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Anomalous cross-field diffusion in a magnetic trap
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We numerically simulated the diffusion of a charged Brownian particle confined to a plane under the action
of an orthogonal magnetic field with intensity depending on the distance from a center. Despite its apparent
simplicity, this system exhibits anomalous diffusion. For positive field gradients, radial and angular dynamics are
asymptotically subdiffusive, with exponents given by simple analytical expressions. In contrast, when driven by a
weakly decaying field, the particle attains normal diffusion only after exceedingly long superdiffusive transients.
These mechanisms can be related to Bohm diffusion in magnetized plasmas.
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I. INTRODUCTION

In plasma physics the term anomalous diffusion tradition-
ally refers to situations where the diffusion process itself is nor-
mal, i.e., the particle mean-square displacement (m.s.d) grows
linearly with time, but the relevant diffusion constant exhibits
peculiar (and often unexpected) properties. A well-known
example is the so-called Bohm diffusion [1], whereby excess
cross-field diffusion was observed in magnetized plasmas
under diverse experimental conditions [2]. In such experiments
the plasma diffusion constant was often reported to decrease
with the magnetic field slower than predicted by classical
transport theory. Another example, also related to the present
work, is the suppression of magnetodiffusion of electrons
across a classical Lorentz gas of circular elastic scatterers
[3]. Anomalous magnetodiffusion in the sense of a nonlinear
asymptotic time dependence of particle m.s.d. [4,5] has been
reported and extensively investigated in the more recent lit-
erature, mostly in connection with magnetotransport on some
sort of periodic [6,7] or weakly disordered substrate [8–11].

To investigate conditions reminiscent of Bohm diffusion
we simulated the lateral diffusion of a charged Brownian
particle constrained to move in a plane threaded through by an
inhomogeneous magnetic field. In the stylized device of Fig. 1
the particle is free to diffuse in a homogeneous medium (at
rest and in equilibrium with constant temperature) confined to
the x-y plane, only driven by the component of a magnetic
field orthogonal to the plane. The modulus of the orthogonal
components of the magnetic field is constant in time, but varies
monotonically with the distance from the center; the radial
component of the magnetic field does not affect the planar
diffusion and, therefore, can be neglected. This is a possibly
oversimplified instance of a wide class of magnetic traps one
encounters when dealing with problems as diverse as plasma
confinement [12], cosmic rays propagation [13], and magnetic
tweezers [14]. Nevertheless, the numerical investigation of
cross-field diffusion in the magnetic trap of Fig. 1 revealed a
surprising property: the m.s.d of the particle from the center of
the trap grows with time according to an asymptotic power law
with anomalous exponent that depends on the radial gradient
of the magnetic field; for positive field gradients anomalous
diffusion holds asymptotically with exponents smaller than
one (subdiffusion), whereas for negative field gradients the
exponents are larger than one and anomalous diffusion is

restricted to (possibly long) transients (superdiffusion) [4,5].
At the best of our knowledge, anomalous diffusion had
never been detected in a low-dimensional Hamiltonian system
coupled to an equilibrium heat bath.

In classical transport theory any time an anomalous diffu-
sion process is encountered, investigators try to classify the
underlying microscopic mechanism responsible for it, accord-
ing to a few distinct paradigmatic frameworks [15]. Among the
best established are continuous-time random walks, diffusion
on fractal topology, and fractional Brownian motion [16]. Such
schemes assume either many-body dynamics in a constrained
homogeneous space (like single files of Brownian particles
[17]), or single-particle dynamics coupled to a inhomogeneous
trapping substrate (like random confining geometries [18] or
chaotic islands in phase space [19]), or highly non-Markovian
noise sources [20]. Contrary to all of this, the stationary
diffusion process reported here just involves a particle with
spatially dependent chirality, confined to a two-dimensional
(2D) variety and subjected to Gaussian δ-correlated thermal
fluctuations.

