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Abstract

A pattern is a string consisting of variables and terminal symbols, and its lan-
guage is the set of all words that can be obtained by substituting arbitrary words
for the variables. The membership problem for pattern languages, i. e., deciding
on whether or not a given word is in the pattern language of a given pattern is
NP-complete. We show that any parameter of patterns that is an upper bound
for the treewidth of appropriate encodings of patterns as relational structures,
if restricted, allows the membership problem for pattern languages to be solved
in polynomial time. Furthermore, we identify new such parameters.
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1. Introduction

A pattern α is a finite string that consists of variables and terminal symbols
(taken from a fixed alphabet Σ), and its language is the set of all words that can
be derived from α when substituting arbitrary words over Σ for the variables.
For example, the language L generated by the pattern α := x1ax2bx1 (where
x1, x2 are variables and a, b are terminal symbols) consists of all words with an
arbitrary prefix u, followed by the letter a, an arbitrary word v, the letter b

and a suffix that equals the prefix u. Thus, w1 := aaabbaa is contained in L,
whereas w2 := baaba is not.

Patterns provide a compact and natural way to describe formal languages. In
their original definition given by Angluin [3] variables can only be substituted by
non-empty words; hence, the term nonerasing pattern languages (or, for short,
NE-pattern languages) is used. Extended or erasing pattern languages (or, for
short, E-pattern languages) where variables can also be substituted by the empty
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word have been introduced by Shinohara [23]. The original motivation of pattern
languages (cf. Angluin [3]) is derived from inductive inference, i. e., the task of
inferring a pattern from any given sequence of all words in its pattern language,
for which numerous results can be found in the literature (see, e. g., Angluin [3],
Shinohara [23], Lange and Wiehagen [13], Rossmanith and Zeugmann [22], Rei-
denbach [16, 17] and, for a survey, Ng and Shinohara [15]). On the other hand,
due to their simple definition, pattern languages have connections to many areas
of theoretical computer science, e. g., formal language theory, learning theory,
combinatorics on words and pattern matching, and their general properties have
been investigated in various contexts (for a survey, see, e. g., Mateescu and A.
Salomaa [14]).

With respect to practical applications, their membership problem, i. e., the
problem of deciding, for a given word w and a pattern α, whether or not the
variables of α can be substituted in such a way that w is obtained, is probably
the most important aspect of pattern languages. This is mainly due to the con-
nection to so-called extended regular expressions with backreferences (REGEX
for short) (see, e. g., Câmpeanu et al. [7]). REGEX can roughly be considered
as classical regular expressions that are equipped with the possibility to define
backreferences, i. e., to require factors to be repeated at several defined posi-
tions in the word; hence, backreferences correspond to the variables in patterns.
While backreferences dramatically increase the expressive power of classical reg-
ular expressions, they are also responsible for the membership problem of this
language class to become NP-complete. This is particularly worth mentioning
as today’s text editors and programming languages (such as Perl, Python, Java,
etc.) all provide so-called REGEX engines that compute the solution to the
membership problem for any language given by a REGEX and an arbitrary
string. Hence, despite its theoretical intractability, algorithms that perform
the match test for REGEX are a practical reality. While pattern languages
merely describe a proper subset of REGEX languages, they cover what is com-
putationally hard, i. e., the concept of backreferences. Hence, investigating the
membership problem for pattern languages helps to improve algorithms solving
the match test for extended regular expressions with backreferences.

The membership problem for pattern languages, that was first shown to be
NP-complete by Angluin [3] in 1980, can also be considered as some kind of
pattern matching task, since we have to decide whether or not a given word sat-
isfies a given pattern. In fact, this pattern matching aspect of pattern languages,
independently from Angluin’s work, has recently been rediscovered in the pat-
tern matching community in terms of so-called parameterised pattern matching,
where a text is not searched for all occurrences of a specific factor, but for all
occurrences of factors that satisfy a given pattern with parameters (i. e., vari-
ables). In the original version of parameterised pattern matching introduced by
Baker [4], variables in the pattern can only be substituted by single symbols
and, furthermore, the substitution must be injective, i. e., different variables
cannot be substituted by the same symbol. Amir et al. [1] then generalised this
problem by dropping the injectivity condition and Amir and Nor [2] added the
possibility of substituting variables by words instead of single symbols and they
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also allowed “don’t care” symbols to be used in addition to variables. In 2009,
Clifford et al. [8] considered parameterised pattern matching as introduced by
Amir and Nor, but without “don’t care” symbols, which led to patterns as in-
troduced by Angluin. In [2], motivations for the membership problem of pattern
languages can be found from such diverse areas as software engineering, image
searching, DNA analysis, poetry and music analysis, or author validation.

Our main research task is to identify parameters of patterns that, if re-
stricted to a constant, allow a polynomial time membership problem. The
benefit of finding such parameters is twofold. Firstly, we can learn what proper-
ties of a pattern are actually responsible for the complexity of the membership
problem, i. e., we achieve a refined complexity analysis of this problem. Sec-
ondly, restricting these parameters is likely to lead to improved algorithms for
the membership problem of pattern languages. The first such parameter that
comes to mind is the number of different variables in a pattern. Its restriction
constitutes a trivial way to obtain a polynomial time membership problem, since
the brute force algorithm that simply enumerates all possibilities to substitute
the variables by terminal words in order to check whether the input word can
be obtained is exponential in the number of variables (for a detailed complexity
analysis see Ibarra et al. [12]). Nevertheless, the number of variables is a central
parameter of patterns and important results about the learnability of pattern
languages (see Angluin [3] and Reischuk and Zeugmann [21]) as well as recent
results about the inclusion problem of pattern languages (see Bremer and Frey-
denberger [6]) are concerned with patterns with a restricted number of variables.
Moreover, Stephan et al. [25] investigate the parameterised complexity of the
membership problem for pattern languages and they show that it is fixed param-
eter intractable, if parameterised by the number of variables. The membership
problem for pattern languages given by patterns with only one occurrence per
variable (introduced by Shinohara [24]) is solvable in polynomial time, simply
because these patterns describe regular languages; hence, they are called regular
patterns. If the patterns are unrestricted, then the membership problem can
still be solved in polynomial time provided that the length of the input word is
bounded (see Geilke and Zilles [11]).

The arguably first nontrivial restriction of patterns that allow a polynomial
time membership problem are Shinohara’s non cross patterns [24], i. e., patterns
where between any two occurrences of the same variable x no other variable
different from x occurs. However, this result does not provide a structural
parameter of patterns that can be considered to contribute to the complexity
of the membership problem. Recently, in [19], an automata based approach
has been used in order to extend Shinohara’s result to an infinite hierarchy
of classes of pattern languages with a polynomial time membership problem.
The idea in [19] is to restrict a rather subtle parameter, namely the distance
several occurrences of any variable x may have in a pattern (i. e., the maximum
number of different variables separating any two consecutive occurrences of x).
This parameter is called the variable distance vd of a pattern α, and in [19]
it is demonstrated that the membership problem is solvable in time O(|α|3 ×
|w|(vd(α)+4)), so it is exponential only in the variable distance.
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In this work, we approach the problem of identifying such parameters in a
novel and quite general way. More precisely, we encode patterns and words as
relational structures and, thus, reduce the membership problem to the homo-
morphism problem for relational structures. Our main result is that for any
parameter of patterns that is an upper bound for the treewidth of the corre-
sponding relational structures, we obtain a polynomial time algorithm for the
membership problem if the parameter is bounded by a constant. In this new
framework, we can restate the known results about the complexity of the mem-
bership problem mentioned above, as well as identifying new and, compared to
the old results, rather large classes of patterns with a polynomial time member-
ship problem. Therefore, we provide a convenient way to study the membership
problem for pattern languages, which, as will be pointed out by our results, has
still potential for further improvements.

2. Preliminaries

Let N := {0, 1, 2, 3, . . .} denote the set of all natural numbers. For an arbi-
trary alphabet A, a string (over A) is a finite sequence of symbols from A, and
ε stands for the empty string. The notation A+ denotes the set of all nonempty
strings over A, and A∗ := A+∪{ε}. For the concatenation of two strings w1, w2

we write w1 · w2 or simply w1w2. We say that a string v ∈ A∗ is a factor of a
string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 · v ·u2. If u1 or u2 is the
empty string, then v is a prefix (or a suffix, respectively) of w. The notation
|K| stands for the size of a set K or the length of a string K. If we wish to refer
to the symbol at a certain position j, 1 ≤ j ≤ n, in a string w = a1 ·a2 · · · · ·an,
ai ∈ A, 1 ≤ i ≤ n, then we use w[j] := aj and if the length of a string is un-
known, then we denote its last symbol by w[−] := w[|w|]. Furthermore, for each
j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj · aj+1 · · · · · aj′ and w[j,−] := w[j, |w|].

