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Pace and Critical Gradient for Hill Runners:
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Abstract
Route choice through mountainous terrain requires a knowledge of how pace (the reciprocal

of speed) varies with gradient of ascent or descent. To model this variation for runners, we analyse
record times for 91 uphill and 15 downhill races or race stages. The pace is modelled as a nonlinear
function of gradient and a linear function of race duration, using ordinary least squares to obtain
a best fit. For the gradient-dependence, six functional forms are compared, of which a quartic is
found to fit the data best; however, at steep gradients the quartic model is unrealistic and it may be
argued that a linear model is more appropriate. Critical gradients, at which a runner's vertical speed
(uphill or downhill) is maximised, may be calculated from a nonlinear model, although it appears
that there is no uphill critical gradient within the range of our dataset.
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1 Introduction
The sport of orienteering requires participants to navigate between points marked
on a map, while many hill races in the United Kingdom also allow free choice of
route between checkpoints at mountain summits or other prominent locations. Thus
participants need to determine the fastest route between points, which will depend
on the runnability and slope of the intervening terrain. Runnability is the effect of
vegetation or uneven ground on running speed, and is typically classified into four
categories (indicated by different shadings) on orienteering maps. Slope principally
affects running speed through the work required for vertical displacement, although
there must also be a contribution independent of direction, given that traversing
horizontally across a steep slope is slower than running across flat ground (Arnet,
2009). Whereas the runnability shading on an orienteering map gives clear guid-
ance to competitors on the effect of vegetation on running speed, there is no direct
indication as to how their speed will depend on steepness of ascent or descent. Ide-
ally, a competitor should know his/her pace function, a formula yielding pace p as
a function of gradient m in the direction of travel. Pace is defined here as time per
unit horizontal distance (as shown on a map), and is a more convenient variable
for route choice studies than speed. In an earlier study of the route choice problem
(Kay, 2012) we proposed several pace functions, derived in a rather ad hoc manner
from various data sources including race results. The present work is a more careful
statistical study of results from hill races over a wide range of uphill and downhill
gradients, with the objective of deriving a pace function p(m) that should at least
be valid for a “typical” elite male hill runner. This information would also be useful
to prospective organisers of new hill races who might want to estimate the winning
time.

The only comparable previous analysis that we are aware of is that by Scarf
(1998, 2007). However, that author used record finishing times for British fell races,
which typically start and finish at the same location, and developed a model for
record time as a function of total distance and total ascent. [Here and throughout
this paper, “record time” or “record pace” for a hill race course refers to the fastest
finishing time or pace ever recorded on that course.] He also discussed Naismith’s
Rule, a formula which gives time as a linear function of ascent and distance (Lang-
muir, 1984), again under the assumption of finishing at the same altitude as the start.
If we make the further assumption that the pace at all downhill gradients is equal
to that on the flat, Naismith’s Rule would give pace as a function of ascent gradi-
ent, with the latter calculated as total ascent divided by total distance. However,
allowing for nonlinearity of the pace–gradient relationship and relaxing the other
assumptions, it is not possible to determine the pace for either ascent or descent
when only the finishing time of an up-and-down hill race is given.
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An alternative to examining race results is to do controlled experiments.
Townshend, Worrigham & Stewart (2010) measured speed and oxygen uptake for
eight participants running a hilly course, although the mean gradients of the uphill
and downhill sections were only 0.082. Minetti et al. (2002) measured the per-
formance of ten elite mountain runners on an inclined treadmill with gradients up
to a maximum of 0.45, both up and down, and derived the theoretical maximum
running speeds at each gradient from their physiological measurements. They com-
pared these speeds with actual speeds in small samples of uphill and downhill races
and found good agreement uphill, whereas downhill race speeds were consider-
ably slower than would be expected from physiological considerations alone. Both
Minetti et al. (2002) and Townshend, Worrigham & Stewart (2010) refer to biome-
chanical constraints on downhill running, and on steep downhill slopes there may
also be psychological constraints (concern over personal safety). Even for uphill
running, Norman (2004) and Scarf (2007) argue that treadmill experiments may
not give a true representation of overground running speeds. Hence we consider
that an analysis of data from races will be the most reliable basis for route choice
decisions.

