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daß er nun für sich selbst zu lernen im Stande ist.”

Wilhelm von Humbolt

Der Königsberger Schulplan
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Summary

In several types of coating processes a solid substrate is removed at a controlled

velocity U from a liquid bath. The shape of the liquid meniscus and the thickness

of the coating layer depend on U . These dependencies have to be understood

in detail for non-volatile liquids to control the deposition of such a liquid and to

lay the basis for the control in more complicated cases (volatile pure liquid, solu-

tion with volatile solvent). We study the case of non-volatile liquids employing a

precursor film model that describes partial wettability with a Derjaguin (or dis-

joining) pressure. In particular, we focus on the relation of the deposition of (i) an

ultrathin precursor film at small velocities and (ii) a macroscopic film of thickness

h ∝ U2/3 (corresponding to the classical Landau–Levich film). Depending on the

plate inclination, four regimes are found for the change from case (i) to (ii). The

different regimes and the transitions between them are analysed employing numer-

ical continuation of steady states and saddle-node bifurcations and simulations in

time. We discuss the relation of our results to results obtained with a slip model.

In connection with evaporative processes, we will study the pinning of a droplet

due to a sharp corner. The approach employs an evolution equation for the height

profile of an evaporating thin film (small contact angle droplet) on a substrate with

a rounded edge, and enables one to predict the dependence of the apparent contact

angle on the position of the contact line. The calculations confirm experimental

observations, namely that there exists a dynamically produced critical angle for

depinning that increases with the evaporation rate. This suggests that one may

introduce a simple modification of the Gibbs criterion for pinning that accounts

for the non-equilibrium effect of evaporation.
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Chapter 1

Introduction

“But, if your award is against us,

don’t fail to have metal covers

fashioned for yourselves, like those

they place over statues; else,

watch out!”

Chorus, Birds, Aristophanes

In this Thesis we investigate an apparently simple, but subtle process: the spread-

ing and the deposition of a liquid on a surface. This phenomenon is of great

importance in natural processes, e.g. some water birds, like ducks or cormorants,

preen their feathers not only to align each feather or remove dirt and dust, but

also to spread preening oil produced in the uropygial gland to keep the feathers

flexible and improve their water repellency1[1], or probably more important in our

daily life, is the spreading of tears to protect the cornea [4]. An example from

Geology is when a lava stream flows over a terrain or mountain slope [2, 3].

Spreading or coating is also an important process in industry, e.g. in immersion

lithography processes [5] or in several industrial film coating processes [6], such

as automotive coatings for protecting the carrosserie and for the production of

photographic paper and film.

A simple way of coating a surface is when a solid flat plate is drawn out of a

liquid bath, and a film of fluid may be deposited onto the plate. This has been

extensively studied theoretically (e.g. [7–10]) and experimentally (e.g. [11–15])

1Waterproofness depends also strongly on the feather structure.
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Chapter 1. Introduction 2

over the years. A key point is to gain control of the deposition process and to

develop a detailed understanding of the velocity-dependent shape of the meniscus.

The meniscus, which will be our main object of study, is the curved upper surface

of a liquid, e.g. in a tube, produced by surface tension and wettability, see Fig. 1.1.

As an interesting remark, the origin of the word meniscus can be traced back to

the ancient greek word µήνη, meaning Moon, which in turn became the root of

the diminutive of moon, µην ı́σκoς, meaning as well crescent moon, and therefore

associated with the shape that the free surface of a partially wetting liquid takes

close to a solid [16, 17].

Figure 1.1: Pictorial etymology of meniscus: in the left panel a Waxing cres-
cent Moon and in the right panel a water meniscus in a burette.

We start discussing liquid thin films, applications – such as coating for example

– and general basics of wettability. Then, we investigate similar physical systems

e.g. refs. [14, 18–20] employing a precursor film model to describe the contact line

region. This allows us to extend the understanding of the occurring qualitative

transitions. In this Chapter we describe briefly some models employed in the litera-

ture and the types of surface profiles and flow patterns found. This includes a brief

discussion of the used analytical and numerical solution techniques. In Chapter

2 we derive the film thickness evolution equation using a long-wave approxima-

tion from the Navier – Stokes equations, we discuss the boundary conditions and

analyse the linear stability. Chapter 3 presents our results for drawn menisci for

a non–volatile partially wetting liquid, and we gain a deeper understanding of the
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transitions occurring from the deposition of an ultra–thin precursor film at small

velocities to a macroscopic film of thickness h∞ ∝ U2/3 (corresponding to the clas-

sical Landau–Levich film) at larger velocities. Next, in Chapter 4 we investigate

the pinning of evaporating completely wetting droplets at sharp corners. The final

Chapter gives our conclusions and an outlook.

1.1 Behaviour of drawn meniscus

A variety of solution behaviours has been described in the literature: Starting

with the seminal work of Landau and Levich (1942) [8] studying liquid films on

vertical drawn plates, via the extension to inclined plates by Wilson (1982) [9], up

to recent work by Snoeijer et al. [14, 18–20]. The discussed solutions mainly fall

into two groups: film solutions and meniscus solutions, see Fig. 1.2. There, we see

from left to right, a meniscus, a protruding meniscus or foot and a film solution.

FILMMENISCUS FOOT

U

α

Figure 1.2: Three types of profiles connecting a bath to a plate moving with
velocity U at an inclination angle α: (right) meniscus solution, (middle) foot

and (left) film solution.

These solutions depend on the plate velocity U : at low plate velocities U , meniscus

solutions and protruding meniscus exist, for larger plate velocity the film thickness

scales with U2/3, the so called Landau–Levich law, and at large velocities the film

thickness scales with U1/2. These solutions can be characterised as follows: The

film solutions feature a film that is drawn from the bath and coats the entire plate,

while the meniscus solutions exhibit another behaviour: a meniscus rises from the

bath due to capillarity, and as the plate velocity increases, due to the drawing force

as well, partially coating the plate. In the middle panel of Fig. 1.2 we observe as

well a foot–like solution. It can be classified as a protruding meniscus only partially

coating the plate (a type of meniscus solution) or as a finite length film in case the

protuberance is long enough to coat large part of the plate. These solutions were

first observed analytically for a liquid drawn out by Marangoni stress produced by
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a temperature gradient along the substrate [10, 21]. Note that this solution can

evolve into a film solution, this matter will be addressed later in the text.

1.1.1 Film solution

Film solutions are of important industrial interest and have been and are still

studied from an experimental and analytical point of view (e.g. [11, 22, 23]),

but Landau and Levich [8] were the first who accurately determined an analytical

solution for the film thickness at large(r) plate velocities. The solution is a function

of the control parameters, i.e. the plate speed, the plate inclination and the

characteristic properties of the fluid, such as viscosity η and density ρ. To solve

the problem, they divided the surface of the liquid in two independent regions:

one region located high above the meniscus and the bath, where the drawn film

is nearly parallel to the plate, and a second region where the liquid in entrained

onto the plate - the meniscus region - in which a slightly deformed shape of the

liquid due to the movement of the plate will nearly fit the static meniscus shape.

The key point of their solution is the choice of appropriate boundary conditions

for the two regions, and the connection of the solutions in the two regions with

each other employing asymptotic matching techniques. As matching condition,

the continuity of the surface curvature in the overlap zone is requested. Landau–

Figure 1.3: Shown is comparison of the dimensionless flux in dependance
on the capillary number Ca for theory and experiment as shown in the figure.

Reprinted from [15], with permission from Elsevier.
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Levich’s model is valid for small capillary numbers, i.e. for a capillary numbers

up to O(1).

For small drawing velocities no macroscopic film is deposited. The macroscopic

film deposition of thickness h ∝ Ca
2
3 occurs above a critical capillary number Cac,

where Ca = Uη/γ. The model is also in good agreement with experimental results

[11] and models with corrections for higher capillary numbers [13, 15, 24].

In Fig. 1.3 we see how the low capillary number theory of Landau and Levich and

the high capillary number theory of Derjaguin [25] were matched in the interme-

diate region by White and Tallmadge [13]. Superposed we see the experimental

results of Morey [11], Tallmadge and Gutfinger [26], Rossum [24] and Derjaguin

[27].

Further theoretical models with corrections to the Landau–Levich problem have

been developed: for small capillary numbers withdrawal, see refs. [9, 28, 29], for

plates with small inclination angles see refs. [9, 30], using a contact line with

slip model see refs. [28, 29] and for solutions with an imposed precursor film see

ref. [30].

1.1.2 Meniscus and foot solutions

Meniscus solutions were studied for different physical and mathematical models:

for a contact line using a slip model in a vertical plate geometry, see refs. [18, 19]

and for an inclined plate at small angles see refs. [14, 20], in the non-isothermal-case

dragging by a temperature gradient see refs. [10, 21], and for a the assumption of a

pre-wetted surface for small inclination angles see ref. [30]. In particular, Snoeijer

et al. [14, 18, 20] show that above a critical capillary number Cac a steady contact

line can no longer exist and the solid will eventually be coated completely by

a liquid thick film. The bifurcation diagram of this coating transition changes

qualitatively, from continuous to discontinuous, when increasing the inclination

angle of the plate [20], see Fig. 1.4. A recent experimental study by Snoiejer et al.

[19] probes the dynamics of receding contact lines through controlled perturbations

of a meniscus. This has provided an experimental access to the entire bifurcation

diagram of dynamical wetting, and confirms the hydrodynamic theory they have

developed using a slip model [18], see Fig. 1.5. In the left panel of Fig. 1.5 a sketch
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Figure 1.4: Relaxation of a dewetting contact line. Theory: (a) film pro-

files for a vertical drawn plate at Capillary number C̃a. Number correspond
to the bifurcation diagram in the inset, where the contact line position zcl is
represented as function of Capillary number C̃a. Reprinted from [18], Fig. (5),
reproduced with permission. (b) Upper panel corresponds to the bifurcation di-
agram contact line position as a function of the capillary number δ, lower panel
to the numbered film profiles. Reprinted from [20], Fig. (2). Reproduction with

kind permission from Springer Science and Business Media.
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Figure 1.5: Relaxation of a dewetting contact line. Sketch of the experimental
setup and experimental access to the entire bifurcation diagram of dynamical
wetting. Reprinted from [19], Fig. (1) and Fig. (4), reproduced with permission.

of the experimental setup is shown. On the right panel we see the experimental

bifurcation diagram, contact line position zcl versus capillary number.

1.1.3 Physical models

The Landau–Levich problem was the corner stone for further systematic extensions

of withdrawn plate and coating problems. In these theoretical extensions different
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physical models and solution techniques were proposed. Next, we list a few of

them, followed by a more detailed description.

1. Models

(a) Lubrication theory

• Extension of Landau–Levich’s problem for vertical plates to small

plate inclination [9]

• Inclined falling film [7]

• Contact line with slip model (fixed microscopic angle) [18, 20, 28,

29]

• Pre-wetted surface (precursor film of imposed thickness) [30]

• Non–isothermal case - dragging by temperature gradient [10]

(b) Full Navier–Stokes equations

• Steady–state calculations [21]

• Marangoni force driven meniscus [31]

2. Analytical solution techniques and numerical approaches

(a) Asymptotical matched expansions [9, 29, 30]

(b) Full time simulation of film / meniscus profile equation [10]

(c) Full time simulation of Navier–Stokes equation [31]

(d) Numerical determination of steady states of Navier–Stokes equation [21]

(e) Numerical and asymptotical description [20, 29, 30]

We briefly review in the following paragraphs the main results and differences of

the enumerated models:

Derjaguin [7] presents a derivation for a liquid layer which remains on the wall

of a vessel, inclined at an angle α with respect to the horizon without capillarity

pressure in the framework of lubrication theory. This problem is tackled by Benilov

et al. [29] using a co-moving frame whilst describing the drawn-out plate problem.

Wilson [9] extends Landau–Levich ’s model introducing new features from asymp-

totical analysis: he works out the drawn meniscus problem for a vertical infinite

plate in the lubrication theory framework and showed that the Landau–Levich
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result is an asymptotic solution valid as the capillary number tends to zero in his

model. He also showed how correction terms may be obtained by the method of

matched expansions. This technique is very useful for describing the behaviour

in the overlap region, i.e. between the meniscus region and the fully-developed

region. He uses this technique for describing the film height for a withdrawn plate

inclined at an arbitrary angle α as well.

Hocking [28] encounters employing a slip-model two possible states of the meniscus

in the drawn meniscus problem: At the edge of the fluid a foot–like structure may

be raised up to a finite distance above the bath, with its edge slipping on the plate.

The second state is a continuous film of a certain thickness that is drawn up with

the moving plate. The first state occurs for plates inclined at small angles for a

sufficiently small plate speed. When a critical speed is reached and exceeded, the

height of the edge starts to increase with time. Hocking’s model confirms, except

at small withdrawal plate velocities, Wilson’s findings for the film thickness in the

drawn meniscus problem.

Jin, Acrivos and Münch [21] determine the asymptotic film thickness on a plate

that is withdrawn vertically, or at small angles from a bath. They numerically

solve the steady–state Navier–Stokes equations and find that for creeping flow

conditions the load agrees with Wilson’s result given above. They also find that

for an inclined plate, the corresponding dimensionless flow rate depends on the

inclination angle α and on the capillary number Ca.

In a further extension of the model, Münch and Evans [10] study the coating flow

on a heated substrate for a Marangoni-driven liquid film rising out of a meniscus

onto a slightly inclined substrate. There the thermally induced Marangoni shear

stress opposes the component of gravity parallel to the substrate. The numerical

simulations show that the time-dependent lubrication model for the film profile

can reach a steady state in the meniscus region. Furthermore, they investigate

the steady state solutions of the lubrication model by studying the phase space

of the corresponding third-order ODE for the dimensionless film equation. The

resulting outcome is a copious and rich structure of the phase space with multiple

non-monotonic solutions.

Benilov et al. [29] consider an infinite inclined plate being withdrawn at constant

velocity U from a bath of viscous liquid. They derive Derjaguin’s conjecture [7] as

a steady-state solution from their model with the use of a co-moving frame. The
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conjecture is that for weak effects of inertia and surface tension, the load l, i.e. the

thickness of the liquid film clinging to the plate, is l =
√

µU
ρg sinα

, where ρ and µ are

the liquids density and viscosity, and g is the acceleration due to gravity. To derive

the relation they use the Stokes equations in the limit of small plate inclination.

As a result, an infinite set of stable steady-state solutions is obtained, but only

one of the solutions corresponds to Derjaguin’s solution. This particular special

steady solution can only be singled out by matching it to a self-similar solution

describing the non-steady part of the film between the bath and the film’s front tip.

They also carry out direct simulations of the Stokes equations and show that the

small-slope approximation is valid when the inclination angle of the plate is less

than approximately 35◦. Finally they suggest to extend the present methodology

to include capillary effects and to compare the results with the drawn meniscus

flows with surface tension, i.e. the Landau–Levich film [8].

Benilov et al. [30] also examine two classical problems from the liquid-film theory:

first, a liquid layer flowing down an inclined plate, under the condition that the

main film is preceded by a thin precursor film. For this first problem they obtain

a full asymptotic description of the flow, revealing aspects such as the infinite

number of asymptotic zones. They also demonstrate that the solution describing

the film is of a smoothed-shock type, with a bulge at the front.

Secondly, they describe the well known drawn meniscus problem, concentrating on

solutions with a load larger than that of the Landau–Levich solution. Numerically

they show regions in the problem’s parameter space where non–Landau–Levich

solutions exist, and distinguish subregions with multiple non–Landau–Levich so-

lutions. In the asymptotic limit of strong surface tension, the multiplicity of

non–Landau–Levich solutions is a result of non-uniqueness of the solution to the

asymptotic boundary-value problem, which describes the film near the edge of the

pool. Finally they point out, that the case of non–Landau–Levich solutions of

the drawn meniscus problem includes an infinite number of asymptotic zones and

from this point of view, the problem is similar to the advancing front problem.

We start our investigations with the study of the drawn meniscus deriving in

the next Chapter a long-wave equation employing a precursor film model for the

isothermal case. The interaction between the substrate and the plate is modelled

for a non-volatile partially wetting liquid using a Derjaguin or disjoining pressure.





Chapter 2

Governing equations and

underlying concepts

“That’s amazing. What is it?”

E. Ripley

2.1 Governing equations

In this chapter we focus on the derivation of the non-dimensional long-wave equa-

tion that describes the drawn meniscus problem. We introduce the scaling, the

Derjaguin pressure (disjoining pressure) to model wettability, Laplace pressure

(capillary pressure) and hydrostatic pressure, and further on, we will define the

boundary conditions, discuss linear stability and have a digression about the

streamlines of the film profiles.

2.1.1 Problem and derivation

The starting point for the derivation of the two dimensional thin film equation

for the drawn meniscus problem in the laboratory reference frame, see Fig. 2.1, is

the hydrodynamic transport equation for the momentum density, the well known

Navier – Stokes equation [32–34]. Restricting ourselves to two dimensions, it writes

ρ
d~v

dt
= ∇ · τ + ~f (2.1)

11
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Figure 2.1: Sketch of the geometry: An infinite inclined flat plate is withdrawn
from a liquid bath with constant speed U and at constant angle α.

where d/dt = ∂t + (~v · ∇) is the material time derivative, ~v =
(
u
w

)
is the velocity

field, ~f =
(
f1
f2

)
is a body force, ∇ is the Nabla-operator ∇ =

(
∂x
∂z

)
and τ is the

stress tensor defined as

τ = −pI + η
(
∇~v + (∇~v)T

)
(2.2)

where p(x, z) denotes the pressure field, I the identity tensor, ρ and η are the

density and the dynamic viscosity of the liquid, respectively. For an incompressible

fluid the continuity equation states

∇ · ~v = 0. (2.3)

We are studying a thin liquid film flowing on a solid flat substrate moving with

speed U along the x-direction, thus the resulting boundary conditions are:
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1. No-slip and no-penetration condition, ~v =
(−U

0

)
, at the solid flat substrate

(z = 0). This condition implies zero relative velocity at the solid boundary

and no penetration into the solid substrate.

2. Kinematic condition, ∂th = w− u∂xh at the free surface z = h(t, x), i.e. the

free surface follows the flow field.

3. Force equilibrium condition at the free surface z = h(t, x),

(τ − τair) · ~n = Kγ~n+ (∂sγ)~t. (2.4)

It is assumed that the surrounding air does not exert forces on the fluid, i.e.

τair = 0. The surface derivative is defined as ∂s = ~t · ∇. The Laplace or curvature

pressure is pL = −γ
2
∇ · ~n, while the variation of the surface tension γ along the

surfaceis given by ∂sγ. Such a variation can be caused, for example, by thermal

Marangoni effects. The simplest model is assuming a linear dependence of the

surface tension on temperature, i.e. γ = γ0 + γT (T0 − T ). Note that γ0 is the

reference surface tension at reference temperature T0 and γT = dγ/dT at T0. In

this case the variation is ∂sγ = Ma(Tx + ∂xhTz)/[1 + (∂xh)2]1/2 where Ma is the

Marangoni number defined as Ma = lργT∆T/η2 [39].

The surface’s normal vector ~n, tangent vector ~t and curvature K are

~n =
(−∂xh, 1)

[1 + (∂xh)2]
1
2

,

~t =
(1, ∂xh)

[1 + (∂xh)2]
1
2

, (2.5)

K =
∂xxh

[1 + (∂xh)2]
3
2

,

respectively. The vectorial boundary condition (2.4) can also be expressed as two

scalar conditions by projecting it onto the normal and the tangent surface vectors,

~n and ~t. One obtains the tangential

η
[
(∂zu+ ∂xw)

(
1− (∂xh)2

)
+ 2 (∂zw − ∂xu) ∂xh

]
= ∂sγ

[
1 + (∂xh)2

]
(2.6)
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and normal

p+
2η

1 + (∂xh)2

[
−∂xu(∂xh)2 − ∂zw + ∂xh(∂zu+ ∂xw)

]
= − γ∂xxh

[1 + (∂xh)2]
3
2

(2.7)

stress condition, respectively.

2.1.2 Wettability: Macroscopic approach

To include the interaction with the substrate, or to understand how a simple liquid

wets the substrate, it is necessary to incorporate a condition at the three-phase

contact line, i.e., at points where the film height tends to zero, i.e. h → 0. From

a macroscopic point of view, this condition is known as the Young–Laplace law

[35, 36]:

θγ

γ

γ
sg

sl
eq

SUBSTRATE

GAS
γ

γ
sg γ

slliquid
θeq

Figure 2.2: A sketch of a spherical cap-like droplet sitting on a solid substrate:
The static three-phase contact line is approximated as a triangular section (see
inset) indicating the solid-liquid (γSL), solid-gas (γSG) and liquid-gas (γ) inter-

facial energies. The static equilibrium angle θeq is also shown.

γ cos θeq = γSG − γSL, (2.8)

where γSL, γSG and γ are the solid-liquid, solid-gas and liquid-gas interfacial ten-

sions respectively and θeq is the static equilibrium angle, see Fig. 2.2. The surface

tensions are defined as energy per unit of area, equivalent to a force per unit of

length (area) acting on the contact point (line).

The three-phase contact line region can be approximated by a macroscopic tri-

angular section. We can also think of the Young–Laplace law as the mechanical

force equilibrium at the three-phase contact line between these tensions.
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When a simple liquid comes into contact with a flat substrate in absence of gravity,

the liquid either [34, 38, 39]:

(a) spreads all over the solid, i.e. the liquid forms a flat film. One may say the

static contact angle θeq = 0. This is known as complete wetting,

(b) or forms droplets on the substrate with a finite static contact angle, 0 < θeq <

π. This is known as partially wetting,

(c) or forms ideally spherical droplets that have only one contact point with the

substrate, i.e. a static contact angle of θeq = π. This is the case of non-wetting.

In Fig. 2.3 we sketch the three described situations. For the case of partial wet-

ting, (b), the border between the liquid and the gas at the substrate is the static

contact line. Note that Fig. 2.4 shows the experimental images depicting the three

different wetting states for the change of the contact angle of water on sapphire

from complete wetting to almost non-wetting case [40].

Note that Eq. (2.8) can also be derived using translational invariance / variational

arguments from the total interface energy [38]. Note that the macroscopic pic-

ture does not consider the particular nature of the contact line region over which

intermolecular forces are acting. Accordingly, θeq is understood to be measured

macroscopically on the scale above that of long-ranged intermolecular forces.

WETTING

SUBSTRATE

(a)                           (b)                       (c)

NON-WETTING

Figure 2.3: Sketch of the three qualitatively different wetting behaviours of
a simple liquid on a solid substrate: (a) wetting, (b) partial wetting and (c)

non-wetting.
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Figure 2.4: Shown is from right to left a series of experimental images showing
the change of the contact angle of water on sapphire (complete wetting to almost

non-wetting case). Reproduced with permission of the authors from [40].

The Young–Laplace law models accurately partial wetting situations for static

contact angles θeq ∈ (0, π) or where cos θeq = (γSG − γSL)/γ fulfils

− 1 <
γSG − γSL

γ
< 1. (2.9)

However, for the remaining situations - non-wetting and complete wetting - it is

necessary to define and use the spreading coefficient [38]

S = γSG − (γ + γSL). (2.10)

It evaluates the energy difference between a dry substrate and a substrate covered

by a liquid. Combining it with the Young–Laplace law (Eq. (2.8)), S can be

written in terms of the static contact angle,

S = γ(cos θeq − 1). (2.11)

Note that for small contact angles θeq � 1, i.e. in a long-wave approximation, in

the partially wetting case we can write,

cos θeq ' 1−
θ2

eq

2
, (2.12)

i.e.

S ' −γ
θ2

eq

2
(2.13)

and

θeq '

√
−2S

γ
. (2.14)

We can employ Eq. (2.11) to give conditions for complete wetting and non-wetting
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situations in terms of S as well, without knowing the static contact angle θeq: For

complete wetting, the static contact angle is θeq = 0, but the spreading coefficient

satisfies S ≥ 0, while for non-wetting situations, θeq = π, and S ≤ −2γ. If we know

the interfacial energies, we can now infer what type of wetting situation will be

described, see Fig. 2.5. However, for situations where the contact line is moving – a

dynamic contact line (dynamic contact angle) – e.g. liquid spreading on a surface, a

sliding drop on an inclined plate, dip-coating [41, 42], or in immersion lithography

processes [5]– causes problems in the hydrodynamical description. If a moving

liquid–air interface is in contact with the substrate at the contact line, the no–slip

condition results in the divergence of the viscous dissipation at the contact line

implying that contact line motion is not possible under these conditions [34, 38, 41].
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Figure 2.5: Scheme of wetting behaviour in terms of the spreading coefficient
S. Note the three well defined regions corresponding to non-wetting, partial
wetting and wetting situations in terms of S. Red solid line corresponds to the
full expression of S(θeq), while blue dash-pointed line corresponds to the small
angle approximation, see Eq. (2.13) and green dashed line to the large angle

approximation, i.e. for θeq ≈ π.
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2.1.3 Wetting: Mesoscopic approach

We have to take into account that for thin and ultrathin films (film thickness

below 100nm) another thickness dependent force term must be introduced. It has

to be done in order to model the transition from a bulk film, where the overall

interfacial energy is the sum of the solid-liquid and solid-gas interfacial energies,

to a no-film situation, where the system only has liquid-gas interfacial energy.

For partially wetting liquids, it has been shown [43–47] that in thermodynamic

equilibrium droplets coexist with a microscopic adsorbed thin film at the solid

substrate, this thin film is known as precursor film, hp, see Fig. 2.6. The immediate

neighbouring area of the droplet is never completely dry due to the adsorbed

liquid layer. Derjaguin et al. [43, 44] measured for free films with thickness

below 100 nm wetting or adhesion energy V (h) that depends on the thickness

of the film. It produces an additional attractive / repulsive force between the

two film interfaces, that can be included into the hydrodynamical equations via a

supplementary pressure term Π(h) = −∂hV (h). It may be introduced either:

(i) into the normal force boundary condition as an addition to the Laplace pres-

sure term [38, 39]: pL → pL − Π(h)

(ii) or as a body force into the Navier–Stokes transport equations [38]:

~fDisj = −∇φDisj, where φDisj = Π(z)− Π(h).

Both approaches lead to the same final result. This additional pressure Π(h)

is called disjoining or conjoining pressure [38]. Sometimes it is referred to as

Derjaguin pressure [48]. The disjoining pressure Π(h) used here is a combination

of a destabilising long-range van der Waals, ΠvdW(h) = −A/h3 (for A > 0) , and

a short-range stabilising interaction, Πsr = B/h6 (for B > 0), i.e.

Π(h) = ΠvdW(h) + Πsr(h) = −A
h3

+
B

h6
, (2.15)

where A is the Hamaker constant and B the interaction strength of the short–

range interaction. For A > 0 and B > 0 it describes partial wetting where a

stable precursor film hp may coexist with a meniscus of finite contact angle θeq. In

Fig. 2.7 we show disjoining pressures describing three different cases: non-wetting

(B = 0, A > 0), wetting (A = 0, B > 0) and partial wetting (A > 0 and B > 0).
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Fig. 1. Schematic diagram of the experiment. Small arrows
indicate the direction of the spreading molten alloy.

tional morphology of the molten alloy, spreading
occurring on the cleavage plane of the substrate
was observed.
Fig. 2 is a high resolution image of the edge of

the SiC substrate. At the edge, the cleavage plane
of SiC, which is the (0006) plane of SiC, appears.
Although, the amorphous damaged layer, which
was produced by the Ar bombardment, was
removed by cleavage, the cleavage plane of the
SiC is covered with a thin amorphous layer 1.0–
1.5 nm in thickness. The layer may consist of
broken SiC lattice and contamination. The layer
existed even at a temperature as high as the melting

Fig. 2. High resolution image of the edge of the SiC. On the
cleavage plane of SiC, the amorphous layer was observed.

point of the alloy and was observed before the
molten alloy spreading.

