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Abstract 

Matrix equations have been studied by Mathematicians for many 

years. Interest in them has grown due to the fact that these 

equations arise in many different fields such as vibration analysis, 

optimal control, stability theory etc. 

This thesis is concerned with methods of solution of various 

matrix equations with particular emphasis on quadratic matrix 

equations. Large scale numerical techniques are not investigated 

but algebraic aspects of matrix equations are considered. 

Many established methods are described and the solution of a 

matrix equation by consideration of an equivalent system of 

multivariable polynomial equations is investigated. Matrix· equations 

are also solved by a method which combines the given equation with 

the characteristic equation of the unknown matrix.· 

Several iterative processes used for the solution of scalar 

equations are applied directly to the matrix equation. A new 

iterative process based on elimination methods is also described 

and examples given. 

The solutions of the equation x2 = P are obtained by a method 

which derives a set of pOlynomial equations connecting the 

characteristic coefficients of X and P. It is also shown that 

the equation X2 = P has an infinite number of solutions if P is a 

derogatory matrix. 
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CHAPTER 1 

Introduction 

Matrix equations have been studied by mathematicians for 

many years. Cayley [1858] showed· that a square matrix satisfies 

an algebraic equation of degree equal to its own order and 

Sylvester. [1884] published many· new results concerning matrix 

equations. The topic has been investigated extensively Slnce then 

by many mathematicians who have built on the foundation of this 

early work. Interest in matrix equations has grown due to the 

fact that they arise in many different fields such as vibration 

analysis, optimal control, 5 tability theory and filtering theory. 

In these areas, two matrix equations are of particular importance. 

These are the Matrix Lyapunov equation 

T PA + A P + Q = 0 1.1 

and the Algebraic Matrix Riccati equation 

1.2 

The numerical solution of these two equations has been studied 

extensively in recent years. 

This thesis is not concerned with the investigation of large 

scale numerical techniques but concentrates on algebraic aspects 

of matrix equations. The examples given, to illustrate various 

methods, have been chosen so that computation can be carried out 

either by hand or with the assistance of a micro computer. 

Numerical methods dominate the techniques for solving matrix 

equations which have evolved in recent years, but Dennis, Traub & 
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2 

Weber [1976] are among the minority of authors who have studied 

the algebra of matrix polynomials and the solution of matrix 

polynomial equations. [But see also the recent books 

GOHBERG, 1., P. LANCASTER and L. RODMAN,. 'Matrix Polynomials', 

Academic Press, New York, 1982. 

GOHBERG, I., P. LANCASTER and L. RODMAN, 'Invariant subspaces of 

matrices with Applications', Wiley, Interscience, 1986.] 

Some methods, such as iterative processes which are used to 

solve polynomial equations over the complex field may also be 

applied directly to the·matrix equation to yield matrix solutions. 

Many methods however cannot be applied directly. This is due to 

the problems which arise from the fact that the set of matrices 

form a ring rather than a field. The non commutativity of matrix 

multiplication and the existence of divisors of zero lead to 

complications. 

Whereas the scalar quadratic equation can always be solved 

over the complex field by use of the quadratic formula, no such 

simple method exists in the matrix case. The matrix quadratic 

equation has several forms such as 

2 
AX + BX + C = 0 

XAX + BX + XC + D = 0 

2 
X A + XB + C = 0 . 

In the scalar case the quadratic equation has at most two 

solutions. The number of solutions of. the matrix quadratic 

equation depends upon many factors such as the size of the matrices. 

Ingraham [1941] showed that the unilateral matrix equation may 
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have an infinite number of solutions and Bell [1950) showed that 

the unilateral matrix equation has an infinite number of solutions 

if and only if there exist two distinct solutions Xl and X
2 

which 

are similar. 

A brief description of the work contained in this thesis 

follows. 

In Chapter 2, the solution of matrix equations by consideration 

of the equivalent system of polynomial equations is studied. 

Decision methods, multivariable resultants and elimination methods 

are considered. The constituent equations are.solved directly for 

several matrix equations involving 2x2 matrices and solutions 

obtained in terms of the trace and determinant of the coeHicient 

matrices. 

Chapter 3 is devoted to a study of various established methods 

of solution with particular emphasis on methods which can be applied 

to the quadratic matrix equation. The methods are illustrated with 

examples involving 2x2 and 3x3 matrices. 

In Chapter 4 a method is described which makes use of the 

characteristic equation of the solution matrix. Since the unknown 

matrix X satisfies simultaneously the given equation and also its 

own characteristic equation, elimination methods may be used to 

eliminate powers of X higher than 1 until finally a linear equation 

in X is obtained, from· which the solution may be found. Possibilities 

for the characteristic equation of the unknown matrix X are obtained 

by using the fact that if the equation is the unilateral equation 
n . 
L A.X

n
-

1 
= 0 then the characteristic polynomial of a solution X 

~s : factor of the scalar polynomial det[~ AiA
n

-
i
] 
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Sylvester [1884] suggested that solutions may be obtained 

in this way but the development of the technique is new. 

Chapter 5 considers the application of iterative methods to 

the solution of matrix equations. Several iterative processes used 

for the solution of scalar equations are applied directly to the 

matrix equation. A new iterative process based on the elimination 

method of Chapter 4 is also described and examples given. 

Chapter 6 deals with the solution of the equation X2 = P, that 

is the problem of finding the square root of a g~ven matrix P. A 

new method is described which derives a set of polynomial equations 

connecting the characteristic coefficients of X and P and obtains 

the solution matrix X by solving this set of equations. It is also 

h 
. 2 

shown that t e equat~on X = P has an infinite number of solutions 

if P is a derogatory matrix. 

As stated earlier, current work on matrix equations focuses 

on numerical methods and in particular on methods of solution of 

equations 1.1 and 1.2. [A useful survey of numerical methods for 

these equations up to 1973/74 can be found in the Report by Hewer 

and Nazarott, "A survey of numerical methods for the solution of 

algebraic Riccati equations", Michelson Laboratory, Naval Weapons 

Centre, 1974.] More recently Davis [1981] has described a method 

which is based on the Newton iterative method. Solutions of 1.1 

and 1.2 have also been obtained by use of the matrix sign function 

(Popeea and Lupas [1976]) and a recent publication by Charlier and 

Van Dooren [1987] combines symmetric factorization techniques with 

the matrix sign algorithm to obtain solutions. 

It is possible that the elimination methods described in 
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Chapters 4 - 6 might be numerically viable and that computerized 

versions could be used to solve matrix equations for large order 

matrices. This however is a subject for further research. 
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CHAPTER 2 

The Solution of Matrix Equations by Consideration 

of the Equivalent System of 

PolynOmial Equations 

2.' INTRODUCTION. 

Any matrix equation involving mxm matrices is equivalent to 

a system of pOlynomial equations where the unknowns x"x'Zx'3"" ,x
mm 

are the elements of the required matrix X. Though there are many 

established methods of solution for systems of polynomial equations, 

no attempt appears to have been made to apply these methods to the 

constituent equations arising from a matrix equation. An attempt 

to do this is made in this chapter. 

The constituent equations have a special form and are not 

completely general polynomial equations, for example, in the case of 

. . 2 
the matr~x equat~on X 

= P where X = [ :: :: 1 P = [ :: :: 1 

the equivalent system of equations is 

(1) 
2 

x, + X
2

X
3 = p, 

(2) x,x2 + x 2x
4 

= P2 

(3) x,x3 + x
3
x

4 = P . 3 

(4) 
2 

x4 
+ x

2
x

3 = P4 

It can be seen that each individual equation involves only 3 

h .. 1 2 2 unknowns, t at no equat~on ~nvo ves x
2 

or x3 and that both x
2 

and 

x3 can be expressed as a rational function of x, and x
4

. Similar 
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special forms can be found in systems arising from matrix 

equations involving matrices of higher order. It is possible 

that the special form of the equations could be used to find 

solutions. 

Iterative methods for the solution of systems of equations 

can obviously be applied to the constituent equations but the 

description of these is left until Chapter 5. 

Most algebraic methods of solution for systems of polynomial 

equations involve the systematic reduction of the unknowns one by 

one until the system is reduced to a· single equation in one unknown. 

The solvability of the final equation then indicates the solvability 

of the system of polynomial equations. These methods use the fact 

that the reduction to a single equation can be carried out in a 

finite number of operations. The finiteness of the number of 

operations may be illusory from a practical point of view however 

since the number of operations at each reduction is very la·rge and 

depends on the number and degree of the polynomials. 

In section 2.2 decision methods described by Seidenberg [1954) 

using ideas developed by Tarski [1951) are considered and in 

section 2.3 the solution of systems of equations by use of 

multivariable resultants is described. 

In section 2.4 elimination methods are applied and in 2.5 

the direct solution of the constituent equations is used for 2x2 

matrix equations. 
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2.2 DECISION METHODS DUE TO TARSKI AND SEIDENBERG. 

Given a set of multivariable polynomials f i (x
1
x

2 
••..• x

n
) 

~ = 1 ••••• n the problem is to decide whether there is a set of 

i=l, ... ,n. 

Tarski [1951] showed that it is possible to determine. in 

a finite number of steps. a finite number of systems of equations. 

inequalities and inequations in the coefficients of the system 

solution in lR if and only· if every equation. inequation and 

inequality of one of the derived systems is satisfied by the 

coefficients. This is shown by using a. generalized.form of Sturm's 

Theorem. The type of result which may be obtained is illustrated 

in the case of the following equation in a single variable. 

Consider the 'reduced' quartic equation 

4 2 
x + q x + r x + s = 0 

Here it can be shown that this equation has a real root if 

and only if one of the following alternatives is satisfied 

I d ~ 0 

11 d > 0.· q < 0, L > 0 

III d = 0, r f 0 

IV d = 0, r = 0, q , 0 

where d =4 [4S + {)3 - 27 (~ 

and L = 8qs - 2q3 - 9r2 

2 qs - r 
_ 2q3) 2 

27 

This method can be extended to sets of equations ~n several 
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variables as follows. The system of equations f i (x,x2"",xn) = 0 

Z 
i = 1, ..• ,n can be replaced by a single equation Efi (x,xZ,.·. ,xn ) = O. 

This equation can then be treated as an equation in the variable x 
n 

with coefficients which are polynomials in (x,x2 '; .. ,xn _,). By 

use of the parameterized version of Sturm's theorem, the conditions 

for this equation to have a real root can be found and this set of 

conditions will be a set of pOlynomial equations. inequations and 

inequalities which are polynomials in (x xZ, .•. ,x ,). This set , n-

can then be replaced by a single equation since any set of equations 

z 
gi(x,xZ'" .• xn_,) = 0 can be replaced by a single equation Eg i = 0 

and a finite set of inequations g. I 0 can be replaced by a single 
1 

one rrg. I 0 and an inequation g F 0 is equivalent to gZ > o. 
1 

Moreover the sign > 0 can also be eliminated as the condition h > 0 

z is equivalent to the condition z h = , for some z. 

Using these reductions a single equation in n-' variables 

can be obtained and the process repeated again by considering this 

as an equation in x 1 with coefficients which are polynomials in n-

(x,xZ' ...• xn_Z). Hence the variables are eliminated one by one 

until a single equation in x, is obtained, the solvability of which 

can be decided by use of Sturm's theorem. 

Seidenberg['954] arrives at the same result - that the 

solvability of a system of equations can be decided in a finite 

number of steps, but he does not use Sturm's theorem to eliminate 

each variable. Having replaced the system of equations by a single 

equation by setting Ef~ = 0 Seidenberg uses the fact that if there 
1 

is a vector (a,aZ, •.. ,an ) which is a solution of f(x,xZ, ...• xn ) = 0 

then there is a vector of smallest absolute value. The problem is 



'0 

therefore to minimize 
n 2 I x. subject to the constraint that 
, L 

This can be done using Lagrange multipliers 

by setting w = 

Then the minimum value of w corresponds to the minimum 

n 2 
value of I x .. 

, L 
Hence we set dW 

3x. 
L 

= .0, i = ',2, •.. , n and by 

eliminating A we obtain a second equation g(x,xZ""'xn ) = O. 

The variable x is then eliminated by forming the resultant with 
n 

respect to xn of the polynomials f(x,x2 ,.·.,xn) and g(x,x2 ••.. ,xn). 

If h(x,x
2

, ..• ,xn_,) = Res(f,g) then there is a common solution 

of f(x" ••.• xn) = 0 and g(x" .•• ,xn ) = 0 if and only if 

h(x,xZ •... ,xn_,) = O. 

We have therefore obtained an equation in (n-') variables. 

The process is repeated and the variables eliminated one by one 

until an equation in the single variable xl is obtained. The 

solvability of the final equation can then be decided by Sturm's 

Theorem and hence the solvability of .the original system of 

equations can be decided. 

Though this method. in theory, gives a means of deciding 

whether a system of equations has a solution the problems of 

computation which arise in carrying out the steps are very great. 

Seidenberg states that neither he nor Tarski have computed numbers 

of steps involved and wonders whether a decision machine could be 

constructed to carry out the process. 

A simple illustration of the method LS shown in the following 

example. 
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Example 2.2.1. 

Consider the equation AX = B 

where A=[l 1] 
1 -1 

The matrix equation can be written as a pair of equations 

The pair of equations can be written as a single equation 

2 2 
We now seek to minimize xl + x2 with the constraint that 

Using Lagrange multipliers we obtain a second equation 

Let H(x2) be the resultant with respect to xl of F and G 

H(x
2

) 2 -6 2 
+ 2x2 then = 2x2 + 5 

2 6x2 0 

0 2 6x
2 

2 = 80x2 + 80x2 + 20 • 

F and G"have a common solution if H(x
2

) = 0 

2 
20[4x2 + 4x2 + 1] = 0 



'2 

, 
and substituting this F or G x

2 2 ~n 

gives 

3 
x, = 2 

3 
2 

Hence the matrix solution is X , 
-2 

Though this method may be applied in particular numerical 

examples the problems of computation increase rapidly as the 

number of equations and number of variables increase. When 

general coefficient matrices are considered the equations quickly 

become unwieldy. Even in the simple example 

AX = B where A 
= [ 

a, a
2 

) 
B = , r b 

) 
, 

a
3 

a
4 l b2 

it ~s difficult to extract the condition a,a4 - a 2a3 
,; 0 as can 

be seen as follows: 

Example 2.2.2. 

Consider AX = B where B 

The equivalent system of polynomial equations is 

= 0 
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z Z 
Let F(x,xZ) = f, + fZ and let G(x,x

Z
) be the polynomial 

" " "" Z Z" " obtained by seek1ng to m1n1m1ze x, + Xz w1th the constra1nt that 

Then 

where 

Z Z 
Z(a,a2 + a

3
a

4
) -Z(aZb, + a

4
b

2
) c, = a Z 

+ a
4 

C
z 

= C = 
3 

Z 2 
-2(a,b, + a

3
b

Z
) b

2 Z c4 
= a, + a

3 Cs = c6 
= + b

Z , 

Let H(x,) be the resultant of F and G with respect to xZ" 

Then 

c, cZx,+c
3 

Z 
0 c4x,+cSx,+c6 

0 2 
c, cZx,+c3 c4x,+c Sx,+c6 

Z(c4-c,)x,+cS 
2 

0 Cz c 2x,-c 3x, 

0 Z (c4 -c, )x, +cs 
2 

Cz cZx,-c 3x, 

therefore 
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It is known from the simplicity of the original equations 

that there will be. a un~que solution for xl provided that 

'" 0 
and hence the coefficients of xi, x~, 2 will be a

1
a

4 - a2a3 xl zero. 

This condition for a unique solution is difficult to obtain 

algebraically however due to the complexity of the coefficients. 

It may be concluded that it is possible to decide in a finite 

number of steps the solvability of a system of equations obtained 

from a matrix equation. However it is difficult to derive general 

properties concerning the coefficient matrices by consideration 

of the constituent equations. Even with small order matrices the 

problems of algebraic manipulation soon become apparent. 

2.3 SOLUTION OF EQUATIONS BY MULTIVARIABLE RESULTANTS. 

As shown in the previous section, a common solution of a 

pair of equations in two variables f(x
1
x

2
) = 0 and g(x

1
x

2
) = 0 

may be found by forming the resultant of f and g with respect to 

x2 · This gives a polynomial in a single variable h(x
1

) and any 

solution of h(x 1) = 0 leads to a solution (x
1
x

2
) of f(x

1
x

Z
) = 0 

and g(x
1
x

2
) = O. 

This section extends the idea to n equations in n variables 

by use of multivariable resultants. The method is described by 

Hodge and Pedoe [1947]. Again, the general idea is to eliminate 

one variable at a time until ultimately only one equation is left 

in a single variable. 

Consider first a set of r equations in a single variable 



f. (x) = 0 
1 

15 

1,2, ... ,r 

The set may be reduced to two equations by introducing 

Let 

u f 
r r 

Forming the resultant of <jl(x) and ljJ(x) we obtain R(u v) which 

j Z jr 
v Z , ••• , v r be D . 

s 
Then D s is a 

polynomial in the coefficients of the original polynomials f.(x). 
1 

These polynomials D1DZ, ..• ,DN constitute a resultant system 

of the set of equations f.(x) = O. 
1 

If the set of equations f.(x) = 0 has a solution say x = a 
1 

then f.(a) = 0, i = 1,Z~ .•. ,r, and hence ~(a) = 0 and ljJ(a) = 0 
1 

and therefore the resultant R(u v) = o. This implies that·every 

coefficient D vanishes and gives a set of conditions on the s 

coefficients of the polynomials f.(x) for a solution to exist. 
1 

Conversely, if each coefficient D vanishes then this means that 
s 

~(x) and ljJ(x) have a common factor. However, since ~(x) contains 

no v. and ljJ(x) contains no u. then the common factor is independent 
J J 

of the u.v. and must therefore be a common factor of the equations 
1 J 

f.(x) = O. Hence the system has a solution. 
1 

This technique may be extended to a set of equations in 

several unknowns. Consider the set 

i=1,2, ... ,r 
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Let the polynomial g. (xl , •.• ,x ) be of degree m. when 
1 n 1 

regarded as a polynomial 1n xn with coefficients in R[x 1,··· ,xn_ 1] 

then each polynomial can be written as 

m. 
a.(x

1
, ... ,x 1)x 1 

1. n- n 

m.-l 
1 

+b.(x1,···,x l)x + 
1. n- n 

and the techniques previously described may be applied to this set. 

The resultant system D will be a set of equations in one less 
s 

variable (x 1xZ' ... 'xn_1). The process may be repeated until all 

the variables have been eliminated except xl. 

The method is illustrated in the solution of a matrix equation 

as follows. 

Example Z.3 .1. 

where 

Consider the equation AX + XB = C 

A = r 1 

l-l 
C = [ 3. 

-5 
3 'J . 

-1 

The matrix equation is equivalent to the set of equations 

Introducing the new indeterminates u
1
,u

Z
,u

3
,u

4
, v v v v 

1'2'3'4· 
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Then 

-3v
l
-3v

2
+5v

3
+v

4 

The resultant RI of ~ and $ with respect to x
4 

is formed 

The coefficients of the u.v. are all polynomials in the three 
1 J 

variables x lx2x
3

. 

Setting the coefficients 

system of the set of equations 

The resultant system is 

of u.v. to zero gives a resultant 
1 J 

fi(xlx2x3x4) = a. 

3x I - lax
3 

- 13 = a 

x+x-x-4 
123 a . 



18 

This set of equations is the same. as the set which is obtained 

when the variable x
4 

is eliminated directly from the original 

equations by taking the equations in pairs. 

The process is now repeated by setting 

then 

-3u - 13u - 4u 
1 Z 3 

the resultant R
Z 

of ~ and ~ with respect to x3 1S formed 

RZ = [36X 1 +1 OxZ -56J u1 v Z + ~Xl +3XZ-ll]U 1 v 3 + [-36X 1-l0XZ +56J Uz v 1 

+ [-7X 1-l0XZ+Z]uZv3 + [-5X l -3Xz+llJu3v 1 + ~Xl+l0XZ-27Ju3vZ 

Setting the coefficients of the u.v. to zero gives the resultant 
1 J 

system 

The resultant R3 of hl and hZ with respect to Xz is formed 



therefore the h
i

(x
1
x

2
) = 0 have a common solution if and only if 

Hence xl = 

Substitution in h1 gives x2 = 2 

Substitution in g1 gives x3 = -1 

Substitution in f2 gives x4 = 1 . 

Hence the matrix solution is X 

This method could in theory be extended to a matrix equation 

of any degree involving matrices of any order. Without computer 

assistance however, problems of computation quickly arise as can 

be seen in the following case. 

Example 2.3.2. 

Consider the matrix equation XAX - B = 0 

where A = 

l-: ] 
B = 

(~: 
0 

] 2 4 

The matrix equation is equivalent to the four polynomial equations 

2 
f1 2x1 - x

1
x2 

+ x
1
x

3 + 2x
2
x

3 + 5 = 0 

f2 2x
1
x

2 
2 

+ 2x2x4 0 - x2 + x
1
x4 = 

f3 2x
1
x

3 
- x x + 

1 4 
2x

3
x

4 
+ 

2 1 0 x3 + = 

2x2x
3 

- x2x4 
2 

+ 4 0 f4 + x
3

x
4 

+ 2x
4 = 
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Let 

then 

The resultant of ~ and W with respect to x
4 

is 

R 

where 



21 

21 

Though this resultant could be evaluated, it would be 

difficult to achieve without computer assistance since there are 

100 terms in u.v.. The problems of computation would obviously 
1 J 

be greatly increased if the order of the matrices involved was 

greater than 2x2. 

2.4 ELIMINATION METHOD. 

A method of elimination which was known to algebraists of 

the last century has been adapted for the solution of systems of 

equations by computer. It is described by Williams [1962] and 

reduces the problem to that of finding the zeros of a polynomial 

in a single variable. Given a set of equations 

the method derives a set of n equations of the form 

f 1 (x 1x2 '··· ,xn ) 

f 2 (x2x3 ,··· ,xn ) 

f 3 (x3x4 ' .•. ,xn ) 

f (x ) ~ 0 
n n 

~ 0 

~ 0 

~ 0 
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and the set of solutions of F.(xl, ... ,x ) = 0, 
L n 

i = l, ... ,n 

is identical to the set of solutions of f.(xl, ••• ,x ) = 0, 
L n 

i = l, ... ,n. When x is obtained from the final equation, the 
n 

values of (x
l
x

2
' .•. ,x

n
_ l ) may be .found by back substitution. 

The method is illustrated in the following simple example. 

Given the two equations 

A 
2 2 

° · ...... xl - x2 = 

2 2 
0 B · ...... xl - xl + 2x

2 - x 2 - 1 = 

we need to eliminate xl and hence obtain an equation in x2 only. 

Let C = A - B 

2 

° C · ......... xl - 3x2 + x2 
+ 1 = 

Let D = B - xlC 

[3X~-X2-2JXl 2 
0 D · ......... + 2x2 - x2 - 1 = . 

Let E = [3X;-X2-2]c - D 

E 9 4 - 6x3 - 6x2 2 + 1 0 • . • . . . . . • • x2 2 2 + x2 =. 

the reduced system of equations of the required form is 

therefore 

C •••••••••• 
= ° 

E •••••••••• 

Each solution of E gives a corresponding value of xl when 

substituted in C and the solutions obtained are also solutions 

of the original equations A & B. 

This method may be applied to the constituent equations 

obtained from a matrix equation as shown in the following examples 
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Example 2.4.1. 

Consider the equation XAX = B where A 

The matrix equation is equivalent. to the four equations 

Step I . 

. . '. 

fl 

f2 

f3 

2 + 2x
l
x

2 10 = 0 xI - x x -I 3 

2 x
l
x

2 
+ 2x2 - x

l
x

4 + 2 = 0 

2x lx4 
2 

0 x
l
x

3 
+ - x - 9 = 

3 

Eliminate x
4 

between f3 and f4 by letting f6 = (2x2-x
3
)f

3 
-

3 2 2 
18x2 + 16x I f6 : x3 - x x - 2x2x

3 - 9x3 + = I 3 

After Step I we have 3 equations 1n 3 unknowns 

f I 
2 

+ 2x IX2 10 = 0 xl - x
l
x

3 -

2 ·2 2 2 
0 fS 2x lx2 

+ 4x1x2 - SX 1 + x x - x
l
x

3 
= 

I 3 

f6 
3 2 2 

18x2 + 9x
3 

+16x
I x3 - x

l
x

3 - 2x2x
3 - = 

Step 2. 

2x
l
f

4 

0 

0 
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Eliminate x2 
between f, and f7 by letting fS = (x,x3+'0)f, + x,f 7 

fS 
2 - 4x x - 20 0 : 3x, = , 3 

Eliminate x2 
between f, and f6 by letting f9 = 

2 
(x

3 
+9)£, + x,f6 

2 
2x3 - 'S = 0 

After Step 2 we have 2 equations in 2 unknowns 

2 2 
5x, - 2x3 - lS = 0 

Step 3. Eliminate x3 between fS and f9 

Let f 10 = x3fS - 2Xlfg 

2 3 
flO (3x,-20)x3 'Ox, + 36x 1 = 0 

Let 
2 + 4x1f 10 f'l = (3x -20)£S 

4 2 
f l' : 31x - 24x, - 400 = 0 

We now have 4 equations of the required type 

f 1,(x1) 
4 2 

- 400 = 0 = 3'x1 - 24x 
1 

f S(x 1x
3

) 
2 

- 4x,x3 - 20 = 3x 1 = 0 



25 

From equation f,,(x,) = 0 we have 2 4 2 '00 
x, = or x, = - --

3' 

the two real solutions for x, are x, = 2 or x, = -2. 

If x, = 2 back substitution gives x3 = -, x 2 x
4 = 3 

If x, = -2 back substitution· gives x3 = -3 x2 = -, x4 = -3 

.•. the two real solutions of the matrix equation are 

x = r 2 , 
,-' 

Example 2.4.2. 

Consider the matrix equation x2 = P where P -2 ] 

-, 
the constituent equations are 

f3 x,x3 + x3x4 - 4 = 0 

f4 
2 , 0 x

2
x

3 
+ x4 + = 

Eliminating x4 
gives a set of 3 equations in 3 unknowns 

f, 
2 

x,. + x2x
3 

+ , = 0 



26 

Eliminating x2 
gives 2 equations in 2 unknowns 

2 2 
2 f8 2xl - x + = 0 

3 

f9 
2 2 16x

1
x

3 
2 4 

+ 32 2x 1x3 - + 2x3 - x = 0 
3 

Eliminating 
2 gives xl 

Finally eliminating xl we obtain an equation in a single 

variable and now have four equations of the required type 

4 
x -

3 
2 2x
3 

- 8 = 0 

From f
12

(x
3

) = 0 we obtain two real solutions x3 = 2 or x3 = -2. 

If x3 = 2 back substitution gives xl = 

If x3 = -2 back substitution gives xl = -1 x = 1 x4 
= -1 

2 

Hence the two matrix solutions are X = 

( 
-1 

] 
X = 

(-1 

2 -2 -1 

Williams[1962] described how the complete procedure could 

be programmed for a digital computer using a ·polynomial. 

manipulation system •. The experience gained from programs using 

the procedure has been analysed by Moses [1966]. The conclusions 

] 
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are that the method gives fast and accurate results for small 

systems of equations. For large systems of equations the final 

polynomial ln a single variable can be of such a high degree that 

it is virtually impossible to solve for all the roots. Since a 

2 matrix equation involving mXm matrices. is equivalent to m 

polynomial equations this method would only give accurate results 

for. matrices of low order. 

2.5 DIRECT SOLUTION. 

In the case of matrix· equations involving.2x2 matrices it 

is possible in some cases to obtain a solution by solving the 

constituent equations directly making use of the fact that they 

are not completely general polynomials but have a special form. 

It is possible then :that any results obtained in the 2x2 case 

could be extended to matrices of larger order. Consider the 

equation 

the equivalent system of equations is 

(1) 

( 2) 

(3) 

(4 ) 

From equations (2) and (3) when 

Substituting in (1) and (4) gives Xl 
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and since xl + x4 

then 

+ i-4 

2 
Simplifying gives a quadratic in x 2 

or 

= 

Tr A+2,r1 AI Tr A-Z/jAf 
where Tr A = Trace A 

I AI = det A 
ond nei l::her ,.- A ±:2JiAi j~ zero. 

Having obtained x2 then x3 may be obtained from ' 

to obtain the corresponding values of xl and x4 . 

Subtracting Equation (4) from Equation (1) gives 

2 2 
xl - x4 = a l 

- a 
4 

and hence 

But 

Hence 

and 
x =.!. ra 2 _ x -(a l -a4)] 

4 2 lX2 2 a2 • 

.. ea I 
Since there may ·~.'oe -4 possible Avalues for X z and x3 xl x4 

may be obtained in terms of x2 ' then there are 'four possible 

matrix solutions. 
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Example 2.5.1. 

Consider the equation x2 ; A where A ; 

[-1 : ) -4 

then Trace A ; 6 and det A ; 25 

2 64 2 64 x
2 ; 6+10 or x 2 

;--
6-10 

x
2 

; 2, -2, 4i, -4i 

If 2 then 
-4x2 

-1 x
2 

; x3 ;-- ; 

8 

1 r8 2(~8)J xl ;"2 L"2 + 
; 

1 [} _ 2(~8)j 3 x
4 

; - ; 

2 

.Hence the matrix solution corresponding to this value of x
2 

is 

If x ;-2 
2 

then 

X;[l 2) 
-1 3 

x ; 1 
3 

x ;-1 
1 

the other real matrix solution is X 
-2 ) 

-3 

The constituent equations may be used to consider special 

cases, for example, the equation X2 ; A where A is singular. 