There are certain constraints that the pace function p(m) should satisfy.
First, it will be fitted to data from uphill and downhill races, but should yield a
reasonable pace on level ground: we quantify this by demanding that p(0) should
not be faster than the current (2011) 10,000m world record pace, 0.1577s.m−1. The
10,000m race was chosen as a suitable comparator on the basis of having similar
endurance requirements to hill races: while 10,000m is substantially greater than
the median distance of our hill race dataset, the time of 1577s is substantially below
the median record time in the dataset.

Second, the formulation of the route choice problem by Kay (2012), based
on a continuous representation of space, requires a twice-differentiable pace func-
tion (although this would not be necessary for a route choice algorithm such as that
of Collischonn and Pilar (2000) which uses a discretisation of space). Third, Kay
(2012) reasoned that d2 p/dm2 should be non-negative: a route at constant gradient
should never be slower than a route with the same distance and total ascent but in-
volving some steeper and some less steep terrain. If hill runners used the same gait
at all gradients, a pace function satisfying these constraints would be a reasonable
expectation. However, at some uphill gradient, athletes will spontaneously make
the transition from running to walking. We do not have any data on the gradient at
which this occurs, and there will certainly be considerable variation between ath-
letes, but we can expect that participants in a race will choose their gait to optimise
their performance. This implies that p(m) will be continuous, but not necessarily
differentiable, at a gradient where the gait changes. In summary, we expect p(m) to
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be a smooth function with non-negative second derivative except possibly at gait-
change gradients.

A runner’s vertical speed (rate of height gain or loss) is m/p , which is
maximised at a critical gradient where the pace function satisfies

dp
dm

=
p
m

(1)

with d2 p/dm2 > 0; solutions of (1) may exist for m> 0 (uphill) and/or m< 0 (down-
hill). It was first noted by Davey, Hayes & Norman (1994) that an optimal route
would never ascend or descend more steeply than a critical gradient; the implica-
tions for route choice were discussed in more detail by Llobera & Sluckin (2007)
(who sought routes minimising metabolic cost rather than time taken) and by Kay
(2012). Hence we shall take a particular interest in the existence and value of uphill
and downhill critical gradients, denoted respectively mc+ and mc−, for any pace
function derived from our data.

2 Data sources
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Figure 1: Record pace p (s.m−1) vs. gradient m for 91 uphill and 15 downhill races
or race stages and the world 10,000m track record.

All data were obtained from a search of publicly available websites con-
ducted during 2010–12. Results from three types of race were obtained: uphill
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races, downhill races, and races including both ascent and descent, for which times
for an uphill stage and/or a downhill stage were published. Races up stairs in
skyscrapers, the subject of a recent study by Minetti et al. (2011), were not in-
cluded. We also made a rather arbitrary decision to exclude races attaining altitudes
of 4000 metres or more: races at high altitude often involve extremes of difficult
terrain (including snow and ice) and climatic variation over the course, quite apart
from the physiological effects of running at low atmospheric pressure. A spread-
sheet listing the races, the numerical data used in this study and the URLs (not
guaranteed to be stable) from which the data were obtained is available from the
author.

Altogether we used record times for 91 uphill and 15 downhill races or race
stages, the difference in numbers reflecting the fact that uphill races are popular,
especially in continental Europe, while downhill races are rare. The mean gradient
and record pace was calculated for each race or race stage, and these are plotted in
Figure 1 (which also shows the 10,000m world record at m = 0). Mean gradients
of races ranged from 0.0476 to 0.526 uphill and from −0.0631 to −0.609 downhill
(observing the convention that gradients are positive uphill). The extreme downhill
slope of−0.609 (from the Tryfan Downhill Dash) must be considered an influential
data point, not an outlier to be ignored. There is then a gap in the data to the
second steepest downhill gradient of−0.364 at the Mount Marathon Race, and then
a smaller gap to the next steepest, −0.25 at the Scafell Pike Race. A significant gap
also exists in the uphill data: there are five data points from Vertical Kilometre races
at gradients between 0.526 and 0.476, but the gradient of the next steepest race is
0.364. Data are also lacking at gentle gradients, both uphill and downhill. The
fastest pace in the dataset is 0.127s.m−1, recorded at the Meltham Maniac Mile
(m =−0.076), while the fastest vertical speeds are 0.568m.s−1 uphill at a gradient
m = 0.294 at the Grouse Grind, and −1.474m.s−1 downhill at m = −0.364 at the
Mount Marathon Race.