3.2. Atomic thin lm preceding the reactive
wetting front

Fig. 3 shows a high resolution electron
microscopy image of the spreading precursor lm
on SiC (0006) plane at the nominal temperature of
approximately 1073 K. In the molten alloy region,
no lattice image is observed. A precursor lm is
extending out of the molten alloy droplet. Thick-
ness of the precursor lm is less than 0.5 nm.
Fig. 4 is a series of high resolution images of

the tip of the precursor lm. In Fig. 4(a), an
amorphous layer 1.0–1.5 nm in thickness as shown
in Fig. 2, was observed on the (0006) plane of SiC.
There is a 3 nm-high step at the left side of the
image. The step was produced during the cleavage
process. After the alloy is molten, the precursor
lm spreads from the left side of the image with
a thickness of less than 0.5 nm (Fig. 4(b)). Arrows
denote the tip of the precursor lm. As the precur-
sor lm spreads, the step shape, which is observed
in Fig. 4(a), becomes round and the initially
amorphous surface is transformed into well
faceted, atomically at surfaces. The at surface

Fig. 3. High resolution image of the spreading molten alloy
taken at the nominal temperature of approximately 1073 K. A
precursor lm is extending out of the molten alloy droplet.

hp

Figure 2.6: Precursor Film: Upper panel: Sketch of droplet with the adsorbed
precursor fim hp. Lower panels: Some experiments: Left panel: Ellipsometric
thickness profile of a PDMS droplet spreading on a silicon wafer for different
times τ after deposition: a - τ = 47h, b - τ = 56h and c - τ = 96h. y-axis
corresponds to droplet height, x-axis corresponds to witdth. Note that the
thickness far from the drop is non-zero due to a ultrathin film layer of silicon
oxide, it corresponds to the baseline (dashed line) on which the liquid spreads.
Note also the preceding precursor film hp . 10Å. Reprinted by permission from
Macmillan Publishers Ltd: Nature, [47], copyright (1989). Right panel: High
resolution image of SiC molten alloy spreading at T ≈ 1073K. A precursor
film is extending out of the molten alloy droplet. Reprinted from [46], with

permission from Elsevier.

Note that we can define in an analogous way a mesoscopic spreading coefficient S̃

in terms of the wetting (adhesion) energy V (h) for a wetted / non-wetted surface,

S̃ = V (∞)− V (h0), (2.16)

where V (∞) represents the energy of a very thick film (V (∞) = 0) and V (h0)

the energy corresponding to a finite (thin) film. If we set h0 to be the equilibrium

precursor film height heq, the spreading coefficient is describing the same wetting

situation as in the macroscopic case, see Eq. (2.10), e.g. partial - wetting, i.e.

S̃ = S. This energetic argument allows to bridge the two physical length scales
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via Eq. (2.11) and relate the equilibrium contact angle θeq to the equilibrium

precursor film height hp via the wetting / adhesion energy (disjoining pressure)

as θeq =
√
−2V (heq)/γ. Note that heq is the film height where the Disjoining

pressure is zero, i.e.

Π(heq) = 0. (2.17)

Writing heq and θeq for our choice of Π(h), see Eq. (2.15), in terms of the constants

A and B, we have

heq = (B/A)1/3, (2.18)

and the equilibrium contact angle

θeq =

√
3

5

A

γh2
eq

(2.19)

respectively.

1 2 3 4 5
h

-1

-0.5

0

0.5

1

Π
(h

)

1 2 3 4 5

0

complete wetting
partially wetting
non wetting

wetting

non wetting

heq

Figure 2.7: Shown are three different disjoining pressures for three wetting
scenarios: complete wetting, partial–wetting and non–wetting. heq is the film

height where the Disjoining pressure is zero, i.e. Π(heq) = 0 for heq = 1.
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2.1.4 Non–dimensionalisation and long–wave approxima-

tion

Now, we can return to the long-wave approximation of the Navier–Stokes equa-

tions.

First we introduce non-dimensional variables and at a later stage we will take

advantage of the difference in magnitude between the length scales parallel and

normal to the substrate. For this purpose we first introduce a set of not-yet-

specified scales (see Table 2.1), where l refers to some significant typical length of

the system, such as mean film thickness, precursor film height, etc.; U0 refers to a

characteristic velocity and t0 to a characteristic time-scale.

Dimensionless Scale Dimensional
z̃ l z = lz̃
x̃ l x = lx̃
t̃ t0 = l/U0 t = t0t̃
~̃v U0 ~v = U0

~̃v

P̃ P0 = ρU2
0 p = P0p̃

Table 2.1: Different Non-dimensional variables and scales

As an example, we introduce the particular body force ~f = ρg(sinα, cosα), i.e. we

look at a film on an inclined plate with gravity. The force is written in the com-

ponents parallel and normal to the plate. Now, we introduce the aforementioned

scales in Eq. (2.1) and obtain

ρ
U2

0

l
(∂t̃ũ+ ũ∂x̃ũ+ w̃∂z̃ũ) = −ρU

2
0

l
∂x̃p̃+ η

U2
0

l2
(∂x̃x̃ũ+ ∂z̃z̃ũ) + ρg sin(α)

(2.20)

ρ
U2

0

l
(∂t̃w̃ + ũ∂x̃w̃ + w̃∂z̃w̃) = −ρU

2
0

l
∂z̃p̃+ η

U2
0

l2
(∂x̃x̃w̃ + ∂z̃z̃w̃)− ρg cos(α)

for x and z components respectively. Using the definition of the dimensionless

Reynolds number Re and the Froude number Fr,

Re =
U0lρ

η

Fr =
U2

0

lg
.



Chapter 2. Governing equations 22

Eqs. (2.20) are re-expressed as (dropping the tilde for simplicity),

∂tu+ u∂xu+ w∂zu = −∂xp+
1

Re
(∂xxu+ ∂zzu) +

sinα

Fr
(2.21)

∂tw + u∂xw + w∂zw = −∂zp+
1

Re
(∂xxw + ∂zzw)− cosα

Fr
.

The Reynolds and Froude numbers stand for the ratio of the selected velocity scale

and the viscose velocity scale and for the squared ratio of the selected velocity

scale and the gravity velocity scale, respectively. The viscose scaling is defined

specifying the velocity U0 as U0 = η/ρl, so we have

1

Re
→ 1, and

1

Fr
→ gl3ρ2

η2
=: G (2.22)

where G is the Gravitation or Galilei number. Note that the scaling is always

chosen for the specific problem so as to simplify the analysis without losing infor-

mation. With Eq. (2.21) and the definition (2.22), it is possible to re-write the

Navier-Stokes and continuity equations as well as the scalar boundary conditions

(2.6), (2.7) as

∂tu+ u∂xu+ w∂zu = −∂xp+ ∂xxu+ ∂zzu+G sinα

∂tw + u∂xw + w∂zw = −∂zp+ ∂xxw + ∂zzw −G cosα (2.23)

∂xu+ ∂zw = 0

and

(∂zu+ ∂xw)
(
1− (∂xh)2

)
+ 2 (∂zw − ∂xu) ∂xh = −MaΥ

[
(1 + (∂xh)2

]1/2
p+

2

1 + (∂xh)2

[
−∂xu(∂xh)2 − ∂zw + ∂xh (∂zu+ ∂xw)

]
= − γ∂xxh

[1 + (∂xh)2]
3
2

− Π(h),

(2.24)

respectively, where

Υ = ∂xT + ∂xh∂zT.

Here, γ is the dimensionless surface tension, γ = γ0lρ/η
2 and γ0 = γ(T0) is the

surface tension for temperature T0 (γ may depend linearly on temperature, see

page 13).
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Note that the disjoining pressure can be non-dimensionalised via

Π(h) = KΠ̃, (2.25)

with a dimensional constant K = Aρl2/η2, and Π̃ is the non-dimensional disjoining

pressure (we have dropped the tildes in Eq. (2.23) and Eq. (2.24)).

At this stage, as mentioned before, we incorporate the long-wave scaling that

simplifies the Navier–Stokes equations and its boundary conditions, preserving

many of the important physical properties of the studied system. At this point

it is important to take advantage of the different length scales between directions

parallel and normal directions to the substrate: First, a smallness parameter ε is

introduced, where ε = l
L
� 1, and L is for example the lateral drop size or the

period of surface waves and l is some characteristic film height, like the precursor

film height hp or mean film thickness. The new length scale in x is introduced for

z, for the velocities u and w and their derivatives. So, instead of using x = lx̃ and

z = lz̃, we use

x = Lx̃ =
l

ε
x̃

z = lz̃, (2.26)

and the new scaled velocities are,

u = U0ũ

w = εU0w̃, (2.27)

and the new scaled time is

t =
L

εU0

=
l

ε2U0

t̃. (2.28)

Finally, replacing (2.26), (2.27), (2.28) in Eq. (2.23) and Eq. (2.24), and dropping

the tildes, we obtain the equations

ε (∂tu+ u∂xu+ w∂zu) = −ε∂xp+ ε2∂xxu+ ∂zzu+G sinα

ε2 (∂tw + u∂xw + w∂zw) = −∂zp+ ε3∂xxw + ε∂zzw −G cosα (2.29)

∂xu+ ∂zw = 0,
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and conditions,

(
∂zu+ ε2∂xw

) (
1− ε2(∂xh)2

)
+ 2ε2 (∂zw − ∂xu) ∂xh = −εMaΥ

[
(1 + (ε2∂xh)2

]1/2
p+

2 [−ε3∂xu(∂xh)2 − ε∂zw + ε∂xh (∂zu+ ε2∂xw)]

1 + ε2(∂xh)2
= −γ ε2∂xxh

[1 + ε2(∂xh)2]
3
2

− Π(h)

w = ∂th+ u∂xh. (2.30)

in long–wave scaling, where

Υ = ∂xT + ∂xh∂zT.

For small plate inclinations, i.e. for α � 1, we introduce a new variable of order

O(1), α̃ = α/ε, i.e. sinα ≈ εα̃ and cosα ≈ 1 − (εα̃)2/2. The choice of the scale

for the surface tension, γ̃ = γε2 is due to small inclination angles and where the

velocities are small, so a new re-scaled velocity is introduced ~̃v = ~v
ε
. Note that we

are interested here in the isothermal (non–thermal) case, i.e. Υ = 0 and Ma = 0.

Now the equations are expressed in terms of powers of ε. The main interest is to

study the low order expansions of ε; replacing the new scaled variables, dropping

the tildes and dropping all terms of order O(ε2) or higher, leads to a new set of

non-dimensional equations and boundary conditions describing a thin film in the

long-wave scaling:

∂zzu = ∂xp−Gα (2.31)

∂zp = −G (2.32)

0 = ∂xu+ ∂zw (2.33)

Now we are able to introduce the boundary conditions for the dragged-out plate

depicted in Fig. 2.1. The transport equations are constrained by boundary condi-

tions at the plate, z = 0, and at the free surface, z = h(x, t):

At the plate, z = 0, the non–slip, non–penetration condition for the velocity field,

recalling that there is no relative motion between the dragged plate and the liquid,

u(x, 0) = −U (2.34)

and at the free surface, z = h(x, t),

∂zu(x, h) = 0, (2.35)
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the kinematic condition, i.e. the surface follows the the flow field,

w = ∂th+ u∂xh (2.36)

and the pressure at the free surface must satisfy,

p(h) = −γ∂xxh− Π(h) (2.37)

where the integration constant is defined as

C1(x) = Gh− γ∂xxh− Π(h). (2.38)

Using the boundary conditions (2.37), (2.38) and integrating Eq. (2.33) in z,

p(x, z) = Gz + C1(x) (2.39)

it follows

p(x, z) = G(h− z)− γ∂xxh− Π(h) (2.40)

Then, the derivative of p with respect to x is

∂xp = G∂xh− ∂x [γ∂xxh+ Π(h)] . (2.41)

Integrating Eq. (2.32) twice and using the boundary conditions (2.34), (2.35) to

determine the integration constants, one obtains for the velocity profile

u(x, z) = (∂xp−Gα)

(
z2

2
− hz

)
− U. (2.42)

The kinematic boundary condition in combination with the continuity equation

(2.33) gives

∂th = − ∂xΓ (2.43)

where Γ is the flux in the laboratory frame. It is defined as

Γ =

∫ h(x,t)

0

udz. (2.44)
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Combining now Eqs. (2.42) and (2.40) and replacing in Eq. (2.43), we obtain the

flux

Γ =

∫ h(x)

0

dz

[
(∂xp−Gα)

(
z2

2
− hz

)
− U

]
= −h

3

3
(∂xp−Gα)− Uh. (2.45)

Finally we obtain the non-dimensional long-wave thin film evolution equation:

∂t h = −∂x
(
h3

3
∂x [γ∂xxh+ Π(h)]− h3

3
G (∂xh− α)− Uh

)
(2.46)

We identify the different terms in Eq. (2.46) as the time–dependent term on the

L. H. S., and on the R. H. S. the Laplace pressure term,

∂th︸︷︷︸
time dependent term

= −∂x(
h3

3︸︷︷︸
Mobility factor

Laplace and Derjaguin pressure︷ ︸︸ ︷
∂x [γ∂xxh+ Π(h)]

− h3

3
G (∂xh− α)︸ ︷︷ ︸

hydrostatic pressure and lateral gravity force

− Uh︸︷︷︸
drawing by substrate

)

the Derjaguin / disjoining pressure term, the hydrostatic pressure term, the grav-

ity term and the drawing term by the substrate. Note that the pre-factor h3/3

multiplying the pressure terms and the hydrostatic - gravity term is called mo-

bility factor, which represents the dynamic response of the medium towards the

external perturbations. We simplify the expression by further rescaling by setting

γ = 1, i.e. l = η2/ (ε2ργ0), and by absorbing the factor 1/3 from the mobilities h3

into the scaled velocity U , i.e. Ũ = U/3 and in the time derivative, i.e. ∂t̃ = 3∂t,

and dropping the tildes, we have

∂t h = −∂x
{
h3 ∂x [∂xxh+ Π(h)]− h3G (∂xh− α)− Uh

}
, (2.47)

or explicitly,

∂th = − h3∂xxxxh− h2∂xh∂xxxh− h3
[
∂hhΠ(h)(∂xh)2 + ∂hΠ(h)∂xxh)

]
−h2∂xh∂hΠ(h) +Gh3∂xxh+Gh2(∂xh)2 − αh2∂xh+ U∂xh.

The first step in our analysis is to study steady-states of the equation, i.e. when

∂th = 0. For simplicity, we start from Eq. (2.47) and take ∂th = 0. We can now
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integrate once with respect to x, we obtain the steady-states equation:

h3 (∂xxxh+ ∂hΠ(h)∂xh)− h3G (∂xh− α)− Uh+ J0 = 0, (2.48)

where the integration constant J0 corresponds to the flux to the left. Note

that Eq. (2.47) has been non-dimensionalised using L =
√

3/5 heq/θeq as the

length scale in the x-direction, heq as the length scale in the z-direction and

τ=(9ηheq)/(25γθ4
eq) as the time scale, where η is the viscosity of the liquid. With

this non-dimensionalisation the dimensionless disjoining pressure has the form

Π(h) = Π1(h) + Π2(h) = − 1

h3
+

1

h6
. (2.49)

The scaled velocity, gravity number and the inclination angle are given by

U =
3τ

L
u, G =

ρgh4
eq

A
, α =

L

heq

α̃, (2.50)

respectively, where ρ is the density of the liquid and g is the acceleration due

to gravity and u and α̃ are the dimensional plate velocity and the plate physical

inclination angle, respectively.

2.1.5 Boundary conditions

The main part of the analysis is focused on the solution behaviour of the steady-

state equation. Time simulations will only be used in a few cases. However, we

introduce the boundary conditions for the general case to allow for a study of the

time-dependent behaviour in the meniscus geometry with Eq. (2.47). In our open

geometry we have to determine asymptotic boundary conditions at both ends of

the finite computational domain. We assume that h tends to an undetermined

constant value (e.g., at equilibrium the precursor film thickness) as x → −∞
implying that its derivatives tend to zero as x→ −∞, while at the side of the liquid

bath we need to connect the meniscus to the bath via an asymptotic expansion,

which will be explained in the following section. The use of asymptotic boundary

conditions allows for a certain independence of our main results from the particular

numerical domain size used.
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Boundary conditions at the precursor film side

We are interested in solutions that for h → −∞ approach a constant film height

h∞. At this point it is necessary to recall a few definitions for the film thickness

at the precursor film side to avoid confusion:

(i) heq, equilibrium precursor film height for U = 0 and α = 0, i.e. Π(heq) = 0.

(ii) hp, precursor film height for U = 0 and α 6= 0.

(iii) h∞, coated film height for U 6= 0 and α 6= 0, i.e. in a non–equilibrium

situation.

(iv) h0, any flat film.

For the steady thin film equation, Eq. (2.48), we already know that due to the

partial-wetting disjoining pressure the substrate will always be coated by an ad-

sorbed thin film, meaning that far away from the liquid bath, in an asymptotic

limit, the film height in the precursor film model tends for U = 0 to the constant

precursor film height hp, therefore we impose that all derivatives of h vanish, i.e.

∂xh = ∂xxh = 0 for x→ −∞. (2.51)

Note that the film height on the precursor film side is kept free, i.e. it can take

any value, but it has to be constant and flat.

Boundary conditions at the meniscus - liquid bath

To describe the behaviour of the film thickness profiles in the entrainment zone,

i.e. in the region in the vicinity of the dragged plate where liquid is set into motion

(see Fig. 2.1), and to connect the film with the bath, we use an ansatz that fulfils

∂xh = α when x→∞ , i.e. the film slope tends to α, or with other words the film

surface profile approaches the horizontal surface of the semi-infinitely extended

bath. To obtain the next order contributions we use the ansatz

h = αx+
∞∑
j=1

Cj
xj

= αx+
C1

x
+
C2

x2
+
C3

x3
+
C4

x4
+ . . . (2.52)
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that gives consistent results. Consistent results are not obtained when employing

other sequences used elsewhere for related equations, see for example [10, 30].

Appendix A shows how to derive Eq. (2.52) using centre manifold theory.

The first derivative is

∂xh = α−
∞∑
j=1

j
Cj
xj+1

= α− C1

x2
− 2C2

x3
− 3C3

x4
− 4C4

x5
+ . . . . (2.53)

Alternatively the free surface could approach a constant curvature meniscus, i.e.

when the ”bath” is confined between two parallel plates. In this case, the ansatz

is

h = κx1/2 +
C1

x
+
C2

x2
+ . . . .

To calculate the values of the coefficients Cj, we introduce ansatz (2.52) into

Eq. (2.48), and expand in powers of 1/x resulting in

(
−Uα +Gα3C1

)
x+
(
2Gα3C2 + J0

)
+

3− UC1 + 3Gα3C3 + 3Gα2C1
2 − 6α3C1

x
+

4Gα3C4 + 9Gα2C1C2 − UC2 − 24α3C2

x2
+ . . . = 0, (2.54)

that we consider order by order in x.

The coefficients of the xi (for i = 1, 0,−1, . . .) in Eq. (2.54) have to be zero,

allowing us to determine the values of the Cj. The relations obtained from the

first 4 coefficients are:

i = 1: Gα3C1 − Uα = 0

i = 0: J0 + 2Gα3C2 = 0

i = −1: 3− UC1 + 3Gα3C3 + 3Gα2C1
2 − 6α3C1 = 0

i = −2: 4Gα3C4 + 9Gα2C1C2 − UC2 − 24α3C2 = 0
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From the expressions above, we find

C1 =
U

α2G

C2 = −1

2

J0

Gα3

(2.55)

C3 = −1

3

3α2G+ 2U2 − 6Uα3

α5G2

C4 = J0
U − 3α3

G2α6
.

For our later calculations it turns out to be sufficiently exact to use the first three

0.6 0.8 1
x/L

1

100

h(
x)

0.6 0.8 1

num solution

2 terms
3 terms

Asymptotic terms
1 term

4 terms

Figure 2.8: Shown is a log-normal plot with a comparison of a numerical
solution for α = 0.5 at U = 0.083 with asymptotic solutions with 1, 2, 3 and
4 terms in the series expansion, i.e. Eq. (2.53) with Eqs. (2.56). The domain
size is L = 1000 and the position of the meniscus is at xM = 800. The region
of interest is where the meniscus connects to the bath. Line styles as shown in

the legend.
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terms of Eq. (2.52), i.e. the boundary conditions are, see Fig. 2.8:

h ≈ αx+
U

α2Gx
− J0

2Gα3x2
,

(2.56)

∂xh ≈ α− U

α2Gx2
+

J0

Gα3x3
.

Note that the connection between the plate and an idealised straight bath surface

occurs at a fixed coordinate xM (see Fig. 2.1), so that the boundary conditions

(2.56) are valid for x̃ = x − xM . We can re-write the boundary conditions now

including the position of the meniscus,

h ≈ α(x− xM) +
U

α2G(x− xM)
− J0

2Gα3(x− xM)2

(2.57)

∂xh ≈ α− U

α2G(x− xM)2
+

J0

Gα3(x− xM)3
.

In Fig. 2.8 we compare a numerical solution for α = 0.5 at U = 0.083 with asymp-

totic solutions with 1, 2, 3 and 4 terms in the series expansion for a simulation

L = 1000 and xM = 800.

For simplicity we define the meniscus position as xM = 0 and solve the equa-

tion on the domain [−L1, L2]. At x = −L1, we impose the boundary conditions

h′(−L1) = 0 and h′′(−L1) = 0, see Eq. (2.51) and at x = L2, we impose the bound-

ary condition obtained by truncating the asymptotic expansion, see Eq. (2.56).

Note that the flux J0 will be obtained via a relation defined in Eq. (2.68), see

Subsection 2.2.3.

2.2 Linear stability analysis

2.2.1 Linear stability analysis of a flat film

To analyse the linear stability in time of any flat film, i.e. h(x, t) = h0 ≡ const., we

introduce a Fourier mode decomposition, h(x, t) = h0 +εe(βt+ikx), with Re[β] being

the growth rate and k the wave number of the linear perturbation, while Im[β]

describes the phase velocity Cphase(k) =Im[β]/k. The perturbation amplitude ε is
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small, i.e. ε� 1. Note that

∂nxh(x, t) = ε(ik)neβt+ikx (2.58)

and

∂th(x, t) = εβeβt+ikx, (2.59)

are the n–th spatial and the temporal derivatives, respectively. Introducing the

ansatz, Eqs. (2.58), and (2.59), in Eq. (2.47) and linearising in ε, the dispersion

relation

β(k) = −k2h3
0(k2 − k2

c )− ik
(
3Gαh2

0 − U
)

(2.60)

is obtained, where we introduced k2
c = ∂hΠ(h0)−G.

The growth rate is (see Fig. 2.9),

Re[β(k)] = −k2h3
0(k2 − k2

c ) (2.61)

and the imaginary part describes the phase velocity Cphase(k) of the mode via

Im[β(k)]/k = Cphase = −
(
3Gαh2

0 − U
)
. (2.62)

The flat film is linearly unstable for Re[β(k)]> 0. From Eq. (2.61) and Fig. 2.9

we see that an interval of unstable wave numbers ku exists, ku ∈ [0, kc], such that

Re[β(0)] =Re[β(kc)] = 0, where kc is the critical wave number. Fig. 2.9 shows the

growth rate Re[β(k)] for a flat film on an inclined plate. The unstable and linearly

stable case are depicted as a solid line and a dashed line respectively.

2.2.2 Spatial linear stability analysis of flat films

We focus now on the spatial linear stability and start our analysis defining a spatial

dependance of steady perturbations for the steady state equation Eq. (2.48),

h(x) = h0 + εh1(x) (2.63)

where h0 is any constant film height and ε� 1 the small amplitude of the perturba-

tion. After introducing the perturbation Eq. (2.63) into Eq. (2.48) and expanding
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Figure 2.9: Dispersion relation (Growth rate Re[β(k)]) for a flat film on an
inclined plate. Shown are the unstable (solid line) and linearly stable case

(dashed line).

in ε one obtains at order O(1),

J0 +Gh0
3α− Uh0 = 0 (2.64)

and at O(ε),

∂xxxh1(x) + ∂xh1(x)

(
3

h4
0

− 6

h7
0

−G
)

+ h1(x)
3Gαh2

0 − U
h3

0

= 0. (2.65)

The first equation is analysed in the following subsection. It tells us that for each

given set of parameters U , α and J0 there are three possible flat film heights h0.

The second equation, Eq. (2.65) is a third order linear differential equation, that

can be solved via standard methods [49]. As we are looking into spatial perturba-

tions of an infinitely extended flat film, we decompose into Fourier modes

h1(x) = Aekx, (2.66)
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introduce this into Eq. (2.65) and obtain the characteristic polynomial P (k) in

terms of the wave number k

k3 + k

(
3

h4
0

− 6

h7
0

−G
)

+
3Gαh2

0 − U
h3

0

= 0. (2.67)

We are now able to solve the coupled system of equations, Eqs. (2.64) and (2.67):

First we numerically solve Eq. (2.64) and for each physically meaningful solution

for the flat film heights h0, we solve Eq. (2.67) obtaining three possibly complex

wave numbers k that will characterise how flat parts of the film profiles connect

to other parts.

2.2.3 Flat films

We know already under which conditions a flat film will be unstable. We also know

how to calculate the eigenvalues corresponding to spatial linear perturbations,

which will give us valuable information about the film profile structure. Now we

need to understand which flat films can be used for these calculations, i.e. the

physically meaningful solutions, so we need to solve Eq. (2.64), which is a cubic

polynomial relation in h0,

Gαh3
0 − Uh0 + J0 = 0 (2.68)

that relates the flux J0 and height h0 for given parameters α and U as shown in

Fig. 2.10. Note that if we introduce the boundary conditions (2.51) in Eq. (2.48),

we obtain the same relation, i.e. the value the film height takes at x → −∞ is

one of the solutions. We are interested only in positive film heights, which are the

physical meaningful solutions of the problem. Analysing Eq. (2.68) we find that

there exists a range of values for h0 that is a physical solution for the problem

at hand where we impose J0 > 0, in particular h0 ∈ [0,
√
U/(Gα)]. The flux J0

is constrained between zero and a maximum value Jmax = 2
√

3
9
U2/3

√
1/Gα, that

is obtained at h0 =
√
U/3Gα from Eq. (2.68). It is worth to point out, that

the precursor film boundary condition, Eq. (2.68), determines a relation between

the flux J0 and the coating film height h0 = h∞. A close inspection of the cubic

equation results in a relation between the number of possible real positive solutions

for flat film heights and a given flux J0. The following cases are of interest:
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Figure 2.10: Flux - film height dependence. Shown is the flux J0/Jmax vs.
h0/
√
U/3Gα. For h̃0 = h0/

√
U/3Gα ∈ {0,

√
3} the flux is zero. The maximum

flux Jmax = 2/3U
√
U/(3Gα) is obtained at h̃0 = 1.

(i) no flat film solution

J0 > Jmax =
2

3
U

√
U

3Gα
(2.69)

(ii) one flat film solution

J0 = Jmax (2.70)

(iii) two flat film solutions

0 ≤ J0 < Jmax (2.71)

(iv) one flat film solution

J0 < 0 (2.72)

We do not consider the last case here as it can only result if additional liquid is

supplied onto the plate at x = −∞, (see however, discussion in [41]).

