)
		(exp.)		Calc.	%Erro	Calc.	%Error	Calc.	%Error	Calc.	%Erro:
Tetrahydrofuran	25.0	1.470	81	1 • 471	0.0	2.110	43.6	1.533	4•3	1.447	-1.5
Dimethylacetamide	25.0	1.230	61	1.363	10.8	1.743	41 • 7	1•222	-0.7	1.194	-2.9
Hexachloroethane	25.0	1.010	81	1.162	15.0	1.355	34•2	1 • 1 58	14.7	1.310	29.7
Tetraline	25.0	1.100	81	1•143	3.9	1.428	29.8	1.129	2.6	1.134	3.1
Phenathrene	25.0	1.030	81	1.065	3.4	1.272	23.5	ؕ947	-8•1	1.040	1.0
Anthracene	25.0	1.030	81	1.065	3.4	1.272	23.5	0.947	-8.1	1.040	1.0
Hexachlorobenzene	25.0	ؕ922	81	1.024	11.1	1.249	35•5	0.944	2.3	1.170	26.9
Biphenylmethane	25.0	ؕ985	81	1•048	6.4	1.235	25•3	ؕ994	ؕ9	1.032	4.8
chlorocyclohexane	25.0	0.843	81	ؕ997	18.2	1.172	39•1	0.945	12•1	1.133	34•4
Benzoic acid	25.0	0.885	81	0.945	7.1	1.597	81•1	1•032	17.0	1 • 1 3 1	28.2
2-Methyl propane	25.0	ؕ884	61	0•937	6.0	1.061	20.0	1.084	22.6	ؕ987	11.6
Dodecane	25.0	0.954	81	ؕ972	1.9	1.043	9•4	1.019	6•8	ؕ946	-0.8
. 17	25.0	0.964	16	ؕ972	0.8	1.043	8.2	1.019	5.7	0.946	-1.8
Triphenylmethane	25.0	0.694	81	0.900	29.7	0.997	43.7	0.853	22.9	0.921	32.8
Hexadecanol	25.0	0.741	81	0.865	16.8	0.871	17•6	ؕ755	1.9	Ø•79Ø	6.6
Octadecane	25.0	0.690	81	ؕ822	19.2	ؕ823 '	19•3	ؕ824	19•4	0.811	17.6
Eicosane	25.0	0.664	81	ؕ798	20.1	0.774	16.5	0.816	22•8	0.800	20.4
Docosane	25.0	Ø•62Ø	81	ؕ767	23.7	0.731	17.9	0•738	19•1	0.750	20.9
Octacosane	25.0	ؕ528	81	0.694	31.4	0.634	20.0	0.710	34•4	0.718	35•9
Dotriacontane	25.0	ؕ479	81	0.656	37.0	0.585	55.5	0.726	51.6	0.718	49•9
Todine	20.0	1.360	20	1.318	-3.1	2.136	57•1	1.169	-14.1	1.820	33•8
11	25.0	1.500	219	1•441	-3.9	2.336	55.8	1.278	-14.8	1•978	31.9
Benzene	10.0	1.084	96	1.060	-2.2	1.476	36.2	1.093	ؕ8	1.052	-2.9
11	25.0	1 • 419	96	1 • 401	-1.3	1.952	37.5	1 • 445	1.8	1.364	-3•9
11	40.0	1.775	96	1•788	0.7	2.491	40.3	1 • 844	3.9	1•711	-3.6
11	20.0	1.250	96	1.281	2.5	1.785	42.8	1•321	5.7	1.255	0.4
Cyclohexane	25.0	1.275	176	1.320	3.5	1.739	36.4	1 • 415	11.0	1.281	0.5
ⁿ	55.0	1.979	176	2•111	6.7	2.781	40.5	2.264	14.4	1.983	0.2
# THE OF DAT	40.0	1.611	176	1.684	4.5	2.219	37.7	1.806	12.1	1.608	-0.2

DFALL

ļ

271

ľ

Solvent = Benzene

والمستحد مستعد مستنقب فالمتشار والمتكاف المستحد مستعاد الشابان و										1	
				This	work	Wilke-(	Chang '	King e	t al	Sitara	. et a
Solute	т,°с	DAD	Ref	Eq: <b>(3</b> -	-2.4)	Eq.(2-3	.16)	Eq <b>. (2–3</b>	.29)	Eq.(2-3	9.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Trro
Bromine	12.0	2.000	168	1.937	-3.2	2.335	16.8	1.874	-6.3	2.311	15.6
11	25•0	2.700	153	2•472	-8.5	2.980	10.4	2.392	-11-4	8.900	7•4
Iodine	20•0	1.950	168	1•954	ؕ2	2.285	17.2	1.763	-9.6	2.412	23.7
11	25•Ø	1.980	27	2•1321	7.7	2.494	25.9	1.924	-2.8	2.616	32.1
n-Heptane	25•Ø	2.100	25	1•765	-16.0	1.522	-27.5	1.964	-6.5	1.504	-28.4
11	45•Ø	2.750	25	2•453	-10.8	2.115	-23.1	2.730	-0.7	2.042	-25.7
11	65•Ø	3.650	25	3.262	-10.6	2.813	-22.9	3.631	-0.5	2.662	-27•1
**	75.0	4.070	25	3.655	-10.2	3.152	-22.5	4.068	-0.0	2.959	-21.3
11	80•1	4.250	25	3.868	-9.0	3.336	-21.5	4.305	1.3	3+119	-20.0
11	85.0	4.600	25	4.020	-12.6	3.467	-24.6	4.475	-2.1	3.233	-29.1
11,	25.0	1.785	176	1.765	-1.1	1.522	-14.7	1.904	10.1	1.005	-16-4
11	40.0	2.279	176	2.277	-0.1	1.963	-13.8	2.534	11.5	1.0 240	-16.0
11	55•0	2.795	176	2.850	2.0	2.458	-12.1	3.172	13.5	1 245	-10.0
n-Hexane	15.0	1.780	96	1.565	-12.1	1.395	-21.0	1.765	-0.1	1.345	- 19.0
Cyclohexane	25•Ø	2.090	176	1.943	-7.0	1.857		2.131	2.0	1.095	-10-7
11	25.0	2.101	101	1.943	=7.5	1.857	-11.0	2.131	1.4	0.149	-18.0
. <b>11</b>	40.0	2.650	176	2.506	-5.4	2.396	-9.0	2.149	3.1	2.140	-19.9
"	60.0	3.445	176	3.356	-2.0	3.209	0 • 9	3.001	- 0 - 5	2.019	-10.2
Benzene(self-)	10.0	1.650	150	1.556	-5.7	1.573	-4.7	1.642	-0.5	1 520	-15.0
11	15.0	1.870	43	1.727	-7.7	1.746	-0.1	1.922		1 664	-12.0
17	20.0	1.910	150	1.890	-1+1	1.910	0.0	0 174	4•4	1.805	-15.7
17	25.0	2.140	129	2.002	-3.0	2.005	-2.0	0 176	-0.4	1.805	-18.7
11	25.0	2.220	43	2.005	=7.1	2.005	-0.1	2.110	-2.0	2.117	-18.3
11	35.0	2.590	4 3	2.445	- 3 - 3	2.475	-4.4	2.000	-0-3	2.287	-11./
"	40.0	2.580	150	2.000	3.1	6.007	4.6	2.001	-9.5	2.451	-19.4
	45.0	3.040	42	2.000		2.091	-4.7	3.514	-0•J	2.818	-19.5
	55.0	3.500	43	3.530	-4.9	3.602	5.9	3.759	10.6	3.001	-11.7
	60.0	3.400	150	$3 \cdot 503$	-5.4	3.853	=/1-/1	1. 922	-0.2	3.195	-20.7
••	05.0	4.030	150	J. 518	- 3.4	1.567	4.5	4.767	9.1	3.743	-14.4
	05 0	4.310	1-76	4.510	5•4 4.4	1.8/5	-9.1	2.025	9.6	1.683	-8.9
l'oluene	22.0	0 295	170	1.0960	4.4	2.370	-0.2	2.612	9.5	2.132	-10.6
	40.0	2.300	1.00	1.000	2.3	1.147	-3.6	1.220	2.5	1.127	-5-3
vapntnalene	/•5	0 975	001	2.206	-20-1	2.615	-9.1	1.786	- 37.9	1.550	- 46 • 1
Methanol	11.0	2.015	90	2.507	a. 3	2.855	14.2	1.951	-22.0	1.682	- 32 • 7
11	15.0	2.800	100	2.005	-21.6	3.410	-10.7	2.330	-39.0	1.984	-48.1
11	23.0	1.670	.00	3.863	-17.3	4.398	-5.8	3.005	-35.6	2.514	-46.2
7+honol	40.0	9.4000		2.138	-10.9	2.265	-5.6	1.749	-27.1	1.517	-36.8
sthanor	15.0	2.400	96	2.559	-15.3	2.712	-10.2	2.094	-30.7	1.793	- 40 . 6
11	25.0	3.300	96	2.553	-22.6	2.706	-18.0	2.089	-36.7	1.790	-45.8
-	10.0	3-7/0		3.293	-11.9	3.490	-6.7	2.695	-28.0	2.268	- 39 • 4
-Prongnol	15.0	1.600	168	1.925	20.3	1.928	20.5	1.618	1.1	1•415	-11.5
-Propanol	15.0	1.800	100	1.934	7.4	1.918	6.5	1.626	-9.7	1 • 41 5	-21.4
-Anvl alcohol	15.0	1.480	168	1.630	10.1	1.487	0.5	1.492	0.8	1.282	-13-4
Phenol	5.0	1.270	100	1.336	5.2	1.357	6.9	1.196	-5.8	1 • 1 5 2	-9.3
nenor n	25.0	1.680	153	1.992	18.6	2.024	20.5	1.784	6.2	1.671	-0.5
thvl ether	15-0	2.210	168	1.731	-21.7	1.650	-25.3	1.916	-13.3	1 • 498	-32.2
tt	25.0	2.730	152	2.067	-24.3	1.971	-27.8	2.289	-16.2	1.767	-35.3
cetone	40.0	3-250	EE	2.978	-8.4	3.067	-5.6	2.994	-7.9	2.368	-27.1
11	54.5	3.740	55	3.686	-1.4	3.797	1.5	3.706	-0.9	2.888	-22.8
[ethy]ethy]ketone	30.0	2.086	A	2.289	9.8	2.250	7.8	2.314	10.9	1.876	-10.1
lenzaldehvde	15-0	1.730	168	1.574	-9.0	1.546	-10.7	1.576	-8.9	1.426	-17.6
Jenzatuenyue	11 34 0		1.00								

Ą:

### Solvent = Benzene

				This v	lork	Wilke-(	Chang	King e	t al	Sitara	. et a
Solute	т, ^о с	D _{AB}	Ref	Eq <b>. (</b> 3-	2.4)	Eq <b>. (2</b> -	3.16)	Eq. <b>(2</b> -	. 3.29)	Eq. (2 -	3.27)
		(exp.)		Calc.	HError	Calc.	Herror	Calc.	%Error	Calc.	Error
Salicylaldehyde	15.0	1.780	168	1.523	-14.4	1.490	-16.3	1.565	-12.1	1 • 443	-18.9
lcetic acid	5.9	1.580	27	1.296	-17.9	1.841	16.5	1•414	-10.5	1.338	-15•3
**	15.0	1.920	168	1.571	-18.2	2.231	16.2	1.713	-10.8	1 • 600	-16.7
11	25.0	2.090	168	1.626	-22.21	2.309	10.5	1.773	-15.2	1.651	-21.0
11	25.0	2.110	27	1.626	-22.9	2.309	9.4	1.773	-16.0	1 • 651	-21.7
Formic acid	6.2	1.990	27	1.506	-24.3	2.248	13.0	1.968	-1 • 1	1.690	-15-1
11	13.9	2.310	27	1.771	-23.3	2.645	14.5	2.315	0.2	1.965	-14.9
litrobenzene	15.0	1.840	168	1•548	-15.8	1.536	-16+5	1•528	-16.9	1•455	-20.9
Bromobenzene	7.5	1.480	168	1•335	-9.8	1.299	-12.3	1•349	-8.8	1.363	-7•9
H .	15.0	1.860	168	1.575	-15.3	1.532	-17.7	1 • 591	-14.5	1•590	-14.5
11	25.0	2.300	153	1.880	-18.2	1.829	-20.5	1.900	-17.4	1.875	-18.5
<b>11</b>	7.3	1•410	219	1.333	-5•4	1.297	-8.0	1.347	-4.4	1.362	-3.4
hlorobenzene	15.0	1.420	168	1.616	13.8	1.571	10.7	1.653	16.4	1.503	5.9
н <b>н</b>	25.0	2.660	153	1•930.	-27.4	1.877	-29.5	1.974	-25+8	1.773	-33.3
-Dibromobenzene	15.0	1•370	20	1•444	5•4	1.407	2.7	1•419	3.6	1 • 58 5	15.7
-Dichlorobenzene	15.0	1.900	20	1•537	-19.1	1.392	-26.8	1.516	-20.2	1.431	-24.7
Trichlorobenzene	7•5	1.340	20	1.227	-8.5	1.155	-13.8	1.206	-10.0	1.240	-7.5
Todobenzene	7.3	1.350	20	1.284	-4.9	1.237	-8.4	1.288	-4.6	1.387	2.8
CL.	7.3	1.120	219	1•423	27.0	1.430	27•7	1.550	38•4	1 • 5 5 5	38.9
<b>11</b> 4	20.0	1.760	168	1.839	4.5	1.848	5.0	2.003	13.8	1.974	12.5
11	25.0	1.920	90	2.006	4.5	2.017	5.0	2.186	13.8	2.141	. 11+3
17	25.0	2.000	169	2.006	0.3	2.017	0.8	2.186	9.3	2+141	
Chloroform /	15.0	2.110	168	1.819	-13.8	1.886	-10.6	1.930	-0.5	1.000	-11.0
11	25.0	2.500	1 53	2.173	-13.1	2.253	-9.9	2.305	-7.8	2.201	=11+9
Ethylene bromide	15.0	1.970	168	1.700	-13.7	1.725	-12•4	1.002	-14.0	1.000	- 2 • 0
(ethyl iodide	7.5	2.060	168	1.679	-18.5	1.913	- / • 1	1 • / 03	-14-4	1.957	- 16 7
Trichlorobenzene	7.6	1.340	168	1.173	-12•4	1.010	-24.2	1.110	-17.2	1.110	-10-7
Bromophenol	15.0	1.340	168	1.536	14.6	1.483	10.0	1.350	0.1	1.400	9.0
Chlorophenol	15•0	1.420	168	1.580	11.3	1.500	5.0	1 • 440	1.0	1.400	-1.0
luinone	15.0	1.680	168	1.612	-4.1	1.675	-0.3	1 0 ( 5			- 09 0
lethylsalicylate,	15.0	1.560	168	1•441	-7.7	1.287	-17.5	1.205	-18.9	1.245	-20+2
Benzoic acid	15.0	1.170	27	1.164	0.6	1.428	55.1	1.302	11.5	1.509	- 4
	15.0	1.360	168	1.164	. <b>-</b> 14•4	1.428	5.0	1.502	-4+3	1 406	-0•1 8-4
"	25.0	1.380	168	1.391	· 0.8	1.100	23.0	1.021	12.0	1 975	6.5
	40.0	1.760	27	1.772	0.7	2.174	23.5	1.450	12.00	1.204	15.9
innamic acid	25.0	1.210	27	1.265	4.5	1.477	22.1	1 4 50	20.5	1 20 4	1002
"	25.0	1.120	168	1.265	12.9	1.477	31.9	1 400	30•2	1 490	-0.0
hloracetic acid	15.0	1.480	168	1.431	- 2:2	1.007	23.0	1.402	0.1	1.0400	-0.0
hthalic acid	15.0	1.370	168	0.994	-27.5	1.221	-10-4	1 014	-01.1	1.207	-15-8
-Dinitrobenzene	15.0	1.540	168	1 • 479	-4.0	1 205	-12 0	1.228	-01-1	1.262	-10-R
hloronitrobenzen	el 5•0	1.700	20	1 • 413	-13+4	1.404	- 10 • Ø	1.212	-61-3	1./51	0.1
romonitrobenzene	115.0	1.330	20	1 • 4 3 2	1.0	1.929	-10-0	1.000	-19-9	1.236	-11-1
-Nitronaphthalen		1.390	801	1 214	7 0	1.124	-10.9		10.0		
initronaphthalen	el 5•0	1.230	100	1.010	20 5	1. 002					
letvidi phenvlamino	ei⊃∙Ø	100400	1100	はもエラろう	- 36+3	נמשינן			··· ••• •		سائن تحصيب المساجر المساجر

	1			the second s		Y		and the second secon	the second s	and the second se	
, 				This	work	Wilke-	-Chang	King e	et al	Sitara	. et al
Solute	т, ^о с	D _{AB}	Ref	Eq. <b>(3</b> -	-2.4)	Eq. (2-	3.16)	Eq.(2-	.3.29)	5q <b>.(2</b> -	3.27)
		(exp.)		Calc	Error	Calc.	"Error	Calc.	%Error	Calc.	Frror
thylene chloride fromoaniline hloroaniline rinitrotoluene etrachlorobenzene odoform Bromonaphthalene " bibromonaphthalene chloronaphthalene thuronaphthalene	7.5 15.0 15.0 15.0 7.6 15.0 15.0 15.0 15.0 15.0 15.0	1 • 770 1 • 410 1 • 560 1 • 390 1 • 240 1 • 380 1 • 040 1 • 300 1 • 250 1 • 200 1 • 400 1 • 400	168 168 168 168 168 168 168 168 168 168	1 • 5 43 1 • 498 1 • 5 41 1 • 292 1 • 176 1 • 468 1 • 1 53 1 • 360 1 • 303 1 • 388 1 • 354 1 • 560	-12.8 6.3 -1.2 -7.0 -5.2 6.4 10.9 4.6 4.2 15.7 -3.3 11.4	1.508 1.437 1.452 1.115 1.021 1.463 1.050 1.239 1.147 1.249 1.165 1.544	-14.8 1.9 -6.9 -19.8 -17.7 6.0 1.0 -4.7 -8.2 4.1 -16.8 10.3	1.595 1.702 1.415 1.087 1.110 1.068 1.260 1.325 1.256 1.533	$ \begin{array}{r} -9.9\\ 20.7\\ -9.3\\ -21.8\\ -10.5\\ 2.7\\ -3.1\\ 10.4\\ -10.3\\ 9.5\end{array} $	1 • 444 1 • 627 1 • 360 1 • 1 70 1 • 1 51 1 • 1 34 1 • 322 1 • 277 1 • 252 1 • 842	-18.4 15.4 -12.8 -15.8 -7.2 9.0 1.7 6.4 -10.5 31.6
Trichloropropane	15.0	1.720	1 68	i•588	-7.7	1.416	-17.6	1•542	-10.3	1.462	-15.0

Solvent = Benzene

Avg. % error 10.1 12.2

10.8 17.8

Total number of systems = 59,(53); Total number of data points = 110, (108).