Durations of races or race stages in the dataset ranged from 300s to 9160s
uphill and from 204s to 2615s downhill; our model will take account of the ex-
pected decrease in speed with increasing duration due to fatigue. However, there
are many sources of variability or error that we have not been able to eliminate
from our analysis of record times. First, to model pace as a function of gradient,
data should ideally be taken from races or race stages at uniform gradient: no such
race exists! The extent to which variability of gradient within a race introduces
errors into our results depends on how nonlinear the relation between pace and gra-
dient is. Second, we have taken no account of differences in the terrain of the races,
which ranges from roads to heathery, boulder-strewn hillsides (although most are
along well-trodden paths on which runnability effects will be small). Third, we
have in most cases accepted without question the data on length and ascent/descent
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given on race websites. There were a few cases in which we suspected the data
to be erroneous and amended the data following a study of a map of the course.
Note that errors in distance are much less serious than errors in ascent/descent,
since both pace and gradient are inversely proportional to distance (so an error in
distance would move a data point directly towards or away from the origin in Fig-
ure 1). In particular, the vertical descent of 609m for the Tryfan Downhill Dash
is known accurately from Ordnance Survey spot heights, whereas its distance of
1000m is less certain; but this uncertainty will make zero difference to the linear
fit proposed below for steep downhill gradients. Fourth, the races ranged from
prestigious events attracting internationally leading athletes to small-scale events
attracting only athletes from local clubs. We have not made any allowance for the
slower times expected in the latter.

3 Pace function models for elite hill runners
We model our data on record pace in races as depending on gradient and race du-
ration, where the latter is assumed to be a better determinant of fatigue than race
distance (although this has not been tested). While some quite sophisticated mod-
elling of the fatigue effect has been done (Grubb, 1998), we are only concerned to
eliminate it from our consideration of gradient effects. Thus we shall follow Minetti
et al. (2002) in assuming a simple linear dependence of pace on race duration,

p = p̃(m)(1+ kT ) (2)

where the adjusted pace function p̃(m) represents the dependence of pace on gra-
dient (and is therefore the function to be used in route choice studies), and T is the
race duration (so that where pace and gradient data have been taken from an uphill
or downhill stage of a longer race, T is the duration of the entire race, not just the
stage).

A variety of functional forms have been suggested for pace functions for
runners and walkers. Some, such as the exponential functions of Davey, Hayes &
Norman (1994), have been proposed to model uphill pace only. Naismith’s Rule
and the power-law rule devised by Scarf (2007) could be used to derive pace as
a function of gradient, but these rules are only intended to apply to courses with
equal amounts of ascent and descent. Nevertheless, Naismith’s Rule has been used
for route choice problems by supposing that pace at all downhill gradients is equal
to that on level ground (Scarf, 2008, Verriest, 2008, Arnet, 2009): this is equivalent
to the pace function

p̃ =

{
p0 (m < 0)
p0(1+αm) (m≥ 0) , (3)
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in which Naismith’s original formulation, that a distance of 3 miles and an ascent
of 2000 feet each require a time of 1 hour, yields α = 7.92 (Langmuir, 1984, Scarf,
2007). The quantity α gives the equivalence of distance and climb, and is also
referred to as Naismith’s number (Scarf, 2007). A generalisation of Naismith’s
Rule, to allow for the fact that running speed varies with gradient downhill as well
as uphill, is the piecewise linear function

p̃ =

{
p0(1+α−m) (m < 0)
p0(1+α+m) (m≥ 0) , (4)

with α− expected to be negative. A problem with the functions (3) and (4) is that
they have discontinuities in the first derivative of the pace function at m = 0, un-
related to any change of gait. Nevertheless, another model with a discontinuity in
dp/dm has recently gained some acceptance in the anthropological research lit-
erature: this is Tobler’s “Hiking function” (first published by Gorenflo & Gale
(1990) but attributed to Waldo Tobler; see also Tobler (1993), Herzog & Posluschny
(2011)), which can be re-formulated to give pace in s.m−1 as

p̃(m) = 0.6e3.5|m+0.05| . (5)