As in the Bohr–van Leeuwen theorem [12], the inhomo-
geneous potential vector associated with a space-dependent
magnetic field does not suffice, alone, to establish a nonuni-
form equilibrium distribution of the diffusing charged particle.
Due to the interplay of equilibrium fluctuations and damping
introduced to model the action of the heat bath, the particle
diffuses without geometric constraints and, therefore, cannot
be stably trapped by a magnetic inhomogeneity. However,
as the radial diffusion of the injected charged particles
gets anomalously suppressed, depending on the field radial
gradient, the magnetic-field lines sketched in Fig. 1 can operate
as a metastable stochastic trap, where particles can sojourn for
arbitrarily long periods of time.

II. MODEL

The position r = (x,y) of a charged Brownian particle of
mass m and charge q, confined to the x-y plane, and subject to
an inhomogeneous magnetic field B = B(r)ẑ, evolves in time
according to the Langevin equations [21]

ẍ = −γ ẋ + �ẏ +
√

D0ξx(t),
(1)

ÿ = −γ ẏ − �ẋ +
√

D0ξy(t),
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FIG. 1. (Color online) Sketch of a 2D magnetic trap with orthog-
onal magnetic field, B = B(r)ẑ (vertical arrows) (a), and rotational
potential vector A(r) (circular field lines) (b)–(f). Panel (a): a charged
Brownian particle is confined to the plane region encircled by a
ring traversed by constant electric current. Panel (b): trajectory
sample obtained by integrating the Langevin equations (1) with
q = m = 1, kT = 1, γ = 0.1, and cyclotron frequency of Eq. (2) with
�0 = �r = r0 = 1 and n = 2. The end points are marked by dots.
Panels (c)–(f): deterministic trajectories, γ = 0, with initial condi-
tions (c) r(0) = (0,0), v(0) = (0,3), (d) r(0) = (0,0), v(0) = (0,10),
(e) r(0) = (2,0), v(0) = (0,10), and (f) r(0) = (2,0), v(0) = (0,−10).
The inner and outer radial bounds, rm and rM , coincide with the
analytical estimates given in the text.

where � = qB/m is the corresponding space-dependent
cyclotron frequency, D0 = γ kT /m ≡ γ v2

th with T and γ the
temperature and viscous constant of the equilibrium suspen-
sion medium, and ξi(t) with i,j = x,y are Gaussian white
noises with correlation functions 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (0)〉 =
2δij δ(t). The field B exerts on the particle an external torque,
τ� = (�ẏ, − �ẋ), which bends its mean-free path into a
circular arc of Larmor radius R� = vth/|�| and length l� =
vth/γ , vth denoting the thermal velocity vth = √

kT /m.
As for the spatial dependence of the magnetic field, B(r)

was modeled by a polynomial function of the distance r =√
x2 + y2 from the axis, namely, B(r) = B0 + Br (r/r0)n with

B0,Br � 0 (see sketches in Fig. 1). Accordingly, the cyclotron

frequency � in Eq. (1) is also a radial function,

�(r) = �0 + �r (r/r0)n, (2)

with �0 = qB0/m and �r = qBr/m. The radial gradients of
B(r) and �(r) are controlled by the characteristic trapping
length r0 and the exponent n. Unless stated otherwise, we as-
sume that n > 0; for n → 0 the case of uniform B is recovered
and �(r) = �0 + �r . By making use of the polar coordinates
(r,φ), with x = r cos φ and y = r sin φ, one sees immediately
that the corresponding vector potential A lies in the x-y
plane with zero radial component and counterclockwise
tangential component Aφ(r) = r[B0/2 + B1(r/r0)n/(n + 2)]
[see Fig. 1(b)].