Putting det A ; 0 in the formula obtained for x
2 

gives 

and hence 
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Similarly placing the value for x
2 

in the formulae for xl 

and x
4 

gives 

and 

Hence if A is singular the equation X2 = A, where A is a 2x2 

matrix, has only two solutions which are 

x 
- I, ,·'4 [ :: :: I and. [::: ::: I 

2 Another special case to consider is the equation X = A 

where A is a derogatory matrix, i.e. its minimum polynomial is 

of lower degree than its characteristic polynomial. 

A 2x2 derogatory matrix is of the form 

Hence Trace A = 2C1. and Det A 
2 

= Cl. 

Putting these values in the formula obtained for x
2 

gives 

2 0 
x2 = 2C1.-2C1. 

Hence this formula does not lead to a value for x
2

• 

Considering the constituent equations when A is derogatory we 

have 

(1) 
2 

xl + x
2
x

3 
= Cl 

(2) x
2

(x
l
+x

4
) = 0 

(3) x
3

(x
l
+x

4
) = 0 

(4) 2 
x4 

+ x
2x

3 
= Cl 
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There are two cases to consider 

(1) If xl + x4 F 0 then x
2 

.= 0, x3 = 0 11 xl = 

Hence there are solutions X' = 

[ 
ra ;) 0 

(2) If xl + x4 = 0 then setting xl = a and x4 = -a 

from equation (1) 

Hence if x3 = b 

2 a-a 

2 a-a 
x 2 = -b-

ra, x4 = 

We therefore have the result that if A is derogatory.the 

equation X2 = A has an infinite number- of solutions of the form 

X = [a a~a2) 
b -a 

Example 2.5.2. 

Consider the equation X2 = A where A 

= [ : ~ ] 

since A is singular there are only two solutions which may be 

obtained by substituting in the formula 

Hence the two solutions are 6 2 
and 

-6 -2 - - - -
/7 -/7 /7 /7 

3 -3 -1 - -
/7 /7 /7 /7 

la 
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Example 2.5.3. 

Consider the equation X2 
= A where A ( 4 0 

) l 0 4 

Since A is derogatory there are 4 diagonal solutions 

o ) 
-2 

and also an infinite number of solutions of the form 

x = [ : 
4~a2 1 
-a J 

where a and b are arbitrary numbers. 

Consider the equation XAX = B where A = 

[ 
a

1 
0 

1 

B = 

[ 
b

1 

0 a2 b
3 

The constituent equations are 

(1) 
2 

b
1 = 0 a 1x 1 

+ a
2
x

2
x

3 
-

(2) a
1
x

1
x2 

+ a
2
x

2
x

4 - b = 0 2 

(3) a
1
x

1
x

3 
+ a

2
x

3
x

4 - b = 0 
3 

(4 ) 2 
- b = 0 a 1x2x

3 
+ a

2
x
4 4 

From equations .(2) and (3) 

Substituting in (1) and (4) gives 

=-

b2 

1 b4 
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a polynomial in Xz may be obtained 

+ b~} = 0 

and setting P = Trace (A B) and IAI = det A I BI = det B 

then b
Z 

{(PZ_4IAII B I )X~ Z Z 4\ 0 - ZbZPxZ + bZ J = Z 

Z b
Z 

Z bZ 

bZ " 0 then Z Z .oncl nei..l::her Xz = or Xz = and if 
P-U[ABT P+ZfTABT P±}iA61 I~ zero . 

...,,,{ 
Hence there moy..'be.4possibleAvalues for X z and therefore 4 possible 

matrix solutions. 

Example Z.5.4. 

Consider the equation XAX = B where A 
= [ 

0 

J 

B = 
[-3 

0 Z -1 

then P = Trace (AB) = -7 and IAI = Z I BI = 8 

Z 4 Z 4 
Xz = or Xz = 

-7-Z/16 -7+Zff6 

z, -Z, 
Zi -Zi 

Xz = 
m m 

By back substitution to obtain xl x3 x
4 

the two real solutions 

of the equation are 

x = 

Z 

1 -Z 
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Consider the equation X2 + X - A = o where X = ( 
xl X2 

1 
A = [ 

a l a 2 

1 l X3 X4 a 3 a 4 

The constituent equations are 

(1) 
2 

xl + X
2
X

3 
+ xl = a l 

(2) x2 (xl +x4 +1) = a 2 

(3) x
3

(x
l
+x

4 
+1) = a 3 

(4 ) 
2 x4 

+ x
2
x

3 
+ x4 = a 4 

Eliminating xl x3 x4 a polynomial in x2 is obtained 

+an = 0 

where P = Trace A and IAI = det A 

2 

and if then 2 = a 2 {(1+2P) ± 11+4P+16IAI } 
x2 2 p2 _ 41AI 

and 
a

3 
x3 = -x a 2 2 

a .~.' (a
l
-a

4
) 

x2} xl = ..!.. {~'-':J + 
2 Xi. ; a 2 

Example 2.5.5. 

2 
Consider the equation X + X - A = 0 where A = 

[
0 -5) 

10 10 
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then P = Trace A = 10 and det A = 50 . 

Substituting these values in the formula for x2 gives 

If 

= ~ {2 1 ± I8ii1 } 
2 100 - 200 or 

the two real solutions for x
2 

are 1 and -1 . 

then substitution .in the formulae for xl x3 x
4 

g1ves 

x =-2 
1 

= -2 

a solution of the matrix equation is X 

If x
2 

= -1 then substitution in the formulae gives 

x = 1 
1 

= 2 

a second solution of the matrix equation is X 

It may be concluded that in consideration of the equations 

X
2 = A , XAX = B, X2 + X - A = 0 where X, A, Bare 2x2 matrices, 

the element x2 can always be obtained directly as a function of 

the Trace and determinant of the coefficient matrices and by back 

substitution the other elements of X may also be obtained. 

2.6 CONCLUSION. 

Since any matrix equation can be expressed as a set of 

polynomial equations, solutions may be sought by consideration of 
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the constituent equations. Since the existence of a solution 

to the constituent equations depends on the values of the 

coefficients it is possible that consideration of the constituent 

equations could give conditions on the coefficient matrices 

necessary for a solution. 

This is clearly obtained in the simple case of the equation 

AX = B where 

A = [ :~ :: 1 X = [ :~ :: 1 

This is equivalent to the set of equations 

(1) alx, + a
2
x

3 
= b, 

(2) a,x2 
+ a2x

4 
= b2 

(3) a
3

x l 
+ a

4
x

3 
= b3 

(4 ) a
3
x

2 
+ a

4
x

4 
= b

4 

The solution of this system is 

a4b, - a 2b3 
xl = a,a

4 
- a

2
a

3 

a
l
b

4 
- a

3
b 2 

x4 = a
l
a

4 
- a

2
a

3 

a
4 

b
2 

- a
2

b
4 

a la4 - a 2a
3 

a
l
b

3 
- a

3
b

l 
a,a4 - a2a3 

The constituent equations clearly have a unique solution 

provided that a,a
4 

- a
2
a

3 
# 0 and this gives the condition on 

the coefficient matrix that det A ; O. 

In matrix equations of higher degree or involving matrices 

of higher order, while it is possible to obtain a particular 

solution with computer methods by consideration of the constituent 
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equations, it is difficult to obtain a general solution and hence 

deduce any conditions on the matrix coefficients. 

The results and difficulties encountered in applying the 

metho~discussed in this chapter appear to· support the opinion 

of Ingraham .[1941] who stated that expressing ·the matrix equation 

as a set of polynomial equations was the 'worst possible algorithm' . 

He said that a method which shows that ultimately a matrix problem 

can be solved in a finite number of steps but shows little else is 

of limited value. His view was that methods which essentially use 

the matrical properties of the elements of the equation were the 

only ones worth considering. 

All the methods considered in this chapter suffer from the 

same disadvantages of practical computation. The degree of the 

final equation in a single variable increases very rapidly as the 

order of the matrices involved increases. In the case of the 

quadratic matrix equation it will be shown 1n Chapter 4 that if 

2m the matrices are mXm then there can be C matrix solutions. 
m 

Hence for a quadratic matrix equation involving 4x4 matrices the 

number of possible solutions would be 8C4 ; 70. The final equation 

in a single variable would therefore be a polynomial equation of 

degree 70. 

It must be concluded that computational difficulties exist 

in attempting to deduce matrical properties for solvability of 

matrix equations by consideration of the constituent equations. 
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CHAPTER 3 

A Review of Established Methods of Solution 

of Various Matrix Equations 

3.1 HISTORICAL BACKGROUND. 

The study of matrix equations began as long ago as 1858 

when Cayley first discussed the equation X2 = P for matrices of 

order 2x2 and 3x3. He showed that a square matrix satisfies an 

algebraic equation of degree equal to its own order. This equation 

det [P - AI] = 0 is now known as the characteristic equation of P. 

Cayley used the characteristic equation in the 2x2 case to 

find solutions of the equation X2 = P. He showed that by 

substituting the matrix P for X2 in the characteristic equation 

of X, a linear equation in X could be obtained from which X could 

be obtained in terms of its own characteristic coefficients a
1
,a

2 

and the matrix P 

By using the fact that a 1 = - Trace X and a
2 

= det X, two equations 

~n the unknowns a
1 

and a 2 are obtained and solutions of these 

equations lead to matrix solutions X of the equation X2 = P. 

Sylvester [1884,(A)] published many new results concerning matrix 

equations. He discovered that in the 2x2 case the equation X2 = P 

has 4 solutions if P has distinct eigenvalues and 2 solutions if 

P has equal eigenvalues. 

In considering the equation XP = PX Syl ves ter. Lt 884.,!6»)."ppl,·ed \1.e. 

name derogatory matrix to the class of matrices which satisfy an 
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equation whose degree is less than the order of the matrix. He 

obtained conditions for the solution of the equation PX = XQ 1n 

the 2x2 case by considering the 4 constituent equations in the 

elements of P, Q and X. He showed that a non zero solution 

existed only if 

where a, a 2 and S, S2 are the characteristic coefficients of P 

and Q. 

This expression is the resultant of the characteristic 

polynomials of P and Q. Hence, the condition that this resultant 

should be equal to zero ·is precisely ~he condition that the 

polynomials should have a common factor and hence that P and Q 

should have a common eigenvalue. 

Sylvester U88J,)<~ .. "'t:on to extend this result to matrices of any 

order and also obtained results concerning the general linear 

it as 

+ A 0 BTl x = c n nJ-

where ® denotes the Direct. or Kronecker product and ~ and ~ are 

column vectors formed from the rows of X and C respectively taken 

in order. The matrix 

was called by him the nivellateur although he did not recognise 

it as the sum of direct products. 

In the same year ['884] Sylvester (D) began to study the 
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unilateral matrix quadratic equation. Considering the matrix 

equation 

xZ - 2PX + Q = 0 

where X, P, Q are zx2 matrices, and defining the characteristic 

equation of X as 

Sylvester showed that X could be expressed 1n terms of the unknown . 

characteristic coefficients as 

, -, 
X = - [P-a I] [Q-a I] z, Z 

Using the fact that Za, = Trace X and a Z. = det X then a, 

and a Z can be obtained in terms of the known elements of P and 

Q and hence the matrix solution X obtained. 

Sylvester also showed in the 2xZ case that every characteristic 

root of a solution X of 

AoXZ + A,X + AZ 0 

is a root of 

He suggested that this could be extended to the unilateral equation 

of degree n. This was later proved by Buchheim ['884] who showed 

that in general, if X satisfies 

AoXn + A,Xn-, + ••• +A =0 
n 

then every characteristic root of X satisfies 

Sylvester (Z) suggested that if the A. and X are mxm matrices 
1 

then the chaiacteristi'c p·olynomial of a solution X will be a· 
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factor of degree m of the determinant 

Since the determinant is of degree mn then the maximum number of 

solutions will be the number of combinations of mn elements 

chosen m at a time. 

He suggested that solutions of the matrix equation may be 

obtained by choosing a factor ~(A) of degree m from 

as the characteristic polynomial of a solution X. Then by 

combining ~(X) = 0 with 

AoXn + A1X
n

-
1 

+ •••• An 0, 

higher powers of X are eliminated until a linear equation in X 

is obtained from which the solution may be found. 

Sylvester's results and publications in 1884 provided the 

foundation for further study which was subsequently undertaken 

by many mathematicians. 

Frobenius [1896] studied the equation X2 = P and Baker [1925] 

and Dickson [1926] later extended his work to find all the solutions 

of Xm = P which are expressible as polynomials in P. 

Kreis [1906], Roth [1928] and Franklin [1932] studied the 

equation p(X) = A where peA) is a polynomial with complex 

coefficients. Kreis and Roth obtained solutions which are 

polynomials in A and Franklin gave a method for finding solutions 

which are not expressible as polynomials in A. 

Roth [1930] considered the solution of the general unilateral 
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matrix equation 

where the A. are pxq matrices and the X is a qxq matrix. This 
1 

method is described later in this chapter along with several 

other methods which have been established since then. 

Bell [1950] has shown that the unilateral matrix equation 

has an infinite family of solutions if and only if there exist 

two distinct solutions Xl and X2 which are similar. 

A great deal of research into matrix methods and equations 

has taken place in the last fifty years and the field of knowledge 

has expanded rapidly. With the advent of computers. numerical 

methods have advanced tremendously. 

The following sections include a small selection of methods 

for solving various matrix equations. 

3.2 A SURVEY OF SOME METHODS OF SOLUTION OF THE UNILATERAL 

MATRIX EQUATION. 

This section is devoted to a study of four methods of 

solution of the unilateral matrix equation 

The coefficients A. i = O.I.2 •...• n are matrices with 
1 

(3.2.1) 

constant elements and X is a square matrix of unknown elements. 

Defining the lambda matrix A(A) as 

then it can be shown [Lancaste~ 1966] that if X is a solution of 

(3.2.1) then [AI - X] is a right (left) factor of A(A). 
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Proof. 

() A ' n + n-l A A = 0" AlA + .... + An 

= A An-l (AI-X) + (A X+A )An- 1 + A
2
An- 2 + .... + A 

001 n 

= [AOA n-l + (A
o

X+A
1

)A n-2J (AI-X) 

2 n-2 n-3 
+ (AoX +A 1X+A2)A + A3 A + 

(A Xn-l+A Xn-2 A ).l ('I X) o 1 + ••.• n-l j " -

+ A Xn + A Xn- 1 + A X + A o 1 •••• n-l n 

Hence the lamda matrix A(A) may be written as 

Similarly it may be shown that A(A) may be written as 

+ A 
n 

A(A) = [AI-X]Q2(A) + A Xn + A
1
Xn- 1 + .••. A IX + A 

o· n- n 

where Ql(A), Q2(A) are polynomials in A with matrix coefficients, 

and hence if X is a solution of (3.2.1) then 

or 

From this it can be· seen that 

det.A(A) = det Q(A). det[AI-X] 

and hence det[AI-X] is a factor of detA(A) or the characteristic 

polynomial of a solution X is a factor of det.A(A). 

This result is frequently used in the methods of solution 

which follow. 
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Method 1. 

This method is described by Gantmacher (1959) and uses the 

result previously proved, that if X is a solution of (3.2.1) 

then the characteristic polynomial of X is a factor of det A(A). 

Since X satisfies its own characteristic equation then X 

also satisfies the scalar equation 

g(A) = 0 where g(A) = det A(A). 

If g(A) = 0 has solutions A1,A2 ,A
3

, •.• ,A
r 

then g(X) = 0 has an 

infinite number of solutions of the form TDT- 1 where D is a 

diagonal matrix with ·A. on the diagonal. 
~ 

-1 Since solutions of g(X) = 0 are of the form TDT then 

solutions of the same form are sought for equation (3.2.1). 

Substitution in the equation gives 

+ •••• + A 
n 

+ •••• + A = 0 
n 

and mUltiplying on the right byT 

= 0 

Since the A. and D are known this gives a linear equation 
~ 

in T. Solving for T gives the particular transforming matrix 

which is necessary to obtain a solution of (3.2.1). 

Example 3.2.1. 

Consider the equation AoX2 + A
1
X + A2 = 0 

where 
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= (A-2)(A-l)(A+l)(2A+l) 

g(A) = 0 has solutions Al = 2 

Choosing 0 = 

[ ~ 
0 

) 
then 0

2 

[ 2 0 

and setting T = 

[ 
tl t2 

) t3 t4 

[

-lIt-lIt 
1 3 

-13t -13t 
1 3 

becomes -St ) = 0 4 . 

-St 
4 

T is any matrix with tl = -t
3 

and t4 = 0 

: ) 
x = TOT -1 = 

and 
-1 

T 

A2. = [-16 
-18 

-15 ) 

-17 

Other solutions may be obtained from different choices of elements 

for 0 

gives 3.4 ) 

-1 
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However the choice of D 

since this gives T 
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gives 

gives 

gives 

2.5 )J 

-0.5 

X=f-16 -17] 

l 15 16 

x = f -4.75 

l 3.75 

-4.25] 

3.25 

[0 ~] does not lead to a solution 

which 1S singular and hence a 

solution of the form TDT- 1 does not exist for this choice of D. 

This shows that every factor of det A(A) is not necessarily 

the characteristic pOlynomial of a solution X of the equation 

(3.2.1) • 

Method 2. 

This method also obtains the solution. by finding a diagonal 

matrix D and a suitable transforming matrix. It is described in 

Dennis, Traub and Weber [1976] and is virtually the same as 

Method 1 but the terminology is different and is in fact the 

same as is used by Lancaster. 

The terms latent roots and latent vectors are used. They 

are defined as follows. 

A solution of A1 of g(A) = 0 where g(A) = det IA(A) I is 

called a latent root of the lambda matrix A(A) and a vector b 

is called a latent vector if, for a particular latent root A1 
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then A(A 1). ~ = o. 

The method uses the fact that if X is an mXm matrix and if 

~1 ~2'···'~ are linearly independent (mx l) latent vectors 

corresponding to the latent roots Al ,A 2 ,· ... ,Am then 

where 

and 

X = TDT- 1 is a solution of (3.Z.1) 

T = 

D = 

(~1 ~2'··· ,~) 

r Al 0 0 

0 A
Z 

0 

................ 
o o A 

m 

Example 3.Z.Z. 

where 

Consider the equation AoXZ + A1X + AZ = 0 

o 

o o 

o 

o 

o 

o 

o 

Z 

then g(A) = det IA(A) I = AZ(A-Z)Z(A+2)(A+3) 

The latent roots are Al = 0 AZ 
= 2 A3 = 

Taking Al = 0 then A( AI) = -4 -Z -Z 

-Z -1 -1 

0 Z -Z 

The latent vector corresponding to Al = 0 is -a 

a 

a 

A
Z 

= -4 

-Z 

o 

-Z A4 = -3 

-Z -Z 

-1 -1 

Z -Z 
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Similarly the latent vectors corresponding to 

"2 = 2 "3 = -2 "4 = -3 are b -2d 5e 

-c -d. 4e 

c d e 

Choosing 0 1 
= 0 0 0 then T = -a b -2d 

0 2 0 a -c -d 

0 0 -2 a c d 

and X TO T- 1 2 5 
= = -3 '3 1 

4 1 
-1 - 3 -3 

4 1 
3 3 

Choosing O2 = 2 0 0 then T = b -2d 5e 

1 0 -2 0 -c -d 4e 

0 0 -3 c d e J 

and X TO T- 1 2 43 1 
= = - 3 -15 - 5 2 

4 14 8 
- 3 -15 - 5 

4 31 7 
3 15 5 

Choosing o o o then T = -a -2d 5e 

o -2 o a -d 4e 

o o -3 a d e 
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and X = TO r- 1 
= -2 -1 -1 

3 

-2 0 -2 

4 S -3 "3 "3 

Choosing o o o then r = -a b Se 

o 2 o a -c 4e 

o o -3 a c e 

and X TO r- 1 4 7 
4 "3 "3 

S 2 
-1 

3 "3 

0 -1 

Method 3. 

An algorithm for the solution of (3.2.1) is given by Ingraham 

[1941]. The following results and definitions are used. 

(1) A matrix with elements which are polynomials in A is said 

to be unimodular if its determinant is a constant k'
J 

k ~ 0 • 

(2) A matrix A(A) is in upper (lower) triangular form if all the 

elements below (above) the main diagonal are zero. It is in 

canonical triangular form if all the elements above (below) 

the ma1n diagonal are of lower degree than the elements in 

the same column. on. the main diagonal and if when a zero 

occurs on the main diagonal the whole row in which it occurs 

is zero. 

A description of the algorithm follows. 
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As in the previous methods we define the lambda matrix 

+ ••• + A 
n 

As shown previously, if X is a solution of (3.2.1) then [AI-X] 

is a right factor of A(A). 

Then A(A) = P(A) [AI-X] for some lambda matrix peA) and if 

U is a unimodular lambda matrix, then 

UA(A) = UP(A)[AI-X] 

Hence if X is a solution of (3.2.1) then [AI-X] is a right factor 

of UA(A). 

Moreover for any lambda matrix A, a particular unimodular 

matrix U may be chosen so that UA(A) is in canonical triangular 

form. Writing A instead of A(A) for ease of notation and assuming 

that any new matrices introduced in. the following algorithm are 

lambda matrices, then since [AI-X] ~s a right factor of UA we 

may write UA = H[U-X] where H is a .IQl\'lbdcc . mClCn"~. 

UA = HV-1V[AI-X] where V is the unimodular matrix such 

that V[AI-X] is in canonical triangular form. 

and hence V[AI-X] is a right factor of UA. 

The problem is therefore reduced to finding the triangular 

factors of UA which are the canonical triangular forms of matrices 

of the type [AI-X] where X is independent of A. 

Let T = V[AI-X] 

Then UA = (HV- 1)T and since UA and T are in canonical 
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triangular form then (HV- 1) is also in triangular form and hence 

the diagonal elements of T are factors of the corresponding 

elements of UA. 

The problem is now to determine an X such that T satisfies 

the required conditions. 

If T = V[AI-X) 

then V- 1 = (AI-X)T- 1 

and since V is defined. to be unimodular then V- 1 will have elements 

which are polynomials in A rather than rational functions of A, 

since the determinant of V is a constant function. 

The problem is therefore reduced to. finding an X such that 

[AI-X)T- 1 is a matrix with elements which are polynomials in A. 

The algorithm is illustrated in the following example. 

ExamEle 3.Z.3. 

Consider the equation A xZ 
0 

+ A1X + A
Z 

= 0 

where A = 

[ ~ ) A1 = [ -~ o } 

A
Z 

= 

[ 0 

0 

A(A) 

[ 
Z 

} 
= A -ZA +1 A-1 

A +1 AZ_1 

and UA 

[ : A3 3 Z A 

, 1 
= - - + - A + - -4 4 Z 

A(A-1)(A+1)(A-Z) 

where U = 

[,:-, 
(-A + 3) 

1 
. -4-

Z 
A -2A+1 

-1 

-1 } 
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Now writing UA ~ (RV- 1)T where T ~ V[AI-X] and T is in 

canonical triangular form, then the diagonal elements of Tare 

factors of the corresponding elements of UA which are and 

A(A-l)(A+l)(A-2). 

Choosing 1 and A(A+l) as the diagonal elements of T then the 

diagonal elements of (RV-I) are 1 and (A-l)(A-2) 

But 
A3 3 2 

--+-A. 
4 4 

A 
+ --2 

o A(A-l) (A+l) (A-2) 
, 1 

Hence 

and comparing coefficients of A gives 

1 1 
h ~-

1 "4 t ~ 1 - 2" 

We have therefore obtained the matrix T 

] 
Now T ~ V[AI-X] 

A3 3 2 _--+-A 
4: 4 

A 
+ 2" -

and since V is defined to be unimodular, the matrix (AI-X]T- 1 
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functions 

Let 

then 
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elements which are polynomials ~n A rather than rational 

of A. 

X = [ xl x2 

x3 x4 

[AI-X]T- 1 

" [ 

= A-X 
1 

-X 
3 

) 

A-X 1 -x2 

-x 3 A-X 4 

A2 
2+ 

A (1 -

A 

I [ 
2"+1 

! 
A (HO 

0 
1 

A (A + 1 ) 

(1 - ;l).A_ xl - X2 1 
A (A+1) 

X3) _ X 
2 3 - X 4 

A (A +1) 

Hence A22 + [1 A(A+l) must be a factor of - x - x 
1 2 

This imposes the restriction that Xl = and x2 = -1 and A(A+l) 

must be a factor of A[l - ;3) - x3 - x4 . 

This imposes the restriction that x3 = 2 and X = -2. 
4 

Hence we have obtained the values of Xl x
2 

x3 x
4 

which ensure 

that the elements of [AI-X]T- 1 are polynomials in A. 

For these values then X is a solution of the equation 

A X2 + A1X,+ A = 0 
0 2 

X = 

[ 
-1 

) 2 2 

Other solutions may be obtained by choosing other combinations 

of factors for the diagonal elements of T. 
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~.g •• choosing the diagonal elements to be 1 and (A-l)(A+l) leads 

to 

and 

A 
"4 "4 

1 1 
(A-l) (A+l) 

Ingraham gives an algorithm for obtaining a solution X from the 

matrix T. 

The steps are as follows: 

(1) Augment each element of T by the proper powers of A with 

zero coefficients so that terms of the same degree as in the 

corresponding diagonal elements appear- in eoc.h column. 

(2) Break up each column into separate columns each one of which 

involves monomials -of the same degree in A. 

e.g. 

[ 
aA+b ] + [ aA 

cA+d CA 

(3) Delete the columns which do not involve A. 

(4) Set A ~ 1 obtaining the matrix D. 

A necessary and sufficient condition that there exists a 

matrix X such that T ~ V[AI-X] is that D is non-singular. 

Let T ~ T 
o 

+ •••. 

A solution X may be obtained from the matrix D. 

First find the matrix B as follows: 

If t .. f 1 
JJ 

then b. ) 
Jm 

-1 = (0 .... 0, -1, 0 .... O)D 
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where the -1 occurs in the position corresponding to the column 

of D containing t (where t 1. . kj 
2 

=t +tl A+t2 A .•... ). 
°kj kj kj JJ 

-1 
• ; •. b. ) = Cl. D where Cl. is a 

Jm J J 

b . d b k· h .th f h . b . d 1xm vector 0 ta1ne y ta 1ng t e J row 0 t e matr1x 0 ta1ne 

in Step 2 by deleting the columns involving the leading term of 

tkk for every k and setting A = 1. 

Then the solution is X = BT . 
o 

The algorithm may be illustrated by finding further solutions 

for example 3.2.3. 

Taking T = 
[ 

A-1 

} 0 A(A-2) 

Step (2) 

[ 
0 A -1 

} 0 A2 -lA 0 

Step (3) 

[ 
0 A 

} A2 -lA 

Step (4) D 

[ 
0 ) -1 [ 

2 

] 
= and hence D = 

-2 0 

(b 11 b 1 2) = (1 -1) 

[ 
2 

] 
= ( 1 1 ) 

0 

(b
21 

b
22

) = (0 -1) [ 2 

) 
= (-1 0) 

0 

B = 

l: 
] and a solution X 1S obtained from X = BT 

0 

0 
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Taking 

Also 

Taking 

Also 
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x ~ [1 1 ] [1 -1) ~ [1 -1) 
-1 0 0 0 -1 

T ~ [~ :~: -1) ) gives D ~ [~ _:) 

-1) 1 ) 

~ (0 -1 ) [1 ~ ) ~ (-1 0) 

x ~ BT 
o ~ [-~ ~) [ ~ -1 ) ~ [0 0 ) 

o -1 1 

B ~ 

x ~ BT 
o 

T ~ 

[ ~ 
B ~ 

[-~ 

A-1 
(>--1 )(>--2) 

~ >- ] 

(~+1)(A-2) 
gives D ~ 

[ ~ -~ ) 

! ) 

D ~ 1 -1 [ 

-1 and D 

and D -1 
~ 

~ ) 

~ ) 

[ 
2 

~ ) 2 
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Since all combinations of factors of UA have now been used 

this shows that there are 6 solutions for the equation 

Method 4. 

This method applies to the case when the coefficient matrices 

A. of the unilateral matrix equation (3.2.1) are not necessarily 
1 

square. It is described by Roth [1930]. 

Let the coefficient matrices A. be pxq matrices and let X 
1 

be a qxq matrix. 

Again the lambda matrix A(A) is used where 

A(A) = A An + A
1
An- 1 + •••• + A 

o n 

The following properties hold: 

(1) For every characteristic· value A. of a solution X of (3.2.1) 
1 

the rank of A(A.) is less than q. 
1 

(2) If p > q the determinant of a qxq matrix formed from A(A) by 

deleting any (p-q) of its rows is divisible by the characteristic 

polynomial of a solution X or is identically zero. 

(3) If p < q a solution X of (3.2.1) may have arbitrary characteristic 

values. 

The following example illustrates how property (2) may be 

used to obtain a· solution of (3.2.1) when p > q. 
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Example 3.2.4. 

