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ABSTRACT.  Housing stock models predict long term changes in the stock to 
inform national policy.  They operate with a set of reference dwellings 
representing the national stock, which are changed in response to different 
scenarios.  However, national level models do not consider geographical 
variations (urban location/rural surroundings, index of multiple deprivation score, 
etc.), so cannot aid in targeting improvement measures (eg: insulation, micro-
generation, etc.) locally.  A geographically varying model can identify which 
measures are most appropriate in a particular location.  In this paper a method 
has been designed and implemented using information at LSOA level (c. 700 
dwellings each) to introduce geographical variation for a model of the North 
East of England.  It has been tested against DECC meter data and over 80% of 
LSOAs are predicted to within ±25% of DECC’s data.  The model allows 
localised policies and interventions to be tested, and is principally of interest to 
local government and energy efficiency initiatives.  
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1. INTRODUCTION 

There are many different types of models of housing for calculating energy demand, 
these vary from short term models for grid electricity management, and models of 
individual buildings, to national stock level models for long term planning over 
decades.  National level stock models are typically constructed as physically based 
bottom up models intended for long term policy analysis [1]. 
 
These models operate by having a base set of dwellings that represent the real 
world stock of interest.  By modelling changes to these dwellings (eg: the addition of 
insulation, a more efficient heating system, etc.) the change to energy demand and 
associated CO2 emissions can be estimated.   
 
Such models are used for high level policy analysis and do not contain geographic 
detail, and consequently can only be used for scenarios that cover the entire stock 
being modelled.  Moving to smaller geographies will capture variations in the 
dwelling stock from one location to another.  When moving to geographic areas of 
less than 1,000 dwellings each such area will have unique features.  For example, a 
city centre might have lots of flats, a suburban area might include a high proportion 
of gas heated semi-detached dwellings, and a very rural area might have many old 
detached dwellings without gas heating being available.  Due to these geographic 
differences, not only will the current energy demand in each such area vary, but so 
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will the potential improvement measures applicable in each area, eg: city centre flats 
may not be able to have ground source heat pumps, whereas they are likely to be 
more appropriate in rural areas.  Therefore, a model that is able to describe the 
variations in the dwelling stock from one geographic location to another will be 
particularly useful for being able to target improvement measures and incentive 
packages and associated policies at the local level.  Such targeting will aid in more 
cost effectively rolling out energy efficiency improvements across the dwelling stock. 

Therefore the aim of the work described in this paper is to identify and develop a 
method for developing a geographically rich domestic stock model that can test the 
impact of different policies in different locations. 

2. LITERATURE REVIEW 

In order to operate a national level stock model the model requires a sufficient 
sample of archetype dwellings in order to suitably represent the total real world stock 
of interest.  Large scale models of this sort usually operate with up to several 
thousand dwelling types representing the real world stock of interest [2][3][4][5]. 
 
However, these models are restricted to one geographical level (typically the national 
level) and are therefore of limited use in considering more local impacts, policies and 
changes.  Cheng and Steemers [6] have begun to address this by developing a 
prototype stock model (DECM) that aims to estimate the energy demand for each of 
the 326 local authorities in England (local authorities are governmental 
administrative areas, which on average contain around 65,000 dwellings). 

In Cheng and Steemers’ work, when modelling to local authority level they tested two 
methods. The first was using built form (detached, semi-detached, terraced or flat) 
and the second was using socio-economic class.  For their dwelling stock they used 
the English House Condition Survey [7] (EHCS).  The EHCS was an annual survey, 
which included a physical survey of around 8,000 dwellings per year.  The physical 
survey included in the EHCS provided built form and the region for each dwelling.  
Using the physical survey data a SAP[8] based calculation of the energy demand 
was carried out for each of the EHCS dwellings.  They could then produce average 
energy demand for each built form in each region.  The 2001 census [9] provides a 
count of the built form distribution in each local authority.  By combining the average 
energy demand for each built form and the built form distribution an estimate of total 
energy demand for each local authority could be calculated.   

The socio-economic approach was similar in that the EHCS included a survey of the 
occupants of occupied dwellings, and this associated survey of occupants provided 
socio-economic information, identifying each household on a scale of 1-7 on the 
National Statistics Socio-Economic Classification (NSSeC).  The census also 
provides a local authority level NSSeC distribution, allowing for a second estimate of 
total energy demand for each local authority.  

