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Abstract 

In this paper the texture evolution in nano-indentation experiments was 

investigated numerically. To achieve this, a three-dimensional implicit finite-

element model incorporating a strain-gradient crystal-plasticity theory was 

developed to represent accurately the deformation of a body-centred cubic metallic 

material. A hardening model was implemented to account for strain hardening of 

the involved slip systems. The surface topography around indents in different 

crystallographic orientations was compared to corresponding lattice rotations. The 

influence of strain gradients on the prediction of lattice rotations in nano-

indentation is critically assessed.   

 

Keywords: Lattice rotation; Pile-up; Indentation; Strain-gradient crystal plasticity; 

Ti alloy   

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288377345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 

Page 2 of 21 
 

 

1 Introduction and motivation  
Indentation is an experimental method widely used to characterize the mechanical 

response of small volumes of materials [1-3]. Although indentation experiments are 

easy to perform, interpreting the obtained data is a challenge due to the inherent 

heterogeneity of the deformation fields, complex stress/strain distributions in the 

tested material and the non-trivial contact conditions during the process. 

Consequently, numerical simulation techniques are frequently used to study the 

underlying mechanics in indentation experiments. For instance, deformation-

induced lattice rotations below an indent have attracted attention as there exists a 

close connection between crystallographic shear, the main mechanism governing 

the deformation, and the resulting lattice spin [4].  

 

Some studies have attempted to characterise the observed phenomena, with the use 

of different techniques such as the non-destructive 3D synchrotron diffraction 

method [5], 3D electron backscattered diffraction (EBSD) [4] and transmission 

electron microscopy (TEM) [6-7]. 

 

In this regard, a limited number of numerical studies attempted to analyse physical 

deformation mechanisms leading to lattice rotations [8-9]. Wang et al. [10] 

demonstrated lattice rotations for a single crystal of Cu with different orientations 

using a 3D elastic-viscoplastic crystal-plasticity (CP) finite-element (FE) method.  

Zaafarani and co-workers proposed a physically based crystal-plasticity model 

based on dislocation-rate formulations to explain the potential reasons for 

deformation-induced patterns consisting of multiple narrow zones with alternating 

crystalline rotations [11]. However, the model consistently overestimated the extent 

of lattice rotations in the experiment.  

 

Strain-gradient plasticity theories [12-16] that account for the effects of 

geometrically necessary dislocations (GNDs) [17] on plastic flow had some 

success in explaining size effects observed in torsion [18], bending [19] and 
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indentation [20-22]. In this paper, a 3D non-local elastic-viscoplastic crystal-

plasticity finite-element model for the nano-indentation of Ti-15V-3Al-3Sn-3Cr 

(Ti-15-3-3-3) is developed to demonstrate the influence of strain gradients on the 

reorientation of the crystalline lattice and resulting deformation patterns. The 

relationship between the anisotropy of surface profiles around nanoindents and 

local texture changes is studied.  

  

This paper is organized as follows: a brief self-contained description of constitutive 

equations of the strain-gradient crystal-plasticity theory is presented in Section 2. 

Details of the developed finite-element model of nano-indentation are presented in 

Section 3. Section 4 demonstrates the predictive capabilities of the model for lattice 

rotations and surface profiles for different crystallographic orientations. We finally 

offer concluding remarks in Section 5. 

2 Theory 

An enhanced modelling scheme for a strain-gradient crystal-plasticity (EMSGCP) 

theory proposed by Demiral [23] was used in the simulations.  Below, the 

constitutive relations of the theory are summarized.  

The deformation gradient F  is decomposed multiplicatively into elastic ( eF ) and 

plastic ( pF ) parts: 

peFFF = . (1) 

pF  evolves according to the flow rule 
ppp FLF = , (2) 

where the plastic velocity gradient pL  corresponds to  

∑
=

⊗=
N

αααγ
1

p

α

msL  . (3) 

In Equation (3), αγ  is the shearing rate on the slip system α , which is represented 

by the slip direction αs and the slip plane normal αm . We choose a power-law 

representation for αγ , as  
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where αγ0  is the reference strain rate, n is the macroscopic rate-sensitivity 

parameter, ατ  is the resolved shear stress, α
Tg  is the strength of the slip system α  

at the current time, and sgn(*) is the signum function of *.  