Consider the equation Ax2 
0 

+_A1X + A2 = 0 

where A = -2 Al = 0 A2 = 5 
0 

0 2 2 -1 -16 

0 0 3 -13 

A(A) 

[ 
2 1. 2_3 then = -21. +1.+5 

21.-16 2 21. -1.+6 

l 1.
2
-13 31.+3 

Deleting Row of A(A), the determinant of the 2x2 matrix so 

formed is 

Deleting Row 2 of A(A), the remaining determinant is 

det [-21.
2

+1.+5 1. 2_3 

] 1. 2-13 31.+3 

2 2 = (A -31.+2)(-1. -91.-12) 

Deleting Row 3 of A(A), the remaining determinant is 

det [-21.
2

+1.+5 

21.-16 

2 2 = (A -31.+2)(-41. -101.-9) 

-3 

6 

3 
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By property (2) the three determinants obtained must be 

divisible by the characteristic polynomial of a solution X. It 

is clear that all three determinants are divisible by the factor 

(A 2-3A+2)'and hence this may be taken as the characteristic 

polynomial of a solution X. 

2 
Since the roots of A -3A+2 = 0 are A = 

the Jordan Normal Form of x is X = [ 0 

be sought of the type X = TXT- 1 . 

and A = 2. then 

and solutions may 

Following Method I we must find a matrix T such that 

Let 
T = [:: :: 1 then 

since X = and -2 [ X = 

o 

substitution in the equation gives t3 = 2t1 and t2 = t 4 • 

Hence 
-1 

T 

: 1 

We now consider the case where the coefficient matrices A. 
1 
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loO 

of- equation (3.Z.1) are pxq matrices and p < q. 

As stated in property (1) , the rank of A(A.) is less than 
1 

~for every characteristic value A. of a solution X. 1 

this condition is always satisfied by an arbitrary A .. 
1 

When p < q 

Let X = TXT- 1 be a solution-of (3.Z.1) where X is the Jordan 

Normal Form of X and X has arbitrary characteristic values p .. 
1 

Roth describes a method for obtaining the transforming matrix 

Tnecessary to obtain solutions X. 
m. 

1 If (p.-A) are the elementary divisors of the matrix X and 
1 

if t.(A) are matrices satisfying the identity A(A) t.(A) = 0, 
4 4 

then the m. columns of the transforming matrix T corresponding 
1 

to the particular characteristic value p. are given by 
1 

t (p . ) 
m. 1 

1 
[ 

(m.-1) (P.) ) 
_ t (p .) t' (p . ) - . . •. t 1 (' 1) I 

- 1. - 1 - m.. 
1 

The method is illustrated 1n the following example. 

Example 3.Z.5. 

Consider the equation A xZ 
0 

+ A
1
X + AZ = 0 

where A = 
0 

(Z 1) A1 = H 1) AZ 
= ( 1 -Z) 

A(A) (ZA Z-A+1 Z 
then = A +A-Z) 

We need to find the matrix ! (A) such that A(A) .!(A) - o. 

Let t (A) -

then A(A) !(A) - [AOAZ+A1A+ AZJ ~+!1A+!ZAZJ 

- Ao!.ZA 
4 

+ ~o!.1 +A 1!Z] A 
3 

+ [Ao!.o +A1!1 +AZ!Z] A Z 

+ [A1!.o + AZ!1J A + AZ!.o 
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If A(A) t(A) - 0 then the coefficients of Ar are all zero 

A~2 = 0 

A~l + Al!2 = 0 

A t + -A t + A2!2 = 0 
0-0 1-1 

A1!o + A2!1 = 0 

A2!o = 0 

Solving these equation gives 

!1 = a 

[ J 

t (A) :: a 

- a l--2+A+A
2

2
] 

-1 +A-ZA 

and t' (A) - a 

[
1 +ZA ] 

1-iM 

If (Pl-A)2 is the characteristic polynomial of X then the 

Jordan Normal Form of and the col~s of the 

transforming matrix T are given by 
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If however (P l -A)(P 2-A) is the characteristic polynomial of 

X then the Jordan Normal Form of o ) and the co lumns 

P2 

of the transforming matrix T are given by (!(P
l
) !(P 2» 

Hence solutions are given by 

where 

where 

il.g. if P
l 

X is (1_A)2 

= 1 and the characteristic polynomial of a solution 

then T = a 
1 

[ 
0 3 ) 

-2 -3 

and a solution Xl = a 

If P
l 

= 1 and P2 = 2 and the characteristic polynomial of a 

T2 = a [ 0 4 ) 

-2 -7 

solution X = (1-A)(2-A) then 

and a solution X2 = a 
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This illustrates the fact that the equation Aox2 + A
1
X + A2 = 0 

has an infinite number of solutions when the coefficient matrices 

are pXq matrices such that p < q. 

3.3 THE QUADRATIC MATRIX EQUATION. 

The methods described in 3.2 for the solution of the unilateral 

matrix equation of degree n may obviously be applied to the unilateral 

quadratic matrix equation. They may also be used to solve the 

quadratic equation 

XEX + DX + XF + G = 0 (3.3.1) 

since this can be made unilateral by the substitution 

Z = XE + D 

The equation then becomes 

This substitution can only be made however when E is non singular. 

There are many methods which are specifically designed for 

the solution of the quadratic matrix equation and in particular 

the algebraic matrix Riccati equation where P is the symmetric 

matrix which is the solution of 

-1 T T 
PBR B P - A P - PA - Q = 0 (3.3.2) 

This equation has been studied widely because of its importance 

in control theory. 
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In this section five methods are described for the solution 

of the Quadratic Matrix equation. 

Method' . 

This method for the unilateral quadratic matrix equation 

relies on the formation of a 2mx2m'matrix and is described by 

Roth ['950]. 

2 
Consider the equation X + A,X + A2 = 0 where X, A, A2 are 

mxm matrices. 

The 2mx2m matrix R is formed where R = [ 0 

-A 
2 

T 
= [ 

X I 

) 
and "-, 

= [ : 
I 

) 
T 

I 0 -X 

Let 

then TRT-' = 
[ 

X+A, -(X
2

+A,X+A2)] 

I -X 

and if X is a solution of x2 + A
1
X + A2 = 0 

then TRT- 1 = 
[ 

X+A, 0 ]. 
I -X 

Hence the matrices Rand 

[ 
X+A, 

o ] 
are similar 

-------. I -X 

and det [R-AI] = det [ (X+A1) -AI]. det [-X-AI ] 

det [R-AI] is reducible to polynomials f(A) g(A) which are 

the characteristic polynomials of (X+A1) and (-X) respectively. 
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and g(-X) = 0 

f (R) : ) 
T f(R) T-

I = f [ 

T f(R) T-
I 

= [ : 

f [ 
,I 

is the characteristic 

f (X+A
I
) = 0 • 

[ 
XM+N XU+V-(XM+N)X 

M U-MX 

o ) 
-x 

XU+V - (XM+N)X ) 

U - MX 

polynomial of (X+A I ) then 

) = [ 
0 

f: -X») * 

XM+N = 0 and. XU+V - (XM+N)X = 0 

are simultaneously satisfied whether M is singular or not and X 

may be obtained from 

either X = -NM- I or X = _VU-I 

The method therefore consists of forming a 2mx2m matrix R 
.' 

from· the coefficient matrices of the equation. The characteristic 
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polynomial of R is then derived and a factor f(A) of degree m is 

chosen. The matrix feR) is then evaluated and a solution X may 

be obtained from this matrix. The following example is an 

illustration of this method. 

Example 3.3.1. 

Consider the equation X
2 

+ A1X + A2 = 0 

where 

The 4x4 matrix obtained is R = 0 o o 

o o o 

o 2 -2 

-4 10 o 

and det [R-AI] = A4 - 2A 3 - gA 2 + 2A + 8 

Choosing the factor (A
2

+3A+2) as f(A) 

then f (R) = 2 2 4 -2 

-4 12 o 4 

8 -12 6 -8 

-16 40 -4 16 

2 ) 

12 
M = [ : -12] 

40 

-8 ) 

16 
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and a solution X -1 = -NM 

X = 

[-: 8) [~ t) -16 ~ 

X = [-1; 5 
1.25 

) -3.5 

A different solution may be obtained by choosing the factor 

2 f (A) (A -5A+4) as 

then f (R) = 4 2 -4 -2 

-4 14 0 -4 

8 -28 0 8 

16 -40 -4 10 

and M = 

[ 
4 -2 

) 
N = 

[-: 1: ) 0 4 

and a solution X 
-1 

= -NM 

X = 

[ : -8 

) [- ! -t ) -10 

X = r '0 2 

) 3 \-1 

Method 2. 

An adaptation of Method 1 for the solution of the general 
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matrix Riccati equation (3.3.1) is described by Freested, Webber 

and Bass [1968]. 

Consider the equation XEX + DX + XF + G = 0 where all the 

matrices are mXm matrices. 

The 2mx 2m matrix H is formed 

where 

Let 

so that 

Then if X 

Let 

and 

THT = -F-EX 

-1 
T 

-1 [ 

-XF-G-XEX-DX 

~s a solution of (3.3.1) 

THT- 1 = 

[ -F-EX E 

0 XE+D 

THT- 1 
= H = ( F 

~ ) l 0 

) 

where 

then the matrices Hand H are similar and 

A 

F = - F - EX 

D = XE + D 

det [AI-H] = det [AI-H] = det [AI-F]. det [AI-D] 

A 

Let f(A) = det [AI-F] and let f(H) = [ 

then since THT- 1 = H 

f(F) 

o 
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T f(H)T-' = [ : 

H,,-H'2X 

X(H,,-H,2X)+H2,-H22X 

[ 

H,,-H'2X 

X(H,,-H'2X)+H2,-HZZX 

f(F) 

o 

But f(F) = 0 since f(A) is the characteristic polynomial of F. 

Hence and 

-, 
X can be obtained from either X = H'2 H" 

Example 3.3.2. 

Consider the equation XEX + DX + XF + G = 0 

where E = 

[ ~ -~ ) 
D = [-: ) 

F = 

[-: 
-, 

) 0 , 

G = (-23 30 ) . 
-20 26 

Forming the 4x4 matrix H = -, 0 

-, 0 -, 
23 -30 -, 
20 -26 0 
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and det [AI-H) = A4 + 3A 3 - 48A 2 - 77A - 9 

= [A 2 + 8A + 1 )[ A 2. - SA - 9) 

Choosing the factor 2 [A + 8A + 1) as f(A) 

then f(H) = 18 -24 6 0 

-14 21 0 -7 

128 -183 18 37 

137 -192 27 28 

Hll = 
[ 18 

-24 

) H12 = 

[ 
6 0 

) 
H21 = 

[ 
128 -183 

) -14 21 0 -7 137 -192 

H22 = 
[ 18 37 ) 

27 28 

and a solution X may be obtained from X -1 
= H12 Hll 

X = 

[ 
6 0 r [ 18 

-24 

) 0 -7 -14 21 

-24 ) 

21 

X = [ : -4 ) 

-3 

Another solution may be obtained by choosing the factor 

2 [A -SA-9) for f(A) • 
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Then f (H) 21 -37 -7 o 

-27 24 o 6 

-171 207 21 24 

-123 146 14 18 

= [21 -37] 

-27 24 

and a solution X 
-1 

= H12 Hll = [-39 ~7] 
-"2 4 

Method 3. 

This method may be applied roJioJ"thesolution of the Matrix 

Riccati equation. The method involves the computation of the 

eigenvectors of a 2mx2m matrix and the solution is then described 

in terms of these eigenvectors. 

Consider equation (3.3.1) XEX + DX + XF + G = O. 

Potter [1966] shows that every solution X of this equation 

-1 . 
has the form X = (£'1 £.2.··· .£m) (~1 ~2'··· '!:m) where the column 

vectors b. and c. are the upper and lower halves of an eigenvector 
-1. -1. 

of the 2mx2m matrix M where 

M=[D G) 
-E -F 

This can be verified quite simply as follows: 

Let T be any matrix which transforms M into its Jordan Normal 

Form. Then the columns of T are the eigenvectors of M. 
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Let 

T = [:: :: 1 
and let the Jordan Normal Form 

of M be [ ~ 1 J 2 1 where the matrices J 1 and J) are upper 

J) 

triangular 

then r- 1MT = J 

or MT = TJ 

[ 

DT1+GT) 

-ET -FT 
1 ) 

DT2+GT
4 

-ET
Z

-FT
4 

From this we can obtain the two equations 

Multiplying equation (a) -1 . on the right by T) glves 

T1J 2+TZJ) 

Tiz+T4J ) 

(a) 

(b) 

(c) 

-1 
MUltiplying equation (b) on the left by T1T) and on the right 

-1 
by T) gives 

Subtracting eq~ation (d) from equation (c) we obtain 
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-1 . 
and hence X = T1T3 1S a solution of the equation (3.3.1) and 

since the columns of T1, T3 are the upper and lower halves of 

eigenvectors of M the result is verified. 

Potter shows that in consideration of the equation (3.3.2) 

then 

and if the columns of [ :~ ) are chosen to be the eigenvectors 

corresponding to the eigenvalues of M which have negative real 

-1 
parts then the solution P = T1T3 is the unique positive definite 

solution of (3.3.2). 

Example 3.3.3. 

Consider the equation XEX + DX + XF + G = 0 

where E = 
[ 

-1 

) 
D = 

[ -~ ) 0 2 

G = [-1: 9 

) -7 

then M = 3 -14 9 

-1 2 7 -7 

-1 -3 

-1 0 -1 -2 
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and det [AI-M] 4 Z = A -Z3A -Z8A+165 

The eigenvalues of M are 

The 

The 

and 

eigenvector 

eigenvector 

x = T T- 1 
1 3 

-7+lili 
Z 

associated with A3 is 1 
6 

associated with A4 is 1 
6 

[ :: ) 
1 

4-zlili =6 

1 +Iili 

5-lili 

6 

4 - Zlili 

1 +Iili 

7-./5 
AZ = -Z-

-7-lili 
Z 

4 - Zlili 

+ Iili 

5 - Iili 

6 

4 + Zlili 

- Iili 

5 + Iili 

6 

4+zlili 

l-Iili 

5+lili 

6 

4+zlili 

l-Iili ] [ 
5-l11i 

6 

LS the unique positive definite 

solution. 
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Method 4. 

This method is a vari·ant of the eigenvector approach used 

in Method 3. The use of eigenvectors is often highly unsatisfactory 

from a numerical point of view and Laub [1979] describes a method 

which uses the Schur Canonical. Form of a matrix and expresses the 

solution in terms of Schur vectors. 

The following results and definitions are used: 

(1) 
T ~1 . 

A matrix is orthogonal if A = A • 

(2) Let A be a matrix with eigenvalues ~,A2, ... ,An 

- T Then there exists an orthogonal matrix U such that A = U AU 

where A is upper triangular with diagonal elements A/lA 2 ,··· ,An. 

A.i:s said to be the Schur Canonical Form of A. 

The method is applied to the Matrix Riccati equation 

The matrix Z is formed 

where Z = [ A 

-Q 

Let S be the. Schur Canonical Form of Z 

then Z = USuT where U is orthogonal and S is upper triangular. 

Since U is orthogonal UT = -1 
U 

and hence ZU = US 

Let and 
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and us = [ 
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UllS12+U12S22] 

U21S12+U22S22 

and setting ZU = US we can obtain the two matrix equations 

(1) 

(2) 

-1 Multiplying equation (1) on the left by U
ll 

gives 

-1 -1 -1 T 
Ull AU ll - Ull BR B U21 = Sll 

-1 Multiplying equation (2) on the left by U
21 

gives 

Hence . 

= -

-1 . -1 T . T 
P = UZ1 Ull is a solut10n of PBR BP - A P - PA - Q = O. 
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Laub states that the Schur Vector approach is not designed 

for hand computation but he gives the following example to 

illustrate the method. 

Example 3.3.4. 

Consider the equation PBR- 1BTp T 
0 - A P - PA - Q = 

where A = 
[ 

0 

) 
B = 

[ 0 ] 
R = Q = [ 

0 

) 0 0 0 2 

then Z = 0 0 0 

0 0 0 -1 

-1 0 0 0 

0 -2 -1 0 

and Z = USU
T 

where S -1 0 1 = -2 

0 -1 -1 

0 0 0 

0 0 0 

and U is the orthogonal matrix 

U ( 1 15 315 1 = 2 10 1"(f"" 2 
1 15 315 1 

-2 -10 -1"(f"" - 2 

1 315 15 
2 -1"(f"" 10 2 

1 315 15 1 
-2 1"(f"" 10 2 
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= 1- ~ 
2 

and the unique positive definite solution of (3.3.2) is given by 

Method S. 

This method uses the square. root of a matrix in order to 

find the unique positive definite solution of the m.atrix Riccati 

equation. The application of the method, described by Incertis 

[1983], involves the computation of the square root of a matrix 

and the solution of a linear matrix Liapunov equation. 

The equation to be considered is 

Rearranging and multiplying on the left and right by p-1 the 

equation becomes 

Multiplying on the left by Q gives 

which is equivalent to 
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Let S and D be the symmetric and skew symmetric components 

of the matrix A 
T A-AT 

i.e. S 
A+A 

D =-- = -2-2 

then substituting A = S + D and AT = S - D the equation becomes 

Now making the assumption that there exists a matrix T such that 

and letting 

AQ - QA = 2TQ 

H = QP-l + S 

the equation becomes 

and if the positive 'definite solution is being sought we must 

have the condition that H - S ~ O. 

Let W = H - T 

then substituting H = W + T in the equation gives 

or 

where <I> = D - T 

Now if F is a positive definite matrix then a positive definite 

square root exists and ~s unique. 

Let W = F! + u 

then substituting for W we obtain 
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and the original quadratic problem has been reduced to finding 

a matrix U which satisfies this equation and the condition H - S >- 0 

becomes 

F! + T - S + U >- 0 

The technique which now.follows depends upon whether the 

matrix F! commutes with~. If F!~ - ~F! = 0 then it can be proved 

that the unique solution U which fulfils the positive definiteness 

condition is the null matrix U = O. In this case W = F! and 

substituting the definitions of H, W, ~ into the intermediate 

equation H = QP-1 + S we obtain 

QP- 1 
= F! _ AT - ~ 

Also, multiplying the rearrangement of the Riccati equation by 2 

we obtain 

which factorizes as 

This can be written as the Liapunov equation 

where 

Hence the unique positive definite solution of (3.3.2) 1S given 

by P = Y 
-1 

where Y is the solution of 

ATy + YA = 2BR- 1BT 
(l (l 
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The technique is not quite so straightforward when the 

commutativity condition F2~ = ~F2 is not satisfied. In this 

case there is no trivial solution U for the quadratic equation 

in U. When this happens the matrix W is obtained by forming 

an iterative procedure from the intermediate equation 

This is 

and taking 

W2 
+ 

Wk+1 

W 
o 

~W 

= 

- W~ = F. 

~ + Wk~ _ ~WkJ 2 for k = 0,1,2, ••.. 

it can be shown that a sufficient 

convergence condition of the sequence {W
k

} is that F + <1>2 is 

to be a positive definite matrix. 

Having obtained the matrix W then substituting 1n the 

intermediate equation H = QP- 1 
+ S we obtain 

and hence 

becomes 

The solution P is then obtained by solving the Liapunov 

equation 

ATy + YA = 2BR- 1BT 
Cl Cl 

and finding P = y- 1 as before.· 

The method is illustrated in the following example given 

by Incertis. In this case the commutativity condition F2~ = ~F2 

1S satisfied. 

Example 3.3.5. 

Consider the equation PBR- 1BTp - ATp - PA - Q = 0 
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where A B=),,[: 9 ) 
11 

Following the definitions for Sand D we obtain 

S = (-1 0.5) D = (0 -00.5) 
0.5 2 0.5 

We now seek to find a matrix T such that 

AQ - QA = 2TQ 

this gives 

and since Q is singular T can be.any matrix of the form 

Since ~ = D - T computation is simplified if we choose 

T 

[
0 -0.5) 

0.5 0 
so that D = T and hence ~ = o· 

It then follows that since F!~ - ~F! = o then U ;: o. 

Hence 

where 

A 
" 

= F! + AT 

and the unique positive definite 
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square root of F is ! 

[ 
3 2 ) . F = 

0 2 

Hence A = 
[ 

3 2 
) + [-~ ) = [ 

2 3 1 (l 

0 2 2 0 4 J 

becomes 
[: : ) y + y [ : 

18 ) 

22 

and hence the positive definite solution of the original Riccati 

equation is 

3.4 CONCLUSION. 

In this chapter a selection of methods of solution produced 

over the last 50 years has been considered. It is interesting 

to note that many methods make use of the fact that every 

characteristic root of a solution X of the unilateral equation 
n 

(3.2.1) is also a root of det [A(A)] = 0 where A(A) = ~ A.An- i 
1 

o 
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This fact was established in the last century and shows how 

recent developments are built on the foundations established 

long ago. 

With the development of computer techniques, efforts have 

concentrated on methods which can be adapted to' computer methods 

of solution rather than purely algebraic techniques. 

In Section 3.2 Methods 1 and 2 require the solution of 

det [A(A)] = O. Dennis,Traub & Weber [1976] have shown that if 

A = I the required. roots can be obtained by forming the block 
o 

Companion Matrix C 

where C = 0 

I 

o 

0 ...... 
0 ...... 

o ... I 

A n 

- A n-1 

- A 
1 

and the characteristic roots of C are equivalent to the roots 

of det [A(A)] = O. Hence computer methods for determining 

characteristic roots may be applied. 

Method 3 in this section describes an algebraic method of 

solution. Since it was written in 1941 it is presumably intended 

to be applied without computer assistance, but even in the 2x2 

case it involves practical problems of computation as can be 

seen from the worked example. 

Method 4 is interesting as it deals with the case where the 

coefficient matrices.are not square. Obtaining the general 

solution, however, in the. cases where X has arbitrary characteristic 

roots would be difficult for matrices of large order. 
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The methods in Section 3.3 are mainly concerned with the 

solution of the matrix Riccati equation. Methods 1 and 2 share 

the disadvantage of requiring the characteristic polynomial of 

a 2mx2m matrix to be factorized into 2 polynomials of degree m. 

This would involve problems in computation for matrices of order 

greater than 3x3. 

Methods 3 and 4 are most suitable for application of computer 

methods since the solutions are expressed in terms of the elgen

vectors or Schur vectors of a 2mx2m matrix. 

Method 5 uses a completely different approach in that no 

2mx2m matrix is introduced. The ease of computation displayed 

in the example given by Incertis is illusory however since this 

example is one of a small class of equations for which the 

commutativity condition is fulfilled. When it is not fulfilled, 

the iterative procedure given involves the computation of the 

square root of a matrix at each stage. This would be difficult 

if the matrices were of large order. 

All the methods described have certain disadvantages with 

any purely algebraic methods suffering from problems of 

computation with large order matrices. 
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CHAPTER 4 

The Solution of Matrix Equations Using the 

Characteristic Equation and 

El1m1natlon Methods 

4.1 THE SCALAR EQUATION. 

The general equation f(X) = 0 where f(A) is a polynomial 

function of.A is known as a scalar equation. 

The solutions of a scalar matrix equation are divided into 

sets of similar matrices. If X = TJT- 1 where J is the Jordan 

Normal Form of X then 

Hence if f (X) = 0 

then f(J) = 0 since T is non-singular. 

n n-1 
For example, if f(X) = aoX + a

1
X + •••• anI where the a

i 
are 

scalars, then 

= T f(J)T- 1 

+ ••.. a I]T- 1 
n 

Hence to find solutions of f(X) = 0 it is sufficient to 

find solutions of f(J) = 0 and X is then any matrix such that 

-1 
X = TJT . 

Due to the special form of the Jordan matrix then f(J) also 

has a special form. 

Let J = ( J 1 o ..... 0 

o J
2 

...• 0 

o o J 
n 

where the J. are Jordan Blocks. 
1. 
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then f(J) : £ (J 1) 0 0 

0 £(J
2

) .... 0 

. . . . . . . . . . . . . . . . . . . . 
0 0 

If £(J) : 0 then f (J.) 
1 

If J. 1S the Jordan Block A. 
1 1 

o 

o 

o 

A. 
1 

o 

o 

: 0 

o 

A. 
1 

o 

£(J ) 
n 

i : 1,2, ... ,n 

o 

o 

o 

A. 
1 

then provided the derivatives fJ(A.) j: 1,2, ... ,(n-1) exist 
1 

for all A-
1 

f(J.) : r f(A.) 
1 1 

o 

o 

o 

then f(J.) : 0 ~ f(A.) 
1 1 

Example 4.1.1. 

Consider the equation f(X) 

is a 2x2 matrix. 

Then 
2 f(A) = A -3A+2 

f' (A) = 2A-3 

f' (A- ) 
1 

f (A. ) 
1 

o 

o 

f"(A.) 
1 

2 ! 

f' (A.) 
1 

f (A. ) 
1 

o 

(n-O! 

...... f (A.) 
1 

0, f' (A.) : 0 ..... f n
-

1 (A.) : O. 
1 1 

2 
: 0 where f(X) = X -3X+2I and X 

there is no A for which f(A) = 0 and f'(A) = o. 

Hence the solutions of the matrix equation f(X) = 0 are 
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x and 

where T is an arbitrary non-singular matrix. 

Example 4.1.2. 

Consider the equation f(X) = 0 where f(X) 2 2 
= X - 2aX + a I 

then 
2 2 f(;\') = ;\. -2a;\.+a 

f I (A) = 2A-2a 

Hence f(A) = 0 and f'eA) = 0 both have the root A = a. 

Solutions of the matrix equation are .therefore 

X=[: :) 
and 

Example 4.1.3. 

Consider the equation f(Xr 2 = 0 where f(X) = X -3X+21 and 

X is a 3x3 matrix 

then f(A) 
2 = A -31.+2 

f'eA) = 2;\.-3 

fll(A) = 2 

f(A) = 0 has roots 1.1 = 1 and ;\.2 = 2 

f'eA) = 0 has the root A = i 
Since f(A) = 0 and f'eA) = 0 have no common solutions the 

only matrix solutions are 



x o 

o 

o o 

x = T 2 o 

o 2 

o 0 

Example 4.1.4. 

o 

o 

o 

o 
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x = 2 

-1 
T 

o 

l 0 

o o 

2 o 

o 2 

Consider the equation f(X) = 0 where f(X) 

then 
2 2 f(A) = A -2aA+a 

f I (A) = 2A-2a 

fll(A) = 2 

x = T 

2 2 
= X -2aX+a I 

f(A) = 0 has the single root A = a 

f'eA) = 0 has the root A = a 

f"(A) = 0 has no roots 

o 

o 

Since f(A) = 0 and f'eA) = 0 have a common solution, the 

solutions of the matrix equation are 

X = a o o or X = T a o 
o a o o a o 

o o a o o a 

-1 
T 

A very important scalar equation connected with any square 

matrix X is its charact_eristic equation det [AI-X] = o. 

o 

o 

The characteristic polynomial is an example of an annihilating 
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polynomial of X since X satisfies the equation det[AI-X] = o. 

The solution of a scalar matrix equation f(X) = 0 has been 

shown to be quite straightforward. The corresponding scalar 

equation f(A) = 0 is solved. If the roots of f(A) = 0 are all 

distinct, A
1
A

Z
, ... ,A

n 
then solutions of the matrix equation 

f(X) = 0 can be written as 

X = T o o o 

o o 
................... 
o o o A 

n 

If f(A) = 0 has a repeated factor (A-a) then 

X = T o o 

o 

o 0 ... J 
r 

-1 
T 

where the J. are Jordan Blocks where at least one is of the form 
~ 

a o o 

o a o 
................... 
o o o a 

The solutions of a scalar matrix equation can therefore be 

divided into sets of similar matrices. 

4.Z 
n n-1 

OBTAINING THE CHARACTERISTIC EQUATION FROM det [A A +A1A + •.• A]. 
o n 

Let X be a solution of the unilateral equation 

+ •.•. A = 0 
n 

(4.Z.1) 
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and let 

As shown in 3.2 several methods of solution make use of the 

fact that every characteristic root of a solution X is also a 

root of det [A(X)) = 0 and hence the characteristic polynomial 

of a solution X is a factor of det [A(X)). 

This gives a method of determining possible characteristic 

polynomials of a solution X of the unilateral equation. By 

forming the determinant of A(X) and factorizing into irreducible 

factors, then if X is an mxm matrix, any factor of degree m is a 

possible characteristic polynomial for a solution X. 

Sylvester· [1884) suggested that solutions of the unilateral 

matrix equation could be obtained by choosing a factor ~(X) of 

degree m from deE [A(X)) and by combining ~(X) = 0 with equation 

(4.2.1), higher powers of X could be eliminated until a linear 

equation in X is obtained, from which the solution could be found. 

He does not appear however, to have given details of how this 

might be carried out. 

The elimination methods used for a system of polynomial 

equations described in 2.4 may be applied to the two equations 

~(X) = 0 and (4.2.1) to obtain the linear equation in X. 

The method is illustrated in the following examples. 

Example 4.2.1. 

Consider the equation A X2 
0 

+ A1X + A2 = 0 

where A = 

[ : ) A1 = r: ) A2 = 
[ 

-1 

) 0 

0 0 -1 
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then A(A) 
2 

A -21.+1 

1.+1 

= 1.(1.-1)(1.+1)(1.-2) 

Since X is a 2x2 matrix its characteristic polynomial is 

of degree 2 and since it must·be a factor of det [A(A)] there 

are six possible characteristic polynomials for X 

<Ps (A) = (H) (1.-2) 

<P6 (A) = (1.+1) (1.-2) 

.Taking <P
1

(A) as the characteristic polynomial of a solution means 

that X satisfies the two equations 

(1) x2 - X = 0 

MUltiplying (1) on the left by A and .subtracting from (2) gives 
0 

[A1+Ao ]X + AZ = 0 

-1 X = [A1+A
o

] [-A2] 

X = [-: r [-1 } -1 

Taking <P
2

(A) as the characteristic polynomial of a solution means 

that X satisfies the two equations 
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(1) X2 + X = 0 

1,' , X2 b f ' E ~m~nat~ng as e ore g~ves 

[A1-A
O

]X + A2 = 0 

X = [A
1
-A

o
]-I[-A

2
] 

The other four' solutions may be found in a similar manner. 