This has a sharp minimum of pace at a downhill gradient m = −0.05. Kondo &
Seino (2010) suggested replacing each of the numerical coefficients in (5) with a
variable, and also allowing asymmetry about the gradient of minimum pace:

p̃ =

{
p1ec−(m−m1) (m < m1)

p1ec+(m−m1) (m≥ m1) ,
(6)

with c− < 0 < c+. This model yields critical gradients both uphill and downhill,
mc± = 1/c±. For gentle uphill gradients, where the angle of slope (in radians) is
approximately equal to m, (6) is similar to the exponential formulae independently
derived by Davey, Hayes & Norman (1994).

The simplest function satisfying our expectation of smoothness, with pace
increasing as the gradient becomes very steep both uphill and downhill, is a quadratic
as suggested by Rees (2004):

p̃(m) = p0(1+α1m+α2m2) . (7)

However, this enforces an unwarranted degree of symmetry between uphill and
downhill running: specifically, uphill and downhill critical gradients will both exist
and will have the same magnitude, mc+ = |mc−|= α

−1/2
2 . Hence we also consider
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higher-order polynomials: cubics and quartics, as suggested respectively by Kay
(2012) and Llobera & Sluckin (2007):

p̃(m) = p0(1+α1m+α2m2 +α3m3) , (8)

and
p̃(m) = p0(1+α1m+α2m2 +α3m3 +α4m4) . (9)

The cubic model enforces the existence of at least one of the critical gradients (up-
hill or downhill), while the quartic is the only one of our models that allows the
existence of both, either one, or neither of the critical gradients. Other smooth
functions have also been tried, but we have not been able to improve on the results
shown below for polynomials.

Having chosen a functional form for p̃(m), we use ordinary least squares
to obtain the best fit of (2) to our data on pace. For each of the functional forms
discussed above, Table 1 gives the following data (where applicable):-

• Fatigue coefficient k (± standard error);
• Parameter values in the model p̃(m) (± standard error in most cases);
• Gradient m1 at which minimum pace (i.e. fastest horizontal speed) occurs,

and the value of that minimum pace, p1;
• Critical gradients mc+ and mc− for uphill and downhill running respectively,

which are the gradients at which fastest vertical speeds may be attained;
• Ratio of adjusted pace at m = 0 to that for the world 10,000m track record

(denoted WR);
• Adjusted-R2 statistic, being the most appropriate measure of the goodness of

fit of the model to the data.

For each model, we can calculate the adjusted pace for each data item as

p̃i(mi) =
pi

1+ kTi
(10)

(in which subscript i refers to i’th data item). Figure 2 shows these adjusted pace
data plotted together with the fitted model function p̃(m) for each of the six models.
Note that units of pace and adjusted pace are s.m−1, and units of fatigue coefficient
k are s−1; so the parameters k, p0 and p1 appearing in Table 1 are dimensioned,
while all others are dimensionless.
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Table 1: Model parameters ± standard error, together with derived quantities, for
six models fitted to race record pace data.

Functional form Naismith-type (3) Piecewise linear (4) Tobler-type (6)
k/10−5s−1 2.318±1.104 3.544±0.716 3.559±1.057
Parameters p0 = 0.1413±0.0083 p0 = 0.0970±0.0057 p1 = 0.1558±0.0045

α = 10.88±0.90 α+ = 17.11±1.25 c+ = 3.045±0.069
α− =−5.575±0.641 c− =−2.221±0.197

m1 =−0.1052
m1 [N/A] 0 [fixed] −0.1052
p1 [N/A] 0.0970 [≡ p0] 0.1558
mc+ [N/A] [N/A] 0.3284
mc− [N/A] [N/A] −0.4503
p0/WR 0.929 0.650 1.437
Adjusted R2 0.9841 0.9941 0.9868