 

In the EMSGCP theory, the initial strength of slip systems, i.e. the critical resolved 

shear stress (CRSS), is governed by pre-existing GNDs in the workpiece together 

with statistically stored dislocations (SSDs) (Eq. (5)), i.e. 000 === += t
α
Gt

α
St

α
T |g|g|g . 

Here, a subscript G indicates GNDs and S implies SSDs. In this theory, 0=t
α
S |g  and 

0=t
α
G |g  were linked with initial SSD ( 0=t

α
S |ρ ) and GND ( 0=t

α
G |ρ ) densities as 

00 == = t
α
St

α
S |ρK|g , 2

00 )( VS|K|g tt
α
G == = ρ via the constant, K, similar to the 

Taylor relation. The GND density term was expressed as a function of the 

normalized surface-to-volume ( VS ) ratio (hence, dimensionless) for the 

component under study [24].  

  

The evolution of slip resistance during loading is the result of hardening due to the 

SSDs ( α
Sg∆ ) and GNDs ( α

Gg∆ ) on the slip system:  

22
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(5)  
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Here, αβh , Tα , sμ , b and α
Gn  corresponds to the slip-hardening modulus, the Taylor 

coefficient, the shear modulus, the Burgers vector and the effective density of 

geometrically necessary dislocations, respectively. The hardening model proposed 

by Peirce et al. [25] is used to represent αβh , as follows: 
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where 0h is the initial hardening parameter, sat|α
Tg  is the saturation stress of the slip 

system α , q  is the latent hardening ratio, which is assumed to be 1, and γ~ is the 

Taylor cumulative shear strain on all slip systems. The effective GND density ( α
Gn ) 

is given by   

β

β

βαβαα
G sn mm ×∇×= ∑ γ , (7) 

where βααβs ss .=  and βγ∇  is the gradient of shear strain in each slip system. To 

calculate βγ∇  the scheme proposed in Demiral et al. [24] is followed. The model 

was implemented in the implicit finite-element code ABAQUS/Standard using the 

user-defined material subroutine (UMAT). Relevant details can be found in 

[21,24,26-27]. 

 

It should be noted that as the VS  ratio is negligibly small in nano-indentation 

samples, the CRSS value of slip systems depends only on SSDs. Therefore, for the 

nano-indentation test, the EMSGCP theory naturally reduces to the mechanism-

based strain-gradient crystal-plasticity theory proposed by Han et al. [28]. Note that 

in the classical CP theory the contribution from both incipient and evolving GNDs 

is not accounted for, i.e. instantaneous strength of the slip system is given by 
α
St

α
S

α
T ggg ∆+= =0| . 

Here, a β-Ti alloy with a b.c.c. crystalline structure is studied. In the following 

simulations only the {112} <111> slip system (Table 1) was considered  [24].   

Table 1 

 

3 Finite-element modelling of nano-indentation  
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A FE model of the indentation experiment was developed [24]. Dimensions of the 

workpiece sample used in the FE model were 10 μm × 10 μm × 6 μm. Eight-node 

linear brick elements (C3D8) were used to discretise the sample. A finer mesh with 

a minimum element size of 100 nm was used near the indenter tip as the strain 

gradients are typically the highest in the vicinity of the indenter. A conical indenter 

with θ = 90° and a tip radius of 1.0 µm was modelled as a rigid body. The indenter 

was displaced in the negative y-direction with a maximum indentation depth of 375 

nm followed by complete unloading. The bottom face of the workpiece was 

constrained in all directions, its faces with normals in the x- and z- directions were 

constrained, respectively. Contact between the indenter and workpiece was 

assumed to follow Coulomb’s friction law with μ  = 0.05 [23]. 