Taking 

gives 

Taking 

gives 

Taking 

gives 

Taking 

gives 

~3(A) = A(A~2) as the characteristic polynomial 

X = 
3 

[
1 -1 J 

-1 1 

~4(A) = (A-l)(A+l) as the characteristic polynomial 

X4 = [-1 
-4 

~5(A) = (A-l)(A-2) as the characteristic polynomial 

X = 5 

~6 (A) = (A+l) (A-2) 

X6 = 

[ -: 
-1 

0 

as the characteristic polynomial 

J 
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There are therefore 6 solutions for this matrix equation. 

The result generalizes as follows. If the matrices involved 

in the equation (4.2.1) are mxm then the degree of the polynomial 

det [A(>.) 1 is 2m. Since the characteristic polynomial of X is 

of degree m, there are 2mC possible choices of factor and hence 
m 

2mC possible solutions for the. matrix equation. 
m 

Example 4.2.2. 

This example illustrates the method when applied to the 

unilateral quadratic equation involving 3x3 matrices. 

Consider the equation x2 + A1X + A2 = 0 

where o -1 -3 2' 

o. o -1 

2 o -1 o 

then A(A) 
2 

A+2 = A -3 -A+l 

A-I A2+1 0 

2A A2_A 

det [A(A) 1 3 2 
= (A-1) (>.+1) (A +A+1) and· 

o 

o 

Since X is a 3x3 matrix its characteristic polynomial will 

be of degree 3. As there is a repeated factor, in det [A(A) 1 and 

2 (A +A+l) is irreducible over the real numbers there are only 4 

possible choices for the characteristic polynomial of X. 

~1(A) = ,,3 - 3A
2 

+ 3" - 1 

~2(A) = A3 
- A2 - " + 
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~s 

<P
3

(,,) = ,,3 + 2,,2 + 2" + 1 

<P4 (,,) = ,,3 - 1 

Taking <P
1

(,,) as the characteristic polynomial of a solution 

X means that X satisfies the. two equations 

(1) X3 - 3x2 + 3X - I = 0 

MUltiplying equation (2) on the right by X and subtracting 

equation (1) from it gives 

Multiplying equation (2) on the left by [A
1
+3I] and subtracting 

equation (3) from it gives 

5 -3X+-11 6 3 = 0 

4 3 -1 -6 4 

4 -1 -6 6 

-2 o 

o 0 

-2 -1 

Taking <P
2

(,,) as the characteristic polynomial of a solution 

X means that X satisfies the two· equations 

(1) X3 - x2 - X + I = 0 
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Eliminating X3 gives 

Eliminating X2 gives 

(4 ) [A~+Al-A2-11X + A1A2 + A2 + I = 0 

-1 -1 X + -3 2 = 0 

2 -1 -1 -4 4 

0 -3 -6 4 3 

X
2 

= -2 0 

0 -1 0 

-2 

Taking 
3 2 

~3(A) = A + 2A + 2A + 1 as the characteristic polynomial 

and applying elimination methods leads to 

X3 = -2 0 

9 5 6 
-7 7 -7 

11 10 5 
-7 7 -7 

Taking ~4(A) = A3 
- 1 as the characteristic polynomial leads 

to 

-2 o 

. -3 0 

-5 2 
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Example 4.2.3. 

This example shows how the elimination method may be applied 

to a unilateral cubic matrix equation involving 2x2 matrices. 

Consider the equation X3 + A X2 
1 

+ A
2
X + A3 = 0 

where Al = 
[-6 

6 

] 
A2 = 

[ 
2 -42 

) 
A3 = [ 18 66 

) -3 -15 21 65 -33 -81 

A(A) [ A3~6A2+2A+18 2 

1 
then = 6A -42A+66 

3 2 -3A +21A-33 A -15A +651--81 

= (A-l)(A-2)(1--3)(A-4)(A-5)(1--6) 

Since X is a 2x2 matrix, its characteristic polynomial will 

be of degree 2. Hence any quadratic factor of det [A(A)] is a 

possible characteristic polynomial of a solution X and since 

det [A(A)] has six linear factors the maximum possible number of 

. . 6 15 solut~ons ~s C2 = • 

Choosing 1>1 (A) = (A-I) (1--2) A2-3A+2 as a characteristic 

polynomial 

then X satisfies the two equations 

(1) x3. + A1X2 + A2X + A3 = 0 

(2) X2 - 3X + 21 = 0 

Multiplying equation (2) on the right by X and subtracting from 

equation (1) gives 

(3) o 
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Multiplying equation (2) on the left by [A
1
+3I] and subtracting 

from equation (3) gives 

[ 

-9 

12 

-24 

)
x + [ 24 

27 -27 

54 ) = 0 

-57 

Other choices of quadratic factors from det [A(A)] lead to other 

solutions. 

4.3 SOLUTION OF THE UNILATERAL MATRIX QUADRATIC EQUATION FOR 

mxm MATRICES. 

The elimination method for the unilateral quadratic matrix 

equation may be extended for matrices of any order. The first 

. k h .2. step 1S to ma e t e equat10n AoX + A
1
X + A2 = 0 mon1C by 

-1 
multiplying on the left by A • The method clearly cannot be 

o 

applied if A is singular. 
o 

The determinant of the matrix [A
2

I+A
1

A+A
2

] is formed. If 

X is a square matrix of order m this determinant will be a 

polynomial of degree 2m. Factors of degree m are then chosen as 

possible characteristic polynomials of X. For each choice·, a 

possible solution may be sought by elimination methods. If the 

number of solutions is finite it will be at most 2mC 
m 
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ZxZ Case. 

Let the factor of det [A(A)] chosen for the possible 

Z 
characteristic pOlynomial be [A +a 1A+aZ]-

then X satisfies the two equations 

xZ + a
1
X + aZI- = 0 

and xZ + A
1
X + A

Z 
= 0 

then X where 

3x3 Case. 

Let the possible characteristic equation be 

then X satisfies 

X3 Z 
+ a 1X + aZX + a 31 = 0 

and xZ + A
1
X + A

Z 
= 0 

By elimination X 
-1 

= - JZ KZ where 

4><4 Case. 

Let the possible characteristic equation be 



100 

then X satisfies 

x4 3 2 
0 + a

1
X + a2X + a

3
X + a

4 
I = 

and x2 + A
1
X + A2 = 0 

By e limina t ion X 
-1 

= - J K3 3 

where J
1 = all - A Kl = a2l - A 1 2 

J 2 = Kl - J lAl K2 = a 3
l - J lA2 

J
3 = K2 - J 2A

1 K3 = a4 I - J 2A
2 

mXm Case. 

Let the possible characteristic equation be 

then X satisfies 

Xm m-I x"'-2 
+ a IX 0 + a

1
X + a

2 
+ .... + a I = m- m 

and x2 + A
1
X + A2 = 0 

elimination 
-1 

By X = - J K m-I m-I 

where the J and K 1 are obtained from the recurrence relations m-I m-

J 1 = a 1 I - Al 

= a. 21 - J .A
2 ~+ ~ 

Choice of factor which mor not lead to a solution. 

Since the solution X at the final stage is obtained by the 

inversion of J m- 1 it can be seen that a solution f~Qy not be 
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obtained if the matrix J is singular. When this happens it m-l 

means that the final linear equation 

either (1) has no solution 

or· (2) has an infinite number of solutions. 

This can occur if the chosen factor of det [A(A)] is not 1n 

fact the characteristic pOlynomial of a solution X. Though the 

characteristic polynomial of a solution X must be a factor of 

det [A(A)] it is not necessarily true that every factor of degree 

m is the characteristic polynomial of a solution X. 

It is also true that J m_
1 

can be singular even when the 

chosen factor is the characteristic polynomial of a solution. 

The two cases are illustrated in the following examples. 

,E:xample 4.3.1. 

Consider the equation x2 + A1X + A2 = 0 

where A = r -1 
-6 ) A = 

[-: 
12 

) 1 l 2 

2 

-9 14 

A(A) 

) .. 

det [A(A)] = (A-l)(A-2)(A-3)(A-4) 

Choosing ~l(A) = (A-3)(A-4) as the characteristic polynomial of 

a solution leads to the final linear equation 

-12 ) 

-2 
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This linear equation has no solution and hence there is no 

solution of xZ + A1X·+ AZ = 0 which has (A-3)(A-4) as its 

characteristic polynomial. 

Choosing $Z(A) = (A-1)(A-Z) as the characteristic polynomial of 

a solution leads to the final linear equation 

[ 
Z -6) X = [Z -lZ) 

Z -6 Z -12 

This linear equation has an infinite number of solutions. 

In parametric form the solution of the final linear equation is 

X 
= [ 1 :3a 

3b-6 

) b 

Substituting this in xZ + A,X + AZ = 0 

gives 

Since 

[ 

3a(3a+b-3) 

a (3a+b-Z) 

(3b-6) (3a+b-Z) ) = ~ 

(b-Z) Oa+b-1) 

(3a+b-3), (3a+b-Z), (3a+b-') cannot be simultaneously 

zero, then a = 0 and b = Z 

Z 
the solution of the equation X + A

1
X + AZ = 0 which has 

(A-1)(A-Z) as its characteristic polynomial is 

Example 4.3.Z. 

This example shows that though a particular choice of factor 
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$0.) may lead to a linear equat'ion which has an infinite number 

of solutions, it is not necessarily true that ~(A) is the 

characteristic polynomial of a solution X. 

2 
Consider the equation X + A1X + A2 = 0 

Al = 

[ 
5 -1 

) 
A2 = 

3 

where 

then 1.2+51. -).+3 

[-: 
A( A) = [ 

-k';'3 2 
). +31.+6 ) 

3 

) 6 

Choosing $1().) = (1.+1)(1.+3) as the characteristic polynomial of 

a solution X leads to the final linear equation 

This linear equation has an infinite number of solutions. 

In parametric form the solution of the final linear equation is 

X = r 
l 

a+3 

a 

Substituting this in X2 + A1X,+ A2 = 0 

[ 

a:+7a+ab+24 

a +7a+ab 

gives b
2

+ab-3a+4b-21 

2 
b +ab-3a+4b+3 

Since there are no values of a and b which would make these 

four elements simultaneously zero then there is no solution X of 

x2 + A1X + A2 = 0 which has ().+1)(A+3) as its characteristic 

polynomial. 
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It is possible that equation (4.2.1) may have an infinite 

number of solutions. In this case the elimination method may 

lead to a particular solution or may again lead to the situation 

where J 1 is singular. The two cases are illustrated in the m-

following examples. 

Example 4.3.3. 

Consider the equation A X2 
0 

+ A
1
X + A2 = 0 

where A = 2 0 Al = -4 -8 0 
0 

-1 0 4 0 -4 

3 2 -12 -4 -8 

A" = 3 6 0 2 

-3 0 3 

9 3 6 

A(A) 1. 2-41.+3 2 = 2A -81.+6 0 

2 -A +41.-3 0 
2 A -41.+3 

31. 2-121.+9 2 A -4A+3 2 2A -8A+6 

and det [A(A)] = 9(A-l)3(A-3)3 

Choosing (A_l)3 as the characteristic polynomial of X, then X 

satisfies the two equations 

(1) X3 - 3X2 + 3X - I = 0 

(2) A X2 A 0 o + A1X + 2 = 

In this case it is necessary to make equation (2) monic by 
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-1 
multiplying on the left by A . 

o 
1
.. . 3 2 E 1m1nat1ng X and X leads to 

the final linear equation 

J
2
X + K = 0 

2 

-1 
+ 3A

1 
+ 3A where J 2 

= A1 Ao .A1 - A 2 0 

K2 
-1 

+ 3A -= A1 Ao A2 A 2 0 

4 8 0 X = 4 8 0 

-4 0 4 -4 0 4 

12 4 8 12 4 8 

X = 0 0 

0 0 

0 0 

Choosing (A-3)3 as the characteristic polynomial similar 

calculations lead to the solution 

X = 3 o o 

o 3 o 

o o 3 

2 Choosing (A-I) (A-3) as the characteristic polynomial however 

leads to the situation where J 2 is singular. 

If X satisfies the two equations 

(1) X3 - 5X2 + 7X - 31 = 0 

Eliminating x3 and x2 leads to 
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where 

But· o o o and o o o 

o o o o o o 

o o o o o o 

Hence the method fails at this stage. There are in fact 

an infinite number of solutions of the equation A
o

X2 + A
1
X + A2 = 0 

and any matrix with characteristic pOlynomial (>.-1)2(>.-3) is a 

solution. ,The infinite set of solutions is therefore the set • 

o 

o 

o o 

o 

o 

3 

-1 
T 

where T LS any non-singular matrix. 

Example 4.3.4. 

Consider the equation X
2 

+ A2 = 0 

where A2 = -1 0 0 

0 -1 0 

0 0 -4 

then A(>') = >.2_1 0 0 

0 >.2_1 0 

0 0 >.2_4 

and det [A(>.)) = (>'-1)2(>'+1)2(>'-2)(>'+2) 
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Choosing (A-l)2(A-2) as the characteristic polynomial of X then 

X satisfies the two equations 

(1) X3 _ 4X2 + SX - 21 = 0 

(2) X2 + A2 = O. . 

Eliminating X2 and 
3 X leads to the final linear equation 

[A
2
-SI]X + [2I-4A2] = 0 

o o X = -6 o o 

o -6 o o -6 0 

o o -9 o o -18 

X = o o 

o o 

o o 2 

The elimination method in. this case had led to a particular 

solution when in fact there are an infinite number of solutions 

with characteristic polynomial 

and any matrix of the form a where b '" 0 

b -a o 

o o 2 

is a solution of X2 + A2 O. 

These examples illustrate the different problems which can 

occur in applying the elimination method. If J
m

-
1 

is singular 

and the linear equation J lX + K 1 = 0 has no solution then it m- m-

can be stated that there is no solution of the matrix equation 

corresponding to that choice of factor for ~(A). 
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IO~ 

If however the matrix J 1 is singular and the linear m-

equation J lX + K 1 = 0 has an infinite number of solutions m- m-

then it is possible that the original matrix equation mayor may 

not have a solution corresponding to that choice of factor or in 

fact the original matrix equation may have an infinite number of 

solutions. 

4.4 SOLUTION OF THE MATRIX RICCATI EQUATION BY ELIMINATION. 

The elimination method may be extended to finding solutions 

of the Riccati equation 

XEX + DX + XF + G = O. 
o 

This equation may be made unilateral, provided the matrix E 

is non-singular, by means of the substitution 

-1 X = (Z-D)E 

The equation then becomes 
o 

where 

Z2 + ZP + Q = 0 

E- 1FE - D p 

The method previously described may be used to obtain a 

solution Z and hence a solution X. The method is illustrated 

in the following examples. 

Example 4.4.1. 

Consider the equation XEX + DX + XF + G = 0 

where E = r ' 1 -~ ) D = 

[-: J 

F = 

[ 
3 -1 

l 1 2 2 

G = 
[-:4 

9 

J. -7 

J 
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This is equivalent to Z2 + ZP + Q = 0 

where 
15 ) 

-12 

2 
A(>.) = I). +AP+Q] 

Since ).2+7),+15 1S irreducible over the real numbers, there 

are only 2 possible choices for the characteristic polynomial of 

a solution Z 

~1().) = ).2 - 7). + 11 

~2().) = ).2 + 7), + 15 

2 
Choosing ~1().) = ). -7),+11 as the characteristic polynomial of Z 

then Z satisfies the two equations 

Z2 - 7Z + 111 = 0 

and Z2 + ZP + Q = 0 

Eliminating Z2 gives 

ZIP+71] = 111 - Q 

Z 

f 

26 

-1 
\ 

)

-1 
-2 

7 

Z = 

[-: -: ) 
and hence X IZ-D]E- 1 

[-: -1 

) 
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Choosing ~2(A) = A
2

+7A+15 as the characteristic polynomial of Z 

then Z satisfies the two equations 

Z2 + 7Z + 151 = 0 

and Z2 + ZP + Q = 0 

Z[P-7I] = 151 - Q 

Z = [ 30 -15 

) [-: -2 r -1 27 -7 

1 
[ -180 165 

) 
z =53 

-:47 -191 

Hence X 
1 

[-112 -227 

) 
=-53 

297 -291 

Example 4.4.2. 

This example is the same problem as the one used in Method 5 

of 3.3 where the method of solution was the one described by 

1ncertis [1983]. This led only to the positive definite solution,. 

whereas the elimination method. can be used to obtain six solutions. 

Consider the equation PBR- 1BTp._ ATp - PA - Q = 0 

where A = 

Q 

and P is the matrix to be determined. 
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Let and let Z 

then the original equation is equivalent to the unilateral 

equation 

where 

A(),.) 

2 
Z + ZF + G = 0 

F = - D- 1AD + AT 

G = - QD - ATD- 1AD 

+ AF + G = [1.
2

+451.-94 

-401.-80 

and det [A(A)] = (1.-3) (A+3) (A-2)(A+2) • 

There are therefore 6 possible choices for the characteristic 

polynomial of Z 

<P 1 (A) = 1.
2 

- SA + 6 <P 4 (A) = 1.
2 

+ A - 6 

<P2 (A) = 1.
2 

- 9 <PS (A) = 1.
2 

+ SA + 6 

<P
3

(A) = 1.
2 

- A - 6 <P6(A) = 1.
2 

- 4 

Choosing <P
1

(A) Z satisfies the two equations 

Z2 - 5Z + 61 = 0 

and z2 + ZF + G = 0 

Eliminating Z2 gives 

Z = [6r-G] [F+51]-1 

Z = 
[ : : 1 

. and from P [Z+AT]D- 1 we obtain P 1 

[-~ 
-1 

1 
= -7 

4 



112 

Choos ing $ 2 (>..) = 2 9 " f" A - then Z sat1s 1es 

z2 -91 = 0 

and Z2 + ZF + G = 0 

1"" " Z2 E 1m1nat1ng gives 

Z 1 
[ 23 11 ) 

= -
7 

-8 -23 

and hence P 
1 

[ -~ : ) = -
7 

Choosing $3(A) = A2
-A-6 then Z satisfies 

z2 - Z - 6r = 0 

and Z2 + ZF + G = 0 

Eliminating z2 gives 

and hence 

1 
Z = "4 

1 
P = "4 

Choosing $4 (A) 
2 

= A +A-6 leads to 

Z = _1 [22 11 

-10 

and hence P 
1 

[-~ 
= -

7 

0 

-33 

-~ ) 
11 

) 
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Choosing <1>5(>-) 
2 = >- +5>- +6 leads to 

Z 
1 

[ -: -11 ) = 2 

-4 

and hence P = [-~ 0 

) 2 

0 

Choosing <1>6(>-) 

z = [: _:) 

and hence 
P = J [: -~) 

Example 4.4.3. 

This example shows how the method can be used to solve the 

matrix Riccati equation involving 3x3 matrices. 

Consider the equation XEX + DX + XF + G = 0 

where E = o D 2 o 

o -1 o 

o o o o -1 

F = 2 -1 o G = -6 5 -3 

o o 2 -3 2 

o -1 -5 2 o 

Using the substitution Z = D + XE the equation is equivalent to 

the unilateral equation 
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Z2 + zp + Q = 0 

where P = -2 -1 0 Q = -2 7 -13 

2 -2 -2 -6 8 

0 -2 2 -5 

A(;\) ,l.2 l +AP +Q ( 2 = = ,I. -2A-2 -:<+7 A-13 

2/--2 2 
A +A-6 -2/-+8 

,1.':'2 2 
2 

,I. +,1.-5 

det [A(,I.)] 
3 2 3 2 

and = [,I. -5,1. +6,1.-1][,1. +5,1. +4,1.+2] 

Since Z is a 3x3 matrix its characteristic polynomial will 

be of degree 3. 

possible choices are ~ 1 (,I.) = ,1.3 _ 5A2 
+ 6A -

~2 (A) ,,3 + 5,1.2 + 4" + 2 

The solution Z is given by 

Z = - -1 where J 1 K2J 2 = a I - P Kl = a2l - Q 1 

J 2 = Kl - PJ 
1 K2 = a I 3 - QJ 1 

and a 1 ' a2 , a
3 

are the coefficients of the characteristic 

polynomial of Z. 

Choosing ~1 (A) 
3 2 

characteristic polynomial of Z = ,I. -5,1. +6,1.-1 as the 

then a 1 
= -5 a 2 = 6 a

3 
= -1 

and J
1 = all - P = (-3 -1 Kl = a2l - Q = 8 -7 13 

-2 -6 2 2 12 -8 

-1 0 -6 2 -2 1 1 
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J 2 
= K -PJ = -11 19 K2 = a

3
I-QJ 1 

= -6 44 -94 1 1 

8 16 -20 -10 -35 58 

6 -3 18 -7 14 -37 

-1 
2 -1 2 then Z = -K2J 2 = 

0 2 -1 

0 

and X = [Z-D]E- 1 = -1 0 

0 -1 

0 

Choosing <1>2('-) 
3 2 = '- +5'- +4'-+2 as the characteristic polynomial of Z 

then 

and 

a = 5 
1 

-1 

a = 4 
2 

-1 

4 2 

o 4 

J
2 

= 19 -1 

-12 4 

-4 -3 

Z 

a = 2 
3 

13 

2 10 -8 

2 -2 9 

9 17 -26 36 

o 10 28 -22 

6 13 -6 16 

2061 -4500 

-1112 -2648 4792 

-712 197 -1204 

X = [Z-D]E-
1 

= 8;2 -4173 2061 -1384 

3240 -3500 1552 

-909 197 557 
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x '" -4.898 2.419 -1.624 

3.803 -4.108 1.822 

-1 .067 0.231 0.654 

The method may be extended to the solution of the Riccati 

equation for mxm matrices. 

The equation XEX + DX + XF + G o 

has a solution X = [Z-D]E- 1 

where Z is the solution of the unilateral equation 

Z2 + ZP + Q = 0 where P = E- 1FE - D and Q 

-1 
Then Z = -K J 

m-1 m-1 where K 1 and J 1 may be obtained m- m-

from the recurrence relations 

i = 1 to m-2 

and the a. are the coefficients of the characteristic polynomial 
1 

of Z. 

As in the case of the unilateral quadratic equation, certain 

choices of factor from det [A
2

ITAP+Q] may not lead to a solution 

Z of the equation Z2 + ZP + Q = o. 

4.5 CONCLUSION. 

This chapter has shown how solutions of matrix equations 

may be obtained by using two properties 
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a) that any matrix satisfies its own characteristic equation 

b) that the characteristic polynomial of any solution X of the 

unilateral matrix equation is a factor of det [A(A)]. 

The usefulness of this method as a practical means of finding 

solutions can only be-decided by comparing it with established 

methods. 

The elimination method compares favourably with four of the 

methods of solution described in Chapter 3. They are Methods I 

and Il of- 3. Z described by Gantmacher [1959] and Dennis Traub & 

Weber [1976], and Me-thods I and III of 3.3 described by Roth [1950] 

and Potter [1966]. 

The first stage of each of these four methods and also of 

the elimination method is virtually the same. All involve forming 

a polynomial of degree Zm and finding m roots. In each case this 

is equivalent to finding the eigenvalues of a ZmxZm matrix since 

the roots of the equation det [A
Z

I+A
1
A+A

Z
] = 0 are the same as 

the eigenvalues of the Block Companion Matrix [ : 

Having found at least m roots, the Roth method involves forming 

the degree m polynomial f(A) = (A-A 1)(A-A
Z

) .•.... (A-Am) where 

the A_ are m eigenvalues chosen from the eigenvalues of a ZmxZm 
1 

matrix. This is also the second stage in the elimination method. 

In the Roth method, when f(A) is formed then f (R) mus t be 

evaluated where R is a ZmxZm matrix. For the Potter method, 

eigenvectors of a ZmxZm matrix must be found and in the Gantmacher 

method a set of 
2 linear equations in the elements of the m 
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transforming matrix must be solved. The number of operations 

involved in the elimination method therefore compares very 

favourably with the four established methods. 

All the methods involve the inversion of an mXm matrix to 

obtain the solution X. 

In the elimination method the final solution is obtained 

from X = - J-
1 

·K 1 and since the J 1 and K 1 are obtainable m-1 m- m- m-

fro~ recurrence relations,this makes their computation easily 

programmable for the computer. 

The four established methods of solution all fail to lead 

to solutions in certain cases. The Gantmacher method fails if 

the transforming matrix T is singular. The Dennis Traub and 

Weber method fails if the latent vectors are linearly dependent. 

The Roth method fails if both M and U are singular when 

f(R) = :) and the. Potter method fails if the eivenvectors 

of the matrix M are linearly dependent. 

The elimination method may fail to lead to a solution if J
m

_
1 

is singular. This happens if the choice of factor of degree m 

from det [A(A)] is not the characteristic polynomial of a 

solution. However, it is possible for J 1 to be singular even 
m-

when the choice of factor is. the characteristic polynomial of a 

solution as illustrated in examples 4.3.1 and 4.3.2. In spite 

of this the elimination method does appear to offer some 

advantages for the solution of the matrix quadratic equation. 
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CHAPTER 5 

Iterative Methods Applied to the Solution 

of Matrix Equations 

5.1 INTRODUCTION. 

Iterative methods for the solution of a polynomial equation 

in a single variable are well known. In this chapter an attempt 

is made to apply some of these methods directly to· the matrix 

equation. In doing this the usual problems of non commutativity 

and singularity arise. Some methods also require the derivative 

of f(X) where X is a matrix and f is a matrix valued function. 

The Fr~chet derivative of f is an operator and is described by 

what it does to a typical matrix. 

The derivative operator is defined as the coefficient of Y 

in f(X+Y) - f(X). 

For example if g'(X) is required where g(X) is the matrix· 

valued function defined by 

where X and A., 
1 

Then 

g (X) = A x2 + A X + A 
o 1 2 

i = 0,1,2 are mXm matrices. 

and the derivative operator in this case is 

+ A [ ]X 
o 

where. the square brackets are replaced by the matrix which the 
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derivative operator g'(X) is operating on. 

Hence g' (X)H means "the operator g' (X) applied to H" and 

g' (X)H = [A X+Al1H + A HX o 0 

2 2 
The derivative can also be expressed as an m Xm matrix. In 

this case 

g'(X)H=[(AX+Al1~I+A ~xTlh o 0-

where G9 is the Kronecker product and ~ is the column vector 

composed of the _ trQ"'posed 

2 2 It is shown in 5.4 that this m xm matrix is the same as the 

Jacobian matrix of the functions g .. (x) i = 1 ••• m, j = 1 ••• m, where the 
~J -

g .. (x) = 0 are the constituent equations obtained from the matrix 
~J -

equation g(X) = o. 

The Newton-Raphson m'ethod for the solution of n pOlynomial 

equations in n variables which can be applied to the constituent 

equations can also be applied directly to the matrix equation by 

use of the derivative operator. Though the two versions of the 

Newton m'ethod are equivalent, the computation involved in applying 

it directly to the matrix equation is often simpler since the 

formation of the constituent equations is not required. 

In this chapter, section 2 deals with the method of simple 

iteration. This is a well known iterative process for the solution 

of a scalar polynomial equation. The equation F(x) = 0 is 

rearranged in the form x f(x) and the iterative function 

x. 1 = f(x.) is defined. 
~+ ~ 
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The method of simple iteration can be extended to a system 

of equations !(~) = 0 

where 
.,. 

F (x» n-

and x = (x 1x2'··· ,xn) '. 

The system of equations is rearranged in the form x = f(~) and 

the iterative function is then x. 1 = f(x.). In section 2 an 
-1.+ - -1 

attempt is made to apply the method directly to the matrix equation. 

Section 5.3 applies the Bernoulli algorithm for the solution 

of a scalar polynomial equation to the unilateral matrix equation. 

An algorithm described by Dennis, Traub and Weber [1978] is 

illustrated as a means of increasing the rate of convergence of 

the Bernoulli iteration. 

In section 5.4 the Newton iterative method is applied to both 

the constituent, equations and directly to the matrix equation. 

The difficulty in finding conditions for convergence is illustrated 

by several numerical examples. 

The chapter ends by showing an iterative meth·od based on the 

elimination method of Chapter 4. 'The main advantage of this method 

is that only m initial values are required when the matrices involved 

are mxm, instead of the m
2 

values required for most iterative methods. 

5.2 THE METHOD OF SIMPLE ITERATION. 

Given the equation x = f(x), an iterative process can be set 

up and denoted by xi+l = f(x i ) 

starting value. 

i = 0,1,2, ••.. with x a given 
o 

To find a solution of F(x) = 0, the equation is rearranged 
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in the form x = f(x). If If'(a) I < 1 for a solution x = a of 

F(x) = 0, then the sequence of values xi obtained from xi+1 = f(x i ) 

will converge to the solution x = a for a starting value x near a. 
o 

The distance of Xo from the solution necessary for convergence 

depends upon the function f(x) . 

