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Modern building codes allow the analysis and design of earthquake-resistant structures with recorded
and/or generated accelerograms, provided that they are compatible with the elastic design spectrum.
The problem then arises to generate spectrum-compliant accelerograms with realistic non-stationary
characteristics, which in turn may play an important role in the non-linear seismic response. In this
paper, an iterative procedure based on the harmonic wavelet transform is proposed to match the target
spectrum through deterministic corrections to a recorded accelerogram, localised both in time and fre-
quency. Numerical examples demonstrate the performance of this approach, which can be effectively
used in the design practice.
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1. Introduction

Building codes conventionally define the seismic action through
the elastic design spectrum (EDS), which is a way to represent syn-
thetically the seismic hazard at a given site. Furthermore, the
response spectrum analysis is widely recognised as the reference
method for designing ordinary earthquake-resistant structures. In
order to achieve a better understanding of the structural and
non-structural performance under seismic forces, however, the
time-history analysis is preferable. This method of analysis is par-
ticularly useful for non-conventional buildings, e.g. when the
inelastic behaviour of some structural components (including iso-
lators and dampers) must be accurately modelled, and cannot be
simply accounted for by modifying the ordinates of the design
spectrum with the ductility-dependent behaviour factor.

One of the key issues while carrying out the time-history anal-
ysis is the appropriate selection of the seismic input (e.g. Ref. [1]).
International codes allow using both natural (i.e. recorded) and
artificial (i.e. generated) time histories of ground acceleration
and, besides generic prescriptions of being representative of the
site hazard from a seismological point of view, their on-average
spectrum-compatibility is required. That is, if the elastic response
spectrum (ERS) is computed for each accelerogram of the selected
suite, the mean value of the spectral ordinates for the periods of
vibration within the rage of interest must satisfy the compatibility
conditions with the corresponding ordinates of the EDS. As a con-
sequence, if this suite is used to run linear-elastic time-history
analyses, the discrepancy between the average seismic response
so obtained and the EDS prescribed by the code will be small
enough to be acceptable for design purposes.

In this context, the direct use of natural accelerograms is an
attractive option and nowadays, with few exceptions of very soft
soils in areas of high seismicity, numerous records are available.
Unfortunately, the need to generate artificial ground motions still
arises from the difficulty to form groups of motions with reason-
able scatter around the target spectrum. These artificial records
can be either simulated signals or recorded accelerograms modi-
fied to cope with the code prescriptions. Matching the EDS, how-
ever, is not a trivial task, mainly because the EDS given by
seismic codes is a conventional and indirect representation of the
expected ground shaking at a given site under some conventional
design scenarios (i.e. for given return period and soil conditions),
while an accelerogram provides a direct and full representation
of the seismic action for a single event.

Importantly, the mapping between ERS and accelerograms is
not bijective, as accelerograms provide richer information. Indeed,
intensity, frequency content and duration of the ground shaking
jointly contribute to build the ERS, but it is not possible to find
them back individually. As a matter of fact, while a unique ERS
can be computed from an accelerogram, a number of diverse accel-
erograms can be associated to (i.e. are compatible with) a target
EDS. It follows that some of the above quantities must be specified
to obtain the sought spectrum-compatible accelerograms (e.g.
overall duration and energy content). In other words, the richer
information allowed by the direct use of accelerograms (which is
what makes worthwhile a time-history analysis for non-linear
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structures, even if computationally more demanding) must be pro-
vided apart from the EDS offered by the seismic code.

Two alternative strategies can be pursued in this respect, as the
additional information required to customise the generated accel-
erograms may be based either on the use of prediction laws (e.g.
[2,3]), derived from seismological and geotechnical data, or on
recorded ground motions (e.g. [4–9]). In both cases, the compati-
bility with the EDS is achieved while retaining some direct or indi-
rect information on the expected non-stationary features in terms
of amplitude and frequency content of the seismic action.

As far as the simulation of accelerograms is concerned, a num-
ber of different methods are available in the literature (for a
review, see Refs. [10–12]), the vast majority of them being stochas-
tic, i.e. they gain a certain level of abstraction from the underlying
physical phenomenon. That is, the actual seismic genesis is not
considered, and ground motion signals are mathematically han-
dled as samples of a stationary or non-stationary random process
[13–15,2,3,9]. Nonetheless, accelerograms generated in this way
may not be ideal for some applications, especially for geotechnical
systems (e.g. the Italian building code published in 2008 [16]
explicitly bans their use for such applications) and for analyses
where the energy content plays a crucial role [17,18].

In this framework, signal processing comes helpful to analyse,
generate and manipulate accelerograms to be employed for differ-
ent applications of earthquake engineering. A common practice is
to use the Fourier transform (FT) to look at the recorded/generated
signals in the frequency domain, where the distribution of the seis-
mic energy at different frequencies becomes apparent. On the
other hand, many studies (e.g. [19,20]) have shown the importance
of modelling the temporal non-stationarity in the frequency con-
tent of the ground motion to properly assess the response of soft-
ening non-linear structures, and in this respect the accelerograms’
non-stationary characteristics can be easily analysed in the time
domain.