The dynamics described by Eq. (1) is strongly influenced
by the equilibrium heat bath, which acts upon the particle by
means of the damping and fluctuation terms. For the sake of
a comparison with the results reported below, we recall that
in the noiseless regime, γ ≡ 0 (no heat-bath coupling), the
system has two constants of motion, namely, the kinetic energy,
E = m(ẋ2 + ẏ2)/2 (B does no work, being orthogonal to the
particle trajectory), and the canonical momentum associated
with the polar angle φ, pφ = mr2φ̇ + qrAφ(r) [Eqs. (1) with
γ = 0 are invariant under rotations around the z axis]. As
a consequence, the system is integrable and its trajectories
are nonchaotic [a few examples are displayed in panels
(c)–(f) of Fig. 1]. In particular, the orbits of a particle with
initial conditions r(0) = 0 and ṙ(0) = v̄ are in general open
and bound inside a circle of radius rM , where rM is the
solution of the equation (q/m)Aφ(rM ) = v̄, with v̄ = |v̄| a
constant [panels (c) and (d)]. Moreover, a particle with speed
v̄ executes a circular orbit, if placed at a distance rm from
the center, with rm�(rm) = v̄, and oriented counterclockwise
[panel (e)]; upon inverting orientation, its orbit changes to
an open, bound orbit with rm � r � rM , where rM satisfies
the equality [rMAφ(rM ) − rmAφ(rm)]/(rM + rm) = v̄ [panel
(f)]. More in general, for any choice of pφ and E, one can
always determine two radii, rm and rM , such that the particle
is trapped at any time with rm � r(t) � rM . Clearly, unbound
radial diffusion is only possible in the presence of thermal
fluctuations: the diffusing particle keeps exchanging energy
with the heat bath on a time scale of the order of m/γ ; its kinetic
energy is exponentially distributed, P (E) = e−E/kT /kT , with
constant average 〈E〉 = kT , whereas pφ grows indefinitely.
The question we address in the forthcoming sections is, then,
how fast the particle diffuses out of the magnetic trap.

III. NUMERICAL RESULTS

We integrated the Langevin equations (1) for different
damping regimes and radial profiles of the magnetic field, by
numerically implementing a Euler-Maruyama algorithm. We
set the integration time step not larger than �t = 10−6, so as
to make sure that during the entire simulation run it was much
shorter than the (progressively decreasing) Larmor’s period,
that is ��t � 1. All stochastic averages reported below have
been taken over 100 different realizations, which ensured an
accurate fitting of the diffusion exponents and the relevant
coefficients.

We focused on the radial diffusion of a particle initially
at rest at the center of the trap, i.e., with r(0) = 0. The
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FIG. 2. (Color online) Particle diffusion 〈r2(t)〉 vs t for the
radially dependent �(r) of Eq. (2) with �0 = �r = 1 and positive
n (see legend). Lower-right inset: anomalous diffusion exponent.
n dependence of the fitting exponent αn introduced in Eq. (3):
simulation data (dots) vs our prediction, αn = 1/(n + 1), from Eq. (5)
(solid curve). The dot α0 = 1 obtained in the limit n → 0 (normal
diffusion) has been added for completeness. Upper-left inset: the
corresponding phase diffusion, 〈�φ〉 = 〈φ2〉 − 〈φ〉2 vs t , for three
choices of n (see legend); the relevant asymptotic laws, Eq. (6), are
drawn for a comparison (dashed lines). Other simulation parameters
are q = m = 1, kT = 1, γ = 0.1, and r(0) = 0.

particle m.s.d. thus reads 〈r2(t)〉 = 〈x2(t)〉 + 〈y2(t)〉, where
〈· · · 〉 denotes a stochastic average. Curves of 〈r2(t)〉 versus t

for different values of n and γ are displayed in Figs. 2–4. A
few remarkable properties of the equilibrium diffusion process
in magnetic traps with n > 0 are apparent by inspection.

(i) For long simulation times, 〈r(t)〉 vanishes no matter
what the initial condition [see trajectory sampled in Fig. 1(b)],
whereas 〈r2(t)〉 diverges asymptotically with time according
to the subdiffusive power law,

〈r2(t)〉 = D(n,γ )tαn , (3)

where the exponent αn never exceeds unity, αn < 1, and
decreases with n, as shown in the inset of Fig. 2. In the limit
n → 0 the normal diffusion exponent α0 = 1 is recovered, as
expected (see lower-right inset of Fig. 2).