The material parameters used in the simulations are listed in Table 2. These are 

based on their exhaustive calibration by matching the surface profile of the 

indented surface along a path with the experimental data (Fig. 1). It must be noted 

that as the experimentally obtained surface profiles were not scanned with an 

ideally sharp AFM indenter tip, the holes were imaged sharper. This effect explains 

the differences in the experimentally and numerically obtained surface profiles in 

(Fig. 1) [30]. The pertinent details are presented elsewhere [24]. 

Table 2 

 

Fig. 1 

 

4 Results and discussion 
In this section, the results of FE simulations of the nano-indentation for three 

different crystallographic orientations, viz. (100), (101) and (111), are presented 

with the corresponding lattice rotations and profiles of surface pile-ups. Crystalline 

reorientation around indents for the crystallographic orientations studied is shown 

in Fig. 2. Lattice rotations about the x- and y- axes (defined for each orientation 

studied) are compared. It was observed that there exists a symmetry in the texture 

evolution of the indented (010) surface, where the x- and y- axes correspond to [1 0 
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1] and [1 0 -1] directions, respectively. The magnitudes of maximum rotation were 

almost identical in both cases, with an angle of ~±37°. Symmetry was also 

observed for the indented (101) surface, where lattice rotations about the x-axis 

were more pronounced than that about the y-axis. For the (111) surface, the 

symmetry about the y-axis was observed with a lattice rotation of ±27°. However, 

this symmetry was broken, about the x-axis.  

Fig. 2 

To understand the reason for the observed symmetries in induced lattice rotations, 

the corresponding crystallographic shear strains for different crystal orientations 

were investigated. In indentation, the material’s translation occurs along the 

intersection vectors of the primary slip systems with the indented surface [31], 

leading, in turn, to different types of symmetries. For instance, indentation of the 

(001) oriented single crystal demonstrate a 4-fold symmetry, while crystals with 

(011) and (111) orientations show a 2-fold and 3-fold symmetries, respectively (Fig. 

3) [10,31]. The differences in pile-up patterns demonstrate strong crystallographic 

anisotropy of the out-of plane displacements in the vicinity of the indents. 

 

For instance, Fig. 3(a) suggests that the surface profile for the indented (010) 

surface is symmetric with respect to both [1 0 1] and [1 0 -1] axes and the 

maximum pile-up height is almost identical at four peak points. This, in fact, 

explains the symmetries of lattice spins with respect to the respective axes in Fig. 

2(a). The maximum pile-up regions in the indented (101) surface occurred about 

the [-1 0 1] axis rather than [0 -1 0] axis (Fig. 3(b)) which ultimately resulted in 

higher lattice rotations of ~ 46° to 48° about the [0 -1 0] axis (Fig. 2(b)). On the 

other hand, the pile-ups observed on the indented (111) surface are symmetric 

about the [1 -2 1] axis (Fig. 3(c)); thus, corresponding lattice rotations were 

symmetric (Fig. 2(c)) when compared to [-1 0 1] axis, where both the pile-ups and 

lattice rotations are not symmetric. It was observed that higher lattice rotations 

were observed on the lower side of [-1 0 1] axis, where the volume of the material 

experienced piling-up was higher compared to its upper side. These observations 
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suggest that there exists a strong relationship between the patterns of induced 

lattice rotations and the indents’ pile-up profiles.  

 

It should be noted that the maximum pile-up height is the largest for the indented (0 

1 0) surface with a value of 80 nm, and smallest for the indented (1 1 1) surface 

(Fig. 3). The reason for this difference can be explained by the total number of 

active slip systems during deformation, which, in turn, leads to the occurrence of 

cross slips and, consequently, an increase in the pile-up height [32]. Our FE 

simulations demonstrated that all the slip systems were active for the indented (0 1 

0) surface, whereas the total number of 8 and 10 slip systems were active for the 

indented (111) and (101) surfaces, respectively.   