The case in Eq. (2.69) results in one negative real solution and two complex conju-

gate solutions, none of the three correspond to a physical film height, the relation

in Eq. (2.70) results in three real solutions, where one is negative and the other
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two are double roots corresponding to one physical film height and case (2.71) re-

sults in three different real solutions with one being negative and the other two are

physical film heights. As we will see in the next chapter, solutions in cases (2.70)

and (2.71) are describing physically meaningful solutions, namely Landau–Levich

films [8], foot–solutions / thick–film solutions [10, 14, 18] and ultra–thin coating

layers close to precursor thickness.

This analysis gives us an insight of how many different film heights exist for fixed

parameters indicating if steady solutions may exist that connect several flat film

parts.

The information obtained via relations (2.69), (2.70) and (2.71) can be comple-

mented by an additional condition to restrict the range of possible values of flat

film heights h0 = h∞ for the present case without source of liquid at x → −∞,

see e.g. [29]. This is done by inspecting the expression for the velocity profile in

the film Eq. (2.42), particulary analysing the sign of the velocity directly at the

free surface. Requesting that the velocity v(h0) > 0 gives an upper bound for h0

through the condition v(h0) = 0,

hmax
0 =

√
2U

Gα
(2.73)

with values of h0 > hmax
0 corresponding to films where an upper layer above

z = z0 ≤ h0 flows down the plate towards the bath of liquid. These solutions

have no physical correspondence to the system we are studying as they need a

liquid source at x→ −∞.

2.3 Streamlines

To have a better understanding of the internal structure of the meniscus–, foot–

and film solutions, it is instructive to see the changes of the velocity field inside

the profiles. In the problem we are studying, we have a two dimensional incom-

pressible flow, i.e. the velocity distribution of the moving fluid depends only on

two coordinates, x and z, and is constrained to the (x− z)-plane. In this type of

problem it is useful to introduce the stream function Ψ(x, z) which depends on the

velocity components u(x, z) and w(x, z). The contour lines of the stream function
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Ψ(x, z), i.e. lines on which Ψ(x, z) = constant., represent the streamlines. The

direction of the tangent vector of a streamlines at a given coordinate (xi, zi) is the

direction of the fluid velocity at this given point.

The stream function Ψ(x, z) can be calculated using the expression of the velocity

components u(x, z) and w(x, z), see e.g. [50, 51], by means of

u(x, z) = ∂zΨ(x, z) (2.74)

and

w(x, z) = −∂xΨ(x, z). (2.75)

We can easily construct the full expression of the x-component of the velocity

u(x, z) from the expression of the velocity component u(x, z), Eq. (2.42), and the

expression for the pressure, Eq. (2.41), i.e.

u(x, z) = (G(∂xh− α)− ∂xxxh− ∂hΠ(h)∂xh)

(
z2

2
− hz

)
− U. (2.76)

On the other hand, in order to simplify this expression, we can use Eq. (2.47) to

replace the higher order derivative ∂xxxh from the steady state equation, i.e.

− ∂xxxh = ∂hΠ∂xh−G(∂xh− α)− 3(
U

h2
+
J0

h3
). (2.77)

The x-component velocity u(x, z) of the fluid is

u(x, z) = 3

(
−U
h2

+
J0

h3

)(
z2

2
− hz

)
− U. (2.78)

To construct the z-component velocity w(x, z) we use the incompressibility rela-

tion, Eq. (2.33), i.e.

w(x, z) = −
∫

dz∂xu(x, z). (2.79)

From Eq. (2.78) ∂xu(x, z) is,

∂xu(x, z) = ∂xh

[(
6U

h3
− 9J0

h4

)(
z2

2
− hz

)
− 3

(
U

h2
− J0

h3

)
z

]
(2.80)
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and after a straightforward integration w(x, z) results as

w(x, z) = −∂xh
[(

6U

h3
− 9J0

h4

)(
z3

6
− hz2

2

)
− 3

2

(
U

h2
− J0

h3

)
z2

]
+ C̃(x). (2.81)

To determine C̃(x), we apply the boundary conditions, see Eq. (2.34), at z = 0,

i.e. no–slip and no–penetration, so that C̃(x) = 0.

For a consistency check, we know that the velocity component w(x, z) at z = h(x)

satisfies the kinematic condition Eq. (2.36), i.e.

w(x, h)− ∂xhu(x, h) = 0 (2.82)

which is fully satisfied.

Using Eq. (2.78) and Eq. (2.81) in combination with Eq. (2.74) and Eq. (2.75), we

obtain two expressions for the stream function Ψ(x, z)

Ψ(x, z)1 =

(
−U
h2

+
J0

h3

)
z3

2
−
(
−U
h

+
J0

h2

)
3z2

2
− Uz + C̃1(x) (2.83)

Ψ(x, z)2 =

(
−U
h2

+
J0

h3

)
z3

2
−
(
−U
h

+
J0

h2

)
3z2

2
+ C̃2(z). (2.84)

Both stream functions Ψ1 and Ψ2 should be the same, which leads to

C̃1(x) = 0

C̃2(z) = −Uz.

The stream function is given by

Ψ(x, z) =

(
−U
h2

+
J0

h3

)
z3

2
−
(
−U
h

+
J0

h2

)
3z2

2
− Uz, (2.85)

for 0 ≤ z ≤ h(x) and ∀x ∈ [−L1, L2].

There are some points (xst, zst) where the fluid velocity ~u could be zero, i.e.

~u(xst, zst) = 0. These points are known as stagnation points and they can oc-

cur on the free surface of the fluid, i.e. at h(x), and also inside the film proflie,

i.e. 0 ≤ z < h(x).
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We calculate the coordinates of the stagnation points from the velocity components

expressions, Eq. (2.78) and Eq. (2.81),

3

(
−U
h2

+
J0

h3

)(
z2

2
− hz

)
− U = 0

−∂xh
[(

6U

h3
− 9J0

h4

)(
z3

6
− hz2

2

)
− 3

2

(
U

h2
− J0

h3

)
z2

]
= 0.

h(x)

h
ST

X X
ST

Z
ST

Z
ST

Figure 2.11: Sketch of a stagnation point located at the coordinates (xst, zst).
As example is also shown a stagnation line (dashed green line). See text.

The stagnation points are located at

hst = 3
J0

U

zst = 3
J0

U
.

Note that hst = h(xst) and corresponds as well to the coordinate xst, see Fig. 2.11.

These solutions allow as well a stagnation line located at zst and stagnation points

at zst, with zst < h(x).
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Behaviour of a drawn meniscus of

non–volatile liquid

“This is the job. Don’t wait for it

to happen. Don’t even want it to

happen. Just watch what does

happen.”

Jim Malone

In the previous chapters we have introduced the physical problem, the governing

equations, the non-dimensional mathematical model in long-wave approximation

as well as the necessary boundary conditions to solve it numerically. Here, we

will describe important results pertaining the different behaviours of the system

with particular focus on the triggering mechanisms responsible for the transitions

leading from the deposition of (i) an ultrathin coating film at small plate velocities

to (ii) a macroscopic film of thickness h ∝ U2/3 (corresponding to the classical

Landau–Levich film). Depending on the plate inclination, four regimes are found

for the change from case (i) to (ii). These different regimes and the transitions

between them are analysed employing numerical continuation of steady states and

of loci of saddle-node bifurcations as well as simulations in time. We also discuss

the relation of our results to results obtained with a slip model, which will be

discussed later on in the text.

41
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3.1 Partially wetting liquid

The results presented here are obtained using continuation techniques [52, 53]

bundled in the package AUTO (auto07p) [54]. This software package is based on

the method of orthonormal collocation for discretising solutions, with an adaptive

mesh to equidistribute the discretisation error. Starting from known solutions,

AUTO searches nearby solutions for the discretised system using a combination of

Newton and Chord iterative methods. When a solution converges, AUTO starts

to follow the solution–path by a small step in the parameter space defined by the

free continuation parameters and re-starts the iteration.

A description and examples of the application of numerical continuation techniques

to thin film problems can be found in sect. 4b of the review in ref. [55], in sect. 2.10

of ref. [56], and in refs. [57–59]. These techniques are used for analysing Eq. (2.48)

with the boundary conditions described in Eq. (2.51) and Eq. (2.56). This enables

us to obtain steady solutions for a specific set of control parameters, e.g. plate

inclination angle α, plate velocity U . These two control parameters are a natural

choice, as they can be directly related to the parameters of the experimental

setup. To investigate the influence of the domain size, we carried out test runs
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Figure 3.1: Domain size effects. Left panel: Solution measure ∆V versus
plate velocity U for plate inclination angle α = 0.5 and different system sizes
L = 500 and L = 1500. Note that when the front reaches the domain end, the
system jumps to a different solution branch (shown in red). Right panel: Flux
versus drag velocity for plate inclination angle α = 0.5 and different system sizes
L = 500 and L = 1500. The physically meaningful solutions are those shown in

black and for J0 > 0. For more details, see text.

using different domain sizes, L = 500, 1000 and 1500 for different fixed plate

inclination angles α. In Fig. 3.1 we compare a smaller domain size, L = 500, with

a larger one, L = 1500. In the left panel we plot the effective volume measure ∆V
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(see Appendix B , Eq. (B.1)), divided by 1000, versus plate velocity U for plate

inclination angle α = 0.5. When the solution profile front reaches the domain end,

the system jumps to a different solution branch (shown in red in both panels). On

the right panel, we plot flux J0 versus plate velocity U for plate inclination angle

α = 0.5. The physically meaningful solutions are those shown in black and for

J0 > 01.

Finally, unless stated otherwise a domain size of L = 1000 is chosen to avoid

finite domain effects. We use the dimensionless gravity number G = 0.001 for all

numeric calculations.

3.1.1 Steady menisci at zero plate velocity and at small

(scaled) angles

We start our numerical analysis by studying the behaviour at plate velocity U = 0

for different plate inclination angles. We observe for all angles that a meniscus

rises up from the bath due to wettability and surface tension. In Fig. 3.2 a full

range of different inclination angles is shown, note the inset in the left panel that

zooms on the region around xM. This range covers equidistant inclination angles,

where α spans from α = 0.25 to α = 10 with an step increase of ∆α = 0.25.

The semi-log scale is chosen to have a better representation of the whole range of

inclination angles with a focus on the contact line region. We identify clearly the

precursor (coating) film of height h∞ preceding the meniscus. Note that as U = 0,

h∞ = hp ≈ heq for all α.

We observe also how the curvature of h changes sign in the contact line region

(around xM) as the plate inclination angle α passes the value of the equilibrium

angle θeq, see Fig. 3.3. There, we plot in the left panel the slope hx for five

equidistant inclination angles below and above the equilibrium contact angle θeq =

0.775, namely α = 0.25, 0.5, 0.75, 1.0 and 1.25. The change of sign in the curvature

occurs when the relative maximum of hx crosses zero. Note how the slope of the

profile approaches the plate inclination angle as x tends to L, i.e. hx → α.

We will first focus on the behaviour at relatively small inclination angles, α . 1.0.

We continue our analysis by observing how the physical system behaves once it

1In our numerical calculations, the flux J0 is a secondary continuation parameter which is
left free and is related to the coating height h∞ via Eq. (2.68)
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Figure 3.2: Steady menisci for zero plate velocity, U = 0, for different equidis-
tant inclination angles, α ∈ [0.25, 10], increment ∆α = 0.25. The arrow in-
dicates direction of increasing α. Detail in the inset as indicated. Left panel:
Normal plot of film profiles. Right panel: Semi-log plot of film profiles. Note
that in the semi-log plot the depiction of the precursor (coating) film of height
h∞ preceding the meniscus is clearer. The red dashed line indicates the equi-
librium precursor film height hp = 1, see Eq. (2.18). Meniscus position is at

xM = 0.8 and the domain size is L = 1000 in both panels.
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Figure 3.4: α = 0.05: Film profiles for different drag-out velocities. As an
inset effective volume ∆V in dependence of the plate velocity U . The numbers
on the bifurcation diagram correspond to the depicted film profiles. The domain

size is L = 2500.

starts to be driven by the moving plate at small angles, for example at α = 0.05, see

Fig. 3.4. In the inset, a bifurcation diagram in terms of the effective volume ∆V in

dependence of plate velocity U is shown. We observe that, as the drag velocity U

increases, the volume increases monotonically and approaches a vertical asymptote

at some velocity value, that we define as U∞.

Further on, the film profile solutions we observe as the plate velocity U increases,

show that with increasing U the meniscus profile starts to grow in length and

evolves into an extended meniscus or foot solution. These profiles are shown in

Fig. 3.4, where the corresponding number on the bifurcation curve corresponds

to the film profile in the main figure. Note how the foot solution emerges when

the vertical asymptote at U∞ is approached. The foot then increases its length at

constant height, hf . At U∞, the foot length diverges. This foot is entirely flat and

does not exhibit undulations on the free surface. We observe this behaviour for

all values of α up to a critical inclination angle α = α1 ≈ 0.1125.

When the plate is inclined further, e.g. at α = 0.5, see Fig. 3.5, we observe a dif-

ferent bifurcation diagram: Now, we detect pairs of saddle nodes in the bifurcation
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Figure 3.5: α = 0.5: Film profiles for different drag-out velocities. As an
inset effective volume in dependence of the drag velocity. Note the appearance
of the characteristic snaking after UC1 when the bifurcation curve starts to fold
back. The numbers on the bifurcation diagram correspond to the depicted film

profiles. The domain size is L = 1000.

diagram. The first saddle node occurs at a critical velocity UC1, where the bifur-

cation curve folds back and switches to an upper branch. Note that UC1 > U∞.

The second saddle node occurs at U = UC2, with UC2 < U∞. The bifurcation

curve starts to exhibit a snaking behaviour, see sketch on left panel of Fig. 3.6:

it oscillates around a vertical asymptote at U = U∞ with a decaying amplitude.

Note that in this case there is an infinite but countable number of saddle nodes at

which the slope of the bifurcation curve is vertical. The vertical asymptote U∞ is

different for every plate inclination angle α.

The film profile solutions we observe as the plate velocity U increases, show that

the meniscus profile evolves again into an extended meniscus or foot solution.

These profiles are shown in Fig. 3.5, where the corresponding numbers on the

bifurcation curve corresponds to the numbered film profiles in the main figure.

Note how the foot starts to emerge when the bifurcation first folds back at the

critical velocity UC1 and how the foot monotonically increases its length at constant

height as the plate velocity oscillates around U∞. These foot solutions exhibit

undulations on the free surface.
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Summing up, in both cases, see Fig. 3.4 and Fig. 3.5, a clear description of how the

meniscus foot is dragged out as the plate velocity changes emerges: For solutions

(1) and (2), no foot like film profile exists yet — just a simple meniscus. Note that

when the velocity approaches U∞ [solution (3)], the film shape starts to change to

the foot solution. Solutions (4) and (5) present clearly foot–like solutions, note,

as previously described, that the thick film covers a larger region of the plate and

that the foot height hf ∝ U
1/2
∞ .

These foot-like solutions present two characteristic heights:

(a) (coating) precursor film height h∞

(b) foot height hf , where hf ∝ U
1/2
∞ .

It is important for the sake of simplicity in our further analysis to define for these

type of film profiles a solution measure which quantifies the foot length, `f , using

the characteristic film heights h∞ and hf and the volume measure ∆V ,

`f =
∆V

hf − h∞
. (3.1)

A more detailed description of this solution measure can be found in Appendix C.

Although we have already defined a foot length measure `f , it is also useful to

introduce an alternative measure for the foot length, LF, which will be used as well.

It is defined as the distance between the inflection point (change of concavity), i.e.

∂xxh|x0 = 0 at the matching between the (coating) precursor film height h∞ and

the plateau height hf and at the matching between plateau and the bath, i.e.

∂xh|x1 = 0, see Fig 3.6,

LF = x0 − x1. (3.2)

In Fig. 3.7 we present dependencies on plate velocity for various angles between

α = 0.05 and α = 1.0, where we observe for all angles a vertical asymptote velocity

U∞. This asymptote at U∞ is approached monotonically in U for smaller angles,

e.g. α = 0.05 and 0.1, and for larger angles, α = 0.33, 0.5, 0.75 and 1.0, this

approach is non-monotonic. As the angle is increased pairs of saddle nodes occur

at corresponding critical velocities UC1, where the bifurcation curve starts to snake

around U∞.



Chapter 3. Transitions in the behaviour of the drawn meniscus 48

U∞ U
C1

U
C2

U

∆V

UC2<U  ∞ UC1<

LF

hf

h∞
x0 x1

Figure 3.6: Left panel: Sketch of the snaking behaviour. Note the appearance
of the first pair of saddle nodes at UC1 and UC2 respectively. The bifurcation
curve then oscillates with an exponential decay around U∞. Note the other
pair of saddle nodes occurring, marked with coloured dots. Right panel: The
foot length LF is defined as the distance between the change of concavity, i.e.
∂xxh|x0 = 0 at the matching between the (coating) precursor film height h∞
and the plateau height hf and at the matching between plateau height hf and
the bath, i.e. ∂xh|x1 = 0. The foot or plateau height is the distance between

the ground and the plateau. See text.

Note that the critical velocities where the first two saddle nodes are located, UC1

and UC2, as well as U∞ are different for each plate inclination angle. Representing

these velocities as a function of the inclination angle, i.e. in a (α − U) phase

diagram, is helpful to understand and characterise the behaviour of the system.

In Fig. 3.8 we compare film profiles for identical plate velocity at different inclina-

tion angles as indicated in the legends. The four chosen values of U are indicated

in Fig. 3.7. In Fig. 3.8, panel (a) and panel (b) we observe how the foot structure

starts to emerge for α = 0.33 as the velocity is close to U∞(α = 0.33), while for

the other inclination angles the film profile is a meniscus solution. In panel (b)

we see that for α = 0.33 the foot starts to grow (black and red-dashed solutions).

Panel (c) focuses on α = 0.5, where we observe a similar behaviour as for α = 0.33.

Panel (d) shows profiles at U∞(α = 0.75): we see clearly how the foot emerges and

grows. For larger drag velocities (U > UC1) no meniscus and foot profiles exist.

Finally, we show in Fig. 3.9 that the precursor film height (coating height) evolves

towards a fixed point in the (U, h∞)-plane for each angle α at the corresponding

limiting velocity U∞. Note that the flux J0 is always positive, see Fig. 3.10 where

we show J0 in dependance on plate velocity U . This flux corresponds to physical

film solutions.
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Figure 3.8: Film profiles for (a) Ua = 0.07, (b) Ub = 0.072, (c) Uc = 0.09
and (d) Ud = 0.09688 as marked in Fig. 3.7 by vertical dashed lines. In every
panel inclination angles are indicated in the legend. Observe that for larger

drag velocities no profiles exist for α = 0.33 and α = 0.5.
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Figure 3.9: Coating film height at x → ∞ vs. plate velocity U . Equidistant
inclination angles with α ∈ [0.25, 2.25] and an increase ∆α = 0.25. Arrow indi-
cates increasing plate angles: As U increases, the curve converges to a point in
the (U, h∞)-plane for each angle α. The red line corresponds to the equilibrium

precursor hp = 1 film height in a flat horizontal plate.
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Figure 3.10: Flux J0 vs. plate velocity U . Equidistant inclination angles with
α ∈ [0.25, 2.25] and an increase ∆α = 0.25. Arrow indicates increasing plate
angles: As U increases, the curve converges to a point in the (U, J0)-plane for

each angle α. Note that J0 > 0 correspond to physical film solutions.
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3.1.2 Transition at small angles

We will now analyse in detail the changes occurring at small inclination angles,

α . 1. As an example, we focus on α = 0.1 and α = 0.5. In Fig. 3.11 and Fig. 3.12,

we present bifurcation diagrams showing the dependence of the solution measure

quantifying the foot length lf , on the plate velocity. As mentioned before, we

observe that there is a critical inclination angle, α1 ≈ 0.11 , such that for α < α1,

the curve rises monotonically and approaches a vertical asymptote at some value

of the velocity, which we denote by U∞. This can be observed in the left panel of

Fig. 3.11 for α = 0.1. On the right panel of Fig. 3.11 when α = 0.5, i.e. α > α1, we

observe a snaking behaviour where the bifurcation curve oscillates back and forth

around a vertical asymptote at U = U∞ with decaying amplitude of oscillations.

We note that in this case there is an infinitely but countable number of saddle-

nodes bifurcations at which the slope of the bifurcation curve is vertical. Below,

we will calculate the critical angle α1 and explain why U∞ is different for each

inclination angle.

In order to illustrate the different behaviour for angles below and above α1, we also

show the foot length measure, lf (see Eq. (3.4)), versus |U−U∞| in a semi-log plot,

see the left and right panels of Fig. 3.12 for α = 0.1 and α = 0.5, respectively. For

α = 0.1, it can be clearly seen that the bifurcation curve approaches the vertical

asymptote exponentially with a rate which we denote by νs.

lf ∝ νs ln
U∞

|U − U∞|
(3.3)

However, for α = 0.5, we see that the approach of the vertical asymptote is

exponential with the snaking wavelength tending to a constant value, which we

denote by Λs, note that the foot–length lf is

exp (Re[νs]lf ) sin(Im[νs]lf ) ∝
U∞

|U − U∞|
. (3.4)

Figure 3.13 shows the snaking behaviour for α = 0.5 in more detail. In the left

panel, we see the bifurcation diagram where the red filled circles mark solutions

at U∞. In the chosen solution measure, the solutions are nearly equidistantly

distributed, i.e. the difference in foot length between subsequent solutions at U∞

is a constant, namely Λs/2. In the inset, the first five solutions are indicated and
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Figure 3.11: Left panel: Asymptotical monotonic growth of the pseudo-foot-
length measure `f towards the vertical asymptote at U = U∞ as a function of
the dragged velocity U for α = 0.1, which is below α1. Right panel: Snaking
behaviour of the foot-length measure `f where the bifurcation curve oscillates
around a vertical asymptote at U = U∞ with decaying amplitude of oscillations

as a function of the dragged velocity U for α = 0.5, which is above α1.
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Figure 3.12: In order to illustrate the different behaviour for angles below and
above α1, we show the foot-length measure `f versus |U − U∞| in a semi-log
plot. Left panel: The semi-log plot shows an asymptotic monotonic growth in
U . Right panel: An exponential – oscillating periodic decay is clearly shown. A
periodic structure with a snaking wavelength Λs and an exponential decay rate

νs appears after UC1 (bifurcation: appearance of the first saddle node).
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Figure 3.13: Film profiles at plate velocity U∞ for α = 0.5. Left panel:
Bifurcation diagram. The red filled circles correspond to film solutions at plate
velocity U∞. The inset shows a blow-up of the region with the first five solutions.
Note the appearance of a characteristic snaking behaviour around U∞. The
letters in the inset correspond to the film profiles depicted in the right panel.
Note the appearance of undulations on top the foot-like part of the solution
as the foot becomes longer. The numerical domain size used is L = 10000,
L1 = 9800. Note that the first profile (a) corresponds to a meniscus solution.
It is located on the lowest branch before the bifurcation curve folds back at
UC1 (the green square). The red dashed line indicates a linear increase in foot

length.

labeled by (a)-(e). The corresponding film profiles are shown in the right panels.

The dashed line that connects the front positions of all foot solutions in the right

panels confirms the linear growth of the foot length.

The striking differences in film profiles for angles below and above α1 is illustrated

in Fig. 3.14. There we show solutions for velocities close to U∞ for α = 0.1 and at

U∞ for 0.5 by solid and dashed lines, respectively. In the left and the right panels,

we compare solutions with short and long foot, respectively. The foot lenghts

of the solutions in the same panel are similar. To emphasise the differences, we

represent the profiles in a semi-log plot ln |h(x) − hf | versus (x + L1)/L in the

bottom panels. For α = 0.1 we see no undulations – only exponential decays at a
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Figure 3.14: Film profiles above and below α1 given as solid and dashed
lines, respectively. Left panel: Shown are film profiles for α = 0.1 close to
U∞ and for α = 0.5 at U∞. Right panel: In order to show the appearance
of undulations on top of the foot above α1, we represent in bottom panels
|h(x) − hf | versus (x + L1)/L in a semi-log plot, where L1 = 9800, L = 10000
is the numerical domain size and hf is the characteristic foot height calculated
for each inclination angle α by solving Eq. (2.48) for h′ = 0, h′′ = 0 and h′′′ = 0
(using the numerically obtained value of the flux J0). Observe the exponential
approach with rate νfh of the foot height from the bath side, and as well the
exponential departure with rate νft from the foot height towards the precursor
film (see main text for details). Note that the measured foot wavelength is

Λf = Λ̃fL.

rate denoted by νfh from the bath to the foot and at a rate denoted by νft from the

foot to the precursor. However, for α = 0.5 we observe an oscillatory exponentially

decaying behaviour at a rate denoted by νfh with a wavelength denoted by Λf in

the region between the bath and the foot. In the region between the foot and the

precursor film, we again observe a monotonic exponential decay.

Note that the precursor (coating height) film h∞ and the foot height hf correspond

to fixed points of Eq. (2.48). The values of h∞ and hf at U = U∞ are shown in

Fig. 3.15 as functions of α by dashed and solid lines, respectively. In Fig. 3.16,

we show the dependence of the eigenvalues calculated from Eq. (2.67) at fixed

points h∞ and hf at U = U∞ as functions of α. We note that for the precursor
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film all the eigenvalues are real, one of them is positive and two are negative

independently of the angle, see Table 3.1. We denote these eigenvalues by λp,i,

i = 1, 2, 3. However for the foot, the behaviour of the eigenvalues changes exactly

α hp λp,1 λp,2 λp,3
0.1 1.0210 -0.0152 1.5659 -1.5507
0.5 1.0385 -0.0362 1.4418 -1.4056

Table 3.1: Eigenvalues at fixed point hp for α = 0.1 close to U∞ and for
α = 0.5 at U∞. Note that all the eigenvalues are real for α = 0.1 and for

α = 0.5. See Fig. 3.16.

at the critical angle α1 at which monotonic bifurcation diagrams change to snaking

ones ,i.e., at α1 ≈ 0.1125 . We observe that for α < α1 all the eigenvalues for the

foot are real – two are positive and denoted by λf,1 and λf,2 so that λf,1 < λf,2 and

one is negative and is denoted by λf,3. However, for α > α1 there is a negative

real eigenvalue, λf,3, and a pair of complex conjugate eigenvalues with positive

real parts, λf,1 and λf,2. Table 3.2 shows the values of eigenvalues λf,i, i = 1, 2, 3,

for α = 0.1 and 0.5.

α hf λf,1 λf,2 λf,3
0.1 19.3732 0.0173 0.0188 -0.0361
0.5 12.3922 0.0263 +0.0346 i 0.0263 −0.0346 i -0.0525

Table 3.2: Eigenvalues at fixed point hf for α = 0.1 close to U∞ and for
α = 0.5 at U∞. Note that all the eigenvalues are real for α = 0.1, whereas for
α = 0.5 one eigenvalue is real and negative and two are complex conjugates

with positive real parts. See Fig. 3.16.

In Tables 3.3 and 3.4, we compare Re[λf,3] with the exponential rate νft character-

ising the connection between the foot and the coating film, and Re[λf,1] with the

exponential rate νfh characterising the connection between the foot and the bath.

Table 3.3 corresponds to a short foot, while table 3.4 corresponds to a long foot.