These estimates could then be compared with published data from DECC based on 
metered gas and electricity usage.  Their built form method gave mean errors of 
15.09% for gas and 9.43% for electricity demand, and the NSSeC approach had 
mean errors of 14.1% and 9.8% respectively. 



They selected built form and socio-economic classification as they are two factors 
with a good correlation with energy demand.  From a building physics perspective it 
is easy to see that the detached dwelling may have higher energy demands as it has 
a larger proportion of its surface exposed to the outside for heat loss, whereas a mid-
storey flat will be insulated above and below by other dwellings and perhaps on as 
many as three sides too, thus greatly reducing its potential for heat loss.  A socio-
economic indicator also provides useful information as there will be a correlation with 
dwelling size and appliance ownership and use.   

Built form and socio-economics are not the only potential categories with a 
correlation with energy demand.  Wyatt [10] found both floor area and tenure have a 
correlation with energy demand, although they are also related to built form and 
socio-economic class, eg: a larger house is more likely to be detached and have 
occupants with a higher socio-economic classification.  Firth et al. [11] identified 
dwelling age as a useful factor, together with the size of the household so there are 
both dwelling and occupant related variables that could potentially be included.  
However, increasing the number of variables used to describe the spatial variation 
from one location to another greatly increases the amount of matching information 
required for each location.   

Cheng and Steemers, whilst they used both socio-economic class and built form, did 
not combine the two together – ie: they only used one variable at a time when 
modelling the local authorities.  It can be anticipated that a cross-tabulation to 
produce a multi-variable allocation method should provide an improved model, and 
may facilitate being able to drill down to smaller geographies than the local authority 
level.  Being able to do this should provide a more robust model, as it reduces the 
reliance on a single explanatory variable that may not have the same explanatory 
strength in all areas.   

If a model can be developed down to the LSOA level (Lower Level Super Output 
Area - a census geographical area containing approximately 700 dwellings), then 
much finer analysis is possible. Such a model can still be aggregated to provide the 
wider scale, high level (local authority, regional or national) analysis. 

3. METHOD 

The North East region of England has been chosen as the region for testing the 
development of a geographical housing stock model.  The region contains 
approximately 1.2 million dwellings, 12 local authorities, 341 MSOAs (Medium Level 
Super Output Area – made up of four to six LSOAs) and 1,657 Lower Level Super 
Output Areas.   

The model therefore needs to be able to approximate the real world dwelling stock in 
each of the 1,657 LSOAs in the North East.  It needs to do this in sufficient detail that 
the model can later be used to calculate the effectiveness of changes to the dwelling 
stock in individual LSOAs. The model should be able to make predictions for 
physical changes to the dwellings including installation of insulation measures, 
innovative heating systems, micro-generation, as well as changes in occupancy 
patterns (eg: people working from home), in order that it can analyse different future 
scenarios at both the regional and small scale levels. 



A suitable data set was needed that provided a sufficient number of dwellings that 
could provide a reasonable representation of the North East’s housing stock.  The 
English Housing Survey (EHS) [12] has been identified as the most suitable data set 
as it includes a detailed physical survey, sufficient to allow a SAP calculation of 
energy demand, together with useful socio-economic data concerning the occupants. 
The 2008-2009 edition includes physical surveys of 16,150 dwellings in England, of 
which a total of 935 are in the North East.  These 935 dwellings therefore form the 
base stock for the model.  It was decided only to use the 935 EHS dwellings that 
were in the North East as opposed to the entire 16,150 for the whole of England, as 
if the latter were used it could lead to inappropriate construction types in the model’s 
stock (eg: it may lead to an over representation of cob walls, thatched roofs, etc.) 

The Cambridge Housing Model (CHM) [13] is designed to take the EHS dwellings 
and carry out a SAP type calculation on each dwelling to predict the energy demand 
by fuel type for each EHS dwelling. 