#### Solvent = n-Hexane

		- 01 (									
				This	work	Wilke-	Chang	King e	t al	Sitara	. et al
Solute	т, ^о с	D _{AB}	Ref	Eq.(3-	2.4)	Eq. <b>(2</b> -	3.16)	Eq.(2-	.3.29)	. Eq <b>. (2</b> ∙	-3•27)
	· · ·	(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	ZError
soOctane	25.0	3.380	81	3.612	6.9	3.042	-10.0	4.115	21.8	2.875	-14.9
thane	25•0	5•790	81	5.832	0.7	6.292	8.7	7.310	26.2	4.284	-56•0
ctone	25.0	5.260	81	4.913	-6.6	5.128	-2.5	4.912	-6.6	3•632	-31.0
enzene	15.0	3.700	219	3 • 697	-ؕ1	3.787	2•3	3.878	4.8	5.990	-19.2
11	25.0	4.640	81	4.389	-5.4	4.496	-3.1	4.605	-0.8	3.507	-24.4
CT.	25.0	3.860	81	4.270	10.6	4.349	12.7	4.625	19.8	4•161	7•8
<b>"</b> 4	25.0	3.700	168	4.270	15•4	4.349	17.5	4.625	25.0	4•161	12•5
entane	25.0	4.590	81	4.244	-7.5	3.983	-13.2	4.864	6.0	3.281	-28.5
-Methylbutane	25.0	4.400	81	4.265	-3+1	3.985	-9.4	4.995	13.5	3•331	-24.3
vclohexane	25.0	3.770	81	4.134	9.7	4.005	6.2	4.509	19•6	3.295	-12.6
-Hexane (self-)	0.0	3.000	150	2.810	-6.3	2.537	-15•4	3 • 1 5 5	5.2	2.232	-25.6
11	25.0	4.120	150	3.978	-3.4	3.592	-12.8	4.467	8.4	3.084	-25.1
11	25.0	4.210	43	3.978	-5•5	3.592	-14.7	4•467	6•1	3.084	-26.7
11	20.0	3.850	150	3.613	-6-2	3.262	-15.3	4.057	5.4	2.819	-56•8
11	40.0	4.820	150	4.684	-2.8	4.230	-12.3	5.260	9•1	3•590	-25.5
11	40.0	4.860	150	4.684	-3.6	4.230	-13.0	5.260	8.2	3.590	-26.1
<b>11</b>	60.0	6.000	150	5.908	-1.5	5.334	-11.1	6.634	10.6	4.454	-25.8
17	80.0	7.300	150	6.955	-4.7	6.280	-14.0	7.809	7.0	5.184	-29.0
2dimethylbutane	25.0	3.630	81	4.023	10.8	3.581	-1-4	4.650	28 • 1	3.147	-13.3
eptane	25.0	3•780	81	3.756	-Ø.6	3.282	-13.2	4.157	10.0	5.955	-22.7
ctane -	25•Ø	3.470	81	3.572	3.0	3.027	-12.8	3.901	12.4	2.782	-19.8
ecane	25.0	3.020	81	3.269	8•2	2.674	-11.5	3•527,	16.8	2.589	-14.3
pdecane	25.0	2.740	81	3.044	11.1	2.404	-12.3	3.247	18.5	2.433	-11.2
exadecane	25.0	2.210	81	2.703	22.3	2.030	-8•1	2•734	23.7	2.155	-2.5
romobenzene	7.3	2.600	166	3.088	18.8	3.044	17.1	3.103	19.3	2.863	10.1
pdine	25.0	4.050	219	4.515	11.5	5•382	32.9	4.072	0.5	5.086	25•6
111 A.	25.0	4.240	219	4.515	6.5	5.382	26.9	4.072	-4.0	5.086	20.0
luene	25.0	4.210	219	4.103	-2.5	3.979	-5•5	4.285	1.8	3.270	-22•3
ethylethylketone	30.0	3.740	108	4.823	29.0	4.802	28.4	4.846	29.6	3.612	-3.4
etraline	25.0	3.270	81	3 • 568	9.1	3.290	0.6	3•597	10.0	2•916	-10.8
aenanthrene	25.0	3.080	81	3.335	8.3	2.930	-4.9	3.017	-5.0	2.674	-13-2
Methyl propens 🥮	25.0	2.680	81	2.935	9.5	2.447	-8.7	3.456	28•9	2.539	- 5 • 3
tadecane	25.0	2.010	81	2.576	28.1	1.896	-5.7	2.625	30.6	2.086	3.8
Hexylbromide	7.6	2.310	219	2.936	27.1	2.527	9.4	2.882	24.8	2.482	7•4
thane	25.0	8.640	81	7.044	-18.5	7.901	-8.5	10.444	20.9	5.052	-41.5
- 1453) 1917: DF - DATE	Avg,	%_erro	(r.		9.3		11.5		13.9		18.8

Total number of systems = 25; Total number of data points = 35

@ 2-Methyl propene in 'trimeric' form

Solvent = Toluene

				This	work	Wilke-	Chang	King e	t al	Sitara	i. et a
Solute	т, ^о с	DAB	Ref	Eq <b>. (3</b>	-2.4)	Eq.(2.	-3.16)	Eq <b>.(2</b> -	3.29)	Eq.(2-	3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	TError	Calc.	SErro
cetic acid	15.0	1.905	219	1.817	-1.6	2.712	42.3	2.061	8.2	1.866	-2.1
II	6.8	1.661	219	1,571	-5.4	2.344	41 • 1	1 • 781	7.2	1.629	-1.9
11	20.0	2.000	168	1.965	-1.7	2.933	46.7	2.229	11.4	2.007	0.4
11	25.0	2.265	219	2.126	-6.1	3.173	40.1	2.411	6.5	2.159	-4.7
ormic acid	6.2	2.285	219	1.802	-21.11	2.827	23.7	2.448	7.1	2.033	-11.0
II IIII ACIU	14.1	2.463	219	2.071	_15 oi	3.248	31.9	2.813	14.2	2.314	-6.1
	25.0	2.646	219	2.162	-6 0	3.862	45.9	3.344	26.4	2.718	2.7
<b>C1</b>	25.0	2.190	219	2.274	3.8	2.401	9.6	2.575	17.6	2.450	11.9
ethyl iodide	7.4	2.230	219	2.010	-9.8	2.407	7.9	2.194	-1.6	2.357	5.7
hlorohenzene	20.0	2.960	168	2.022	-1.8	2.065	0.3	2.150	4.4	1.886	-8.4
"	25.0	2.210	4	2.188	-1.0	2.234	1.1	2.326	5.3	2.029	-8.2
iethvlamine	20.0	2.360	168	2.262	-4.2	2.269	-3.9	2.536	7.5	1.914	-18.9
cetone	20.0	2.930	168	2.419	-17.4	2.617	-10.7	2.528	-13.7	1.988	-32.2
thanol	15.0	3.000	168	2.473	-17.6	2.753	-8.2	2.103	-29.9	1.769	-41.0
ethyl athylketone	30.0	2.210	A	2.577	16.6	2.660	20.4	2.706	22.5	2.133	-3.5
romohenzene	7.0	1.590		1.583	-0.5	1.617	1.7	1.662	4.5	1.626	2.3
	25.0	2.270	20	2.131	-6.1	2.178	-4.1	2.239	-1.4	2.145	- 5 . 5
	8.7	1.660	2.9	1.853	11.6	2.287	37.8	1.746	5.2	2.348	41.4
.odine%.t State	19.9	1.050	2.9	2.212	12.9	2.730	. 39.3	2.084	6.4	2.768	41.3
	20.0	1.950	20	2.224	14.0	2.745	40.8	2.095	7.4	2.782	42.7
	25.0	2.160	219	2.406	11.4	2.969	37.5	2.266	4.9	2.993	38.6
	25.0	2.130	186	2.406	12.9	2.969	39.4	2.266	6.4	2.993	40.5
	25.0	2.545	176	2.338	-8.1	2.482	-2.5	2.563	0.7	2.065	-18.9
senzene	40.0	3.2/0	176	2.910	-10.2	3.090	-4.6	3.191	-1.5	2.532	-21.9
	25.0	2.120	176	2.202	-9.0	2.211	-8.6	2.510	3.7	1.940	-19.8
ycronexane.	10.0	3.060	176	2.742	-10-4	2.753	-10.0	3.125	2.1	2.378	-22.3
	55.0	3.800	176	3.341	-12-1	3.355	-11.7	3.809	0.2	2.858	-24.8
athul anal ahamana	25.0	2.210	75	2.071	-6-3	1.982	-10.3	2.372	7.3	1.833	-17.0
"	45.0	3.090	75	2.763	-10.6	2.644	-14.4	3.164	2.4	2.396	-22.4
17	60.0	3.660	75	3.358	-8.2	3.214	-12.2	3.846	5.1	2.874	-21.5
nilina	25.0	2.100	75	2.210	5.2	2.306	9.8	2.116	0.8	1.862	-11.4
IIIIII III	45.0	2.780	75	2.947	6.0	3.076	10.6	2.822	1.5	2.434	-12.5
11	60.0	3.600	75	3.583	-0.5	3.739	3.9	3.431	-4.7	2.918	-18.9
-Propenol	25.0	3.560	180	2.606	-26-8	2.741	-23.0	2.256	-36.6	1.901	-46.6
athenal	25.0	3.620	179	3.394	-6.2	4.060	12.2	2.745	-24.2	2.270	-37.3
aluana (self-)	10.0	2.080	150	1.709	-17.8	1.718	-17.4	1.865	-10.3	1.532	-26.4
"	20.0	2.320	150	2.020	-12.9	2.031	-12.5	2.205	-4.9	1.790	-22.8
17	40.0	2.950	150	2.721	-7.8	2.735	-7.3	2.970	0.7	2.361	-20.0
11	60.0	3.660	150	3.544	-3.2	3.562	-2.7	3.868	5.7	3.019	-17.5
11	80.0	4.560	159	4.534	-0.6	4.558	-0.1	4.949	8.5	3.796	-16.8
¹ H	100.0	5.600	150	5.614	0.2	5.642	0.8	6.127	9.4	4.630	-17.3
11	110.0	6.250	150	6.179	-1.1	6.211	-0.6	6.744	7.9	5.062	-19.0
enzoic acid	16.0	1.289	219	1.367	6.1	1.762	36.7	1 • 588	23.2	1.500	16.4
11	20.0	1.740	168	1.457	-1693	1.878	7.9	1.693	-2.7	1.592	-8.5
H	25.0	1.493	219	1.576	5.6	2.031	.36•1	1.831	22.7	1.712	14.7
17	40.0	1.851	219	1.963	6.0	2.529	36.6	2.280	23.2	2.099	13.4
innamic acid	25.0	1.180	219	1.478	21.0	1.785	51.3	1.725	46.2	1.613	36.7
enzotrichloride	7.6	1.320	219	1.489	12.8	1.388	5.1	1.483	12.3	1.441	9.2
Bromonaphthalene	7.5	1.240	219	1.381	11.4	1.322	6.6	1.330	7.3	1.366	10.1
Bromotoluene	7.4	1.520	219	1.510	-0.7	1.480	-2.6	1.570	3.3	1.523	0.2
	<u> </u>	10.0.70				<u> </u>	1				
	Avg. 9	% error	• 1 1		8.9		17.1		10.0		. 17.5
m.	+	mhon of	<b>017</b>	atoma -	. 23° ma	tel num	ber of	data no	inte -	50	
	ננורך וואנע	0000 PT	- AV 5	- ursuudi 🔤	6 6	لللقاعة عدوي	NUCL UL	עניים איניים איני			

	1	·	<del></del>	·		·					1
				This	work	Wilke-	Chang	King e	et al	Sitara	. et al
Solute	τ,°c	DAB	Ref	Eq <b>. (3</b>	-2.4)	Eq.(2-	-3.16)	Eq <b>. (2</b>	- 3•29)		-3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	SError
Solvent	= Ace	tone									
etic acid	15.0	2.916	219	2.977	2.15	3.939	35•1	3•289	12.8	2.924	0.3
**	25.0	3.309	219	3.390 [;]	2.4	4.491	35•7	3.750	13•3	3.304	-0.2
"	40.0	4.044	219	4.045	0.1	5.350	32•3	4.467	10.5	3.888	-3.9
	6+5	3.132	219	3.074	-1.9	4.275	36.5	4.068	29.9	3.309	5.6
vl benzoate	23.0	3.100	219	3.924	4.1°	2.302	45•1	2.045	38.0	4.159	10.4
trobenzene	20.0	2.9/10	219	3.135	6.6	2.895	-0.0	3.131	19•2	2.826	-3.9
izene	40.0	4.560	55	4.449	-2.4	4.186	-8.2	4.750	4.2	3.718	-18-5
17	54.5	5.070	55	5.116	0.9	4.813	-5.1	5.461	7.7	4.233	-16.5
loroform	25.2	3.630	6	3.983	9.7	3.843	5.9	4.274	17.7	3.897	7.3
etone (self-)	25.0	4.500	106	4.181	-7.1	4.008	-10.9	4.253	-5.5	3.272	-27.3
17	25.0	4.835	43	4.181	-13.5	4.008	-17.1	4.253	-12.0	3.272	-32.3
nzoic acid	25.0	2.662	168	2.519	-5-4/	2.875	8.0	2.848	7•0	2.620	-1.6
- 11	13.2	2.368	219	2.157	-8.9	2.462	4.0	2.439	3.0	2.268	-4.2
. 11	40.0	3.054	219	3.000	-1.8	3.425	12.2	3.393	11+1	3.083	0.9
omoform	20.0	2.740	219	3•327	21.4	3.230	.17•9	3.342	22.0	3.833	39.9
	25•0	3.240	163	3 • 553	9.7	3.450	6.5	3.570	10.2	4.076	25.8
nnamic acid	25.0	2.410	219	2.282	-5.3	2.527	4.8	2•682	11•3	2•468	2•4
ter	25.0	4.560	145	4•766	4.7	4.720	3.6	4.746	4.1	4.657	2.1
	Avg.	% erro	or		6.4		11.9		12.9		10.8
tal number of sys	stem≞	: 11 ; 7	rota	1 numbe	r of d	ata poi	at = 19				10.0
						-			r	·	
-			<u> </u>	<b></b>			·	· · · ·	L <u></u> ,, ,,,,		
· ·· Solvent	= n-0	etane -	•	· •···	ا م د الم	••••••••		·	•		
thylcyclohexane	125•Ø	2.302	169	2.3861	3.61	2.388	3.7	2.8191	22.51	2-962	-10.1
line	15.0	2.430	219	2.351	-3.2	3.035	24.9	2.286	-5.9	2.890	18.9
<b>II</b>	25.0	2.760	219	2.771	0.4	3.577	29.6	2.694	-2.4	3.367	22.0
11	40.0	3.220	219	3.393	5.4	4.380	36.0	3.299	2.4	4.065	26.2
Octane (self-)	0.0	1.470	150	1.438	-2.2	1.321	-10.2	1.693	15.2	1.245	-15.3
11	0.0	1.560	150	1 • 438	-7.8	1.321	-15.3	1.693	8.5	1.245	-20.2
11	20.0	1.950	150	2.010	3 • 1	1.846	-5.3	2.367	21.4	1.700	-12.8
11	20.0	2.100	150	2.010	-4.3	1.846	-12.1	2.367	12.7	1.700	-19.1
11	25.0	2.368	208	2.193	-7.4	2.015	-14.9	2.583	9.1	1.843	-22.2
11	25•Ø	2.250	43	2.193	-2.5	2.015	-10.5	2.583	14.8	1.843	-18.1
11	25•0	2.000	41	2.193	9.7	2.015	ؕ7	2•583	29.1	1.843	-7.8
11	25•Ø	2.348	208	2.193	-6.6	2.015	-14.2	2•583	.10.0	1.843	-21.5
11	40.0	2.550	150	2.684	5.3	2.465	-3.3	3.161	24.0	2.224	-12.8
11	40.0	2.730	150	2.684	-1.7	2.465	-9.7	3•161	15.8	2.224	-18.5
17	60.0	3.300	150	3•478	5.4	3.194	-3.2	4.095	24.1	2.830	-14.2
	60.0	3 • 5 3 5	208	3•478	-1.6	3.194	-9.6	4.095	15.8	2.830	-19.9
<i>n</i> .	60.0	3.410	150	3•478	2•Ø	3.194	-6.3	4.095	20.1	2.830	-17.0
	60.0	3.570	208	3•478	-2.6	3.194	-10-5	4.095	14.7	2.830	-20.7
n 	70.0	3.800	150	3•934	3.5	3.613	-4.9	4•632	21.9	3.174	-16.5
11. - Alexandra Andrea - Alexandra - Ale	80.0	-4-150	150	4.474	- 7.8	4.109	-1.0-	5•268	26.9	3 • 577	-13.8
1	00.0	5.200	150	5•468	5.2	5.023	-3.4	6.440	23.8	4•311	-17•1
CTYL Dromide	7 • 5	1.460	219	.550	6.2	1.409	-3.5	1 • 662	1.3.9	1 • 438	-1.5
kadecane	25.0	1.719	39	1 • 660	-3.5	1.352	-21 • 3	1•811	5•3	1.429	-16.9
	60.0	2.724	39	2 • 631	-3.41	2.144	-21.3	2.871	5.4	2.194	-19-4
	٨	of						. <del>.</del> .		-	
	HVg.	% erro:	r • • •	·	4•4	• m-+-*	11.5		15.2		16•8
	10 (81	r numbel	r 01	syster	us = >	; TOTAL	number	oi dat	a point	s = 24	

277

!

			ſ	This	work	Wilke	-Chang	King	et al	Sitara	ı. et a
Solute	т, ^о с	D _{AB}	Ref	Eq <b>. (3</b>	-2.4)	Eq <b>. (2</b> -	-3.16)	Eq <b>.(2</b> -	- 3 • 2 9)	Eg. (2-	3.27)
·		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Erro
Solvent	= n - P	ropanol	1								
-Propanol	25.0	0.646	96	0.659	2.0	0.769	19.0	0.676	4.7	0.592	-8.4
ethylethylketone	30.0	0.552	•4	0.693	25•5	0.793	43.6	0.855	54.9	0.700	26.8
later	15•0	0.610	96	0.568	-6.9	0.603	-1.2	0.647	6•1	0.640	5.0
riphenylmethane	25.0	0.394	123	Ø•38Ø	-3.6	0.356	-9.7	0•450	14•1	0•432	9.7
enzene -	25.0	1.280	123	1.220	-4.7	0.696	- 45 • 6	0.762	-40.5	0.640	-50.0
oluene	25.0	1.350	123	1.140	-15.0	ؕ616	-54•4	0.709	-47.5	0.597	-55-8
iphenyl	25.0	0.727	123	0.940	29.0	0.472	-35•1	0.546	-24.9	0•505	-30.5
-Dichlorobenzene	25.0	1.050	123	1.080	3.0	ؕ555	-47.2	ؕ634	- 39 • 7	0.599	-43.0
-Propanol	15.0	0.504	43	0.490	-5•8	0.571	13•4	Ø•5Ø3	-0.5	0.449	-10.8
ethanol	30.0	0.804	181	0•983	22•3	1.304	65•S	ؕ934	16•2	ؕ798	-0.7
sobutanol	30.0	10.584	1,81	0.695	19•1	0.764	30.8	ؕ722	23•7	0.627	7.4
	•										
	Avg.	% error			12.2	·	32.9		24.8		22.6
	Total	number	of	syster	ns = 10	; Tota	l number	r of da	ta poin	ts = 11	
Solvent	= is	o-Propa	nol					ĺ	I		
richloroacetic	30.0	0.574	108	0.468	-18.5	0.648	12.9	0.650	13.3	0.669	16.6
leic acid	30.0	0.297	108	0.284	-4.2	0.324	9.0	0.423	42.6	0.399	34.4
artaric acid	30.0	0.440	108	0.441	0.3	0.589	33.9	0.672	52.8	0.628	42.6
dipic acid	30.0	0.417	108	0.424	1.6	0.547	31.0	0.503	20.7	0.506	21.3
innamic acid	30.0	0.410	108	0.402	-1.9	0.559	36.4	0.570	39.0	0.552	34.7
	Avro	of annon	1    -		5 3:		24 6		76 7		20.0
	Total	numbor	of	avator	ng _ 5	י רפלסייי א	24.0 I	of 30+1	$- 20 \cdot 7$		29.9
• •	10 Val	TIGUNDOT		System		, IUtal	number.	UL UAU	a porno	5 = 2.	1
· · · · · · · · · · · · · · · · · · ·	1		l L					I	-		
Solvent =	Anili	ne	1		1		1		1	1	
oluene	25•Ø	0.478	79	0.325	-32.0	0.327	-31.5	0.399	-16.6	0.355	-25.7
11	45.0	0.880	75	0.627	-28.7	0.632	-28.2	0.770	-12.5	0.655	-25.6
11	60.0	1.270	75	0.892	-29.8	0.899	-29.2	1.095	-13.8	0.908	-28.5
ethylcyclohexane	60.0	0.865	75	0.845	-2.3	0.811	-6.2	1.088	25•8	0.365	-0.1
enzene	25.0	0.540	162	0.347	-35.7	0.370	-31.5	ؕ428	-20.7	0.381	-29.5
Clž	25.0	0.520	162	0.338	-35.0	ؕ358	-31.2	0.430	-17.2	0.452	-13+1
ater	20.0	0.700	168	0.498	-28 • 8	0.821	17.3	0.406	-42.0	0.421	-39.8
	Avg.	% error			27.5		25.0	•	21.2		23.2
	Total	number	of	syste	ms: = 5;	Total :	number	of data	points	= 7	
									-		