For α = 0.5 the plate velocity is equal to U∞, while for α = 0.1 we choose a foot

of approximately the same lengths as for α = 0.5 and we note that for α = 0.1 the

α ν = Re[λf,3] νft ν = Re[λf,1] νfh

0.1 -0.0361 -0.0403 0.0173 0.0152
0.5 -0.0525 -0.0497 0.0263 0.0278

Table 3.3: Shown is for a short foot the comparison of the exponential decays
νft, νfh with the eigenvalue ν from the linear stability analysis for α = 0.1 close

to U∞ and for α = 0.5 at U∞. See Fig. 3.14.
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α ν = Re[λf,3] νft ν = Re[λf,1] νfh

0.1 -0.0361 -0.0356 0.0173 0.0155
0.5 -0.0525 -0.0463 0.0263 0.0255

Table 3.4: Shown is for a long foot the comparison of the exponential decays
νft, νfh with the eigenvalue ν from the linear stability analysis for α = 0.1 close

to U∞ and for α = 0.5 at U∞. See Fig. 3.14.

α Λ=2π/Im[λf,1] Λf (long) Λf (short) Λs

0.5 181.6987 202.6920 198.8801 184.7657

Table 3.5: Shown is the comparison of the wavelength of snaking Λs from the
bifurcation diagram and wavelength of the undulations of the foot Λf from the
foot-like profile with the wavelength Λ calculated from the eigenvalues λf,i at
U∞ for α = 0.5. Note the locking between Λ ≈ Λs ≈ Λf . See Fig. 3.12 and

Fig. 3.14.
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Figure 3.15: Film heights at fixed points for the coating film height, h∞, and
foot height, hf , versus inclination angle α at U∞ shown by dashed and solid
lines, respectively, in a double entry plot. Note that the correct numerically
obtained flux J0 is needed at each α to determine the fixed points. The left side
of the ordinate axis corresponds to the foot height, the right side corresponds

to the coating height.

bifurcation curves do not reach U∞, but for the chosen foot the velocities coincide

with U∞ up to at least seven significant digits. The results show that there is good

agreement between Re[λf,3] and νft and between Re[λf,1] and νfh for both values

of α and for both foot lengths, with a maximal error below 12%.

In Table 3.5, we compare Λ = 2π/Im[λf,1] with the wavelength of the oscillations

on the foot, Λf , for a long and a short foot, and with the wavelength of oscillations
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Figure 3.16: Eigenvalues of flat film solutions at the U∞ that corresponds to
each α. Upper panel: Shown are the three eigenvalues λp versus α for the fixed
point corresponding to the precursor film. Note that all the eigenvalues are
real. Middle and bottom panels: Shown are the real and the imaginary parts,

respectively, of the three eigenvalues λf versus α for the foot height.

α Re[λf,1] 1/νs
0.1 0.0173 0.0151
0.5 0.0263 0.0284

Table 3.6: Shown is the comparison of the exponential decay constant 1/νS
from the bifurcation diagrams with the eigenvalues λf,i calculated from the

linear stability analysis for α = 0.1 and α = 0.5. See Fig. 3.12.
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in snaking bifurcation diagrams, Λs, when α = 0.5. The results show that there

is good agreement between Λ and Λs – the error is below 2%, and between Λ and

Λf for both foot lengths – the error is below 12%.

In table 3.6, we compare Re[λf,1] with the exponential rate 1/νs, where νs char-

acterises the rate at which the bifurcation diagrams approach the vertical asymp-

totes. We again observe good agreement for both values of α, with an error up to

13%.

3.1.3 Heteroclinic snaking

In what follows, our aim is to explain the snaking behaviour observed in our

numerical results, see right panels of Fig. 3.11, Fig. 3.12 and left panel of Fig. 3.13.

Related exponential snaking behaviour has been analysed in systems involving

either one fixed point [60, 61] or two fixed points [62]. Table 3.7 illustrates that

Author Description of scenario #Fixed Points
Shilnikov infinite number of periodic orbits 1 fixed point

approaching a homocline
Knobloch & Wagenknecht infinite number of homoclines 2 fixed points

approaching a heteroclinic cycle
Present study infinite number of heteroclines 3 fixed points

approaching a heteroclinic chain

Table 3.7: Hierarchy of systems exhibiting exponential snaking behaviour,
Shilnikov [60], Knobloch & Wagenknecht [62].

our results form part of a hierarchy of such snaking behaviours: Shilnikov (see

refs. [60, 61]) analyses homoclinic orbits to saddle-focus fixed points in three-di-

mensional dynamical systems that exist for some value β0 of parameter β and

demonstrated that if the fixed point has a one-dimensional unstable manifold and

a two dimensional stable manifold, so that the eigenvalues of the Jacobian at this

point are λ1 and −λ2± i ω, where λ1,2 and ω are positive real numbers, and if the

saddle index δ ≡ λ2/λ1 < 1, then in the neighbourhood of the primary homoclinic

orbit there exists an infinite number of periodic orbits that pass near the fixed

point several times. Moreover, the difference in the periods of these orbit tends

asymptotically to π/ω. The perturbation of the structurally unstable homoclinic

orbit leads to a snaking bifurcation diagram showing the dependence of the period

of the orbit versus the bifurcation parameter β. This diagram has an infinitely
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countable number of turning points at which the periodic orbits vanish in saddle-

node bifurcations. However, if the saddle index is greater than unity, then the

bifurcation diagram is monotonic. Knobloch and Wagenknecht [62, 63] analyse

symmetric heteroclinic cycles connecting saddle-focus equilibria in reversible four-

dimensional dynamical systems that arise in a number of applications, e.g., in

models for water waves in horizontal water channels [64] and in the study of cellular

buckling in structural mechanics [65]. In these systems the symmetric heteroclinic

cycle organises the dynamics in an equivalent way to the homoclinic solution in

Shilnikov’s case. It is found that a necessary condition for exponential snaking in

such four-dimensional systems is the requirement that one of the involved fixed

points is a bi-focus [62]. Then there exists an infinite number of homoclines to the

second involved fixed point that all pass a close neighbourhood of the bi-focus.

We will show below that the presently studied case is equivalent to the cases of

Shilnikov and of Knobloch and Wagenknecht, however, here a heteroclinic chain

between three fixed points forms the organising centre of an infinite number of

heteroclines.

First, following a proposal of ref. [10], we introduce variables y1 = 1/h, y2 = h′ and

y3 = h′′, and convert the steady-state equation Eq. (2.48) into a three-dimensional

dynamical system:

y′1 = −y2
1y2, (3.5)

y′2 = y3, (3.6)

y′3 = (6y7
1 − 3y4

1)y2 +Gy2 + Uy2
1 − J0y

3
1 −Gα. (3.7)

Note that the transformation y1 = 1/h is used to obtain a new fixed point corre-

sponding to the bath, namely the point yb = (0, α, 0), beside other fixed points,

two of which, yf = (1/hf , 0, 0) and yp = (1/hp, 0, 0), correspond to the foot

and the precursor film, respectively. First, we consider fixed points of system

(3.5)-(3.7) with y1 6= 0. For such fixed points, y2 = y3 = 0 and y1 satisfies the

equation

f(y1) ≡ y3
1 −

U

J0

y2
1 +

Gα

J0

= 0. (3.8)

It can be easily checked that this cubic polynomial has a local maximum at ya1 = 0

and a local minimum at a positive point yb1. Moreover, f(ya1) > 0 implying that

there is always a fixed point with a negative value of the y1-coordinate. We

disregard this point, since physically it would correspond to negative film thickness.
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Also, assuming that Gα < (4/27)(U3/J2
0 ), we obtain f(yb1) < 0, which implies

that there are two positive roots a1 and a2 of the cubic polynomial satisfying

a1 < a2. This implies that there are two more fixed points, yf = (a1, 0, 0) and

yp = (a2, 0, 0). The point yf corresponds to the foot and the point yp corresponds

to the precursor film.

To analyse stability of these fixed points, we compute the Jacobian at these points,

Jyf,p
=


0 −a2

1,2 0

0 0 1

2Ua1,2 − 3J0a
2
1,2 6a7

1,2 − 3a4
1,2 +G 0

 . (3.9)

A simple calculation shows that for both, yf and yp, all the eigenvalues have non-

zero real parts implying that these points are hyperbolic. Point yf , correspond-

ing to the foot, has a two-dimensional unstable manifold and one-dimensional

stable manifold, while point yp, corresponding to the precursor film, has a one-

dimensional unstable manifold and a two-dimensional stable manifold. Our nu-

merical simulations presented in the previous section show that if α is sufficiently

small, there exists a value of the plate speed, U∞, and a value of the flux, J0 = J∞,

such that in the vicinity of these values there exist steady solutions for which the

foot length can be arbitrarily long, see Fig. 3.11. We, therefore, conclude that at

U = U∞ and J0 = J∞, there exists a heteroclinic chain connecting the fixed points

yp, yf and yb, and the solutions of different foot lengths correspond to heteroclinic

orbits in the vicinity of this chain connecting yp to yb. As was discussed in the

previous section, in the top panel of Fig. 3.16, we can observe that for point yp

all the eigenvalues are real at U = U∞ and J0 = J∞ implying that this point is

a saddle. The two bottom panels of Fig. 3.16 demonstrate that there is a critical

inclination angle α1 ≈ 0.1125 such that for α ≤ α1, all the eigenvalues for yf are

real, whereas for α > α1, one eigenvalue is real and negative and there is a pair

of complex conjugate eigenvalues with positive real parts. Therefore, for α ≤ α1,

point yf is a saddle, but for α > α1, it is a saddle-focus. To understand the

existence of these multiple heteroclinic orbits connecting two of the fixed points

of a three dimensional dynamical system which has three fixed points connected

by a heteroclinic chain, we present the following theorem, which corresponds to

situation similar to the one that we analyse in the previous sections. Namely, we

analytically prove that if yf is a saddle-focus, there exists a countably infinite
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Figure 3.17: Schematic representation in the three-dimensional phase-space
of the fixed points yp, yf and yb of system (3.10) when β = β0. The fixed point
yp is a saddle point with two-dimensional unstable manifold, Wu(yp), and a
one-dimensional stable manifold. The fixed point is yf is a saddle-focus with
two-dimensional unstable manifold and a one-dimensional stable manifold. The
fixed point yb is a non-hyperbolic point having two-dimensional stable manifold,
Ws(yb). The fixed points yp and yf are connected by the heteroclinic orbit Γ1

and the fixed points yf and yb are connected by the heteroclinic orbit Γ2.

number of subsidiary heteroclinic orbits connecting yp and yb that lie in a suffi-

ciently small neighbourhood of the heteroclinic chain connecting yp, yf and yb.

This result is closely related2 to the existence of a countably infinite number of

steady-state solutions having different foot lengths that we have analysed in the

previous section, see the left panels of Fig. 3.11, Fig. 3.12 and Fig. 3.13.

Theorem. Consider a three-dimensional system

y′ = f(y, β), y ∈ R3, (3.10)

2The precursor film fixed point yp of the dynamical system analysed in the previous section
has a one-dimensional unstable manifold Wu(yp) and a two-dimensional stable manifold Ws(yp),
while for the system described in the following section, the precursor film fixed point yp has a
two-dimensional unstable manifold Wu(yp) and a one-dimensional stable manifold Ws(yp). This
was not clearly laid out in [66].
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where β denotes a parameter. We assume that there exist three fixed points,

which we denote by yp, yf and yb, when β is sufficiently close to a number β0.

We additionally assume that yp and yb have a two-dimensional unstable manifold

Wu(yp) and a two-dimensional stable manifold Ws(yb), respectively, and that yf

is a saddle-focus fixed point with a one-dimensional stable manifold Ws(yf ) and a

two-dimensional unstable manifold Wu(yf ) (i.e., the eigenvalues of the Jacobian at

yf are −λ1, λ2± iω, where λ1 = λ1(β), λ2 = λ2(β) and ω = ω(β) are positive real

numbers when β is sufficiently close to β0). Let us also assume that for β = β0,

there is a heteroclinic orbit Γ1 ∈ Wu(yp) ∩ Ws(yf ) connecting yp and yf and

that the manifolds Wu(yf ) and Ws(yb) intersect transversely so that there is a

heteroclinic orbit Γ2 ∈ Wu(yf ) ∩Ws(yb) connecting yf and yb. Then for β = β0

there is an infinite countable number of heteroclinic orbits connecting yp and yb

and passing near yf . Moreover, the difference in ‘transition times’ from yp to yb

tends asymptotically to π/ω (the meaning of a ‘transition time’ from yp to yb will

be explained below).

Proof: After a suitable change of variables, the dynamical system y′ = f(y, β)

can be written in the form

y′1 = λ2y1 − ωy2 + f̃1(y, β), (3.11)

y′2 = ωy1 + λ2y2 + f̃2(y, β), (3.12)

y′3 = −λ1y3 + f̃3(y, β), (3.13)

where f̃i, i = 1, 2, 3, are such that ∂f̃i/∂yj = 0, i, j = 1, 2, 3, at y = yf . After

such a change of variables, the origin is a stationary point corresponding to yf

and sufficiently close to the origin, the terms f̃1(y, β), f̃2(y, β) and f̃3(y, β) are

negligibly small, so that near the origin the dynamical system can be approximated

by the linearised system

y′1 = λ2y1 − ωy2, (3.14)

y′2 = ωy1 + λ2y2, (3.15)

y′3 = −λ1y3. (3.16)
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Let Σ1 be a plane normal to the stable manifold of yf , Γ1, and located at a small

distance ε1 from yf , i.e., locally Σ1 is given by

Σ1 = {(y1, y2, ε1) : y1, y2 ∈ R}. (3.17)

Let Σ2 be part of a plane transversal to the unstable manifold of yf , Γ2, at some

point near yf and passing through yf that is locally given by

Σ2 = {(y1, 0, y3) : |y1 − r∗| ≤ ε2, |y3| ≤ ε3}. (3.18)

Here (r∗, 0, 0) ∈ Γ1 is sufficiently close to the origin and ε3 < ε1. We denote the

upper half-plane of Σ2, when y3 > 0, by Σ+
2 , i.e., Σ+

2 = {y ∈ Σ2 : y3 > 0} and

let Σ−2 = Σ2\Σ+
2 . We choose ε2 to be sufficiently small so that each trajectory

crosses Σ2 only once. It can be shown that this condition is satisfied when ε2 <

tanh(λ2π/ω) r∗.

Using cylindrical polar coordinates (r, θ, z), such that y1 = r cos θ, y2 = r sin θ

and y3 = z, the linearised dynamical system near the origin is given by

r′ = λ2r, (3.19)

θ′ = ω, (3.20)

z′ = −λ1z. (3.21)

The solution is given by

r = r0eλ2x, (3.22)

θ = θ0 + ωx, (3.23)

z = z0e−λ1x. (3.24)

In the cylindrical polar coordinates, Σ1 is given by z = ε1 and Σ2 is given by

Σ2 = {(r, 0, z) : |r − r∗| ≤ ε2, |z| ≤ ε3}. (3.25)

Let ϕx be the flow map for the linearised dynamical system. Also, let S be the set

in Σ1 given by

S = {y ∈ Σ1 : ∃ x such that ϕx(y) ∈ Σ2}. (3.26)
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Then we can define the map

ϕ : S → Σ2 : y 7→ ϕx(y) for some x > 0. (3.27)

It can easily be checked that the image of ϕ is in fact Σ+
2 . Also, it can be easily

seen that the set S is the so-called Shilnikov snake, a set bounded by two spirals,

s1 and s2, given by

r = (r∗ ± ε2)e−λ2x, θ = −ωx, z = ε1, (3.28)

respectively, where x ∈ [(1/λ1) log(ε1/ε3), ∞), and the following segment of a

straight line:

r ∈

[
(r∗ − ε2)

(
ε3

ε1

)λ2/λ1
, (r∗ + ε2)

(
ε3

ε1

)λ2/λ1]
, (3.29)

θ =
ω

λ1

log

(
ε3

ε1

)
, z = ε1. (3.30)

Let lp = Σ1∩Wu(yp) be the intersection of the two-dimensional unstable manifold

of yp and the plane Σ1, which is locally a straight line given for β = β0 by the

equations θ = θp and z = ε1, where θp is some constant. As θp mod π determines

the direction of the line, we can choose without out loss of generality,

θp ∈ (−π + (ω/λ1) log(ε3/ε1), (ω/λ1) log(ε3/ε1)]. (3.31)

Next, let ln, n = 1, 2, . . . , be the intersections of the line lp with set S such that

|l1| > |l2| > · · · , where |ln| denotes the length of the segment ln, n = 1, 2, . . . , see

Fig. 3.17. We can see that ln is given by

r ∈ [(r∗ − ε2) exp(−λ2(π(n− 1)− θp)/ω),

(r∗ + ε2) exp(−λ2(π(n− 1)− θp)/ω)], (3.32)

θ = θp − π(n− 1) = θp mod π, z = ε1. (3.33)

Then, we find that ϕ(ln) is a segment of a line in Σ2 given by

r ∈ [(r∗ − ε2), (r∗ + ε2)], (3.34)

θ = 0, (3.35)

z = ε1 exp(−λ1(π(n− 1)− θp)/ω). (3.36)
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Let lb = Σ2∩Ws(yb) be the intersection of the two-dimensional stable manifold of

yb and the plane Σ2. Locally it is a segment of a straight line, and since manifolds

Wu(yf ) and Wu(yb) intersect transversely, this segment of the line is given for

β = β0 by parametric equations

r = r∗ + as, θ = 0, z = s, (3.37)

where a is some constant and s is a parameter changing from −ε3 to ε3. Note

that we can choose ε3 to be smaller than ε2/|a| so that the line lb intersects all

the lines ϕ(ln), n = 1, 2, . . . , and we denote such intersections points by yb,n,

n = 1, 2, . . . . Let us denote the preimages of these points with respect to map

ϕ by yp,n, n = 1, 2, . . . . Note that yp,n ∈ ln, n = 1, 2, . . . . Next, since for

each n = 1, 2, . . . , point yp,n belongs to the unstable manifold of yp, there is an

orbit Γp,n connecting yp and yp,n. Also, by definition of point yp,n, it is mapped

by the flow map ϕx to point yb,n and the ‘transition time’ from yp,n to yb,n is

approximately equal to x = ttr = (π(n − 1) − θp)/ω. Note that the difference

in ‘transition times’ from yp,n to yb,n and from yp,(n+1) to yb,(n+1) tends to π/ω

as n increases. We denote the orbit connecting yp,n with yb,n by Γf,n. Finally,

since yb,n for each n = 1, 2, . . . , point yp,n belongs to the stable manifold of yb,

there is an orbit Γb,n connecting yb,n and yb. We conclude that there is an infinite

countable number of subsidiary heteroclinic orbits connecting points yp and yb

that are given by Γs,n = Γp,n ∪ Γf,n ∪ Γb,n, n = 1, 2, . . . . Moreover, the difference

in ‘transition times’ for two successive orbits Γs,n and Γs,(n+1) taken to get from

plane Σ1 to plane Σ2 tends to π/ω as n→∞. Q.E.D.

Remark 1. We would like to point out that snaking diagrams as those computed

in the previous section are obtained by an unfolding of the structurally unstable

heteroclinic chain connecting yp, yf and yb. For β close to β0 but not necessarily

equal to β0, line lp = Σ1 ∩Wu(yp) is locally given by

y2 = b(β)y1 + c(β), y3 = ε1, (3.38)

where c(β0) = 0 and b(β0) = tan(θp) (without loss of generality, we can assume

that θp 6= π/2 + πn for any n ∈ Z). This implies that in a small neighbourhood of

point (0, 0, ε1), this line can be approximated by

y2 = (b(β0) + ∆β b′(β0))y1 + ∆β c′(β0), y3 = ε1, (3.39)
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Figure 3.18: Schematic representation of the Shilnikov snake, S, in plane
Σ2. The solid line shows line lp for β = β0, the dashed lines show lines lp for
β = β+ > β0 and for β = β− < β0. The dotted line shows the locus of the points
through which heteroclinic orbits connecting yp and yb pass for certain values
of β near β0. The black square corresponds to the value of β+ at which line lp
is tangent to S and at which points yp,(n−1) and yp,n vanish in a saddle-node
bifurcation. The star corresponds to the value of β− at which line lp is tangent
to S and at which points yp,n and yp,(n+1) vanish in a saddle-node bifurcation.

where ∆β = β − β0. Assuming that c′(β0) 6= 0, we obtain that for β 6= β0 line

lp is shifted in plane Σ2 and does not pass through point (0, 0, ε1), see Fig. 3.18.

This implies that for β 6= β0 line lp intersects the Shilnikov snake, S, finitely many

times. For sufficiently small ∆β, we denote by ln(β) the intersection of lp with

S that is obtained by a small shift of ln for β = β0. By considerations similar

to those in the proof of the previous theorem, it can be shown that in each of

the line segments there is a point yp,n(β) such that there is a heteroclinic orbit

passing through this point and connecting yp and yb. For β 6= β0 there is only a

finite number of such orbits. Figure 3.18 schematically shows lp by a solid line for

β = β0 and by dashed lines for β = β+ > β0 and β = β− < β0. In addition, points

yp,(n−1)(β+), yp,n(β+), yp,n(β−) and yp,(n+1)(β−) are shown. For certain value of

β+, points yp,(n−1)(β+), yp,n(β+) vanish in a saddle-node bifurcation. This point

is indicated by a black square in the figure. At this point, line lp is tangent to

the boundary of S. Also, for certain value of β−, points yp,n(β−), yp,(n+)(β−)

vanish in a saddle-node bifurcation. This point is indicated by a star in the figure.

At this point, line lp is tangent to the boundary of S. The locus of the points
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through which heteroclinic orbits connecting yp and yb pass for certain values of

β near β0 is shown by a dotted line. It can be seen that this line is a spiral, s,

that belongs to S, passes through points yp,n and is tangent between transitions

from yp,n to yp,(n+1), n = 1, 2, . . . , to the boundary of S given by spiral s1. It

can therefore be concluded that the bifurcation diagram showing the ‘transition

time’ for heteroclinic orbits connecting yp and yp versus parameter β is a snaking

curve, shown schematically in Fig. 3.19, similar to the numerically obtained cases

in figs. 3.11, 3.12 and 3.13 for α = 0.5. There is an infinite number of such orbits

in a neighbourhood of β0 and there is an infinite countable number of saddle-node

bifurcations that correspond to the points at which spiral s touches the boundary

of the Shilnikov spiral, S.

We can find that the slope of the line tangent to spiral s1 is

dy2

dy1

= R tan(θ + θ0), (3.40)

where R =
√
λ2

2 + ω2 and θ0 = tan−1(ω/λ2). Therefore, at the points where line

lp touches spiral s1, we must have

R tan(θn + θ0) = b(β0) + ∆βnb
′(β0), (3.41)

where θn and ∆βn are the values of θ and ∆β corresponding to the nth saddle-node

bifurcation. Thus, at these points

θn = tan−1

(
b(β0)

R
+ ∆βn

b′(β0)

R

)
− θ0 − πn, (3.42)

for sufficiently large integer n. Equivalently,

xn = − 1

ω
tan−1

(
b(β0)

R
+ ∆βn

b′(β0)

R

)
+
θ0

ω
+
π

ω
n. (3.43)

From this formula, we clearly see that the difference in transition times between

two saddle-node bifurcations tends to π/ω. Also, at the saddle-node bifurcations

we must have

rn sin θn=(b(β0) + ∆βnb
′(β0))rn cos θn + ∆βnc

′(β0), (3.44)
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where rn = (r∗ + ε2)e−λ2xn , which implies

∆βn = rn
sin θn − b(β0) cos θn
c′(β0) + b′(β0)rn

. (3.45)

From the latter expression, we can conclude that

|∆βn| = O(rn) = O(e−λ2xn), (3.46)

which shows that the snaking bifurcation diagram approaches the vertical asymp-

tote at an exponential rate, which is similar to the results presented in the right

panel of Fig. 3.12 and in table 3.6. Also, note that if yf is a saddle, then the set S

ββ
0

t
tr

Figure 3.19: Bifurcation diagram for heteroclinic orbits connecting yp and yb.

is not a spiral but is a wedge-shaped domain. The line lp then passes through the

vertex of this domain for β = β0 and, generically, intersects it in the neighbour-

hood of the vertex only for β < β0 but not for β > β0 or vice versa. Then, the

bifurcation diagram showing the ‘transition time’ for heteroclinic orbits connect-

ing yp and yb versus parameter β is a monotonic curve instead of a snaking curve

shown in Fig. 3.19, similarly to the case in Fig. 3.11 and Fig. 3.12 for α = 0.1.

Note that in the dragged meniscus problem the ‘transition time’ is a measure of

the length of the foot and is therefore equivalent to the measure lf introduced in

the previous section. Thus, the bifurcation diagrams obtained in figs. 3.11, 3.12

and 3.13 are explained by the results presented above.
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Remark 2. Note that in the dragged meniscus problem, the unstable manifold of

yp is not two-dimensional, but one-dimensional. However, we notice that instead

of having one parameter, β as is described in Theorem 3.1.3, we have now two

parameters, the plate velocity U and the flux J0. If U is fixed at U = U∞ and

J0 varies, the one–dimensional unstable manifold of yp sweeps a two–dimensional

surface which plays the role of Wu(yp) discussed in the proof of Theorem 3.1.3.

3.1.4 Foot / snake locking

We have analysed in the last section the appearance of undulations on the free

surface of the foot solutions and its connection to the collapsed snaking in the

bifurcation diagram.

Here, we will analyse – using results from the linear stability analysis – the be-

haviour of the undulations during the evolution of the steady state profiles as the

plate velocity changes for all plate velocities U (not only at U∞ as was the case

in the previous section) for a chosen angle above the first transition, α = 2.4175.

We show in the left panel of Fig. 3.20 a typical foot–film profile for the chosen

angle with the characteristic undulation structure on the free surface, and in the
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Figure 3.20: Left panel: We observe undulations on top of the profile along the
foot. The red inset is depicted in the right panel. The example is for α = 2.4175
and U = 0.1441. Right panel: Shown is a detail of the oscillation on the foot
for the film profile shown in the left panel. The wave length ΛFoot = 0.084
measured corresponds to one obtained by linear stability analysis, Λ ' 0.083.

right panel we show a blowup of the free surface. Note the wavelength ΛFoot as

indicated in the figure.
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Employing the linear stability analysis discussed in Eq. (2.64) and Eq. (2.65), we

can compute the wave numbers K via Eq. (2.67) for different film profiles for the

given inclination angle α = 2.4175 at different plate velocities.
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Figure 3.21: α=2.4175. Top panel: Film profiles for a fixed angle and different
drag velocity U . As an inset bifurcation diagram with ∆V vs. U for the profiles
(colour coded and numbered). Bottom panels, from left to right: Real part of
the wave number K in black for foot height hf , blue for the coating film height
h∞. Imaginary part of the wave number K in black for foot height hf , blue
for the coating film height h∞. The crosses correspond in both panels to the

profiles depicted above (colour and number code).
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The solution of Eq. (2.65) for the film height is h1(x) is

h1(x) = A1e
(K1r+IK1i)x + A2e

(K2r+IK2i)x + A3e
(K3r+IK3i)x. (3.47)

From our numerical solution we can compare the values of the complex wave

number K a see the correspondence to the coating film height h∞ and the foot

height hf . We will analyse as an example solution 3 with parameter values of

α = 2.4175, U = 0.14406 and ∆V = 1.94133 from Fig. 3.21:

The values of the two different heights are: h∞ = 1.067 and hf = 7.131, and the

wave numbers are listed below:

Height K1 K2 K3

h∞ 1.2619 + 0.0000I −0.0747 + 0.0000I −1.1872 + 0.0000I
hf 0.0423 + 0.0743I −0.0846 + 0.0000I 0.0423− 0.0743I

Table 3.8: Wave numbers of the two film heights for the film profile solution
for α = 2.4175, U = 0.1441, ∆V/1000 = 1.941.