Fig. 3 

Next, the lattice rotations underneath the indent were investigated. Fig. 4(a) shows 

the net orientation changes with reference to the starting orientation of the crystal at 

the cross-section of the (-1 0 1) plane for the indented (010) surface at complete 

unloading. The distribution of deformation-induced lattice rotations shows a 

double-well pattern with a change in local rotational fields varying between ±20° 

except for the regions, where high lattice reorientation occurred. The (-1 0 1) plane 

for the indented (010) surface can be divided into three sections. Region A is 

bounded by the points A1-A2-A4-A3, region B is bounded by A1-A2-C2-C1 and 

A3-A4-C4-C3, and the remainder of the domain shown in Fig. 4(a) is region C. 

Lattice rotations in regions A and C are observed to be comparatively lower than 

those observed in region B.  

Fig. 4 

The distribution of texture evolution at different loading steps along the paths C-D 

and E-F in Fig. 4 is shown in Fig. 5. It should be noted that the chosen paths 

coincide with the edges of deformed finite elements in the mesh. The plot indicates 

that at full loading, the orientation change in regions A and C is less than ±6°, 

whereas in region B, the lattice orientation changes by greater magnitudes. Note 

that the current model has no back-stress term and this may influence the unloading 



 
 

Page 9 of 21 
 

results but the deviation from an orientation change of ±6° is not expected to be 

significant.  

 

(a) 

 

(b) 
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(c) 

Previous Fig. 6a will be here 

(d) 

Previous Fig. 6b will be here 

(e) 

 

Fig. 5: Lattice rotation along path C-D at half loading (t = 0.5 s) (a), three-fourths 

loading (t = 0.75 s) (b), full loading (t = 1.0 s)(c), complete unloading (t = 1.0 s) (d) 

and along path E-F at complete unloading (e) (Fig. 4) in (-1 0 1) plane of (010) 

orientation obtained with FE simulations using CP and EMSGCP theories 

 

FE simulations were also performed with the CP constitutive laws to compare and 

contrast the influence of strain-gradient effects on crystalline reorientation. Fig. 4(b) 

shows the respective lattice rotations of the crystal at the cross-section of (-1 0 1) 

plane for the indented (010) surface, with the values along the paths C-D and E-F 

at different loading steps plotted in Fig. 5. It was found that at complete unloading 

the local rotational fields were closer to those obtained with the EMSGCP 

constitutive laws at some regions such as at positions 2 and 3 on path C-D and at 

position 6 on path E-F. However, these values were overestimated significantly at 
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positions 1 and 4 on path C-D and at position 5 on path E-F by a factor of 3.3, 5.1 

and 2.7, respectively (Table 3). The reason for the discrepancy arises from the fact 

that GNDs are not accounted for in the CP constitutive equations. In an indentation 

experiment, rapid spatial changes can occur in the local texture due to imposed 

boundary conditions. The resulting mismatch in the lattice spin for a material point 

can be accommodated by GNDs. As this is accounted for in the EMSGCP theory, 

the predicted orientation change is less pronounced in comparison to that for the 

CP theory (Fig 5(a)-(c)). With an increase in indenter penetration, strain gradients 

became more significant and, as a result, the texture evolution predicted with the 

EMSGCP theory at some spatial positions (i.e. positions 1 and 4) start to diverge 

from that for the CP theory. These observations suggest a possible reason for the 

overestimation of experimentally obtained texture evolutions using the CP theory 

in Zaafarani et al. [4,11]. 

Table 3  

In Fig. 1 the surface profiles obtained by the CP and the EMSGCP theories were 

compared. It was observed that the maximum pile-up height after unloading was 

overestimated by 32% using the CP theory whereas an accurate match with the 

experiment was obtained using the EMSGCP theory. In the absence of strain 

gradients in the CP theory, the material’s cumulative strength is predicted to be 

lower, leading to a conventional plastic response of the material beyond the yield 

point. As a result, the strain due to elastic spring back decreased and, consequently, 

the pile-up height increased due to higher plastic deformation [24].  