						·					
				This	work	Wilke-	Chang	King e	et al	Sitara	. et a
Solute	т,°с		Ref	•Eq. <b>(3</b>	-2.4)	Eq. (2-	-3.16)	Eq. (2-	3.29)	Eq.(2-	3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%Error
Solven	t = n	Butanol									
utyric acid	30.0	0.512	4	0.543	6.1	0.628	22•7	ؕ563	9.9	0.515	0.7
ethylethylketone	30.0	Ø•58Ø	4	0.548	-5.5	ؕ668	15•1	ؕ695	19•8	ؕ569	-1.9
enzene	25•Ø	ؕ988	123	1.074	8.7	0.608	-38.4	0.642	-35.0	0.539	-45.4
iphenyl	25.0	0.627	123	0.832	32.0	0.412	-34.3	0.461	-26.5	0.425	-32.2
-Dichlorobenzene	25.0	ؕ817	123	0.956	17.0	0.485	-40.7	0.821	0.5	0.041	-21.0
-Butanol(self-)	25.0	0.504	152	0.498	-1.1	0.583	15.•6	0.532	5•6	0.400	= / • 0
11 .	35.0	0.649	152	0.635	-2.1	0.743	14.4	0.678	4.5	0.503	-10-1
	45.0	0.822	152	0.830	1.0	0.971		0000	1.0	0.140	-9.0
dipic acid	30.0	0.399	4	0.466	16.8	0.472	10.2	0.422	5.0	0.463	3.5
innamic acid	30.0	0.446	4	0.442	-1.0	0.403	10.7		0.9	00406	5.5
alic acid	30.0	0.446	_4	0.518		0.070	11.9	a. 355	41.1	0.334	32.7
Leic acid	30.0	0.251	4	0.313	24•4	0.508	11.6			0.004	
artaric acid	130.0	0.405	4	0.459		0.500					
and the second	Avg.	% erroi	C	<b>.</b>	11.2		. 21.7		14.8		15.5
	Total	number	of	system	s = 11,	(19); To	tal num	ber of	data po	ints~=	13,(11)
la de la companya de			. '				-		, 	2.1	
Solver	nt - 1	so-Buta	nol		•						
					1		1	•••			••••
ethylethylketone	30.0	0.596	4	0.429	-28 • 1	0.523	-12.3	0.544	-8.7	0.454	-23.9
cetone	20.0	0.740	113	0.333	-55.0	0.426	-42.5	0.421	-43.2	ؕ355	-52.1
cetic acid	20.0	0.340	113	0.365	7.5	0.477	40.4	0.371	9.1	0.350	5.3
17 	20.0	0.300	166	0.365	21.8	0.477	-59+1	0.371	23.0	0.300	19.3
Imethylamine	20.0	0.340	113	0.293	-13.9	0.435		0.391	10.1	0.451	25.3
ater	20.0	0.360	113	0.381	5.8	0.475	20.0	10.451	23.0	0.436	9.4
-Propanol	30.0	0.398	181	0.401	17•4	0.001	45.5	0.595	1.3	0.518	-11.8
etnanol	30.00	0.587	181	0000	3.0	0.000	40.5	0.373		0.010	
	Avg.	% erroi	· · ·		19.1		33.7		19.0		19.0
	Total	number	of	'syster	ns = 7;	•Total-1	number…	of data	points	= 8	
		in the second			•••••••			eneration de la composition activitation de la composition de la c			
· · · ·		•	• •						-		
Solve	nt = 1	Sthyl ad	ceta I	ite	، معند العمية . ا	,	 1	1			1.
thyl benzoate	20.0	1.850	219	2.161	16.8	2.023	9.4	2.337	26.3	2.018	9.1
itrobenzene	20.0	2.250	219	2.402	6.7	2.545	13.1	2.485	10.4	2.277	1.2
cetone	20.0	3.180	113	2.998	-5.7	3.298	3.7	3.160	-0.6	2•480	-22.0
cetic acid	20.0	2.180	113	2.430	11.8	3.696	69.5	2.786	27.8	2.504	14.9
ater	20.0	3.200	113	3.430	7.3	3.360	5.2	3.387	5.9	3 • 1 57	-1.4
11	30.0	3.600	145	3.970	10.3	3.890	8.1	3.917	8.8	3.613	0.4
ethylethylketone	30.0	2.932	4	3.168	8•1	3.325	13.4	3.356	14.5	2•641	-9.9
pdine	20.0	2.150	20	2.756	28•2	3.458	60.9	2.619	21.8	3.471	61.5
nloroform	122.0	2.530	163	3.070	21•4	3.400	34•4	3.414	34•9	3 • 1 59	24.9
	Avg.	% erroi	<b>c</b> .	. <b>I</b>	12.9	•	24.2		16.4		16.4
	Total	number	c of	' svster	ns = 8:	Total 1	number	 of data	noints	= 9	
				272.001	,			uava	- hornes		

.

Ŧ	
- i -	

										1	_
· · · · · · · · · · · · · · · · · · ·				This	work	Wilke-	Chang	King et	t al	Sitara	ı. et al
Solute	т, ^о с	DAD	Ref	Eq.(3	-2.4)	Eq. <b>(2</b> –	.3.16)	Eq.(2-3	.29)	Eq. (2-	3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	SError	Calc.	%Erro:
Solve	nt - n	Hontand									
DOTAG						0 5 4 0					
J1 Adima	25.0	3.170	219	3.357	5.9	3.569	12.6	3.783	19•3	3.402	7.3
n Jorue,	20.0	2.010	20	3.551	22.0	4.014	20. A	3.014	12.6	3.000	44.5
Juono	6.9	2.950	219	2.457	-16-7	4.413 2.486	-15.7	2.669	-9.5	2.075	-29.6
n Trielle	25.0	3.720	2 19	3.226	-13-3	3.265	-12.2	3.505	-5-8	2.674	-28.1
11 .	40.0	4.330	219	3.903	-9.9	3.951	-8.8	4.240	-2.1	3.192	-26.3
enzene	25.0	3.915	176	3.451	-11.9	3.690	-5.8	3.766	-3.8	2.867	-26.8
11	40.0	4.744	176	4.175	-12.0	4.464	-5.9	4.557	-4.0	3.423	-27.8
11	55.0	5.616	176	5.071	-9.7	5.422	-3.4	5.535	-1•4	4.102	-27.0
11	25.0	3.400	25	3.451	1.5	3.690	8.5	3.766	10.8	2.867	-15.7
11	45.0	4.400	25	4.440	0.9	4.748	7.9	4•846	10.1	3.625	-17.6
H .	65.0	6.Ø5Ø	25	5.677	-13.3	6.071	-7.3	6.197	-5.4	4.556	-30.4
. <b>H</b>	85.0	7.300	25	7.173	-1.7	7.670	5•1	7.828	7.2	5.663	-22.4
11	98.4	8.400	25	7.902	-5.9	8.449	0.6	8.624	2.7	6.196	-26.2
exadecane	25.0	1.775	15	2.125	19.7	1.667	-6+1	2.236	80.0	1.763	-0.7
-Heptane (self-)	0.0	2.080	43	1.989	-4.4	1.814	-12.8	2.290	10.1	1.054	-20.5
1	20.0	2.800	150	2.740	-2.2	2.499	-10.7	3+154	12.1	2.220	-20.4
II .	20.0	3.000	150	2.740	-8.1	2.499	-10.7	3.104	0.0	2.380	-23.4
11	25.0	3.120	45	2.933	1.8	2.080	-13-1	3.773	17.2	2.632	-18.3
H .	1 33.0	3.600	43	3.573	-0.8	3.250	-9.5	1.114	14.3	2.852	-20.8
11	40.0	3.750	150	3.573	-4.7	3.259	-13-1	4.114	9.7	2.852	-24.0
n –	56.5	4.210	13	4.468	6.1	4.076	-3.2	5.144	22.2	3.511	-16.6
11	60.0	4.500	150	4.548	1.1	4.149	-7.8	5.236	16.4	3.569	-20.7
11	60.0	4.550	150	4.548	-0.1	4.149	-8.8	5.236	15.1	3.569	-21.6
11	80.0	5.600	150	5.894	5.3	5.377	-4.0	6.786	21.2	4.543	-18.9
- <b>11</b>	80.0	5.400	150	5.894	9.2	5.377	-Ø.4	6.786	25.7	4.543	-15.9
H .	80.2	5.760	43	5.897	2.4	5.380	-6.6	6.790	17.9	4.545	-21.1
11	90.0	5.850	150	6.196	5.9	5.653	-3.4	7.134	22.0	4.759	-18.7
11	95.8	6.560	43	6.652	1.4	6.068	-7.5	7.658	16.7	5.083	-22.5
tt .	100.0	6.800	150	6.791	-0.1	6.195	-8.9	7.819	15.0	5.183	-23+8
-Heptyl bromide	7•4	1.520	219	2.117	39.3	1.915	26.0	2.223	46.2	1.914	25.9
	Avg. 9	6 error			7.7		10.7	i	13.2	·.	22.2
•	Total	number	of	system	= 7; T	otal nur	nber of	data po	ints =	32	
,	· · · · ·	•		· · · · •	,				• ·······················		
		,	• • •	ана — стала С	- 1440 - 144 -	•.					
Solven	t = Et	hyl eth	er	5	بالمحاد والمحمد	• • • • • • • • • • • •	~. <b>b</b>			• · ·	
romobenzene	7.3	3.500	219	4.032	15-2	3.887	11.1	3.941	12.6	3.687	5•3
hloroform	25.0	4.475	176	5.801	29.6	5.961	33.2	5.953	33.0	5.308	18.6
11	25.0	4.510	5	5.801	28.6	5.961	32.2	5.953	32.0	5.308	17.7
itrobenzene	8.0	3.240	20	4.018	24.0	3.827	18.1	3.783	16.8	3.329	2.8
henol	19.0	3.600	20	4.924	36.8	4.958	37.7	4.265	18.5	3.750	4.2
romoform	17.0	3.300	20	4.717	43.0	4.866	47.5	4.527	37.2	5.084	54•1
	Ave	% erra	:   r	ł	29.5		30.0		25.0		17.1
•			-	<b>n</b>		i i i min si		- 0 - 1 - 1	• • • •		-,•*
	Tota	1 numbe:	r o	r syste	ms = 5;	Total :	number	or data	points	; = 6	

an.

ctane

											•
· · · · · · · · · · · · · · · · · · ·		[		This	work	Wilke-	Chang	King e	et al	Sitara	a. et al
Solute	T,°C	DAB	Ref	Eq.(3-	2.4)	Eq.(2-	-3.16)	Eq. <b>(2</b> -	3.29)	Eq <b>. (2</b> -	3.27)
		(exp.)		Calc.	%Error	Calc.	SError	Calc.	%Error	Calc.	%Trror
Solvent	= Ch	lorofor	n								
enzene	15.0	2.510	168	1.956	-22.1	2.520	0.4	2.009	-20.0	1.846	-26.5
cetone	15.0	2.360	168	2.189	-7.2	2.875	21.8	2.143	-9.2	1.912	-19.0
**	25.1	2.350	6	2.501	6.4	3.284	39•7	2.448	4.2	2.163	-7.9
11	40.0	2.900	6	2.997	3.4	3.936	35•7	2.933	1•2	2.560	-11.7
thanol 、	15.0	5.500	168	2.421	10.0	3.271	48•7	1.928	-12-3	1.830	-16.8
thyl ether	15.0	2.070	168	1•960	75.3	S•385	15.1	2.113	2•1	1.807	-12.7
17	25.0	2.150	5	2.239	4•1	2•720	26.5	2.412	15.5	2.044	- 4.9
ethylethylketone	25.0	2.130	163	2•285	7.3	2.865	34•4	2.247	5•5	2.015	-5.5
thyl acetate	25.0	5.050	163	2.211	9•4	2•720	34•7	2.200	8•9	2.038	0.9
-Butyl acetate	25.0	1.710	163	1•942	13.6	2.209	29•2	1.956	14.4	1.812	5.9
dine	10.0	1.930	20	1.867	-3•2	2.800	45•1	1.649	-14.6	2.498	29.4
ienol	10.0	1.600	20	1.754	9.6	2.271	41.9	1 • 528	-4.5	1.594	-0.4
lloroform	25.0	2.580	43	2.353	-8.8	3.110	20.6	2.430	-5.8	2.541	-1.3
	27.0	3.300	147	$2 \cdot 414$	-26.9	3.190	-3.3	2+492	-24.5	2.000	-21.0
e	-25•0	1.890	163	2.009	0•3	2.213	20.3	1.992	5+4	1.100	- 5• 4
, ( <del>.</del> .	ATTO	d'anna			06		27 0		07		11 7
	Total	o erroi	r n of	avato	יס•פ וו – חיי	• Totol	2/•0	of dot	9.1	a 15	11.3
	1004	L mumber	, oi	syste		; IULAL	numper	or dat	a point	S = 15	
Solven	• t Bi	romoform	.		1		, F 1	. 1		1	,
etone	125.0	0.784	163	0.770	-1.8	1.365	74.1	0.827	55	0 827	55
vl alcohol	20.0	0.516	20	0.607	17.6	0.948	83.8	0.590		0.626	21 1
hanol	20.0	0.976	20	0.791	-18.9	1.443	47.8	0.692	-29.1	0.740	-24.2
opanol	20.0	0.770	20	0.713	-7.4	1,228	59.1	0.640	-29.1	0.690	-10 1
-				001-2			JJ•4	0.040	-10.9	0.090	
	Avg.	% erroi			11.4		66.3		16.5		15.4
	Tota	l number	of of	system	ns = 4;	Total r	umber a	of data	points	= 4	
Solven	1 t = He	xadecar								1	
Heptane	125.0	1 0.750	16	0.457	-39.0	0.516	-31.3	0.658	_12 3	0.476	-36 5
Herane	25.0	0.850	16	0.485	-43.0	0.562	-33 8	0.000	-16 0	0.470	-11 1
xadecane	25.0	0.320	16	0.329	2.8	0.319	-0.3	0.133	35.3	0.351	0.8
decane	25.0	0.490	16	0.371	-24.4	0.378	-22.9	0.514	4.9	0.396	_19.1
. )		1	. 1					**/-+		0.990	
	AVg.	% error			27.3		22.1		17.4		26.6
	TOTAL	number	of	syste	as = 4;	Total n	umber d	or data	points	$= 4 \cdot$	
Salman	 + _ D-	daaaaa	1	1		f			•	1	
Horano	י <u>⇒</u> חכ		, ,	1 010	_20 0	1 007	- 24 1	1 227		0.070	1 74 0
	25.0	1 320	210	1 010	-24 5	1 211	-24.1	1 200	-1.4	0.939	-24.8
	25.0	1000	213	1.041 0.007	-24.7	1.214	-12:0	1 165	-1.2	0.998	-21.7
locano	25.0	0 817	200	0.772	-20.0	U+927 0 7×1	-17.5	1.105	2.0	0.743	-23.7
radecane	25 0	0.670	206	0.688	2 6	0 621	-7.2	0.910	22 1	0.142	
ruuguano	2		240		2.0	0.021	-1.2	0.010	CC.1	0.000	-1.2
	Avg.	~ error		1	16.5	· 1	14.5		11.6		19.7
	Total	number	of	system	ns = 5;	Total n	umber o	of data	points	= 5	
		- 7 - 1-	-	_ 1					1		
Solven	t ≕ Cy lor oʻ	CTOUEX8	non	e	~ _ [	0.503	177 0	0 515			1
ieptanol	27.0	0.5/6	169	V•222	-2.7	0.501	-12.0	0.546	-5.2	0.494	-14.2
1	22.0	1.050	169	1.0622	1.2	0.960	-8.5	1.046	-0.4	0.904	-13.9
	190.0	1T.ATO	167	Z ULD	5.11	1.022		1.1985	1 5.5	11.641	1-14 41

9.7

-28.8

25.0 0.741 169 0.527

Total number of systems = 2 ;

Avg. % error

0.474

1.985

0.655

3.5

5.2

points

11.7 0.526

.

1.641

-14.4

-23..0

17.8

-5.0

15.6

-36.0

Total number of data

ł

										;	
i				This	work	Wilke-	Chang	King e	t`al	Sitara.	etal
Solute	T,°C	$\mathbb{D}_{AB}$	Ref	Eq.(3-	2.4)	Eq.(2-	3.16)	Eq.(2	-3.29)	Eq.(2-	3.27)
4 4		(exp.)	   .	Calc.	%Error	cCalc.	%Error	Calc.	%Error	Calc.	%Error
Solvent	  = Met	hylcyc	loh	exane							
Octane	25.0	1.611	169	1.578	-2.0	1.396	-13.4	1.767	9•7	1 • 339	-16.9
dine	30.0	2.300	219	2.159	-6.2	2.685	16•7	1•996	-13.2	2.634	14.5
11	40.0	2.710	219	2.595	-4.2	3.228	19•1	2•399	-11-5	3.127	15•4
luene	25.0	1.650	75	1.813	9•9	1.834	11.2	1•941	17•6	1.574	-4.6
11	45.0	2.180	75	2.579	18•3	2.610	19•7	2.761	26.7	2.185	0.2
, H	60.0	2.730	75	3.280	20.1	3.318	21.5	3•511	<b>28</b> •6	2•732	0.1
iline	60.0	2.690	75	3.316	23•3	3•483	29.5	3.114	15.8	2.641	-1.8
thylcyclohexane	10.0	1.400	150	1.321	-5.7	1.272	-9•1	1.483	6.0	1.174	-16.2
11	20.0	1.700	159	1.574	-7.4	1.516	-10.8	1.767	4.0	1.381	-10.0
11	40.0	2.420	150	2.235	-7.6	2.153	-11.0	2.510	3•7	1.914	-20.9
11	60.0	3.280	150	3.108	-5.2	2.994	-8.7	3•491	6•4	5.001	-20.1
	1 Avr.	% arr	 ობო-		10.0		15.5		13.0		11.8
n na seanna an Anna an Anna an Anna an Anna an Anna an	Total	numbe		f system	ms: = 5:	Total	number	of data	points	. = 11	1 1 1
	10041	·			,	1000					1
	•			•			•				
Solve	nt = 0	yclohe	xan	e				•			
n an	125.0	1.490	9 168	1.382	-7.3	1.402	-5.9	1.495	ؕ4	1.482	-0.5
-4 11	40.0	1.915	5 176	1.840	-3.9	1.867	-2.5	1.991	4.0	1.934	1.0
11	55.0	2.415	5 176	2.376	-1.6	2.412	-ؕ1	2.572	6 • 5	2.454	1.6
omobenzene	7.3	0.900	3 219	0.853	-5•2 [.]	0.838	-6.9	0.856	-4.8	0.880	-5.5
dine	15.0	1.540	3 219	1.204	-21.8	1.430	-7-2	1.084	-29.6	1.513	-1.8
n 🖌 👘	30.0	1.920	3 219	1 • 631	-15+1	1.937	0.9	1.469	-23•5	2.006	4.5
11	40.0	2.300	3 219	1.946	-15•4	2.311	ؕ5	1.753	-23.8	2.364	2.8
nzene	25.0	1.896	5 176	1.420	-25.1	1.450	-23.5	1.489	-21+5	1.249	-34•1
**	25.0	1.886	0101	1.420	-24.4	1.450	-22.9	1.489	-20-8	1.249	-33.5
11	40.0	2.450	5176	1.891	-22.8	1.930	-21.2	1.982	-19+1	1.630	- 33 - 5
11	60.0	3.285	5176	2.675	-18.6	2.730	=16.9	2.803	-14.7	2.221	- 31 • 3
luene	25.0	1.569	1176	1.328	-15-4	1.203	-10-2	1 9 0 0	-11+1	1.520	-20.5
**	40.0	1.91	3170	1. 100		1.100	-10.1	1.044	-3.0	1.020	-19.9
······································	55.0	2.409	176	2.204	5.2	a 000	-10.4	1.038	-1 • 1	0.856	-18.5
" "	10.0	1 0 20		0.955	-9.6	1.166	-16+4	1.316	-1•1	1.967	-13.2
11	20.0	1.280	2 15	11.220	-1.0	1.200	-5-4	1.458	5.6	1.17/	-15.0
11	25.0	1.470		1.338	-3.0	1.202	-12.4	1.458	-1.2	1.174	-20.4
11	25.0	1.47	31150	1.338	=6.6	1.292	-9.9	1.458	1.7	1.174	-18-1
	25.0	1.40		1.338	-5-8	1.292	-9.0	1.458	2.7	1.174	-17.4
11 *	25.0	1.410	31150	1.338	-5.1	1.292	8.4	1.458	3.4	1.174	-16.8
nzene	25.0	1.88	3 174	1.420	-24.6	1.450	-23.0	1 • 489	-20.9	1.249	-33.7
11	35.0	5.50.	7 174	1.762	-20.2	1.798	-18.5	1.846	-16.3	1.526	-30.8
clohexane	40.0	1.750	7 150	1.782	1.8	1.720	-1.7	1.941	10.9	1.532	-12.5
11	60.0	2.340	0 150	2.520	7.7	2.432	3.9	2.745	17.3	2.114	-9.6
"	180.0	3.140	1150	3.471	10.5	3.350	6.7	3.781	20.4	2.848	-9.3
tt .	100.0	4.110	0 15	4.710	14.6	4.546	10.6	5.132	24.9	3.783	-8.0
romonaphthalene	7 • 3	0.850	3 219	10.732	-13.9	0.678	-20.5	0.678	-20.2	0.732	-13.9
CALER FRE FILLER											
	Avg. %	6 error	•		11.6		10.5	•	12.1		16.1
· · · · ·	Total	number	of	system	s = 7;	Total n	umber o	f data	points	= 28	