As a matter of fact, time and frequency domains are in a kind of
dualism because they are capable of highlighting some relevant
features of the signal, while hiding some others. Joint time–fre-
quency signal representations can be therefore deemed as a pow-
erful strategy to analyse the evolutionary frequency content of
accelerograms, and getting the best from the two domains. Among
them, the wavelet analysis (e.g. [21,22]) is a very promising tool, as
it exploits localised functions (wavelets) instead of ever-lasting
harmonics as a base to decompose a signal. The harmonic wavelet
transform (HWT) enjoys the additional advantage of overcoming
the limitations of the classical FT without losing a meaningful engi-
neering interpretation in terms frequency content.

Further extending some preliminary results presented in [23], a
novel HWT-based approach is proposed to generate a set of spec-
trum-compatible accelerograms, which allow satisfying the com-
patibility conditions with a target EDS starting from a parent
accelerogram, while retaining the bulk of its non-stationary char-
acteristics in terms of amplitude and frequency. This paper specif-
ically addresses the problem of modifying deterministically a
parent accelerogram in order to satisfy the compatibility require-
ments, while a second paper will be devoted in the future to the
stochastic generation of an arbitrary number of time histories
embedding the desired joint time–frequency properties of the
spectrum-compatible signal, and to elucidate the optimal compro-
mise between the two domains. The potential of the HWT in these
two applications (deterministic correction and stochastic genera-
tion) has been partially shown in Ref. [23], and an additional effort
has been done now in order to improve the required algorithms,
facilitate the implementation and quantify their performance, also
in comparison with previous research of other investigators.

This paper focuses on the problem of the deterministic correc-
tion and the main novelty lies in the fact that (to the best of the
authors’ knowledge) for the first time in the literature two comple-
mentary earthquake spectra (in terms of peak pseudo-acceleration,
SPA, and time instant at which such peak is attained, SToM) are
jointly considered to calculate the corrective term in each iteration
(allowing a simultaneous localisation of the deterministic correc-
tions in both time and frequency domains). Indeed, although other
applications of harmonic and non-harmonic wavelets can be found
in the technical literature, the performance of existing methods are
not completely satisfactory, as they do not take full advantage of
their joint time–frequency localisation capabilities. In the method
proposed by Mukherjee and Gupta [4], for instance, the Little-
wood-Paley (L-P) basis of orthogonal wavelets (e.g. [24]) is used
to decompose a recorded accelerogram into a finite number N of
sub-signals with non-overlapping frequency bands, and then each
sub-signals is iteratively scaled to match the target EDS. In their
procedure, however, the sub-signals are uniformly scaled for the
whole duration of the recorded accelerogram (i.e., the localisation
is not exploited in the time domain), and therefore more energy is
added than is strictly necessary. A similar matching scheme has
been recently adopted by Giaralis and Spanos [15] as a way of
post-processing the non-stationary samples generated from an
analytically-defined uniformly-modulated (i.e. quasi-stationary)
evolutionary power spectral density (PSD) function. Suárez and
Montejo [5] have carried out the iterative spectral matching of a
recorded accelerogram with a new family of wavelets, based on
the impulse response function of an underdamped single-degree-
of-freedom (SDoF) linear oscillator. Although the compatibility
with the EDS is achieved, in all the results presented in their paper
the amplitude of the corrective term is of the same order as the
peak ground acceleration of the recorded signal (if not significantly
higher), and such heavy adjustments reduces the practical advan-
tages of their procedure in comparison with a direct stochastic
generation. Aimed at overcoming such shortcomings, the proposed
HWT-based matching scheme fully exploits the wavelets’ localisa-
tion capabilities in both time and frequency domain, and in this
way reduces the additional energy required to reach the spectral
compatibility.

2. Harmonic wavelet analysis

The wavelet analysis consists of projecting a given signal on a
convenient set of functions, called wavelets, which can be gener-
ated by scaling and shifting a mother wavelet [21]. In the continu-
ous wavelet transform, the coefficient au;s at scale s and position u
of the signal f ðtÞ is given by:

au;s ¼
Z þ1

�1
f ðtÞwu;sðtÞdt; ð1Þ

where the over-bar denotes the complex conjugate, while:

wu;sðtÞ ¼
1ffiffi

s
p w

t � u
s

� �
ð2Þ

is the mother wavelet wðtÞ scaled by the parameter s 2 Rþ (control-
ling the frequency distribution) and shifted by the parameter u 2 R

(localising the function at around the time instant t ¼ u). The
inverse continuous wavelet transform is given by:

f ðtÞ ¼ 1
C

Z þ1

�1

Z þ1

0

1
s2 au;s wu;sðtÞdsdu; ð3Þ

in which C is simply a normalisation constant.
Unlike a harmonic wave, which is an ever-lasting periodic func-

tion, a wavelet is a decaying function, and this feature enables the
localisation in time domain. Families of wavelets can be conve-
niently generated in a way to form an orthogonal basis, so that
the wavelet transform is bijective, giving a unique representation
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for any signal. This is the case of the harmonic wavelets proposed
by Newland [25,26], which are complex-valued functions with a
rectangular box-shaped FT:

WðxÞ ¼ FThwðtÞi ¼ 1
2p

Z þ1

�1
wðtÞe�i 2px t dt

¼ sgnð4p�xÞ � sgnð2p�xÞ
4p

; ð4Þ

where the symbol i ¼
ffiffiffiffiffiffiffi
�1
p

stands for the imaginary unit and the
function sgnð�Þ gives the sign of the real-valued quantity within
parentheses, while the corresponding mother wavelet in the time
domain is:

wðtÞ ¼ FT�1hWðxÞi ¼
Z þ1

�1
WðxÞe i 2px t dx ¼ e i 4pt � e i 2pt

i2p t
: ð5Þ

It should be noted here that Eqs. (4) and (5) refer, without loss of
generality, to the case of a signal of unitary time length, i.e.
0 6 t < 1, and therefore meaningful energy content for x P 2p.
Moreover, among all the possible choices, the operators FTh�i and
FT�1h�i have been defined in order to have a unitary area for the
graph of the real-valued function WðxÞ, which indeed takes a con-
stant value of 1=ð2pÞ over the interval ½2p;4p½, and zero outside
(see the first rectangular block depicted within Fig. 1(a)).

The first discrete scheme proposed by Newland [25] to generate
the whole family of orthogonal wavelets from the mother one is
called dyadic, and can be derived by letting s ¼ 2�j;u ¼ 2�j k,
namely by changing the argument in Eq. (5) from t to ð2jt � kÞ:

ŵj;kðtÞ ¼ w2�jk;2�j ðtÞ ¼ w 2j t � k
� �

; ð6Þ

where j and k are integers, and the hat denotes the use of a discrete
wavelet transform. By doing this, the shape of the wavelet is not
changed, but its horizontal scale is compressed by the factor 2j,
being j P 0 the level of the wavelet, while its position is translated
by k units at the new scale. Fig. 1(a) shows that, following New-
land’s dyadic scheme, the Fourier transform of the generic wavelet
at the jth level occupies the frequency band from 2p2j to 4p2j. The
HWT coefficients can be obtained by substituting Eq. (6) into Eq. (1),
and the expansion (reconstruction) formula for a real-valued signal
f ðtÞ can be expressed as:

f ðtÞ ¼ 2Re
X

j

X2j

k¼0

âj;k ŵj;kðtÞ
( )

; ð7Þ
Fig. 1. Representation in the frequency domain: (a) dyadic scheme; (b) an example
of generalised scheme for harmonic wavelet base with non-overlapping intervals
(ni ¼ mi�1) of arbitrary bandwidth (adapted from Newland [26]).
where the function Re �f g gives the real part of the argument within
curly brackets, while the first summation is intended over all j
indexes.

The second scheme proposed by Newland [26] leads to the gen-
eralised HWT. Instead of splitting the frequency axis into bands of
increasing width B ¼ p2jþ1, the whole set of band wavelets is gen-
erated by:

ŵfm;ngðtÞ ¼
e i 2 n p t � e i 2 m p t

i2 ðn�mÞp t
; ð8Þ

which in the frequency domain corresponds to a real-valued rectan-
gular box function with a height of 1=½2ðn�mÞp� over the interval
½2mp;2np½:

Wfm;ngðxÞ ¼ FT wfm:ngðtÞ
D E

¼ sgnð2np�xÞ � sgnð2mp�xÞ
4 ðn�mÞp : ð9Þ

Interestingly, if we put m ¼ 2j and n ¼ 2jþ1, we obtain the dya-
dic scheme as a particular case of the generalised HWT. The trans-
lation of the wavelet by a time step k=ðn�mÞ is then achieved by:

ŵfm;ng;kðtÞ ¼
e i 2 n p t� k

n�mð Þ � e i 2 m p t� k
n�mð Þ

i2 ðn�mÞp t � k
n�m

� � ¼ ŵfm;ng t � k
n�m

� �
; ð10Þ

and in the frequency domain corresponds to:

Ŵfm;ng;kðxÞ ¼ FT ŵfm;ngðtÞ
D E

exp � i
k

n�m
x

� �
: ð11Þ

For the real-valued signal f ðtÞ, the reconstruction formula is
readily written (like Eq. (7)) as:

f ðtÞ ¼ 2Re
X
fm;ng

Xn�m

k¼0

âfm;ng;k ŵfm;ng;kðtÞ
( )

; ð12Þ

where the first summation is intended over all the fm; ng pairs.
According to Newland [26], with this generalised scheme we can
no longer talk about wavelet level j, while the notation fm;ng shall
now be used to denote a wavelet occupying the band of circular fre-
quencies from 2mp to 2np, where n > m, as shown within
Fig. 1(b). In order to form a complete set of wavelets, adjacent levels
must have a box-shaped FT, touching each other in the frequency
domain but not overlapping, so that all values of x are included
and no one is taken twice. Apart from this, there are no further rules
to choose the fm;ng pairs and hence divide the frequency axis.
Importantly, while the unique scaling factor of the dyadic scheme
relate the bandwidth and the central frequency of each level, i.e.
they are not independent, the incorporation of an additional param-
eter in the generalised scheme provides more flexibility in the treat-
ment of the signal.