 

One of the advantages of the developed FE model is that it provides information 

about the spatial 3D distribution of the individual shear strains on all the slip 

systems, which cannot be obtained by any experimental or analytical techniques. 

The accumulated shear strain values, at complete unloading, from the CP and 

EMSGCP theories for each of the 12 slip systems at positions 1 and 2 on path C-D 

are demonstrated in Fig. 6.  
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First, it was observed that the total residual shear-strain values on all the slip 

systems were larger in the prediction based on the CP theory than those based on 

the EMSGCP theory. This confirmed that the elastic spring back as predicted from 

CP was lower in magnitude.  

 

Secondly, the number of active slip systems was found to be sensitive to both the 

spatial position and the constitutive law used. A strain of 0.01 was assumed as the 

threshold value for a slip system to be active. For instance, at position 1, while the 

number of active slip systems were found to be only 6 using the CP theory, it was 8 

when the EMSGCP theory was used, whereas, both theories predicted 10 active 

slip systems at position 2.  

Fig. 6  

Thirdly, it was observed that the relative contributions of different slip systems to 

the overall deformation were different for different theories. For instance, at Point 

1 at the end of loading (Table 4),  the CP theory predicts that the first and second 

slip systems accommodates 80% of the overall shear in the component. In contrast, 

in the EMSGCP model the contribution of the most active slip systems, i.e. slip 

systems 1 and 2, accounts for ~53% of the overall shear in the system. It was 

noticed that more slip systems contribute to the overall deformation in EMSGCP 

when compared to CP-based predictions. This demonstrates that strain-gradients 

heavily influence individual slip system activity, which sometimes manifest in 

noticeable difference in spatial deformations. Consequently, there are locations 

where the overall slip activity seems to normalise, demonstrating identical response 

(e.g. Point 2).  

Table 4: Shear-strain magnitudes and their relative values (bold; in %) for different 

slip systems at various positions along path C-D (see Fig. 4) at different loading 

stages in (-1 0 1) plane of (010) orientation  

 Point 1 at half 
loading 

Point 1 at full 
loading 

Point 2 at full 
loading 

Slip 
system CP EMSGCP CP EMSGCP CP EMSGCP 

1 0.0404 0.0333 0.2670 0.1474 0.0002 0.0005 
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36.3 36.5 40.3 26.5 0.0 0.0 

2 0.0387 
34.8 

0.0332 
35.4 

0.2630 
39.7 

0.1480 
26.6 

0.0003 
0.0 

0.0005 
0.0 

3 0.0 
0.0 

0.0 
0.0 

0.0020 
0.3 

0.0058 
1.0 

0.0910 
5.7 

0.0566 
4.5 

4 0.0 
0.0 

0.0 
0.0 

0.0015 
0.2 

0.0075 
1.3 

0.0939 
5.9 

0.0654 
5.2 

5 0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0001 
0.0 

0.3485 
21.8 

0.2690 
21.4 

6 0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0001 
0.0 

0.3310 
20.7 

0.2641 
21.0 

7 0.0020 
1.8 

0.0004 
0.5 

0.0186 
2.8 

0.0179 
3.2 

0.0169 
1.1 

0.0395 
3.1 

8 0.0010 
0.9 

0.0006 
0.6 

0.0098 
1.5 

0.0150 
2.7 

0.0183 
1.1 

0.0370 
2.9 

9 0.0009 
0.8 

0.0002 
0.2 

0.0015 
0.2 

0.0184 
3.3 

0.0952 
5.9 

0.0657 
5.2 

10 0.0011 
1.0 

0.0003 
0.3 

0.0023 
0.3 

0.0187 
3.4 

0.0937 
5.9 

0.0660 
5.2 

11 0.0136 
12.2 

0.0127 
13.6 

0.0527 
8.0 

0.0920 
16.6 

0.2547 
15.9 

0.1944 
15.5 

12 0.0135 
12.1 

0.0130 
13.9 

0.0438 
6.6 

0.0848 
15.3 

0.2577 
16.1 

0.1982 
15.8 

 