÷

				This	work	Wilke	-Chang	King e	et al	Sitara	et al
Solute	т,°с	D _{AB}	Ref	Eq.(3	3-2.4)	Eq.(2-	-3.16)	Eq.(2-	3.29)	Eq. (2-3	s.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Error	Calc.	%error
Solve	 ent = ]	3romobei	l 1zer	r6	1						
dine	1 30.0	1.390	27	1.397	0.5	2.203	58.5	1.372	-1.3	1.996	43.6
nzene	7.5	1.020	219	0.897	-12.0	1.216	19.2	1.025	0.5	0.936	-8.2
lorobenzene	10.0	1.007	169	0.882	-12.4	1.150	14.2	0.977	-3.0	0.963	-4.4
f f	20.0	1.180	169	1.054	-10.7	1.374	16.4	1.168	-1.0	1.137	-3.7
<b>11</b> .	26.8	1.342	169	1.195	-10.9	1.558	16.1	1.342	-1.3	1.278	-4.8
11,	40.0	1.584	169	1.454	-8.2	1.895	19.7	1.611	1.7	1.533	-3.2
17 19	25.0	1.260	100	1.161	-7.8	1.514	20.1	1.286	2.1	1.244	-1.3
luene	25.0	1.410	100	1.160	-17.7	1.488	5.5	1.319	-6.5	1.180	-16.3
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Avg. 9	6 error			10.0		21.2		2.2		10.7
	Total	number	of	system	is = 4;	Total n	umber o	f data	points	= 8	
Solv	ent = 0	Chlorob	enze	ne	· .						
omobenzene	1 25.0	1.640	100	1.552	-5.3	1.747	6.5	1.666	1.6	1.673	5.0
luene	25.0	1.690	100	1.592	-5.8	1.762	4.3	1.775	5.0	1.502	-11.1
nzene	20.0	1,250	168	1.588	27.1	1.857	48.6	1.779	42.3	1.509	20.8
luene	10.0	1.345	96	1.286	-4.4	1.423	5.8	1.434	6.6	1.231	-8.5
17	20.0	1.560	96	1.485	-4.8	1.643	• 5.3	1.656	6.1	1.407	-9.8
11	27.0	1.756	96	1.655	-5.8	1.831	4.3	1.845	5.1	1.557	-11.4
11	40.0	2.113	96	2.009	-4.9	2.222	5.2	2.240	6.0	1.864	-11.8
	Avg.	% erro:	ו די		8.3		11.4		10.4		10.8
	Tota	l numbe:	r' of	syste	ms = 3	; Total	number	of dat	a point	s = 7	
Solve	$I \rightarrow B$	i tvl ac	stat			1	1		1	1	
atone -	120.0	1 2.660	182	11.976	-25-7	2.349	-11.7	2.217	-16.6	1.723	-35.2
etic acid	20.0	1.640	182	1.600	-2.0	2.632	60.5	1.955	19.2	1.740	6.1
thylethylketone	30.0	1.852	4	2.136	15.3	2.422	30.8	2.409	30.1	1.874	1.2
loroform	25.0	1.960	163	2.027	3.4	2.426	23.8	2.400	22.5	2.199	12.2
, , , , , , , , , , , , , , , , , , ,	A	d'amma	, 	1	11 6	•	31 7		22 1		13 7
	Avg.	% erro.	r Mof	avato		• motal	י י_ע⊥•ו מעשרת	of dat	o noini	-a - 1	1.7.1
<b>`</b>	Tota	t mumbe.	. 01	Syste	ша 4 ]	, 10 tai	. number	or uat	a point	<b>15</b> – 4	
Solve	nt = N	itroben	zene	r	1		· ·				
hylbenzoate	20.0	0.600	219	0.520	-13.3	0.539	-10.1	0.607	1.3	0.571	-4.8
etone	17.8	0.790	22	0.695	-12.1	0.846	7.1	0.790	0.0	0.678	-14.2
hyl acetate	16.8	0.640	182	0.603	-5.8	0.688	7.6	0.697	9.0	0.627	-2.0
tromethane	18.6	0.810	182	0.758	-6.4	1.1.008	24.5	0.761	-6.0	0.747	-7.8
	Avg.	% erro	r	•	9.4		12.3		4.1	•	7.2
	Tota	l numbe	r of	syste	ms = 4	; Total	number	of dat	a point	;s = 4	{
Salwa	 n+ - F	 thyl he	0700	te i			1	1	1	1	[
501Ve	120 0 ⊐¢ ⊒ ₽	1 0.730	1219	0.551	-21-1	0.679	-6.9	0.618	-15.4	0.606	-17-0
rtoneuseue	17 0	0.830	182	0.652	-21-1	0.830	0.0	0.740	-10.8	0.624	-24-8
nyl egetete	15.7	0.680	187	0.565	-16.9	0.674	_1.0	0.652	-4.1	0.577	-15.1
tromethane	14.9	0.730	100	0.674	-7.6	0.936	228.2	0.676	-7.5	0.655	-10.3
	-+•)	1	1	1		1			<u> </u>		
	Avg.	error		· ·	1 17.5	• Matel	9.0	AF 3-1	9.5		10.8
	Tota		T. 01	. syste	шв = 4 I	; TOTAL	. number	σιζαατ	a horu	3 = 4	1
										the second s	

ł

											(
				This	work	Wilke-	Chang	King e	t al	Sitar	a. et a
Solute	т,°с	DAB	Ref	Eq <b>.(3</b>	-2.4)	Eq <b>.(2</b>	-3.16)	Eq. (2-	3.29)	Eq.(2-	3.27)
		(exp.)		Calc.	%Error	Calc.	%Error	Calc.	%Errol	Calc.	%Error
Solvent	= n-D	ecane						•			
luene	25.0	2.090	216	1.584	-24.2	1.760	-15.8	1.869	-10.6	1.443	-31.0
Decane (self-)	25.0	1.310	43	1.262	-3.7	1.183	-9.7	1.538	17.4	1.142	-12.8
ü.	20.0	1.290	150	1.150	-10.8	1.079	-16.4	1.402	8.7	1.048	-18.7
	Avg.%	error			1 12.9	·	13.9		12.2		20.8
	Total	number	of	syste	ms = 2	; Total	number	of dat	a point	s = 3	
Salmont			ł			. <b>`</b>					
bonzene	=	yrene 1 520	109	1.562	28	1 662	93	1 715	12.8	1 613	
line	20.0	1,680	20	2.164	28.8	2.780	65.5	2.131	26.8	2.773	65 0
11	25.0	1.890	180	2.353	24.5	3.022	59.9	2.317	22.6	2.997	58.6
						20022				-• ) )	
	Avg.	% erroi	. of	avato	1 18•71 ma - 2	• Motol	44.91	of dot	20.7	~ 7	43.9
	Totar	. number	. 01	syste		; IOLAL	i number I	or data	a point	$s = 2^{n}$	
Solvent	= n-H	eptanol									
thylcyclohexane	25.0	0.470	169	0.550	18.0	0.256	-45.6	0.293	-37.7	0.240	-48.9
nzene	25.0	0.640	123	0.620	-1.9	0.320	-50.0	0.316	-50.6	0.271	-57.7
Dichlorobenzene	25.0	0.475	123	0.550	17.0	0.255	-46.3	0.263	-44.6	0.253	-46.7
•	AVE	% error			12.3		47.3		44.3		51.1
•	Total	number	• of	syster	ns = 3	: Total	number	of data	a point	s = 3	) <b>.</b>
	1	: 4	ł	-		-		[	- 1	-	
Solvent	= Dio	xane									
line	25.0	1.070	219	1.046	-2.2	1.313	22.7	0.995	-7.0	1.430	33.6
4	25.0	1.020	219	0.989	-3.0	1.062	4.1	1.131	10.9	1.170	14.7
	Avg.	% error	. 1		2.6		13.4	į	9.01		24.2
	Total	number	of	syster	ns = 2	; Total	number	of data	r point	s = 2	
Solwort	1 Tao	nmonul I		tata							
hvlethvlketone	130.0	propyr   2.210	lee	2.659	20.3	2 907	31 5	2 805	31 0	2 265	2 5
my icomy income	50.0			2.000	20.7	2.901	11.5	2.099	J1.0	2.205	2.5
Calmant	Made	' h==1	ا رئىمىد	_							
bylethylketone	'= Met 130 0 1	nyi ace Sisol	tate	3 610	14 6	3 620	14 0	3 771	17 0	2 057	6 1
invie unvike tone	50.0	J.190		J.010	14.0	J.020	14.9	<b>J</b> •11⊥	11.0	2.951	-0.1
Solvent	= Iso	-Amyl a	lcol	lol .							
nol	19.0	0.200	20	0.270	35.0	0.354	77.2	0.293	46.6	0.290	45.2
·			I							ł	
Solvent	⇒ Met	hylethy	lke	tone							
oroform	25.0	2.860	163	3.247	13.5	3.314	15.9	3.602	26.0	3.269	14.3
Solvert		mono									
mohenzene	i≕ <u>m</u> =u i 7.3 i	ymene 1.340	219	1 033	-22 0	1 191	_11 0	ידים ר' ר	11 4	1:1/2	14 7
		1.740			-22.9	1.101	-11.9	T#T01	-11.4	14147	-14./
Solvent	= Tet	radecan	e		777 7	0.000		0.007			
ine	27.0	1.020	219	0.702	-)10'E	0.859	-15.8	0.923	- 9.5	0.772	-29.3
TITE	22.0	0.900	219	0.112	-19.5	T.TOT	20.9	0.877	- 8.6	T.155	16.8
	Avg.	%:error		. <u> </u>	25.3	{	18.4		9.1		23.1
	Total	number	of	system	ns = 2;	Total 1	number o	of data	points	= 2	
	-								•		
			•			- A					

				This	work	Wilke	-Chang	King (	et al	Sitara	, et al
Solute	т, ^о с	D _{AB}	Ref	Eq.(3-	2.4)	Eq.(2-	-3.16)	Eq <b>.(2</b> -	3.29)	Eq. (2 - 3	3.27)
		(exp.)		Calc.	HError	Calc.	"Error	Calc.	%Error	Calc.	%Error
Solvent thyl Iodide	= Met 7•5	hylene 2.060	ch1 219	oride 2.476	20.2	3.262	58.4	2.615	26.9	3.042	47.6
Solvent hylene bromide	= Eth 7•3	ylene 1.110	chlc 219	ride 1.130	1.8	1.356	22.2	1.198	7.9	1.400	26.1
Solvent omobenzene	= Eth 7.3	yl ben 1.440	zene 219	1.456	1.1	1.555	8.0	1.592	10.5	1.536	6.7
Solvent omobenzene	= Mes 7.3	itylen 1.310	e 219	1.395	6.5	1.539	17.5	1.597	21.9	1.512	15.4
Solvent Bromonaphthalene 14 omobenzene	= Tr 7.3 25.0 7.3	ansdeca 0.340 0.776 0.470	lin 219 20 20	0.387 0.627 0.448	13.9 -19.2 -4.6	0.410 0.733 0.507	20.7 -5.5 8.0	0.400 0.762 0.506	17.6 -1.8 7.6	0.431 0.762 0.518	26.7 -1.8 10.3
	Avg. Total	% erro numbe	r r of	) System	12.6 ms = 3;	Total	ll.4 number	of data	9.0 a points	i 3 = 3 ⁻	12.9
Solvent romonaphthalene	= <b>~</b> -Me 7.5	thyl n 0.226	apht 219	halene 0.199	-11.8	0.220	-2.6	0.221	-2.2	0.248	9.8
Solvent loroform	= Met 25.0	hyl is 2.100	obut 163	yl ket 2.593	one   23.5	2.925	39.3	3.043	44.9	2.722	29.6
Solvent omine enol	= Car   16.0   19.0	bondis 3.600 3.400	ulph 20 20	ide 3.581 2.996	-0.5 -11.9	4.528 3.191	25.8 -6.1	3.150 2.438	-12.5 -28.3	4.109 2.451	14.2 -27.9
. <b>х</b>	Avg. Total	% erro numbe	r r of	syste	6.2 ms = 2;	Total	16.0 number	of data	20.4 a points	5 = 2	21.0
Solvent omobenzene romonaphthalene	= Tet 7.0 7.0 Avg.	ralin   0.480   0.360 % erro	20 20 T	0.495 0.427	3.1 18.7 10.9	0.557 0.451	16.1 25.2 20.7	0.581 0.459	20.9 27.5 24.2	0.589 0.490	22.8 36.0 29.2
Solvent	Total	l numbe	r of     roet	syster hane	ms ≐ 2;	Total	number	of dat	a points	3 = 2	
Solvent	= Ani	0.940 Lsole	20	1.006	-11.0	1.318	16.6	0.991	-12.3	1.382	22.3
Solvent line	= Ace	tic ac	id 20	1.364	32.4	1.063	3.2	0.995	-3.4	1.392	35.2
	1	I	I	L	<u>ه ا</u>		<u> </u>			أحبيب والمستحج والمراجع	

285

i

		1		This	work	Wilke-	-Chang	King e	et al	Sitara	. et al
Solute	т ^о С	D _{AB}	Ref.	Eq. <b>(3</b> –	2.4)	Eq.(2-	-3.16)	Eq.(2-	- 3.29)	Eq. <b>(2</b> -	3.27)
		(Exp.)		Calc.	Ærror	Calc.	%Error	Calc.	%Error	Calc.	Ærror
		Donto									
POTAGI	T = T	o oge	101	0.873	44 1	01.67	-52 6	01.58	53 5	0 305	50 0
enzene	2) 25	0.571	123	0.676	-11.4	0.407	- <u>52</u> 0	0.490	-22.2 -1.2 5	0.311	-5/.5
	25	0 733	123	0.771	5.2	0.377	-44.6	0.382	-+2•J	0.373	-+J.9.2
-DIGUIOLODellZelle	29 Ανσ	% erro	r 27	0.11	J• 11.7	0.511	48.6	0.002	<u>_</u> +1•2	0.00	
	Total	numbe:	r of	 svstems	- ''''' = 3• T	otal m	unber of	data r	noints :	= 3 ·	J.•J
	10000				ـ ور ـ						
Solver	nt = F	thylen	eglyc	ol							
thyleneglycol(self)	25	0.096	1 35	0.078	-19.0	0.082	-14.3	0.077	-19.7	0.088	-8.2
	30	0.114	135	0.095	-16.6	0.100	-11.8	0.094	-17.3	0.106	-6.7
1	40	0.151	135	0.148	-2.0	0.156	3.7	0.147	-2.8	0.160	6.2
1	50	0.207	135	0.217	5.1	0.230	11.2	0.215	4.2	0.229	10.9
yclohexanol	26.6	0.061	135	0.067	10.2	0.060	-1.1	0.077	27.2	0.082	34•4
1	30 🕔	0.064	1 35	0.076	20 <b>.</b> 1	0.069	7.7	0.088	38.5	0.092	45.1
1	39.9	0.107	135	0.119	11.1	0.107	-0.3	0.137	28.2	0.140	30.2
	Avg.	% erro	r		12.2		8.7		19.5		20.8
J	Tota]	L numbe	r of	systems	= 2; T	otal n	umber of	data p	oints :	= 7	
				_					1		
Solve	nt = 1	Diethyl No. of(	enegi	ycol		0.000	0.7				0.1
tnylenegiyool	25	0.050	1.35	0.049	-11.3	0.051	9.3	0.054	-2.4	0.061	9•4
	30	0.005	1 25	0.007	-2.2	0.120	20.6	0.107		0.115	15.2
	26 6	0.016	1.22.	0.097	_2.2 _9 8	0.01.3	-5.7	0.053	15 5	0.055	19.9
AGTOUEXAUOT	20.0	0.050	1 35	0.050	-7.0	0.052			28.3	0.065	31.5
		0.083	1 35	0.079	-5.0	0.082	-0.7	0.101	21.6	0.100	20.7
	Ave	% erro	n L	0.019	-5.6	0.002	9.7	0.101	13.3	0.100	18.7
	Tota]	l numbe:	rof	systems	= 2; T	otal nu	unber of	l data p	oints =	= 6	
Solve	ent =	Pronvl	l enegl:		, 	1	1	1	[		i
thvleneglycol	25	10.048	1 35	0_031	-35.1	0.036	-25.2	0.033	-31.6	0.039	-18-8
1	30	0.053	135	0.045	-15.2	0.052	-2.2	0.048	-10.5	0.055	3.5
1	40	0.092	1 35	0,078	-15.1	0.090	-2.2	0.083	-10.4	0.092	-0.3
•	50	0.126	1 35	0.129	2.5	0.149	18_1	0.136	8.1	0.146	16.2
clohexanol	26.6	0.026	1 35	0.026	0.0	0.025	-2.1	0.032	23.0	0.035	35.2
	30 39•9	0.031	135	0.036 0.063	17.4	0.036	14.7	0.045	44.0	0.048 0.080	54.7 40.2
	AVg.	% erro:	r n of	avatore	- 20 m	 	10.5	ate ~	25.5	- 7	24.1
	13. 14 444		L UL	-yavenia		COST III	AILOST OI	uciuci, ()	- CJ1103 =	• 1	

Appendix 3-3.1a Sample calculation for estimating D* from additive method

Example(1):



$$D_{cal}^{*} = T\left(\frac{\bar{V}}{[M]}\right)^{7.7}$$
  
= 333.2  $\left(\frac{113.64}{217.0}\right)^{7.7}$  = 2.30 cm²/sec.

Experimental  $D^*_{exp} = 2.34 \text{ cm}^2/\text{sec.}$ 

$$\% \text{ error} = \frac{D^*_{\text{cal.}} - D^*_{\text{exp}}}{D^*_{\text{exp}}} \times 100$$

$$=\left(\frac{2.30-2.34}{2.34}\right) \times 100 = -1.7\%$$

Example(2):

From Table 3-3-2 (C-H) = 14  
(C-C) = 7  
(C=C) = 19  

$$\sum = 7$$
  
[M] = 6 (14) + 3 (7) + 3 (19) + 7 = 169  
 $\sqrt{V}$  at T = 92.87 cm³/gmole

From eq. (3-3.4)

$$D^{*} \text{ cal.} = T \left(\frac{\bar{V}}{[M]}\right)^{7.7}$$
  
= 328.2  $\left(\frac{92.87}{169}\right)^{7.7}$  = 3.28 x 10⁻⁵ cm²/sec.

Experimental  $D^*_{exp} = 3.50 \times 10^{-5} \text{ cm}^2/\text{sec.}$ 

% error = 
$$\left(\frac{3.28 - 3.5}{3.5}\right) \times 100 = -6.2\%$$
.

Example (3):

n Heptane at T=313.2°K

Structural formulae :

нннннн нс-с-с-с-с-сн нннннн

: ř

$$[M] = 16 (^{C}-H) + 6 (^{C}-c)$$

From Table

$$(c-H) = 14$$
  
 $(c-c) = 7$ 

$$M$$
] = 16 (14) + 6 (7) = 266

$$\vec{V}$$
 at 313.2°K = 150.34

From eq. (3-3.4)

$$D^{*} \text{cal} = T\left(\frac{\overline{V}}{[M]}\right)^{7.7}$$
  
= 313.2  $\left(\frac{150.36}{266}\right)^{7.7}$  = 3.89 x 10⁻⁵ cm²/sec.