(ii) This instance of anomalous diffusion persists indefi-
nitely with increasing the observation time. The curves plotted
in Fig. 2 clearly indicate that the anomalous exponent αn

does not depend on γ . This property has been numerically
confirmed over a wide γ interval.

(iii) The coefficient D(n,γ ) scales with γ also according to
a simple power law, D(n,γ ) = Dnγ

βn , illustrated in panel (a)
of Fig. 3. Similar to αn, the exponent βn, too, is a decreasing
function of n.

(iv) Normal diffusion with αn = 1 was observed as a short-
time transient only for γ � �0 [see Figs. 4(a) and 4(b)]. This
implies that, as the particle diffuses from the center to the

FIG. 3. (Color online) Dependence of the asymptotic diffusion
law, 〈r2(t)〉 vs t , on γ and n. (a) γ dependence of the fitting
parameter D(n,γ ) of Eq. (3) for different n (see legend). The power
laws D(n,γ ) ∝ γ βn with βn = αn (straight lines) are drawn as a
validity check of Eq. (5). (b) Rescaled diffusion curves, 〈r2(t)〉n+1

vs γ t , for n = 1/2, 1, and 2, and γ = 0.01, 0.04, 0.16, 0.5, and 2.
The color code is not reported as, after rescaling, the data sets are
undistinguishable. For γ t � 1, all data sets collapse on top of the
straight line with slope [2vth/(�rr0)]2 predicted in Eq. (5) (thick
dotted-dashed line). The remaining simulation parameters are as in
Fig. 2.

high-field periphery of the trap, anomalous diffusion inevitably
sets on.

(v) When expressed in polar coordinates, (r,φ), the results
of (i) imply that the particle distance r(t) from the origin
also diffuses anomalously, with 〈r(t)〉2 and 〈r2(t)〉 both being
proportional to 〈r2(t)〉.

(vi) The polar angle φ also exhibits anomalous diffusion;
its m.s.d., 〈�φ2(t)〉 = 〈φ2(t)〉 − 〈φ(t)〉2, grows with time
according to a power law with exponent γn < 1 (Fig. 2, top-left
inset), which, contrary to αn, increases with n. Note that the
particle tends to circulate with net angular velocity oriented
opposite to �. In short, the faster the radial diffusion, the slower
the angular diffusion with the condition that the modulus of
the mechanical angular momentum, Lz = ẋy − xẏ, grows in
average with time like tαn/2 (not shown).

IV. SUBDIFFUSION

We try now a quantitative interpretation of our numerical
findings. In the bulk, i.e., in the absence of geometrical
constrictions, the Brownian motion of a charged particle
subject to a uniform magnetic field is characterized by the
effective asymptotic diffusivity [22,23]

D = D0/(γ 2 + �2), (4)

with D0 defined in Eq. (1). Einstein’s diffusion constant,
D0/γ

2, is recovered for B = 0. The only effect of the magnetic
field is to modify the relaxation rate of the diffusion process;
the magnitude of such effect is measured by the ratio of
the external field-controlled frequency, �(r), to the intrinsic
medium viscous constant, γ . Since for long observation
times 〈r2(t)〉 is bound to grow much larger than the square
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FIG. 4. (Color online) Diffusion transients 〈r2(t)〉 vs t in units of
tst = γ /�2

0 for low (a) and large γ (b), �0 = �r = 1, and n = 1/2, 1,
and 2. Color code in panel (a): γ = 8 (yellow), 24 (blue), and 100
(orange); for curves of the same color, n decreases from top to bottom;
for n = 2 we only drew the orange curve and not the yellow one. In
panel (b) γ ranges between 100 and 1600; after rescaling the data sets
are hardly distinguishable. In both panels the power law (7) for short-
time normal diffusion is represented by a thick dotted-dashed line with
slope [2vth/(�0r0)]2. In panel (a) the asymptotic laws (5) for γ = 24
and n = 1 and 1/2 are drawn for reader convenience. Panel (c):
negative field radial gradients, n < 0, 〈r2(t)〉 vs t , in dimensionless
units, for r(0) = 1, �0 = 0, �r = 1, γ = 0.1, and different n (see
legends). The transient law (8) is fitted to the data in the appropriate
time domains (dashed lines); the expected asymptotic diffusion law
is drawn as a solid line. The remaining simulation parameters are as
in Fig. 2.