The solution of the coating film height shows pure real values of the wave number,

i.e. there are no oscillations. The real part of the wave numbers show one positive

K, i.e. Re[K] > 0, and other two negative K, i.e. Re[K] < 0. The first one allows

the growing of the film to match the foot height as x grows, and diminishes as

x → 0, while the other two diminish approaching the foot height, allowing the

matching.

h∞(x) = A1e
1.2619x︸ ︷︷ ︸

grows to match the foot, diminishes x→ 0

+A2e
−0.0747x + A3e

−1.1872x︸ ︷︷ ︸
diminishes towards the foot

(3.48)

On the other hand, the solution for the foot height has two complex conjugate wave

numbers with positive real part, and one pure real negative wave number. These

two complex conjugated wave numbers introduce exponential growing oscillations

that will match the bath as x gets larger, while the pure real negative K decays

to match the coating film solution.

hf (x) = A1e
(0.0423+0.0743I)x + A2e

(0.0423−0.0743I)x︸ ︷︷ ︸
oscillations and grow towards to match the bath

+ A3e
−0.0846x︸ ︷︷ ︸

diminishes to match the coating film

(3.49)

We also observe that the wavelength of the oscillation (scaled over the simulation

domain L=1000) is Λ = 2π/Im[K] ≈ 0.083. This value is in accordance with the

one measured on the profile, see Fig. 3.20, ΛFoot = 0.0845.
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In Fig. 3.22 we plot the foot length LF defined in Eq. (3.2), for selected angles as

shown in the legend. We observe how as the foot gets longer, the foot wavelength

tends to a constant value ΛF , coinciding with calculated Λf from the linear stability

analysis.
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Figure 3.22: Shown is the foot length Lf for different inclination angles α as
indicated in the legend versus the wavelength ΛFoot of the undulations observed
on the foot. As the foot length becomes larger, the wavelength tends to Λ∞.

In Fig. 3.23 we compare in a log-log-plot the calculated wavelengths from the

linear stability analysis Λfoot (blue dots and orange circles) with the measured

wavelength ΛF (lila squares) at corresponding Uα
∞ as function of α̌ = α − α1,

where α is the inclination angle and α1 ≈ 0.1125 is the critical angle where the

wavelength of the foot diverges (i.e. the imaginary part of the spatial eigenvalue

for the foot height Ki → 0). α1 is the inclination angle where the first described

transition occurs. We have also include the measured snaking wavelength Λs (red

and orange diamonds) with the error bar form the measurements, with a maximal

error below 15%. Note that there exists a locking between the snaking wavelength

Λs and the foot wavelength Λf , i.e. Λs ≈ Λf for angles with a collapsed snaking

bifurcation diagram, i.e. for α > α1. Note that we have included solutions (orange

colour code) which will be discussed in later sections of the text.

Note that wavelengths Λ, Λs, ΛF at U∞ scale following a power-law with exponent

ν = −1/2,

Λ ∝ (α− α1)−
1
2 .
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Figure 3.23: Shown is a Log-Log-plot of the wavelength of the foot Λf and
of the snaking Λs at U∞ versus α̌. α̌ = α − α1, where α is the inclination
angle and α1 is the critical angle where the wavelength of the foot diverges
(i.e. the imaginary part of the spatial eigenvalue for the foot height Ki → 0).
α1 is the inclination angle where the first transition occurs: the appearance of
undulations on the foot. Note that the relation between Λfoot , Λs and α̌ follows

a power-law with and exponent ν = −1/2

In a green dashed line we also plot a regression curve which follows the power-law

(α− α1)−
1
2 .
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3.1.5 Limiting velocity U∞: Relation between the dragged

plate and a sliding droplet

The limiting velocity U∞ and foot height hf can be connected to the problem of a

large flat sliding droplet on an incline, see Fig. 3.24. This problem has been studied

by several authors, see e.g. [67, 68]. In the co-moving frame of the sliding droplet,

the non-dimensional long-wave equation modelling the sliding droplet on an incline

is exactly the same as Eq. (2.47) describing the drawn meniscus problem, although

the boundary conditions are different. For this particular case, the boundary

conditions are h′ = h′′ = 0 at both simulation domain ends. In the lower panel

U∞

Vd

hdroplet
hprecursor

Figure 3.24: Comparison and relation between sliding droplet and dragged
plate

of Fig. 3.24 we identify the droplet height hd and the precursor film height hp

for a typical sliding droplet. Note the precursor film wetting the substrate in

front and behind the drop due to the use of a partial wetting disjoining pressure.

The limiting velocity U∞ in the dragged-out plate problem then corresponds to

the droplet sliding velocity Vd for the same inclination angle α. In the left panel

of Fig. 3.25 we show the computed sliding droplet velocity Vd as a function of

inclination angle α, and we superpose the results of U∞ for the drawn meniscus

problem as a function of α. On the right panel we plot the height hd of the sliding

drop and the foot height hf at U∞ as a function of the inclination angle α. Note

that the blue dots in both panels correspond to a family of foot solutions that
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Figure 3.25: Comparison and relation between sliding droplet and dragged
plate. Left panel: Droplet sliding velocity Vd versus inclination angle α, super-
posed U∞ for foot solutions versus inclination α. Right panel: Droplet sliding
height hd versus inclination angle α, superposed film height hf at U∞ for foot

solutions versus inclination α.

will be addressed later on in this chapter. To see the connection between the two

problems, we move to the co-moving frame. For a system with an infinitely large

droplet, when looking at the tail, the solution structure is the same as the tip of

the foot for the dragged plate problem.
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Figure 3.26: Film profile structures. Left panel: Superposition of sliding
droplet profile and drawn meniscus foot solution at Vd = U∞ and same inclina-
tion angle α = 0.5 for a same droplet / foot length. Right panel: |h(x) − hf |
versus x. Note the identical undulated structure of the free surface of the su-
perposed profiles. The blue dots in both panels correspond to a family of foot

solutions that will be addressed later on in this chapter.

In Fig. 3.26 we show a sliding droplet profile (red line) and a foot solution for the

drawn plate (dashed blue line) at Vd = U∞ and same inclination angle α = 0.5

for identical droplet / foot length. On the left panel we note the similar structure

and profile, with special focus on the tail of the droplet / tip of the foot. This

characteristic can be seen clearer in the right panel where we plot |h(x)−hf | versus
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x and the undulations on the free surface can be identified. Note the identical

undulated structure of the free surface of the superposed profiles, especially at the

tail.

3.1.6 Time dependent behaviour

The stability of the steady states solutions is determined via arguments of bi-

furcation theory [69] and is checked employing time simulations. For the time

dependent calculations, Eq. (2.47) is solved numerically using a second order up-

wind finite difference scheme in space, while for the time integration, we used a

variable-order and variable-step backward differentiation formulae algorithm. For

all systems sizes a grid spacing of ∆x = 1 was used and for all calculations, we

applied following boundary conditions:

x→ L1 =⇒

hx → 0

hxx → 0

(3.50)

x→ L2 =⇒

h→ αx

hx → α.

As initial conditions, we used steady state solutions obtained with AUTO or pro-

files obtained with our time dependent code. We perturbed the plate velocity U

of those solutions in ∆ = |δU |, and the new plate velocity resulted Û = U ± δU .

The behaviour can be observed in the (α, U) – phase diagram, see left panel of

Fig. 3.27. The phase diagram is constructed based on the values of UC1, UC2 and

U∞ for each inclination angle α and the behaviour of the time evolution of the

selected profiles. Three different zones can be distinguished:

Region (1): Below U∞, i.e. U < U∞

Region (2): Between U∞ and UC2, i.e. UC2 < U < U∞

Region (3): Above UC1, i.e. U > UC1

On the right panel of Fig. 3.27 we sketch the stability of the branches: black

solid lines denote stable branches and red dashed lines denote unstable branches.

Solutions from region (1) are steady menisci, while solutions in region (3) evolve
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Figure 3.27: Left panel: Phase diagram in (α, U) – plane. Three different
regions can be identified: (1) Below U∞ a steady meniscus shape exists, (2)
between U∞ and UC2, where steady menisci and menisci with moving front
coexist and (3) above UC1 where solutions with moving front exist. The moving
front solutions are unstable solutions that evolve to stable ones in (1). Right
panel: Sketch of the stability behaviour: black solid lines denote stable branches

and red dashed lines denote unstable branches.
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Figure 3.28: (a) Advancing and receding foot-like structures are characterized
by the dependence of the velocity VF of the front that connects the ultrathin
coating layer of thickness h∞ with the foot plateau of height hfoot on the velocity
difference U−Uα∞ where Uα∞ changes with the plate inclination α. Note that the
curves for various α as given in the legend collapse onto a master curve, indeed
VF ≈ U −Uα∞. Panels (b) and (c) give for α = 0.5 space-time plots representing
the time evolution3 of a receding and an advancing foot, respectively, at values
of U indicated by small letters in panel (a). The evolution in (b) converges to a
steady simple meniscus, while in (c) the foot advances with constant speed until
its tip reaches the domain boundary. Then at τ ≈ 4 the foot transforms into a
Landau–Levich film of a different thickness via a fast shallow backwards-moving

front.
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towards a steady solution. These film profiles have a moving front with a front

velocity VF . As an example in the left panel of Fig. 3.28 are shown the front

velocities for the unstable solutions for α = 0.1, α = 02. and α=0.5. Region (2) is

a multi-stable region where stable and unstable solutions coexist. Note that the

curves for various α as given in the legend collapse onto a master curve, indeed

VF ≈ U − Uα
∞. Panels (b) and (c) of Fig. 3.28 give for α = 0.5 space-time plots

representing the time evolution of a receding and an advancing foot, respectively,

at values of U indicated by small letters in panel (a). The evolution in (b) converges

to a steady simple meniscus, while in (c) the foot advances with constant speed

until its tip reaches the domain boundary. Then at τ ≈ 4 the foot transforms into

a Landau–Levich film of a different thickness via a fast shallow backwards-moving

front, these solutions will be discussed in the next section.
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3.1.7 Behaviour at large (scaled) angles
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Figure 3.29: α = 3: Effective volume ∆V in dependence of the plate velocity
U . The numbers on the bifurcation diagram correspond to the depicted film
profiles in the inset. Additionally a film profile at U = 3 is shown. The domain

size is L = 1000.

At large inclination angles, i.e. for α & 3, the system shows a qualitatively different

behaviour: In Fig. 3.29 we observe that as the plate velocity U increases, the

volume ∆V increases monotonically up to a critical velocity U = UC1, where the

the first of only two saddle node bifurcations occurs. Here the bifurcation curve

folds back and switches to an upper branch. The second saddle node occurs at a

critical plate velocity U = UC2, where the curve folds back again. Note, that in

this velocity interval, U ∈ [UC1, UC2], the effective volume ∆V always increases

with a non-monotonic U exhibiting an hysteretic behaviour. Then, the bifurcation

curve growths monotonically as the plate velocity U is increased. We observe

now, in clear contrast to the previous described small angle cases, that there is no

limiting velocity U∞.

An observation of the steady film profiles as the plate velocity U increases, see

Fig. 3.29, shows that the meniscus profile starts to grow in length [Solution(1)],

but as the velocity U & UC1 the coating film height h∞ starts to thicken [Solu-

tion(2) and Solution(3)], with h∞ >> hp coating completely the plate with a thick

macroscopic film.
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We will investigate the behaviour in the hysteretic region further along the text.

At larger inclination angles, e. g. for α & 10, the system shows again a qualita-

tively different behaviour: In Fig. 3.30 we observe now for α = 10 that as the plate

velocity U increases, the volume ∆V increases monotonically – no occurrence of

saddle nodes is observed – and no limiting velocity U∞ is present. The saddle

node annihilation occurs at α = α3 ≈ 5.92. The film profile solutions as the plate
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Figure 3.30: α = 10: Effective volume ∆V in dependence of the plate velocity
U . The numbers on the bifurcation diagram correspond to the depicted film
profiles in the inset. Additionally a film profile at U = 3 is shown. The domain

size is L = 1000.

velocity U increases, see Fig. 3.30, show that the meniscus profile starts to grow in

length [Solution(1)] up to a certain transient velocity Ut, which will be investigated

in the next paragraph, where the ultrathin film unbinds from the substrate and

the coating film height h∞ starts to increase [Solution(2) and Solution(3)], with

h∞ >> hp completely coating the plate with a thick macroscopic film. We observe

in the last two cases that the coating film height h∞ becomes a macroscopic film

for plate velocities U & Ut (in these described cases with plate inclination angle

up to α ≈ 10 and Ut & 1). In Fig. 3.31 we see that the coating film height h∞

scales like the Landau– Levich coating law [8], i.e.

h∞ ∝ U2/3, (3.51)
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Figure 3.31: Left panel: Effective volume vs plate velocity U in a Log–Log-
plot. For larger velocities U & 1, the volume follows a Landau–Levich scaling.
For plate velocities U . 1 a power law of 1.1683 dominates the effective volume.
Angles as shown in colour coded legend. Right panel: The coating film height
follows the Landau – Levich coating law, i.e. h∞ ∝ U2/3 for velocities above
U & 1. Equidistant inclination angles with α ∈ [2.42, 10] and ∆α = 0.25.
Red dashed line indicates the transition occurring at α3 (see text). The arrow

indicates increasing inclination angle α.

for plate velocities U > Ut, where Ut (Ut & 1) is the transient velocity. To estimate

the transient plate velocity Ut as a function of the plate inclination angle α for

large angles we drive the plate velocity up to large values, see Fig. 3.32: On

the left panel we see in a log–log-plot the coating film height h∞ as function of

the plate velocity U up to U = 1000 for different angles up to α = 1000, with

α ∈ [10, 20, 30...100, 150, 200, 250...1000] (the arrow indicates increasing inclination

angle). We clearly see that as the angle α increases, the transient velocity Ut

where the film starts to scale with the Landau–Levich law becomes larger, and as

previously mentioned, the coating height follows the Landau–Levich scaling law.

To identify the transient or threshold velocity Ut, we plot for selected velocities

as indicated with the dashed vertical lines, the coating film height h∞, see right

panel. The scaling law reads,

h∞ ∝
1

α
. (3.52)

We see that for smaller velocities, e.g. U = 1 and U = 5 (see right panel of

Fig. 3.32), the coating film height starts to deviate form the scaling law, i.e. those

values do not correspond to a Landau–Levich macroscopic film. We are now able to

estimate a scaling law for the transient velocity Ut using Eq. 3.51 and Eq. 3.52 and

assuming that the transition to a macroscopic coating height occurs at h∞ & 1,



Chapter 3. Transitions in the behaviour of the drawn meniscus 82

1

10

100

0.01 1 100
U

1

10

100
h ∞

1000

U
2/3

∝

10 100 1000
α

1

10

100

h ∞

10 100 1000

1

10

100
1
5
50
100
300

h
∞

∝ α
-1

U

Figure 3.32: Right panel: Log-log plot for the coating film height h∞ as
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code). Note the scaling law for macroscopic films, h∞ ∝ 1/α. The dashed black

at h∞ = hp = 1 indicates the equilibrium coating height.

via a straightforward calculation, the scaling reads

Ut ∝ α
3
2 . (3.53)

We can now easily evaluate the threshold / transient velocity Ut for a given large

plate inclination angle α, where a macroscopic Landau–Levich film will emerge.

In the aforementioned hysteretic region, i.e. for U ∈ [UC2, UC1] corresponding to

the occurrence of the pair of saddle nodes at the extrema of the interval, it is

expected to see a foot-like solution behaviour close / after the first saddle node

bifurcation. The closest angle exhibiting the hysteretic behaviour is α ≈ 2.42, see

Fig. 3.33. For this range of angles close after the transition and below α3, i.e.

below the angle where the saddle nodes annihilate, multiple film solutions coexist.

An example is shown for α = 2.42 in Fig. 3.33: On the left panel we plot the

the effective volume ∆V as a function of the plate velocity U indicating selected

velocities. On the right panel, we plot the selected 7 solutions as indicated in the

figure: solution (1), for U < UC1 corresponds to a meniscus solution; solution (3)

for U = UC1 corresponds to a meniscus solution, while solutions (2), (4) and (6)

for a plate velocity U = 0.2, U ∈ (UC2, UC1), correspond to a meniscus solution,

an emerging foot solution and a film like solution respectively. Note that solution
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Figure 3.33: Right panel: Effective volume ∆V versus of plate velocity U for
α=2.42. Indicated are plate velocities for selected film-profile solutions. Left
panel: Film profiles for α = 2.42: Three different solution types are depicted:
(1), (2) and (3) meniscus like solutions – low velocities; (4), (5) foot-like solu-
tions and (6), (7) film like solutions (Landau–Levich type solutions). Note the
coexistence of solution families in the hysteretic region: solutions (2), (4) and
(6) (colour code green), for same plate velocity U ; solutions (3) and (5) for UC1

and UC2 in red and blue respectively. Domain size is L = 1000.

(5) for U = UC2 is a fully developed foot solution. Finally, solution (7) at U = 0.5

is a Landau–Levich type solution.

3.1.8 Transition from small to larger angles

We have described in the previous sections the behaviour for smaller angles, α <

2.42, and larger angles, α > 3, and the two occurring transitions: the creation and

annihilation of saddle nodes at α = α1 ≈ 0.1025 and α = α3 ≈ 5.92 respectively

and the important changes in behaviour. Here, we will emphasise in the transition

occurring between α ∈ (2.41, 2.42).

In the left panel of Fig. 3.34 a sequence of bifurcation diagrams (effective volume

∆V versus plate velocity U) is given for α = 2.41, 3, 5 and 10. We observe that

for α = 2.41 a vertical asymptote U∞ still exists, but for larger values of α not

anymore, as we have described thoroughly in the previous sections. On the right

panel, we see a detailed depiction of the transition occurring between α = 2.4175

and α = 2.42. We set for convenience the transition angle α = α2 ≈ 2.4175.

The transition is highlighted for the coating height h∞ as a function of the plate

velocity U in Fig. 3.35 for equidistant inclination angles α ∈ [0.25, 10] with a step

of ∆α = 0.25, i.e. for angles below and above the second transition at α2. The

change of behaviour is observed when the curve does not converges anymore to a
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(b) α=3.0, (c) α=5.0, (d) α=10. A change of behaviour occurs above α = 2.41.;
Right panel: Detail of the transition: effective volume ∆V in dependence of
the drag velocity for an inclination angle below transition, α=2.41, and above,

α=2.42. Domain size L = 1000.

fixed point in the (U, h∞)–plane, i.e. a fixed coating film height h∞. We highlight

the angles just before and just after the occurrence of the transition using a red

solid line at αB = 2.4175, and a dashed blue line at αA = 2.42 respectively.
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Figure 3.35: h∞ in dependence of the plate velocity U for different, equidis-
tant inclination angles (α = [0.25, 10], ∆α = 0.25), arrow indicates increasing
inclination angle α. Highlighted are the transition curves at αB=2.4175, before
the transition, and αA=2.42, after the transition, in solid red and dashed blue
respectively. Note that the curves before the transition at α = α2 converge to

a fixed point in the (U, h∞)–plane. Red arrow indicates increasing α.
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We have now a complete bifurcation diagram gathering the two solution families

– meniscus, foot solutions and Landau–Levich films as shown in Fig. 3.36. There,

we observe that for angles below α2, a new family branch of solutions appears

(black dashed line). This new branch is not bounded to a limiting velocity U∞ for

large values of U , but has a vertical asymptote coinciding with U∞ (see panels (a)

and (b)). For angles above α2, another new branch appears that has a vertical

asymptote at a given plate velocity U∞ (solid red line). We observe in panels (a),

(b), (c) and (d) the detail of the transition.
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Figure 3.36: Detail of the transition and full bifurcation diagram effective
volume ∆V as a function of plate velocity U gathering the two families of
solutions for different plate inclination angles as shown in the figure. The domain

size is L = 1000.

These new solution branches for α < α2 have for larger velocities a 2/3-power law

behaviour for the coating film height, i.e. a Landau–Levich film, as an example in

Fig. 3.37 we show two (h∞, U)–diagrams for α = 1.5 and α = 2.4175 respectively.

The reconnection and transition mechanism of the two solution branches is clearly

detailed in the sequence shown in Fig. 3.38 for the coating film height h∞ as a

function of plate velocity U for selected angles. Note that in every panel both

families of solutions are shown. Panel (a) shows α = 1.0, in red the meniscus and

foot solutions and in black film solutions for larger values of U , this new branch



Chapter 3. Transitions in the behaviour of the drawn meniscus 86

0.01 1
1

10

0.05 0.1 0.15 0.21

1.05

1.1

1 2 3 4 510

20

30 5

α=1.5

U

h

~U2/3

∞ 0.01 1
1

10

0.1 0.15 0.21

1.05

1.1

1 2 3 4 55

10

15

20

25 5

α=2.4175

U

h

~U2/3

∞
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angles below α2, α =1.5 and 2.4175. In the lower panels a blow-up of the low
and high velocity regions are shown. The film height in the high velocity region

scales with the 2/3-power law.

has a lower different limiting velocity, i.e. a vertical asymptote at UL
∞ 6= U∞, and

no bounded upper velocity. Panel (b) shows α = 1.5, with both limiting velocities

U∞ coinciding. For large plate velocities solutions scale like Landau–Levich films.

In panels (c) α = 2.4175 and (d) α = 2.42, we observe first the strangling of the

branches and then the reconnection. Finally, in panels (e), α = 3, and (f) the new

family branch of foot solutions is shown in red. Note the limiting velocity point

in the (h∞, U)–diagram and the isola type structure (in red).

In Fig. 3.39 we show the new film solutions, focusing on solutions before, α =

2.4175, and after the transition, α = 2.42. In the upper panel we show for α =

2.4175 new foot solutions in red, solutions 1 and 2. This foot now is “detached”

from the bath and it resembles a droplet sliding on an incline as we have seen

in a previous section. Note that the foot increases its length as it approaches

U∞, coating the plate. In blue, the Landau–Levich type of solutions are shown,

solutions 3, 4 and 5, see Fig. 3.37. In the lower panel we present new film profiles

for α = 2.42. Note that we can distinguish three solution branches: in black,

solutions a, b, c show a foot like structure. Red film solutions 1–4 correspond

to the red branch of “detached” foot solutions that increase their length while

approaching the vertical asymptote at U∞. Finally, blue solutions 1–4 correspond

to the blue branch and present the same behaviour as foot solutions described in

previous sections.

The transition and reconnection occurs via a reverse necking bifurcation at α =

α2 = 2.4174. The normal form of this codimension-2 bifurcation is given in [70]4

4When ε < 0 the solutions form two hyperbolas a = ±
√
λ− ε separated by 2

√
−ε in a.

When ε = 0 the two hyperbolas pinch together at the origin forming two straight lines, a = ±λ.
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both families of solutions: (a) α = 1.0, (b) α = 1.5, (c) α = 2.4175, (d) α = 2.42,
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bifurcation, shown middle panels (c) and (d). See main text.

as

a2 + λ2 − ε = 0, (3.54)

where a is an amplitude that corresponds to the chosen solution measure, i.e.

the volume or L2-norm, λ is the bifurcation parameter which corresponds to the

plate velocity U and ε is the unfolding parameter that corresponds to the plate

inclination angle α.

For ε > 0 these reconnect forming two hyperbolas separated by 2
√
ε in λ and introducing two

saddle-node bifurcations.
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Figure 3.39: Left panels show effective volume ∆V vs. plate velocity U
bifurcation diagrams. Numbers colour coded correspond to the solutions show
in the right panel. Right panels show new solutions, numbered and colour coded
as in the bifurcation diagrams. Higher panels correspond to α = 2.4175, lower

panels to α = 2.42. Note the new detached foot solution.

To understand qualitatively the stability of these new solutions and how the re-

connection affects the stability, we have perturbed the solutions and performed

time simulations as we have done in Subsection 3.1.6. In Fig. 3.40 we show a

complete bifurcation diagram for α = 2.4175 and α = 2.42, left and right panel

respectively. We indicate used solutions with dots on both panels, colour-coded

and labeled accordingly to their behaviour.

In the lower panel we depict the different observed behaviours of the perturbed film

profiles, showing the “starting profile solution”, the “intermediate profile solution”

(only in some cases), and the “final profile solution”, below we enumerate a short

description,

P1: starts from a foot solution and recedes to a meniscus solution.

P2: starts from a longer foot solution and recedes to a shorter foot. In P2d, it

starts from a detached longer foot and it recedes to a shorter foot.
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Figure 3.40: Upper panel: Complete family for α = 2.4175 and α = 2.42, left
and right panels respectively. Indicated solutions with dots on both panels were
perturbed and time evolution was performed to study their evolution. Labels
correspond to the type of evolution. These labels are explained in the lower

panels and in the main text.

P3: starts from a detached foot and evolves into either + a long, higher foot or -

a shorter, lowerfoot.

P4: starts from a longer detached foot, evolves into a longer foot and finally into

a Landau–Levich film.

P5: starts form a meniscus film, an undulated travelling structure towards −L1

emerges and then decreases its height into a meniscus.
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P6: starts from a short detached foot and recedes into a meniscus. In P6d, while

receding, a detached droplet / rim moves towards −L1 and finally recedes to

a meniscus.

The solutions labeled with S are stable. Although not shown in Fig. 3.40, Landau–

Levich solutions at larger values of U are stable to perturbations.

We note that the stability behaviour in the reconnected branches is similar, con-

serving the stable behaviour / unstable behaviour.

3.1.9 Scaled flux and scaled coating film height

In Chapter 2 we derived the equation that relates the flux J0 and film height h0,

see Eq. (2.68) and Fig. 2.10, for the scaled flux, J∗0 = J0/Jmax as a function of

the scaled height h∗0 = h0/
√
U/(Gα)5. Here, we compare the theoretical derived

relation from the linear stability analysis with our numerical results.
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Figure 3.41: Shown is a comparison of the theoretical curve (dashed line)
and the numerical results for the scaled flux J∗0 as a function of the scaled
coating height h∗∞ for α = 1. Different families of solutions for α = 1 are
depicted: red dots correspond to meniscus, blue squares and dots correspond
to foot solutions (precursor height and foot height, respectively), light blue
correspond to detached foot solutions (precursor height and foot height, see
legend) and navy blue dots to solutions scaling with h∞ ∝ U2/3. In green
squares solutions for α = 10 are shown, which correspond to h∞ ∝ U2/3 for

h∗∞ < h∗,MAX
∞ .

5Note that for the sake of simplicity, we have used here the flat film relation derived from
Eq. (2.46), i.e. 1/3Gαh30 − Uh0 + J0 = 0 without affecting the results.
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In Fig. 3.41 we superpose the theoretical calculated curve (black dashed lined)

with our numerical results for selected inclination angles α = 1 – for both solution

families, i.e. meniscus and foot solutions and Landau–Levich film solutions (see

legends) – and for α = 10, i.e. menisucs + Landau–Levich (green squares). Note

the agreement between the results and as well, the evolution of the scaled film

height h∗∞: for a meniscus coating height it starts at h∗∞ ≈ 1 and then evolves

decreasing up to a critical value which corresponds either to the occurrence of the

first saddle node or to the transition velocity in the Landau–Levich film solutions,

depending on the inclination angle of the plate. The scaled variables can be used
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Figure 3.42: Scaled coating height h∗∞ as a function of plate velocity U . Note
different power laws for menisci solutions and Landau–Levich solutions.

for plotting the coating height h∗∞ as a function of the plate velocity U for selected

angles. In Fig. 3.42 we show a log-log plot where one can distinguish clearly the

three different power-law regimes: for a meniscus solution, h∗∞ ∝ U −1/2; transition

regime, h∗∞ ∝ U 3/2 and Landau – Levich films; h∗∞ ∝ U 1/6.