Experimental  $D^*_{exp.} = 3.75 \times 10^{-5} \text{ cm}^2/\text{sec.}$ 

$$\% \text{ error} = \left(\frac{3.89 \times 3.75}{3.75}\right) \times 100 = 3.7\%$$

#### Appendix 3.3.1b

## Comparisons of predicted values of self-diffusion

#### coefficients from the additive method with the experimental

* .							•
Liquid	Ţ	Expe	:. D*	Exper.	Ī V	D*, ca	lculated @
INQUIG	ο _κ	$\mathrm{cm}^2/\mathrm{sec}$ .	Ref.	cm ³ /gmole	Ref.	cm ² /sec.	% error
Paraffing .							
Tararinis							
Methane	90.7	2.60	43	35.24	. 43	2.57	-1.0
	95.2	3.05	43	35.74	43	3.01	-1.4
н.	100.0	3.70	43	36.29	43	3.55	-3.9
	106.1	4.45	43	37.06	43	4.43	-0.4
	110.5	5.45	43	37.65	43	5.21	-4.4
	111.11	5.23	48	37.74	48	5.28	1.8
							2.2
Ethane	103.2	0.87	150	47.73	62	0.72	-17.0
	123.2	1.35	150	48.89	62	1.04	-23.3
	143.2	2.32	150	50.53	62	1.55	-33.1
	163.2	3.66	150	52.38	62	2.33	-36.3
	183.2	5.05	150	54.57	62	3.59	-29.0
							27.7
n-Pentane	194.7	1.38	43	100.84	43	0.98	-29.0
	250.3	2.97	43	108.29	43	2.22	-25.2
	273.2	4.14	43	111.81	43	3.13	-24.4
	298.2	5.535	43	116.18	43	4.64	-16.3
	298.2	5.450	41	116.18	196	4.64	-14.9
	303.2	5.650	150	117.03	196	4.99	-11.7
	308.7	6.290	43	118.22	43	5.51	-12.4
							19.1
Iso-pentane	273.2	3.83	56	112.86	196	3.37	-12.0
	283.2	4.26	56	114.61	196	3.95	-7.3
	298.2	4.85	56	115.48	196	4.42	- 8.9
· · · · ·	298.2	4.81	204	115.48	196	4.42	-8.1
							9.1
2 – Methyl bu	itane				•		
-	298.2	5.3	43	117.31	43	5.01	-5.5
						· · ·	
n-Hexane	233.2	1.63	150	121.03	196	1.62	-0.6
	253.2	2.25	150	124.16	196	2.13	-5.1
•	293.2	3.85	150	130.66	196	3.66	-4.9
	298.2	4.12	43	131.56	196.	3.92	-4.7
	298.2	4.21	150	131.56	196	3.92	-6.9
	313.2	4.80	150	134.39	196	4.86	1.3
1997 <u>-</u>	313.2	4.86	150	134.39	196	4.86	0.0
	333.2	6.00	150	138.51	196	6.52	8.6

150

353.2

7.30

143.09

196

8.87

 $\frac{21.5}{6.0}$ 

values, (D* x 
$$10^5$$
, cm²/sec)

<b></b>		Exper. D*		Exper.	Ŷ	Calculate	d D* @
Liquids	о _К	$\mathrm{cm}^2/\mathrm{sec.}$	Ref.	cm ³ /gmole	Ref.	$\mathrm{cm}^2/\mathrm{sec}.$	% error
2-Mothul							
2-Methyr	973 9	2 97	150	128 38	196	2 98	0.3
pentane	210.2	2.26	150	120.07	106	2.00	0.5
	203.2	3.75	150	191 79	196	3 80	2.0
	200.2	3 08	100	132.57	130	3.05 1 16	J.J
	230.2	. J. 50 / 19	150	122.07	106	4.10	4.0
	212 2	4.10	150	195 97	106	4.40 5.10	10.5
	313.4	4.04	190	100.21	190	5.10	$\frac{10.5}{4.6}$
2_Mothul							
nontono	272 9	2.67	150	126 37	196	2 64	-12
pentane	410.4 989 9	2.01	150	120.01	106	4.0 <del>1</del> 3.09	
	203.4	3 19	150	120.02	196	3.47	1 6
	493.4 200 2	0.44 9.61	100	123.10	130	3.41	2.0
	200.4	0.01 9.01	40	121 56	106	2 00	4.0
	010 0	3.01	150	100 00	100	J. JJ 1 90	17
	313.4	4.20	100	132.23	190	4.30	-1.1
							2.0
2,2-aimethyi	000 0	9 41	49	199 65	19	1 19	20.0
butane	290.4	3.41	40	199.09	40	4.40	29.5
0 0 dim other]							
2,3-dimethyl	979 9	9 55	150	196 99	100	9.771	<b>C</b> 2
butane	473.4	2.55	150	100.00	190	2.11	0.3
	203.2	4.91	150	120,40	190	3.10	0.1
	293.2	3.27	150	130.22	190	3.00	9.1
	298.2	3.50	43	131.14	43	3.83	9.4
	303.2	3.65	150	132.06	196	4.11	12.6
	313.2	4.07	150	133.97	196	4.74	$\frac{16.5}{10.1}$
							10.1
n Heptane	233.2	1.12	150	136.14	196	1.35	20.5
	250.3	1.52	43	139.26	196	1.72	13.4
	273.2	2.25	150	143.06	196	2.31	2.9
	273.2	2.08	43	143.06	196	2.31	12.7
	293.2	3.00	150	146.57	196	2.99	0.2
	293.2	2.80	150	146.52	196	2.99	6.8
	298.2	3.12	43	147.46	43	3.19	2.2
	305.7	3.22	43	148.89	43	3.52	9.4
	313.2	3.60	150	150.34	196	3.89	8.0
	313.2	3.75	150	150.34	196	3.89	3.7
1.00	329.7	4.21	43	153.75	43	4.86	15.5
	333.2	4,55	150	154.37	196	5.07	11.4
	353.2	5.60	150	158.77	196	6.67	19.1
	353.4	5.76	43	158,80	43	6.68	16.0
	369.0	6.56	43	162.48	43	8.30	26.9
	0,000		Ĩ				10.0
						. н. с.	

		Exper.	D*	Exper.	Ī	Calculated	D* @
Liquid	т	•			-		
	οK						1
		$cm^2/sec.$	Ref.	$\mathrm{cm}^{3}/\mathrm{gmole}$	Ref.	$cm^2/sec.$	% error
n-Octano	973 9	1 47	150	158 95	196	1 60	14 5
II-Octane	210.4 973 9	1.56	150	158 95	196	1.60	26
	293 2	1.00	150	162.63	196	2.05	5.9
	203 2	2 10	150	162.63	196	2.05	-2.4
	200.2	2.10	13	163 61	43	2.00	-2.1
	200.2	2.20	150	163 61	196	2.15 9 10	95
	200.2	2.00	150	163.61	196	2.15 9 10	-9.6
	230.2 202 2	2.01	150	163.61	196	2.13 9.10	-6.8
	200.2 919 9	2.55	150	166 47	106	2.13	-0.0
	010.4 919 9	2.00 9.79	150	166 47	190	2.02	_1 0
	010.4 999 9	4.10 9.90	150	100.47	106	2.04 9.97	-+.0
	000.4 000 0	3.3U 9.41	150	170.60	190	0.01 9.97	4.4
	პპპ <b>.</b> 4 იიი ი	0.41 9 55	150	170.60	190	0.01 9.977	-1.4 . F 1
	040 0	3.00	150	179.74	190	0,01	-0.1
	343.2	3.80	150	1/2.74	190	3.02	0.0
	353.2	4.15	150	175.02	190	4.30	4.8
	373.2	5.20	150	179.81	196	5.05	8.7
	393.2	6.40	120	185.51	196	7.57	$\frac{18.3}{0.0}$
	•			•			6.0
n. Nonano	979 9	1 10	150	17/ 97	196	1 11	31.0
II-Nonane	213.4	1.62	150	178 70	196	1 89	11 6
	493.4 202 2	1 61	150	178 70	196	1.02	13.0
	493.4 200 2	1 70	13	170.70	120	1.02	13.0 13.1
	400.4 919 0	2.20	40 150	199 60	196	2.20	10.4
	010.4	2.20	150	199 60	196	2.30	<b>4.</b> 1
	010+4 999 9	2.11 9.97	150		196	2.00	0.0
	000.4 999 0	2.01	150	196 69	106	2.03	27
	000.4 050 0	3.00	150	100.00	196	2.03	-0.4
	050.0	3.00	150	100.05	100	0.00	-0.4
ŕ	353.2	3.81	150	190.00	190	J. 0J	-4.4 C 1
	373.2	4.50	190	196.34	196	4.78	<u>0.1</u>
	•						8.0
n-Docano	979 9	0.76	150	191 04	196	1 32	74
n-Decane	410.4 000 0	1.90	150		106	1.54	1 <del>1</del> 99 6
	493.4	1.49	100	105 90	190	1.00	20.0
	298 <b>.</b> 2	1.31	43	TA9°9A	43	T. (9	30.1
							40.4
n Dodocoro	900 n	1 710	150	228 58	106	1 59	-11 5
u-Donecane	470.4	1.113	TON	220.00	130	1.02	-1100
n-Octodocono	202 0	0.46	42	334 87	43	0.465	1.1
n-Octadecane	040.4	V.40	40	JUT. 01	TO .	0.100	
	l			I <u></u>	A	····	

		Exper.	D*	Exper.	ν	Calculate	d D* @
Liquids	Т			-			
	oK			0		0	<u> </u>
		cm ² /sec.	Ref.	cm [°] /gmole	Ref.	cm ² /sec.	%error
						· · · · · · · · · · · · · · · · · · ·	
Cycloparaffin	s						
Cyclopentane	273.2	2.00	56	91.68	196	2.07	0.0
	298.2	2.88	56	94.72	196	2,90	0.6
	313.2	3.41	56	96.60	196	3.54	3.8
							1.5
Cyclohexane	293.2	1.23	150	108.10	196	1.38	12.0
	298.2	1.39	43	108.76	43	1.47	5.6
	313.2	1.75	150	110.81	196	1.78	1.8
	333.2	2.34	150	113.64	196	2.30	-1.7
	353.2	3.14	150	116.89	196	3.03	-3.5
							5.0
Methylcyclo-	070 0	1 10	150	104.00	100	1.00	
nexane	273.2	1.13	150	124.83	196	1.23	8.8
•	283.2	1.40	150	126.20	196	1.39	-1.0
	293.2	1.70	150	127.62	196	1.56	-8.0
	313.2	2.42	150		196	2.00	-17.0
	333.2	3.28	150	133.76	196	2.55	-22.2
	303.2	4.30 ·	150	137.01	196	3.25	-25.2
	313.4	5.00	190	140.01	190	4.20	$-\frac{25.0}{15.2}$
Aromatica							19.3
Alomatics	·						
Benzene	283.2	1,65	150	87-81	196	1.84	11.4
2022020	288.2	1.87	43	88.34	43	1.96	4.8
	288.2	1.88	129	88.34	43	1.96	4.3
	298.2	2.22	43	89.40	43	2.22	0.0
	298.2	2.15	129	89.40	43	2,22	3.3
	308.2	2.59	43	90.51	43	2.53	-2.4
	308.2	2.40	129	90.51	43	2.53	5.4
	313.2	2.58	150	91.08	196	2.69	4.5
	318.2	3.01	31	91.66	43	2.88	-4.4
	318.2	3.04	43	91.66	43	2.88	-5.3
	318.2	2.67	129	91.66	43	2.88	7.9
	328.2	3.50	43	92.87	43	3.28	-6.2
	338.2	4.03	43	94.12	43	3.75	-7.0
	353.2	4.37	150	95.90	196	4.51	3.2
	373,2	6.15	43	98.50	43	5.87	<u>-4.6</u>
							4.98
_						·	
Toluene	283.2	2.08	150	105.11	196	1.73	-17.1
	293.2	2.32	150	106.28	196	1.94	-16.4
	313.2	2.95	150	108.63	196	2.46	-16.7
	333.2	3.66	150	111.11	196	3.11	-15.0
	353.2	4.56	150	113.72	196	3.94	-13.5
	373.2	5.60	150	116.67	196	5.07	$\frac{-9.4}{14.7}$
							14.7

Liquid T o _K _	T	Exper. I	)*	Exper. V	;	Calculated V	d D* @
-	^о к –	cm ² /sec.	Ref.	cm ³ /gmole	Ref.	cm ² /sec.	% error
Alcohols_							
Methanol	278.2	1.55	43	39.56	43	2.03	30.9
	288.2	1.91	43	40.25	43	2.40	25.7
	298.2	2.32	43	40.74	· 43	2.72	17.6
	308.2	2.71	43	41.17	43	3.06	12.8
	308.2	2.74	150	41.17	43	3.06	11.7
	313.2	2.89	43	41.45	43	3.09	7.1
	318.2	3.37	43	41.64	43	3.44	2.1
	328.2	3.88	43	42.15	43	3.90	0.5
	298.2	2.36	96	40.74	43	2.72	15.3
							13.7
Ethanol	280.0	0.618	43	57.33	43	0.95	54.3
	288.2	0.770	43	58.05	43	1.08	40.4
	298.2	1.010	43	58.68	43	1.22	20.3
	298.2	1.020	96	58.68	43	1.22	19.6
	298.2	1.05	72	58.68	43	1.22	16.2
	296.5	1.37	106	58.50	196	1.18 /	-13.9
	295.9	1.26	106	58.40	196	1.16	-7.8
	308.2	1.30	43	59.32	43	1.365	5.0
	318.2	1.66	43	60.02	43	1.54	-7.1
	328.2	2.06	43	60.73	43	1.74	-15.5
	333.2	2.60	106	61.00	196	1.83	-29.6
	338.2	2.61	43	61.53	<b>43</b>	1.98	$-\frac{24.0}{21.1}$
					10		
n-propanol	288.2	0.504	43	74.42	43	0.63	25.1
	298.2	0.646	152	75.14	196	0.702	8.7
	308.2	0.814	152	75.895	196	0.784	-3.7
	318.2	1.017	152	76.743	196	0.882	$-\frac{13.3}{12}$
							12.7
i-propanol	288.2	0.474	43	74.985	43	0.668	41.0
	298.2	0.649	152	76.956	196	0.844	30.1
	308.2	0.867	152	77.867	196	0.955	11.3
	318.2	1.145	152	78.817	196	1.083	-5.4
							22.0
n-Butanol	298.2	0.504	152	91.998	196	0.52	3.5
	308.2	0.649	152	92.88	196	0.58	-10.6
	318.2	0.822	152	93.66	196	0.64	-22.3
			•				12.1

Liquid	T O _V r	Expe	er. D*	Exper	. <b>V</b>	Calculate	d D* @
	<u>л</u>	cm ² /sec.	Ref.	cm ³ /gmole	Ref.	$\mathrm{cm}^2/\mathrm{sec}$ .	% error
t-Butanol	308.2	0.497	152	96.15	196	0.75	52.0
	318.2	0.744	152	97.53	196	0.87	17.2
	328.2	1.070	152	98.98	196	1.01	-5.8
Organic halids	_						25.0
Methyl iodide	294.2	2.50	106	62.35	196	2.32	-7.1
Meenyr Iourae	270.2	1.86	106	60.57	196	1.71	-8.2
	210.2	1.00	100	00.01	190	1.11	7.6
				•			
Chloroform	200	0.50	43	71.84	196	0.43	-13.4
	298.2	2.58	43	80.69	43	1.58	-38.7
· · · ·	298.2	2.44	43	80.69	43	1.58	- <u>35.2</u>
							29.1
Carbon-tetra-							
chloride	293.2	1.18	43	96.51	43	1,36	15.3
	298.2	1.32	43	97.12	43	1.455	10.3
	298.2	1.41	129	97.12	43	1.455 /	6.3
	308.2	1.75	129	98.31	196	1.65	-5.6
	313.2	1.78	150	98.93	43	1.76	-1.0
	313.2	1.82	43	98.93	43	1.76	-3.3
	318.2	1.99	129	99.49	196	1.87	-6.0
	303.2	1.428	31	97.69	196	1.548	8.4
	313.2	1.683	31	98.93	43	1.76	4.6
	323.2	2.00	43	100.16	43	2.00	0.0
	323.2	1.937	31	100.16	43	2.00	3.2
	333.2	2.44	43	101.41	43	2.28	$\frac{-7.0}{-7.0}$
· •							5.9
Ethylbromide	295.7	3.80	72	74.83	196	3.16	-16.8
-	288.2	3.60	72	74.10	196	2.86	-20.6
	303.2	3.96	72	75.67	196	3.53	- <u>10.8</u>
							16.0
Ethyl iodide	292.5	2,212	43	80.688	43	2.13	-3.6
Butyl iodide	292.5	1.347	26	113.81	196	1.656	22.9
Chlorobenzene	298.0	1.80	147	102.25	196	1.47	-18.4
Bromobenzene	298.2	1.12	43	105.02	43	1.29	15.6

Liquids	Т	Exper.	D*	Exper.	V	Calculate	d D*@
<u> </u>	°K ·	$\mathrm{cm}^2/\mathrm{sec}$ .	Ref.	cm ³ /gmole	Ref.	$cm^2/sec.$	% error
Ketones							
Acetone	298.2	4.835	43	74.0	43	4.97	2.8
1	298.2	4.30	106	74.0	43	4.97	15.6
•	333.2	7.00	106	78.0	196	8.33	<u>18.9</u>
-							12.4
Ethers		•					
Diethyl ether	287.4	6,30	106	102.88	196	5.27	-16.3
Drouge outer	266.9	5.20	106	99.78	196	3.87	-25.5
·. ·	239.7	3.3	106	95.78	196	2.54	-23.0
•							21.6
p-dioxan	307.2	1.49	43	86.37	43	1.60	7.8
-							
1,1,Diethoxy-				107 0			
methane	294.7	3.20	106	125.8	196	4.0	25.0
	261.0	2.10	106	120.0	196		21.9
	333.4	0.0	100	104.14	130	0.00	<b>24.</b> 0
1,2, Dimethoxy.	-			•			
ethane	292.9	3.0	106	104.40	216	3.58	19.2
<u>Acids</u>							
Acetic acid	290.2	0.89	106	57.07	196	0.98	10.7
	303.2	1.27	106	67.78	196	1.13	-10.8
. ·	323.2	1.83	106	59.02	196	1.42	-22.3
	357.2	3.00	106	61.35	196	2.12	-29.3
							18.3
Miscellaneous							
Tetrahvdro-		ŕ			•		
furan	293.2	3.0	106	81.22	216	2.62	-12.8
			% Ave	rage deviation	1	-	11.8%

@ Calculated from eq. (3-3.4) by using the values of [M] from Table 3-3.2

Benzene at T = 
$$328.2^{\circ}$$
K  
 $V_b = 96.5 \text{ cm}^3/\text{gmole}$  (Appendix 3-2.1)  
 $\tilde{V}(\text{at T}) = 92.87 \text{ cm}^3/\text{gmole}$  (Ref.43)  
 $\mu(\text{at T}) = 0.415 \times 10^{-2}$  poises (Ref.43)

From Eq. (3-3.6)

$$D^{*} = 0.229 \times 10^{-8} (V_{b})^{0.636} (\frac{T}{\mu\bar{\nu}})$$

$$= 0.229 \times 10^{-8} (96.5)^{0.636} 328.2 \\ 0.415 \times 10^{-2} \times 92.87$$

$$= 0.229 \times 18.288 \times 328.2 \times 10^{-6} \\ 0.415 \times 92.87$$

$$= 3.566 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$$
Experimental D* =  $3.50 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$  (ref. 43)  
% error =  $\left[\frac{D^{*} \text{ cal.} - D^{*} \text{ exp.}}{D^{*} \text{ exp.}}\right] \times 100$ 

$$= \left[\frac{3.566 - 3.50}{3.50}\right] \times 100$$

= 1.9%
Appendix 3-4.1 Sample calculation for estimating the temperature dependence

of D* from eq. (3-4.6)

Benzene:

From Appendix 3-2.1b at  $T_1 = 298.2^{\circ}K$ ;  $D_1^* = 2.22 \times 10^{-5} \text{ cm}^2/\text{sec}$ From Ref. (168)  $T_c = 562.1^{\circ}K$ To estimate  $D_2^*$  at  $T_2 = 328.2^{\circ}K$ 

From eq. (3-4.6) 
$$D_{2}^{*} = D_{1}^{*} \left[ \frac{T_{c} - T_{1}}{T_{c} - T_{2}} \right]_{B}^{n}$$

For benzene

n = 4 (from Table 3-4.5  

$$D_{2}^{*} = 2.22 \times 10^{-5} \left[ \frac{562.1 - 298.2}{562.1 - 328.2} \right]^{4}$$

$$= 2.22 \times 10^{5} \left[ \frac{263.9}{233.9} \right]^{4}$$

$$= 3.597 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$$

$$D^{*}_{2} = 3.50 \times 10^{-5} \text{ cm}^{2}/\text{sec.} \text{ (ref. 43)}$$

$$= \left[ \frac{D^{*}_{2}, \text{ cal } - D^{*}_{2}, \text{ exp.}}{D^{*}_{2}, \text{ exp.}} \right] \times 100$$

$$= \left[ \frac{3.597 - 3.50}{3.50} \right] \times 100$$

$$= 2.78\%$$

Experimental D*,

% error

Appendix 4-3.1 Sample calculation for  $\beta$ 

For the run RC4 :