of the trapping length, r2
0 , the radial function �(r) can be

approximated by �r (r/r0)n. Therefore, in the same limit, the
diffusion process is dominated by �(r) rather than γ , that
is, D(r) 
 D0/�2(r). The m.s.d. of a Brownian particle with
homogeneous diffusivity, D, would grow linearly with time,
according to the standard diffusion law 〈r2(t)〉 = 4Dt . Here,
however, the diffusivity depends on r and, therefore, gets
suppressed as the diffusion process advances in time. In view
the above approximations, D(t) 
 D0/[�2

r (〈r2(t)〉/r2
0 )n]. On

inserting this estimate of D(t) in the standard diffusion
equation for 〈r2(t)〉 and solving with respect to 〈r2(t)〉, one
obtains the phenomenological asymptotic diffusion law

〈r2(t)〉/r2
0 = D(r)

n (γ t)
1

n+1 , (5)

with D(r)
n = [2vth/(�rr0)]

2
n+1 . Based on this simple heuristic

argument, one expects that the exponents αn and βn reported
in Figs. 2 and 3 coincide as αn = βn and αn = 1/(n + 1).
Moreover, the temperature dependence is accounted for by
coefficient D(r)

n and suppressed for strong radial field gradients,
n � 1. Both conclusions are well supported by our numerical
data. In particular, Eq. (5) fits closely all the 〈r2(t)〉 curves
plotted in Fig. 3(b) for different values of n and γ .

The corresponding asymptotic law for the angular diffusion
is immediately related to Eq. (5). From the phenomeno-
logical definition of tangential diffusion, 〈�φ2(t)〉〈r2(t)〉 =
2(v2

th/γ )t , it follows immediately that for r � r0

〈�φ2(t)〉 = D(φ)
n (γ t)γn , (6)

with D
(φ)
n = 2[vth/(γ r0)]2/D(r)

n and αn + γn = 1, that is γn =
n/(n + 1). This prediction compares well with the simulation
data for 〈�φ2(t)〉; see top-left inset of Fig. 2.

The asymptotic power law (5) for 〈r2(t)〉 may be preceded
by persistent diffusion transients. For short observation times,
more precisely, as long as 〈r2(t)〉 � r2

0 , the radial dependence
of the cyclotron frequency does not enter into play, as
�(r) 
 �0. As a consequence, in the overdamped regime,
γ � �0, the effective diffusivity of Eq. (4) is insensitive to
the magnetic field, namely, D 
 D0/γ

2 = v2
th/γ . A particle

injected in the vicinity of the center of the trap, r(0) � r0,
thus starts diffusing like

〈r2(t)〉t /r2
0 = Dstγ t, (7)

with Dst = [2vth/(γ r0)]2 independent of n. This explains the
normal diffusion transients reported in Figs. 4(a) and 4(b).
Moreover, we observed that particles injected at a finite
distance, r(0), from the center, initially diffuse slower than
predicted in Eq. (7). This result is also consistent with
the argument already used to derive Eq. (5). Therefore, as
apparent in Fig. 4, the anomalous asymptotic diffusion law (5)
applies regardless of the initial conditions, whereas transient
diffusion laws do not.

The crossover between short-time normal diffusion and
asymptotic anomalous diffusion with exponent αn occurs at
a crossover time tc, which can also be estimated through
our heuristic argument. Based on that argument, the on-
set of anomalous diffusion for r(t) requires that �(r) 

�r (r/r0)n � γ . On making use of the diffusion law (5) it
becomes apparent that anomalous diffusion can only occur
for t � tc with tc ∝ γ 1+2/n. This prediction is in qualitative
agreement with our numerical findings, according to which tc
increases with increasing γ and lowering n.