Functional form Quadratic (7) Cubic (8) Quartic (9)
k/10−5s−1 4.047±0.946 4.092±0.941 4.114±0.768
Parameters p0 = 0.1988±0.0051 p0 = 0.1938±0.0056 p0 = 0.1726±0.0053

α1 = 3.130±0.167 α1 = 3.497±0.264 α1 = 3.639±0.241
α2 = 9.270±0.461 α2 = 9.576±0.499 α2 = 17.757±1.368

α3 =−1.736±0.928 α3 =−3.100±0.877
α4 =−23.834±3.588

m1 −0.1688 −0.1743 −0.1026
p1 0.1463 0.1339 0.1405
mc+ 0.3285 0.3455
mc− −0.3285 −0.3066 −0.2632
p0/WR 1.341 1.308 1.165
Adjusted R2 0.9904 0.9907 0.9940
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Figure 2: Adjusted pace data with various models fitted: (a) Naismith-type, (b)
Piecewise linear, (c) Tobler-type, (d) Quadratic, (e) Cubic, (f) Quartic.
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4 Discussion

4.1 Comparison of models

On the basis of adjusted-R2 values, the piecewise linear and quartic models provide
the best fits to the data. However, each of these models has a serious flaw. The
piecewise linear model predicts a pace 35% faster than the 10,000m world record
at m = 0, so is clearly invalid at gentle gradients. The quartic model has inflection
points at m = 0.3214 and m = −0.3864, so the requirement that d2 p/dm2 ≥ 0 is
violated at uphill and downhill gradients steeper than these respective values. Thus
the quartic model could still be used for route choice calculations on terrain where
the slope is nowhere steeper than 0.3214 (and can be “fixed” for use on terrain
steeper than this: see below), but the piecewise linear model should not be used for
route choice calculations.

The Naismith-type model also predicts a faster pace than the 10,000m world
record at m = 0, although in this case the world record is within the 95% confidence
interval for p0. In contrast, the Tobler-type, quadratic and cubic models all predict
p0 at least 30% slower than the world record, and inspection of Figures 2(c), (d),
(e) shows that these models also yield pace slower than the data at gentle uphill and
downhill gradients. The quartic model definitely gives the best representation of
pace at gentle gradients (see Figure 2(f)), with p0/WR= 1.165 being a reasonable
reflection of the difference between the pace expected on a level mountain path and
an athletics track.

The fastest and second-fastest paces (and adjusted paces) in our dataset are
at gradients −0.076 and −0.118 respectively; only our Tobler-type and quartic
models yield m1 within the range encompassed by these values. The quadratic and
cubic models predict minimum pace at much steeper gradients, close to those found
by Llobera & Sluckin (2007) and Minetti et al. (2002) to minimise metabolic en-
ergy cost. In contrast, Tobler (1993) and Kondo & Seino (2010) find that minimum
pace occurs at the gentler gradients of−0.05 and−0.07 respectively; the difference
between this and our Tobler-type model can be attributed to these authors using data
from walkers rather than runners. The actual values of minimum adjusted pace p1
in all our models (except for the piecewise linear model) are slower than the two
fastest paces in the dataset; this is probably due to the two fastest races both being
run on roads, allowing faster running than on typical hill race terrain.

Four of our models admit critical gradients. Uphill, the quadratic, cubic
and Tobler-type models all yield rather similar values of mc+, fairly close to the
value of 0.36 found by Davey, Hayes & Norman (1994), but somewhat steeper
than the 0.25 and 0.28 found respectively by Minetti et al. (2002) and Llobera &
Sluckin (2007) as being optimal for minimising metabolic energy expenditure per
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unit height gain. However, according to our quartic model there is no uphill critical
gradient: ascent rate is optimised by climbing as steeply as possible. The raw
data provides some support for the latter assertion: although the fastest and third
fastest ascent rates in the dataset are at the moderate gradients of 0.294 and 0.303
respectively (a little lower than the estimates of mc+ in three of our models), these
were both recorded on courses on which substantial sections have steps cut into the
mountainside. The advantages of steps at steep gradients are discussed by Minetti
(1995), while races up skyscraper stairs often yield ascent rates considerably greater
than in any mountain race (Minetti et al., 2011). Thus the stepped courses may be
considered to be on atypical and advantageous terrain: removing them from the
dataset, the fastest and third fastest remaining ascent rates are on the two steepest
courses. Thus, if effects of differing terrain are eliminated, it appears that ascent rate
is optimised by maximising steepness, at least on hills within the range of steepness
in our dataset.