Aimed at highlighting the key advantage of the HWT in compar-
ison with the traditional FT, and therefore justify the exploitation
of the HWT in this study, Fig. 2 offers the representation in both
a joint time–frequency domain (top row) and in the time domain
only (bottom row) of a periodic harmonic wave (left column) and
of a fading harmonic wavelet (right column). It can be seen that
the harmonic wave is perfectly localised in the frequency domain
(Fig. 2(a)), that is the energy is fully concentrated at the frequency
xj, while its periodic nature does not allow any localisation in the
time domain (Fig. 2(c)). By contrast, the harmonic wavelet is well
localised around the time instant t ¼ tk (Fig. 2(d)), fading as
ðt � tkÞ�1 (see Eqs. (5)), but the energy is spread over the frequency
interval from xm to xn (Fig. 2(b)).

These differences between harmonic waves and wavelets have
important implications when a certain component has to be
extracted from given signal, as illustrated by Fig. 3 for the case of



Fig. 2. Single harmonic wave (a and c) versus single wavelet (b and d).

Fig. 3. Sub-signal extraction by FT (a and c) versus HWT (b and d).
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a recorded accelerogram (grey lines in the bottom graphs). In the
first case (graphs in the left column of Fig. 3), i.e. when a FT-based
approach is adopted, more harmonic waves must be taken within
the frequency band ½xm;xn½ (Fig. 3(a)), and it is not possible to
localise their contribution in the time axis, as shown with the
extracted sub-signal (thick line) in Fig. 3(c). In the second case,
on the contrary (graphs in the right column of Fig. 3), the HWT
allows retaining in the sub-signal just the wavelets at the given
level fm;ng which are centred in a prescribed time interval, there-
fore achieving a joint localisation in both time and frequency
domains (see Fig. 3(d)).
3. Spectral matching procedure

The proposed method of spectral matching aims to use a well
established and transparent tool of signal analysis and processing,
such as the HWT summarised in the previous section, to iteratively
introduce localised time–frequency modifications in a given accel-
erogram, until the updated response spectrum is fitted within the
interval bounded by �10% and þ30% of the target EDS. The lower
bound (identified in the following with a superscripted flat sign [)
relates to a design prescription and, in this instance, has been
chosen in agreement with Eurocode 8 [27]. The upper bound
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(identified with a superscripted sharp sign ]) limits the peaks of the
EDS that could otherwise lead to an overly conservative design; the
value of þ30% has been chosen after testing the iterative algo-
rithm, which has shown the need of this relatively wide interval
to limit the number of iterations. The assumed compatibility inter-
val can be reduced, e.g. to �5%, but this would inevitably increase
the number of iterations needed to fit the EDS and would also limit
the variability of the resulting spectrum-compatible accelero-
grams, which on the contrary has to be allowed for (e.g. Ref.
[28]). As a matter of fact, given the inherent uncertainties in the
seismic action, having a higher level of variability with the ERS of
the modified record can be deemed as a way to account for these
uncertainties, although further studies would be required to iden-
tify the optimal definition of the compatibility interval.

As illustrated in the following, the proposed method attempts
to minimise the impact of the modifications done on the recorded
accelerogram by exploiting the idea that, once the maximum
response value has been reached by a SDoF oscillator of a given
natural period Tj, what happens thereafter does not affect (in a lin-
ear elastic analysis) the response spectrum ordinate, and hence
there is no reason to modify that part of the record. In order to
achieve this, the instant sj at which the maximum response is
attained must be identified, allowing adjustment of the record in
the vicinity of this time instant. Noticeably, while FT-based meth-
ods bring corrections localised in frequency domain only, the pro-
posed HWT-based method applies modifications localised in both
time and frequency domains.

3.1. Derivation of the matching algorithm

For derivation purposes, let us consider the seismic vibration of
a linear SDoF oscillator with natural period Tj. The equation of
motion reads:

€ujðtÞ þ 2f0 xj _ujðtÞ þx2
j ujðtÞ ¼ �f ðtÞ; ð13Þ

where ujðtÞ is the displacement of the oscillator; xj ¼ 2p=Tj is the
natural circular frequency of vibration; f ðtÞ is the time history of
ground acceleration; the over-dot means derivative with respect
to time t; and f0 ¼ 0:05 is the reference value of the viscous damp-
ing ratio. If Eq. (13) is integrated (with initial conditions set to zero)
for a number NT of natural periods Tj, the ERS in terms of pseudo-
acceleration (PA) can be defined as:

SPAðTjÞ ¼ x2
j max

06‘6Nt

fjujðt‘Þjg; ð14Þ

where t‘ ¼ ‘Dt is the ‘th of the Nt ¼ tf =Dt discrete time instants at
which the seismic response of each oscillator is computed, Dt being
the sampling interval. We can also define the ToM (time-of-maxi-
mum) spectrum, which collects the sj time instants at which, for
different periods of vibration Tj, the peak seismic response is
attained:

SToMðTjÞ ¼ sj such that SPAðTjÞ ¼ x2
j jujðsjÞj: ð15Þ

Both ERS and ToM spectra are calculated for the NT periods of vibra-
tion associated with the relevant discrete frequencies of the signal:
that is, for Tj ¼ 2p=ðjDxÞ, where Dx ¼ 2p=tf and the index
j 2 ½1;Nt=2� takes all the values strictly needed to cover the range
where the compatibility is of interest, i.e. 0:1 6 Tj 6 4:0s in this
study. This leads to the condition jmin ¼ int 0:25 tf

� �
6 j 6 jmax ¼

int 10 tf

� �
, where tf is expressed in seconds and int �ð Þ is the integer

function, which returns the integer part of the argument within
parentheses.

The first step of the proposed matching procedure is to scale the
natural accelerogram by a convenient factor [29] given by:
að0Þ ¼ argmin
a>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jmax � jmin

Xjmax

j¼jmin

aSð0ÞPA ðTjÞ � SEDðTjÞ
SEDðTjÞ

 !2
vuut

8<
:

9=
;; ð16Þ

which leads to minimise the root mean square (RMS) discrepancy
between EDS given by the code, SED, and the ERS of the selected
accelerogram, SPA, at the 0th iteration. The method then proceeds
with iterations until the spectrum compatibility is met. The generic
rth iteration requires the following five steps:

1. The current/target spectral ratios are computed:
RðrÞj ¼min
SðrÞPAðTjÞ
S[EDðTjÞ

;
S]EDðTjÞ
SðrÞPAðTjÞ

( )
; ð17Þ

where S[EDðTjÞ and S]EDðTjÞ are the lower and upper bounds of the
assumed compatibility zone, respectively, and SðrÞPAðTjÞ is the ERS
related to the signal at the current rth iteration. If RðrÞj P 1, then
the spectral matching is achieved for all the periods of interest
and no further iterations are needed; if not, the worst point in
terms of compatibility with the target EDS is sought as:

jworst ¼ argmin
jmin6j6jmax

fRðrÞj g: ð18Þ

In this way the rth iteration will be focused on the point having
the largest relative distance from the bounded zone, and the
intervention in the rth iteration will be localised in the time
domain around t ¼ sðrÞ ¼ sjworst

and in frequency domain around
x ¼ XðrÞ ¼ xjworst

.
2. The frequency band ½xðrÞm ;x

ðrÞ
n ½ to be modified in the current iter-

ation is defined by means of its central frequency XðrÞ and its
bandwidth BðrÞ, given by:
BðrÞ ¼ ðNðrÞx � 1ÞDx; ð19Þ

and therefore:

xðrÞm ¼ XðrÞ � BðrÞ=2; ð20aÞ
xðrÞn ¼ xðrÞm þ BðrÞ; ð20bÞ

subjected to:

NðrÞx P Nx;min ð21aÞ

and:

2p
xðrÞm

� 2p
xðrÞn

P DTmin; ð21bÞ

in which Nx;min is the minimum number of discrete frequencies
belonging to the selected bandwidth, while DTmin is the mini-
mum size of the bandwidth in terms of natural periods. These
two parameters have to be chosen properly in order to improve
the effectiveness of the iterative scheme (more details are
offered in the following).

3. The HWT coefficients âðrÞfmðrÞ ;nðrÞg;k are calculated by a discrete con-
volution of the signal f ðrÞðtÞ with the modifying band wavelets
ŵfmðrÞ ;nðrÞg;kðt=tf Þ:
âðrÞfmðrÞ ;nðrÞg;k ¼
XNt

‘¼0

f ðrÞ‘ ŵfmðrÞ ;nðrÞg;k
t‘
tf

� �
; ð22Þ

with k ¼ 1; . . . ; ðn�mÞ and f ðrÞ‘ ¼ f ðrÞðt‘Þ; then an expedient time-
localised sub-signal for the frequency-localised worst case
j ¼ jworst is obtained as:

~f ðrÞðtÞ ¼ 2Re
XkðrÞ2

k¼kðrÞ1

âðrÞfmðrÞ ;nðrÞg;k ŵfmðrÞ ;nðrÞg;k
t
tf

� �8><
>:

9>=
>;; ð23Þ
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which is a summation of the wavelets weighted with the HWT
coefficients âðrÞfmðrÞ ;nðrÞg;k, with the index k taking all the values
within the interval ½kðrÞ1 ; k

ðrÞ
2 �. According to the reconstruction for-

mula of Eq. (12), kðrÞ2 6 nðrÞ �mðrÞ and kðrÞ1 P 0; in order to localise
the sub-signal where needed along the time axis, these values
can be evaluated as:

kðrÞ2 ¼ int
sðrÞ

tf
ðnðrÞ �mðrÞÞ

	 

þ 1; ð24Þ

kðrÞ1 ¼ kðrÞ2 � int
DsðrÞ

tf
ðnðrÞ �mðrÞÞ

	 

þ 1; ð25Þ

meaning that (see Fig. 4) the time interval in which the bulk of
the modification occurs ideally ends at the k-index after the time
of maximum response sðrÞ ¼ SToMð2p=XðrÞÞ, and begins at the k-
index before it, minus the transient duration

DsðrÞ ¼ 3 f0 XðrÞ
� ��1

, which is conventionally assumed in this

study as the time interval needed to reduce by 95% the free
vibration of a SDoF oscillator with natural circular frequency
XðrÞ.