Pattern Languages and Parameters of Patterns

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only if, for
every a ∈ A, h(a) 6= ε. Let Σ be a finite alphabet of so-called terminal symbols
and let X be a countably infinite set of variables with Σ∩X = ∅. We normally
assume X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ∪X and a
word is a string over Σ. For any pattern α, we refer to the set of variables in α as
var(α) and for any variable x ∈ var(α), |α|x denotes the number of occurrences
of x in α.

A morphism h : (Σ ∪X)
∗ → Σ∗ is called a substitution if h(a) = a for every

a ∈ Σ. We define the E-pattern language of a pattern α by LE,Σ(α) := {h(α) |
h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The NE-pattern language LNE,Σ(α) of α
is defined analogously, just with respect to nonerasing substitutions. Since in
this work the impact of the choice of the alphabet Σ is negligible, we mostly
denote pattern languages by LE(α) and LNE(α).
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The problem of deciding, for a given pattern α and a given word w ∈ Σ∗,
whether w ∈ LE(α) (or w ∈ LNE(α)) is called the membership problem for E-
pattern languages (or NE-pattern languages, respectively). For every class of
patterns C ⊆ (Σ ∪X)

∗
and every Z ∈ {E,NE}, Z-PATMem(C) denotes the

membership problem for Z-pattern languages where the patterns are restricted
to the class C.

We now formally define the already mentioned variable distance of a pattern,
which has been introduced in [19]. Informally speaking, the variable distance
is the maximum number of different variables separating any two consecutive
occurrences of a variable:

Definition 1. The variable distance of a pattern α (vd(α)) is the smallest
number k ≥ 0 such that, for every x ∈ var(α), every factorisation α = β ·x·γ ·x·δ
with β, γ, δ ∈ (Σ ∪X)∗ and |γ|x = 0 satisfies | var(γ)| ≤ k.

For example, vd(x1x2x3x2ax3x1x4bx3x5x5x4) = 2. Obviously, vd(α) ≤
| var(α)| − 1 for all patterns α.

The concept of the scope coincidence degree has already been introduced in
[18]. However, here we shall define it in a slightly different (yet equivalent) way.

Definition 2. Let α be a pattern. For every y ∈ var(α), the scope of y in α is
defined by scα(y) := {i, i+ 1, . . . , j}, where i is the leftmost and j the rightmost
position of y in α. The scopes of y1, y2, . . . , yk ∈ var(α) coincide in α if and
only if

⋂
1≤i≤k scα(yi) 6= ∅. The scope coincidence degree of α (scd(α)) is the

maximum number of variables in α such that their scopes coincide.

Let Σ := {a, b, c} and let the pattern β ∈ (Σ ∪ X)∗ be given by β :=
x1bx2ax1x3x2abx3x4x2x4x5bcbx1x4x5. Then each set {x1, x2, x3}, {x1, x2, x4}
and {x1, x4, x5} contains variables the scopes of which coincide, but there does
not exist a set of more than 3 variables with the same property. This directly
implies scd(β) = 3.

It is straightforward to see that the scope coincidence degree as well as the
variable distance can be computed in time linear in the length of the pattern.
The following lemma relates the variable distance and the scope coincidence
degree.

Lemma 3. Let α be a pattern. Then scd(α) ≤ vd(α) + 1.

Proof. Let scd(α) = k, which, by definition, implies that, for k distinct variables
y1, y2, . . . , yk ∈ var(α),

⋂
1≤i≤k scα(yi) 6= ∅. Furthermore, this implies that there

exists a p, 1 ≤ p ≤ k, such that α can be factorised into α = β · yp · γ with
({y1, y2, . . . , yk}/{yp}) ⊆ (var(β) ∩ var(γ)). Now let q, 1 ≤ q ≤ k, q 6= p,
be such that β can be factorised into β = β′ · yq · β′′ with ({y1, y2, . . . , yk}/
{yp, yq}) ⊆ var(β′′) and yq /∈ β′′. Since there is an occurrence of yq in γ,
γ can be factorised into γ = γ′ · yq · γ′′ with |γ′|yq = 0. Hence, α contains
the factor yq · β′′ · yp · γ′ · yq, where |β′′ · yp · γ′|yq = 0 and ({y1, y2, . . . , yk}/
{yq}) ⊆ var(β′′ · yp · γ′), which implies vd(α) ≥ k − 1 = scd(α)− 1.
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On the other hand, the variable distance cannot be bounded in terms of the
scope coincidence degree since, for example, all patterns of form x1 · x2 · x3 ·
. . . · xk · xk+1 · x1, k ∈ N, have a variable distance of k, but a constant scope
coincidence degree of 2.

Relational Structures, Treewidth and Homomorphism Problem

For the sake of completeness, we give the following standard definitions very
briefly. For a comprehensive description, the reader is referred to Chapters 4,
11 and 13 of Flum and Grohe [9].

A (relational) vocabulary τ is a finite set of relation symbols. Every relation
symbol R ∈ τ has an arity ar(R) ≥ 1. A τ -structure (or simply structure), com-
prises a finite set A called the universe and, for every R ∈ τ , an interpretation
RA ⊆ Aar(R). For example, every graph can be given as a relational structure
over a vocabulary with one binary relation symbol representing the edges. Let
A and B be structures of the same vocabulary τ with universes A and B, re-
spectively. A homomorphism from A to B is a mapping h : A → B such that
for all R ∈ τ and for all a1, a2, . . . , aar(R) ∈ A, (a1, a2, . . . , aar(R)) ∈ RA implies
(h(a1), h(a2), . . . , h(aar(R))) ∈ RB.

Next, we introduce the concepts of tree decompositions and treewidth of a
graph (see Chapter 11 of Flum and Grohe [9]).

Definition 4. A tree decomposition of a graph G := (V,E) is a pair (T , {Bt |
t ∈ T}), where T := (T, F ) is a tree and the Bt, t ∈ T , are subsets of V such
that the following is satisfied:

1. For every v ∈ V , the set {t ∈ T | v ∈ Bt} is nonempty and connected in
T .

2. For every edge {u, v} ∈ E there is a t ∈ T such that {u, v} ⊆ Bt.

The width of the tree decomposition (T , {Bt | t ∈ T}) is the number max{|Bt| |
t ∈ T} − 1. The treewidth of G (denoted by tw(G)) is the minimum of the
widths of the tree decompositions of G.

A tree decomposition, the underlying tree of which is a path, is also called a
path decomposition and the pathwidth of a graph G (denoted by pw(G)) is defined
as the treewidth, just with respect to path decompositions. For the sake of con-
venience, we shall denote a path decomposition as a sequence (B1, B2, . . . , Bk) of
sets of vertices without the component of the tree T . Obviously, tw(G) ≤ pw(G).

Tree decompositions for general τ -structures are defined in a similar way
as for graphs, with the difference that the sets Bt contain now elements from
the universe A of the structure instead of vertices. Furthermore, analogously
as for tree decompositions of graphs, the sets {t ∈ T | a ∈ Bt}, a ∈ A, must
be nonempty and connected in T , but instead of requiring each edge to be
represented in some Bt, we require that, for every relation symbol R ∈ τ and
every tuple (a1, . . . , aar(R)) ∈ RA there is a t ∈ T such that a1, . . . , aar(R) ∈
Bt (see Chapter 11 of Flum and Grohe [9] for a detailed definition). Path
decompositions, the treewidth and the pathwidth of relational structures are
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also defined in an analogous way as for graphs. Tree decompositions of relational
structures can also be characterised in terms of classical graphs. To this end, we
need the concept of the Gaifman graph of a τ -structure A, which is the graph
that has the universe A of A as vertices and two vertices are connected if and
only if they occur together in some relation (see Chapter 11 of Flum and Grohe
[9]).

Proposition 5. A relational structure has the same tree decompositions as its
Gaifman graph.

The previous proposition particularly implies that the treewidth of a struc-
ture equals the treewidth of its Gaifman graph. Thus, the Gaifman graph
provides a convenient means to handle tree decompositions and the treewidth
of structures. We say that a class of structures C has bounded treewidth if and
only if there exists a k ∈ N such that, for every A ∈ C, tw(A) ≤ k.