These numerical results are in agreement with the theoretical approximation as-

suming the known results for different coating heights (see below) and replacing

them into h∗∞ = h∞/
√
U/(Gα) , namely

(i) for a meniscus type solution, h∞ ≈ constant −→ h∗∞ ∝ U −1/2, and

(ii) for a Landau–Levich film solution, h∞ ≈ U 2/3 −→ h∗∞ ∝ U 1/6.
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3.1.10 The complete transitions scenario

Let us summarise the qualitatively different behaviours of the system that we have

seen in the preceedings sections:

(a) for very small angles, α < α1 ≈ 0.1125 there is a monotonic increase of the

effective volume ∆V with increasing U towards a vertical asymptote at U∞, no

saddle node bifurcations appear, film solutions are menisci and foot solutions

with increasing foot length as |U − U∞| → 0 without undulations on the free

surface of the foot, see Fig. 3.4 and Fig. 3.7,

(b) for angles α1 < α < α2 = 2.4175, the effective volume ∆V increases, while

U first increases, then changes non–monotonically and the ∆(U) dependence

approaches a vertical asymptote at U∞, pairs of saddle nodes appears at α =

α1 and we observe collapsed snaking. Film solutions are menisci and undulated

foot solutions with increasing foot length as |U − U∞| → 0, see Fig. 3.5 and

Fig. 3.7,

(c) for angles α2 < α < α3 ≈ 5.92 only a pair of saddle nodes still exists, the

primary curve ∆V vs U exhibits an hysteresis region, no vertical asymptote in

U , solutions are menisci, foot solutions in the hysteretic velocity interval and

Landau–Levich films at large plate velocities, see Fig. 3.29 and Fig. 3.31, and

(d) for α > α3 we observe a monotonic growth of the effective volume ∆V in U ,

no vertical asymptote in U , solutions are menisci and Landau–Levich films,

see Fig. 3.30 and Fig. 3.31.

We can construct a phase diagram in the plane spanned by plate velocity U and

inclination angle α to explain in detail the occurring transitions.

Via a fold continuation in the aforementioned phase space of the control parameters

α and U , we obtain the phase diagram depicted in Fig. 3.43. The fold continuation

technique consists in tracking a known saddle node in the control parameter space,

in these case we have chosen the first pair of saddle nodes occurring at UC1 and

UC2 (black solid line).

In the figure we can accurately identify the occurring three transitions at α1, α2

und α3: we see the creation of the pair of saddle nodes at α1 ≈ 0.1125, where

we observe how the two loci of folds bifurcate – each line corresponding to one
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of the velocities UC1 and UC2, with UC1 > UC2 for α up to α3 ≈ 5.92 where the

two lines rejoin and the pair of saddle nodes annihilate in a hysteresis transition.

At α2 = 2.4175 we observe a cusp, where the reverse necking bifurcation and

reconnection to new solutions occur.
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Figure 3.43: (U −α) phase diagram: we can identify four different regions as
defined in the text: (a) α < α1, (b) α1 < α < α2, (c) α2 < α < α3 and (d)

α > α3.

Note that in Fig. 3.43 we have also included the loci (green solid line) of the

second pair of saddle nodes (see left panel of Fig. 3.6, labeled with green dots),

and this curve indicates as well the reconnection and crossover to the new family

of solutions for α > α2, see region (c). Also included is the limiting velocity U∞

in its dependance on α (blue dashed line).

Note that a richer behaviour is described when we track other pairs of saddle

nodes, see Fig. 3.44. We see the in the upper panels bifurcation diagrams including

different families of solutions for two different angles, α = 0.5 and 3. For α = 0.5

we have included in a dashed black line a new family of solutions which will be

investigated in the future. The coloured circles correspond to the folds that are

being tracked in the (α − U)–space (see lower panel), each line of fold loci with

the corresponding colour. In the lower panel we see the rich behaviour in the
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Figure 3.44: Fold continuation. Upper panels show for two different angles,
α = 0.5 and 3, the bifurcation diagram for different families of solutions, the
coloured circles correspond to the folds that are being tracked in the (α − U)–
space in the lower panel, each branch with the corresponding colour code. Lower
panel shows the rich behaviour in the (α − U)–space. In the inset, a detail of

the phase space for smaller angles (e.g. see α = 0.5).

(α−U)—space. In the inset, a detail of the phase space for the fold continuation

for the solution families for α . 1.5. Note that this is an incomplete picture of

the fold loci, as there are more families of solutions, which have not been included

here.
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3.1.11 Streamlines

To have an insight into the internal flow within the meniscus–, foot– and film

solutions, we plot the streamlines using the stream function Ψ(x, z), see Eq. (2.85),

for different film profiles using our previous results. First, we present in the left

panel of Fig. 3.45 for an inclination angle α = 1.5 streamlines for zero plate

velocity (the flux J0 < 0), where we can see a small back flow to the bath due to

the action of gravity towards the bath. On the right panel we present the typical

streamlines for a Landau–Levich film (shown is α = 3 at U = 5), where due to

the drawn plate the fluid is pulled out of the bath coating the plate with a layer

of a height scaling like h∞ ∝ U2/3. Note the stagnation point on the free surface

(green dot). As an example for all types of film profiles we have discussed, we
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Figure 3.45: Left panel: Streamlines for a meniscus solution at an inclination
angle α = 1.5 and plate velocity U = 0. Right panel: Streamlines for a Landau–
Levich film for an inclination angle α = 3 at plate velocity U = 5. There is a

stagnation point present at the free surface marked with the green dot.

focus on a single inclination angle α = 1.5. In Fig. 3.46, panel (h) we present the

bifurcation diagram as a function of the plate velocity U . The labels correspond

to the profiles shown in the other panels at given plate velocities: (a), (b) and

(d) U = 0.1; (c) U = 0.058; (e), (f) U = U∞ = 0.1225 and (g) U = 3.0. The

streamlines correspond to equidistant values of the stream function.
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Figure 3.46: Streamlines for film profiles for α = 1.5. The labels on the
profiles shown in the panels at given plate velocities: (a), (b) and (d) U = 0.1;
(c) U = 0.058; (e), (f) U = U∞ = 0.1225 and (g) U = 3.0 correspond to the
bifurcation diagram ∆V as a function of plate velocity U shown in (h). The
arrows indicate the direction of the local fluid velocity ~u. Green dots indicate

stagnation points in the profiles.
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3.2 Completely wetting liquid

So far we have been investigating the drawn meniscus for a partially wetting

liquid. Here instead, we focus on the behaviour for the same experimental setting

but using a complete wetting liquid defined by an appropriate disjoining pressure

Π(h). The dimensional disjoining pressure for the completely wetting liquid is

defined via a long-range destabilising van der Waals interaction with A′ < 0, see

Subsection 2.1.3 and Fig. 2.7, as

Π(h) = −A
′

h3
. (3.55)

The dimensional equation modelling the drawn meniscus for a complete wetting

liquid reads,

∂t h = −∂x
{
h3

3η
∂x [γ∂xxh+ Π(h)]− h3

3η
ρg (∂xh− α)− Uh

}
. (3.56)

Although we could introduce a new scaling where the inclination angle of the plate

α could be absorbed into the new scales and non-dimensional variables, this would

not allow to compare with earlier findings in previous sections. Therefore, we use

a non-specified height hw as a scale for h. The non-dimensionalisation follows the

procedure of Subsection 2.1.4, and the scales here are given by

x = Lx̃ t = βt̃ h = hwh̃ (3.57)

where

L =

√
γ

A′
h2

w β =
3ηγh5

w

A′2
, (3.58)

with A′ being the Hamaker constant and γ, ρ and η the surface tension, the

density and the dynamic viscosity of the liquid respectively. Eq. (3.56) is non–

dimesionalised and re-written with the new scales as (dropping the tildes),

∂t h = −∂x
{
h3 ∂x

[
∂xxh+

1

h3

]
− h3G (∂xh− α)− Uh

}
, (3.59)

and the steady state equation reads,

h3∂xxxh−
3

h
∂xh− h3G (∂xh− α)− Uh+ J0 = 0, (3.60)



Chapter 3. Transitions in the behaviour of the drawn meniscus 98

where J0 is the flux to the right and Ũ = U/(3L/β). The boundary conditions for

the numerical calculations follow Subsection 2.1.5 and are defined as in Eq. 2.56.

In the far–field, i.e. for x→ −∞ ( x→ −L1)

∂xh = ∂xxh = 0, (3.61)

and at the bath side, i.e. for x→∞ ( x→ L2),

h ≈ αx+
U

α2Gx
− J0

2Gα3x2
,

(3.62)

∂xh ≈ α− U

α2Gx2
+

J0

Gα3x3
.

We note that in the case of a complete wetting liquid there are no foot like
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Figure 3.47: h∞ in dependence on the plate velocity U for different inclination
angles as indicated in the figure. (a) Log-log plot with (i) Landau–Levich veloc-
ity scaling for U & 0.1 for all angles and (ii) thick-film scaling, i.e. h∞ ∝ U1/2

for angles α ≤ 1 (dashed lines). Red arrow indicates direction of increasing α,
i.e. α ∈ [0.33, 0.5, 0.75, 1, 2, ..., 8]. In (b), (c) and (d) are shown film profiles for
inclination angles α = 0.5, 1 and 4 respectively for different plate velocities U

as indicated in the legends. The domain is L=1000.
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structures. In panel (a) of Fig. 3.47 we plot coating height h∞ in dependance of

plate velocity U . For a completely wetting liquid, we see clearly a drawn (drag) and

wetting dominated regime with a continous and smooth transition to a Landau–

Levich film independently of the inclination angle α, where the red arrow indicates

direction of increasing α, i.e. α ∈ [0.33, 0.5, 0.75, 1, 2, ..., 8]. Note that for angles

α ≤ 1, the front reaches the domain end and the system jumps to a different

solution branch, namely to a thick-film regime, i.e. U ∝ U1/2. This is shown

with dashed–lines in Fig. 3.47. In panels (b), (c) and (d) we show corresponding

film profiles for inclination angles α = 0.5, 1 and 4 respectively for different plate

velocities U as indicated in the legends.

3.3 Drawn meniscus in a slip length model

In Subsection 2.1.2 we have mentioned the problem arising for a dynamic contact

line in the hydrodynamical description if the free surface truly continues to the

substrate. The no–slip condition results in the divergence of the viscous dissipation

at the contact line, implying that contact line motion is not possible under these

conditions. In order to relieve this singularity, several mechanisms and solutions

were proposed, e.g. a mesoscopic precursor film [38], surface roughness [71, 72]

and Navier slip [41] to name a few (a more complete list can be found in [73]).

βsl

u  = βsl
∂u
∂zplate

zp

Figure 3.48: Sketch illustrating the Navier slip boundary condition and of the
slip length. Note that uplate is the tangent component of the velocity.
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Here, we compare our results for film solutions obtained with the precursor film

model with a Navier slip model for different orders of magnitude for the slip length

βsl. The slip length βsl is an offset length such that the fluid velocity at the solid

surface, i.e. at the drawn plate at z = zp = 0, is the slip length times the normal

derivative of the velocity [74], see sketch in Fig. 3.48. The Navier slip boundary

condition is

uplate = βsl
∂u

∂z

∣∣∣∣
z=0

. (3.63)

Note that uplate is the tangent component of the fluid velocity at the plate. The non

- dimensional long–wave time evolution equation with the Navier slip boundary

condition and slip length βsl for the drawn meniscus reads

∂t h = −∂x {Q(h) ∂xxxh−Q(h)G (∂xh− α)− Uh} , (3.64)

and the steady–state equation, after integration in x, is

Q(h) ∂xxxh−Q(h)G (∂xh− α)− Uh+ J0 = 0, (3.65)

where J0 is the flux to the right and Q(h) in the mobility factor which includes

the slip length βsl,

Q(h) = h2(h+ βsl). (3.66)

Note that the corresponding boundary conditions for numerically solving Eq. (3.65)

have been obtained in the same fashion as described in Subsection 2.1.5. In the

far–field, i.e. for x→ −∞ ( x→ −L1)

∂xh = ∂xxh = 0, (3.67)

and at the bath side, i.e. for x→∞ ( x→ L2),

h ≈ αx+
U

α2Gx
− J0 + βslU

2Gα3x2
,

(3.68)

∂xh ≈ α− U

α2Gx2
+
J0 + βslU

Gα3x3
.

In Fig. 3.49 and Fig. 3.50 we show the coating film thickness h∞ over the plate

velocity U comparing results of the disjoining pressure model and of the slip length

model. Fig. 3.49 corresponds to a plate inclination angle of α = 1 and Fig. 3.50
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is for α = 10. We start our analysis from a Landau–Levich film and gradually

decrease the plate velocity U . We note, that for the slip length model (solid red

line) the film height decreases monotonically as the plate velocity decreases and

approaches zero as the plate velocity goes to zero, see Fig. 3.50. For the disjoining

pressure model (for α = 1 green solid line in Fig. 3.49 – foot and meniscus film

solutions – and dashed blue line – Landau–Levich film solutions– and for α = 10

green solid line in Fig. 3.50), the film thickness approaches a constant finite coating

height as the velocity decreases. Note that in the slip model, the region where the

foot solutions exist are not accessed in our calculations.
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Figure 3.49: Shown in log-log plot is a comparison between the precursor film
model (green solid line and blue dashed line) and the slip model (red solid line)

for an angle α = 1.

Previous works use a slip model that allows the film height to go to zero at the

contact line, see e.g. [18, 75]. Although a slip model allows for a quantitative study

of meniscus solutions and Landau–Levich films it is not able to describe transitions

between them, as in a slip model they are topologically different, namely, for

meniscus and foot solutions the film height goes exactly to zero at a certain point,

whereas for film solutions the film thickness approaches a constant value at infinity.

Therefore, such solutions are characterised by different boundary conditions and

there is no way to continuously transform a foot or meniscus solution into a film

solution. This concerns the actual transition dynamics as well as the description

of transitions in dependence of control parameters such as the plate speed U and
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Figure 3.50: Shown in log-log plot is a comparison between the precursor
film model (green solid line) and the slip length model for an angle α = 10 for
different slip lengths as indicated in the legend (dashed black lines and solid
red line). Note that via the slip-length model it is not possible to access the

meniscus / foot solution region from the Landau–Levich film region.

plate inclination angle α. Note that far from the transition regions, the predictions

of precursor and slip models agree very well and can be quantitatively mapped

[76], this is shown for the case of the Landau–Levich film solutions in Fig. 3.49

where slip and precursor model coincide for values of plate velocity U & 0.9 and

strongly differ at smaller U . Fig. 3.50 indicates how the begin of the region of

agreement shifts to larger U when increasing the slip length βsl.
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3.4 Continuous and discontinuous dynamic un-

binding transitions

We have summarised qualitatively our findings in Subsubsection 3.1.10, where we

represent the changes in a phase diagram spanned by the plate velocity U and

inclination angle α, see Fig. 3.43. Here, we use these results to describe these

changes within the framework of dynamic unbinding transitions. First, we make

a brief introduction to contextualise these new description.

The equilibrium and non–equilibrium behaviour of mesoscopic and macroscopic

drops, menisci and films of liquid in contact with static or moving solid substrates

is not only of fundamental interest but also crucial for a large number of modern

technologies. On the one hand, the equilibrium behaviour of films, drops and

menisci is studied by means of statistical physics. A rich substrate-induced phase

transition behaviour is described even for simple liquids, e.g., related to wetting

and emptying transitions - both represent unbinding transitions well studied at

equilibrium. In a wetting transition the thickness of an adsorption layer of liquid

diverges continuously or discontinuously at a critical temperature or strength of

substrate-liquid interaction, i.e., the liquid-gas interface of the film unbinds from

the liquid-solid interface [73]. In an emptying transition a macroscopic meniscus

in a tilted slit capillary develops a tongue (or foot) along the lower wall. The

foot length diverges logarithmically at a critical slit width, i.e., the tip of the foot

unbinds from the meniscus and the capillary is emptied [77].

The hydrodynamic long-wave model that we have developed, Eq. (2.47) with

Eq. (2.49), corresponds directly to a gradient dynamics of an underlying inter-

face Hamiltonian (or free energy) F [h] =
∫

[ξγ + f(h)]dx as often used to study

the above introduced equilibrium unbinding transitions. Here, ξdx ≈ (1/2)[1 +

(∂xh)2]ds is the surface area element in long-wave approximation and f(h) is an

appropriately defined energy containing terms related to wettability and gravity.

Note that in the wetting literature F [h] is called “Hamiltonian” as it may be de-

rived from a microscopic Hamiltonian. However, thermodynamically it is a free

energy [78], while mathematically it represents a Lyapunov functional [79]. This

equivalence allows for a natural understanding of the various occuring transitions

as non-equilibrium (or dynamic) unbinding transitions.
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A previous analysis of the changes that steady menisci undergo with increasing

plate speed U shows that four qualitatively different cases exist depending on the

plate inclination angle α, see Subsection 3.1.10. Each case is now related to a

distinguished non-equilibrium unbinding transition as illustrated in Fig. 3.51:
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Figure 3.51: Bifurcation curves indicating the occurence of qualitatively dif-
ferent behaviour with increasing plate inclination angles (a) α = 0.1, (b) α = 1,
(c) α = 3, and (d) α = 10. The main panels shown the excess volume ∆V
over domain size L (see main text) in dependence of the plate velocity U , while
the respective insets give Log-normal representations of steady film profiles at
selected plate velocities as indicated by corresponding labels at the profiles and
at the bifurcation curves. Additionally, panels (c) and (d) give a film profile at
U = 3. The domain size is L = 1000. Arrows indicate how the profiles change

as one moves along the bifurcation curves.

(a) At small α, the volume ∆V monotonically increases: first slowly, then faster

until it diverges at U∞ ≈ 0.04 [Fig. 3.51(a)]. The corresponding simple meniscus

profiles first deform only slightly due to viscous bending before a distinguished
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foot-like protrusion of a height hf ≈ 10 develops whose length Lf diverges ∝
ln [(U∞ − U)/U∞]−1. This corresponds to a continuous dynamic emptying

transition , a non-equilibrium analogue of the equilibrium transition discussed

above (cf. Ref. [77]). In other words, at U∞ the tip of the foot unbinds from the

meniscus and the bath is emptied. For U > U∞ the foot advances with a constant

velocity VF ≈ (U−U∞) as shown in Fig. 3.28, in a finite system, ultimatly resulting

in a Landau–Levich film state.

(b) Above a first critical α = α1 ≈ 0.11, the transition changes its character

and becomes a discontinuous dynamic emptying transition that has no

analogue at equilibrium. As shown in Fig. 3.51(b), ∆V increases first monoton-

ically with U until a saddle-node bifurcation is reached at U1 where the curve

folds back. Following the curve further, one finds that it folds again at U2. This

back and forth folding infinitely continues at loci that exponentially approach U∞

from both sides and that separate linearly stable and unstable parts of the solu-

tion branch. This exponential (or collapsed) snaking [80] results in foot length

with [(U∞ − U)/U∞]−1 ∝ exp(Re[ν]Lf) sin(Im[ν]Lf) where ν is a linear eigenvalue

whose real and imaginary part determine the exponential approach and the pe-

riod of the snaking, respectively [66]. Note that for U > U∞ one can always find

a critical foot length beyond which the foot advances with a constant velocity

VF ≈ (U−U∞), ultimately resulting in a film state. In contrast, for U < U∞ there

is always a critical length above which a foot recedes. Advancing and receding

fronts, are illustrated in Fig. 3.28(a) for α = 0.1, 0.2 and 0.5. Panels (b) and (c)

show for α = 0.5 the time evolution of a receding and an advancing foot, respec-

tively. In both previously described regions, (a) and (b), one finds that hf ∝ U1/2.

The limiting velocity Uα
∞ coincides with the velocity of a large flat drop (pancake-

like drop) sliding down a resting plate of inclination α [68]. This allows one to

calculate U∞ by continuation (see Fig. 3.43 below). Note that the found relation

for the front velocity VF ≈ U − Uα
∞ [Fig. 3.28(a)] is a direct consequence of the

Galilean invariance of the motion of a drop down an incline.

(c) At a second critical α = α2 ≈ 2.42, the bifurcation diagram dramatically

changes. Above α2 the family of steady menisci that is connected to U = 0 does

not diverge anymore at a limiting velocity U∞. Instead of a protruding foot of

increasing length that unbinds from the meniscus one finds a hysteretic transition

[in Fig. 3.51(c) between U = 0.1 and 0.3] towards a coating layer whose thickness
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Figure 3.52: Detail of the transition from case (b) to (c) and full bifurcation
diagram gathering the two families of solutions. One observes that the transition
occurs via a reverse–necking bifurcation at α = α2 and that Landau–Levich films

are present below α2.

homogeneously increases with increasing U , i.e., the layer surface unbinds from

the substrate in an discontinuous dynamic wetting transition .

(d) With increasing α the hysteresis of the discontinuous transition becomes

smaller until at a third critical α = α3 ≈ 5.92 the two saddle-node bifurcations

annihilate in a hysteresis bifurcation (as illustrated in the right panel of Fig. 3.31).

For all α > α3 one finds a continuous dynamic wetting transition . As in

cases (c) and (d), at large U the coating layer thickness follows the power law

h∞ ∝ U2/3, we identify these unbinding states as Landau–Levich films [8]. The

critical velocity where the transition between the microscopic and macroscopic

layer occurs, scales as α3/2.

Finally, we highlight and recall some further important facts:

The crossover between regions (a) and (b) at α = α1 can be understood in terms

of a change of the character of the spatial eigenvalues (EV) of a flat film of a height

that corresponds to the foot height [20, 66]: In region (a) all EV are real while

in region (b) only one is real and the other two are a pair of complex conjugate

EV. The crossover between regions (c) and (d) at α = α3 results from a hysteresis

bifurcation where two saddle-node bifurcations annihilate. However, the crossover
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between regions (b) and (c) at α = α2 that results in the strongest qualitative

change, namely, from a dynamic emptying to a dynamic wetting transition cannot

be understood by analysing a single family of steady profiles. As illustrated in

Fig. 3.52 the crossover results from a reconnection (reverse necking bifurcation) at

α = α2 that involves two solution families. Both continue to exist on both sides of

α2. This results in intricate behaviour in certain small bands of the (U , α) plane

and, in particular, around α2 that will be studied in more depth elsewhere. For

instance, in the fine grey band around U∞ in region (c) [Fig. 3.43], there exist

various stable extended meniscus profiles. They correspond to the left branch

in Fig. 3.52(b). Experimentally, they might only be obtained through a careful

control of the set-up at specific initial conditions.

To conclude this Chapter, we have shown that a long-wave mesoscopic hydrody-

namic description of the coating problem for a plate that is drawn from a bath

allows one to identify several qualitative transitions if wettability is modelled via a

Derjaguin pressure. As a result we have distinguished four dynamic unbinding

transitions , namely continuous and discontinuous dynamic emptying

transitions and discontinuous and continuous dynamic wetting transi-

tions . These dynamic transitions are out-of-equilibrium equivalents of well known

equilibrium emptying and wetting transitions. Beside features known from equi-

librium, our analysis has uncovered important features that have no equivalents

at equilibrium. A future study of the influence of fluctuations might allow one to

answer the question which surface profile is selected in the multistable regions.





Chapter 4

Evaporating drop with influx on

substrate with a corner

“Weil der Kreis das Wesen aller

Dinge ist. Alle mächtigen und

wichtigen Dinge sind rund. Denk’

mal nach: die Erdkugel, die

Sonne, der Mond, der Tropfen...”

Alois Drahoslav Drichlik

Das Geheimnis des großen Lehrmeisters

In this Chapter we consider a well known problem: the pinning of droplets at

sharp corners. In particular, we focus on the pinning of a completely wetting,

volatile liquid droplet at a sharp corner. It is known, that during the spreading

of a non-volatile liquid, the contact line can stay pinned at sharp edges of the

substrate unless the apparent contact angle exceeds a critical value derived from

properties of the corners and the equilibrium contact angle. This is known as

the Gibbs–criterion. However, here we show that for volatile liquids there also

exists a dynamically produced critical angle for depinning, which increases with

the evaporation rate and results in a modified Gibbs–criterion. The proposed

model and numerical simulations reproduce the experimental results presented in

[81].

109
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4.1 Motivation

Geometrical features on the surface of a rigid substrate, such as small-scale posts,

grooves or other defects, pose an energy barrier hindering the movement of droplets

or liquid films [82]. In particular, equilibrium thermodynamics explains why ad-

vancing contact lines will stay pinned at sharp edges until a certain equilibrium

angle is exceeded [84]. The nature of contact line pinning (or depinning) has been

Figure 4.1: Side view images of the drop evolution, together with schematic
representations; (a) advancing, (b) and (c) pinned at the groove’s edge and (d)
depinned contact line above a certain apparent contact angle. Fig. 1 of [81].

Courtesy of Y. Tsoumpas.

studied extensively [85–88], as it deeply affects many applications ranging from

liquid transportation through microfluidic configurations [89, 90] and flows on

surfaces patterned by posts or chemical features [91–93] to the suspension of wa-

ter drops from pillars [94], not to mention its relation with contact angle hysteresis

(for a review see [95]). In general, Gibbs’ criterion (or inequality) is considered as

a simple static relation, which reflects on a range of equilibrium angles that the

contact line can adopt at a sharp edge,

θeq ≤ θapp ≤ (π − α) + θeq. (4.1)

Note that θeq is the equilibrium contact angle (or Young’s angle) and α measures

the downward slope of the surface discontinuity, see Fig. 4.2. There, we sketch

the apparent pinning process of the contact line region on an edge: (1) the Young

condition stipulates that the droplet has a contact angle θeq, and as it advances,

(2) it meets the edge with the same contact angle θeq. (3) At the edge, when
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the droplet is pinned, the apparent contact angle θapp can take any value, see

Eq. (4.1), and in particular, depinning occurs when the apparent contact angle

exceeds a critical value θcr,

θcr = θeq + (π − α), (4.2)

i.e. when θapp > θcr. (4) After depinning, the droplet creeps down the slope with

the equilibrium angle θeq.
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Figure 4.2: Sketch of the Gibbs’ criterion.

Dynamic cases have been studied as well in terms of contact line relaxation con-

cerning post-depinning times [96]. Evaporation, for instance, has been shown

experimentally to trigger significant apparent contact angles, even for quasi-static

drops of completely wetting liquids [97]. From the theoretical point of view,

evaporation-induced contact angles have also been predicted on the basis of lubrication-

type models [98–100]. In what follows, we present a model of how this evaporation-

induced angle can affect the critical angle for depinning, corroborate the ex-

perimental findings and provide a simple generalization of the Gibbs’ criterion,

Eq. (4.1), that holds out of equilibrium.

4.2 Model and numerical approach

We start first describing how to model a substrate. One approach to real (i.e., non-

idealized) substrates is to consider the limit of random heterogeneities [101–105].