From eq. (4-3.3)

$$\overline{D}_{AB} = \frac{\overline{C}_B \overline{D}_B^0 - \overline{C}_T \overline{D}_T^0}{\overline{C}_B - \overline{C}_T}$$

$$= (0.086562 \times 1.8789) - (0.0149815 \times 1.9295) \times 10^{-5} \text{ cm}^2/\text{sec}$$

$$= 1.86835 \times 10^{-5} \text{ cm}^2/\text{sec}.$$

From eq. (4-3.1)

$$(3 = \frac{1}{\overline{D}_{AB} t} \log_{10} \left( \frac{C_1 - C_2}{C_3 - C_4} \right)$$

$$= \frac{1}{(1.86835 \times 10^{-5}) (24 \times 3600)} \log_{10} \left( \frac{0.101541 - 0.0000}{0.071583 - 0.029963} \right)$$

$$= 0.2388 \text{ cm}^{-2}$$

Appendix 4-3.2 Sample calculation for 
$$\overline{D}_{AB}$$
 for acetone-  
water at 55^oC

Run No. H30

$$(3 = 0.3106 \text{ cm}^{-2} \text{ (from Fig. 4-3.4)})$$
  
V = V₁  $\approx$  V₂  $\approx$  V₃  $\approx$  V₄ = 41.8 cm³ at 55°C

$$\lambda = \frac{V_D}{V} = \frac{0.850}{41.8} = 0.02033$$
 (from Table 4-1.1)

Concentrations  $C_1$ ,  $C_2$  and  $C_4$  are derived by an analysis of test solution (density measurement)

$$\begin{array}{c} C_{1} = 57.450 \\ C_{2} = 66.700 \\ C_{4} = 64.000 \end{array} \right\} \qquad \text{in (gm acetone/100 cm}^{3} \text{ at } 55^{\circ}\text{C})$$

Concentration  $C_3$  is obtained by material balance: From eq. (4-3.7)

$$C_{3} = \frac{C_{1} + C_{2} (1+\lambda)}{1+0.5\lambda} - C_{4}$$
  
=  $\frac{(57.450) + (66.700 \times 1.02033)}{1+ (0.5 \times 0.02033)} - 64.00$   
= 60.2437 gm acetone /100 cm³ at 55°C

From eq. (4-3.1)

$$\overline{D}_{AB} = \frac{1}{(3 t)} \log \left[ \frac{C_1 - C_2}{C_3 - C_4} \right]$$
$$= \frac{1}{0.3106 \times (24 \times 3600)} \log \left( \frac{57.45 - 66.70}{60.244 - 64.00} \right)$$
$$= 1.5332 \times 10^{-5} \text{ cm}^2/\text{sec.}$$

Appendix 4-4.1

Sample calculation for possible error in cell constant  $\rho$ 

For the run RC4 :  

$$C_{1} = 0.101541$$

$$C_{2} = 0.00000$$

$$C_{3} = 0.071583$$

$$C_{4} = 0.029963$$

$$\Delta C_{1} = \Delta C_{2} = \Delta C_{3} = \Delta C_{4} \approx 0.0002$$

$$\delta \Delta C_{1} = \delta \Delta C_{f} = \left[(2 \times 10^{-4})^{2} + (2 \times 10^{-4})^{2}\right]^{\frac{1}{2}} = 2.828 \times 10^{-4}$$

$$\Delta C_{1} = C_{1} - C_{2} = 0.101541$$

$$\Delta C_{f} = C_{3} - C_{4} = 0.041620$$
From eq. (4-4.2)  

$$\therefore S(3) = \frac{(4-4.2)}{\log_{10}\left(\frac{AC_{1}}{AC_{f}}\right)} \left[\left(\frac{\delta \Delta C_{1}}{\Delta C_{i}}\right)^{2} + \left(\frac{\delta \Delta C_{f}}{\Delta C_{f}}\right)^{2}\right]^{\frac{1}{2}}$$

$$= \frac{0.23887}{0.387339} \left[775.7 + 4618.3\right]^{\frac{1}{2}} \times 10^{-4}$$

$$= 0.453 \times 10^{-2}$$

$$\therefore \% \text{ error } = \frac{0.453}{0.23887} = 1.896\%$$

300

· ·

## Appendix 4-4.2

Sample calculation for possible error in  $\overline{D}_{AB}$  from the determination

of concentration by density measurement.

For the run R15 :

$$C_{1} = 67.89549$$

$$C_{2} = 72.33529$$

$$C_{3} = 68.53367$$

$$C_{4} = 71.64577$$

$$\Delta C_{1} = \Delta C_{2} = \Delta C_{3} = \Delta C_{4} = \Delta C \approx 0.005$$

$$\delta \Delta C_{1} = \delta \Delta C_{f} = \left[ (\Delta C)^{2} + (\Delta C)^{2} \right]^{\frac{1}{2}} = \left[ (5x10^{-3})^{2} + (5x10^{-3})^{2} \right]^{\frac{1}{2}}$$

$$= 0.707 \times 10^{-2}$$

5

$$\Delta C_{i} = C_{2} - C_{1} = 4.4398$$
$$\Delta C_{f} = C_{3} - C_{4} = 3.1210$$

From eq. (4-4.1)

$$\therefore \quad \delta D_{AB} = \frac{D_{AB}}{\log_{10} \binom{\Delta C_{i}}{\Delta C_{f}}} \left[ \left( \frac{\delta \Delta C_{i}}{\Delta C_{i}} \right)^{2} + \left( \frac{\delta \Delta C_{f}}{\Delta C_{f}} \right)^{2} \right]^{\frac{1}{2}}$$

$$= \frac{0.7433}{0.15308} \left[ 0.02535 + 0.05131 \right]^{\frac{1}{2}} \times 10^{-2}$$

$$= 1.3437 \times 10^{-2}$$

$$\therefore \quad \% \text{ error} = \frac{1.3437}{0.7433} = 1.80775 \ \%$$

Appendix 4-4.3 Sample calculation of  $\overline{D}_{AB}$  for

ethanol-water system at 85°C

Run No. R5

$$(\beta = 0.2340 \text{ cm}^{-2} \text{ (from Fig. 4-3.3 )})$$
  
 $V = V_1 \approx V_2 \approx V_3 \approx V_4 = 46.2 \text{ cm}^3 \text{ at } 85^{\circ}\text{C}$   
 $\lambda = \frac{V_D}{V} = \frac{1.10}{46.2} = 0.0238 \text{ (from Table 4-1.1)}$ 

(1)

Concentrations  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$  are derived by an analysis of test solution (density measurement).

$$\begin{array}{cccc}
C_{1} = 0.000 \\
C_{2} = 11.850 \\
C_{3} = 4.640 \\
C_{4} = 7.300
\end{array}$$
in (gm ethanol/100cm³ at 85°C)

From eq. (4-3.1)

$${}^{(\overline{D}}AB'_{1} = \frac{1}{\beta t} \qquad \log_{10} \left( \frac{C1 - C_{2}}{C_{3} - C_{4}} \right)$$

$$= \frac{1}{0.234 \times (24 \times 3600)} \qquad \log_{10} \left( \frac{0.000 - 11.850}{4.64 - 7.300} \right)$$

$$= 3.2093 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$$

Concentration  $C_3$  is derived by a material balance.

From eq. (4-3.7)

(2)

$$C_{3}^{*} = \frac{C_{1} + C_{2} (1+\lambda)}{1+0.5\lambda} - C_{4}$$
$$= \frac{0.00 + (11.85 \times 1.0238)}{1+(0.5 \times 0.0238)} - 7.30$$
$$= 4.68935 \quad \text{gm ethanol/100 cm}^{3} \text{ at } 85^{\circ}\text{C}$$

The same value of  $C_1$ ,  $C_2$  and  $C_4$  are used as given above

Then

$${}^{(D}AB)_{2} = \frac{1}{6!} \log_{10} \left( \frac{1 - C_{2}}{C_{3}^{*} - C_{4}} \right)$$

$$= \frac{1}{0.234 \text{ x } (24 \text{ x } 3600)} \log_{10} \left( \frac{0.000 - 11.85}{4.689 - 7.300} \right)$$

$$= 3.24959 \text{ x } 10^{-5} \text{ cm}^{2} \text{ /sec.}$$

$$\% \text{error} = \frac{\left(\bar{\mathbf{D}}_{AB}\right)_{1} - \left(\bar{\mathbf{D}}_{AB}\right)_{2}}{\left(\bar{\mathbf{D}}_{AB}\right)_{2}} \times 100$$

 $= \underline{3.2093 - 3.2496}_{3.2496} \times 100$ 

= -1.24%

Appendix 7-3.1 Sample calculation of D_{AB} using eq. (3-1.21).

For ethanol water system for the concentration of 0.1 mole fr. at 25°C

Component	$D* \times 10^5$ cm ² /sec	${\substack{\mathrm{D}^{0}_{ij}}\mathrm{x10}^{5}}\\mathrm{cm}^{2}/\mathrm{sec}}$	∇ _i cm ³ /gmole	∆Ĥi cal/gmole	∆Ĥi-x cal/gmole	$\mu_i \ge 10^2$ poises
Ethanol A	1.050	1.220	58.68	10010.0	5500	1.080
Water B	2.236	1.240	18.054 *	10484.5	5250	0.895

Values of pure component properties at 25°C

From eq. (3-1.28)

$$\Delta G_{\mu,A} = \frac{\Delta H_A^{-RT}}{2.45} = \frac{10010 - (1.9872 \times 298.2)}{2.45} = 3844 \text{ cal/gmole}$$

From eq. (3-1.29)

$$\Delta G_{\mu,B} = \frac{\Delta \bar{H}_B - RT}{2.45} = \frac{10484.5 - (1.9872x298.2)}{2.45} = 4038 \text{ cal/gmole}$$

At 
$$x_A = 0.1$$
,  $\mu_{AB} = 1.88 \times 10^{-2}$  poises

From eq. (3-1.30)

$$\Delta G_{m} = RT \left[ \ln \mu_{AB} - (x_{A} \ln \mu_{A} + x_{B} \ln \mu_{B}) \right]$$
  
= (1.9872x298.2) [ln (0.0188)-(0.1 ln(0.0108)-0.9ln(0.00895))]  
= 428.623 cala  
gmole

From eq. (3-1.27)

$$\Delta G_{\mu,AB} = x_A \Delta G_{\mu,A} + x_B \Delta G_{\mu,B} + \Delta G_m$$
  
= (0.1) (3844) + (0.9) (4038) + 428.623  
= 4447.22 cal

From eq. (3-1.41)

$$\Delta G_{D^*,A}^{j} = \frac{1}{2} \Delta G_{\mu,A} = 1922 \quad \frac{\text{cal}}{\text{gmole}}$$

and

$$\Delta G^{j}_{D^{*},B} = \frac{1}{2} \Delta G_{\mu^{*},B} = 2019 \frac{\text{cal}}{\text{gmole}}$$

From eq. (3-1.43)

$$\Delta G_{\mu},_{A-H} = \left(\frac{\Delta \tilde{H}_{A-H}}{\Delta \tilde{H}_{A}}\right) \Delta G_{\mu,A}$$

 $=\frac{5500}{10010}$  x 3844 = 2110.4 <u>cal</u> gmole

and

$$\Delta G_{\mu,B-H} = \left( \frac{\Delta \tilde{H}_{B-H}}{\Delta \tilde{H}_{B}} \right) \Delta G_{\mu,B}$$

 $= \frac{5250}{10484.5} \times 4038 = 2019 \underline{\text{cal}}_{\text{gmole}}$ 

From eq. (3-1.42)

$$\Delta G_{D^*,A-H}^{j} = \frac{1}{2} \Delta G_{\mu,A-H} = 1055.2 \underline{gal}_{gmole}$$

$$\Delta G^{j}_{D^{*},B-H} = \frac{1}{2} \Delta G_{\mu,B-H} = 1009.5 \frac{\text{cal}}{\text{gmole}}$$

From eq. (3-1.39)

$$\Delta G^{j}_{D^{*},A-I} = \Delta G^{j}_{D^{*},A} - \Delta G^{j}_{D^{*},A-H}$$
$$= 1922 - 1055.2 = 866.8 \quad \frac{cal}{gmole}$$

and

$$\Delta G^{j}_{D^{*},B^{-}I} = \Delta G^{j}_{D^{*},B} - \Delta G^{j}_{D^{*},B^{-}H}$$

= 2019 - 1009.5 = 1009.5 <u>cal</u> gmole

From equations (3-1.37), (3-1.35) and (3-1.36)  $\frac{1}{1}$ 

$$\hat{\mathcal{O}}_{A} = \frac{2 \ \bar{V}_{A}^{3}}{\bar{V}_{A}^{\frac{1}{3}} + \bar{V}_{B}^{\frac{1}{3}}} = \frac{2(58.68)^{\frac{1}{3}}}{(58.68)^{\frac{1}{3}} + (18.054)^{\frac{1}{3}}} = 1.194$$

and

$$\delta_{\rm B} = \frac{2^{\bar{\rm V}_{\rm B}^{\frac{1}{3}}}}{\bar{\rm V}_{\rm A}^{\frac{1}{3}} + \bar{\rm V}_{\rm B}^{\frac{1}{3}}} = \frac{2(18.054)^{\frac{1}{3}}}{(58.68)^{\frac{1}{3}} + (18.054)^{\frac{1}{3}}} = 0.805$$

From eq. (3-1.34)  

$$\Delta G^{j}_{D,AB-H} = \begin{bmatrix} x_{A} \sqrt{s_{A}} \Delta G^{j}_{D^{*},A-H} + x_{B} \sqrt{s_{B}} \Delta G^{j}_{D^{*},B-H} \end{bmatrix}^{2}$$

$$= \begin{bmatrix} 0.1 \sqrt{(1.194 \times 1055.2)} + 0.9 \sqrt{(0.805 \times 1009.5)} \end{bmatrix}^{2}$$

$$= 853.3 \underline{cal}_{gmole}$$

From eq. (3-1.38)  

$$\Delta G^{j}_{D,AB-I} = \left[ x_{A} \sqrt[7]{\left(\frac{1}{\delta_{A}}\right)} \Delta G^{j}_{D^{*},A-I} + x_{B} \sqrt{\left(\frac{1}{\delta_{B}}\right)} \Delta G^{j}_{D^{*},B-I} \right]^{2}$$

$$= \left[ 0.1 \sqrt[7]{\left(\frac{1}{1.194}\right)^{2} \times 866.8} + 0.9 \sqrt{\left(\frac{1}{0.805}\right)^{2} \times 1009.5} \right]^{2}$$

$$= 1443.97 \frac{cal}{gmole}$$

From eq. (3-1.31)

$$\Delta G^{j}_{D,AB} = \Delta G^{j}_{D,AB-H} + \Delta G^{j}_{D,AB-I}$$
$$= 853.3 + 1443.97$$
$$= 2297.27 \quad \underline{cal}_{gmole}$$

From eq. (3-1.47a)

$$\Delta G_{D}^{j} \circ_{,BA} = S_{A} \Delta G_{D^{*},A-H}^{j} + \left(\frac{1}{S_{A}}\right)^{2} \Delta G_{D^{*},A-I}^{j}$$
  
= (1.194 x 1022.5) + (1)/(1.194) x 866.8

= 1828.87 <u>cal</u> gmole

From eq. (3-1.46a)  

$$f_{A} = \frac{1}{\Delta G_{D^{o}, BA}^{j}} \begin{bmatrix} \frac{1}{2} \Delta G_{\mu, A} - RT \ln \left( \frac{D^{o}}{BA} \right) \\ \frac{1}{2} \Delta G_{\mu, A} - RT \ln \left( \frac{D^{o}}{BA} \right) \end{bmatrix}$$

and

$$= \frac{1}{1828.87} \left[ 1922 - 1.9872 \times 298.2 \ln \left( \frac{1.22}{1.05} \right) \right]$$

= 1.0023

From eq. (3-1.47b)

$$\Delta G_{D}^{j} \circ_{AB} = S_{B} \Delta G_{D^{*}, B-H}^{j} + \left(\frac{1}{\delta_{B}}\right)^{2} \Delta G_{D^{*}, B-H}^{j}$$

$$= (0.805 \times 1009.5) + \left(\frac{1}{0.805}\right)^{2} \times 1009.5$$

$$= 2370.46 \underline{cal}_{gmole}$$

From eq. (3-1.46b)  

$$f_{B} = \frac{1}{\Delta G_{D}^{J} o} \begin{bmatrix} \frac{1}{2} & G_{\mu}, B - RT \ln \left( \frac{D_{AB}^{o}}{D^{*}B} \right) \end{bmatrix}$$

$$= \frac{1}{2370.46} \begin{bmatrix} 2019 - 1.9872 \times 298.2 \ln \left( \frac{1.24}{2.236} \right) \end{bmatrix}$$

$$= 0.99911$$

From eq. (3-1.44) for 
$$x_A = 0.1$$
  
 $f_{AB} = (f_A)^{XA} (f_B)^{XB}$   
 $= (1.0023)^{0.1} (0.99911)^{0.9}$   
 $= 0.99943$ 

From eq. (3-1.26a)

$$\Delta G_{\mu,AB} - \Delta G_{D,AB} = \frac{1}{2} \Delta G_{\mu,AB} - f_{AB} \Delta G_{D,AB}^{j}$$
$$= (\frac{1}{2} \times 4447.22) - (0.99943 \times 2297.27)$$
$$= -72.35$$

From eq. (3-1.21)  

$$D_{AB} = \left(D_{A}^{*} \mu_{A}^{*}\right) \left(D_{B}^{*} \mu_{B}^{*}\right)^{X_{B}} \frac{\alpha_{A}}{\mu_{AB}} \exp\left(\frac{\Delta G_{\mu,AB} - \Delta G_{D,AB}}{RT}\right)$$

$$= (1.08 \times 0.0108)^{0.1} (2.236 \times 0.00895)^{0.9} \left(\frac{0.76}{0.0188}\right) \exp\left(\frac{-72.35}{1.9872 \times 298.2}\right)$$

$$= 0.6784 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$$

Experimental  $D_{AB} = 0.67 \times 10^{-5} \text{ cm}^2/\text{sec.}$ 

$$\% \text{ error} = \frac{D_{AB, cal} - D_{AB, exp.}}{D_{AB, exp}} \times 100$$
$$= \frac{0.678 - 0.67}{0.67} \times 100$$
$$= 1.3\%$$

Appendix 7-3.2 Sample calculation of D _{AB} using eq. (3-2.4)  
For ethanol (A) - water (B) system at 100^oC  

$$V_A = 62.5 \text{ cm}^3/\text{gmole}$$
  
 $V_B = 18.7 \text{ cm}^3/\text{gmole}$  from Appendix (3-2.1)  
 $[P_A] = 128.8$   
 $[P_B] = 52.0$   
 $\mu_B = 0.288 \text{ centipoises}$   
 $T = 373.2^{\circ}K$ 

From eq. (3-2.4)

$$D^{O}_{AB} = 8.93 \times 10^{-8} \frac{\sqrt[4]{A}}{\sqrt[3]{B}} \begin{bmatrix} P_{B} \\ P_{A} \end{bmatrix}^{0.6} \frac{T}{\mu_{B}}$$

$$= 8.93 \times 10^{-8} \frac{(62.5)^{\frac{1}{2}}}{(18.7)^{\frac{3}{2}}} \left(\frac{52}{128.8}\right)^{0.6} \times \frac{373.2}{0.288}$$

$$= \frac{8.93 \times 1.992 \times 0.58029 \times 373.2}{2.65425 \times 0.288} \times 10^{-8}$$

$$= 5.00 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$$
Experimental  $D^{O}_{AB} = 4.32 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$ 

$$\% \text{ error} = \begin{bmatrix} D^{O}_{AB, \text{ cal}} - D^{O}_{AB, \text{ exp}} \\ D_{AB, \text{ exp}} \end{bmatrix} \times 100$$

$$= \frac{5.00 - 4.32}{4.32} \times 100$$

= +15.7%

Appendix 7-3.3 Sample calculation for estimating the temperature dependence

$$\frac{\text{of } D^{O}}{AB} \xrightarrow{\text{using eq. (3-4.7)}}$$

Ethanol (A) - Water (B) system :

 $T_1 =$ 

At

$$D^{0}_{AB} = 1.25 \times 10^{-5} \text{ cm}^{2}/\text{sec}$$

from ref. (168)  $T_c$  (of water) = 647°K

To estimate  $D^{O}_{AB}$  at  $T_{2} = 346.2^{O}K$ 

From eq. (3-4.7)  $(D^{o}_{AB})_{2} = (D^{o}_{AB})_{1} \left[ \frac{T_{c} - T_{1}}{T_{c} - T_{2}} \right]_{B}^{n}$ 

For solvent water, n = 6 (from Table 3-4.2)  $D^{O}_{AB}_{2} = 1.25 \times 10^{-15} \left(\frac{647 - 298.2}{647 - .346.2}\right)^{6}$   $= 3.04 \times 10^{-5} \text{ cm}^{2}/\text{sec.}$ Experimental  $D^{O}_{AB}$  at 346.2°K = 2.95 x 10⁻⁵ cm²/\text{sec.}  $\% \text{ error} = \frac{3.04 - 2.95}{-2.95} \times 100$ 

= +3.1%

### NOMENCLATURE

#### NOMENCLATURE

Α

- = surface area defined in eq. (3-1.2) or effective mass transfer area of the diaphragm in eq. (4-3.2), cm².
- $C_1, C_3$  = initial and final concentrations of bottom compartment respectively, gm/100cm³ at T^oC (or gmole/liter at 25^oC for KCl - H₂O solution).
- $C_2, C_4$  = initial and final concentrations of top compartment: respectively, gm/100cm³ at T^oC (or gmole/liter at 25^oC for KCl-H₂O solution).  $C_A$  = concentration of solute A, gm solute/100cm³ at T^oC.
- $C_A$  = concentration of solute A, gm solute/100cm³ at T⁶C.  $C_B, C_T$  = concentrations of the bottom and the top compartments, respectively,

 $C_{D}^{o}, C_{D}^{o}$  = initial and final concentrations of liquid in the diaphragm as defined in Fig. 4-3.13.

$$c^{11} = (c_1 + c_3) / 2.$$

$$c^{11} = (c_1 + c_3) / 2.$$

 $D^*, D^*_A, D^*_B$  = self-diffusion coefficients of pure components,  $cm^2/sec$ .