Downhill, the four models yield widely differing critical gradients. This
is not surprising, given the dearth of data at steep downhill gradients: all four esti-
mates of mc− are steeper than−0.25, but there are only two data items at such steep
downhill gradients. Minetti et al. (2002) and Llobera & Sluckin (2007) find critical
gradients for metabolic energy expenditure to be somewhat less steep downhill than
uphill, with a difference of about 0.05 between mc+ and |mc−|, similar to that in our
cubic model. Factors other than metabolism (biomechanics, psychology) would
also tend to yield a less steep downhill critical gradient. On the other hand, the
fastest descent rate in our dataset is on the second steepest course, at m =−0.364;
however, this may again be accounted for by atypically advantageous terrain, with
the course in this instance consisting mostly of scree, allowing very fast descent for
a runner possessing the requisite technique.

4.2 Linear approximations and Naismith’s number

The existence of a Naismith’s number α , representing the equivalence of distance
and climb, assumes a linear relation between pace and gradient. However, for a non-
linear pace function Davey, Hayes & Norman (1994) suggested that a Naismith’s
number could be obtained from the linear approximation about m= 0, i.e. by setting

α =
[dp/dm]m=0

p0
, (11)

although Norman (2004) warns that this can only be valid at gentle gradients. In
fact, if the true pace function has d2 p/dm2 ≥ 0, (11) should give values of Nai-
smith’s number lower than those obtained from fitting linear models to data for
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positive gradients. Values of α from linear models will themselves depend on the
range of gradients in the data and the treatment of downhill running.

Davey, Hayes & Norman (1994) obtained α = 2.8 using (11) with an ex-
ponential model fitted to data on treadmill experiments, while applying (11) to our
nonlinear models yields values (denoted c+ in our Tobler-type model and α1 in our
three polynomial models) in the range 3 – 3.7; this is indeed lower than any values
ever obtained from linear models. The lowest of the latter is α = 4.4, obtained
by Norman (2004) from a linear regression on winning times in a hilly road race
with fairly gentle gradients. The classical Naismith’s Rule, obtained from data for
walking in Scottish mountains, has α = 7.92, while its weakly nonlinear general-
isation by Scarf (2007) has α = 8.6 from British fell race data. These last three
examples do not yield an estimate of uphill pace without an additional assumption
being made about downhill pace; in particular, if downhill pace is assumed equal to
that on flat ground, one obtains the Naismith-type model (3), for which we found
α = 10.88. The above values of Naismith’s number are in turn smaller than those
obtained from linear models where descent is explicitly separated from ascent: this
separation is partial in our piecewise linear model for which α+ = 17.11, while a
simple linear regression on only our uphill data yields an even higher Naismith’s
number of 18.40.

The wide diversity of values of Naismith’s number (even before the present
study) has been attributed by Norman (2004) and Scarf (2007) principally to differ-
ences in the running environment (treadmill, road or rough mountain terrain), while
Kay (2012) suggested that it was related to the derivation of some values from
up-and-down races while others come from experiments on uphill running. These
explanations all have some validity, and sampling error must also contribute to the
variation in estimates of Naismith’s number, but we contend here that the funda-
mental problem is that a linear model is being imposed on an inherently nonlinear
phenomenon. Theoretical justification for a linear model exists only at steep gradi-
ents: Minetti (1995) observes that if |m|> 0.15 the work done in running or walking
is purely positive (uphill) or purely negative (downhill), and that the efficiency is
constant. Thus a constant work rate should imply a constant vertical speed, so that
p ∝ m. Fitting p̃ = b+m to our 44 uphill data items with m > 0.15 and p̃ = b−m
to our 6 downhill data items with m < −0.15, we obtain b+ = 1.818s.m−1 and
b− =−0.8233s.m−1 with respective adjusted-R2 values of 0.9925 and 0.9827. For
|m|< 0.15, nonlinearity is certainly important, so a Naismith’s number can only be
a compromise between the true linear behaviour at steep uphill gradients and the
nonlinear behaviour at gentler gradients. This compromise seems to work fairly
well when predicting times taken in up-and-down fell races and mountain walks
(Scarf, 2007), but yields the much smaller value of α found by Norman (2004)
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from a comparatively gently graded road race, and makes the use of (11) particu-
larly inappropriate.