Chapter 4. Evaporating drop with influx on substrate with a corner 112

Another approach focuses on the effect of individual well-defined defects [104, 106–

108]. Recently, the latter approach was extended to study the depinning dynamics

of drops on substrates with a periodic array of precisely specified chemical defects

[109–111]. The approach employs a thin film evolution equation with a spatially

modulated disjoining pressure and enables one to (i) study the depinning transition

employing tools from dynamical systems theory and bifurcation theory, and (ii)

investigate the dynamics of the stick-slip motion that occurs after depinning on

substrates with many defects.

4.2.1 Lubrication equation

The partial differential equation governing the time evolution of the profile of a

thin film of non-volatile liquid on a chemically structured substrate was discussed

in depth in the 2d case in refs. [57, 109] and adapted to the 3d case in ref. [111, 112].

In the literature one finds two different ways of counting spatial dimensions in the

problem at hand. On the one hand, focusing on the mathematical structure of

Eq. (4.3) one distinguishes between one-dimensional (h depends on x only) and

two-dimensional (h depends on x and y) cases. On the other hand, one may count

the physical dimensions and refer to the situation where the film thickness depends

only on x [depends on (x, y)] as the two-dimensional (2d) case [three-dimensional

(3d) case]. Here we follow the latter convention.

The treatment of evaporating films and drops is reviewed in [113]. Here we combine

the two approaches with the technique of studying steady evaporating droplets by

imposing an influx that equals the loss by evaporation [114].

Briefly, we consider a layer or drop of volatile partially wetting (with a small

equilibrium contact angle) or wetting liquid on a modulated two-dimensional solid

substrate (see sketch in Fig. 4.3). The height of the film surface h(x, t) and the

substrate profile are both measured from z = 0. This implies that the local film

thickness is φ(x, t) = h(x, t) − ξ(x) ≥ 0, i.e., it corresponds to the difference

between local absolute height of the free surface h and the absolute substrate

position ξ. The dynamical model is written in terms of φ(x, t).

Long-wave theory allows us to derive an evolution equation for the layer thickness

profile φ(x, t) directly from the Navier-Stokes and continuity equations [34, 39].

We use no-slip and no penetration boundary conditions at the substrate, and the
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α

eq

eq

Figure 4.3: Sketch of the problem: θeq is the contact angle, φ the layer thick-
ness, h(x) the film profile height, ξ the absolute substrate position and α the

inclination angle.

equilibrium of tangential and normal stresses at the free surface. The wettability

properties are incorporated as a disjoining pressure [38, 39]. Without lateral body

force in the x-direction we obtain the non-dimensional equation

∂tφ = −∂x {Q∂x (∂xx(φ+ ξ) + Π)}+
E

K + φ
{∂xx(φ+ ξ) + Π + µ}+ q(x), (4.3)

where we used φ(x, t) = h(x, t) − ξ(x)1. The overall form of Eq. (4.3) corre-

sponds to a combination of equations used in refs. [116] (substrate topography),

[114] (voltile liquid with influx), and [117–119] (evaporation models). The mobil-

ity function Q(φ) ≡ φ3/3 corresponds to a parabolic velocity profile in a no-slip

model (Poiseuille flow). Capillarity is represented by ∂xxh = ∂xx(φ + ξ) (Laplace

pressure). The substrate topography is incorporated via a z-independent modula-

tion in order to focus on groove-like defects. Of the different functional forms for

Π found in the literature [38, 120], many allow for the presence of a precursor film

of thickness 1-10 nm on a ‘dry’ substrate and these are used to describe partial

wetting. In this way ‘true’ film rupture in dewetting and the stress singularity

at the moving contact line are avoided. We first look at a wetting situation and

1The scaling is based on the Hamaker constant A quantifying the effective attraction of liquid
molecules by the substrate, and on the superheat ∆T driving evaporation, see [99] for details. The
vertical (i.e. film thickness) scale is defined by the thickness of the ultra-thin film in equilibrium

with the vapour, i.e. hf = (ATsat/ρL∆T )
1/3

, where Tsat is the saturation temperature, ρ is

the liquid density, and L is the latent heat. Defining a molecular length scale by a =
√
A/γ,

in which γ is the surface tension, the horizontal length scale is given by [x] = ε−1hf , where
ε =
√

3a/hf � 1 is a parameter whose smallness underlies both the lubrication approximation
and the continuum assumption. E and K are the evaporation number and the dimensionless
kinetic resistance, defined by E = ν λTsat/3(aL ρ)2 and K = λT 2

sat/Lww L2hf , where ν stands
for the liquid dynamic viscosity, λ for its thermal conductivity, and Lww a phenomenological
coefficient usually estimated by kinetic theory (see e.g. [115]).
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only incorporate destabilizing long-range apolar van der Waals interactions, in a

setting similar to [114] (cf. [38]), leading to the dimensionless disjoining pressure

Π(φ) = − A
φ3

(4.4)

where the parameter A < 0 is set to one, i.e., is absorbed into the scaling. A

option for partially wetting liquid that we might use, is the combination of −1/φ3

and 1/φ6 terms.

For the influx q(x) we use a normalised Gaussian

q(x) = q0
2

σ
√
π

exp

[
−x

2

σ2

]
(4.5)

with q0 =
∫∞

0
q(x)dx being the total influx through the substrate. If the droplet

size is large as compared to the width σ, the results do not depend on the particular

choice of σ.

Here, the substrate modulation corresponds to a ‘smooth’ corner, i.e., part of a

groove. It is described by a profile

∂xξ =
α

2

[
1 + tanh

(
x− c
ω

)]
(4.6)

where c is the position of the step measured from the centre of the drop. We

take the domain size D sufficiently large to avoid interactions of the drop and the

wall. The resulting profiles ξ(x) are shown for an angle α < 0 [α > 0] indicates

a downwards bend (groove) [upwards bend (ridge)], see Fig. 4.4. The bend is

‘smooth’ on a typical length scale ω. The resulting substrate variation must take

place on length scales much larger than the physical film thickness for consistency

with the long-wave approximation [121]. Note that the chemical potential in the

evaporative flux is µ and that the long-wave scaling used here implies that the

dimensionless contact angle and chemical potential µ may be of order one, i.e.

µ = −1.
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Figure 4.4: Sketch of a droplet sitting on an groove, left panel, and ridge,
right panel. Note the liquid influx at the centre of the droplet to balance the

evaporation.

4.2.2 Numerical schemes and parameters

For the continuation it is beneficial to use φ = h− ξ as the field to be calculated.

We employ Eq. (4.3) i.e., the steady states in 1-d are given by

0 = −∂x {Q∂x (∂xx(φ+ ξ) + Π)}+
E

K + φ
{∂xx(φ+ ξ) + Π + µ}+ q(x) (4.7)

i.e.,

∂xxxxφ = −∂xQ
Q

∂xxxφ−
1

Q
∂x {Q∂xxxξ} −

1

Q
∂x {Q∂xΠ}+

+
E

Q(K + φ)
{∂xx(φ+ ξ) + Π + µ}+

q(x)

Q
. (4.8)

The chosen boundary conditions are,

symmetry at x = 0, i.e.

φx(0) = 0 (4.9)

φxxx(0) = 0, (4.10)

while at x = D � c, we impose a flat equilibrium microfilm, i.e.

φ(D) = 1 (4.11)

φx(D) = 0. (4.12)
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This 4-th order problem is solved using the previously described continuation

techniques in Section 3.1, using typical values E = 0.124, K = 5.74 and µ = −1

as a reference case [99]. Some typical results are presented in Fig. 4.5 for α = −0.5

and −5. There we see on panel (a) the solution L2-norm of the layer thickness
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Figure 4.5: Shown are drop characteristics for steady droplets of volatile
completely wetting liquids with influx qin that sit on a chemically homogeneous
substrate with a negative bend at x = c = 50 (overall domain D = 200, bend
width ω = 1.0, source width σ = 0.1) (a) L2-norm of layer thickness φ(x) in
dependence of qin. (b) Selected steady film height profiles (see text) for various

influxes on the substrate with a bend (solid black line).

φ(x) in dependence of the influx qin for α = −0.5 and −5.0. On panel (b) we show

selected steady film height profiles (solid colour lines) for various influxes [qin =

25 (red solid line), 50 (blue solid line) and 75 (green solid line)] on the substrate

with a bend (solid black line).

4.3 Results

Next we study a drop of volatile liquid on a smooth solid substrate that has a

single bend of angle α for three cases α = 0, α < 0 and α > 0. Using the overall

influx as a control parameter we find following results:

4.3.1 Drop interacting with a flat horizontal plate α = 0

For a horizontal substrate, i.e. α = 0, we see that when the influx qin increases,

the L2-norm of the layer thickness φ(x) and the volume increase monotonously,

see Fig. 4.6. This case has been studied thoroughly in e.g. [114].
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Figure 4.6: In the left panel are shown three steady droplets for different
influxes qin = 10, 50 and 100. In the inset a sketch of the apparent contact angle
θapp. On the right panel we show the solution L2-norm of the layer thickness
φ(x) in dependence of the influx qin. In the inset we show droplet volume V
in dependence of the influx qin. The coloured dots indicate the influx for the

droplets shown in the left panel.

The apparent contact angle θapp is defined as θapp = y′(xi), where y′(x) is the slope

of the parabola used to fit the droplet shape by using the apex curvature – h′′(0)

and h(0) – and xi is the intersection: (a) with the substrate ξ(x) at xi = xs and /

or (b) with the horizontal line y = 0 at xi = x0, see inset in panel (a) of Fig. 4.6.

4.3.2 Drop interacting with a single substrate bend α < 0

We now study the substrate with a bend, i.e. for α < 0. In the left panel of

Fig. 4.7 we show the L2-norm of the layer thickness φ(x) in dependence of the

influx for α = −5.0 (black solid line) and for α = 0.0 (red dashed line). For

small influx, there are small drops with the contact line region left of the bend.

The drop volume changes monotonously with influx, similar to the case without

bend described before, see Fig. 4.6. When the contact line region reaches the bend

region, the norm increases strongly for nearly constant influx qc (blue dashed line),

what indicates that the contact line is pinned. We also see that for the case of

α = 0, the norm continues increasing smoothly (red dashed line). Further increase

of qin results again in a slower increase of the norm as the contact line region

is again depinned and creeps down the slope. The numbers correspond to the

depicted droplets in the right panel. There we show four different droplet profiles

for qin = 25, 50, 75 and 100, respectively.

In Fig. 4.8 we show apparent contact angles θapp for different inclination angles

α, α ∈ [0,−0.01,−0.1,−0.5,−0.75,−1.0,−2.0], as a function of the contact line



Chapter 4. Evaporating drop with influx on substrate with a corner 118

0 50 100 150 200
qin

0

20

40

60

80

100
||δ
φ|

|

-5.0
0

α

qC

a

1

32
4

0 0.2 0.4 0.6 0.8 1

x/D
-800

-600

-400

-200

0

200

h(
x)

b
1

2

3

4
α=-5.0

Figure 4.7: Left panel: Shown is the L2-norm of the layer thickness φ(x) in
dependence of the influx for α = −5.0 (black solid line) and for α = 0.0 (red
dashed line). Numbers correspond to the shown profiles in the right panel. Note
the strong increase of the L2-norm at qc when the contact line region reaches
the bend and it gets pinned. Right panel: droplet profiles for qin = 25 (1) ,50

(2) ,75 (3) and 100 (4).

position x0. x0 is the intersection of the substrate ξ(x) and the parabola used to

fit the droplet shape by using the apex curvature. We observe that as the droplet

edge reaches the bend region and starts to interact with it, it gets pinned and the

apparent contact angle θapp increases. In panel (a) we see the apparent contact

angle with respect to y = 0, while on panel (b), θapp is shown with respect to the

substrate ξ(x). In the latter, it is clearly shown how θapp increases at the bend

region and then, after depinning, θapp tends back to the previous value. Note that

the apparent contact angle increases as the bend angle gets larger.

We also investigate how the smoothness of the bend affects the apparent contact

angle θapp. In Fig. 4.9 we plot for a fixed bend angle of α = −1.0 the apparent

contact angle for different values of w, with w ∈ [3.5, 4, 5, 7, 8, 10]. We observe

that for larger values of the width of the bend region w, the transition is smoother

and that the apparent contact angle decreases, see panels (a) and (b). We infer

that the pinning is not as strong at the corner as the width of the bend region

w increases (or becomes smoother), see left panel of Fig. 4.10, where we plot

the apparent contact angle with respect to the substrate for three different bend

widths, w = [5, 50, 100]. Note how the apparent contact angle strongly decreases

for larger values of w. In the right panel, we plot the slope of the substrate ξ′

(same colour code as in left panel). We see that, the larger the width w, the

smoother the slope of ξ(x) becomes. This translates in less pinnng of the contact

line region of the droplet, and therefore a smaller apparent contact angle.



Chapter 4. Evaporating drop with influx on substrate with a corner 119

-200 -100 0 100 200c - x0

0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

θ ap
p / 

y=
0

-200 -100 0 100 2000.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6 -2.0

-1.0
-0.75
-0.5
-0.1
-0.01
 0.0

α

w = 5

a

-200 -100 0 100 200c - x0

0

0.2

0.4

0.6

0.8

θ ap
p 

/ s
ub

st
ra

te

0020002-0

0.2

0.4

0.6

0.8

-2.0
-1.0
-0.75
-0.5
-0.1
 0.0

α

w = 5

b

Figure 4.8: Shown are apparent contact angles θapp for different inclination
angles α as shown in the legend as a function of the contact line position x0 (x0

is the intersection of the substrate ξ(x) and the parabola used to fit the droplet
shape by using the apex curvature). Overall domain D = 1000, bend located
at c = 400, bend width w = 5.0, source width σ = 10, plot respect to bend
position c. (a) θapp respect to the horizontal, i.e. y = 0. As the drop approaches
the bend, θapp increases. (b) θapp respect to the substrate, i.e. y = ξ(x). As
the drop approaches the bend, θapp increases and once passing the transition

width, it tends to the apparent contact angle before the bend.
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Figure 4.9: Shown are apparent contact angles θapp for a fixed inclination
angle α = −1.0 for different bend widths w as shown in the legends for the
contact line position x0 (x0 is the intersection of the substrate ξ(x) and the
parabola used to fit the droplet shape by using the apex curvature). Overall
domain D = 1000, bend located at c = 400, source width σ = 10, plot respect to
bend position c. (a) θapp respect to the horizontal, i.e. y = 0. (b) θapp respect

to the substrate, i.e. y = ξ(x).

To investigate changes in the system, e.g. how the apparent contact angle θapp for

a fixed inclination angle α changes, we perform continuation on the evaporation

number E and the kinetic resistance K, see Fig. 4.11 and Fig. 4.12.

In the left panel of Fig. 4.11 we plot droplet volume V over influx f = qin/σ
√

2/π.

It is shown how as the evaporation numberE increases, more influx f = qin/σ
√

2/π

is needed to generate a sufficient large droplet which can reach the bend region
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contact line position x0 (x0 is the intersection of the substrate ξ(x) and the
parabola used to fit the droplet by using the apex curvature). (b) Slope of ξ(x)
- same colour coding as in panel (a). Overall domain D = 1000, bend located

at c = 400, source width σ = 10, plot respect to bend position c.

and get pinned, when the volume starts to increase strongly. In the right panel we

plot droplet volume V over the kinetic resistance number K. Here, as K increases,

the droplet reaches the bend region for a smaller influx f = qin/σ
√

2/π.
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Figure 4.11: Shown is drop volume V over influx f = qin/σ
√

2/π for (left)
different evaporation numbers E = 0.01, 10, 100 and kinetic resistance number
K = 5.74, and (right) different kinetic resistance numbers K = 0.01, 10, 100 and
evaporation number E = 0.124. In both cases one has overall domain D = 1000,

bend position at c = 400, bend width ω = 5.0, source width σ = 10.

In Fig. 4.12, left panel, we observe the influence of evaporation on the apparent

contact angle θapp. We plot the apparent contact angle as a function of the contact

line position for 5 different values of E spanning 4 orders of magnitude, i.e. for

E = [0.01, 0.1.1, 10, 100] and a fixed kinetic resistance number K = 5.74 for a

fixed bend angle α = −1.0. We see, that as E increases, the apparent contact

angle increases as well. In the right panel of Fig. 4.12 we plot the values of θapp
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for the evaporation numbers used, i.e. E = [0.01, 0.1.1, 10, 100]. We see that the

apparent contact angle increases following a power law of θapp ∝ E1/4. We also
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Figure 4.12: Left panel: Shown are apparent contact angles θapp for a fixed
inclination angle α = −1.0 with respect to the horizontal y = 0 for the contact
line position ∆x = c − x0 for different evaporation numbers E = 0.01, 0.1, 1,
10 and 100 as shown in the legend. Overall domain D = 1000, bend position
at c = 400, bend width ω = 5.0, source width σ = 10 and kinetic resistance
number K = 5.74. Right panel: Shown is θapp vs. E for α = −1 and K = 5.74.
As the evaporation number E increases, the apparent contact angle increases

following a power law of θapp ∝ E1/4.

observe the occurrence of a pair of saddle nodes for different values of evaporation

number E (fixed kinetic resistance number K) and for different kinetic number K

(fixed evaporation number E), in order to investigate the saddle nodes, we re-write

Eq. (4.8) to :

0 = −∂x {Q∂x (γ∂xx(φ+ ξ) + Π)}+
β

1 + φ
K

(γ∂xx(φ+ ξ) + Π + µ) + q(x), (4.13)

where β = E/K for the sake of comparison with the model for K → ∞, see

Eq. (4.8). Now we have two independent parameters, β and K. We are able to

compute a fold-continuation to generate a phase diagram spanned in the (K −
qin)—space for a fixed value of β = 0.02, and varying K and the the inlfux f =

qin/σ
√

2/π, see Fig. 4.13.

We observe in the phase space, see left panel of Fig. 4.13, that as the kinetic

resistance number K increases the pair of saddle nodes annihilate for values of K

larger than 3000 and for values of K smaller than 0.0001. A clear hysteresis is

present. In the limit of large K, after the annihilation of the saddle nodes, the

model proposed by [114] is retrieved, see Fig. 4.8. On the right panel, we plot the

apex over f = qin/σ
√

2/π for different kinetic resistance numbers K as show in

the legend. Note that for K = 1.10x106 no saddle nodes are present anymore.
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Figure 4.13: Shown is: Left panel f = qin/σ
√

2/π vs. kinetic resistance
number K diagram for fixed β = 0.02 (which is E/K, for E = 0.124 and
K = 5.74) and fixed bend inclination angle α = −1.0 As K increases the pair
of saddle nodes annihilate for values of K larger than 3000 and for values of
K smaller than 0.0001. A clear hysteresis is present. Right panel: Apex over
f = qin/σ

√
2/π for different kinectic resistance numbers as show in the legend.

Note that for K = 1.10x106 no more saddle nodes are present.

Next, we investigate the pinning process, i.e. when the contact line region and

the bend region start to interact. In panel (a) Fig. 4.14 we present the results

for the apex of the droplet versus the influx f = qin/σ
√

2/π for different values

of E, instead of the volume V as we have seen in panel (a) of Fig. 4.12. As it

was expected, we see that as E increases, more influx is needed to generate a

sufficiently large droplet which can reach the bend region and get pinned, where

the apex increases strongly. Instead of the volume, we will use the apex of the

droplet. We will focus on the case of a fixed evaporation number E = 0.01, fixed

kinetic resistance number K = 5.74 and fixed bend inclination angle α = −1.

Panel (a) shows the L2-norm as a function of the influx f = qin/σ
√

2/π. In panel

(b) we plot the droplet apex in dependence of the influx qin. We observe that there

are multivalued solutions for a fixed values of the influx, e.g. f = qin/σ
√

2/π =

0.0125. These three profiles correspond to: (1) a droplet before the bend region,

(2) a droplet pinned at the sharp edge and (3) a droplet after the bend region

creeping down the slope. In panel (c) we plot these three profiles overlapped

with the corresponding evaporation profiles. In panels (d), (e) and (f) we show

them individually. We observe that the evaporation rises close to the contact line

position, i.e. where the film is of the order of the precursor film height. In panel

(f), where the droplet passed over the bend region and creeps down the slope,

a “shoulder”-like structure is observed in the evaporation at the bend position

c = 400. Note, that as the influx f = qin/σ
√

2/π is the same for the three cases,

the integrals of the evaporation flux Jevap over the domain size D coincide.
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Figure 4.14: Shown are: (a) Apex over f = qin/σ
√

2/π for different evapo-
ration numbers E = 0.01, 0.1, 0.124, 1, 10, 100 with overall domain D = 1000,
bend position at c = 400, bend width ω = 5.0, source width σ = 10, kinetic
resistance number K = 5.74 and bend inclination α = −1.0. (b) Apex over
f = qin/σ

√
2/π for fixed evaporation number E = 0.01, kinetic resistance num-

ber K = 5.74 and bend inclination angle α = −1.0. Numbers 1, 2 and 3 indicate
multivalued solutions for a fixed f = qin/σ

√
2/π = 0.0125. The corresponding

droplet profiles and evaporation profiles are depicted in panel (c) overlapped,
and in (d), (e) and (f) individually. Note that the evaporation is scaled in order
by a factor 1000 to be visible in the graph. The evaporation rises close to the
contact line position, i.e. where the film is of the order of the precursor film
height. In panel (f), where the droplet passed over the bend, a “shoulder”-like

structure is observed in the evaporation at the bend position c = 400.

We have previously introduced the depinning condition, i.e. when the apparent

angle θapp is larger then θcr depinning occurs. In the previous sections we have seen,

that there exists an evaporation induced angle θev adding up to the geometrical

bend angle α. This suggests that a simple modification can be introduced to Gibbs’
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criterion, where the equilibrium angle θeq (in the case of a complete wetting liquid

θeq = 0, as we have been studying) is replaced by the evaporation induced angle

θev, i.e. the new critical angle is

θcr = θev + π − α. (4.14)

This is consistent with the experimental results and proposed Gibbs’ criterion

modification for complete wetting liquid presented in [81].

4.3.3 Drop interacting with a single substrate bend α > 0
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Figure 4.15: Left panel: Shown is the L2-norm of the layer thickness φ over
influx f = qin/σ

√
2/π for fixed evaporation number E = 0.01, kinetic resistance

number K = 5.74 and ridge inclination angle α = 1.0. Ridge is located at
c = 250 and ridge width is w = 5. The Domain size is D = 500. Right panel:
layer thickness profiles for different influxes: 0.06 (red solid line), 0.075 (dashed
green line) – corresponds to the start of the ridge, 0.08 (solid green line) and

0.086 (solid blue line).

We now study the substrate with a ridge, i.e. for α > 0. In the left panel

of Fig. 4.15 we show the L2-norm of the layer thickness φ(x) in dependence of

the influx for α = 1 (black solid line). For small influx, there are small drops

with the contact line region left of the ridge. The drop norm (volume) changes

monotonously with influx, similar to the case without bend and for a negative bend

angle described before, see Fig. 4.6 and Fig. 4.8. When the contact line region

reaches the ridge region, i.e. at f = qr, the norm starts to decrease monotonously

until qm. Then it starts to increase strongly for nearly constant influx qc (red

dashed line). Further increase of f results again in a slower increase of the norm

as the contact line region creeping up the slope. In the right panel of Fig. 4.15

we show layer thickness profiles for different influxes: at f = 0.06 (red solid line)
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for a thickness profile left of the ridge, at f = 0.075 (dashed green line), which

corresponds to a profile at the start of the ridge. We notice that a further increase

in the influx, results in a smaller L2-norm of the droplet: the profile at influx

f = 0.08 has a smaller apex (solid green line) and the contact line region starts

to creep up the slope. A further increase in the influx f = 0.086 (solid blue line)

results in a lower apex and the droplet creeping up the slope.
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Figure 4.16: Left panel: Shown is the apex of the droplet over influx f =
qin/σ

√
2/π for fixed evaporation number E = 0.01, kinetic resistance number

K = 5.74 and ridge inclination angle α = 1.0. Ridge is located at c = 250
and ridge width is w = 5. The numbers correspond to the profiles shown in the
right panel. Note that the physical meaning solution is the solid black line (more
details in the text).The Domain size is D = 500. Right panel: layer thickness

profiles for different influxes as shown in the left panel.

In the left panel of Fig. 4.16 we plot the apex of the droplet in dependence of influx

f . The behaviour is similar to the one described in Fig. 4.15, but plotting the apex

gives us a better picture of what happens to the droplet: as the influx increases,

the droplet is still left of the ridge (solution 1), and a further increase in f leads

to the contact line region reaching the ridge region. As pointed out before, this

is the same behaviour described for α < 0. However in this case, the apex height

starts to decrease while the contact line region starts to creep up the slope. We

observe in Fig. 4.16 that the apex height reaches a minimum value and increases

again. The region between qr and qm is multivalued in both quantities, i.e. in

the influx f and in the apex height. We observe this multivalued region in the

influx, e.g. solution numbers 3, 4 and 5 for f = 0.09, where solutions 3 and 4 have

the same apex value. Note that solution 5 has reached the domain boundary and

corresponds to another physical problem. Solution labeled m corresponds to the

influx value qm as indicated in the figure and is discussed in the next paragraph.

In Fig. 4.17 we detail solutions 2,3 and 4 and overlapped we plot the evaporative

flux jevap. We include additionally in panel (c) the thickness profile for the influx
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Figure 4.17: Shown are film thickness profiles and evaporation profiles for
fixed evaporation number E = 0.01, kinetic resistance number K = 5.74, ridge
inclination angle α = 1.0 and ridge located at c = 250. Domain size is D = 500.
Panel (a) corresponds to an influx value of f = qr ≈ 0.075 where the contact line
region reaches the ridge. In panel (b) we show for f = 0.09 a thickness profile
creeping up the slope. Note the “shoulder”-like structure in the evaporation
flux at the bend position c = 250. Panel (c) corresponds to an influx value qm
(see Fig. 4.16). Note that the “shoulder”-like structure decreases but it is still
present at the ridge position c = 250. Panel (d) shows a thickness profile for
f = 0.09 and same apex height as panel (b). Note that the film creeps further up
the slope and that the evaporation profile has no “shoulder”-structure anymore,
as the thickness has an almost constant, thick height left of the ridge. Note that
the evaporation is scaled in order by a factor 1000 to be visible in the graph.
The evaporation rises close to the contact line position, i.e. where the film is of

the order of the precursor film height.

qm. Panel (a) corresponds to an influx value of f = qr ≈ 0.075 where the contact

line region reaches the ridge. In panel (b) we show for f = 0.09 a thickness profile

creeping up the slope. Note the “shoulder”-like structure in the evaporation flux

at the bend position c = 250. Panel (c) corresponds to an influx value qm (see

Fig. 4.16). Note that the “shoulder”-like structure decreases but it is still present

at the ridge position c = 250. Finally, panel (d) shows a thickness profile for

f = 0.09 and same apex height of the thickness profile as panel (b). Note that the
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film creeps further up the slope and that the evaporation profile has no “shoulder”-

structure anymore, as the thickness has an almost constant, thick height left of the

ridge. Note that the evaporation is scaled in order by a factor 1000 to be visible

in the graph. The evaporation rises close to the contact line position, i.e. where

the film is of the order of the precursor film height.





Chapter 5

Conclusions and outlook

“All except one thing. There’s

something you should know before

you leave.”