.2. 
For example, the' equatLon x - 4x - 5 = 0 has two solutLons 

x = -1 and x = 5. 

The equation may be rearranged in the form 

2 x -5 
x = -4-

and the iterative process xi+1 

f(x) 
2 x -5 

=-4-

= f(x.) defined where 
L 

In this case f'(x) x 
"2 and If' (-1) I = 0.5 If'(5) I = 2.5 • 

Hence the iteration can be expected to converge to the solution 

x = -1 for a starting value near x = -1 but will not converge to 

the solution x = 5 for a starting value near x = 5. In fact the 

iteration converges to the root x = -1 for all x E ]-5. 5[. 

The same equation may 

the iterative process x. 1 L+ 

In this case 

be rearranged in the form x = 1 + 4 and x 

= f (x.) defined where f (x) = 1 + 4 . 
L X 

f' (x) = 
5 
2" and If'(-1) I = 5 If'(5)1 = 0.2 . 
x 

Hence this iteration will converge to the root x = 5 for a 

starting value n,.(l(·5 but will not converge to the solution x = -1. 

In fact the iteration converges to x = 5 for all x except x = O. 

In this section an attempt is made to apply the method of 
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simple iteration to the unilateral matrix quadratic equation. 

consider the equation 

x2 + A
1
X + A2 = 0 

where X, Al' A2 are mxm matrices. The equation may be rearranged 

in the form 

and from this the iterative process Xi+l = f(X.) defined where 
~ 

-1 2 
f (X) = - Al [A2 + X 1. 

The process is applied in the following examples. 

Example 5.2.1. 

Consider the equation X2 + A1X + A = 0 2 

where A = 

[ 
4 -4 

J 

A2 = [-: -4 

J 

1 

3 5 4 . 

Taking as the initial matrix, the sequence 

of matrices obtained from 

Xl = [ 0.59375 

-1.15625 

X2 = [ 0.9724426 

-1.0629578 

X3 = [ 0.9884235 

-1.00614 

Xi+l 
-1 X~l is = - Al [A2 

+ 
~ 

-0.4375 

J -0.9375 

-0.0715942 ) 

-1 .0339966 

-0.0174677 1) 

-1.0185695 



X4 = [ 0.9970592 

-1.0043018 

[

0.9985978 

-1.0011218 

X6 = [ 0.9995327 

-1.0005174 

X7 = [ 0.999814 

-1.0001762 
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-0.0069646 ) 

-1.006833 

-0.002599 

) -1.002582 

-0.00097318 } 

-1.0009706 

-0.00036469 ) 

-1.0003643 

The sequence is appar.nrl.y converging to X 

which is a solution. 

o ) 
-1 

By using the method described in Chapter 4 it can be shown 

that there are exactly 2 real solutions of the equation 

X2 + A
1
X + A2 = O. 

The other solution is x = [ 

.-3.15625 

-4.875 2.5 ) 

-4.125 

where the 

elements are exact values. 

Taking as an initial matrix Xo = [ -4.9 2.4 J which is 

-3.2 -4.1 

very close to the second solution, the sequence of matrices 

obtained is 

Xl .= [-4.9953125 

-3.1628125 

2.35875 ) 

-4.04125 



X2 = [-5.149629 

-3.0264132 

X3 = [-5.3322546 

-2.7279791 

X4 = [-5.4474443 

-2.211411 

X5 = [-5.2892337 

-1.457368 

X6 = [-4.4766725 

-0.5659905 

X7 = [-2.1677296 

0.3784394 

x = 
8 

[ 

0.5139114 

-0.4364693 

X9 = [ 1.0912807 

-1.1526716 

XlO= [ 0.934204 

-0.9941483 
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2.3465404 ) 

-3.9822076 

2.3786128 ) 

-3.9784429 

2.4179974 ) 

-4.1'186386 

2.2871815 ) 

-4.4955085 

1.5122524) 

-0.1364652 

1.3196978 ) 

-1.4243592 

0.5496706 ) 

-1.6354473 

-0.0830224 ] 

-1.2371413 

-0.0801692 1 
-1.0771417 J 



X11 = [ 0.989669 

-1.0222217 

= [ 0.9931203 

-1.0038963 

= l( 0.9980453 

-1.0024729 

= [ 0.999153 

-1.0007399 
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-0.0317823 ] 

-1.0289175 

-0.011594 

] -1.011278 

-0.0043232 ] 

-1.0042705 

-0.0016158 ] 

-1.0016091 

The sequence is clearly converging to the solution 

x = [1 0 ] even though the initial matrix was very close to 

-1 -1 

the other solution. 

This shows similarities 
2 

to the scalar case when the re-

x -5 
arrangement x = ~ of the 

.2
450 equat~on x - x - = converg~s 

to the solution x = -1 even when the starting value is x = 4.9 
o 

which is very close to the other solution x = 5. 

ExamEle 5.2.2. 

Consider the equation X
2 

+ A X + 
1 

A = 0 
2 

where Al = 

[ 
8 -6 

] A2 = 
[-1: -1: ] 

6 8 

Taking X 

[ 
0 

] 
the sequence of matrices obtained from 

0 

0 
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iterative function X. 1 
-1 

= Al [A2 
+ 

~+ 

Xl = [ 0.98 1.04 

) -0.86 -1 .78 

X2 = [1.01344 

-0.97108 

X3 = [1.0043511 

-0.9897433 

X4 = [ 1.0017556 

-0.9964402 

X5 = [ 1.0006563 

-0.9987045 

1.03012) 

-1.93184 

1.0117844 ) 

-1.9752979 

1.0045673) J 

-1.9909749 

1.0017196 ) 

-1.9966634 

X~l 
~ 

X6 = [ 1.0002457 

-0.9995239 

1.000643 

-1.9987626 J. 

~s 

The sequence is converging quite quickly to the matrix 

which is a solution. 

Again, by use of the method of Chapter 4 it can be shown 

that the equation has exactly two real solutions. The other 

solution is 

657 
- 85 

299 
85 -7 .. 729 3.518 

-6.482 -7.271 
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Taking as an initial matrix which is 

close to this second solution the sequence of matrices obtained 

is 

Xl = (-7.54 

-S-.72 

4.4 ] 

-7.3 

X2 = [-3.7384 

-5.809768 

X3 = (l-l. 9488189 

-7.0918487 

X4 = [-1.4841153 

-7.5880045 

X5 = [-1.8575677 

-6.3218461 

X6 = [-1.6929126 

-4.2034215 

X7 = [-0.5682819 

-2.4856273 

X8 = [ 0.5784407 

-1.5887299 

4.63636 ) 

-7.86752 

3.3070361 ) 

-7.725489 

1.4856519 ) 

-6.5180116 

0.1783895 ) 

-4.9102099 

-0.1823606 ) 

-3.6110308 

0.1942567 ) 

-2.7464528 

0.7279035 ) 

-2.3034468 



= [ 0.9613137 

-1.1885564 

= [ 0.994818 

-1.041371 

[ 

0.9984971 

-1.0086507 

= [ 0.9994963 

-1.0020017 
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0.9514855 ) 

-2.1072923 

0.9886434 ) 

-2.0302058 

0.9963589 ) 

-2.008793 

0.9987131 ) 

-2.0028187 

As in example 5.2.1, though the initial value is chosen near 

one solution, the sequence is converging to the other solution. 

In attempting to find reasons for convergence to a particular 

solution, the iterative process 

may be considered in vector form. 

In example 5.2.1 where 

if X. is taken to be the matrix 
1 

-1 2 5 
- Al [A2+Xi 1 = -32 

-: ) and A2 = [-: -: J 

[

Xl X2] then 

x3 x4 

2 
- 4 + 9 + xl + x2x

3 x 1x
2 + x2x4 

[ - :,] r 3 
2 + x

1
x

3 
+ x

3
x

4 4 + x
2
x

3 
+ 

2 -32 32 x
4 

= f 1 (xl ,x2 ,x3 ,x4) f2(xl,x2,x3'X4) 

f 3 (xl ,x2 ,x3 ,x4 ) f4 (xl ,x2 ,x3 ,x4) 

1 
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where fl(xl,x2,x3,x4) 
1 [- 2 

- 5x2x
3 

- 4x l x
3 

- 4x3x4 + 37] =- 5x l 32 

f2 (x l ,x2 ,x3 ,x4) 
1 [- 5x lx2 - 5x2x

4 
- 4x2x3 - 2 + 4] =- 4x4 32 

f 3 (xl ,x2 ,x3 ,x4) 
1 [- 2 - 3x

2
x

3 
+'4x

l
x

3 
+ 4x

3
x
4 

+ 35] =- 3xl 32 

f4 (xl ,x2 ,x3 ,x4) 
1 [- 3x

l
x

2 
- 3x

2
x

4 
- 4x

2
x

3 
+ 2 + 28] = 32 4x4 

Hence 

i+l i+l 

1 I 
i i i i 

Xl x2 f 1 (xl ,x2 ,x3 ,x4) 

= 
i+l i+l i i i i 

x3 x4 J l f3(xl,x2,x3,x4) 

or in vector form 

i+l i i i i 
xl f'l (x l ,x2 ,x3 ,x4) 

i +1 i i i i 
x 2 

= f2(xl,x2,x3,x4) 

i+l i i i i 
x3 f3(xl,x2,x3,x4) 

i+l i i i i 
x4 f4 (x l ,x2 ,x3

,x4) 

The follow~ng result holds, see for example, Morris [1983] 

for the iterative process 

Let R denote the region a. 
1 
~x."b. 

1 1 
i = 1,2, ... ,n and 

let the functions f., i = 1 to 
1 

n, satisfyi~9' ~lefollowing conditions 

(i) f. is defined and continuous on R, 
1 

. 



(H) 

(iH) 
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for each x ER the point f.(x) also lies in R, 
1 -

if J
f 

is the Jacobian matrix of f(x) then 

II J f (~) II < 1 for some matrix norm 

Then the equation ~ = f(~) has precisely one solution in R 

and for any choice x in R the sequence {x(i)} given by 
-0 -

x 
(i+l) = f(x(i)) is defined and converges to the solution x. 

The Jacobian matrix in this example is 

J 
1 -10x -4x -5x -5x -4x -4x -4x =-32 1 3 3 2 4 1 3 

-5x 2 -5x -5x -4x 
143 -4x 2 

-5x -8x 2 4 

6x l -4x3 3x3 3x2-4x4-4x 1 
-4x 

3 

3xZ 
. -4x

3
+3x

1
+3x

4 -4x 2 3x2-8x4 

At the solution X = [ 1 -: ) -1 

the Jacobian matrix is -0.1875 0.15625 0 0.125 

0 -0.125 0 0.25 

0.3125 -0.09375 0 0.125 

0 0.125 0 0.25 

II All = Cl, n 
2f /2 and using a matrix norm, for example, L la .. 1 

i.=l 1J 

The norm of this matrix is II JII = 0.658 to 3 S.F. 

At the solution X = 

[ 
-4.875 2.5 ] 

-3.15625 -4.125 
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the Jacobian matrix is 1.918 0.493 0.734 0.395 

-0.391 1.801 -0.3125 0.641 

-0.5195 -0.296 1.359 0.395 

0.234 -0.449 -0.3125 1.266 

and the norm of this matrix is 11 J 11 ~ 3.547. 

Hence at the solution to which the iteration converges 

11 f' (X) 11 ~ 0.658 and "at the other solution 11 f' (X) 11 ~ 3.547 where 

f'(X) is the Jacobian matrix of the function f(X) -1 2 
-A

1 
[A

2 
+ X 1 

written in vector form. 

The condition for convergence is also satisfied in Example 

5.2.2 where the equation to be solved is 

then setting 

and 

f(X) ~ [ fl(xl,x2,x3,x4) 

f3(xl,x2,x3,x4.) 

-19 ] 

7 . 

" 1:"n vector form as xi+l -_ f(xl:) and writing the iteratl:ve process 

the Jacobian matrix for f(x) is 

J 1 ( -16x -6x -8x -8x -6x -6x -6x ~ 100 1 3 3 2 4 1 3 

-8x 
2 -8x -8x -6x 

143 -6x 2 -8x -12x 2 4 

12x
l
-8x

3 6x3 6x2-8x4-8x 1 -8x 
3 

l 6x2 -8x3
+6x 1+6x

4 -8x 2 6xZ-16x
4 
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At the solution X = 

[-: ) -2 

the Jacobian matrix is -0.1 0.08 -0.02 0.06 

-0.08 0.14 -0.06 0.16 

0.2 0.06 0.14 0.08 

0.06 0.02 .,.0.08 0.38 

and the norm of this matrix is 

11 J 11 = 0.544 to 3 S. F • 

The iteration converged to this solution whereas it did not 

converge to the solution 

X= [ 
-7.729 3.518 

) . -6.482 -7.271 

The norm of the Jacobian matrix at this solution is 

11 JII = 3.488 

2 Another rearrangement of the equation X + A
1
X + A2 = 0 is 

may be defined. 

-1 
and the iterative process Xi+l = - A2Xi 

This process is applied in the following example. 

Example 5.2.3. 

Consider the equation X2 + A1X + A2 = 0 

where Al = [-5 
4 

) 
A = 

[-4 -: ) 2 

-3 -6 -5 

- A 1 

using the iteration Xi+l 
-1 

- Al with the initial Then = A2Xi 



matrix X = 
0 

Xl = 

134 

[: -1 

1 
the sequence of 

3 

[ 5 -2 

) 5.625 

4.7476923 

4.1384615 

4.9673996 

4.0299469 

4.9982567 

4.0050549 

4.9994554 

3.9996941 

5.875 

-3.0646154 1 
5.8769231 

-2.9960576 1 
6.0266111 

-3.005823 1 
6.0018588 

-3.0005824 1 
6.00081701 

matrices obtained 

The sequence is converging quite rapidly to the matrix 

It can be 

which is a solution. 

shown that X = [-0.905 

-0.381 

-0.476 ] 

0.905 

is also a 

solution where the figures are rounded to 3 decimal places. 

Taking an initial matrix Xo = [-0.9 

-0.4 

-0.5 ] 

0.9 

which is 

is 

close to this solution, the sequence of matrices obtained from 



.. 

Xl = [-0.9405941 

-0.2673267 

X2 = (-0.1632651 

-0.5612245 

X3 = [-1.3902412 

9.0975691 

X4 = [4.1928037 

3.0426962 

X5 = [ 5.2059164 

4.0830008 

X6 = [ 5.0023925 

3.9741637 

X7 = [ 5.0053418 

3.997452 

X8 = [ 5.00061156 

3.9992161 
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-0.6336634 ) 

0.8514851 

-0.7959182 ) 

-0.1734699 

-9.2682957 ) 

-4.682927 

-3.6836735 ] 

6.556122 

-2.9691271 

] 6.1509156 

-3.0233801 

) 6.0174908 

-3.0002228 ] 

6.0026052 

-3.0001283 ] 

6.00035471 

The reason for convergence to the particular solution 
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x = 

[ : -3 

) 
can again be seen by writing the iterative 

6 

-1 
in the vector form process Xi+1 = AZXi - A 1 

where 

i+1 i i i i 
x3 f3(x1,xZ,x3,x4) 

i+1 i i i i 
x4 f4(x1,xZ,x3,x4) 

5 - 6x
3 

+ 4x
4 

x 1x4 - x
Z
x

3 

-4 + 3x
3 

+ 5x
4 

x 1x4 - x
Z
x

3 

3 + 3x3 + 5x
4 

x 1x4 - xZx
3 

6 - 5xZ - 3x
1 

x 1x4 xZx
3 

and the Jacobian matrix for f(~) is 

Z Z J = 
(x 1x4-xZx

3
) Z -4x4 +6x3x4 6x3+4x

3
x

4 

6xZx3+4"Zx4 -4x 1x4 +6x
1
x

3 
Z -5x4-3x3x4 

Z 3x
3

+5x
3
x

4 

3xZx
3

+5x
Z
x

4 -5x 1x4-3x
1
x

3 

-6x1 x4 +4xZx
4 

Z -4xZ+6x 1x
Z 

3x
1
x4 +5xZx

3 

Z -5x2-3x 1x
Z 

-4xZx
3

+6x
1
x

3 

Z -6x 1+4x
1
x

Z 

-5xZx
3
-3x

1
x

3 

Z 3x 1+5x
1
x

Z 
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At the solution X = ( 5 -3 

) l 4 6 

the Jacobian matrix is J = 0 0 -0.143 0.095 

0 0 -0.071 -0.119 

-0.143 0.095 0 0 

-0.071 -0.119 0 0 

and the norm of this matrix is II J II = 0.312 to 3 S.F. 

At the solution X = [-0.905 -0.476 ) with elements 

-0.381 0.905 

rounded to 3d. p. , 

the Jacobian matrix is J = 5.343 0.508 3. 191 -1.343 

1 .343 -1 .207 1 .678 -3.191 

-3.061 -1.289 1 .550 -1 .941 

1 .609 -3.060 2.424 -4.609 

and the norm of this matrix is II J II = 10.65. 

Again, convergence has taken place to the solution at which 

II JII < 1. 

-1 
This arrangement Xi+l = - Al - A2Xi converges to the 

solution X 

elements. 

obtained is 

even for an initial matrix with very large 

e.g. if X 
o 

4.9230769 

3.0653846 

100 

200 

-40 1 
50 

the sequence of matrices 

-3.9415385 ) 
I 

5.9923077 J 



5 . 134 1157 

3.9416772 

5.0192364 

3.9890913 

X4 ; [ 4.9996714 

3.9962887 

and is clearly converging to 
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-2.9104995 ] 

6.1187618 

-3.0102593 ] 

5.9801838 

-2.9968518 ] 

5.9998474 

[: -:] 
-1 

In this example the rearrangement x.; - A - A
2
X,. only leads 

L-tl 1 

to the solution X ; [: -:) . 

However for this equat{on the rearrangement 

and 

gives 

give. 11 J 11 > 1 

11 J 11 < 1 at X ; [-0.905 -0.476 ] 

-0.381 0.905 

Taking X 

[ : -1 ; 

0 

3 

Xl ; 

[ 
0.1904762 

0.7380952 

X2 ; [-0.9554044 

-0.0890968 

) 

j 
the iterative 

-0.6190476 

) 1.9761905 

-0.4346183 ) 

1.2920446 

at 

. 

function X. 1 
1+ 

-1 
; - A. [A2 

X:j + 
l. 



X3 = (-0.9145441 

-0.3810602 

X4 = [-0.9078254 

-0.3848105 

X5 = [-0.9049649 

-0.3820642 

X6 = [-0.9049441 

-0.3811776 
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-0.4296536 ] 

0.9995105 

-0.4659061 ) 

0.9267439 

-0.4738 1 73 ] 

0.9099319 

-0.4756691 ) 

0.906002 . 

This is clearly converging to the other solution. Hence 

just as in the scalar ,case two different rearrangements of the 

2 
equation X + A1X + A2 = 0 can lead to two different solutions. 

The conclusion which may be drawn from these examples is 

that the method of simple iteration applied to the matrix quadratic 

equation can lead to solutions under certain conditions. 

i+1 i In the scalar case the iterative process x = f(x ) will 

lead to a solution x = a if If'(a)1 < 1. In the matrix case it 

has been shown that a similar condition exists in that the iteration 

X. 1 = f (X.) can lead to a solution matrix when 11 f' (X)il < 1 where 
1+ 1 

the derivative f'(X) is the Jacobian matrix of the set of functions 

f (x) • 

In practical terms it would be difficult to ascertain whether 

the conditions for convergence are satisfied in a 'particular problem, 

since the constituent polynomials of f(X) would have to be formed 

as well as the Jacobian matrix. There is also the problem of 
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finding a matrix X sufficiently close to a solution X to ensure 
o 

that 11 Jf(~) 11 < 1. 

The iterative process itself, however, defined on the matrices 

can be quite straightforward with few computational difficulties. 

We have considered two arrangements leading to the iterative 

processes 

(2) X A X- 1 - A i+l = - 2 i 1 

Clearly Method (1) cannot be applied if the matrix Al is 

singular. However, provided det Al I 0 then the iterative process 

will not break down, and if convergence occurs it will be to a 

root of X2 + A1X + A2 = O. At each stage of the iterative process 

two matrix multiplications and one addition are required. 

Since Method (2) involves the calculation of X~l at each 
1 

stage the process would break down if one of the iterates was 

singular. 

In Method (1), 11 f' (X) 11 is small when the determinant of 

the matrix Al is large in comparison to the size of the elements 

in a solution X, and in Method (2) 11 f' (X) 11 is small when there 

is a solution which has a large determinant. However, if the size 

of the elements in a solution matrix are unknown, the likelihood 

of the arrangements leading to a solution would be difficult to 

estimate. In the scalar polynomial equation, the approximate 

location of a root can be estimated by using the result that there 

is a root of f(x) = 0 in the interval [a, b] if f(a) .f(b) < o. 
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5.3 BERNOULLI'S ALGORITHM. 

This algorithm is an iterative method for finding the dominant 

root of a polynomial equation. The dominant root is defined as 

the root which has the largest numerical value. 

Consider the polynomial equation xn + a
1
xn- 1 + a

2
xn- 2 + .•• + an = 0 

and define the values x. by means of the recurrence relation 
~ 

x. 1 + a 1x. + a 2x'_1 + ••• + a x. 1 = 0 L+ 1. n 1-n+ 
i=0,1,2 .... 

then, for suitable starting values, the sequence 
x. 
~ y. where y. =--

~ 1 x. 1 
~-

converges to the dominant root of the pOlynomial equation. It can 

be shown that the conditions for convergence are satisfied by 

choosing x = 
o 

= O. 

2 If the equation to be solved is x - 5x - 6 = 0 then defining 

the recurrence relation 

with = 0 x = 
o 

then x2 = 31, x3 = 185, x4 = 1111, x5 = 6665 

x6 = 39991 

and the sequence y. becomes 
~ 

Y2 = 6.2, Y3 = 5.9677419, 

Y5 = 5.9990999, Y 6 = 6.00015 

Y 4 = 6.0054054 

and the sequence is clearly converging quite rapidly to the root 

x = 6. 

The method does not lead to such rapid convergence when the 
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roots are closer in numerical value, for example, the equation 

2 x - 5x+ 6 = 0 has roots x = 2 and x = 3, 

and defining the relation 

with = 0 x = 1 o 

then xl = 5, x4 =211, x5 = 665, 

x6 = 2059, x = 6305, 7 

and the sequence y. defined by y. 
1 1 

Yl = 5 

Y2 = 3.8 

Y3 = 3.4210526 

Y4 = 3.2461539 

Y5 = 3.1516588 

Y6 = 3.0962406 

Y7 = 3.0621661 

Y8 = 3.0406027 

Y
9 

= 3.026707 

x8 = 19171, x9 = 58025 

x. 
1 becomes = --x
i

_
1 

Though the sequence is obviously converging to the root x = 3 

the rate of convergence is much slower than in the first example. 

Dennis,Traub & Weber [1978] have shown that this algorithm 

may be applied to the unilateral ~trix equation and the sequence 

will converge to the dominant solvent, provided one exists. A 

dominant solvent is defined as a solvent with eigenvalues greater 

in modulus than those of any other' solvent. 
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Consider the matrix equation 

and define the matrices X. by the recurrence relation 
1 

-1 
Then for suitable starting values the sequence X.X. 1 converges 

1 1-

to the dominant solvent if one exists. Conditions for convergence 

are satisfied by choosing 

x = 0 
-n+l 

The method is illustrated in the following examples. 

Example 5.3.1. 

Consider the equation x2 + A
1
X + A2 = 0 

where Al = [-8 -6) 
-5 5 

and define the ·recurrence relatIon 

with 

the sequence of matrices obtained 15 

530 450 ). 

-445 375 

A2 = [ 12 

10 

12 ) 

-14 

6 ] 

69 

30 ) 

5381 



and 
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X5 = [ 32858 

27055 

32466 ) 

-37485 

X X-I = 
1 0 6 J) 

-5 

6.2857143 

5.2857143 

6.098081 

4.9928927 

= [ 6.0175976 

5.0148295 

= [ 6.005876 

4.9999727 

= [ 6.001137 

5.0008206 

X6 = [ 359542 

-25095 

6.3428571 ) 

-7.4571429 

5 .9914712 } 

-6.8834399 

6.0177954 ] 

-7.020959 

5.9999672 ) 

-6.994053 

6.0009847 ) 

-7.0009966 

-30114 ) 

424789 

-1 
The sequence Xi Xi _1 is converging quite rapidly to the 

solution 

As in the scalar case, the convergence is not always so 

rapid as can be seen in the following example. 
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Example 5.3.2. 

Consider the 
. 3 2 equat10n X + A1X + A2X 

where A = 
[-6 -~5 ) 

A2 1 

-3 

and define the recurrence relation 

with 

then 

X_2 = X_ 1 = 

[ 
0 0 

J 0 0 

Xl = 

( 
6 -6 

J 3 15 

X2 = [ 16 

42 

(

-60 

390 

X4 = [-1274 

3045 

X5 = [-12474 

21693 

-84 J 
142 

-780 1 
1110 ) 

-6090 ) 

7861 

-43386 J 
52605 

X6 = [-99224 

146412 

-292824 ) 

340012 

= 

(2: 

and X 
0 

+ A3 = 0 

-42 

) A3 = 
[ 18 

66 

) 65 -33 -81 

= 

( 0 



and the 

X7 = [-715800 

955020 

X8 = [-4884374 

6090315 

"'"1 
sequence X.X. 1 

1 1-

X X- l 
= 6 1 0 

is 

-6 
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-1910040 ) 

2149260 

~12180630 ) 

13386571 

[ 3 15 ) 

=[.4.5556 

1.8889 

[ 

4.1793 

1 .5103 

[ 

4.0444 

1 .3222 

= [ 3.9925 

1.2131 

3.9742 

1 . 1444 

3.9704 

1.0991 

-3.7778 ) 

10.2222 

-3.0207 ) 

8.7103 

-2.6444 ) 

8.0111 

-2.4261 ) 

7.6317 

-2.2888 ) 

7.4073 

-2.1982 ) 

7.2677 
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3.9727 -2.1368 

) . 1.0684 7.1778 

The dominant solvent of this equation is [4 -:) and the 

sequence is converging to this solution but very slowly. 

Dennis,Traub & Weber [19781 describe an algorithm which may 

be applied when the Bernoulli iteration converges slowly. It is 

based on an algorithm for scalar polynomials described by Traub 

[1961:>1. 

In the scalar case, the iteration involves the ratio of 

polynomials of the same degree. The derivative of the polynomial 

is not required. The algorithm for a scalar polynomial is 

illustrated first. 

Given the polynomial equation P(x) = 0 where 

P(x) = n 
x 

n-1 
+ a

1
x + •••• + a 

n 
= 0 

A set of polynomials of degree (n-1) are defined recursively 

as follows 

G. l(x) = x G.(x) - b. P(x) 
L+ 1 1 

where G (x) = x and b. is the leading coefficient of the polynomial o 1 

G. (x). 
1 

The sequence of leading coefficients of the G polynomials 

is in fact the sequence 
b. 

h 
. 1 

hence t e rat10 ~ 
i-1 

and 

x. obtained from the Bernoulli algorithm 
1 

converges to the root of P(x) = 0 with 

the largest numerical value. 
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If however the rate of convergence is slow, this first stage 

of iteration may be stopped at a certain point say GL(x) and a 

second stage iteration defined by 

with 

2 The method is illustrated for the equation x - 5x + 6 = 0 

in which the Bernoulli"iteration converges slowly as shown at 

the beginning of this section. 

Let P(x) = x2 
- 5x + 6 

Stage one. 

Let G. 1 (x) = x G. (x) - b. [x 2 
- .5x + 6] and G (x) = x 

~+ ~ ~ 0 

Hence G 1 (x) = x[x] - 1. [x 
2 

- 5x + 6] 

G
1 

(x) = 5x - 6 

G2
(x) x[5x - 6] - 5[x 2 

- 5x + 6] = 

G
2

(x) = 19x - 30 

G
3

(x) x[ 19x - 30] - 19 [x 2 
5x + 6] = -

G
3

(x) 65x-114 

G
4 

(x) x[65x - 114] - 65[x 2 
- 5x + 6] = 

G
4 

(x) = 211x - 390 
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2 = x[211x - 390] - 211[x - 5x + 6] 

G
5

(x) = 665x - 1266 

The sequence of ratios of the leading coefficients of the 

G polynomials obtained so far is 

5 
= 5 

b2 19 
~ ="""5 = 3.8 

3.4210526 

3.2461539 

3. 1516588 

The sequence is clearly converging and the second stage 

iteration is now defined as 

with 3.1516588 

The sequence obtained 1S 

xl = 3.0176476 

x
2 = 3.0022889 

x3 = 3.0003008 

x
4 = 3.0000396 
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ISO 

The sequence is clearly converging much more rapidly than 

the Bernoulli iteration did 1n the same example. 

A complete description of several iterative processes involving 

the use of the G polynomials is given by Traub [1966). 

The method is applied to the unilateral matrix equation by 

Dennis,Traub & Weber [1978). 

where 

Again the algorithm is in two stages. 

Given the unilateral matrix equation P(X) = 0 

p(X) = Xn + A
1
Xn- 1 

+ A
2

Xn- 2 + •••• + An 

Stage one. 