- $D_{AB}$  = differential diffusion coefficient,  $cm^2/sec$ .
- $\overline{D}_{AB}$  = integral diffusion coefficient, cm²/sec.
- $\bar{D}_{CB}$  = integral diffusion coefficient of a run of vanishingly short duration with initial concentrations  $C_B$  and zero on the two sides of the diaphragm , cm²/sec.
- $\overline{D}_{CT}$

_1

= integral diffusion coefficient of a run of vanishingly short duration with initial concentrations  $C_T$  and zero on the two sides of the diaphragm, cm²/sec.

 $D^{o}_{AB}, D^{o}_{BA} =$  limiting diffusion coefficients when  $\times_{A} \rightarrow 0$  and  $\times_{B} \rightarrow 0$ respectively, cm²/sec.

 $\Delta E, \Delta E_A, \Delta E_B^{=}$  energy of vaporisation for pure components, cal/gmole.

$$\begin{split} & \Delta E_{D}, \Delta E_{D,A} \\ & \Delta E_{D,B} \\ & \Delta E_{D,B} \\ & \Delta E_{D,B} \\ & \Delta E_{D,AB} \\ & = activation energy of diffusional flow for binary mixture at 0°K. \\ & \Delta E_{D,AB} \\ & = activation energy of viscous flow for pure components at 0°K. \\ & \Delta E_{\mu,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = activation energy of viscous and diffusional flows as defined in \\ & \Delta E_{D,AB} \\ & = bond breaking factors for pure components. \\ & f_{A}, f_{B} \\ & = bond breaking factor for binary mixture. \\ & f_{A} \\ & f_{A} \\ & = shear stress in the x-direction in eq. (3-1.4). \\ & \Delta G_{D} \Delta G_{D,A} \\ & = free energy of activation for pure components, \\ & \Delta G_{D,B} \\ & = free energy of activation for diffusional flow, cal/gmole. \\ & \Delta G_{D} \\ & \Delta G_{D} \\ & AB \\ & = free energy of activation for diffusional flows for x_{A} \longrightarrow 0 \\ & \Delta G_{D} \\ & \Delta G_{D} \\ & AB \\ & = free energy of activation for diffusional flow respectively, cal/gmole. \\ & \Delta G_{D} \\ & \Delta G_{D,AB} \\ & = contribution of free energy of activation for hole forming stage \\ & \Delta G_{D,AB} \\ & = contribution of free energy of activation for jumping in diffusional \\ & \Delta G_{D,AB} \\ & = contribution of free energy of activation for jumping in diffusional \\ & \Delta G_{D,AB} \\ & = contribution of free energy of activation for jumping in diffusional \\ & \Delta G_{D,AB-H} \\ & = contribution of free energy of activation for jumping in diffusional \\ & \Delta G_{D,A$$

^{∆Gj}D*,X

= contribution of free energy of activation for jumping in diffusional flow for pure component, cal/gmole.

 $\Delta G^{j}_{D^{*},X-H} = \text{contribution of free energy for activation for jumping in diffusional} \\ \Delta G^{j}_{D^{*},X-I} = \text{flow due to hydrogen bonding and to dispersion forces respectively} \\ \text{for pure component, cal/gmole.}$ 

 $\Delta G_m$  = excess free energy of mixing, cal/gmole.

 $\Delta G_{\mu,\chi}$  = free energy of activation for viscous flow for pure components, cal/gmole.

 $\Delta G_{\mu,AB} = \text{free energy of activation for viscous flow in binary mixtures,}$ cal/gmole.

 $\Delta G^{+}_{\mu,AB} = \text{free energy of activation for forward and backward flow in viscous}$  $\Delta G^{-}_{\mu,AB} = \text{free energy of activation for forward and backward flow in viscous}$ 

 $\Delta G^{n}_{\mu,AB}$  = contribution of free energy of activation for hole forming and for  $\Delta G^{j}_{\mu,AB}$  jumping, respectively, in viscous flow, cal/gmole.

= contribution of free energy of activation for jumping in viscous

ΔG^jμ,χ

flow for pure component, cal/gmole.

 $\Delta G^{j}_{\mu, X-H} = \text{ contribution of free energy of activation for jumping in viscous}$   $\Delta G^{j}_{\mu, X-I} = \text{ flow due to hydrogen bonding and to dispersion forces respectively,}$  cal/gmole.

 $\Delta \bar{H}_A, \Delta \bar{H}_B$  = heats of vaporisation for pure components at T^OK, cal/gmole.  $\Delta H_A, \Delta H_B$  = heats of vaporisation for pure components at normal boiling points, cal/gmole.

 $\Delta \hat{H}_x$  = heat of vaporisation of pure component at  $T^O K$ , cal/gmole.

 $\Delta \tilde{H}_{X-H}$  = heat of vaporisation of pure component due to hydrogen bonding at  $T^{O}K$ , cal/mole.

h = Plank's constant,  $6.624 \times 10^{-27}$  erg. sec.

J = mass flux in eq. 
$$(4-3.5)$$
 gm/cm²sec.

K = constant in eq. (3-2.3).

= Boltzman's constant,  $\frac{R}{N} = 1.3805 \times 10^{16} \text{ erg/molecule }^{\circ}\text{K}.$ k = effective length of the diaphragm in eq. (4-3.2), cm. 1  $\Delta L_A, \Delta L_B$  = heats of vaporisation of pure components at normal boiling points, cal/gm.  $L_A$ ,  $L_B$  = test liquids in compartment A and B respectively.  $M, M_A, M_B$  = molecular weight of pure components. [M] - = constant in eq. (3-3.4). = Avogadro's number,  $6.023 \times 10^{23}$  molecules/mole. Ν = association factor in eq. (3-2.5). n = parachors of pure components,  $gm^{\frac{1}{4}} cm^{3}/gmole$  sec  $\frac{1}{2}$ .  $[P], [P_A]$  $\mathbf{P}_{\mathbf{B}}$ Ρ = pressure. Ρ, = critial pressure. = gas law constant, 1.9872 cal/gmole  $^{\circ}$ K. R Rh = rheochor.  $\mathcal{H}, \mathcal{H}_A, \mathcal{H}_B$  = molecular radii of pure components. = temperature in  $^{\circ}$ K. Т T_c = critical temperature, ^OK. = reduced temperature (T/Tc). Tr = time.  $\vec{v}, \vec{v}_A, \vec{v}_B$  = molecular volumes of pure components at T^oK, cm³/gmole.  $V_1, V_2, V_D$  = volumes of liquid in lower compartment, upper compartment and diaphragm pores respectively in section 4.  $V_{b}, V_{A}, V_{B}$  = molecular volumes of pure components at normal boiling points,  $cm^3/gmole.$  $V_c, V_{Ac}, V_{Bc}^{=}$  critical volume of pure components, cm³/gmole.

= free volume,  $cm^3/gmole$ . V_f ×_A, ×_B = mole fraction of A and B respectively. Z = number of all nearest neighbours. WA = weight fraction of Α Greek Letters

ફ

0

 $\mathcal{E}_{1}, \mathcal{E}_{A}, \mathcal{E}_{B}$ 

 $\lambda = \left( \frac{v_{D}}{v_{1}} \right)$ 

క్_A, క_B = dimension-less intermolecular distances defined by equations

= density, 
$$gm/cm^3$$
.

= viscosity of pure components, poises;(centipoises in eq.3-2.4)  $\mu, \mu_A, \mu_B$  $\mu_{\! AB}$ = viscosity of binary mixture, poises.

= number of nearest neighbours in one plane

= ratio of volume of diaphragm pores to one of the compartments of diaphragm cell (of section 4).

 $\lambda_1,\lambda_2,\lambda_3$ = distances between liquid molecules.

 $\lambda_{\mathbf{p}}, \lambda_{\mu}$ = distances between successive equilibrium positions for diffusional flow and for viscous flow respectively.

= activity coefficient.

$$\tilde{D}_A$$
,  $\tilde{O}_A$  = friction coefficients in eq. (2-4.5).

= surface tension at 
$$T^{O}K$$
, dymes/cm.

ד, ד

б

= frequencies of forward and backward motion of a molecule.

$$\left(\frac{\lambda_1}{\xi, \lambda_2 \lambda_3}\right)$$
 = length parameter.

= Lennard-Jones Parameters, erg/molecule and A⁰, respectively in eq. (3-2.1).

# Superscripts

0		= infinite dilution of one compartment in mixture.
*		= self-diffusion.
h		= hole forming.
j	U U	= jumping.
+		= forward.
-	-	= backward.

#### Subscripts

Α	= pure component A.	
в	= pure component B.	
b	= normal boiling point.	
AB	= binary mixture of A and B.	
C	= critical.	
D	= diffusion.	
н	= hydrogen bonding.	
I	= dispersion.	
1 .	= liquid.	
m	= melting point.	
x	= general statement indicating either A or B.	
v	- = vapour.	
μ	= viscosity.	
1, 2	= indicate temperature level in equations $(2-5.1)$ , and $(3-4.6)$	,
	and (3-4.7).	
1, 2, 3	= three dimensional indicators in $\lambda_1$ , $\lambda_2$ and $\lambda_3$ .	

#### REFERENCES

#### REFERENCES

1	ADAM, G., and GIBBS, J.H., J. Chem. Phys., <u>43</u> , 136 (1965)
2	ADAMSON, A.W., and IRANI, R.R., J. Chem. Phys., 55, 102 (1958)
3	AKGERMAN, A., and GAINER, J.L., I & EC Fundamentals, <u>11</u> , 373 (1972); J.Chem. Eng. Data, <u>17</u> , 372, (1972)
4	AMOURDAM, M.J., and LADDHA, G.S., J. Chem. Eng. Data, <u>12</u> , 389 (1967)
5	ANDERSON, D.K., and BABB, A.L., J. Phys. Chem. <u>65</u> , 1281 (1961); <u>66</u> , 899 (1962)
6	ANDERSON, D.K., HALL, J.R., and BABB, A.L., J. Phys. Chem., <u>62</u> , 404 (1958)
7	ANDREEV, G.A., Russian J. Phys. Chem., <u>39</u> , 1381 (1965)
8.	ARNOLD, J.H., J.Amer.Chem.Soc. <u>52</u> , 3937 (1930)
9.	ASCARELLI, P., and PASKIN, A., Phys. Rev., <u>165</u> , 222 (1968)
10	BARKER, J.A., "Lattice Theories of the Liquid State," Pergamon Press, London, 1963.
11	BARTON, A.F.M., and SPEEDY, R.J., High Temp. High Pressures, <u>2</u> , 587 (1970)
12	BEARE, W.G., McVICKAR, G.A., and FERGUSON, J.B., J. Phys. Chem., <u>34</u> , 1310 (1930)
13	BEARMAN, R.J., J. Phys. Chem., <u>65</u> , 1961 (1961)
14.	BENSON, S.W., J. Phys. & Colloid Chem., <u>52</u> , 1060 (1948)
15	BIDLACK, D.L., and ANDERSON, D.K., J. Phys. Chem., <u>68</u> , 206, 3790 (1964)
16	BIDLACK, D.L., KETT, T.K., KELLY, C.M., and ANDERSON, D.K., J.Chem. Eng. Data, <u>14</u> , 342 (1969)
17	BIDSTRUP, D.E., and GEANKOPLIS, C.J., J. Chem. Eng. Data, 8, 170 (1963)
18	BONDI, A., and SIMKIN, D.J., AIChE J. <u>3</u> , 473 (1957)
19	BONOLI, L., and WITHERSPOON, P.A., J. Phys. Chem., <u>72</u> , 2532 (1968); I&EC Fundamentals, <u>8</u> , 589 (1969)
20	BRETSZNAJDER, S., "Prediction of Transport and Other Physical Properties of Fluids," Pergamon Pr., Oxford, 1971

- 21 BYER, C.H., and KING, C.J., J. Phys. Chem., 70, 2499 (1966)
- 22 CALDWELL, C.S., and BABB, A.L., J. Phys. Chem., <u>60</u>, 14, 51, 56 (1956); <u>59</u>, 1113 (1955)
- 23 CALDWELL, C.S., HALL, J.R., and BABB, A.L., Rev. Sci. Instrum., 28, 816 (1957)
- 24 CALUS, W.F., and TYN, M.T., J. Phys. E: Sci. Instrum., 7, 561 (1974)
- 25 CALUS, W.F., and TYN, M.T., J. Chem. Eng. Data, <u>18</u>, 377 (1973)
- 26 CARMAN, P.C., and STEIN, L.H., Trans. Faraday Soc., <u>52</u>, 619 (1956)
- 27 CHANG, P., and WILKE, C.R., J. Phys. Chem., <u>59</u>, 592 (1955)
- 28 COHEN, M.H., and TURNBULL, D., J.Chem. Phys., <u>31</u>, 1164 (1959)
- 29 COLLINGS, A.F., and AIChE J., <u>19</u>, 163 (1973)
- 30 COLLINGS, A.F., HALL, D.C., McCOOL, M.A., and WOOLF, L.A., J. Phys. E:Sci. Instrum., <u>4</u>, 1019 (1971)
- 31 COLLINGS, A.F., and MILLS, R., Trans. Faraday Soc., <u>66</u>, 2761 (1970)
- 32 COLLINS, F.C., and RAFFEL, H., J.Chem. Phys., 23, 1454 (1955)
- 33 COULSON, J.M., and RICHARDSON, J.F., "Chemical Engineering", Vol.I, Pergamon Pr., London, 1959
- 34 CRAM, R.R., and ANDERSON, A.W., J. Phys. Chem., 64, 199 (1960)
- 35 CUDDEBACK, R.B., KOELLER, R.C., and DRICKAMER, H.G., J.Chem. Phys., <u>21</u>, 589, 597 (1953)
- 36 CULLINAN, H.T., I & EC Fundamentals, <u>5</u>, 281 (1966); <u>7</u>, 519 (1968)
- 37 DARKEN, L.S., Trans. Amer. Inst. Mining, Met. Eng., <u>175</u>, 184 (1948)
- 38 DASS, N., and VARSHNEYA, N.C., J. Phys. Soc. Japan, <u>26</u>, 873 (1969)
- 39 DEWAN, R.K., and van HOLDE, K.E., J. Chem. Phys., <u>39</u>, 1820 (1963)
- 40 DOANE, E.P., and DRICKAMER, H.G., J.Chem. Phys., <u>21</u>, 1359 (1953)
- 41 DOUGLASS, D.C., and McCALL, D.W., J.Phys.Chem., <u>62</u>, 1102 (1958); J.Chem.Phys., <u>31</u>, 569 (1959)

42 DREISBACH, R., "Physical Properties of Chemical Compounds", Vol. 1-III, Amer.Chem.Soc., Washington, 1961 **REFERENCES** (contd.)

- 43 DULLIEN, F.A.L., AIChE J., <u>18</u>, 62 (1972)
- 44 DULLIEN, F.A.L., Trans. Faraday Soc., <u>59</u>, 856 (1963)
- 45 DULLIEN, F.A.L., and SHEMILT, L.W., Can.J.Chem.Eng., <u>39</u>, 242 (1961)
- 46 DUMAS, D., FJELD, B., GRJOTHEIM, K., and ØYE, H.A., Acta Chem. Scand., <u>27</u>, 319 (1973)
- 47 D'YAKONOV, S.G., Teplofiz. Svoistva Gazov., Mater. Vses. Teplofiz. Konf. Svoistvam Veshchest Vys. Temp., 3rd 190-2 (1968) (Pub-1970) (In Russian), Ed. by Vargaftik, N.B., Moscow, USSR (taken from Chemical Abstract <u>75</u>, 10301 (1971))
- 48 DYMOND, J. H., J. Chem. Phys., <u>60</u>, 969 (1974)
- 49 EINSTEIN, A., Ann. Phys., Lpz., <u>17</u>, 549 (1905); <u>19</u>, 371 (1906); Z. Elektrochem., <u>14</u>, 235 (1908)
- 50 ERTL, H., and DULLIEN, F.A.L., AIChE J., <u>19</u>, 1215 (1973)
- 51 ERTL, H., GHAI, R.K., and DULLIEN, F.A.L., AIChE J., <u>20</u>, 1 (1974)
- 52 EYRING, H., J. Chem. Phys., <u>4</u>, 283 (1936)
- 53 EYRING, H., and JHON, M.S., "Significant Liquid Structures", John Wiley & Sons, New York, 1969
- 54 EYRING, H., and REE, T., Proc. Natl. Acad. Sci. (U.S.), <u>47</u>, 526 (1961)
- 55 FELL, C.J.D., and HUTCHISON, H.P., I&EC Fundamentals, 10, 303 (1971)
- 56 FISHMAN, E., J. Phys. Chem., <u>59</u>, 469 (1955); <u>63</u>, 1217 (1959)
- 57 FRENKEL, J., "Kinetic Theory of Liquids", Dover Pub., Inc., New York, 1955
- 58 FRIEND, J.N., Nature, 432 (1943)
- 59 FRIEND, J.N. and HARGREAVE, W.D., Phil, Mag., <u>34</u>, 815 (1943); <u>35</u>, 57, 619 (1944); <u>37</u>, 124, 204 (1946)
- 60 GAINER, J.L., and METZNER, A.B., AIChE-I. Chem. E.Symp. Ser. No. 6, Transport Phenomena, pp74-82, Inst. of Chem. Engrs., London (1965)
- 61 GAINER, J.L., I&EC Fundamentals, <u>9</u>, 381 (1970); <u>5</u>, 436 (1966)
- 62 GALLANT, R.W., "Physical Properties of Hydrocarbons", Vol. I-II, Gulf Pub. Co., Houston, Texas, 1968 and 1970