Therefore, the EHS and the CHM combined provide a physical description of 935 
dwellings in the North East, the actual addresses are not revealed.  Consequently 
there is a geographical assignment challenge as a set of dwellings for each of the 
1,657 LSOAs needs to be developed from the 935 dwellings for which data are 
available.  The intention is that the model should be full scale – ie: one dwelling in 
the model should represent one real world dwelling. 

3.1 Built Form Method 

Cheng and Steemers used a single variable to describe the housing stock 
distribution at local authority level. The average local authority in the North East 
contains 29 MSOAs and 138 LSOAs.  Scaling the model down to this level needs a 
higher level of detail in the selection of dwellings, but using the simple built form 
method can give a first indication of the minimum level of accuracy that could be 
achieved at the smaller census geographies. 

In order to do this the same simple approach has been used.  Gas and electricity 
demand for each of the 935 North East dwellings in the EHS has been estimated 
using an adapted form of the CHM.  Whilst the basic CHM calculation engine was 
used to calculate the individual dwelling energy demands, some changes were made: 
902 of the 935 North East dwellings included extra information from the associated 
survey, so the calculation could be refined in these instances.  The specific extra 
information for use in the calculation comes from the EHS occupant survey which 
asked about approximate times of occupation of the dwelling.  These responses 
have been used to alter the standard SAP occupancy patterns and therefore heating 
profiles – eg: someone in the house all day will need the heating on longer than 
someone who is out all day.  Similarly, the calculation of appliance usage has been 
changed to a Green Deal SAP (GdSAP) [14] base, taking into account the stated 
occupancy patterns.  Having then used the adjusted version of the CHM to produce 
energy demands for each dwelling, average energy demands for each built form type 
could be calculated. 

The 2011 census [15] provides details of the numbers of each built form type for 
each LSOA, MSOA and LA in the North East.  These figures can then be combined 
with the average energy demands for each built form type to calculate total annual 
gas and electricity energy demands for each of the geographic areas. 



DECC provide estimates of gas and electricity demand down to LSOA level, based 
on metered data, against which the results can be compared.  However, there are 
some issues with this data, firstly there is an unknown misallocation of some small 
non-domestic units as dwellings and some large dwellings as non-domestic 
premises.  This is because the DECC meter data simply uses a demand threshold to 
allocate meters  as either domestic or non-domestic.  Therefore small shops, offices 
etc. will have been classified as domestic, and in some LSOAs this will be a 
significant number of the properties.  Also, there are some address allocation issues: 
DECC has been able to allocate all dwellings to the correct local authority, but 2.6% 
of gas demand is not allocated to the correct MSOA, and therefore not to the correct 
LSOA either.  There is also an issue over matching geographic areas.  The base 
year for the model is 2009 – the closest census year for that is 2011, so where 
possible census data from 2011 has been used, as opposed to 2001.  However, the 
DECC meter data are from 2009, and have therefore used the 2001 census 
boundaries.  Between 2001 and 2011 there was some redrawing of LSOA 
boundaries and the creation of an additional LSOA in the 2011 census.  The ONS 
provide a conversion look-up table [16] that allows a comparison and a mapping of 
2001 LSOAs to 2011 LSOA geography, However, 2.5% of LSOAs have been 
changed, so their results will not be directly comparable.  Finally, in a small number 
of LSOAs new housing will have altered the population between the 2009 meter data 
and the 2011 census figures. 

This simple built form model spilt the dwellings into just four categories.  At the 
smaller geographies the expectation is that this will be too crude an approach, as it 
fails to capture the extent of variation between one LSOA and another.  Therefore, 
the incorporation of extra variables into the categorization process should provide a 
finer resolution and should thus be able to capture more of the variation between 
geographic areas. 