4.3 Route choice on steep gradients

We now discuss three issues, already alluded to, that would affect the use of our
pace function models for route choice on very steep hills.

First, there is some uncertainty over the existence of critical gradients. Our
cubic model has an uphill critical gradient while the quartic does not; removing
the steepest downhill item from the dataset yields a quartic model with no down-
hill critical gradient; and when cubic and quartic functions were fitted to smaller
datasets while the data were being assembled, the resulting models sometimes had
one or both of the critical gradients, and sometimes neither. We have concluded
above that the data support the view that no uphill critical gradient exists. Minetti
et al. (2002) did find optima for vertical energy cost of walking and running both
uphill and downhill, but they were shallow optima. Similarly, our critical gradients,
if they exist at all, will be very shallow optima for vertical speed. Thus, models
with and without a critical gradient may yield substantially different route choices
on steep hills, but the difference in running time will be small.

Second, the quartic model, which in most respects is the best representation
of the data, has the unrealistic feature that d2 p̃/dm2 < 0 at very steep gradients,
both uphill and downhill. The model can be used between its inflection points, i.e.
for −0.3864 ≤ m ≤ 0.3214, where d2 p̃/dm2 ≥ 0, but for use outside this range
of gradients we suggest adjoining other functions. With no uphill critical gradient
in the quartic model, the only sensible option for m > 0.3214 is a linear function
p̃ = a+bm with a and b chosen so that p̃ and d p̃/dm are continuous at m = 0.3214;
this would ensure that the straight line route is taken on slopes m > 0.3214. Where
a critical gradient does exist (downhill in the quartic model), it may be more ap-
propriate to use the critical gradient, rather than the inflection, as the joining point
for another function. This is because the linear model p̃ = bm, which should apply
at steep gradients if pace is determined purely by runner’s metabolism, will join
smoothly to a nonlinear curve at a critical gradient. However, the model p̃ = bm
for m < mc− would make all route choices (straight or zigzag) between given points
equally fast if they are everywhere steeper than the critical gradient, whereas biome-
chanical and psychological constraints on downhill running warrant a model that
preserves the strict critical gradient property, disallowing routes that descend more
steeply than mc−; a quadratic function, smoothly joined to the quartic at m = mc−,
would achieve this.
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Third, the dearth of data at steep downhill gradients (with only two data
items for m <−0.25) casts doubt on the reliability of any of our models where m <
−0.25. To assess the reliability, we recalculated all our models with the steepest
downhill item (Tryfan Downhill Dash, at m = −0.609) removed from the dataset.
[We emphasise that the Tryfan data item itself is considered reliable.] The quadratic
model, with its enforced symmetry, changed very little when Tryfan was omitted;
but the parameters of all our other models changed substantially. While the quartic
model in particular remained a very good fit to the data for m > −0.25, we must
conclude that our models are not reliable where very steep downhill gradients (m <
−0.25) are involved. Where a model usable for m < −0.25 is required, the best
option would seem to be the quartic model with either a linear or quadratic function
adjoined at m = mc− = −0.2632 as described above. The linear choice, p̃ = b−m,
is supported by the observation that the value b− = −0.7963s.m−1 required for
a smooth join to the quartic is very close to that obtained from the linear fit to
the 6 data items with m < −0.15, and that removing Tryfan from those 6 items
also makes only a small difference to b−. However, the participants in the Tryfan
Downhill Dash are probably a self-selecting group of expert descenders, so it is not
valid to infer that biomechanical and psychological constraints are unimportant: the
quadratic choice may be more realistic for most runners.