#### <u>REFERENCES</u> (contd.)

63	GAMBILL, W.R., Chem. Eng., <u>June 30</u> , 113 (1958)
64	GARNER, F.H., and MERCHANT, P.J.M., Trans. Inst. Chem. Eng., <u>39</u> , 397 (1961)
65	GARRY-BOBO, C.M., and WEBER, H.W., J. Phys. Chem., <u>73</u> , 1155 (1969)
66	GEDDES, A.L., and PONTIUS, R.B., "Physical Methods of Organic Chemistry", Editor: WEISSBERGER, A., Vol. I, Part (2), Interscience Pub., Inc., New York, 1960 pp895
67	GHAI, R.K., ERTL, H., and DULLIEN, F.A.L., AIChE J., <u>19</u> , 881 (1973)
68	GIERER, A., and WIRTZ, K., Z. Naturforch., 89, 532 (1953)
69	GLASSTONE, S., LAIDLER, K.J., and EYRING, H., "The Theory of Rate Processes", McGraw-Hill Book Co., New York, 1941
70	GORDON, A.R., Ann. N.Y. Acad. Sci., <u>46</u> , 285 (1945); J.Chem.Phys., <u>5</u> , 522, (1937)
71 ,	GRAHAM, T., Phil. Trans. Roy. Soc., London, <u>144</u> , 177 (1854)
72	GRAUPNER, K., and WINTER, E.R.S., J. Chem. Soc. (London) 1, 1145 (1952)
73	GUGGENHEIM, E.A., "Thermodynamics", 3rd Ed., North-Holland Pub. Co., Amsterdam, Netherlands, 1957
74	HALA, E., WICHTERLE, I., POLAK, J., and BOUBLIK, T., "Vapour Liquid Equilibrium Data at Normal Pressures", Pergamon Pr., London, 1968
75	HALUSKA, J.L., and COLVER, C.P., I&EC Fundamentals, <u>10</u> , 611 (1971); AIChE J., <u>16</u> , 691 (1970)
76	HAMMOND, B.R., and STOKES, R.H., Trans. Faraday Soc., 49, 890 (1953)
77	HARDT, A.P., ANDERSON, D.K., RATHBUN, R., MAR, B.W., and BABB, A.L., J. Phys. Chem., <u>63</u> , 2059 (1959)
78	HARTLY, G.S., and CRANK, J., Trans. Faraday Soc., <u>45</u> , 801 (1949)
79	HARTLY, G.S., and RUNNICLES, D.F., Proc.Roy. So. (London) <u>169A</u> , 401 (1938)
80	HASHITANI, T., and TAMAMUSHI, R., Trans. Faraday Soc., 63, 369 (1967)

**<u>REFERENCES</u>** (contd.)

81	HAYDUK, W., and CHENG, S.C., Chem. Eng. Sci., <u>26</u> , 635, (1971)
81a	HAYDUK, W., and BUCKLEY, W.D., Chem. Eng. Sci., <u>27</u> , 1997 (1972)
82	HAYDUK, W., CASTANEDA, R., BROMFIELD, H., and PERRAS, RR., AIChE J., <u>19</u> , 859 (1973)
83	HENRION, P., Trans. Faraday Soc., <u>60</u> , 72 (1964)
84	HERZOG, R.D., Z. Phys. Chem., <u>59</u> , 149 (1930)
85	HIMMELBLAU, D. M., Chem. Revs., <u>64</u> , 527 (1964)
86	HIRANUMA, M., Kagaku Kogaku, <u>35</u> , 997 (1971) (11 Japanese) (taken from Chemical Abstract, <u>76</u> , 17881e (1972))
87	HIRSCHFELDER, J.O., CURTISS, C.F., and BIRD, R.B., "Molecular Theory of Gases and Liquids", John Wiley & Sons, Inc., New York, 1954
88	HISS, T.G., and CUSSLER, E.L., AIChE J., <u>19</u> , 698 (1973)
89	HOLMES, J.T., Rev. Sci. Instrum., <u>36</u> , 831 (1965)
90`	HORROCKS, J.K., and McLAUGHLIN, E., Trans. Faraday Soc., <u>58</u> , 1357 (1962)
91	HOUGHTON, G., J. Chem. Phys., <u>40</u> , 1628 (1964)
92	HOWARD, K.S., and McALLISTER, R.A., AIChE J., 4, 362 (1958)
93	HUGHEL, T.J. (Editor), "Liquids: Structure, Properties, Solid Interactions", (Proceeding of the Symposium) Elsevier Pub.Co., New York, 1965
94	IBRAHIM, S.H., and KULOOR, N.R., British Chem. Eng., <u>5</u> , 795 (1960); <u>6</u> , 781, 862 (1961); <u>7</u> , 106 (1962)
95	INNES, K.K., and ALBRIGHT, L.F., I&EC, <u>49</u> , 1793 (1957)
96	JOHNSON, P.A., and BABB, A.L., Chem. Revs., <u>56</u> , 391 (1956); J.Chim.Phys., <u>60</u> , 14 (1956)
97	JOHNSON, P.A., and BABB, A.L., J. Phys. Chem., <u>74</u> , 3518 (1970)
98	JONES, C.A., SCHOENBORN, E.M., and COLBURN, A.P., I&EC, <u>35</u> , 666 (1943)

99	JOST,W., "Diffusion in Solids, Liquids and Gases", Academic Pr. Inc., New York, 1969
100	KAMAL, M.R., and CANJAR, L.N., Chem. Eng., <u>December 10</u> , 159 (1962); Chem. Eng. Prog., <u>62</u> , 82 (1966); AIChE J., <u>8</u> , 329 (1962)
101	KAMAL, I., and McLAUGHLIN, E., Trans. Faraday Soc., 62, 1762 (1966)
102	KAYE, G.W.C., and LABY, T.H., "Tables of Physical and Chemical Constants", Longmans, London, 1966
103	KINCAID, J.E., EYRING, H., and STEARN, A.E., Chem. Revs., <u>28</u> , 357 (1941)
104	KING, C.J., HSUEH, L., and MAO, K.W., J. Chem. Eng. Data, <u>10</u> , 348 (1965)
105	KOELLER, R.C., and DRICKAMER, H.G., J. Chem. Phys., 21, 267 (1953)
106	KRUGER, G.J. and WEISS, R., Z. Naturforsch, 25a, 777 (1970)
107	KULKARNI, M.V., ALLEN, G.F., and LYONS, P.A., J. Phys. Chem., <u>69</u> , 2491 (1965)
108	LADDHA, G.S., and SMITH, J.M., Indian Chem. Eng., October, 109 (1969)
109	LeBAS, G., "The Molecular Volume of Liquid Chemical Compounds," Longmans Green & Co., New York, 1915
110	LEES, F.P., and SARRAM, P., J. Chem. Eng. Data, 16, 41 (1971)
111	LEFFLER, J., and CULLINAN, H. T., I&EC Fundamentals, 9, 84 (1970)
112	LEMONDE, H., Ann. Phys. XI, 539 (1938)
113	LEWIS, J.B., J.Appl.Chem., <u>5</u> , 228 (1955)
114	LEVITT, B.P., (Editor), "Findlay's Practical Physical Chemistry", Longmans, London, 1973, pp14
115	LI, J.C.M., and CHANG, P., J. Chem. Phys., <u>23</u> , 513 (1955)
116	LOFLIN, T., and McALUGHLIN, E., J. Phys. Chem., <u>73</u> , 186 (1969)
117	LONGSWORTH, L. G., J. Amer. Chem. Soc., <u>74</u> , 4155 (1952); <u>75</u> , 5705 (1953); J. Phys. Chem., <u>67</u> , 689 (1963); J. Colloid & Interface Sci., <u>22</u> , 3 (1966)
118	Ibid,"Amer. Inst. Phys. Handbook", 2nd ed., Editor, GRAY, D.E., McGraw-Hill, 1963, pp2-205

**REFERENCES** (contd.)

LONGUET-HIGGINS, H.C., and POPLE, J.A., J.Chem. Phys., 25, 884 (1956) 119 120 LONGUET-HIGGINS, H.C., and VALLEAU, J.P., Mol. Phys., 1, 284 (1958) 121 LUSIS, M.A., Chemical Processing & Engineering (Bombay), May, 27 (1971); January, 48 (1972); AIChE J., 20, 207 (1974) 122. Ibid, Can. J. Chem. Eng., 49, 880 (1971) 123 LUSIS, M.A., and RATCLIFF, G.A., AIChE J., 17, 1492 (1971); Can. J. Chem. Eng., 46, 385 (1968) 124 LYPKIN, M.R., DAVISON, J.A., HARVEY, W.T., and KURTZ, S.S., I&EC (Analytical Edition) 16, 55 (1944) MACEDO, P.B., and LITOVITZ, T.A., J.Chem. Phys. 42, 245 (1965) 125 126 MACKENZEE, J.D., and HILLIG, W.B., J. Phys. Chem., 28, 1259 (1958) McBAIN, J.W., and DAWSON, C.R., Proc. Roy. Soc. (London) 127 148A, 32 (1935) MCCALL, D.W., DOUGLASS, D.C., and ANDERSON, E.W., J.Chem. Phys. 128 <u>31</u>, 1555 (1959); Phys. Fluids, <u>2</u>, 87, (1959) ۲, McLAUGHLIN, E., Trans. Faraday Soc., 55, 28 (1959); Quart Revs., 129 14, 236 (1960) 130 McMANAMEY, W.J. and WOOLLEN, J.M., AIChE J., 19, 667 (1973) MERLISS, F.E., and COLVER, C.P., J. Chem. Eng. Data, 14, 149 (1969) 131 MILLER, D.G., J. Phys. Chem., 64, 1598 (1960); 70, 2639 (1966) 132 MILLS, R., J. Phys. Chem., 69, 3116 (1965); 77, 685 (1973) 133 MILLS, R., and WOOLF, L.A., "The Diaphragm Cell", The Australian 134 National University Pr., Canberra, 1968 MITCHELL, R.D., MOORE, J.W., and WELLEK, R.M., J.Chem. Eng. 135 Data, 16, 57 (1971) 136 MOUQUIN, H., and CATHCART, W.H., J.Amer. Chem. Soc., 57, 1791 (1935) 137 MULLER, C.R., and KEARNS, E.R., J. Phys. Chem., 62, 1441 (1958) NACHTRIEB, N.H., and PETIT, J., Chem. Phys. 24, 746 (1956) 138 NARSIMHAN, G., British Chem. Eng., <u>12</u>, 1239 (1967) 139

**<u>REFERENCES</u>** (contd.)

140 NELDER, J.A., and MEAD, R., The Computer J., 7, 308 (1965) 141 NIGAM, R.K., and MAHL, B.S., Indian J. Chem., 9, 1255 (1971) 142 NIR, S., and STEIN, W.D., J. Chem. Phys., 55, 1588 (1971) 143 NORTHRUP, J.H., and ANSON, M.L., J.Gen. Physiol., 12, 543 (1929) 144 OLANDER, D.R., AIChE J., 9, 207 (1963) 145 Ibid, 7, 175 (1961) OLSON, R. L., and WALTON, J.S., I&EC, 43, 703 (1951) 146 147 O'REILLY, D.E., J. Chem. Phys., 56, 2490 (1972); 55, 2155, 2876, (1971); 49, 5416 (1968) 148 OTHMER, D.F., and THAKAR, M.S., I&EC, 45, 589 (1953) 149 OTTAR, B., Acta Chem. Scand., 9, 344 (1935) 150 PANCHENKOV, G.M., et al, Dokl. Akad. Nauk. SSSR, 118, 755 (1958); Russian J. Phys. Chem., 36, 455 (1962); 43, 421, 1328 (1969); 44, 1633 (1970) 151 PARTINGTON, J.R., "An Advanced Treatise on Physical Chemistry", Vol. II "The Properties of Liquids", Longmans, Green & Co., London (4th impression), 1968 152 PARTINGTON, J.R., HUDSON, R.F., and BAGNALL, K.W., Nature, 169, 583 (1952) 153 PERRY, J.H. (Editor), "Chemical Engineers' Handbook", 4th Ed. McGraw-Hill Book Co., 1963 PETTINELLI, J. de Phys., 1, 594 (1902) (taken from reference 151) 154 POWELL, R.E., ROSEVEARE, H., and EYRING, H., I&EC, 33, 430 (1941) 155 156 PRAGER, S.J., J. Chem. Phys., 21, 1344 (1953) PRATAP, R., DORAISWAMY, L.K., Indian J. Tech., 5, 145 (1967) 157 PRATT, K.C., and WAKEHAM, W.A., Proc. Roy. Soc. London, 158 336A, 393 (1974) PRYDE, J.A., "The Liquid State", Hutchinson University Library, 159 London, 1966 PYUN, C.W., and FIXMAN, M., J. Chem. Phys., 41, 937 (1964) 160 161 QUAYLE, O.R., Chem. Revs., <u>53</u>, 439 (1953)

**REFERENCES** (contd.) 162 RAO, S.S., and BENNETT, C.O., AIChE J., 17, 75 (1971) 163 RATCLIFF, G.A., and LUSIS, M.A., I&EC Fundamentals, 10, 474 (1971) 164 RATHBUN, R.E., and BABB, A.L., I&EC (Process and Development), 5, 273 (1966); J. Phys. Chem., 65, 1072 (1961) 165 RAVDEL', A.A., and PORAI-KOSHITS, A.B., Zhur. Prikl, Khimii, <u>40</u>, 456 (1967); British Chem. Eng., 12, 1430 (1967) 166 REDDY, K.A., and DORAISWAMY, L.K., I&EC Fundamentals, 6, 77 (1967) REE, F.H., REE, T., and EYRING, H., I&EC, 50, 1036 (1958) 167 REID, R.C., and SHERWOOD, T.K., "The Properties of Gases and Liquids" · 168 McGraw-Hill Book Co., New York, 1st edition 1958; 2nd edition 1966 169 ROBINSON, R.L., EDMISTER, W.C., and DULLIEN, F.A.L., I & EC Fundamentals, 5, 74 (1966) ROBINSON, R.A., and STOKES, R.H., "Electrolyte Solutions", 2nd 170 (revised) edition, Butter Worths, London, 1959 171 Ibid, I & EC Fundamentals, 5, 74 (1966) RÖCK, H., and SCHRÖDER, Z., Physik, Chem. (Frankfurt), 11, 41 (1957) 172ROSS, M., and HILDEBRAND, J.H., J. Chem. Phys., 40, 2397 (1964) 173 SAMOHÝL, I., Coll. Chez. Chem. Commun., 36, 2411, 2568 (1971) 174 175 SANNI, S.A., and HUTCHISON, H. P., J. Phys. E: Sci. Instrum., 1, 1101 (1968) 176 SANNI, S.A., FELL, C.J.D., and HUTCHISON, H.P., J. Chem. Eng. Data, 16, 424 (1971) SHERWOOD, T.K., and PIGFORD, R.L., "Absorption and Extraction", 177 McGraw-Hill, New York, 1952, pp21 178 SCHEIBEL, E.G., I&EC, 46, 2007 (1954) 179 SCHROFF, G.H., Ph.D. Thesis, University of New Brunswick, 1968 SCHROFF, G.H., and SHEMILT, L.W., J. Chem. Eng. Data, 11, 183 (1966) 180 181 SHUCK, F.O., and TOOR, H.L., J. Phys. Chem., 67, 540 (1963) SITARAMAN, R., IBRAHIM, S.H., and KULOOR, N.R., J. Chem. Eng. 182 Data, 8, 198 (1963)

REFE	<u>RENCES</u> (contd)
183	SMITH, I.E., and STORROW, J.A., J.Appl. Chem., 2, 225 (1952)
184	STEARN, A.E., IRISH, E.M. and EYRING, H., J. Phys. Chem., <u>44</u> , 981 (1940)
185	STOKES, R. H., J. Amer. Chem. Soc., <u>72</u> , 763 (1950)
186	STOKES, R. H., DUNLOP, P.J., and HALL, J. R., Trans. Faraday Soc., <u>49</u> , 886 (1953)
187	STOKES, G.G., Mathematical and Physical Papers p.1, Vol. 3 (especially section IV p55), Cambridge University Press, London, 1903 (First published 1850)
188	SUGDEN, S., "The Parachor and Valency", G. Routledge and Sons Ltd., London, 1930; J.Chem.Soc., <u>125</u> , 1177 (1924)
189	SUTHERLAND, W., Phil, Mag., <u>9</u> , 781 (1905)
190	SWALIN, R.A., Acta Met., 7, 736 (1959)
191	TAYLOR, A.E., J. Chem. Phys., <u>4</u> , 675 (1900)
192	TAYLOR, H.S., J. Chem. Phys., <u>6</u> , 331 (1938)
193	THEISEIN, Verhl.d.D. Phys. Ges., <u>16</u> , 80 (1897) (taken from reference 151)
194	THOMAES, G., and ITTERBEEK, J. van, J. Mol. Phys., 2, 372 (1959)
195	THOMAS, K.T., and McALLISTER, R.A., AIChE J. 3, 161 (1957)
196	TIMMERMANS, J., "Physico-chemical Constants of Pure Organic Compounds", Vol. I-II, Elsevier Pub., New York, 1950
197	Ibid, "Physico-chemical Constants of Binary Systems", Vol. I and IV, Interscience Pub., New York, 1960
198	TREVOY, D.J., and DRICKAMER, D.G., J. Chem. Phys., <u>17</u> , 1117 (1949)
199	TUWINER, S.B., "Diffusion and Membrane Technology", Reihold Pub. Co., New York, 1962
200	TYN, M.T., Chem. Eng. J., L.U.T., <u>6</u> , 27 (1971)
201	TYN, M.T., and CALUS, W.F., "Diffusion Coefficients in Dilute Binary Liquid Mixtures", J.Chem.Eng. Data, (submitted for publication)
202	TYN, M.T., and CALUS, W.F., Chem. Processing, August, (1974) (accepted for publication)

REFERENCES (contd.) 203 TYN, M.T., AIChE J., 20, (1974) (accepted for publication) 204 TYRRELL, H.J.V., "Diffusion and Heat Flow in Liquids," Butterworths, London, 1961 205 UDOVENKO, V.V., and FATKULINA, L.G., Zh. Fiz. Khim., 26, 1438 (1952) (taken from reference 74) 206 VADOVIC, C.J., and COLVER, C.P., AIChE J., 18, 1264 (1972); 19, 546 (1973) 207 van der WAALS, Z.Phys.Chem., 13, 657 (1894) (taken from reference 151) van GEET, A.L., and ADAMSON, A.W., I&EC, 57, 62 (1965);  $\mathbf{208}$ J.Phys.Chem., 68, 238 (1964) VASENIN, R. M., Russian J. Phys. Chem., 43, 668 (1969) 209 210 VIGNES, A., I&EC Fundamentals, 5, 189 (1966) VITABLIANO, V., and LYONS, P.A., J.Amer. Chem.Soc., 78, 4538 (1956) 211 VOGEL, A.I., "A Text book of Quantitative Inorganic Analysis" 3rd 212 edition, Longmans, 1962, pp259 WALLS, H.A., and UPTHEGROVE, W.R., Acta Met., 12, 461 (1964) 213 214 WASHBURN, E.W., (Editor), "International Critical Tables", 1st ed., McGraw-Hill Book Co., New York, 1926 215 WATT, H., ALDER, B.J. and HILDEBRAND, J. Chem. Phys., 21, 1601 (1953); 23, 659 (1955) 216 WEAST, R.C., (Editor), "Handbook of Chemistry and Physics", 54th edition, Chem.Rubber Co., 1973-74 217 WIEDEMANN, D., Ann. Phys., 104, 70 (1858) 218 WILKE, C.R., Chem. Eng. Prog., 45, 218 (1949) 219 WILKE, C.R., and CHANG, P., AIChE, J., 1, 264 (1955) 220 WOOLF, L.A., J. Phys. Chem. 67, 273 (1963)

#### Information about the Author

Born:

6th February, 1943 (Pantanaw, Burma)

Permanent address: 5 Hnin-Ban Street, Yegyaw, Rangoon, Burma

Education:

State High School, Maubin, Burma; Rangoon Institute of Technology, Burma, B.E. (Chem.) 1966; Loughborough University of Technology, U.K., M.Sc. 1971;

Membership:

Member, American Institute of Chemical Engineers, 1973 – Licentiate, Institute of Food Science and Technology, U.K., 1971

Chemical Engineer, Foodstuffs Corporation, Burma, 1966-

Part-timeLecturer, Chemical Engineering Department, Rangoon Institute of Technology, Burma, 1971-

Publications :

(1)

(2)

(3)

(7)

"Temperature Dependence of Liquid Phase Diffusion Coefficients, Myo T. Tyn, Chem. Eng. J., L.U.T., <u>6</u>,27 (1971

("Temperature and Concentration Dependence of Liquid Phase Diffusion Coefficient, " Myo T. Tyn, M.Sc. Project Report, Loughborough University of Technology, 1971).

"Temperature and Concentration Dependence of Diffusion Coefficient in Benzene-n-Heptane Mixtures" Waclaw F. Calus and Myo T. Tyn, J. Chem. Eng. Data, <u>18</u> (4), 377 (1973).

The following papers are the results of this work :

 (4) "Three-compartment Cell for Diffusion Measurements at Boiling Points", Waclaw F. Calus and Myo T. Tyn, J. Phys. E: Sci. Instrum., 7, 561 (1974)

(5) "A simple correlation for Estimating Liquid Molal Volume at Normal Boiling Point", Myo T. Tyn and Waclaw F. Calus, Chemical Processing, August, (1974) (accepted for publication)

(6) "Self-diffusion in Liquids", Myo T. Tyn, AIChE J., <u>20</u> (1974) (accepted for publication), (Letter to the Editor).

"Diffusion Coefficient in Dilute Binary Liquid Mixtures", Myo T. Tyn, and Waclaw F. Calus, J. Chem. Eng. Data (accepted for publication).

-•