3.2 Detailed Method 

One particular issue that needs to be addressed is the existence of areas without 
mains gas available.  The census gives an indication of the different fuel types being 
used, which can be matched to the fuel types used by the dwellings in the EHS.  Out 
of the 935 North East dwellings in the EHS 902 were occupied, and therefore 
included the extra occupant survey information.  It is this subset of 902 that has been 
used for the refined geographical assignment.  There are 100 dwellings available 
that do not have mains gas.  Five alternative heating fuels were identified: bottled 
gas, oil, solid fuel, electric and communal.  The occupant survey also identifies 
dwellings according to how urban or rural they are on a scale of 1-4, as does the 
census.  Combining these gives 20 categories for the 100 off gas grid dwellings.  
The EHS occupant survey also identified the surrounding area of each occupied 
dwelling according to its decile on the IMD scale (Index of Multiple Deprivation), 
combining these with the 4 built form types potentially gives 160 categories for the 
802 mains gas dwellings.  However, in the more rural areas not every category was 
filled, so to account for this rural level 3 (villages) was reduced to IMD quintiles, and 
the most rural – 4 (hamlets and isolated) – was split into just two IMD levels.  This 
gives 27 rural and IMD categories combined, which, together with the four built form 
types gives 108 categories for built form, ruralness, and IMD rating (BRIMD) for the 
802 gas dwellings and 20 for the 100 non-gas dwellings.  This therefore provides a 
much finer categorization of the dwellings than the simple four stage built form 



assignment.  Therefore gas dwellings are categorised by built form, ruralness and 
IMD score, and non-gas dwellings are categorised by ruralness and fuel type. 

Whilst the model is aiming to describe the dwelling stock at LSOA level, there is a 
smaller census geography – the Output Area (OA).  There are typically five or six 
OAs per LSOA, and they contain around 150 dwellings.  For each OA the census 
provides its ruralness, IMD score and the proportion of different built forms; similarly 
fuel type used is provided, which can be combined with the ruralness to assign the 
non-gas dwellings.  By building the LSOAs from the OA level data sufficient variation 
in the dwellings assigned to each LSOA is achieved, as a larger number of the 
different categories will be used to describe the LSOA level stock.   

Potentially this method could be used to describe the dwelling stock down to OA 
level.  However, as was seen earlier, moving to smaller geographies increases the 
chance of error due to the smaller sample size, also the LSOA is the smallest level 
for which DECC provides meter data, so there would be no way to test the accuracy 
of the model if operated at the OA level. 

Therefore each dwelling is assigned to one of 128 categories, and each LSOA is 
made up of a number of those categories.  The dwelling stock for each LSOA is then 
created by assigning dwellings to the LSOA according to the number of dwellings it 
should have in each category. 

4. RESULTS 

4.1 Built form method 

Figure 1 shows the results at LSOA level for the built form method.  Out of the 1,657 
LSOAs in the North East, 1,620 are displayed for gas and 1,636 for electricity.  The 
21 LSOAs with no data for electricity are due to there being no data available from 
DECC once converted from 2001 to 2011 census geographies, and the larger 
number of missing LSOAs for gas is due to some LSOAs having very little or no 
mains gas supply, such that no figures are reported by DECC.  Even at the LSOA 
level, the simple built form method provides some degree of fit: 67.9% of LSOAs are 
within ± 20% of DECC’s gas estimates and 69.9% are within ± 20% for electricity 
demand. 



 

FIGURE 1. Built form based estimates of annual gas and electricity demand at LSOA 
level 

The next figure, Figure 2, illustrates the results at MSOA level.  There are 341 
MSOAs in the North East, so the typical MSOA is made up of 4-6 LSOAs.  As such 
they have a larger population, leading to a better fit, as can be seen in Figure 2: 79.8% 
of MSOAs are modelled within ±20% of DECC for gas and 71.6% for electricity.   

 



FIGURE 2. Built form based estimates of annual gas and electricity demand at 
MSOA level 

 

FIGURE 3. Built form based estimates of annual gas and electricity demand at local 
authority level 

At the local authority level, with just 12 in the North East a general over prediction is 
observed, summing up the entire region the model is 7.7% higher for gas demand 
and 6.2% for electricity.  The outlier for gas is Northumberland, which is over 
estimated by 23.4% - the most likely reason for this large error is over estimation of 
gas penetration.  Northumberland has the lowest population density in the region 
with a lot of countryside, so that a larger proportion of dwellings do not have access 
to mains gas, and the simple built form method does not capture this level of detail. 

4.2 Detailed Method 

Similar graphs to those for the built form model have been produced as follows. 
Figure 4 shows that at LSOA level there is a noticeably closer fit: 77.6% of LSOAs 
were within ±20% for gas vs. 67.9% for the built form method, and for electricity 82.8% 
were within ±20% as opposed to only 69.9% for the built form method.   