A set of matrix polynomials of degree (n-1) are defined 

recursively as follows 

G. 1 (X) = G. (X).X - B .. P(X) 
1+ 1 1 

where G (X) = X
n

-
1 

and B. is the leading coefficient matrix 
o 1 

in the matrix polynomial G.(X). 
1 

The sequence of leading coefficient matrices B. is in fact 
1 

the sequence ·X. obtained by application of the Bernoulli algorithm 
1 

and if there is a dominant solvent the matrix product B. B~ll will 
1 1-

converge to this solvent. 

If the rate of convergence 1S slow then the second stage 

of the algorithm may be implemented. 

Stage two. 

If the first stage has stopped at 

GL(X) then the second stage iteration is defined as 

with 
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The algorithm is illustrated by. application to the matrix 

equation used in Example 5.3.2 and the faster rate of convergence 

can be seen in Stage two. 

Examele 5.3.3. 

Consider the equation X3 + A x2 + A2X + A3 = 0 1 

where Al = 
(-6 

6 

] 
A2 = 

[ 
2 -42 

] A3 = 
[ 18 66 

-3 -15 21 65 -33 -81 

Stage one. 

Define G. 1 (X) L+ 
= G. (X).X - B. 

L L 
P(X) 

with G (X) = X2 and hence 'B = I • 
0 0 

Then Gl (X) = [X21X - I[X3 
+ A1X2 + A2X + A3 1 

Gl (X) = A X2 - A X - A 1 2 3 

Hence Bl = - A = 
( 

6 -6 

] 1 

3 15 

G2 (X) [- A x2 - A X - A lx + A [X3 2 
+ A2X + A3 1 = + A

1
X 1 2 3 1 

Hence 

G2 (X) [A2 = 1 

G2(X) = [ 16 

42 

B2 = [ 16 

42 

2 
A21X + [A1A2 - A3 1X + A1 A3 

-84 r2 
+ 

[ 96 576 r + [-306 
-882 

142 -288 -768 441 1017 

-84 ] 

142 

] 

] 
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= [[ ~: + [ 96 

-288 

576 ]X + (-306 

-768 441 
-882 ]JX 

1017 

- [16 -84] 

42 142 

Hence G3(X) = [-60 -780 t2 + [ 1426 5250 t + (-3060 -7860 

] 390 1110 -2625 -6449 3930 8730 

B3 = 
[-60 -780 

] . 390 1110 

Hence 

Two more iterations give 

Hence 

Hence 

G4 (X) = [-1274 -6090 ]X2 + 

3045 7861 [ 

13440 

-20160 

40320 

-47040 [

-24660 

29610 

-59220 ] 

64170 

The 

B4 = [-1274 

3045 

-6090 ] 

7861 

= [-12474 -43386 )X2 + 

21693 52605 

B5 = [-12474 

21693 

-43386 ] 

52605 

-1 
obtained sequence B. B. 1 

1 1-

B B- 1 = 
1 0 [ : -6 ] 

15 

[ 

105778 

-141561 

so far is 

283122 ]X + [-178038 

-318905 204603 

-409206 ] 

435771 



4.5556 

1.8889 

4.1793 

1 .5103 

4.0444 

1 .3222 

= [ 3.9925 

1.2131 
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-3.7778 ) 

10.2222 

-3.0207 ) 

8.7103 

-2.6444 ) 

8.0111 

-2.4261 ) 

7.6317 

This is precisely the sequence of matrices obtained by the 

Bernoulli iteration and is clearly converging but slowly. The 

second stage is therefore implemented. 

Stage two. 

Define the iteration by 

with 

The sequence of matrices obtained now is 

. Xl = [ 3.973 

1.045 

3.993 

1.009 

-2.089 ] 

7.107 

-2.018 ) 

7.019 



3.999 

1.002 

3.999 

1 .000. 

X5 = 

[ 
4.000 

1 .000 

and S1 = 
[ 4 -: ] 

154 

-2.003 ) 

7.004 

-2.001 ] 

7.001 

-2.000 

] 7.001 

~s the dominant solvent of the matrix 

The faster rate of convergence can clearly be seen ~n the 

Stage two iteration. 

The stage one algorithm suffers from the same disadvantage 

as the Bernoulli iteration in that the elements of the coefficient 

matrices in the G polynomials become very large and problem of 

inaccuracy may arise when inverses have to be determined. 

5.4 THE NEWTON METHOD APPLIED TO THE MATRIX EQUATION. 

Given a polynomial in a single variable 

+ ...• + a 
n 

then· the Newton-Raphson iteration applied to the equation 

f (x) = 0 is 

f (x.) 
~ 

x. - ~r
~ f I (x. ) 

~ 
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This can also be applied to a set of n equations in n 

variables 

..................... 

The set of equations is written in vector form as £(~) = 0 

where 

and the derivative £'(~) becomes the Jacobian matri~ 

J = x 

af l af 1 af
l 

aX 2 ax aX l n 

af 2 af 2 af 2 
aX l 

aX 2 ax n 
....................... 

af 
n 

aX2 

af 
n 

ax 
n 

Then the Newton method applied to the set of equations is 

x(i+l) = x(i) _ J-~i) £(~(i» 
x 

Newton's method can be shown under certain conditions to 

have quadratic convergence, provided a good initial approximation 

is available. 

since any matrix equation involving mXm matrices may be 

d f
2 1'1" 2 k expresse as a set 0 m po ynom1a equat10ns 1n m un nowns, 
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the Newton method may be applied to the system of equations to 

find the elements of the solution matrix. This can be illustrated 

by consideration of the unilateral quadratic matrix equation 

involving 2x2 matrices. 

Consider the equation X
2 

+ A1X + A2 = 0 

where 

then the matrix equation becomes 

- [: 
o 

o 

or 

The Newton method may then be applied to the system !(~) = 0 

where 

The Jacobian matrix for !(~) is 

2xl +a 1 x3 x
2

+a
2 0 

x2 
x

1
+x

4 
+a

1 
0 x

2
+a

2 

x
3

+a
3 

0 x
1
+x

4
+a

4 x3 

0 x
3

+a
3 x2 2x4 +a4 

The method is illustrated in the fo~lowing example. 
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Example 5.4.1. 

Consider the matrix equation x2 + A1X + A2 = 0 

where X = 

[ 
xl 

x2 ) 
Al = 

[~~ : ) A2 = 
[-3 

3 

) 
x3 x4 -9 -11 

then J = x 
2x

1
+2 x3 x

2
+1 0 

x2 
x

1
+x

4 
+2 0 x

2
+1 

x ':'1 
3 

0 x
1
+x

4
+1 x3 

0 x -1 
3 

x
2 2x4 +1 

Choosing the initial value 0 
0 x = 

-2 

2 

then J 
x 

(0) = 2 -1 0 

-2 4 0 -1 

0 0 3 

0 0 -2 5 

f(x(o) = -4 

-3 

-6 

-5 

and x 
(1) 

0 2 -1 0 
-1 -4 

-2 -2 4 0 -1 -3 

0 0 3 -6 

2 0 0 -2 5 -5 
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It is usually more convenient to write x(l) = 

and to solve the linear equations obtained from 

2 -1 o ) 1 -4 -x 
1 

-2 4 0 -1 1 
-3 -2-x = 

2 

0 0 3 1 
-6 1-x 

3 

0 0 -2 5 1 
-5 2-x 

4 

rather than calculating the inverse of the Jacobian matrix. 

( 1 ) 
Solving the linear equations gives x = 1 .729 

0.012 

2.471 

3.588 

where the values are given to 3 decimal places. 

Similarly, further iterations give 

(2) 
= 1.098 

1 

(3) 
= 1.002 x(4) 1.000 x x = 

-0.828 -0.995 -0.998 

2.048 I 1.996 2.001 

3.072 3.001 3.000 

(5) 
x = 1 .000 

-1 .000 

2.000 

3.000 
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Hence the iteration has converged to the vector solution 

and the elements of the matrix solution have been formed. 

-1 

2 

3 

The solution of the matrix equation is X -: ) . 

In the following example the method LS applied to a cubic 

matrix equation. 

Example 5.4.2. 

Consider the equation X3 - A = 0 

where 

The matrix equation is equivalent to [ 

where 

and 

fl(xlx2x3x4) 
3 

+ 2x 1x
2
x

3 
+ x2x

3
x

4 
+ 1 = xl 

f2(xlx2x3x4) 
2 2 2 . 3 = x
1
x

Z 
+ x

2
x

3 
+ x

1
x

2
x

4 
+ x2x4 -

f3(xlx2x3x4) 
2 2 Z 

= x
1
x

3 
+ x

1
x

3
x

4 
+ x

2
x

3 
+ x

3
x

4 

f4(xlx2x3x4) = x
1
x2x

3 
+ 2x

2
x

3
x

4 
+ 3 8 x .-

4 
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The Jacobian matrix for f(x) is 

2 
2x,x3+x3x4 2x,x2+x2x4 J = 3x, +2x2x3 x 

2x,x2+x 2x4 
2 2 2 x,+Zx2x3+x,x4+x4 Xz 

Zx,x3+x3x4 
Z Z 2 

x3 x,+x,x4+2xZx3+x4 

xZx
3 

x,x3+Zx3x4 x,xZ+2xZx4 

Choosing the initial value x 
(0) 

= -, and setting x 
(1) 

0 

then J 
x 

(0) = 3 0 -, 0 and f(x(o)) = 

-, 
0 0 0 

0 0 3 

iteration 0 - ~(1)1 f(~(o)) The Newton J (0) [~ = 
x 

becomes 3 0 -, 0 -,-x = 0 , 
-, ,-x 

Z -2 

0 0 0 -x 
3 

0 

0 0 3 ,-x 
4 7 

(1) 
Solving the linear equations gLves x = -, 

Z 
"3 
o 

3 .!. 
3 

x
2
x

3 

x,x2+2x2x4 

x,x3+Zx3x4 

Z Zx2x
3

+3x
4 

= x, 

Xz 
x3 

x 4 

0 

-2 

0 

7 
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Further iterations, with the elements given to 2 decimal 

places are 

(2) 
x = -: 1 .00 x (3) = -1.00 x(4) = -1.00 

0.71 0.88 1.48 

o o o 

2.48 2.10 2.00 

x(S) = -1.00 

1.00 

o 

2.00 

The iteration has converged to a solution vector x = -1 

o 

2 

and hence a solution of the matrix equation X3 - A = 0 has the same 

elements and is 

x = 

The Newton Method may also be applied direct to the matrix 

equation by use of the derivative operator as described in 5.1. 

Consider the equation X2 + A
1
X + A2 = 0 . 

Let f(X) = X2 + A1X + A2 

Then the derivative operator is 

f' (X) = [X + A1][ 1 + [ 1 X 
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where the square brackets are replaced by the matrix which the 

derivative operator is operating on. 

The Newton iteration is 

X. 1 = X. - [f'(X.)]-1 f(X.), f"(xJ nQ(\si"3u1or. 
1+ 1 1 1 . 

This may be rearranged as 

f' (X. )[ X . - X. 1] = f (X. ) 
1 1 1+ 1 

The derivative operator is therefore operating on the matrix 

[Xi - Xi +1] and the iteration becomes 

[X.+A1][X.-X. 1] + [X.-X. 1][X,] = x21.' + A1X1.' + A2 
1 1 1+ 1 1+ 1 

and this simplifies to 

[X.+A1][X. 1] + [X. 1][X'] 
1 1+ 1+ 1 

The Newton method has therefore reduced the quadratic matrix 

equation to the problem of the iterative solution of a linear 

matrix equation of the Liapunov type. 

A matrix equation of any degree can be converted to the 

iterative solution of a linear equation, e.g. for the cubic matrix 

equation 

The Newton iteration is 

which is linear in X. l' 1.+ 

The Riccati equation XEX + OX + XF + G = 0 may also be solved 

by this method. 
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The Newton iteration for this equation is 

Kleinman [1968] and Davis [1981] have derived iterative methods 

which are based on the Newton iteration. 

One of the main difficulties in applying Newton's method to 

the matrix equation is in finding a suitable initial matrix for 

convergence to take place. 

Kleinman's scheme is a method for the solution of the special 

form of the Riccati equation 

where P is the unknown matrix to be determined. 

The iterative process is 

T -1 T 
A.P. + P.A. = - Q - P. lBR B P. 1 

1 L 1 1 1- 1-

where 1 = 1,2, ... 

and A = A - BL and L is any matrix such that A - BL is 
000 0 

a stability matrix, that is (A - BL ) has eigenvalues with negative 
o 

real parts. 

Kleinman shows that lim 
i--

is quadratically convergent. 

P. = P and that the sequence {P.} 
1 1 

Davis [1981] applied Newton's Method to the solution of the 

Z quadratic matrix equation F(X) = AoX + A
1
X + A

Z 
= O. He describes 

an algorithm using a subroutine SQUINT which stands for Solving the 

Quadratic by Iterating Newton Triangularizations. After an initial 

guess X is chosen, successive iterates are generated by the formula 
o 



where 

= x. - T. 
1 1 
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T. = [F'(X.)]-l F(X.) 
111 

i = 0,1,2, .•. 

and T. is given as the solution of the system 
1 

[A X.+A1]T. + A T.X. = F(X.) 
o ~ ~ 0 ~ L 1 

i=0,1,2, ...• 

The SQUINT subroutine obtains the T. by simultaneously 
1 

reducing [A X.+A1] and A to upper triangular form then reducing 
o 1 0 

X. to lower triangular form. The transformed triangular system 
1 

is solved and T. is computed. 
1 

One of the problems of applying Newton's Method to the matrix 

equation is that of finding a suitable initial guess. Davis 

suggests 

x = 
o 

211 A II o 

This is designed to provide a rough estimate for the magnitude 

of a possible solution, but convergence is not guaranteed. 

Several examples are now given showing a variety of matrix 

equations solved by the Newton method. Where successive iterates 

are given, the elements are rounded to 3 decimal places. In some 

examples, the solutions were obtained by use of programs written 

for a micro computer. In these cases, convergence was deemed to 

have occurred when each element in f(X.) had a numerical value less 
1 

than 10-8 • 
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Example 5.4.3. 

Consider the equation X2 + AIX + A2 = 0 

where AI = 

[-~ ) A2 = 
[-3 

3 

) -9 -11 . 
The Newton iteration is [X. 1 2 + AI X. I + X. IX. = X. - A2 

~ ~+ ~+ ~ ~ 

Choosing X = 

[ ~ 
-2 

) 
the sequence of iterates obtained . 0 

1.729 

2.471 

X3 = [ 1.002 

I .996 

and the iteration 

Example 5.4.4. 

Consider the 

where E = [-: 

G = 

[-: I 

2 

0.012 ) 

3.588 

-0.995 ) 

3.001 

X4 
= 

[ 
has converged to 

[ 2 

Riccati Equation XEX 

~ ) 
D = 

[-: 
-3 

J -10 

1.098 

2.048 

1.000 

2.000 

-~ ) 

+ DX + 

~ ) 

-0.828 ) 

3.072 

-1.000) 

3.000 

which is a 

XF + G = 0 

F = 

[ : -2 

) 

is 

The Newton iteration is [X.E+DlX· 1 + X. I [EX. + Fl = X.EX. - G 
~ 1+ 1+ 1 1 1 
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Ibb 

Choosing X = 

[ 
0 

) 0 

0 

then 

Xl = 

[ 
0.750 -0.750 

) 
X

2 
= 

[ 
0.038 -1 .070 

) 0.500 3.000 1 .003 3.057 

X3 = [-0.010 -1.005 ) X4 = [ 
0.000 -1.000 

) 1.006 3.003 1.000 3.000 

The iteration has converged 
to [ 

0 -1 

) 
which is a 

3 

solution of XEX + DX + XF + G = O. 

ExamEle 5.4.5. 

Consider the cubic equation X3 2 
+ A = 0 + A

1
X + A

2
X 

3 

where A = 
[-6 

6 

) 
A2 = 

[ 
2 -42 

) 
A = 

[ 18 1 3 

-3 -15 21 65 -33 

The Newton iteration is 

[X~+A1X.+A21X. 1 + [X.+A
l 1X. l X. + X. lX~ = 2X~ + A1X~ - A3 

1 1 1+ L 1+ 1 1+ 1 • ~ 

Choosing 

gives 

X = ( 0 
0 l 

Xl = [-0.102 

0.861 

X3 = [-0.059 

1.005 

) 

-1 .801 ) 

J 2.053 

-2.130) 

3.002 

X .= [-0.096 2 

0.943 

X4 = [-0.006 

1 .002 

-2.154 

) 2.744 

-2.013 ) 

3.004 

66 

) -81 . 
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0.000 -z.ooo 

J. 1.000 3.000 

The iteration has converged to 

[ ~ 
-z 

] 
which 1S a 

3 

solution of the equation X3 + A xZ + AZX + A3 = 0 1 

ExamEle 5.4.6. 

Consider the equation xZ + A1X + AZ = 0 

where Al = ( Z -3 AZ = -4 -z -5 

1 -1 -1 0 Z -z -Z 

2 -2 2 0 -17 J 

The Newton iteration is [X. + A11X. 1 + X. lX. = x2
,. - AZ • 

L 1+ 1+ 1 

Choosing X = 
o 

o o 

o 0 

o 0 

the iteration converges in seven iterations.to 

X = 1.098 -0.064 2.376 

-0.055 Z.077 0.753 

-1.039 -0.404 4.908 

where the elements have been rounded to 3 decimal places. 

In this example, slight changes in the choice of X produce 
·0 

iterative sequences which converge to different solutions. In 

each case convergence is deemed to have occurred when each 

element of [X~ + A1X. + AZl has a numerical value less than 10-8 . ,. 1 

The solution is given to 3 decimal places in each case. 



x = 
o 

x = 
o 

Choosing 

o 

o 

o o 

4 -1 

2 -1 

o o 

x = -3 o 
o 

o -1 

-2 -2 

x = -10 -5 
o 

20 -4 

-30 4 

Example 5.4.7. 
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x = 
o o o the iteration converges to 

o -1 o 

o 0 

x = -1.097 0.903 3.859 in 16 iterations 

1.565 -0.534 0.369 

2.344 2.344 0.948 

o converges to -0.881 1 . 11 9 3.5901 in 30 iterations 

o 2.532 0.532 -0.834 

o -0.642 -0.642 4.664 

o converges to -1.066 -1.305 8.201 in 35 iterations 

3 2.449 3.513 -5.987 

2 1 . 104 0.824 -0.862 

converges to -3.050 -1.050 1.029 in 5 iterations 

1 .042 -0.958 -0.389 

-3 -0.432 -0.432 -3.075 

-1 converges to -0.731 1.269 3.402 in 14 iterations 

6 1 .663 -0.337 0.247 

20 2.865 2.865 0.299 J 

Consider the equation x2A1X + A2X + A3 = 0 
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o ) and 

The Newton iteration is 

2 
[X.A1+A2]X. 1 + X.X. lA1X, + X. lX.A1X, 

1 ~+ 1 1+ 1 1+ 1 1 

-1 ] converges to [-1.039 

o -0.638 

2 ] converges to 

-1 [ 

1.786 

-0.330 

5 ) converges to [-1.039 

-2 -0.638 

o ] converges to 

[ 

1.786 

-0.330 

5 ] 
-2 

-2.039 ] in 14 iterations 

0.362 

0.183 ] m 20 iterations 

0.262 

2.039 ] in 20 iterations 

0.362 

0.183 ] in 24 iterations 

0.262 

do not converge • 

The number of iterations required for convergence, when it 

occurs, depends upon the "distance" of an initial approximation 

from a solution matrix where "distance" is measured in terms of 

a matrix norm. 

This is illustrated in example 5.4.7 where the initial values 

~= 
o [: -~ ] 

and 5 ] converge to the solution 

-2 
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X, = [-'.039 

-0.638 

-2.039 ) 

0.362 

1n '4 iteration and 20 iterations 

respectively. 

X - XA = 
, 0 

[

-2.039 

-, .638 

-, .039 ) and 11 X, - x!11 = 3.078 

0.362 

X - xB = , 0 

[

-4.039 

0.362 

-2.96' ) and 11 X, - x!11 = 7 

2.362 

As would be expected, the two versions of the Newton Method 

are in fact equivalent. Using the derivative operator the Newton 

iteration can be rearranged as 

f' (X. ) [X. - x. ,1 = f (x. ) 
~ ~ ~+ L 

If f(X) = x2 
+ A,X + A2 then the derivative operator 

f'(X.) = [X. + A,1[ 1 + [ 1X. operating on the matrix 1 1 1 

[x. - x. ,1 can be written as 1 1+ 

where (~(i) - ~ (i+'» is the column vector formed from the transposed rows 

of the matrix (X. - X. ,). 1 1+ 

Since f (X.) 
1 

f 2 (x) •.•.• f (x) 
m - mm-
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where f .. (x) = 0 
~J -

i = 1, ..• ,m j = 1, •.. ,m are simply the 

constituent equations of the matrix equation, then the Newton 

iteration can be written as 

[ (X + A ) f,;\X I + I rvX' XT.) (x(i) 
i l'<Ym m'<Y~_ 

since the Newton iteration using the Jacobian matrix can be 

written as 

J (i)[~(i) - x(i+l») = !.(~(i» 
x 

it only remains to show that [(X + AI) ® lm + lm ® X:) and 

the Jacobian matrix are the same. 

Let X = (x .. ) Al = (a .. ) and A2 = (b .. ) 
~J ~J 

then the 

where 

and 

equation 

f (x) = 
rs -

~J 

X2 + A
1
X + AZ = 0 can be written 

= 0 

f 2 (x) ••••• f (x) 
m - mm-

m 

L 
j =1 

(x . x. + a .)(. + b ) 
rJ J s rj J s rs 

The Jacobian matrix for the set of functions 

as 
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of 11 of 11 of 11 
) 

(x) (x) (~) I J = 
· ox 11 oX

12 
· ....... ax-x 

lIllIl . 

of12 
(x) 

of
12 

(~) 
of

12 (x) 
oX

l1 
oX

12 
· ...... ax-

lIllIl 

........................................ 
of of of 

lIllIl 
(~) 

lIllIl 
(~ 

lIllIl (x) 
ox 11 oX

12 
· ...... ax-

lIllIl 

x 
rj 

+ a rj if s = k 

~f 
xks if r = J 

where 
rs 

~Xjk 
= 

x .. + ~k + a .. if r = J and s = k 
JJ JJ 

0 otherwise 

J ( XT 
0 0 ( 

x121m xl I = x 11 lm x mm 

0 xT .... 0 x2llm x221m . ... x
2 

I 
+ mm + · ............. . ........................ 

0 0 .... XT 
xml1m x 21 . ... x I 

m m lIllIl m 

all lm a
12

1
m 

a
1 

I 
mm 

+ a 21 lm a 22 l
m 

a
2 

I 
mm 

· ....................... 
a m1

1m a 21 .... a I m m lIllIl m 

= I @ XT 
+ X ® I + Al @ I m m m 

[(X + Al ) ® I + I ® XT] 
m m 
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Hence the Jacobian J is equivalent to the matrix 
x 

[(X + AI) ® I + I ® -XT] and the two versions are equivalent. 
m m 

Though the two versions are equivalent, the amount 9f 

computation involved in using the derivative operator is much 

less as can be seen in the following example. 

Example 5.4.8. 

Consider the equation X
2 

+ A1X + A2 = 0 

where Al = [1 2 ) 

-1 0 
o ) 

-1 

In applying the Newton iteration using the Jacobian matrix 

the constituent equations must first be derived. 

f 1 (~) 

The Jacobian matrix 1S 

J = 2x
1
+l x3 x

2
+2 0 x 

x
2 

x
1
+x

4
+1 0 x

2
+2 

x -1 
3 

0 x
1

+x
4 x3 

0 x -1 
3 

x2 2x4 
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114-

Let x = then J = 3 3 0 
-0 X 

--0 

2 0 3 

0 0 

0 0 0 0 

and f(x) = -4 
- -0 

2 

-1 

Let ~1 = • x 11 1 

x 12 

x 21 

x22 

then substituting 1n the Newton iteration 

J [x - x 11 = f (x ) x -0 - ---0 
--0 

3 3 0 - x 11 = -4 

Z 0 3 - x 12 2 

0 0 - x21 

0 0 0 - x22 -1 

and ~; is found by solving the equations 

3(1-x
11

) + (1-x
12

) + 3 ( 1-x
21 

) = - 4 

(1-x
11

) + 2( 1-x
12

) - 3xZZ = 2 

(1-xZ1 ) - x Z2 
= 

(1-x
Z1 

) = - 1 
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Using the derivative operator it is not necessary to 

calculate the constituent equations and the iteration 

can be simplified to 

[x. + A11X. 1 + X. 1 X. = X~ - A2 
~ 1+ 1+ 1 1 

and setting X 
o 

then 

o 1 and letting Xl 

and Xl can be found from 

3 3 o = 

2 o 3 

o o 

o o o 

1 1 

o 

2 

The amount of computation is therefore greatly reduced. 

5.5 AN ITERATIVE METHOD FOR THE SOLUTION OF MATRIX EQUATIONS 

USING THE CRARACTERISTIC POLYNOMIAL OF A SOLUTION. 

The elimination method described in Chapter 4 may be used 

to form an iterative algorithm. 

The elimination method is based on obtaining a possible 

characteristic equation of a solution and combining it with the 

matrix equation to obtain a linear equation in X and hence a 

solution. 
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If the characteristic equation is not known then the linear 

equation gives the solution X in terms of the matrix coefficients 

and the scalar coefficients of the characteristic polynomial. 

This can be used to form an iterative process and the initial 

values required are approximations to the n characteristic coefficients 

of X . o 
Z Hence only m initial values ar.e required instead of the m 

values required for the Newton method when X is an mxm matrix. 

Consider the quadratic unilateral matrix equation 

Let the characteristic equation of X be 

Hence X satisfies the two equations 

xZ + A,X + AZ = 0 and 

Eliminating xZ gives 

[a, I 
-, 

- a Il X = - A,l [AZ Z 

If the characteristic coefficients are not known then an 

iterative process may be set up defined by 

(i) (i) . 
where a, and aZ are the characteristic coefficients of Xi' 

The method is illustrated in the following example. 

Example 5.5.'. 

Z 
Consider the equation X + A,X + A

Z 
= 0 



where 

then 

Then 

and 

Then 

and 

177 

1/7 

Al = [ 2 

-1 ) A2 = [-3 
-9 

3 

-11 

Choosing initial 
(0) 

values a 1 = -2 and 

X = [- 21 -
-1 

1 All [A2 - 2Il 

Xl = [-: -1 r [-5 
3 ) -3 -9 -13 

X = [ 0.462 -1.692 

) 1 

3.154 3.769 

( 1 ) 
= - 4.231 ( 1 ) a 1 a 2 = 7.078 

[- 4.2311 - -1 
X = All [A2 - 7.07811 

2 

X2 = [-~ • 231 

1 .301 

1 .969 

(2) = -4.565 a
1 

X3.= [- 4.5651 

X3 = 
[-: .565 

-1 r -5.231 

-1.005) 

3.264 

[-10.078 

-9 

a~2) = 6.225 

-1 
-All [A2 - 6.2251] 

-1 r [-9.225 

-5.565 -9' 

(0) 
a2 = 2 

3 

-18.078 

3 

-17.225 

) . 

) 

) 



Then 

X3 = 

( 
1.128 

1 .820 

(3) 
a 1 = -4.061 

X4 = ( 0.987 

1 .973 

a~4) = -3.945 

178 

-0.904 

) 2.933 

-0.983 ) 

2.958 

(3) 
a2 = 4.954 

(4 ) 
a2 = 4.859 

-1 
X5 = [- 3.9451 - All [A2 - 4.85911 

X5 = [ 0.982 

2.019 

(5) = -3.985 a
1 

X6 = [ 0.999(5) 

2.006 

(6) = -4.006 a
1 

-1.010 ) 

3.003 

-1.003 ) 

3.006 

(6) = 5.016 a 2 



X7 = 

(7) 
a 1 

Xs = 
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[ 
1 .002 -1 .000 

) 1.99S 3.000 

= -4.002 

[- 4.0021 - A 1-1 
1 

1.000 

1.999 

-1.000 ) 

3.000 

(7) 
5.004 a 2 = 

[A2 - 5 .004I 1· 

The sequence converges to the solution 

In the next three examples a wide range of initial values 

are tested. Convergence is assumed.when each element in 

[Xi + A1Xi + AZl has a numerical value less than 10-S . The 

magnitude of the starting values does not appear to affect the 

number of iterations required for convergence. 

Example 5.5.Z. 

Consider the equation xZ + A
1
X + A

Z = 0 

where Al 
= [ ~ -1 

) 
AZ = [-6 

-3 

J -4 -7 



Starting 

(0) 
a

1 

-1 

o 

-5 

-100 

-20 

-1000 

500 

-15 

-20 

50 

-500 

values 

-5 

100 

50 

1000 

-500 

-15 

-20 

50 

-1000 

Exam121e 5.5.3. 

Consider the 

where Al 

Starting values 

(0) 
a 1 

(0) 
a Z 

-1 

-10 -10 

50 -50 

-1000 5000 

-50 

180 

Number of 

iterations 

10 

10 

10 

10 

10 

10 

10 

12 

12 

12 

12 

equation X2 + 

= [-~ 
0 ] 

Number of 

iterations 

16 

22 

23 

12 

20 

) 

) 

All converge to the solution 

: . 791 ] 

which has characteristic 

coefficients -3.791 and 3.583. 

All converge to the solution 

x = [-2.599 

-1 .920 

0.040 ] 

-3.192 

which has characteristic 

coefficients 5.7913 and 8.3739 

A1X + A2 = 0 

A = 

[-~ 2 

0 ] 2 

-12 

All converge to the solution 

X = [ -1 

] Z 4 

which has characteristic 

coefficients -5 and 6 
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Example 5.5.4. 