Next, the contribution of the slip systems at the position 5 and 6 in Fig. 5 was 

studied. By comparing the relative contributions of the various slip systems to the 

overall shear strain at complete unloading, a significant difference in the prediction 

with EMSGCP and CP at position 5 was noticed (Table 5). However, at position 6 

the difference was minimal, which reflects in the identical lattice rotation 

magnitudes in Fig. 5. Thus, from our study it can be concluded that a direct 

relationship exists between the lattice spins predicted by the CP and the EMSGCP 

theories and the corresponding contributions of the individual slip systems to the 

overall deformation. This can be also inferred when the evolution of relative 

contributions of various slip systems to the overall shear at position 1 along path C-

D (Table 4) and the respective development of lattice rotations (Fig. 5 (a, c)) are 

compared. For instance, at half-loading, as the strain gradients are small in 

magnitude, relative contributions of different slip systems to the overall 

deformation are almost identical to those for the CP theory, whereas at full loading 

with a significantly increased strain gradients, different relative contributions were 
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observed for different slip systems resulting in different texture evolutions in the 

EMSGCP and CP theories. 

 

Figure 7 demonstrates the gradient of shear strain ( βγ∇ ) and effective GND 

density ( α
Gn ) for different slip systems in (-1 0 1) plane of (010) orientation at 

spatial position 1 for different stages (t = 0.25 s, 0.5 s, 0.75 s, 1.0 s) of the loading 

process. To make this plot clear, each line represents the average value for the 

magnitudes of the two successive slip systems with their magnitudes very close to 

each other. The plot demonstrates the effect of strain gradients at individual slip 

system on the overall deformation characteristics. It was observed that the major 

shear strain gradients occur in slip systems 1, 2, 11 and 12. The fact that the 

gradient magnitude increases with an increase in the imposed macroscopically 

inhomogeneous deformation is not surprising. However, the character of the 

evolution of effective GND density on slip systems (shown in Fig. 7 (b)) does not 

demonstrate any obvious trend with specific βγ∇  on the slip system. This shows 

that the  value for any slip system ( α
Gn ) is affected strongly by the strain-

gradient contributions from all the slip systems (Eq. (7)).  

 

Table 5 
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(a) 

 

 
(b) 

Fig. 7: Gradient of shear strain ( βγ∇ ) (a) and effective density of GNDs ( α
Gn ) 

(b) for different slip systems in (-1 0 1) plane of (010) orientation for position 1 

at different loading steps  
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The distribution of strain gradients at the cross-section of (-1 0 1) plane for the 

indented (010) surface was also analysed to investigate a possible relationship with 

the observed deformation pattern. The distribution of residual GND density in the 

material after indentation is shown in Fig. 8 and analysed along the path C-D in Fig. 

9. It was observed that the distribution of strain gradients in region B showed a 

double-well pattern similar to the previously observed patterns for deformation-

induced lattice rotations (Fig. 4). The strain gradient at position 2 on path C-D is 

larger than that at position 1 (Fig. 9). It should be noted that at position 2 both the 

CP and the EMSGCP theories predicted similar shear activity of different slip 

systems. From this observation, it can be concluded that a presence of strain 

gradients at a material point does not necessarily entail additional deformations 

when compared to the conventional CP theory.  

Fig. 8 

 

It was found that a high strain gradient at a material point does not necessarily 

imply decreased local lattice rotations, when compared to predictions with the CP 

theory. For instance, the strain gradient at position 2 was higher than that at 

position 1 (Fig. 9); however, the predictions for lattice rotation with CP and 

EMSGCP show minimal difference at position 2, with a noticeable difference at 

position 1 (Fig. 5 (d)).  