The homomorphism problem HOM is the problem to decide, for given struc-
tures A and B, whether there exists a homomorphism from A to B. For any
set of structures C, by HOM(C) we denote the homomorphism problem that
is restricted in such a way that the left hand input structure is from C. If C
is a class of structures with bounded treewidth, then HOM(C) can be solved
in polynomial time. This is a classical result that has been first achieved in
terms of constraint satisfaction problems by Freuder [10] (see also Chapter 13
of Flum and Grohe [9]).

Theorem 6 (Freuder [10]). Let C be a set of structures with bounded treewidth.
Then HOM(C) is solvable in polynomial time.

We shall briefly sketch how a tree decomposition of a structure A can be
used in order to decide whether or not there exists a homomorphism from A
to another structure A′. The naive way of deciding on the existence of a ho-
momorphism is to simply enumerate all possible mappings from A to A′, the
universes of structures A and A′, respectively, and check whether or not one of
them satisfies the homomorphism condition. However, with a tree decomposi-
tion (T := (T, F ), {Bt | t ∈ T}) of A, for every t ∈ T , we can first compute all
mappings from Bt to A′ that satisfy the homomorphism condition with respect
to the elements in Bt. Then, by inductively merging these partial mappings
according to the tree structure T , we can construct a homomorphism from A to
A′ if one exists. The correctness of this last step is provided by the conditions
stating that, for every a ∈ A, {t ∈ T | a ∈ Bt} is nonempty and connected in
T and, for every relation symbol R ∈ τ and every tuple (a1, . . . , aar(R)) ∈ RA
there is a t ∈ T such that a1, . . . , aar(R) ∈ Bt. In this procedure, we do not
need to enumerate complete mappings, but only mappings for a number of ele-
ments that is bounded by the width of the tree decomposition. Hence, the time
complexity of this approach is exponential only in the treewidth.
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3. Patterns and Words as Relational Structures

In this section, we introduce a way of representing patterns and terminal
words as relational structures. Our overall goal is to reduce the membership
problem for pattern languages to the homomorphism problem for relational
structures.

Representing words as relational structures is a common technique when
mathematical logic is applied to language theory (see, e. g., Thomas [26] for
a survey). However, our representations of patterns and words by structures
substantially differ from the standard technique, since our approach is tailored to
the homomorphism problem of structures and, furthermore, we want to exploit
the treewidth.

In order to encode patterns and terminal words, i. e., an instance of the
membership problem for pattern languages, we use the relational vocabulary
τΣ := {E,S, L,R}∪ {Db | b ∈ Σ}, where E,S are binary relations and L,R,Db,
b ∈ Σ, are unary relations. The vocabulary depends on Σ, the alphabet under
consideration. In order to represent a pattern α by a τΣ-structure, we interpret
the set of positions of α as the universe. The roles of S, L, R and Db, b ∈ Σ, are
straightforward: S relates adjacent positions, L and R denote the leftmost and
rightmost position, respectively, and, for every b ∈ Σ, the relation Db contains
the positions in α where the terminal symbol b occurrs. For the encoding of
the variables, we do not explicitly store their positions in the pattern, which
seems impossible, since the number of different variables can be arbitrarily large
and we can only use a finite number of relation symbols. Instead, we use the
relation E in order to record pairs of positions where the same variable occurs
and, furthermore, this is done in a “sparse” way. More precisely, the relation E
relates some positions with the same variable, i. e., positions i, j with α[i] = α[j],
in such a way that the symmetric transitive closure of E contains all pairs (i, j)
with α[i] = α[j] and α[i] ∈ X. This way of interpreting the relation E is crucial
for our results.

We now state the formal definition and shall illustrate it afterwards.

Definition 7. Let α be a pattern and let Aα be a τΣ-structure. We call Aα an
α-structure if it has universe Aα := {1, 2, . . . , |α|} and SAα := {(i, i + 1) | 1 ≤
i ≤ |α| − 1}, LAα := {1}, RAα := {|α|}, for every b ∈ Σ, DAαb := {i | α[i] = b},
and EAα is such that, for all i, j ∈ Aα,

� (i, j) ∈ EAα implies α[i] = α[j] and i 6= j,

� α[i] = α[j] implies that (i, j) is in the symmetric transitive closure of EAα .

Since τΣ contains only unary and binary relation symbols, it is straight-
forward to derive the Gaifman graph from an α-structure, which is simply a
graph with two different kinds of edges due to SAα and EAα . Hence, in the
following, we shall switch between these two models at our convenience without
explicitly mentioning it. In the previous definition, the universe as well as the
interpretations for the relation symbols S, L, R and Db, b ∈ Σ, are uniquely
defined for a fixed pattern α, while there are several possibilities of defining
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an interpretation of E. Intuitively, a valid interpretation of E is created by
connecting different occurrences of the same variable by edges in such a way
that all the occurrences of some variable describe a connected component. The
simplest way of doing this is to add an edge between any two occurrences of
the same variable, i. e., EAα := {(i, j) | α[i] = α[j]}. However, we shall see
that for our results the interpretation of E is crucial and using the one just
mentioned is not advisable. Another example of a valid interpretation of E is
the following one. For every x ∈ var(α), let lx be the leftmost occurrence of x
in α. Defining EAα :=

⋃
x∈var(α){(lx, i) | lx < i ≤ |α|, α[i] = x} yields another

possible α-structure.
Next, we define a canonical α-structure, i. e., the interpretation of E is such

that every occurrence of a variable x at position i is connected to the next
occurrence of x to the right of position i.

Definition 8. Let α be a pattern. The standard α-structure (Asα) is the α-
structure where EA

s
α := {(i, j) | 1 ≤ i < j ≤ |α|,∃ x ∈ X such that x = α[i] =

α[j] and α[k] 6= x, i < k < j}.
As an example, we consider the standard α-structure Asα for the pattern

α := x1abx1bx2ax1x2x1. The universe of Asα is Aα = {1, 2, . . . , 10} and the
relations are interpreted in the following way. SA

s
α = {(1, 2), (2, 3), . . . , (9, 10)},

LA
s
α = {1}, RAsα = {10}, DA

s
α

a = {2, 7}, DA
s
α

b = {3, 5} and, finally, EA
s
α =

{(1, 4), (4, 8), (6, 9), (8, 10)}.
We now introduce our representation of words over the terminal alphabet

Σ as τΣ-structures. We recall that it is our goal to represent the membership
problem for pattern languages as homomorphism problem for relational struc-
tures. Hence, the way we represent terminal words by τΣ-structures must cater
for this purpose. Furthermore, we have to distinguish between the E case and
the NE case. We first introduce the NE case and shall afterwards point out how
to extend the constructions for the E case. We choose the universe to be the set
of all possible factors of w, where these factors are represented by their unique
start and end positions in w; thus, two factors that are equal but occur at dif-
ferent positions in w are different elements of the universe. The interpretation
of L contains all prefixes and the interpretation of R contains all suffixes of w.
The interpretation of S, which for patterns contains pairs of adjacent symbols,
contains now pairs of adjacent (non-overlapping) factors of w. The relation E
is interpreted such that it contains all pairs of factors that are equal and non-
overlapping. Finally, for every b ∈ Σ, Db contains all factors of length one that
equal b. This is necessary for the possible terminal symbols in the pattern.

For the E case, the empty factors of w need to be represented as well. To
this end, for every i, 0 ≤ i ≤ |w|, we add an element iε to the universe denoting
the empty factor between positions i and i + 1 in w. The interpretations of
L and R are extended to also contain the empty prefix and the empty suffix,
respectively, and relation S is extended to relate non-empty factors to adjacent
empty factors and, in addition, each empty factor is also related to itself by S.
Next, we formally define this construction for the NE case and its extension to
the E case.
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Definition 9. Let w ∈ Σ∗ be a terminal word. The NE-w-structure (Aw) with
universe Aw is defined by

� Aw := {(i, j) | 1 ≤ i ≤ j ≤ |w|},

� EAw := {((i, j), (i′, j′)) | j < i′ or j′ < i,w[i, j] = w[i′, j′]},

� SAw := {((i, j), (j + 1, j′)) | 1 ≤ i ≤ j, j + 1 ≤ j′ ≤ |w|},

� LAw := {(1, j) | 1 ≤ j ≤ |w|},

� RAw := {(i, |w|)| | 1 ≤ i ≤ |w|} and,

� for every b ∈ Σ, DAwb := {(i, i) | w[i] = b}.