 

FIGURE 4. BRIMD based estimates of annual gas and electricity demand at LSOA 
level 

 

FIGURE 5. BRIMD based estimates of annual gas and electricity demand at MSOA 
level 

At MSOA level 87.4% are within ±20% for gas and 82.5% for electricity, compared to 
79.8% and 71.6% respectively for the built form method. 



Figure 6 shows the results at local authority level, out of the 24 data points only one 
is out by more than 10% as opposed to six under the built form approach.  Summing 
across the region the model underestimates gas demand by 5.5% and overestimates 
electricity by 1.8%. 

 

FIGURE 6. BRIMD based estimates of annual gas and electricity demand at local 
authority level 

 



FIGURE 7. BRIMD accuracy level at different geographies 

Figure 7 shows the proportion of each geographic level that estimates energy 
demand within a specified percentage of DECC’s estimates, eg: over 90% of MSOAs 
are within ±25% of DECC’s metered data for gas usage.  It can be seen that, 
generally, as the population sample increases with larger geographies the accuracy 
increases, which is as would be expected.  Figure 7 also shows that the model 
provides broadly similar levels of accuracy for both electricity and gas. 

Figures 8 and 9 provide maps of the North East’s LSOAs showing the percentage 
error of the model against DECC’s meter data for both gas and electricity. 

 

FIGURE 8. North East LSOA map of model gas accuracy 



 

FIGURE 9. North East LSOA map of model electricity accuracy 

Figure 8 shows that generally the largest discrepancies, and the LSOAs without 
available DECC data, are the large rural LSOAs, mainly to the north and west of the 
region.  In Figure 9 the missing data and the largest discrepancies for electricity are 
mostly in more urban areas.  As such some of these are going to have been caused 
by misattribution of non-domestic (eg: small retail units) as domestic, and also some 
changes in population as development has taken place, together with some 
boundaries being redrawn.   

5. CONCLUSIONS 

 This work has demonstrated that it is possible to construct a housing stock model 
that is able to operate at different geographic levels.  The base model has been 
constructed and tested against DECC meter data for both gas and electricity annual 
energy demand and found to provide a good level of agreement in most geographic 
areas.  As this model is made up of unique LSOAs each containing around 700 
dwellings, detailed analysis can take place in each of these small geographic areas.  



As detailed physical information is available for each dwelling, a whole range of 
potential interventions can be considered at this local scale (eg: insulation, 
replacement heating systems, micro- heat and electricity generation, etc.)  In 
conjunction with cost information for each technology type it will be possible to carry 
out localised optimisation modelling, choosing the appropriate trade-off between cost 
and energy and carbon savings.  Since the model captures some of the spatial 
variation between locations, such optimisation will be different for each LSOA (eg: 
ground source heat pumps may be more appropriate in rural areas with lots of 
detached dwellings, as opposed to city centres with a high proportion of apartments). 

There is the potential to refine this model further.  In the areas with mains gas 
(approximately 83% of dwellings are connected to the mains gas supply) there are 
802 dwellings available in the EHS for modelling and sufficient numbers to 
categorise them according to IMD score, ruralness of the area, as well as the built 
form of the dwellings.  However, there were only 100 off-gas grid dwellings and 
therefore a smaller number of categories was required, based only on ruralness and 
main heating fuel type.  Therefore, if the sample of available dwellings can be 
increased there is the potential to refine the categorisation process for the off-gas 
dwellings, in order that such areas can be more accurately represented.   

Whilst it is possible to test the accuracy for gas and electricity demand, there is no 
reliable way to test the accuracy of the estimated demand for other fuels at this 
geographic level.  Nevertheless, the model should provide a reasonable 
representation of such demand as it aims to assign dwellings in the correct 
proportion according to fuel type for the off-gas grid dwellings. 

This same method can also be applied to the other regions of England to produce a 
geographically detailed stock model of the whole of England.  Similarly, the same 
basic approach could be deployed in other countries, subject to the availability of 
suitable data. 

Although there is the potential to refine the model still further, the base model is 
working and producing reasonable results.  Therefore scenarios can begin to be 
developed that can be tested in the model to calculated their effect both regionally 
and locally. 
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