4.4 Fatigue coefficients

Our three polynomial models all yield values of the fatigue coefficient close to
4× 10−5 s−1, with the other three models yielding somewhat smaller values. The
differences are not significant: the largest value obtained minus one standard error
is less than the smallest value plus one standard error. The value k = 1.773×
10−5 s−1 implied by the formula used by Minetti et al. (2002) may be significantly
smaller; however, since the effect of fatigue is not our primary concern, we have
not investigated this any further.

5 Conclusions
We have sought a formula to give runners’ pace as a function of gradient of ascent
or descent. Obviously the pace function will vary between individuals, and will also
depend on the terrain. Since our calculations use record times for races, the results
can be regarded as broadly applicable to elite male runners on typical hill race
terrain, which consists of well made mountain footpaths in most of the continental
European races which provide the majority of our data.
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A variety of functional forms have been used by previous authors to model
pace or metabolic energy cost as a function of gradient. We have applied six of
these functional forms to our dataset, and we conclude that on balance the quartic
is the best model. It has the advantage in principle that it is the only one of the
six that makes no presuppositions about the existence or otherwise of critical gra-
dients. It provides the best fit to the data overall, and in particular yields values
of m1 (the gradient allowing maximum speed) and p0 (pace on flat ground) con-
sistent with the data. Its prediction of no uphill critical gradient within the range
of our data is in accord with a careful examination of the individual data items
with fastest vertical speeds. Observation of mountain races with free route choice
shows that competitors nearly always take a direct line uphill wherever this can be
done without encountering a rock face. Thus, if an optimum gradient for ascent
rate does exist (as it must, since climbing a rock face is a slow process), it must
be outside the range of gradients normally encountered in races – possibly at the
gradient where walking gives way to scrambling, or scrambling to climbing. Given
the requirements of agility and courage for steep downhill running, it is likely that a
more moderate downhill critical gradient exists, with our estimate of mc− ≈−0.26
seeming plausible but very uncertain due to the shortage of data at steep downhill
gradients; indeed it is on steep descents that variations between individual runners
tend to be most pronounced.

The inflection points in the quartic model do constitute a flaw that would
yield unrealistic route choices on very steep gradients. We have suggested a remedy,
whereby the quartic function is replaced by a linear function beyond its inflection
point, or by either a linear or quadratic function beyond its critical gradient; only the
quadratic would ensure that routes steeper than the critical gradient are disallowed.

Individual runners may have pace functions somewhat different from that
presented here, even after multiplying by a constant factor to allow for the individ-
ual’s fitness being less than that of race record holders. A runner could construct
his/her own pace function from timings in a large number of mountain races, but the
problems of sampling variation might be greater than in our analysis: an individ-
ual’s fitness could vary considerably between races, whereas the record holder for
any course must always be a runner at peak performance. However, a pace function
for an individual might show clearly where the transition from walking to running
occurs, whereas the change of gait has been “smoothed out” of our dataset, since it
occurs at different gradients even among the select group of race record holders.

Our modelling is of doubtful utility for a runner or orienteer in the middle
of a race: whereas a simpler formula such as Naismith’s Rule could be used to es-
timate timings on the run, route choice calculations with a nonlinear pace model
would not be feasible in that situation. However, knowledge of one’s personal criti-
cal gradient(s) could obviate wasted time on steep slopes during a race. A nonlinear
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model could be used by competitors to plan routes (using a route choice algorithm)
or estimate timings where a course is known in advance (i.e. in mountain races, but
not orienteering competitions), although even then terrain runnability may have as
much or more influence on route choice than topography. While orienteers are usu-
ally concerned with the hindrance to running provided by soft, uneven, or thickly
vegetated terrain, we have noted that stepped paths can be an aid to running speed
on steep uphill slopes.

Finally, we note that this is probably the most thorough study so far of over-
ground running pace as a function of gradient. By comparing with previous studies
of metabolic energy cost of gradient running, it should be possible to identify the
extent to which non-physiological factors affect mountain running pace.
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