4. The displacement response ~uðrÞjworst
ðtÞ can be evaluated by solving

the differential equation:
€~uðrÞj ðtÞ þ 2f0 xj
_~uðrÞj ðtÞ þx2

j
~uðrÞj ðtÞ ¼ �~f ðrÞðtÞ; ð26Þ

which for j ¼ jworst rules the seismic vibration of a SDoF linear
oscillator having the natural circular frequency XðrÞ and sub-
jected to the sub-signal ~f ðrÞðtÞ only. Then a product function is
defined by:

PðrÞ‘ ¼ uðrÞjworst ;‘
~uðrÞjworst ;‘

; ð27Þ

whose maximum value is sought as:

‘max ¼ arg max
06‘6Nt

fPðrÞ‘ g; ð28Þ

which therefore delivers the value ‘max for which the product
function between the response to the current signal, f ðrÞðtÞ, and
the response to the current sub-signal, ~f ðrÞðtÞ takes the (positive)
maximum.

5. The correction factor for the rth iteration is calculated as:
aðrÞ ¼
DðrÞ � uðrÞjworst ;‘max

~uðrÞjworst ;‘max

; ð29Þ

where the indexes j ¼ jworst and ‘ ¼ ‘max localise the correction in
the frequency domain and in the time domain, respectively,
while the reference spectral displacement DðrÞ at the rth iteration
is given by:

DðrÞ ¼ T ðrÞ

2p

 !2

AðrÞT ; ð30Þ

in which TðrÞ ¼ 2p=ðXðrÞÞ and AðrÞT is the target acceleration at the
rth iteration. If the current elastic response spectrum underesti-
mates the design value given by the code for the worst case, i.e.
Fig. 4. k1; k2 d
if SðrÞPA T ðrÞ
� �

< SED T ðrÞ
� �

, then the target acceleration is assumed

to be AðrÞT ¼ 1:05S[ED TðrÞ
� �

, which is 5% higher that the lower

bound of the compatibility interval; on the contrary, if the oppo-

site happens, i.e. if SðrÞPA TðrÞ
� �

> SED TðrÞ
� �

, then the target acceler-

ation is taken as AðrÞT ¼ 0:95S]ED TðrÞ
� �

, which is 5% less that the

upper bound of the compatibility interval These �5% coeffi-
cients have been simply introduced to avoid targeting the mod-
ifications to meet exactly the boundaries of the compatibility
interval, which may cause the need of further corrections in
the following iterations.

6. The accelerogram is modified as:
f ðrþ1ÞðtÞ ¼ f ðrÞðtÞ þ aðrÞ ~f ðrÞðtÞ; ð31Þ

and then the next iteration can begin.

Noticeably, the last step is based on the superposition principle:
that is, the seismic response uðrþ1Þ

j ðtÞ of the jth SDoF oscillator at the
ðr þ 1Þth iteration is thought as given by the superposition of the
responses to the two separate inputs, namely the accelerogram
at the previous iteration, f ðrÞðtÞ, and its time–frequency jointly-
localised component, ~f ðrÞðtÞ, multiplied by the coefficient aðrÞ. Since
the latter quantity has been related to the spectral value to be
adjusted, in both time and frequency domains, it is likely that
the best correlation between the two separate responses is
achieved at the instant of maximum product, t‘max . Interestingly,
while up-modifications (when SPA is increased) always work,
down-modifications sometimes fail to reduce the spectral values
SPA to the desired level. In fact, while the response peak affecting
the spectral value at the rth iteration is reduced, there could be
another peak located somewhere else on the time axis, which
may require a further iteration. Nonetheless, by numerical testing
on a range of different recorded signals and target spectra, we have
found a satisfactory rate of success of about 95% for the down-
modifications, which in turn ensures the overall convergence of
the proposed procedure of spectral matching.
3.2. Discussion

As highlighted in the previous subsection, the proposed algo-
rithm is able to adjust the ordinates of the ERS of a recorded accel-
erogram by means of iterative modifications localised both in the
time and in frequency domain. Nevertheless, fitting the modified
ERS SðrÞPAðTÞ within the bounded interval of compatibility
S[EDðTÞ; S]EDðTÞ
h i

over the full range of periods of vibration which
are of interest for design purposes does not follow trivially, espe-
cially because this should be achieved with a reasonably small
number of iterations (ideally, less than fifty). The algorithm does
not cap the value of the aðrÞ coefficients, therefore a final check
on the additional energy introduced in the signal should be per-
formed to ensure that the corrective terms do not distort exces-
sively the original record.
efinition.
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The main reason for these difficulties is that for f0 ¼ 0:05 (refer-
ence value of the viscous damping ratio), the dispersion of the
dynamic amplification function around the natural frequency of
the target SDoF oscillator is not sharp enough to avoid that the
adjustment brought to the chosen value on the spectrum does
not affect significantly also the values in its proximity. Moreover,
despite the localisation capabilities of harmonic wavelets, these
functions are centred on discrete points, which usually do not
match perfectly with the points where the original signal needs
to be modified.