Let Aw be the NE-w-structure with universe Aw. We define the E-w-structure
(Aεw) with universe Aεw as follows:

� Aεw := Aw ∪ {iε | 0 ≤ i ≤ |w|},

� EA
ε
w := EAw ∪ {(iε, jε) | 0 ≤ i ≤ |w|, 0 ≤ j ≤ |w|},

� SA
ε
w := SAw ∪ {(iε, iε) | 0 ≤ i ≤ |w|} ∪

{((i, j), jε)) | 1 ≤ i ≤ j ≤ |w|} ∪ {(iε, (i+ 1, j)) | 0 ≤ i ≤ j ≤ |w|},

� LA
ε
w := LAw ∪ {0ε},

� RA
ε
w := RAw ∪ {|w|ε} and,

� for every b ∈ Σ, D
Aεw
b := DAwb .

We illustrate the above definition with a brief example. To this end, let
w := abab. According to Definition 9, the universe of the NE-w-structure Aw
is the set of all factors of w, given by their start and end positions in w, i. e.,

Aw = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)} .

For every i, j, k, 1 ≤ i ≤ j < k ≤ 4, the elements (i, j) and (j + 1, k) are in S
relation under Aw. Thus,

SAw = {((1, 1), (2, 2)), ((1, 1), (2, 3)), ((1, 1), (2, 4)), ((1, 2), (3, 3)),

((1, 2), (3, 4)), ((1, 3), (4, 4)), ((2, 2), (3, 3)), ((2, 2), (3, 4)),

((2, 3), (4, 4)), ((3, 3), (4, 4))} .

Every prefix of w is in L relation and every suffix of w is in R relation under Aw.
Hence, LAw = {(1, 1), (1, 2), (1, 3), (1, 4)} andRAw = {(1, 4), (2, 4), (3, 4), (4, 4)}.
Furthermore, DAwa and DAwb contain all factors that correspond to a single oc-
currence of a and b, respectively, which implies DAwa = {(1, 1), (3, 3)}, DAwb =
{(2, 2), (4, 4)}. Finally, two elements (i, j) and (i′, j′) are in E relation under
Aw if and only if w[i, j] = w[i′, j′]; thus,

EAw = {((1, 1), (3, 3)), ((2, 2), (4, 4)), ((1, 2), (3, 4)),

((3, 3), (1, 1)), ((4, 4), (2, 2)), ((3, 4), (1, 2))} .
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In the following lemma we state that the membership problem for pattern
languages can be reduced to the homomorphism problem for relational struc-
tures. We shall informally explain this for the case of NE-pattern languages
given by patterns that do not contain any terminal symbols. Let α be a pattern
without terminal symbols and let w be a terminal word, let Aα be an α-structure
and let Aw be the NE-w-structure. If there exists a substitution h that maps
α to w, then we can construct a homomorphism g from Aα to Aw by mapping
the positions of α to the factors of w according to the substitution h. If two
positions in α are adjacent, then so are their images under h in w and the same
holds for equal variables in α; hence, g is a valid homomorphism. If, on the
other hand, there exists a homomorphism g from Aα to Aw, then the elements
of the universe of Aα, i. e., positions of α, are mapped to factors of w such that
a factorisation of w is described. This is enforced by the relations S, L and R.
Furthermore, this mapping from α to w induced by g is a substitution, since
the symmetric transitive closure of EAα contains all pairs (i, j) with α[i] = α[j]
and α[i] ∈ X. For general patterns with terminal symbols and for the E case
the idea is the same, but the situation is technically more complex.

Lemma 10. Let α be a pattern, w ∈ Σ∗ and let Aα be an α-structure. Then
w ∈ LNE(α) (or w ∈ LE(α)) if and only if there exists a homomorphism from
Aα to Aw (or from Aα to Aεw, respectively).

Proof. We only prove the E-case, i. e., w ∈ LE(α) if and only if there exists a
homomorphism from Aα to Aεw. The proof for the NE-case is easier and can
be done analogously. We start with the if direction. To this end, we assume
that there exists a homomorphism g : Aα → Aεw from Aα to Aεw, i. e., for every
p, q ∈ Aα,

� if (p, q) ∈ EAα , then (g(p), g(q)) ∈ EAεw ,

� if (p, q) ∈ SAα , then (g(p), g(q)) ∈ SAεw ,

� for every b ∈ Σ, if p ∈ DAαb , then g(p) ∈ DA
ε
w

b

� g(1) ∈ LAεw and

� g(|α|) ∈ RAεw .

For the sake of convenience, we partition the universe ofAεw into Aεw = A¬εw ∪Aεw,
where A¬εw := {(i, j) | 1 ≤ i ≤ j ≤ |w|} and Aεw := {iε | 0 ≤ i ≤ |w|}.
For every p ∈ Aα, if g(p) = (s, t) ∈ A¬εw , then we define h(α[p]) := w[s, t]
and if, on the other hand, g(p) ∈ Aεw, then we define h(α[p]) := ε. We can

observe that if α[p] is a terminal b ∈ Σ, then p ∈ DAαb . Thus, g(p) ∈ D
Aεw
b ,

which implies g(p) = (s, s) with w[s] = b and, therefore, h(b) = b. For every
p, q ∈ Aα with α[p] = α[q] and α[p] ∈ X, (p, q) is in the symmetric transitive
closure of EAα . We note that, by definition, EA

ε
w equals its symmetric transitive

closure. Hence, we can conclude that (g(p), g(q)) ∈ EAεw , which implies that, if
(s, t) := g(p) and (s′, t′) := g(q), then w[s, t] = w[s′, t′]. Since h(α[p]) = w[s, t]
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and h(α[q]) = w[s′, t′], we may conclude h(α[p]) = h(α[q]). Consequently, h is
a valid substitution and it remains to show h(α) = w.

For every p ∈ Aα, p < |α|, (p, p+1) ∈ SAα and, thus, (g(p), g(p+1)) ∈ SAεw .
By definition of SA

ε
w , this implies that either

1. g(p) = (s, t) ∈ A¬εw and g(p+ 1) = (t+ 1, t′) ∈ A¬εw ,

2. g(p) = sε ∈ Aεw and g(p+ 1) = (s+ 1, t′) ∈ A¬εw ,

3. g(p) = (s, t) ∈ A¬εw and g(p+ 1) = tε ∈ Aεw or

4. g(p) = sε ∈ Aεw and g(p+ 1) = sε ∈ Aεw.

By the definition of h above, we can conclude that, for every p, q ∈ Aα, p < q,
with g(p) = (s, t) ∈ A¬εw and g(q) = (s′, t′) ∈ A¬εw , h(α[p, q]) = w[s, t′]. Now let
l, r ∈ Aα such that g(l), g(r) ∈ A¬εw and, for every i with 1 ≤ i < l and r < i ≤
|w|, g(i) ∈ Aεw. This particularly means that g(l) = (1, t) and g(r) = (s′, |w|).
Since 1 ∈ LAα and |α| ∈ RAα , we can conclude that g(i) = 0ε, 1 ≤ i < l, and
g(i) = |w|ε, r < i ≤ |α|. Consequently, h(α[1, l − 1]) = ε, h(α[l, r]) = w and
h(α[r + 1, |α|]) = ε; hence, h(α) = w.

For the only if direction, we assume that there exists a substitution h with
h(α) = w. We define a mapping g : Aα → Aεw in the following way. For every
p ∈ Aα, if h(α[p]) 6= ε, then we define g(p) := (|h(α[1, p− 1])|+ 1, |h(α[1, p])|) ∈
A¬εw and, if h(α[p]) = ε, then we define g(p) := |h(α[1, p − 1])|ε ∈ Aεw. It
remains to show that g is a homomorphism from Aα to Aεw. For every b ∈ Σ,
if p ∈ DAαb , then α[p] = h(α[p]) = b; thus, g(p) = (s, s), where s := |h(α[1, p])|,
and, since h(α) = w, w[s] = b, which implies g(p) ∈ DA

ε
w

b . Obviously, either
g(1) = (1, |h(α[1])|) or g(1) = 0ε, and therefore g(1) ∈ LAεw . Similarly, either
g(|α|) = (|h(α[1, |α| − 1])| + 1, |h(α[1, |α|])|) or g(|α|) = |α|ε, which implies
g(|α|) ∈ RAεw . For every p, q ∈ Aα, if (p, q) ∈ EAα , then α[p] = α[q] and, since
h(α[p]) = h(α[q]), either g(p) = (s, t) and g(q) = (s′, t′) with w[s, t] = w[s′, t′] or
g(p) = sε and g(q) = s′ε. In both cases we can conclude that (g(p), g(q)) ∈ EAεw .
Let p ∈ Aα, p < |α|. We recall that (p, p+ 1) ∈ SAα and observe four possible
cases:

� If g(p), g(p+ 1) ∈ A¬εw , then g(p) = (s, t) and g(p+ 1) = (t+ 1, t′).