Fig. 9 

 

Fig. 10 shows the distributions of the resulting von Mises stress on the (-1 0 1) 

plane obtained with the two theories. It is clear, that the stress distributions are 

different. As strain gradients are intrinsic to nanoindentation, the EMSGCP theory 

accounting for the GNDs represented the deformation patterns and stress 

distributions more accurately.  

Fig. 10 

5 Concluding remarks 
In this paper, the texture evolution of the Ti alloy single crystal in nano-indentation 

for different crystallographic orientations was investigated using an enhanced 
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model of the strain-gradient crystal-plasticity (EMSGCP). Our study demonstrated 

that there existed a strong correlation between the patterns of lattice spins and the 

indents’ pile-up profiles. It was noted that the deformation-induced lattice rotations 

can be predicted more accurately using the strain-gradient crystal-plasticity theory 

since the effect of GNDs were accounted for.  

From our study, the following non-trivial observations were made: 

1. The introduction of strain gradients alters the activity of the slip systems 

and the relative contribution to the overall plastic slip. The EMSGCP theory 

predicts that plasticity occurs due to activity of multiple slip systems when 

compared to that of CP theory. 

2. The relation between strain-gradient contribution in a particular slip system 

and the GND density is non-trivial.  

3. The presence of a high strain gradient does not necessarily imply 

increased/decreased lattice rotations. 

4. The stress fields predicted with the EMSGCP theory are physical and 

reflect the true distribution of stresses in the material. 

5. In predictions with the strain-gradient theory, the pile-up profile and the 

lattice rotations are close to those in physical experiments. 
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Figure captions 

Fig. 1: Pile-up profiles of indented (0.641 0.078 0.764) surface along a path 

obtained from experiment and simulation at complete unloading [24] 

Fig. 2: Rotation angles and rotation directions predicted by FE simulations of 

indentation after unloading for different crystallographic orientations. Top row: 

rotations on (0 1 0) surface with respect to [1 0 -1] (left) and [1 0 1] (right). Middle 

row: rotations on (1 0 1) surface with respect to [0 -1 0] (left) and [-1 0 1] (right). 

Bottom row: rotations on (1 1 1) surface with respect to [1 -2 1] (left) and [-1 0 1] 

(right) 

 Fig. 3: Pile-up structures of imprints obtained with FE simulations for different 

crystallographic orientations after unloading: (a) (010) surface; (b) (101) surface; (c) 

(111) surface  

Fig. 4: Distribution of lattice rotations in (-1 0 1) plane of (010) orientation 

obtained with FE simulations using (a) EMSGCP theory and (b) CP theory at 

complete unloading 

Fig. 5: **************************  
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Fig. 6: Shear-strain values of different slip systems at spatial positions 1 (a) and 2 

(b) along path C-D (see Fig. 4)  in (-1 0 1) plane of (010) orientation at complete 

unloading 

Fig. 7: ************************ 

 

Fig. 8: Distribution of total effective density of GNDs (∑
=

N

α

α
Gn

1

) in (-1 0 1) plane of 

(010) orientation after unloading 

Fig. 9: Total effective density of GNDs (∑
=

N

α

α
Gn

1

) along path C-D (see Fig. 4) in (-1 

0 1) plane of (010) orientation after unloading 

Fig. 10: Distribution of von Mises stress in (-1 0 1) plane of (010) orientation at 

complete unloading obtained with FE simulations using (a) EMSGCP theory and (b) 

CP theory  

Table captions 
Table 1: Available slip systems for Ti alloy single crystal for {112} <111>  set 

Table 2: Material parameters for Ti-alloy single-crystal micropillars used in the 

model of micropillar-compression experiment (Demiral et al., 2013) 

Table 3: Lattice rotations at points along path C-D and E-F at complete unloading 

(see Fig. 4) using CP and EMSGCP theories  

Table 4: ******************* 

Table 5: Magnitudes of relative shear strain of different slip systems (in %) at 

positions 5 and 6 along path E-F (see Fig. 4) in (-1 0 1) plane of (010) orientation at 

complete unloading 
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