Consider the equation 
. Z 

0 X + A1X + AZ = 

where Al = 

[ -: z 
) 

AZ = 

[ -~ 
0 

) -1 

Starting values Number of 

(0) 
a 1 

(0) 
a 2 iterations 

-1 3 

-1 0 All converge to the solution 

0 13 X = 

[ ) 0 0 2 0 0 

20 -ZO 25 which has characteristic 

500 -50 10 coefficients -1, o . 

-1000 1000 16 

-1000 -1 10 

-10 -10 

-50 -50 
No convergence. 

-1000 -1000 

The iteration may be extended to equations involving matrices 

of higher order using the recurrence relation obtained in the 

elimination method described in Chapter 4. 

In the 3x3 case, 3 starting values are required and· 

where 
(i) 

a
1 

of the matrix X .. 
1 

where Jz = Kl - J lAl 

K = (i) I J A 
2 a 3 - 1 2 

J = (i)r - A 
1 al· 

K =a(i)r-A 
1 Z 2 

(i) 
a 3 are·the characteristic coefficients 
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The next two examples illustrate the iterative solution of 

the 3x3 quadratic matrix equation with a variety of starting 

values. 

Example 5.5.5. 

Consider the equation x2 
+ A

1
X + A2 ~ 0 

where Al ~ 0 0 A2 ~ -8, 2 

2 -1 -1 6 -2 -1 

2 2 -2 -2 

Starting values Number of 

iterations 

-1 -1 8 All converge to the solution 

-1 o 8 x ~ 0.152 0.144 0.155 

-1 o o 8 8.012 -2.147 -1.147 

o o o 8 -8.241 2.940 1 .940 

-1 8 which has characteristic 

-100 2000 -1000 10 coefficients 0.055, -0.789, 0.156. 

20 18 

-10 10 

-10 

-10 16 

-so l 
Converge to the solution 

x ~ -2.851 1 .149 0.702 

0.379 0.379 0.242 

-1 .342 0.657 0.685 

which has characteristic 

coefficients 1.787, -2.491,0.426. 



183 

Starting values Number of 

(0) 
a 1 

(0) 
a2 

(0) 
a

3 
iterations 

10 20 5 7 Converge to the solution 

X = -2.816 0.315 0.315 

O. 111 -0.415 0.585 

-0.251 -1. 797 -2.797 

which has characteristic 

coefficients 6.028, 11.301, 6.273 

50 -100 -20 

20 -10 -2 Do not converge to a solution 

1000 100 500 

Example 5.5.6. 

Consider the equation X2 + A1X + A2 = 0 

where Al = 2 -3 A2 = -4 -2 -5 

1 
-1 -1 0 2 -2 -2 

2 -1 -2 2 0 -17 ) 

Starting values Number of 

(6) (0) (0) 
iterations a 1 

a . a
3 2 

-1 -1 6 All converge to the solution 

-1 0 6 X = 1.098 -0.064 2.376 

-1 0 0 6 -0.055 2.077 0.753 

-5 10 -50 6 -1.039 -0.404 4.908 

-500 500 -500 6 which has characteristic 

-100 20 200 6 coefficients -8.083, 20.633, -16.740 
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Starting values Number of 

(0) (0) . (0) 
iterations a 1 

a 2 
a3 

0 0 0 7 All converge to the solution 

-1 7 X = -3.0496 -1.0496 1.029 

0 0 7 1.042 -0.958 -0.389 

-20 -20 -30 7 -0.432 -0.432 -3.075 

-100 -100 -500 7 which has characteristic 

-10000 -5000 -1 7 coefficients 7.083. 16.615, 12.900 

The method may be used for unilateral matrix equations of any 

degree and any order. 

The method is applied to the cubic unilateral matrix equation 

in the following example. 

Example 5.5.7. 

Consider the matrix equation X3 + A1X2 + AZX + A3 = 0 

where 

The iteration is 

where 
(i) (i) 

a 1 • a2 are the characteristic coefficients of Xi. 
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Starting values Number of 

(0) 
a 1 

(0) 
a 2 iterations 

-1 18 

-1 0 18 All converge to the solution 

0 19 X = [ 0.825 -2.204 ) 

0 0 20 -0.538 -0.013 

-1 -1 20 which has characteristic 

-2 -2 20 coefficients -0.812, -1.196 

-2 -2 20 

1000 -500 20 

50 -50 20 

-10 -10 

-1 -10 Do not converge to a solution 

-5 -5 

Example 5.5.8. 

Consider the cubic matrix equation X3 
+ A1X2 + A2X + A3 = 0 

where Al = 2 -1 0 A2 = 0 -2 

0 3 8 -1 0 

-1 0 0 0 0 

A3 = -1 0 0 

0 -1 0 

0 

The iteration is 

X. 1 [A2 T. - A
1
S

i 
2 -1 

- A ] = - + S.] [A1T. - S.T. 
1+ 1 1 1 1 1 3 



where 

and 

of X .• 
~ 

(0) 
a

l 

Starting values 

(0) 
a Z 

186 

are the characteristic coefficients 

Number of 

(0) 
a 3 

iterations 

-3 3 -1 14 All converge to the solution 

3 3 1 1 X = -0.188 0.121 -0.222 

-1 -1 13 -0.799 -0.013 -0.480 

-2 -24 55 15 -0.278 -0.063 -0.644 

which has characteristic 

coefficients 0.845, 0.137, 0.052 

Unlike the Newton method, the number of iterations required 

for convergence is not always affected by the "distance" of the 

initial values from the true characteristic coefficients. This 

is illustrated particularly in Example 5.5.6 where convergence 

takes place in the same number of iterations for widely differing 

initial values. 

In the 2x2 case the iterative process may be defined explicitly 

in terms of the characteristic coefficients alone and the solution 

matrix evaluated at the final stage when convergence has occurred 

for the characteristic coefficients. 
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Consider the equation xZ 
+ A

1
X + AZ = 0 

where Al 
= [ 

PI 
P

z 
) 

AZ = ( ql qz 

1 l P3 P4 q3 q4 

The iteration is Xi+l = (i\ [a
1 

-1 
All [AZ 

- 1i~l 
Z 

However, since (i+l\ 
- Trace Xi+l a

1 = 

then 

where 

and 

and since 

then 

li+ll a, = 

(i) (jJ liJ (iJ 
Za

1 
a Z + c a

Z 
+ e a

1 
+ T 

D 

c and d are the characteristic coefficients of Al 

e and f are the characteristic coefficients of A
Z 

(i + 11 
= det. Xi+l aZ 

(a~)Z + e 
(1) 

+ f (i+ 1\ a Z a = 
D Z 

Since c, d, e, f and T may all be evaluated from the coefficient 

matrices, then the iterative process can be written in vector form 

as 

where a = (a 1 ' 
aZ) and. f(a) = [f 1 (~) , fZ (~) 1 

Za
1
a

Z + c a
Z 

+ e a
1 

+ T 
f 1 (~) = 

D 
where 

Z 
+ f aZ 

+ e aZ 
fZ (~) = D 
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In considering convergent sequences, the norm of the Jacobian 

matrix Jf(a) may be evaluated, as in section 5.2. 

Example 5.5.9. 

Consider the equation X2 + A
1
X + A2 = 0 

where Al 
= [ : 

-2 

) 
A2 = [-4 -6 ) 

3 -2 -3 

Starting values Number of 

(0) (0) 
iterations a l 

a 2 

10 All converge to 

0 10 a l = 0.2803 a = 0 2 

0 10 
which give the solution 

-1 -1 10 
X = [ 0.5991 0.8986 } 

20 20 12 
-0.5863 -0.8794 

30 -30 12 

500 -500 12 

-10000 5000 12 

The Jacobian matrix ~s 

Jf(a) 
(If 1 (~) (If 1 (~) 

= (la
1 

(la
2 

af2(~) (If 2 (~) 

aa 1 aa
2 

where 



At a 1 = 0.2803, 

and 11 Jf(a) 11 = 0.528 
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+ ea2 + fJ 

0.2996 ) 

0.2818 

and convergence occurs. 

Consider the equation x2 + A1X + A2 = 0 

where Al = [ -: 2 

J 
A2 = 

[-: 
0 

-1 

This is the equation considered in Example 5.5.4. 

Many starting values converged to the solution X = 

which has a
1 

=-1 and a 2 = 0, 

but no starting values converged to the solution X 

which has a 1 = 1, 

) 
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At the second solution, the Jacobian matrix is 

Jf(~) = [-3.5 

-3 2.5 ) 

and 11 Jf(a) 11 = 5.34 and 11 Jf(a)11 > 1 

However at the solution X = 
[ 0 

o ) which has a 1 =-1 

a 2 = o the Jacobian matrix is 

Jf(a) = 
[-: .5 

-1 

) -0.5 

and 11 Jf(a) 11 = 1.22 

Hence 11 Jf(a) 11 > 1 and yet convergence still occurred for many 

starting values. 

This example illustrates the property that if 11 Jf(x) 11 < 1 

and an initial choice x can be found sufficiently close to the 
-0 

solution then the sequence must converge to it. 

However. even if 11 J f (x) 11 > 1 at the solution then the sequence 

may still converge for suitable choices of x . 
-0 

5.6 CONCLUSION. 

The advantage of iterative methods is that solutions for 

equations can often be found which are not obtainable by algebraic 

methods. Many of the methods described in Chapter 3 can fail under 

certain conditions. 
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In 3.2 Methods I and 11 fail when the transforming matrix T 

is singular and in 3.3 Method I fails when both U and M are singular. 

An iterative method can often find solvents which cannot be expressed 

-1 
in the form TOT . 

Most of the methods described in this chapter share the 

disadvantage that considerable computation is required at each 

iteration, though with computer methods this can be overcome. 

The other problem encountered in applying iterative methods 

is that of finding a suitable initial matrix which will satisfy 

the conditions for convergence. In the method of simple iteration 

however, convergence can occur even when 11 X - X 11 ~s very large. 
o 

This is illustrated in Example 5.2.3. This is often the case when 

the method of simple iteration is applied to t.he scalar polynomial 

equation. As shown in 5.2 the iteration'x. 1 
~+ 

x = 5 for all initial values except x = O. 

5 
+ 4 converged to = -x. 

~ 

Though it has been shown that in the matrix case, convergence 

will occur if 11 J 11 < 1, it is unfortunately not possihle to predict 
x 

this in advance since it is difficult to obtain a close approximation 

to a solution. In the scalar case it is possible to obtain a value 

of x close to a solution by means of the intermediate value theorem. 

It has been shown that 4'mo.trix solution. may be obtained by 

applying the Bernoulli iteration to the matrix equation. The 

disadvantage of this method is that it can lead to only one solution 

and if a dominant solvent does not exist then. convergence will not 

occur. 

Any iterative method for the solution of a system of equations 

can be applied to the constituent equations which are equivalent to 

, , 
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a matrix equation. However, because of the computation involved 

in forming the constituent equations, it is preferable to use a 

method which can be applied directly to the matrix equation. 

It has been· shown in Section 5.4 that the two methods of 

applying the Newton iteration are equivalent, but the computation 

is reduced in applying it direct to the matrix equation. The 

main problem in applying Newton's method is that of finding a 

suitable initial matrix for convergence to occur. This means 

that m
2 

initial values are required for equations involving mxm 

matrices. 

The method described in Section 5.5 is new and is of interest 

since only m initial values are required. The method has been 

applied to many examples of matrix equations involving 2x2 and 

3x3 matrices. 
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CHAPTER 6 

The Square Root of a Matrix 

6.1 INTRODUCTION. 

In the field of complex numbers, any element has precisely 

two square roots. In the ring of matrices however the number of 

square roots of a matrix P depends on the nature of the matrix P 

and also on its size. In 6.5 it is shown that there may be an 

infinite number of square roots. If X and Pare mXm matrices and 

P has distinct eigenvalues then it can be shown [6.Z] that the 

number of solutions of X2 = P is Zm. The number of square roots 

of a matrix clearly increases rapidly with the size of the matrix. 

The equation XZ = P is simply a special form of the general 

Z unilateral matrix quadratic equation X + A
1
X + A

Z 
= 0 obtained 

by setting A1 = 0 and AZ = -Po Hence the methods described in 
i 

previous chapters for the general quaoratic equation may be applied. 

However, because of the particular form of the equation, other 

methods may be used which are not applicable to the general 

unilateral equation. 

The method described in 6.Z uses the relationship between the 

eigenvalues of X and P while the method described in 6.3 derives 

a relationship between the characteristic coefficients of X and P 

and uses it to obtain a solution X. In 6.5 it is shown that the 

equation XZ = P has an infinite number of solutions if P is 

derogatory. 

The finding of the square root of a matrix has relevance in 

other techniques. It is necessary for example in the application 

of Method V for the solution of the Matrix Riccati equation described 

in 3.3. 
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'6.2 THE SQUARE ROOT OF A MATRIX OBTAINED BY CONSIDERATION OF 

. ITS EIGENVALUES. 

This method is described by Gantmacher [1959] and makes use 

of the fact that if x2 = P, then the eigenvalues of X are the 

square roots of the eigenvalues of P. 

Let the Jordan normal form of P be the block diagonal matrix 

........ AI +H} u u u 

where the A. are the eigenvalues of P and the matrix H. 1S of the 
1 1 

form 

H. = 
1 

o 

o 

o 

o 

o o 

o o 

o o 

o o o 

The matrix H. 1S nilpotent and H~ = 0 if the matrix is mXm. 
1 1 

The square root of a Jordan block can be expressed by means 

of the series 

(-2
1

) l( - -2
1 

) 
'!.I 1 -! IA.I+H. = A + -2 A. H. + 2! 

11111 

Since H~ = 0 the series eventually terminates. 
1 

For example the square root of [ : ~) 

_1_ H 

2fi . [: 0] 
is given by 

The square root of o is given by 

o A 

o o 
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AI 
1 + (tH-t ),,-3/Z

H
Z (I>: 1 

+ -- H = --
ZA zl>: slA3 

0 I>: 1 --
zlX" 

0 0 IX" 

The square root of any matrix can be found by expressing it 

in Jordan Normal Fo"rm. 

Consider the e:quation xZ = P. 

Let P = UPU- 1 where P is the Jordan Normal Form of P and let 

X = TXT- 1 where X is the Jordan Normal Form of X. 

Then TXZT- 1 = UPU- 1 

-Z - -1 -1 
X = QPQ where Q = T U. 

-Z -
The matrices X and P are similar and therefore have equal 

eigenvalues. The eigenvalues of X are the square roots of the 

eigenvalues of P. 

Let P = diag(J1 ,JZ,J3 ,··· ,Jr ) where J i = 

are the eigenvalues of P. 

Then x = diag(~, ~, .••• ~) 

A • I + H. and A. 
111 

Since the square roots of the Jordan Blocks can be obtained 

from the terminating series already described then the matrix X 

can be evaluated. 

Hence if the transforming matrix T can be obtained then the 

solution X can be found from X = TXT- 1 . 

But since xZ P = UPU- 1 
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then 

We may therefore choose as the transforming matrix T the 

matrix UB where B is an arbitrary non singular matrix such that 

BP = PB. 

Then 

The method is illustrated in the following examples. 

ExamEle 6.2.1. 

Consider the equation X2 = P where P = 

[ 
-2 6 ) . 
-3 7 

The Jordan Normal Form of P is P = 

[ : ,) 
0 

where P UPU- 1 and U 

[ 
2 

] 
-1 

[-: 
-1 

] 
= = U = 

2 

then X=[: ;) and there are therefore four possibilities 

for X 

X 
= [ 

0 

) 
X = 

[-~ 0 

] 
X = 

[ 
0 

) 
X = [-~ 0 

) 0 2 2 0 -2 -2 

- -1 where T UB and B is an arbitrary matrix which and X = TXT = 

commutes with P. 

B 

[ 
0 

) 
and hence T 

[ 
2a b 

) 
-1 

[-~ 1 

= a = T = -
a 

0 b a b 2 
b 
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If then 

If then 

[~: :) 
If 

o ) 
-2 [ : -6 ) 

-5 

then 

If 
x = [-~ o ) 

-2 

then 

[~ ~: 1 

Example 6.2.2. 

This example illustrates the case where the matrix P has an 

infinite number of square roots. 

. . 2. 
ConsLder the equatLon X = P where P = 0 

o o 

-1 2 

The Jordan Normal Form of P is P = o 

o 0 

o 0 

where P UPU- 1 and U 0 
-1 

0 0 = = U = 

0 -1 

0 0 0 -1 

and X = (;11 +H, 11) 
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\qg 

There are four possibilities for X 

0 

1 
X = 1 

0 X -1 1 
0 X = 2 = - "2 2 

0 0 0 0 0 -1 0 

J 0 0 0 0 -1 0 0 

X -1 
1 

0 = - 2 

0 -1 0 

0 0 -1 

and X = TXT- l where T = UB and B is an arbitrary matrix which 

commutes with p 

Hence B = a b c 

0 a 0 

0 d e 

and T = a b+d c+e 

c a+d e 

a b c 

Choosing X 
r 

1 
0 then X TXT- l 1 1 1 = 2 = = 2 2 2 

l 0 0 0 0 

0 0 
1 1 3 

-2 2 2 

However, choosing X = 1 
0 leads to an infinite 2 

0 0 

0 0 -1 

number of solutions 

X = TXT- l 3 1 2pq+2p+2q+ % = -2pq-2p-2q- - 2pq+2q+ 2" 2 

-2-2q 1+2q 2+2q 

1 1 3 -2p-2pq- - 2 +2pq 2pq+2p+ "2 
2 



where c 
p =

e 

Example 6.2.3. 

d 
q =

a 
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This example illustrates the case in which both the eigenvalues 

of P are complex and hence the eigenvalues of a solution X are also 

complex. 

Consider the equation x2 = P where P -2] 
-1 

The Jordan Normal Form of P is 

-~-2I2i ) 

where P = UPU- 1 
and U i 1 -1 1 = U 

12 12 12 

i 

12 

,- I I 
then 1-1 +212i 0 

0 1-1-2l2i . 

There are four possibilities for X 

X = 
[ ~ +fii 

0 

) 
X = (-~-fii 0 

) 1-l2i -1 +l2i 

X = [-~-ni o 
1 

-l+fii J 

1 
"2 

1 
"2 

"and X = TXT- 1 
where T = UB and B 1S an arbitrary matrix which commutes 

with U. 



zoo 

( 
0 

) 
and T [ . b 

I 
-1 

fi: 
B = a = -1 - 1 T = 

/Z /Z 
0 b 

a b 

If X = 

[ 
l+l2i 0 

) 
X = TXT- 1 

= 

[ 
-1 

) 0 l-l2i Z 

If x = TXT-
1 = f-1 

l-z 

If 'X 

[

-l2i 

12i 

1 I 12 

-l2i 

If X 
[ ~ +12i 

-:+12iJ 

x TXT- 1 [ni i 

I 
= = = 

.rz 
-l2i l2i 

This example shows tha t there can be real matrix solutions 

for the 
. Z equat10n X - P = 0 and yet no real A for which det[AZI-Pl 

6.3 EXTENSION OF ELIMINATION METHODS TO FIND THE SQUARE ROOT OF 

A MATRIX. 

An extension of the elimination method described in Chapter 4 

Za 

1 
Zb 

= O. 

may be applied to the problem of finding the square root of a matrix. 

In applying the method to the unilateral quadratic matrix 

equation xZ + A1X + AZ = 0, possible characteristic polynomials for 

Z 
X must be found by solving det[A 1+ AlA + AZl = O. Alternatively 

an iteration may be set up by choosing starting values for the 
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characteristic coefficients of X. Either of these methods could 

. . 2 
be applLed to the equatLon X = P. 

2 
However in the case of the equation X - P = 0, the elimination 

method may be extended by using the fact that the characteristic 

. m m-I 
equation of X LS A + a,l. + •.• + am = 0 for . .some a

i 
.to be 

determined. X can then be eliminated completely and if X and P 

are mxm matrices then a polynomial in P of degree m is obtained 

which has coefficients which are scalar polynomials in the a .• 
L 

since P is q_nihilated by a unique polynomial of degree m 

if P is derogatory. then by using coefficients 
i 

non of P 

a set of m equations Ln the unknowns a , ,a2 ,··· ,am is obtained. 

The solution of these equations gives the characteristic 

polynomial of a solution X and by elimination a solution X may be 

found. 

The 2x2 case is illustrated as follows. 

Consider the equation X2 - P = o. 

The characteristic equation of X is of the form 1.2 + a,l. + a
2 

= 0 

then X satisfies the two equations X2 - P = 0 

and X2 + a , X + a
2

1 = O. 

Eliminating X2 between the two equations gives a linear equation 

in X 

(1) 

A second linear equation may be obtained by multiplying (1) 

on the right by X and multiplying X2 - P = 0 bY'· 01 .. : 

Subtracting the resulting equations gives 



zoz 

Multiplying (1) on the left by [aZI + PI and (2) 

by a 1 and subtracting eliminates X completely and gives a polynomial 

1n P 

But P also satisfies its own characteristic equation 

Comparing-coefficients in the two polynomials 

Since the "1 "2 can be evaluated from the known matrix P, the 

values a 1, a 2 can be evaluated and hence X may be found from 

X = -
1 
-(a I 
a

1 
Z 

+ P) 0,* 0 . 

ExamEle 6.3.1. 

Consider the equation X2 = P where P = [-~ -Z]-
-1 

the characteristic equation of P is 

pZ + ZP + 91 = 0 . 

If the characteristic equation of X is 

then a 1, a Z satisfy the equations 

Za
2 

Z Z - a 1 = 

Z 
9 a Z 

= 



If 

If a ~-3 
2 

then 

then 
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a, ~ ± 2 

~ ± 2,1zi a, 

Substituting these values ~n X 
, 

~ -(-a, 
gives the four solutions 

X ~ [-' 

-2 

X ~ [l2i 

-l2i 

X ~ [-l2i 

l2i - l2i 

The method may be extended to matrices of higher order .. The 

3x3 case is illustrated as follows. 

2 
Consider the equation X ~ P where X and Pare 3x3 matrices. 

Let the characteristic equation of X be 

X3 + a,x2 + a
2

X + a
3

1 ~.O • 

Eliminating X3 gives a se~ond quadratic equation ~n X 

Proceeding as in the 2x2 case, two linear equations in X are 

obtained 

[a[+P]X + [a3I+a,P] ~ 0 

2 [a
3
l+a,P]X + a 2P + P ~ 0 

Eliminating X completely g~ves a polynomial of degree 3 in P 
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Comparison with the characteristic equation of P 

gives three equations 

2 
2a2 - a 1 = a 1 

Since a
l 

a 2 a3 are known, the values of a
l

, a
2

, a
3 

may be 

evaluated and solutions X found from 

Example 6.3.2. 

Consider the equation x2 - P = 0 where P = o 4 

3 3 2 

2 6 

The characteristic equation of P is 

p3 _ 4p2 _ 20P - 491 = 0 

and if the characteristic equation of X is 

Eliminating X completely and comparing the coefficients of 

the resulting polynomial in P with the characteristic coefficients 

of P, the 3 equations are obtained 
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2 
2a2 - a, = -4 (1) 

(2) 

From equation (3) a 3 
= :!: 7 

2 
a, - 4 

Taking a
3 

= 7 ·."Q"nd· a 2 
= ". . - 2 

h~'ads· ro' 
4 2 

56a, 96 a, - 8a - + = 0 , 
3 2 

or (a,-4) (a,+4a,+8a,-24) = 0 

a, = 4, a
3 

= 7 satisfy these equations. 

Substituting these values in X 
-, = [a2I+P] [-a3I-a,P] 

gives X = [6I+P]-'[-71-4P] 

X = -, -2 

-, -2 0 

0 -2 -, 

Since there are' 4 values of a, for each of the two values of 

a 3 
this indicates that there are 8 square roots of P. 

As the orders of X and P increase, the coefficients of the 

polynomial obtained in P are seen to follow a pattern. 

4x4 Case. 

The polynomial 1n P is 
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SxS Case. 

6x6 Case. 

=m Case. 

If the characteristic equation of X is 

the polynomial obtained-in P is 

C Pm pm-l m-2 
o + cl + c2P + ••••• + cm 

where c 
o 

= a 
o 

= and C. = 
1 

and if the characteristic polynomial of P is 

+ a I 
m 

i..= 'J :2,... "', 

Then by equating the coefficients a set of m equations is 

obtained 

- )' 2' a_a
k

<-l)j = a_ 
J +k= 1 J 1 

[i = 1 to m] 

j ,k = 0,1, .... ,1"1 

2 
The problem of finding the m unknown elements in the matrix 

X has therefore been reduced to that of determining m unknown 

i 
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values in the set of m equations. Iterative methods may be 

applied to the set of equations to obtain values a
1
.a

2 
••••• a

m
. 

The solution X may then be obtained from 

where 

and 

J = 0 
-1 

J = I 
o 

J. = 
1 

a. I + J. 2P 
1 1-

-1 
The final stage in evaluating J 1 J involves (m+l) matrix m- m 

multiplications and the inversion of an mXm matrix. 

As in 4.3 it is possible that the matrix J 1 may be singular 
m-

and that a particular set of solutions a
1
.a

2 
••..• am for the set of 

polynomial equations may not lead to a matrix solution for the 

. 2 0 equat10n X - P = • 

Examp.1e 6.3.3. 

Consider the equation x2 - P = 0 where P = 0 

o o 

-1 2 

The characteristic equation of P 1S p3 - 3P2 + 3P - I = O. 

The three equations in al' a 2 • a
3 

are therefore 

2a2 
2 

= -3 - a 
1 

( 1 ) 

2 
2a

1
a

3 3 a 2 - = (2) 

2 
-1 - a = 

3 
(3) 

From (3) a
3 

= ± 

.If then 
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4 2 
- 8a 3 0 and hence a 2 - 6a2 - = 2 

3 = 0 or (a2+1) (a2-3) 

This leads to two possibilities 

a 1 
:: -,., a 2 = -1 , a 3 = 

or a 1 = 3 , a 2 = 3 , a 3 = 

Z 3-a 
If· -1 then 2 

a 3 
= a 1 =-2-

4 Z 
and hence a

2 - 6aZ - 8a - 3 = 0 2 

3 or (a Z+1) (a
2
-3) = 0 

This leads to two possibilities 

a 1 = 1 , a 2 - -1 , a 3 = -1 

a 1 = -3, a 2 = 3· , a 3 = -1 

Choosing a 1 -3, a 2 = 3, a3 = -1 

then J 1 = -31, J 2 = 31+P, J 3 = -1-3P 

and X 
-1 

J 3 = - J 2 

X ( 3. -1 (-1 -3 -3 = -
0 4 0 0 -4 0 

-1 5 3 -3 -7 

X 
1 1 = "2 2 Z 

0 0 

1 1 3 
- "2 "2 "2 
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However choosing a 1 
= -1, a Z = -1 , a

3 
= 

then J 1 
= -I, JZ = -I+P, J 3 

= I-P 

then JZ = -1 

0 0 0 

-1 

and hence X -1 be. evaluated since is singular. = - JZ J 3 
cannot JZ 

As shown in 6.2.2 there are in fact an infinite number of 

solutions for this equation which all have A3 - A
Z - A + 1 as 

their characteristic polynomial. 

6.4 THE SOLUTION OF.X
Z 

= P BY USE OF THE COMPANION FORM. 

The equations relating the characteristic coefficients of X 

with the characteristic coefficients of P, which were obtained in 

6.3 can also be obtained by using the Companion form of a matrix. 

Let C be the companion form of X 
x 

then det[X - ~Il ~ det[C - ~Il for all- scalar ~ 
x 

det[X - ~II.det[C + ~Il _ det[C - ~Ildet[C + ~Il 
x x x 

But det[C + ~Il - det[X + ~Il 
x 

Hence 

or 

det[X - ~Ildet[X + ~Il - det[C - ~II.det[C + ~Il 
x x 

det[XZ - All _ 

J 

- det[C2 - iI] 
x 

det[CZ - AIl 
x 

S1nce ~ is an arbitrary 

scalar. 
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Consider the equation xZ = P 

then xZ _ AI = P - AI 

de t [X
Z 

- AI] = det[P - AI] 

det[CZ 
- AI] - det[P - AI] 

x 

Hence by comparing coefficients, the equations relating the 

characteristic coefficients of X and P may be obtained. 

ZxZ Case. 

Let the characteristic equations of X and P be 

xZ 
+ a,X + a Z1 = 0 pZ + alP + a

Z
1 = 0 

then C 
= [ 0 ) x 

-aZ -a , 
C

Z 
= [-. -. 1 x 

a:az -a:+a~ 
and det[CZ 

- AI] = det [ -'2-' -0 1 x 

-a'+aZ-A a,a Z Z , 

By row operations 

det[CZ - >. I] = det [ -'2-' -a 

1 
x , 

-a A -a -A , Z 

Z Z 
= [-a -A] - Aa, Z 

A
Z 

+ (Za
Z 

- Z Z 
= a,) A + a Z 
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But det[P - AI] 

Equating coefficients gives. the two equations 

2a2 
2 - a 1 = a 1 

2 a 2 = a 2 

For matrices of higher order, the evaluation of det[C
2 

- AI] 
x 

can always be reduced to the evaluation of a 2x2 determinant by 

row and column operations. 

3x3 Case. 