As a result, stalling in convergence is possible in principle, with
a sort of ping-pong effect, i.e. the algorithm may spend several iter-
ations attempting to fit the spectrum in a certain range. However,
this issue can be overcome with a proper choice of the parameters
Nx;min and DTmin, which rule the size of the band subjected to mod-
Table 1
Cases of study.

Earthquake Site/component Dt (s) tf (s)

Imperial Valley 1940 El Centro/N-S 0.010 40
Erzincan 1992 Erzincan/E-W 0.005 20
Irpinia 1980 Calitri/E-W 0.005 80

Table 2
Matching details.

Record Target EDS a0 RMS0

El Centro 1940 B (best) 1.361 0.162
Erzincan 1992 D (best) 1.106 0.237
Irpinia 1980 A (worst) 1.017 0.208

Fig. 5. El Centro 1940 matching the EC8 soil-type B EDS: (a) comparison between the m
compatibility interval; (c) cumulative energy; (d) time of maximum (ToM) spectra.
ification (see step (2) above). It should be noted that these two
parameters affect different ranges: that is, Nx;min limits the band-
width in the range of long periods of vibration, while DTmin affects
the short periods. In all the analyses reported in the next subsec-
tion, we have used Nx;min ¼ 9 and values of the parameter DTmin

between 0:05 and 0:2s, as our extensive numerical campaign has
clearly shown that this choice optimises the convergence rate,
and allows to achieve the spectral matching without exploiting
more complicated schemes, e.g. considering in step (1) the worst
band rather then the worst frequency.

4. Numerical examples

In order to assess the effectiveness of the proposed procedure,
several recorded accelerograms have been studied to cover
Mw Depth/distance (km) PGA (g)

7.0 8.80/6.09 0.258
6.7 27.00/0.00 0.495
6.9 15.00/13.30 0.175

FT HWT

DE (%) RMSf DE (%) RMSf

+36.4 0.132 +16.9 0.152
+107.1 0.137 +46.3 0.140
+201.9 0.157 +68.7 0.136

odifications introduced (difference) by the FT and the HWT methods; (b) EDS and



Fig. 6. Erzincan 1992 matching the EC8 soil-type D EDS (best initial matching).

Fig. 7. Irpinia 1980 matching the EC8 soil-type A (worst initial matching).
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different design scenarios. The HWT-based method has been used
to match these records within the chosen compatibility interval for
the Eurocode (EC8) spectral shapes. The peak ground acceleration
(PGA) of 0.36 g has been assumed, and both the best and the worst
initial matching in terms of RMS discrepancy with the target EDS
(see Eq. (16)) has been considered. For comparison purposes, an
FT-based method has been also implemented by using the same
algorithm described above, modified in step (3) letting
k1 ¼ 0; k2 ¼ Nt=ðn�mÞ, which means that all k-indexed coeffi-
cients of the wavelet train in the selected frequency band are used,
and hence no time localisation is exploited (therefore highlighting
the improved performance of the HWT, which allows for such
localisation on the time domain). Importantly, this FT-based
method is equivalent to scale uniformly, over the whole duration
of the recorded accelerogram, the sub-signal associated with the
frequency band ½xðrÞm ;x

ðrÞ
n ½ in the rth iteration, similarly to what

happens in the matching procedures used in Refs. [4,15], which
do not exploit the ToM spectrum. For this reason, the FT-based
method has been adopted in our investigations as a reference pro-
cedure to highlight the improved performance of the proposed
HWT-based method in comparison with existing methods of spec-
tral matching.

The results are presented for three selected accelerograms (El
Centro 1940; Erzincan 1992; Irpinia 1980), whose main character-
istics (sampling time step Dt, duration tf , moment magnitude Mw,
focal depth, Joyner-Boore distance and the PGA) are listed in
Table 1. Table 2 displays the additional energy DE required to
achieve the spectral compatibility (with both FT and HWT proce-
dures), along with the initial scaling factor a0 (see Eq. (16)) and
the values of the RMS discrepancy with the target EDS at both ini-
tial (0) and final (f) stages. Similar results have been consistently
obtained for other records [30], which however have been omitted
herein for the sake of brevity, as the following three accelerograms
appear to cover a range of realistic design situations:

� The El Centro 1940 accelerogram has been considered because
its ERS closely resembles the EC8 EDS shapes (see Fig. 5(b)).
The best initial matching (Eq. (16)) is with the EC8 soil-type B
(see Table 2), and the advantage of the proposed HWT-based
procedure over the FT-based approach is apparent considering
that the increase in the total energy due to the modification
(DE) is more than halved (see Fig. 5(c)).
� The Erzincan 1992 accelerogram has been chosen as an example

of near-fault record, characterised by an impulse in terms of
ground velocity and displacement (partially visible in the time
history of the ground acceleration shown within Fig. 6(a)),
and also in this case the best initial RMS matching (with the
EC8 soil-type D, see Table 2) has been considered.
� Finally, the Irpinia 1980 record has been selected because of its

peculiar nature showing a double intense phase (see Fig. 7(a)),
due to a two-stage fault rupture. The results are shown in this
case for the worst matching spectral shape (A), therefore pro-
viding an example of the effectiveness of the procedure in a
more challenging scenario.

In all the three numerical examples, the performance of the pro-
posed HWT-based correction, due to its joint localisation in time
and frequency, is better than the FT-based correction, for which
the increase in the cumulative energy of the signal, DE, is doubled
(as apparent in all the bottom-left sub-graphs (c) of Figs. 5–7),
meaning that more modifications are required to achieve the spec-
tral compatibility, and hence the original characteristics of the
accelerograms are more heavily affected. This clearly emerges also
from the top-left sub-graphs (a) of Figs. 5–7, where the solid black
lines show the corrections applied to the original record, which are
much more localised in the HWT-based procedure, while they are
spread over the overall duration when the FT is adopted. Top-right
sub-graphs (b) show that both HWT and FT allow achieving the
desired compatibility, even if the original ERS and the target EDS
supplied by the building code have very different shapes. This is
particularly evident within Fig. 7(b), as the spectral compatibility
of the Irpinia 1980 accelerogram with the EC8 soil-type A has
required corrections having about the same amplitude as the origi-
nal record (see Fig. 7(a)). Sub-graphs (d) show the ToM spectra
(whose exploitation is peculiar to the proposed method), and once
again the HWT performs better since the FT tends to disturb more
the original distribution of the time instants where the response
maxima are attained.
5. Concluding remarks

In this study, the HWT (harmonic wavelet transform) was found
to be a very powerful tool for dealing with seismic signals and their
inherent non-stationarity, both in terms of amplitude and fre-
quency content, which in turn may play a crucial role for the pur-
poses of analysis and design of earthquake-resistant structures.
This paper presents a deterministic modification method, aimed
at matching the ERS (elastic response spectrum) of a given acceler-
ogram to a target EDS (elastic design spectrum), while a future
paper will focus on a stochastic generation procedure, able to
randomise a parent signal to get an arbitrary number of samples
with similar non-stationary features.

It has been shown that the proposed spectral matching method,
working in an iterative way, operates adjustments in the original
signal, which are localised in both time and frequency domains,
and for this reason is able to achieve the required spectral compat-
ibility with limited modifications in terms of additional energy
content. This was obtained by using two complementary earth-
quake spectra, in terms of peak accelerations (SPA) and times of
maximum response (SToM), to determine the corrective term in
each iteration. Extensive numerical investigations have demon-
strated the excellent performance of the proposed method, partic-
ularly in comparison with a traditional approach based on the
Fourier transform (FT), whose results are equivalent to those that
other investigators have obtained in the past using the wavelets
without information drawn from the SToM spectrum.

A possible source of criticism for the proposed approach could
be associated with the conventional (and rather unrealistic) nature
of the EDS prescribed by seismic codes. As a matter of fact, the EDS
is an synthetic representation of the hazard related to different
seismic events at a given site, rather than a regularised ERS for a
single design scenario. For instance, the ordinates of the EDS for
low periods account for relatively less intense but nearer events,
while those for long periods are mainly influenced by the possibil-
ity of having stronger but farther earthquakes [17]. Indeed, a natu-
ral accelerogram generally does not possess enough energy as
necessary to match the EDS for all the periods of vibration, partic-
ularly because of the filtering effects of the soil deposit at a given
site, while with the proposed approach any lack or excess of energy
in some sub-signals of the original record is adjusted with modifi-
cations which, however, inevitably distort the original accelero-
gram and (usually) tend to increase the total energy of the input.
Nevertheless, the availability of such a modified accelerogram,
which shows a code-compliant ERS but yet brings as much realistic
features as possible, can be very useful in a number of practical
design situations, as long as the resulting record is consistent with
the given hazard scenario. In order to further widen the applicabil-
ity of the proposed HWT-based method, two main developments
could be considered in the future: first, the multi-component
extension, so to pursue the spectral matching with the principal
components of the recorded event; second, the multi-record
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extension, so to modify not a single record, but a suite of natural
records to achieve the on-average spectral compatibility, which
will then reduce the amount of modifications needed to meet the
target and the additional energy. Moreover, further analyses will
be required in the future to ascertain the effects of the HWT-based
modifications on the seismic response of various non-linear
structures.
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