The energetic interpretation of the anomalous diffusion
phenomenon reported here is intuitively simple. As the particle
diffuses far away from the trap center, its average Larmor
radius grows very small, R� ∼ vth/�(r) [see also Fig. 1(b)],
until, for � � γ /m, the particle performs many free gyrations
during the inertial time scale m/γ . Such a kinematic mech-
anism tends to suppress the effective particle diffusivity, as
suggested by Eq. (4). Vice versa, when the heat bath causes the
particle’s speed to drop below vth, the instantaneous curvature
radius grows larger and the particle may diffuse longer
distances during the same time scale. Thus, as time progresses,
the diffusion process becomes increasingly sensitive to the
fluctuations of the kinetic energy around its average, kT ; hence
the subdiffusive values of the exponent α, α < 1. Note that,
in the absence of thermal fluctuations, the particle would be
confined within a maximal distance from the center, rM , which
would depend on its kinetic energy (see Sec. II).
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V. SUPERDIFFUSIVE TRANSIENTS

Remarkable diffusion transients have been detected for the
not uncommon case of a magnetic field with negative radial
gradient. For instance, the magnetic field felt by a charged
particle diffusing in a plane perpendicular to a magnetic tip
typically decreases with increasing its distance from the tip.
This situation can be modeled by setting �0 = 0 and n < 0 in
Eq. (2) for �(r). Of course, in the asymptotic limit �(r) grows
negligibly small with respect to γ , so that the corresponding
asymptotic diffusion law formally coincides with Eq. (7),
that is 〈r2(t)〉 = 4(v2

th/γ )t . To analyze the diffusion transients
we notice that at shorter times, as long as �(r) � γ , the
effective diffusion coefficient of Eq. (3) increases with time,
that is D(t) 
 (D0/�2

r )[〈r2(t)〉/r2
0 ]|n|, where for 〈r2(t)〉 we

must now use the known asymptotic power law given above.
Accordingly, during the initial stage of the diffusion process,
〈r2(t)〉t 
 4D(t)t , which leads to the superdiffusive transient
law

〈r2(t)〉t /r2
0 = Dst(γ t)1+|n|, (8)

with Dst = (γ /�r )2[2vth/(γ r0)]2(1+|n|). In Fig. 4(c) Eq. (8)
was used as a fitting law to prove the correctness of the
predicted transient exponents for −1 < n < 0. For n < −1
(not shown) our derivation of Eq. (8) is no longer tenable as
�(r) grows smaller than γ so fast that the particle dynamics
is practically insensitive to the magnetic field; vice versa, on
lowering |n|, the agreement with the numerical data improves.
Most remarkably, for weakly decaying B(r) the superdiffusive
transient can span several time decades before normal diffusion
sets on.

VI. CONCLUSION

In conclusion, we have proved that a simple two-
dimensional driven Hamiltonian system coupled to an equilib-
rium heat bath, modeled by a Stokes’ friction term and a Gaus-
sian δ-correlated noise, may undergo anomalous diffusion. A
key condition is that the two degrees of freedom are not sepa-
rable [24] and, more precisely, their coordinates and velocities
are nonlinearly coupled. If such coupling vanishes as diffusion
progresses, then anomalous diffusion is restricted to an
appropriate superdiffusive transient; in the opposite limit, the
nonlinear coupling grows stronger and the ensuing asymptotic
diffusion regime is subdiffusive. Direct observation of these
effects is conceivable on very different spatial scales, from
galactic distances (cosmic rays) down to molecular lengths
(magnetic tweezers). In particular, Bohm diffusion across an
inhomogeneous distribution of field lines could be anomalous,
with exponent not equal to one, for rather long observation
times. At this point one might still wonder whether an inhomo-
geneous magnetic field can effectively suppress the cross-field
diffusion of a charged particle [10]. Following the heuristic
argument used throughout this paper, we immediately see that
in the presence of exponential radial gradients of the field, the
particle m.s.d. diverges logarithmically. This means that diffu-
sion is critically slowed down and the particle may take an in-
definitely long time to cross the trapping magnetic-field lines.
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