Rick Blaine

In the present Thesis we have on the one hand studied free surface driven liquid

films, principally focusing on drawn menisci, where we have uncovered several

interesting features. On the other hand, we have also addressed the pinning of

volatile droplets of completely wetting liquids at sharp edges. In what follows, we

summarise the main results:

In the first Chapters we have analysed a liquid film that is deposited from a liquid

bath onto a flat moving plate that is inclined at a fixed angle α to the horizontal

and is removed from the bath at a constant speed U . We have analysed a two-

dimensional situation with a long-wave equation that is valid for small inclination

angles of the plate and under the assumption that the longitudinal length scale

of variations in the film thickness is much larger than the typical film thickness.

The model equation used in most parts of our work includes the terms due to

surface tension, the disjoining (or Derjaguin) pressure modelling wettability, the

hydrostatic pressure and the lateral driving force due to gravity, and the dragging

by the moving plate. To further illustrate a particular finding we have also con-

sidered the situation where an additional lateral Marangoni shear stress results

from a linear temperature gradient along the substrate direction. Our main goal

has been to analyse selected steady-state film thickness profiles that are related to

collapsed or exponential snaking.

129
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First, we have used centre manifold theory to rigorously derive the asymptotic

boundary conditions on the side of the bath. In particular, we have obtained

asymptotic expansions of solutions in the bath region, when x → ∞. We found

that in the absence of the temperature gradient, the asymptotic expansion for the

film thickness, h, has the form h ∼
∑∞

n=−1Dnx
−n, where without loss of generality

D0 can be chosen to be zero (fixing the value of D0 corresponds to breaking the

translational invariance of solutions and allows selecting a unique solution from the

infinite family of solutions that are obtained from each other by a shift along the

x-axis). In the presence of the temperature gradient, this asymptotic expansion

is not valid, but instead consists of terms proportional to x, log x and x−m logn x,

where m and n is a positive and a non-negative integer, respectively. Note that our

systematically obtained sequence differs in part from the one employed in ref. [10].

Next, we have obtained numerical solutions of the steady-state equation and have

analysed the behaviour of selected solutions as the plate velocity and the temper-

ature gradient are changed. When changing the plate velocity, we observe that

the bifurcation curves exhibit collapsed heteroclinic snaking when the plate incli-

nation angle is larger than a certain critical value, namely, they oscillate around

a certain limiting velocity value, U∞, with an exponentially decreasing oscillation

amplitude and a period that tends to some constant value. In contrast, when the

plate inclination angle is smaller than the critical value, the bifurcation curve is

monotonic and the velocity tends monotonically to U∞. The solutions along these

bifurcation curves are characterised by a foot-like structure that emerges from the

meniscus and is preceded by a very thin precursor film further up the plate. The

length of the foot increases continuously as one follows the bifurcation curve as

it approaches U∞. It is important to note that these solutions of diverging foot

length do not converge to the Landau–Levich film solution at the same U = U∞.

Indeed, the foot height at U∞(α) scales as U1/2 while the Landau–Levich films

scale as U2/3. As expected, the results for the bifurcation curves that we here

obtained with a precursor film model are similar to results obtained for such sit-

uations employing a slip model [18, 20]. The protruding foot structure has been

observed in experiments, e.g., in refs. [18, 19, 122] where even an unstable part of

the snaking curve was tracked. However, the particular transition described here

has not yet been experimentally studied. This is in part due to the fact that in an

experiment with a transversal extension (fully three-dimensional system) transver-

sal meniscus and contact line instabilities set in before the foot length can diverge.

We believe that experiments in transversally confined geometries may allow one
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to approach the transition more closely. Experiments with driving temperature

gradients exist as well but focus on other aspects of the solution structure like,

for instance, various types of advancing shocks (travelling fronts) and transversal

instabilities [123]. We are not aware of studies of static foot-like structures in

systems with temperature gradients.

We further note that the described monotonic and non-monotonic divergence of

foot length with increasing plate velocity may be seen as a dynamic equivalent of

the equilibrium emptying transition described in ref. [77]. There, a meniscus in

a tilted slit capillary develops a tongue (or foot) along the lower wall. Its length

diverges at a critical slit width. In our case, the length of the foot diverges at a

critical plate speed – monotonically below and oscillatory above a critical incli-

nation angle. The former case may be seen as a continuous dynamic emptying

transition with a close equilibrium equivalent. The latter may be seen as a discon-

tinuous dynamic emptying transition that has no analogue at equilibrium. This is

further analysed in ref. [124].

Finally, we have shown for a particular described scenario that in an appropriate

three-dimensional phase space, the three regions of the film profile, i.e., the pre-

cursor film, the foot and the bath, correspond to three fixed points, yp, yf and yb,

respectively, of a suitable dynamical system. We have explained that the snaking

behaviour of the bifurcation curves is caused by the existence of a heteroclinic

chain that connects yp with yf and yf with yb at certain parameter values h∞

and J∞. To understand the existence of these multiple heteroclinic orbits con-

necting two of the fixed points of a three dimensional dynamical system which has

three fixed points connected by a heteroclinic chain we have proved a general result

that implies that if the fixed points corresponding to the foot and to the bath have

two-dimensional unstable and two-dimensional stable manifolds, respectively, and

the fixed point corresponding to the foot is a saddle-focus so that the Jacobian

at this point has the eigenvalues −λ1, λ2 ± i ω, where λ1,2 and ω are positive real

numbers, then in the neighbourhood of the heteroclinic chain there is an infinite

but countable number of heteroclinic orbits connecting the fixed point for the pre-

cursor film with the fixed point for the bath. These heteroclinic orbits correspond

to solutions with feet of different lengths. Moreover, these solutions can be ordered

so that the difference in the foot lengths tends to π/ω. We have also explained

that in this case the bifurcation curve shows a snaking behaviour. Otherwise, if
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the fixed point corresponding to the foot is a saddle, the Jacobian at this point

has three real non-zero eigenvalues, and the bifurcation curve is monotonic.

The presented study is by no means exhaustive. It has focused on obtaining asymp-

totic expansions of the solutions in the bath region using rigorous centre manifold

theory and on analysing the collapsed heteroclinic snaking behaviour associated

with the dragged meniscus problems. However, the system has a much richer solu-

tion structure. Beside the studied solutions one may obtain Landau–Levich films

and investigate their coexistence with the discussed foot and mensicus solutions.

For other solutions the bath connects directly to a precursor-type film which then

connects to a thicker ‘foot-like’ film which then goes back to the precursor-type

film that continues along the drawn plate. We have addressed these solutions

and their relation to the ones studied here briefly and it is now being part of

ongoing work, which will be presented elsewhere. We have also shown that a long-

wave mesoscopic hydrodynamic description of the coating problem for a drawn

inclined plate from a bath allows one to identify several qualitative transitions if

wettability is modelled via a Derjaguin pressure. As a result we have distinguished

four dynamic unbinding transitions, namely continuous and discontinuous dynamic

emptying transitions and discontinuous and continuous dynamic wetting transi-

tions. These dynamic transitions are out-of-equilibrium equivalents of well known

equilibrium emptying and wetting transitions. Beside features known from equi-

librium, our analysis has uncovered important features that have no equivalents

at equilibrium. A future study of the influence of fluctuations might allow one to

answer the question which surface profile is selected in the multistable regions.

In the final part, we have studied a proposed generalisation of Gibbs’ pinning cri-

terion accounting for the non-equilibrium effect of evaporation, which explains the

experimental results described in ref. [81]. The apparent angle entering the mod-

ified criterion is determined within a so-called microstructure of the contact line,

corresponding to the macroscopic limit of a droplet, much larger than the relevant

microscales. In this respect, we note that the corresponding theory of evaporation-

induced contact angles for an atmosphere containing air is not quite developed yet,

even though the existing studies (see e.g. [115]) show a weak dependence upon a

single macroscopic length scale.

Other potential future work is to study Marangoni stress driven menisci in similar

geometries for different complex liquids, such as colloidal suspensions, liquid crys-

tals or non-newtonian liquids with particular interest towards the description of
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static and dynamic contact lines, their shape, motion and instabilities. The study

will be extended by incorporating evaporation and/or external electrodynamic

fields.

Understanding the spreading mechanisms of complex liquids on topographical sub-

strates and other geometrical structures are of particular interest in designing sur-

faces, like antimicrobial surfaces and superhydrophobic surfaces. The study might

be extended towards active liquids relevant for several biological systems.





Appendix A

Asymptotic behaviour of

solutions at infinity

In what follows, we will analyse steady-state solutions of a more general equation

including the temperature gradient Ω,

∂th = −∂x
(
h3

3
∂x[∂

2
xh+ Π(h)]− h3

3
G(∂xh− α)− Ω

3
h2 − U

3
h

)
, (A.1)

i.e. solutions that satisfy the equation

h3[h′′ + Π(h)]′ −Gh3(h′ − α)− Ωh2 − Uh+ J0 = 0, (A.2)

where now h is a function of x only and primes denote differentiation with respect

to x. Here, J0 is a constant of integration and represents the flux. Note that J0 is

in fact not an independent parameter but is determined as part of the solution of

the boundary-value problem consisting of eq. (A.2) and four boundary conditions

that will be discussed in the next section.

Following a proposal of ref. [10], we introduce variables y1 = 1/h, y2 = h′ and

y3 = h′′, and convert the steady-state equation (A.2) into a three-dimensional

dynamical system:

y′1 = −y2
1y2, (A.3)

y′2 = y3, (A.4)

y′3 = (6y7
1 − 3y4

1)y2 +Gy2 + Uy2
1

+Ωy1 − J0y
3
1 −Gα. (A.5)

135
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Note that the transformation y1 = 1/h is used to obtain a new fixed point corre-

sponding to the bath, namely the point yb = (0, α, 0), beside other fixed points,

two of which, yf = (1/hf , 0, 0) and yp = (1/hp, 0, 0), correspond to the foot and

the precursor film, respectively.

To analyse the stability of the fixed point yb, we first compute the Jacobian at

this point:

Jyb
=


0 0 0

0 0 1

Ω G 0

 . (A.6)

The eigenvalues are 0, ±G1/2 and the corresponding eigenvectors are (G, −Ω, 0),

(0, ±G−1/2, 1). So there is a one-dimensional centre (or critical) eigenspace, a one-

dimensional stable eigenspace and a one-dimensional unstable eigenspace given by

T cyb
= span{(G, −Ω, 0)}, (A.7)

T syb
= span{(0, −G−1/2, 1)}, (A.8)

T uyb
= span{(0, G−1/2, 1)}, (A.9)

respectively.

To determine the asymptotic behaviour of h as x → ∞, we analyse the centre

manifold of yb, which we denote by W c
yb

. This is an invariant manifold whose

tangent space at yb is T cyb
. The existence of a centre manifold is provided by the

centre manifold theorem (see, e.g., theorem 1, p. 4 in ref. [125], theorem 5.1, p. 152

in ref. [69]). For simplicity, we use the substitution z1 = y1, z2 = y2 − α, z3 = y3.

In vector notation, the dynamical system takes the form

z′ = f(z), (A.10)

where f(z) = (f1(z), f2(z), f3(z))T and

f1(z) = f1(z1, z2, z3) = −z2
1(z2 + α), (A.11)

f2(z) = f2(z1, z2, z3) = z3, (A.12)

f3(z) = f3(z1, z2, z3) = (6z7
1 − 3z4

1)(z2 + α) +Gz2

+Uz2
1 + Ωz1 − J0z

3
1 . (A.13)

The fixed point corresponding to the bath is then zb = (0, 0, 0). Next, we rewrite
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the system of ordinary differential equations (A.10) in its eigenbasis at zb, i.e.,

we use the change of variables u = B−1z, where B is the matrix having the

eigenvectors of the Jacobian as its columns,

B =


G 0 0

−Ω G−1/2 −G−1/2

0 1 1

 , (A.14)

and obtain the system

u′ = g(u) ≡ B−1f(Bu), (A.15)

which can be written in the form

ξ′ = ψ(ξ,η), (A.16)

η′ = Cη +ϕ(ξ,η), (A.17)

where ξ denotes the first component of u and η = (η1, η2)T consist of the second

and the third components of u (i.e., ξ ≡ u1, η1 ≡ u2 and η2 ≡ u3), ψ and ϕ have

Taylor expansions that start with quadratic or even higher order terms and C is

the matrix

C =

(
G1/2 0

0 −G1/2

)
. (A.18)
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After some algebra, we find

ψ(ξ,η) = GΩξ3 −Gαξ2 −G1/2ξ2η1 +G1/2ξ2η2, (A.19)

ϕ1(ξ,η) = −3G7Ω ξ8 + 3G7α ξ7 + 3G13/2ξ7η1

−3G13/2ξ7η2 +
3

2
G4Ω ξ5 − 3

2
G4α ξ4

−3

2
G7/2ξ4η1 +

3

2
G7/2ξ4η2 −

1

2
J0G

3ξ3

+
1

2
G3/2Ω2ξ3 − 1

2
G3/2Ωα ξ2 +

1

2
UG2ξ2

−1

2
GΩ ξ2η1 +

1

2
GΩ ξ2η2, (A.20)

ϕ2(ξ,η) = −G1/2η2 − 3G7Ω ξ8 + 3G7α ξ7

+3G13/2ξ7η1 − 3G13/2ξ7η2 +
3

2
G4Ω ξ5

−3

2
G4α ξ4 − 3

2
G7/2ξ4η1 +

3

2
G7/2ξ4η2

−1

2
J0G

3ξ3 − 1

2
G3/2Ω2ξ3 +

1

2
G3/2Ωα ξ2

+
1

2
UG2ξ2 +

1

2
GΩ ξ2η1 −

1

2
GΩ ξ2η2. (A.21)

Near the origin, zb, when |ξ| < δ for some positive δ, the centre manifold in

the (ξ, η1, η2)-space can be represented by the equations η1 = g1(ξ), η2 = g2(ξ),

where g1 and g2 are in C2. Moreover, near the origin system (A.16), (A.17) is

topologically equivalent to the system

ξ′ = ψ(ξ, g(ξ)), (A.22)

η′ = Cη. (A.23)

where the first equation represents the restriction of the flow to its centre manifold

(see, e.g., theorem 1, p. 4 in ref. [125], theorem 5.2, p. 155 in ref. [69]).

The centre manifold can be approximated to any degree of accuracy. According

to theorem 3, p. 5 in ref. [125], ‘test’ functions φ1 and φ2 approximate the centre

manifold with accuracy O(|ξ|q), namely,

|g1(ξ)− φ1(ξ)| = O(|ξ|q), |g2(ξ)− φ2(ξ)| = O(|ξ|q) (A.24)
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as ξ → 0, provided that φi(0) = 0, φ′i(0) = 0, i = 1, 2 and M [φ](ξ) = O(|ξ|q) as

ξ → 0, where M is the operator defined by

M [φ](ξ) = φ′(ξ)ψ(ξ, φ(ξ))−Cφ(ξ)−ϕ(ξ, φ(ξ)). (A.25)

The centre manifold can now be obtained by seeking for φ1(ξ) and φ2(ξ) in the

form of polynomials in ξ and requiring that the coefficients of the expansion of

M [φ](ξ) in Taylor series vanish at zeroth order, first order, second order, etc.

Using this procedure, we can find the Taylor series expansions of g1 and g2:

g1(ξ) =

(
1

2
GΩα− 1

2
G3/2U

)
ξ2

+

(
G2Uα−G3/2Ωα2 − 1

2
GΩ2 +

1

2
G5/2J0

)
ξ3

−
(

3

2
G3αJ0 − 3G2α3Ω +

3

2
G2ΩU − 3G5/2α2U

−3

2
G7/2α− 5

2
G3/2αΩ2

)
ξ4 + · · · , (A.26)

g2(ξ) =

(
1

2
GΩα +

1

2
G3/2U

)
ξ2

+

(
G2Uα +G3/2Ωα2 − 1

2
GΩ2 − 1

2
G5/2J0

)
ξ3

−
(

3

2
G3αJ0 − 3G2α3Ω− 3G5/2α2U +

3

2
G2ΩU

+
3

2
G7/2α +

5

2
G3/2αΩ2

)
ξ4 + · · · . (A.27)

Let g
(k)
i (ξ), i = 1, 2, be the Taylor polynomial for gi(ξ) of degree k. Then gi(ξ) =

g
(k)
i (ξ) +O(|ξ|k+1), i = 1, 2, and M [g(k)](ξ) = O(|ξ|k+1) as ξ → 0. The dynamics

on the centre manifold is therefore governed by the equation

ξ′ = ψ(ξ, g(k)(ξ)) +O(|ξ|k+3)

= GΩξ3 −Gαξ2 −G1/2ξ2g
(k)
1 (ξ)

+G1/2ξ2g
(k)
2 (ξ) +O(|ξ|k+3). (A.28)

Substituting eq. (A.26) and eq. (A.27) into eq. (A.28), we find

ξ′ = −Gαξ2 +GΩξ3 + UG2ξ4 − (J0G
3 − 2G2Ωα2)ξ5

+(6G3Uα2 − 3G4α− 5G2Ω2α)ξ6 + · · · . (A.29)
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Taking into account the fact that ξ = z1/G, we obtain

z′1 = −αz2
1 +

Ω

G
z3

1 +
U

G
z4

1 −
(
J0

G
− 2Ωα2

G2

)
z5

1

+

(
6Uα2

G2
− 3α

G
− 5Ω2α

G3

)
z6

1 + · · · . (A.30)

Rewriting this in terms of h, we get

h′ = α− Ω

G
h−1 − U

G
h−2 +

(
J0

G
− 2Ωα2

G2

)
h−3

−
(

6Uα2

G2
− 3α

G
− 5Ω2α

G3

)
h−4 + · · · (A.31)

as h→∞.

We seek for a solution for h whose slope approaches that of the line corresponding

to the horizontal direction as x → ∞. In the chosen system of coordinates, the

line corresponding to the horizontal direction has the slope α. So we seek for a

solution satisfying h′(x) = α + o(1) as x → ∞. This can also be written in the

form

h(x) = αx+ o(x) as x→∞. (A.32)

Substituting eq. (A.32) into eq. (A.31), we obtain

h′ = α− Ω

αG
x−1 + o(x−1), (A.33)

which implies

h = αx− Ω

αG
log x+ o(log x). (A.34)

Substituting eq. (A.34) into eq. (A.31), we find

h′ = α− Ω

αG
x−1 − Ω2

α3G2
x−2 log x+ o(x−2 log x), (A.35)

which implies

h = αx− Ω

αG
log x+

Ω2

α3G2
x−1 log x+ o(x−1 log x). (A.36)

In principle, any constant of integration can be added to this expression, and this

reflects the fact that there is translational invariance in the problem, i.e., if h(x) is

a solution of eq. (A.2), then a profile obtained by shifting h(x) along the x-axis is
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Figure A.1: Left panel: Comparison between a numerical solution for Ω = 0
when α = 0.5 and U = 0.084 and the expansion for h(x) given by eq. (2.52) with
1-4 terms. Right panel: Comparison between a numerical solution for Ω = 0.001
when α = 0.5 at U = 0.076 and the expansion for h(x) given by eq. (A.38) with

1-5 terms. L1 = 9800, L2 = 200.

also a solution of this equation. Without loss of generality, we choose the constant

of integration to be zero, which breaks this translational invariance and allows

selecting a unique solution from the infinite set of solutions.

Substituting eq. (A.36) into eq. (A.31), we find

h′ = α− Ω

αG
x−1 − Ω2

α3G2
x−2 log x

− U

α2G
x−2 − Ω3

α5G3
x−3 log2 x

+
Ω3

α5G3
x−3 log x+ o(x−3 log x), (A.37)

which implies

h = αx− Ω

αG
log x+

Ω2

α3G2
x−1 log x (A.38)

+

(
Ω2

α3G2
+

U

α2G

)
x−1

− Ω3

2α5G3
x−2 log2 x+ o(x−2 log x). (A.39)

The procedure described above can be continued to obtain more terms in the

asymptotic expansion of h as x → ∞. Note that all the terms in this expansion,

except the first two, will be of the form x−m logn x, where m is a positive integer

and n is a non-negative integer. It should also be noted that the presence of the

logarithmic terms in the asymptotic expansion of h is wholly due to the quadratic
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contribution to the flux in eq. (A.1) that here results from a lateral temperature

gradient. Without this term, i.e., for Ω = 0, the expansion (A.31) for h′ does

not contain the term proportional to h−1. This implies that after substituting

h(x) = αx+ o(x) in this expansion, no term proportional to x−1 will appear, and,

therefore, integration will not lead to the appearance of a logarithmic term. In

fact, it is straightforward to see that for Ω = 0 an appropriate ansatz for h is

h ∼ αx+D1x
−1 +D2x

−2 +D3x
−3 + · · · , (A.40)

implying that

D1 =
U

α2G
, D2 = − J0

2α3G
,

D3 = −1

3

(
2U2

α5G
+

3

α3G
− 6U

α2G2

)
, . . . . (A.41)

Note that the presence of a logarithmic term in the asymptotic behaviour of h

was also observed by Münch and Evans [10] in a related problem of a liquid film

driven out of a meniscus by a thermally induced Marangoni shear stress onto a

nearly horizontal fixed plane. They find the following asymptotic behaviour of the

solution, given with our definition of the coordinate system:

h(x) ∼ h0(x) +D0 +D1 exp(−D1/2x) as x→∞, (A.42)

where h0 = x/D− log x+ o(1), D is the parameter measuring the relative impor-

tance of the normal component of gravity and D0 and D1 are arbitrary constants.

The constant D0 reflects the fact that there is translational invariance in the prob-

lem and it can be set to zero without loss of generality. An analysis performed

along the lines indicated above shows that a more complete expansion has the

form

h(x) ∼ x

D
− log x+D x−1 log x+Dx−1

+
D2

2
x−2 log2 x+ · · · . (A.43)

Note that there is no need to include the exponentially small term as it is asymp-

totically smaller than all the other terms of the expansion.
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Solution Measures

In what follows, we will introduce different useful solution measures to quantify

the bifurcation diagrams:

A numerical finite domain L allows us to calculate, for example, the volume of the

film profile. This solution measure will be of practical importance for the analysis

of the extended meniscus (foot) solutions and correlate it to the foot length as we

will describe later in this Appendix. We will define following solution measures,

see Fig. B.1 and Fig. B.2:

X

h(
x)

hp
xf xM

hf

0 L

lf

U = 0
U ≠ 0

X

h(
x)

hF

0 L
hp

xM

U = 0
U ≠ 0

Figure B.1: Sketch of different solutions: Meniscus, foot-like structure and
film. Left panel: Shown is the sketch of a meniscus at U = 0 and a foot solution
for U 6= 0 for the same angle. We identify the foot height hf , the precursor film
height hp, the position of the start of the foot xf and the the position of the
meniscus (and where the film profile connects to the bath) xM. We define a
length proportional to the foot length, the pseudo-foot length as lf = xM − xf .
Right panel: Film type solutions. Shown is the sketch of a meniscus at U = 0
and a film solution for U 6= 0 for the same angle. We identify the film height
hF, the precursor film height hp, and the position of the meniscus xM. See text

for more details.
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(a) Effective volume measure ∆V : This solution measures the difference between

a profile volume V at U 6= 0 and the volume V0 at U = 0 for a fixed angle, i.e.

∆V = V − V0. (B.1)

We identify following three solution measures for the three different film pro-

files:

(i) Meniscus profile:

V =

∫ L

0

h(x)dx =

∫ xM

0

hpdx+ δVM (B.2)

= xMhp + δVM ,

where

δVM =

∫ L

xM

h(x)dx (B.3)

is the volume of the profile for x ∈ [xM , L]. xM is the position where the

film profile connects to the bath, see Fig. B.1.

The volume at U = 0 is equal to

V0 =

∫ L

0

h(x)dx =

∫ xM′

0

hpdx+ δV ′M = xM′hp + δV ′M , (B.4)

with δV ′M defined as above. We assume xM ≈ xM′ . Finally, we have

∆V ≈ 0. (B.5)

(ii) For foot solutions we identify the foot height hf , the coating film height

h∞, the position of the start of the foot xf and the the position of

the meniscus (and where the film profile connects to the bath) xM, see

Fig. B.1,

V =

∫ L

0

h(x)dx =

∫ xf

0

hpdx+

∫ xM

xf

hfdx + δVM (B.6)

= xfhp + (xM − xf)hf + δVM ,
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where

δVM =

∫ L

xM

h(x)dx (B.7)

is the volume of the profile for x ∈ [xM , L]. The volume at U = 0 is

equal to

V0 =

∫ L

0

h(x)dx =

∫ xM

0

hpdx+ δVM = xMhp + δVM (B.8)

with δVM defined as above. Finally, we have

∆V = (xM − xf)(hf − hp). (B.9)

(iii) Film solutions

V =

∫ L

0

h(x)dx =

∫ xM

0

hFdx+ δVM (B.10)

= xMhF + δVM ,

where

δVM =

∫ L

xM

h(x)dx (B.11)

is the volume of the profile for x ∈ [xM , L]. The volume at U = 0 is

equal to

V0 =

∫ L

0

h(x)dx =

∫ xM

0

hpdx+ δVM = xMhp + δVM (B.12)

with δVM defined as above. Finally, we have

∆V = xM(hF − hp). (B.13)

(b) Volume measure ∆Ṽ : This solution measure is the difference between a profile

volume V at U 6= 0 and the volume V0 at U = 0 for a fixed angle subtracting

the volume Vp of the precursor film height. Note that

∆Ṽ = ∆V. (B.14)
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Figure B.2: Volume measures. Left panel: Effective volume measure, see text
for more details. Right panel: Volume measure.

(c) Pseudo-foot length lf : If we assume that the volume δVM is invariant (or

has small changes), we can define for foot structure solutions, the following

solution measure from Eq. (B.13) for the foot length,

lf ≈ xM − xf =
∆V

hf − hp

(B.15)

Note that the coating film height h∞ and foot height hf are obtained from the

linear stability analysis.
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[95] D. Quéré. Wetting and roughness. Annu. Rev. Mater. Res., 38:71–99,

2008.

[96] J. A. Marsh and A. M. Cazabat. Dynamics of contact line depinning

from a single defect. Phys. Rev. Lett., 71:2433–2436, 1993.

[97] C. Poulard, O. Bénichou, and A. M. Cazabat. Freely receding evaporat-

ing droplets. Langmuir, 19:8828–8834, 2003.

[98] S. J. S. Morris. Contact angles for evaporating liquids predicted and

compared with existing experiments. J. Fluid Mech., 432:1–30, 2001.

[99] P. Colinet, S. Rossomme, and A. Rednikov. Steady microstructure of

a contact line for a liquid on a heated surface overlaid with its pure

vapor: parametric study for a classical model. Multiphase Science and

Technology, 21:213–248, 2009.

[100] D. Todorova, U. Thiele, and L. M. Pismen. The relation of steady

evaporating drops fed by an influx and freely evaporating drops. J. Eng.

Math., 73:17–30, 2012.

[101] M. O. Robbins and J. F. Joanny. Contact angle hysteresis on random

surfaces. Europhys. Lett., 3:729–735, 1987.

[102] D. Ertas and M. Kardar. Critical dynamics of contact line depinning.

Phys. Rev. E, 49:R2532–R2535, 1994.

[103] R. Golestanian and E. Raphaël. Relaxation of a moving contact line and

the Landau-Levich effect. Europhys. Lett., 55:228–234, 2001.



Bibliography 156

[104] S. Moulinet, C. Guthmann, and E. Rolley. Dissipation in the dynamics

of a moving contact line: effect of the substrate disorder. Eur. Phys. J.

B, 37:127–136, 2004.

[105] P. Le Doussal, K. J. Wiese, E. Raphaël, and R. Golestanian. Can non-
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