� If g(p) ∈ Aεw and g(p+ 1) ∈ A¬εw , then g(p) = sε and g(p+ 1) = (s+ 1, t′).

� If g(p) ∈ A¬εw and g(p+ 1) ∈ Aεw, then g(p) = (s, t) and g(p+ 1) = tε.

� If g(p), g(p+ 1) ∈ A¬εw , then g(p) = sε and g(p+ 1) = sε.

For all of these cases, (g(p), g(p+ 1)) ∈ SAεw is implied. This shows that g is an
homomorphism from Aα to Aεw, which concludes the proof of the lemma.

The above lemma shows that the membership problem for pattern languages
is reducible to the homomorphism problem for relational structures and, thus, it
can be solved by first transforming the pattern and the word into an α-structure
and the NE-w-structure or E-w-structure and then deciding the homomorphism
problem for these structures.
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In the following, we say that a set of patterns P has bounded treewidth
if and only if there exists a polynomial time computable mapping g that maps
every α ∈ P to an α-structure, such that {g(α) | α ∈ P} has bounded treewidth.
From Theorem 6 and Lemma 10 we can conclude the following result.

Corollary 11. Let P ⊆ (X ∪ Σ)+ be a set of patterns with bounded treewidth.
Then NE-PATMem(P ) and E-PATMem(P ) are decidable in polynomial time.

Proof. We assume that P has a bounded treewidth of k ∈ N. Let α ∈ P and
let w ∈ Σ∗. Obviously, w can be converted into the E-w-structure Aεw or into
the NE-w-structure Aw in time O(|w|4). Furthermore, by assumption, an α-
structure Aα that satisfies tw(Aα) ≤ k can be computed in polynomial time.
From Theorem 6, it follows that we can check whether or not there exists a
homomorphism from Aα to Aεw (or from Aα to Aw, respectively) in polynomial
time. Now by Lemma 10, we can conclude the statement of the corollary.

Due to Corollary 11, the task of identifying classes of patterns for which the
membership problem is decidable in polynomial time can now be seen from a
different angle, i. e., as the problem of finding classes of patterns with bounded
treewidth. The fact that we can easily rephrase known results about the com-
plexity of the membership problem for pattern languages in terms of standard
α-structures with a bounded treewidth, pointed out by the following propo-
sition, indicates that this point of view is natural and fits with our current
knowledge of the membership problem for pattern languages.

Proposition 12. For every k ∈ N, the sets of patterns {α | α is regular},
{α | α is non-cross}, {α | | var(α)| ≤ k} and {α | vd(α) ≤ k} have all bounded
treewidth.

Proof. If α is regular, then Asα is a path and, thus, tw(Asα) = 1. If α is non-
cross, then it is straightforward to construct a path decomposition of Asα with
a width of at most 2. We can note that, by Lemma 3, scd(α) ≤ vd(α) + 1 and,
obviously, vd(α) + 1 ≤ | var(α)|. In Section 4, Lemma 15, it will be shown that
tw(Asα) ≤ scd(α)+1, which implies that {α | | var(α)| ≤ k} and {α | vd(α) ≤ k}
have bounded treewidth.

We conclude that our encoding of the membership problem for pattern lan-
guages in terms of the homomorphism problem for relational structures is nat-
ural and the hardness of the membership problem seems to be covered by the
treewidth of the α-structures.

In the next section, we show that the numerical parameter of the scope
coincidence degree of a pattern α is an upper bound for the treewidth of the
standard α-structure; thus, restricting it yields classes of patterns with a poly-
nomial time solvable membership problem. Moreover, in Section 5, we identify
a large class of patterns with a bounded treewidth of 2, but an unbounded scope
coincidence degree.
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4. Patterns with Restricted Scope Coincidence Degree

In order to show that, for every k ∈ N, the set {α | scd(α) ≤ k} has bounded
treewidth we define, for any pattern α, a path decomposition of its standard
α-structure.

Definition 13. Let α be a pattern and let V := {v1, v2, . . . , v|α|} be the set of
vertices of the Gaifman graph of its standard α-structure, where, for every i,
1 ≤ i ≤ |α|, vi corresponds to α[i]. We inductively construct a sequence Pα of
subsets of V in the following way.

1. Add {v1} to Pα, add {v1, v2} to Pα, define B := {v1, v2} and i := 3.

2. Define B := B∪{vi} and, if α[i−2] is a terminal symbol or the rightmost
occurrence of a variable in α, then define B := B \ {vi−2}.

3. Add B to Pα.

4. If α[i] = x ∈ X, but α[i] is not the leftmost occurrence of x, then define
B := B \ {vj}, where j < i, α[j] = x and, for every j′, j < j′ < i,
α[j′] 6= x.

5. Define i := i+ 1 and if i ≤ |α|, then go to Step 2.

Intuitively, the sequence Pα := (B1, B2, . . . , Bk) is constructed in the fol-
lowing way. The first two sets are {v1} and {v1, v2}, respectively, and every
following set is obtained from the previous one by adding the next vertex vi and
removing vi−2 if it corresponds to a terminal or the rightmost occurrence of a
variable. Furthermore, if vi corresponds to a variable that is not the leftmost
occurrence of that variable, then the previous occurrence of this variable is still
in our set and can now be removed. This ensures that for every edge {vi, vj}
of the Gaifman graph of the standard α-structure, there exists an l, 1 ≤ l ≤ k,
such that {vi, vj} ⊆ Bl. Furthermore, it can be easily verified that, for ev-
ery vertex v of the Gaifman graph of the standard α-structure, there exist i, j,
1 ≤ i < j ≤ k, such that v ∈

⋂j
l=iBl and v /∈ ((

⋃i−1
l=1 Bl) ∪ (

⋃k
l=j+1Bl)). Since,

for every i, 1 ≤ i ≤ k, exactly one element Bi is added to Pα in the construc-
tion of Definition 13, we can conclude that k = |α|. We can further note that,
for every i, 2 ≤ i ≤ k, Bi contains exactly one new vertex that is not already
contained in Bi−1, i. e., |Bi \ Bi−1| = 1. Next, we shall illustrate Definition 13
by a short example. Let β := x1ax2x1abx2x3x3. Then Pα = ({v1}, {v1, v2},
{v1, v2, v3}, {v1, v3, v4}, {v3, v4, v5}, {v3, v5, v6}, {v3, v6, v7}, {v7, v8}, {v8, v9}).

The above considerations imply the following:

Proposition 14. Let α be a pattern. Then Pα := (B1, B2, . . . , Bk) is a path
decomposition of the Gaifman graph of its standard α-structure. Moreover, k =
|α| and, for every i, where 2 ≤ i ≤ |α|, we have |Bi \Bi−1| = 1.

We call Pα the standard path decomposition of α and we shall now show
that the width of the standard path decomposition is bounded by the scope
coincidence degree of the corresponding pattern.

Lemma 15. Let α be a pattern. Then the standard path decomposition of α
has width at most scd(α) + 1.

14



Proof. Let Pα := (B1, B2, . . . , B|α|) be the standard path decomposition of α.
We assume to the contrary that Pα has a width of at least scd(α) + 2, which
implies that there exists a q, 1 ≤ q ≤ |α|, such that |Bq| = m ≥ scd(α) + 3. Let
Bq := {vi1 , vi2 , . . . , vim}, where the vertices of Bq are in ascending order with
respect to their indices. By definition of the standard path decomposition of
α, for every j, 1 ≤ j ≤ m − 2, vij corresponds to an occurrence of a distinct
variable yj in α. Furthermore, for every j, 1 ≤ j ≤ m− 2, there must exist an
occurrence of yj to the left and to the right of position q in α. This is due to
the fact that if there is no occurrence of yj to the left of q, then no vertex that
corresponds to an occurrence of variable yj is contained in Bq, and if there is
no occurrence of yj to the right of q, then vertex vij would have been removed
in Step 2 of the procedure described in Definition 13. This directly implies that
the scopes of variables y1, y2, . . . , ym−2 coincide and, since m ≥ scd(α)+3, there
are at least scd(α) + 1 variables in α, the scopes of which coincide, which is a
contradiction.

By the previous lemma, we can conclude that, for every pattern α, the
treewidth of the standard α-structure is bounded by the scope coincidence de-
gree of α. Hence, for every k ∈ N, the class of patterns {α | scd(α) ≤ k} has
bounded treewidth, and by Corollary 11 we can conclude that E-PATMem({α |
scd(α) ≤ k}) and NE-PATMem({α | scd(α) ≤ k}) are solvable in polynomial
time. However, we are interested in more detailed analyses of the time com-
plexity of these problems. To this end, we give an algorithm that solves the
homomorphism problem for the standard α-structure and a w-structure by us-
ing the standard path decomposition of α and analyse its time complexity. This
algorithm follows the obvious way of using tree decompositions, which has al-
ready been briefly outlined at the end of Section 2. Hence, the main effort is to
determine its runtime.

Theorem 16. Let k ∈ N and Z ∈ {E,NE}. The problem Z-PATMem({α |
scd(α) ≤ k}) is solvable in time O(|α| × |w|2(k+3) × (k + 2)2).

Proof. We only show that NE-PATMem({α | scd(α) ≤ k}) is solvable in time
O(|α|×|w|2(k+3)× (k+2)2), since the E case can be dealt with analogously. Let
(α,w) be an instance of NE-PATMem({α | scd(α) ≤ k}). We decide on whether
or not w ∈ LNE(α) by reduction to the homomorphism problem for relational
structures. To this end, we first need to construct Asα and Aw, which can be
done in time O(|w|4 + |α|). Let Aα and Aw be the universes of Asα and Aw,
respectively, and let Pα := (B1, B2, . . . , B|α|) be the standard path decomposi-
tion of α. Before we give an algorithm deciding on whether or not there exists
a homomorphism from Asα to Aw, we introduce some helpful notations.

Let h be a partial mapping from Aα to Aw. We say that h satisfies condition
(∗) if and only if, for every R ∈ τΣ and for all a1, a2, . . . , aar(R) ∈ Aα for which

h is defined, (a1, a2, . . . , aar(R)) ∈ RA
s
α implies (h(a1), h(a2), . . . , h(aar(R))) ∈

RAw . Let A := (a1, a2, . . . , ak) and B := (b1, b2, . . . , bk) be arbitrary tuples of
equal length. Then A 7→ B denotes the mapping that, for every 1 ≤ i ≤ k,
maps ai to bi. For any C ⊆ Aα, ord(C) is a tuple containing the elements from
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C in increasing order (recall that Aα = {1, 2, . . . , |α|}). Two partial mappings
g and h from Aα to Aw are called compatible if and only if, for every a ∈ Aα
for which both h and g are defined, g(a) = h(a) is satisfied.

In the following, we shall describe an algorithm that decides on whether or
not there exists a homomorphism from Asα to Aw. First, we compute a set H1

of all tuples C of size |B1| containing elements from Aw such that the mapping
ord(B1) 7→ C satisfies condition (∗). After that, for every i, 2 ≤ i ≤ |α|, we
inductively compute a set Hi that is defined in the following way. For every tuple
C of size |Bi| containing elements from Aw, if the mapping ord(Bi) 7→ C satisfies
condition (∗) and the set Hi−1 contains a tuple C ′ such that the mappings
ord(Bi) 7→ C and Bi−1 7→ C ′ are compatible, then we add C to Hi.

We now claim that there exists a homomorphism from Asα to Aw if and only
if H|α| is nonempty. In order to prove this claim, we first assume that there
exists a homomorphism from Asα to Aw. Now, for every i, 1 ≤ i ≤ |α|, let
Ci be the tuple of elements from Aw, such that the mappings ord(Bi) 7→ Ci,
1 ≤ i ≤ |α|, if combined, form h. We note that this particularly implies that
each two of the mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, are compatible. Since
h is a homomorphism from Asα to Aw, for every i, 1 ≤ i ≤ |α|, the mapping
ord(Bi) 7→ Ci satisfies condition (∗). This implies that C1 ∈ H1 holds and
if, for some i, 1 ≤ i ≤ |α| − 1, Ci ∈ Hi is satisfied, then, since the mappings
ord(Bi) 7→ Ci and ord(Bi+1) 7→ Ci+1 are compatible, Ci+1 ∈ Hi+1 follows. By
induction, this implies that H|α| contains C|α| and, thus, is nonempty.

Next, we assume that H|α| is nonempty; thus, it contains some C|α|. By
definition, this directly implies that, for every i, 1 ≤ i ≤ |α| − 1, Hi contains
some element Ci and, without loss of generality, we can also conclude that, for
every i, 1 ≤ i ≤ |α| − 1, the mappings ord(Bi) 7→ Ci and ord(Bi+1) 7→ Ci+1

are compatible. Furthermore, since, for every a ∈ Aα, there must exist at
least one i, 1 ≤ i ≤ |α|, with a ∈ Bi and, for all j, j′, 1 ≤ j < j′ ≤ |α|,
a ∈ (Bj ∩ Bj′) implies a ∈ Bj′′ , j ≤ j′′ ≤ j′, we can conclude that each two
of the mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, are compatible and for every
a ∈ Aα at least one of the mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|, is defined.
This particularly implies that we can construct a total mapping h from Aα
to Aw by combining all the mappings ord(Bi) 7→ Ci, 1 ≤ i ≤ |α|. Now let
a1, a2, . . . , aar(R) be arbitrary elements from Aα such that, for some R ∈ τΣ,

(a1, a2, . . . , aar(R)) ∈ RA
s
α . Since there must exist an i, 1 ≤ i ≤ |α|, with

a1, a2, . . . , aar(R) ∈ Bi and since Ci ∈ Hi, i. e., ord(Bi) 7→ Ci satisfies condition
(∗), we can conclude that (h(a1), h(a2), . . . , h(aar(R))) ∈ RAw , which implies
that h is a homomorphism from Asα to Aw.

It remains to determine the runtime of the above algorithm. A central
element of that algorithm is to check whether or not, for some i, 1 ≤ i ≤
|α|, and some tuple C of size |Bi| containing elements from Aw, the mapping
ord(Bi) 7→ C satisfies condition (∗). Since the arity of any relation symbol
in τΣ is at most 2, this can be done in time O(|Bi|2). The set H1 can be
computed by simply considering every tuple C of elements from Aw of size
|B1| and checking whether ord(B1) 7→ C satisfies condition (∗). Thus, time
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O(|B1|2 × |Aw||B1|) is sufficient for computing H1 and it remains to compute
Hi, for every i, 2 ≤ i ≤ |α|. We recall that in order to compute such an
Hi, we need to collect all tuples C of size |Bi| containing elements from Aw
such that the mapping ord(Bi) 7→ C satisfies condition (∗) and the set Hi−1

contains a tuple C ′ such that the mappings ord(Bi) 7→ C and ord(Bi−1) 7→
C ′ are compatible. However, this can be done without having to enumerate
all possible tuples C of size |Bi| and then check for each such tuple whether
or not Hi−1 contains a tuple C ′ such that the mappings ord(Bi) 7→ C and
ord(Bi−1) 7→ C ′ are compatible. This is due to the fact that, by Proposition 14,
|Bi \Bi−1| = 1, thus, all elements but one of the tuple C are already determined
by the condition that there needs to be a C ′ ∈ Hi−1 such that the mappings
ord(Bi) 7→ C and ord(Bi−1) 7→ C ′ are compatible. Consequently, there are
at most |Aw| × |Hi−1| tuples that need to be checked for whether or not they
satisfy condition (∗). We conclude that the set Hi can be computed in time
O(|Aw| × |Aw||Bi−1| × |Bi|2) = O(|Aw||Bi−1|+1 × |Bi|2). Since, by Lemma 15,
the width of the standard path decomposition is at most k + 1, which implies
|Bi| ≤ k + 2, for every i, 1 ≤ i ≤ |α|, we can conclude that the total runtime of
the algorithm is O(|α| × |Aw|k+3× (k+ 2)2) = O(|α| × |w|2(k+3)× (k+ 2)2).

The above result is similar to, but much stronger than the result that every
class of patterns with a bounded variable distance has a polynomial time mem-
bership problem (see [19]). This is due to the fact that if the variable distance
is bounded by a constant, then this constitutes a much stronger restriction on
the structure of a pattern than if the scope coincidence degree is restricted.
Intuitively, this can be illustrated by the following situation. For an arbitrary
pattern α := α1 ·α2, we insert a pattern β with var(α)∩ var(β) = ∅ into α, i. e.,
α′ := α1 · β · α2. Now, if var(α1) ∩ var(α2) 6= ∅, then the variable distance of α′

increases at least by | var(β)| − vd(α) compared to α regardless of the structure
of β. This implies that it is rather difficult to enlarge a pattern by inserting new
variables without increasing its variable distance. On the other hand, the scope
coincidence degree of α′ increases at least by scd(β) − scd(α) compared to α.
This implies that the scope coincidence degree of α′ depends on the structure
of β or, more precisely, on the scope coincidence degree of β.

In the next section, we shall identify another structural property of patterns
that allows the membership problem to be solved in polynomial time and that
is incomparable to the variable distance and the scope coincidence degree.

5. Mildly Entwined Patterns

Let α be a pattern. We say that two variables x, y ∈ var(α) are entwined
if and only if there exists a factorisation α = β · x · γ1 · y · γ2 · x · γ3 · y · δ or
α = β · y · γ1 · x · γ2 · y · γ3 · x · δ, where β, γ1, γ2, γ3, δ ∈ (X ∪ Σ)∗. If no two
variables in α are entwined, then α is a nested pattern. Intuitively, in a nested
pattern, if a variable x occurs between two occurrences of another variable y,
then all occurrences of x occur between these two occurrences of y. For example,
x1x3x3x4x4x1x5x5x1x2x6x7x7x6x2 is a nested pattern.
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Next, we define a class of patterns that comprises entwined variables, but in
a very restricted form.

Definition 17. A pattern α is closely entwined if, for all x, y ∈ var(α), the
existence of a factorisation α = β · x · γ1 · y · γ2 · x · γ3 · y · δ with β, γ1, γ2, γ3, δ ∈
(X ∪ Σ)∗ and |γ2|x = |γ2|y = 0 implies γ2 = ε.

In a closely entwined pattern, we allow variables to be entwined, but in
the closest possible way, i. e., we require γ2 to be empty. The following is an
example for a closely entwined pattern: β := x1x4x1x4x5x5x4x2x1x3x2x3x2.
In β the variables x1 and x4, the variables x1 and x2 and the variables x2

and x3 are all pairs of variables that are entwined and, furthermore, they all
satisfy the condition of Definition 17. Obviously, the set of nested patterns is a
proper subset of the class of closely entwined patterns. Next, we define a class
of patterns that properly lies between the classes of nested patterns and closely
entwined patterns.

Definition 18. A pattern α is mildly entwined if it is closely entwined and,
for every x ∈ var(α), if α = β · x · γ · x · δ with β, γ, δ ∈ (X ∪ Σ)∗ and |γ|x = 0,
then γ is nested.

Intuitively, a mildly entwined pattern is by definition a closely entwined
pattern with the additional condition that every factor that lies in between two
consecutive occurrences of a variable is a nested pattern. Obviously, there exist
closely entwined patterns that are not mildly entwined (e. g., x1x2x3x2x3x1)
and mildly entwined patterns that are not nested (e. g., x1x2x1x2). The fol-
lowing constitutes a more involved example for a mildly entwined pattern:
β := x1x3x4x4x3x3x1x2x3x5x5x2x5x6x6x2 . First, we can note that the vari-
ables x1 and x3 are closely entwined, x2 and x3 are closely entwined, x2 and
x5 are closely entwined and these are the only pairs of variables that are en-
twined. Furthermore, every factor between two consecutive occurrences of the
same variable is nested. We emphasise that a factor γ between two consecutive
occurrences of the same variable can still contain occurrences of a variable that
is entwined with other variables in β, as long as γ, considered individually, is
nested. For example, the factor x3x4x4x3x3 in between the first two occurrences
of x1 in β contains variable x3, which is entwined with variables x1 and x2.

Since we can decide in polynomial time on whether or not a given pattern is
nested or closely entwined, we can also decide on whether or not a given pattern
is mildly entwined in polynomial time.

Next, we shall show that the membership problem for the class of mildly
entwined patterns can be decided in polynomial time. To this end, we need to
introduce a special class of graphs:

Definition 19. A graph is called outerplanar if and only if it can be drawn
on the plane in such a way that no two edges cross each other and no vertex
is entirely surrounded by edges (or, equivalently, all vertices lie on the exterior
face).
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For example, a cycle with 4 vertices is outerplanar, but the complete graph
with 4 vertices, although planar, is not outerplanar. Moreover, the Gaifman
graph of the standard α-structure corresponding to the mildly entwined pattern
β = x1x3x4x4x3x3x1x2x3x5x5x2x5x6x6x2 that has already been mentioned on
Page 18 is also outerplanar, since it can be represented by the following outer-
planar drawing:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Here, the edges resulting from SA
s
α are represented by directed edges and the

edges resulting from EA
s
α are depicted as arcs.

Next, we show that the outerplanarity of the Gaifman graph of the standard
α-structure is characteristic for mildly entwined patterns.

Lemma 20. Let α be a pattern. The Gaifman graph of the standard α-structure
is outerplanar if and only if α is mildly entwined.

Proof. Let G be the Gaifman graph of the standard α-structure and let V :=
{v1, v2, . . . , v|α|} be its set of vertices, where, for every i, 1 ≤ i ≤ |α|, vi corre-
sponds to α[i]. We first show the only if direction by contraposition. To this
end, we assume that α is not mildly entwined, which implies that α is either
not closely entwined or there exists an x ∈ var(α) such that α = β · x · γ · x · δ
with |γ|x = 0 and γ is not nested. If α is not closely entwined, then there are
x, y ∈ var(α) such that α = β · x · γ1 · y · γ2 · x · γ3 · y · δ with |γ2|x = |γ2|y = 0
and γ2 6= ε. Furthermore, without loss of generality, we can assume that
|γ1|x = |γ3|y = 0. Now let px, qx, py, qy be the positions of the occurrences of x
and y shown by the above factorisation of α, i. e., px = |β|+1, py = px+ |γ1|+1,
qx = py + |γ2|+ 1 and qy = qx + |γ3|+ 1. We note that, since |γ1 · γ2|x = 0 and
|γ2 · γ3|y = 0, there are edges {vpx , vqx} and {vpy , vqy} in G and, furthermore,
there exists paths (vpx , vpx+1, . . . , vpy ) and (vqx , vqx+1, . . . , vqy ). This directly
implies that, for every i, py < i < qx, the vertex vi is necessarily entirely sur-
rounded by edges. Since α[py + 1, qx − 1] = γ2 6= ε, there exists at least one
such vertex and, thus, G is not outerplanar.

If, on the other hand, there exists an x ∈ var(α) such that α = β·x·γ·x·δ with
|γ|x = 0 and γ is not nested, then we can conclude that, for some y, z ∈ var(α),
α = β · x · γ1 · y · γ2 · z · γ3 · y · γ4 · z · γ5 · x · δ and, without loss of generality,
|γ2 · γ3|y = |γ3 · γ4|z = 0. Now let px, qx, py, qy, pz and qz be the positions
of the occurrences of variables x, y and z, respectively, as highlighted by the
above factorisation. We note that in G there are edges {vpx , vqx}, {vpy , vqy} and
{vpz , vqz} and, in a similar way as above, this implies that vertex vpz or vqy is
necessarily entirely surrounded by edges.

It remains to show that if α is mildly entwined, then G is outerplanar. To
this end, we assume that α is mildly entwined and show how to draw a diagram
of G on the plane that satisfies the following condition referred to as (∗): no two
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edges cross each other and no vertex is entirely surrounded by edges. First, we
draw the path (v1, v2, . . . , v|α|) in a straight line and note that the diagram of
this path satisfies condition (∗). We shall now step by step add the remaining
edges, which we call E-edges, since they are induced by the relation symbol E,
and then show that in every step condition (∗) is maintained. In the following
procedure, each of the E-edges will be drawn either above or below the path
and we call a vertex vi covered above or covered below (by an edge) if and
only if we have already drawn an E-edge {vj , vj′} with j < i < j′ above (or
below, respectively) the path. We note that a vertex in the diagram is entirely
surrounded by edges if and only if it is covered below and above at the same
time. Next, we pass through the path from left to right, vertex by vertex. If
for the current vertex vp there does not exist an E-edge {vp, vq} with p < q
(e. g., if vp corresponds to a terminal symbol or to the rightmost occurrence of a
variable), then we simply ignore this vertex and move on to the next one. If, one
the other hand, such an E-edge exists, then we carry out one of the following
steps.

1. If vp is not covered above or below, then we draw the edge {vp, vq} above
the path.

2. If vp is covered above or below by some edge and vq is covered by the
same edge, then we draw {vp, vq} above the path (or below the path,
respectively).

3. If vp is covered above or below by some edge and vq is not covered by this
edge, then we draw {vp, vq} below the path (or above the path, respec-
tively).

It remains to show that each of the three steps above maintain condition (∗).
If Step 1 applies, then, since vp is not covered by an edge, the subgraph with
vertices vp, vp+1, . . . , v|α| is still a path and, thus, drawing {vp, vq} above that
path does not violate condition (∗). Now let us assume that Step 2 applies and
vp is covered above by some edge {vp′ , vq′} with p′ < p < q < q′. This implies
that none of the vertices vi, p

′ < i < q′, can be covered below by some edge,
as otherwise they would be entirely surrounded by edges. So we can draw the
edge {vp, vq} above the path and still no vertex is entirely surrounded by edges.
However, we have to show that we do not cross another edge by drawing {vp, vq}
in this way. To this end, we assume that there exists another edge {vp̂, vq̂} that
has already be drawn and that now crosses {vp, vq} and we shall show that this
assumption contradicts with the fact that α is mildly entwined. First, we can
note that {vp̂, vq̂} must be an E-edge that has been drawn above with either
p < p̂ < q < q̂ or p̂ < p < q̂ < q. We shall only consider the first of these
two cases, since the second one can be handled analogously. Now, if q̂ < q′,
then α[p′ + 1, q′ − 1] is not nested, but, for some x ∈ var(α), α[p′] = α[q′] = x
and |α[p′ + 1, q′ − 1]|x = 0. This is a contradiction to the fact that α is mildly
entwined. If, on the other hand, q′ < q̂, then we can observe the following. Let
α = β·x·γ1·y·γ2·x·γ3·y·δ with p′ = |β|+1, p̂ = |β·x·γ1|+1, q′ = |β·x·γ1·y·γ2|+1
and q̂ = |β · x · γ1 · y · γ2 · x · γ3| + 1. Since {vp′ , vq′} and {vp̂, vq̂} are E-edges,
we can conclude that |γ2|x = |γ2|y = 0, but, since p̂ < q < q′, γ2 6= ε. This
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is a contradiction to the fact that α is closely entwined. Therefore, we can
conclude that in fact {vp, vq} does not cross an already existing edge and, thus,
the diagram still satisfies condition (∗). If in Step 2 vertex vp is covered below
instead of above, then an analogous argumentation can be used.

Finally, we assume that Step 3 applies and vp is covered above by some edge
{vp′ , vq′} with p′ < p < q′ < q. We recall that α[p′] = α[q′] and α[p] = α[q] and,
since α is closely entwined, this implies that p + 1 = q′. Now we assume that
no edge other than {vp′ , vq′} covers vp, which particularly means that vq′ is not
covered by any edge. We conclude that we can draw the edge {vp, vq} below
the path without crossing an existing edge and since p + 1 = q′, i. e., there are
no vertices between vp and vq′ , no vertex is entirely surrounded by edges. It
remains to show that there is in fact no other edge {vp̂, vq̂} that covers vp. To
this end, we assume that there exists such an edge and note that this implies
that one of the following 4 cases holds (recall that p+ 1 = q′):

1. p̂ < p′ < p < q′ < q < q̂,

2. p̂ < p′ < p < q′ < q̂ < q,

3. p′ < p̂ < p < q′ < q < q̂,

4. p′ < p̂ < p < q′ < q̂ < q.

We can now show in a similar way as above, that cases 2 to 4 imply that α is
not closely entwined and case 1 implies that there exists a variable x ∈ var(α)
such that α = β · x · γ · x · δ with |γ|x = 0 and γ is not nested. This contradicts
our assumption that α is mildly entwined and, thus, we can conclude that in
fact no edge other than {vp′ , vq′} covers vp. If in Step 3 vertex vp is covered
below instead of above, then an analogous argumentation can be used. This
shows that the diagram drawn by the above procedure satisfies condition (∗),
which proves that G is outerplanar.

It is a well known fact that the class of outerplanar graphs has a bounded
treewidth:

Theorem 21 (Bodlaender [5]). If G is an outerplanar graph, then tw(G) ≤ 2.

Consequently, by Lemma 20 and Theorem 21, the class of mildly entwined
patterns has bounded treewidth. Using Corollary 11, we can conclude that the
membership problem for mildly entwined patterns is decidable in polynomial
time.

Theorem 22. Let Z ∈ {E,NE} and let P be the class of mildly entwined
patterns. The problem Z-PATMem(P ) is solvable in polynomial time.

We now compare patterns with bounded scope coincidence degree and mildly
entwined patterns. If a pattern has a scope coincidence degree of 1, then it
is a non-cross pattern and, thus, it is also mildly entwined. The converse of
this statement is not true, i. e., there are mildly entwined patterns with an
arbitrarily large scope coincidence degree. This is illustrated by the pattern
α := x1 · x2 · · · · · xk · xk · xk−1 · · · · · x1, k ∈ N. It can be easily verified
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that α is nested and, thus, also mildly entwined and, furthermore, scd(α) = k.
Consequently, for every k ≥ 2, the class of patterns with a scope coincidence
degree of at most k and the class of mildly entwined patterns are incomparable,
which shows that by our general approach, we have identified two completely
different structural aspects of patterns that both contribute to the complexity
of the membership problem.

We conclude this section by mentioning that the concept of outerplanarity
can be generalised to k-outerplanarity in the following way. The 1-outerplanar
graphs are exactly the outerplanar graphs and, for every k ≥ 2, a graph is
k-outerplanar if and only if it can be drawn on the plane in such a way that
no two edges cross each other and, furthermore, if we remove all vertices on
the exterior face and all their adjacent edges, then all remaining components
are (k − 1)-outerplanar. It can be shown that if a graph G is k-outerplanar,
then tw(G) ≤ 3k−1 (see Bodlaender [5] for further details on k-outerplanarity).
Consequently, the definition of mildly entwined patterns can be generalised to a
parameter of patterns that corresponds to the k-outerplanarity of their standard
α-structures. However, it is not straightforward to identify such a parameter of
patterns, and therefore it is left to future research.

6. Conclusions

In this work, we have defined a way of encoding patterns as relational struc-
tures, and we have shown that any parameter of patterns that is an upper
bound for the treewidth of these encodings, if restricted, allows the member-
ship problem for pattern languages to be solved in polynomial time. We have
then applied this meta-result in order to prove that all classes of patterns with
a bounded scope coincidence degree and the class of mildly entwined patterns
have a polynomial time membership problem.

In the definition of an α-structure (Definition 7), there are several different
ways of how the relation symbol E can be interpreted. Thus, for a single pat-
tern α, there are many possible α-structures that all permit an application of
Theorem 11. However, the standard way of encoding patterns (Definition 8) has
turned out to be sufficient for all results in the present paper. It would be inter-
esting to know whether or not, for some pattern α, there exists an α-structure
Aα that is better than the standard one, i. e., tw(Aα) < tw(Asα). We conjecture
that this question can be answered in the negative.

Section 5 constitutes an application of a more general technique that can be
described in the following way. We consider an arbitrary class A of graphs with
bounded treewidth and then we identify a class of patterns P and a polynomial
time computable function g that maps the patterns of P to α-structures such
that P̂ ⊆ A, where P̂ := {Gα | α ∈ P,Gα is the Gaifman graph of g(α)}. Ide-
ally, the class P can be characterised in terms of a parameter or a property of
patterns that can be computed in polynomial time.

This indicates that, by applying the above described general technique, other
classes of patterns with a polynomial time membership problem can be found,
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for example, by using the class of k-outerplanar graphs as the class of graphs
with bounded treewidth, as outlined at the end of Section 5.
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