Let the characteristic equation of X be 

X3 + a
1
X 

2 
+ a

2
X + a

3
1 = 0 

then C = 0 0 ) and C
2 

= 0 0 
x x 

0 0 -a 
3 

-a2 

-a 
3 

-a2 -a 
1 

a 1a 3 
(a 1a2-a

3
) 

2 det[C -U] = det -A 0 
x 

-a 
3 -A-a 2 -a 1 

2 a 1a
3 

a
1
a2-a

3 
a -a -A 1 2 

= det -A 0 

-a 3 -a -A 
2 

-a 1 

0 -a -a A 
3 1 

-a -A 
2 

-a1 
2 

(a
1
-a2) 
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= - det 0 

-: -d 1 0 -a -A 2 3 1 

0 -a -a A ·2 -a A-A 
3 1 2 J 

2 2 
= [-a -a A] A[-a -A] 3 1 2 

and since det[P-AI] 

then comparing coefficients 

2 - a = et 
3 3 

4x4 Case. 

Let the characteristic equation of X be 

X4 3 2 
0 + a

1
x + a

2
X + al + a41 = 

then C = 0 0 0 x 

0 0 0 

0 0 0 

-a 4 -a 
3 -a2 -a 1 

and C
2 = 0 0 0 x 

0 0 0 

-a 
4 

-a 
3 

-a 
2 

-a 
1 

l a 1 a4 
2 a 1a

3
-a

4 a
1 
a2 -a

3 
a 1-a2 
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2 = det -A 0 0 det[C -AI] 
x 

0 -A 0 

-a 4 -a 
3 

-a -A 2 -a1 

2 a
1
a

4 
a

1
a

3
-a

4 a 1a 2-a3 
a -a -A 1 2 

= det -A 0 0 

0 -A 0 

-a 
4 -a3 · -a -A 2 -a 

1 

0 -a 
4 

-a -a A 3 1 -a -A 2 

= det 0 0 0 

0 0 0 

0 0 2 -a -a A -a -a A-A 4 2 3 1 

0 0 2 2 
-a A-a A -a -a A-A 

3 1 4 2 

and since 

comparing coefficients Za - Z 
Z a

1 = "1 

2a
4 

Z 
Za 1a

3 
+ a - = "2 Z 

2a
Z
a

4 
Z - a
3 = "3 

2 
a

4 = "4 
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mXm Case. 

2 The evaluation of det[C - AI] can always be reduced to the 
x 

evaluation of a 2x2 determinant and the elements of the determinant 

form a pattern as can be seen from the following table. 

Size of X Value of det[C2 - AI] 
x 

2x2 

3x 3 

Sxs 

2 2 
[-a2-A] - Aa

1 

[-a
3
-a

1
A]2 - A[-a

2
-A]2 

222 [-a4-a2A-A] - A[-a
3
-a

1
A] 

2 2 2 2 [-as-a
3

A-a
1
A] - A[-a

4
-a

2
A-A ] 

23222 [-a6-a4A-a2A -A] - A[-a
S
-a

3
A-a 1A ] 

If X is an mxm matrix. then 

222 2 
det[C -AI] = [-a -a 2A- a 4A .••• ] - A[-a 1-a 3A-a SA •••• x m m- m-· m- m- m-

where a = 
o 

and a_ 1• a_
2 

etc. are all zero. 

This therefore gives an alternative method for deriving the 

m equations relating the characteristic coefficients of X and P. 

Having obtained a 1.a2 •...• a
m 

the solution X is obtained from 

X = - J- 1 J 
m-1 m 

where J = 0 -1 J = I 
o 

and J. = a.I + J. 2P 
~ 1 1-
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6.5 THE EQUATION X2=P WHERE P IS A DEROGATORY MATRIX. 

Given a derogatory matrix P, the minimum polynomial is of 

lower degree than the characteristic polynomial and there is more 

than one Jordan Block associated with a particular eigenvalue. 

In this section it is shown that the equation X2= P has an infinite 

number of solutions if P is derogatory. 

Consider the equation x2= P. 

Let P 
- -1 -

= TPT where P is the Jordan Normal form of P 

then 

or where 

2 Any equation of the form X = P can therefore be replaced by 

. • 2 • an equ~valent equat~on Y = P where P ~s in Jordan Normal Form and 

the solution X then obtained from X = TYT- 1 • 

It is sufficient therefore to consider only the case where 

P is in Jordan Normal Form. 

2x2 Case. 

If P is derogatory then it is 
of the form [: :) 

2 In the 2x2 case, if P is derogatory then X - P = 0 has an 

infinite number of SOlutions of the form 

[ : 2 

1 
X a-a = -b-

-a 

e.g. if X2 = P where P 
= [ 

3 0 ] 0 3 
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then X is any matrix of the form 

[

a 3~a 
2 

] 

b -a 

3x3 Case. 

If P is derogatory P is of the form 

P
1 

= Cl 0 0 P2 
= Cl 0 or P

3 
= Cl 

0 a 0 0 a 0 0 

0 0 a 0 0 a 0 

If X2 = P
1 

there are an infinite number- of solutions of the 

form 

2 
X 

a-a 
0 = a -b-

b -a 0 

0 0 la 

4-a 2 
e.g. if P

1 
= 4 0 0 X = a 0 b 

0 4 0 b -a 0 

0 0 4 0 0 2 

If X2 = P2 there are an infinite number of solutions of the 

form 

X = 2abla + 

o 

o 2ala 

1 

21a 
-2bla 

o 

-la 

0 0 

a 0 

0 8 
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e. g • if- P 2 = 4 o then 

o 4 o 

o o 4 

x = 2 

o 

o 

1 
4ab+ 7; 

2 

4a 

-4b 

o 

-2 

If x2 = P
3 

there are- an infinite number of solutions of the 

form 
2 

X 
et-a 

0 = a -b-

b -a 0 

0 0 re 

4x4 Case. 

If P is derogatory then P has one of the following forms 

P1 
= et 0 0 0 P2 = et 0 0 0 

0 et 0 0 0 et 0 0 

0 0 et 0 0 0 et 0 

0 0 0 et 0 0 0 S 

P3 
= et 0 0 0 P

4 
= et 0 0 

0 et 0 0 0 et 0 0 

0 0 S 0 

j 
, 0 0 et 0 

0 0 0 s l 0 0 0 S 

et o o o o 

o et o o et o o 

o o et o o o et 

o o o et o o o 
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If P has one of the first four forms then solutions may be 

found by partitioning X according to the Jordan Normal form of P 

and then using the results obtained for the 2x2 and 3x 3 cases. 

2 
e.g. X = a 

o 

o 

o 

X2 
1 

o o 

a o 

o a 

o o 

I 0 I 
I 
I 
I 
I ----T------
I 
I 
I 

X2 0 
I 
I 
I 2 

and the equations X2 
1 

be solved. 

Hence X = Xl 

) 

= 
[ 

I 
I 
I 

o can be written as 

o 

o 

a 

( a 0 I 0 0 
I 
I 

0 I 0 0 a I = I 
-------~--------
0 0 I 

I a 0 
I 
I 

0 0 I 
I 0 a 

a 0 

) 
X2 = 

[ 
a 

2 

0 a 0 

2 
0 a-a a -b-

I I ----1'---- = b 
0 

I X2 
-a 

I 
I 

0 0 

O 0 

Similarly a solution for X2 = a 0 0 I 0 is 
I 
I 

0 0 
I 

0 a I 
I 
I 

0 0 
I 

0 a I 
I ----------+--

0 0 0 
I 
I a 
I 

0 ) can then 

a 

0 0 

0 0 

2 a-c 
c -d-

d -c 

2 
X 

a-a = a -b-

b -a 

0 0 

0 0 

0 0 

0 0 

la 0 

0 18 
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• 

A solution for X a 0 I 0 0 

1 

I 
I 
I 

0 a I 0 0 I 

-------1--------
0 0 I a 0 

l 
I 

j I 
I 

0 0 I 0 a I 

2 
is X 

a-a 
0 0 = a -b-

b -a 0 0 

a-c 
2 

0 0 c -d-

O 0 d -c 

and a solution for X2 = ( a 0 I 0 1 
I 
I 
I 

0 a 0 
I 

0 I 
I 
I 

0 0 
I 

0 a I 
I -------------1"--

0 0 0 I 
a I 

is X = la. 2abra.+ _1_ -2bla. 0 
2 la. 

0 la. 0 0 

0 2ala. -la. 0 

0 0 0 re 

Consider the equation X2 = Ps = a 0 0 

0 a 0 

0 0 a 0 

0 0 0 a 

Following the method described in 6.2 then a solution X can 

- -1 
be written as X = TXT 
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where X = ra --- 0 Un sfa3 

0 ra 0 2ra 
0 0 ra 0 

0 0 0 ra 

or ., H 
+ --2ra 

and T is a general matrix which commutes with P. 

Hence T is of the form 

where d e 

o d 

o o 

I b 
I 
I 

T, 1 0 
I 
I 

: 0 
----------/---
o 0 a: c 

f ) 

e 

d 

and the inverse matrix T-' = 
b 

- cd 

o 

o 
-------------r---
o o 

and 5, is of the same form as T, . 

I -a I , 
- I cd I c 

I 

) 

Then choosing X so that the values of ra are of opposite signs 

Ln the two Jordan Blocks 



x = ( I b 
I 
I 

T 1
1 0 

, I 

22' 

I 
I 

I 
I 
I 
I 
I 

o 

o 

I 0 

) 

5, 

I b 
I_-
I cd 
I 
I 0 
I 
I 

I 0 l ~----~----:--t-: ------------f-----
______________ L-__ 

where x, = la I + 

o 0 0 I -la 

-'- H 
21a 

o o a I , 
cd I c 

2 
and since T, commutes with Hand H then T,X, = X,T, . 

Hence 

and since 

then 

Hence 

x = 

o 

o 
-------------------r---------

I 
o 0 2a la I -la d Cl I ~ 

I 

TT-' I 
I b b I = I I--
I cd I 

I I 

T, 
I 

0 5, I 0 I I 
I I 
I I 
I 

0 I 0 I I 
I I 

------------~-- ---------------~--
0 0 

I a I , 
a I c o 0 --l-

ed I c 

T,5, 
_ ba H2 I 

0 ) I 
0 I I cd I I 

I I 
I 

0 
I 

0 I = I I 
I I 
I I 
I I 
I 0 I 0 
I I 

-------------~---- -------------~---
0 0 0 

I 
0 0 0 

I 
I I 

T,5, = I + ~: H2 

= I 
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Hence X T S X ba X H2 
1 1 1 = 1 + cd 1 

The solution is therefore 

x (la. 2ab 10.- 2b la. = "cd 2 la. S/1l3 
c 

0 la. 0 
21Ci 

0 0 la. 0 

0 0 
2a la. -1Ci cl 

and hence the equation X2 = Ps has"an infinite number of solutions. 

Consider the equation X2 = P6 = Il 0 0 

0 (l 0 0 

0 0 Il 

0 0 0 (l 

then a solution exists X - -1 = TXT 

where X = la. 0 0 
21Ci 

0 ICi 0 0 

0 0 ICi 
2 la. 

0 0 0 10. J 

and T is a matrix which commutes with P
6 

. 
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-1 
and the inverse matrix T 

where the matrices T. and 5. are of the 
b; ) 1 1 

a· , 

Then choosing X so that the values of la are of opposite signs 

in the two Jordan Blocks 

X . ,j1,.' • [ T1 T2 

1 
la I 

0 0 

[ 
51 52 I 

21a 
I 
I 

T3 T4 
I 

53 54 0 la I 
0 0 I 

I ---------T-----------
I la 1 001 - a ----
I 

21a I 
I 

l 
I 

0 0 
I 

0 -la I 

la T1 
1 1 

X = +---TH -laT --T H 
21a 1 2 21a 2 

la T3 
1 -laT __ 1_T +---TH H 

21a 3 4 21a 4 

and since T.H 
1 

= HT. 
1 

for i = 1 to 4 

(la I 
1 

(la I 
1 

then X = + - H) (T 15 1-T25
3

) + - H)(T
1
5 1-T25

4
) 

21a 21a 

X = ( 

l 

(la I 
1 + - H) (T

3
5

1
-T

4
5

3
) 

21a 

la I + __ 1_ H i 
I 

21a I 
I 

o 

-----~--------~------------• I 

o 
I 
I 
I la I 
I 
I 
I 

1 
+ --- H 

21a 

(la I 
1 + - H) (T

3
52-T

4
5
4

) 
21a 

1 
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It can be shown that the matrix X contains arbitrary elements 

as follows. 

Let T = a b c d ) 

0 a 0 c 

e f g h 

0 e 0 g 

'h,. 'h' in."" .. "i, ,-' - I 
has blocks 

-g 
ce-ag 

o 

-c 
ag-ce 

o 

e 
ce-ag 

o 

a 
ag-ec 

o 

deg-g2b-hce+fgc I 
2 (ce-ag) 

.-:L-
ce-ag 

2 cha-fc -dag+bcg 
2 (ag-ec) 

-c 
ag-ec 

2 ahe+gbe-afg-de 
2 (ce-ag) 

e 
ce-ag 

2 cda-ha -bce+fca 
2 (ag-ec) 

a 
ag-ec 



Hence T
1
S

1
-T

2
S

3 = 

T1S2-T2S4 = 

T
3

S1-T4S
3 = 
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-a!l-ce 
ce-ag 

0 

-2ac 
ag-ec 

0 

-2ge 
ce-ag 

0 

-ag-ce 
ag-ec 

o 

2[ade~-ahce+afgc-b~ce] 

(ce-ag) 2 

-ag-ce 
ce-ag 

222 2 2 [a ch-afc -da s;+bec ] 

(ce-ag) 
2 

-2ac 
ag-ec 

2 2 2 2 
2[de s;-~ eb-hce +fas; ] 

(ce-ag) 2 

-2s;e 
(ce-ag) 

2[echa-edag+ebcg-gfac] 
2 (ag-ec) 

-a!l-ec 
ag-ec 

Hence the matrix X has arbitrary elements. 

In the 4x4 case therefore. if the matrix P is derogatory then 

the equation X2 = P has an infinite number of solutions. 

mxm Case. 

If the matrix P is derogatory then there is more than one 

Jordan Block corresponding to a single eigenvalue. 

If X2 = P where P is in Jordan Normal Form then X may be 

partitioned to correspond with the blocks in P associated with a 

particular eigenvalue. 
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e.g. if P = Cl 0 I 
I 

0 0 
I 

0 Cl 0 
I 
I 
I 

0 0 
I 

0 0 Cl 
I 
I 
I 

0 0 
-------------+-------

0 0 
I 

0 I e I 
I 

0 0 0 
I 
I 0 e 

then solutions X may be looked. for of the form 

where o and 

o o 

o o 

and the equation X2 = P becomes [ :; 0 

1 
= 

[ : 1 

0 

1 X
2 

P2 2 

In general the equation X2 = P may be partitioned as 

X2 0 0 0 ~ P
1 

0 0 0 ~ 
1 

0 X2 0 0 = 0 P
2 

0 0 
2 

0 0 
2 

X3 ••• 0 0 0 P
3 

... 0 
• • • • • • • • • • • • • • • • • • 2 .................. 
000 X 0 0 0 .... P r r 

If P is derogatory then at least one of the blocks P. can be 
1 

further partitioned into more than one Jordan block. In this case 

it can be shown that the equation X~ = P. then has an infinite 
1 1 

number of solutions. 

Consider X~ P. 
1 1 
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where P. = a 0 0 
~ 

0 a 0 
................... 0 
0 0 0 

0 0 0 a 
---------------------r--------------------

a 100 

0 a 0 

0 .................. 
0 0 0 

0 0 0 a 

then X. = (lal + H) , lal + H) f lhi! riNO diQ90~QI bloc.ks may 
~ 

bt of dlf~e.renC order 3 

x. [[ra 1 
_1_ H __ 1_ H2 

+ ... ),(ral 
1 1 2 

+ ... )] = +--H---H. 
~ 21a 8,Q' 210 8,Q' l 

-"-1 where T 

[ 
T1 T2 

1 

-1 

[ 1 

and X. = TX.T = T = $1 52 ~ 1 

T3 T4 $3 54 

and the matrices Ti ,5 i are of the form a 1 a 2 
a

3 
a r 

0 a
1 

a2 a r-1 

0 0 a 1 
a r-2 

o o o ..... a
1 

Choosing opposite signs of ra for the different blocks of X 

then 

1 

la 1 1 2 0 X.= T1 T2 ( a1+ - H--H + ... ) 51 52 
~ 21a 8£3 

T4 J 
la 1 1 2 

T3 0 (- a1-- H+ -- H + ... ) 53 54 
21a 8,Q' 



X.= 
1 

112 
(laI+- H- -- H + .•. ) 

21a 8W 
o 

Since the matrix 
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o 

r 1 1 2 ('aI+- H- -- H + ... ) 
21a 8W 

T1S2-T2S4 ] 

T
3

S
2

-T
4

S
4 

contains 

arbitrary elements, then the equation X~ = P. has an infinite number 
1 1 

of solutions when the matrix P. contains more than one Jordan Block 
1 

corresponding to a single eigenvalue. 

It is straightforward to show that this matrix X. is indeed a 
1 

solution of X~ = P. since X. can be written as the product 
111 

X. 
1 

Since the matrix 

then X~ = 
1 

and since 

then X~ = 
1 

[/a:+H 

:: 1 [ : :: 1 . 

[
vhl+H 0 ) 

o laI+H 

:: 1 [ : 

-1 
commutes with T, T and 
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aI+H o 

:: 1 [:: o aI+H 

aI+H 

o 

X~ = P. 
1 1 

It can therefore be concluded that if P is derogatory the 

. 2 equatlon X P has an infinite number of solutions since one of 

2 
the blocks X. = P. has an infinite number of solutions. 

1 1 

The equations derived in 6.3 and 6.4 assumed that P was non 

derogatory since the elimination method depends on comparing the 

coefficients of a scalar equation in P which has the same degree. 

However when P is derogatory there is not a unique scalar equation 

of degree m which is satisfied by P. 

However, even if P is derogatory, a solution obtained by this 

method is still valid even though it may be a particular example of 

a general solution. 

The following example illustrates the case. 

Example 6.5.1. 

Consider the equation X2 = P where P = 

The characteristic equation of P is 

p3 _ 12P2 + 48P - 641 = 0 

4 

o 
o 

4 

o 

o 

o 
4 
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If the characteristic equation of X ~s 

then the elimination method gives the three equations 

Z 
2a

2 
- a

1 
= -lZ 

Z a
Z 

- Za
1
a

3 
= 48 

Z 
a 3 

64 

There are four possible solutions to these equations 

(1) a 1 
= -2 a Z = -4 a

3 
= 8 

(Z) a 1 
= Z a

Z 
= -4 a

3 
= -8 

(3) a 1 = 6 a Z 
= lZ a

3 = 8 

(4 ) a 1 
= -6 a Z 

= 12 a =-8 
3 

Choosing solution (1) and substituting in 

[aZI + P]X = [-a I - a P] 3 1 

leads to 0 0 xl Xz x3 0 Z 0 

0 0 0 x4 Xs x6 = 0 0 0 

0 0 0 x7 x8 x9 0 0 0 

X4 Xs x6 0 Z 0 

0 0 0 = 0 0 0 

0 0 0 0 0 0 

Hence X is any matrix with x' = 0 Xs = Z x6 = o which 
4 
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also has characteristic equation x3 - 2x2 - 4X + 81 = O. 

The elimination method indicates that there are an infinite 

number of solutions but obtaining the general solution would not 

be straight forward. 

However other choices of characteristic coefficients may lead 

to a particular solution. In this example solutions (3) and (4) 

lead to such solutions. 

Solution (3) 

on substitution in X 

gives the solution 

X = -2 o ) 

o -2 o 

o o -2 

Solution (4) a
1 

= -6 a
2 

= 12 a
3 

= -8 

gives the solution 

X 2 
1 

·0 = 7; 

0 2 0 

0 0 2 

These solutions are particular examples of a general solution 

which is 

X P (p-~)ab 
1 

b(<j,-pY = +--
2p. 

0 P 0 

0 :.a{p-"q,.) CV 

whe,.e p' = '}' = 4 

c.f1cl a,b ore orbir..-,,'Y elemell LS. 
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6.6 CONCLUSION. 

In this chapter two methods of determining the square root 

of a matrix have been considered. The method described in 6.2, 

in which the square roots of the eigenvalues of P are used to 

determine the solution X of x2 = P, involves difficulties in 

practical application. Not only the eigenvalues of P must be 

determined but also its Jordan Normal Form. The square root of 

each Jordan Block must be found by use of the. terminating series. 

Finally a matrix which commutes with P must be obtained in order 

to find the transforming matrix T to obtain the solution X = TXT- 1 . 

The elimination. method described in 6.3 does not require the 

eigenvalues or Jordan Form of P to be determined but does require 

the computation of the characteristic equation of P. A system of 

m equations' in m unknowns is obtained by comparing coefficients. 

Since the number of solutions, if finite of X2 
= P is 2m where X 

and P·are mxm matrices, it soon becomes difficult to solve the m 

equations algebraically but methods such as Newton may be applied. 

The advantage of this method is that there are only m unknowns 

rather than m
2 

values to be determined. Eliminating X completely 

has advantages over the elimination method described in 4.3 where 

it is necessary to find the roots of det[A 2I - pj = O. As shown 

1n example 6.2.3, there can be real matrix solutions of the 

equation X2 - P = 0 and yet no real roots of det[A2I - pj = O. 

This problem does not arise 1n this method as the coefficients of 

the characteristic polynomial of a real matrix are also real. 

In conclusion it may be said that this elimination method 

seem$ to compare favourably with known algebraic and iterative 

methods of evaluating the square root of a matrix. 
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CHAPTER 7 

Conclusion 

Various methods of solution of matrix equations have been 

considered in this thesis. An attempt has been made to find 

matrix solutions by consideration of the equivalent system of 

constituent equations. Decision methods, multivariable resultants 

and iterative methods have been applied. Though particular 

solutions may be obtained by these methods, computational 

difficulties exist for large order matrices. Since the number of 

variables to be obtained is m2 when the unknown matrix is mxm, 

it becomes difficult to draw any general conclusions about the 

matrical properties of the coefficient matrices. This seems to 

indicate that methods which are applied direct to the matrix 

equation offer many advantages. 

The elimination method described in Chapter 4 has been shown 

to be successful for matrix equations of order 2x2 and 3x3. The 

adaptation of the method for the sol~ltion of the matrix quadratic 

equation involving mxm matrices has also been described. The 

computational difficulties involved do not seem to be any greater 

than many of the methods described in Chapter 3. The viability 

of the process for large 'order matrices using computer methods is 

a possible area for further investigation. 

One of the iterative processes described in Chapter 5 is an 

adaptation of this elimination method, using the characteristic 

equation of a solution X. The method has been shown to lead to 

solutions for a variety of equations involving 2x2 and 3x3 matrices. 
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The method offers scope for further investigation such as 

whether the method is stable for large order matrices, conditions 

for convergence and choice of initial matrix. 

In Chapter 6 a method for finding the square root of a given 

matrix was described. A set of equations connecting the 

characteristic coefficients of X and P was obtained. An area 

for further work is the possibility of extending the method to the 

solution of the unilateral matrix equation. X2 + A1X + A2 = O. 

As stated in earlier chapters,work on matrix equations in 

recent years has concentrated on the numerical solution of the 

Lyapunov and Riccati equations. Many approaches are variations 

of the eigenvector or Schur vector methods described in Chapter 3. 

It is possible that some early methods such as that described by 

Ingraham [1941] could now be adapted for modern computer techniques 

by use of computer algebra. This is another area for further work. 
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Append1x A 

Formal Proofs 

The result given on page 206 can be proved formally as 

follows. 

Theorem I. 

Let X be an ~m matrix which satisfies the equation X2 = P, 
m 

and let the characteristic polynomials of X and P be L 
m i=O 

m-i a. ). 
1 

and L 
i=O 

m-I . 
a.A respect1vely where a 

1 0 
= a = 1. Then the characteristic 

o 

coefficients of X and P are connected by the relation 

Proof. 

a. , 
1 

i 1,2, ... ,m, j ,k = 

Since X satisfies its own characteristic equation 

? 

O,l, ... ,m 

Substituting P for X- in this equation, then X satisfies the linear 

equation 

(1) 

,.here Aa, A1 are scalar polynomials in the matrix P. 

Multiplying equation (1) cn the right by X and substituting 
. 2 

P for X again, then X also satisfies the linear equation 

(2) 

Combining equations (1) and (2) by mUltiptying (1) on the 

left by Al and (2) on the left by Aa and subtracting, then X is 



2a 

eliminated completely since A1Ao = AoAl . 

The resulting equation is 

A2 - J..? P = 0 
1 0 

(3) 

It is now shown that this is an equation in P of degree m, 

whether or not m is odd or even. 

If m is even, then m = 2k for some positive integer k. 

Then 

Hence 

2 
+ + a I 

ID 

and since a and m = 2k 
o 

a IJ 
m 

2k-r 
+ a 2 a JP 

r 0 



3a 

3a 
A2 _ A2p = 

1 0 

+ .,. + (4) 

Considering now the case where m is an odd integer. 

Let m = 2k-l for some positive integer k. 

Then 

[alpk- l k-2 k-3 k-r 
Al = +a/ + aSP + . . . + a2r- 1P + ... a Il m 

Writing equation (3) 
2 A2 0, this may be factorized as as A P = 
0 1 

[A p! - All [AoP! + All ° 0 

k-
(r+l ) 

A p! - A [a pk-! k-l pk- 3/ 2 (_Or 2 
= alP + a2 

+ · .. + a P 
0 1 0 r 

+ · .. + a Il m 

k-
(r+l) 

A p~ [a pk-~ k-l pk- 3/ 2 2 
+ Al = + alP + a

2 
+ · .. + a P 

0 0 r 

+ · .. + a Il m 

Hence 

1 (2k-l )-r + ... + a21 + •.. + a2r- 1a 1 + a2rao P m 



and since a = 1 and m = 2k-l 
o 

+ ••• + [ L 

4a 

j +k=2r 

and this is identical to equation (4). 

Comparing the coefficients of this polynomial in P with the 

characteristic polynomial of P gives 

i = 1,2, ... ,m; j,k = O,l, ... ,m 

which proves the theorem. 

The result given on page 214 can be proved formally ·as 

follows. 

Theorem 11. 

If X is an mxm matrix with characteristic polynomial 

where a = 1, and C is the companion form of X o x 

m 
\" 

i~O 

m-i a.A 
1 

then det[C
2 
x 

AI] fa 
Im , 

2 
+ a 2~· + a 41. m- m-

. r 
+ ••• a 2 A m- r + ••• 

- ,,[a 1 + a 31. + ••• m- m-

a 
m m-2 [-] 
2 

r 
am- 2r- 1 A + ••• a 1 A mm-2[-]-1 

2 

, 

[m-I] 2 

2 ] 



Sa 

Proof. 

Then 

Let ).. Z = ~ . 

det[C
Z 

- AIl 
x 

Z Z 
= det [C - ~ 11 

x 

= det[C - ~Il. det[C + ~Il x x 

Two cases are now considered a) m is an even integer, 

b) m is an odd integer . 

Case a. 

Let m Zk for some positive integer k. 

Then 

det[C - ~Il 
x 

det[C + ~Il 
x 

det[C - ~Il. det[C x x 

,"k 
! L 
~=O 

Z 
< z)k-rl a Zr ~ i 

..J 

(I azr_1i
k-<zr-l»)J- [[ I 

r=l r=O 

2 - ~ 

.- k ... 2 

L' 2 k-rJ ~1 a Zr- 1 <~ ) 

Z 
Now substituting A = p , the expression becomes 

L a )..k-r-
[

k J? 
=0 Zr 

Zk-rl 
a ~ i 

r J 



m 
and S1nce k = "2 

2 
det[C - AI] 

x 

Case b. 

6a 

[

m 12 - m 
2 --r 

- A L a2r_
1

A
2 

r=1 J 

Let m = 2k-l for some positive integer k. 

Then 

det[C - )JI] 
x 

det[C + )JI] 
x 

= - a )J 
o 

2k-l 

2k-2 - a )J 
1 

[ 
2k-l J [2k-1 J 2k-(r+1) r 2k-(r+l) 

det[C - )JI]. det[C + )JI] = - I a)J I (-1) a )J 
x x r=O r r=O r 

= [[-

k 
2k-2r) Ul a

2r
_

2
)J2k-(2r-l»)] [[-I a

2r
_

1
)J -

r=l 

+ [r!l a
2r

_2)J2k-(2r-l»)] 

r~ 2 k-r]2 2 
= I L. a 2r- 1 ()J ) - )J 

Lr=l 

2 
Now substituting A =)J the expression becomes 

k_rl2 
• I a Z 1 A , 

r- J 

. b m+1 and replac1ng k y -2-

Ik 
- AI I 

Lr=1 

a
2r

_
2A 

k-r 1z 

J 

k 

L a
2r

_
1

)J 
r=l 

det[C
2 

- At] 
x 

12 m;l -r . 
rm+l ]2 

= I I a 2r_ 1A 
Lr=1 lm;1 m+l]2 

- A I a2r_2A-2--r 

r=1 

2k-2r) 
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In both cases a and b 

+ ••• a Ar 
m-2r + ... 

a 
m m-2 [-] 
2 

- Afa 1 + a 31. + ••• + m- m-
r 

a A + m-2r-l a m-l 
m-2[-] 

2 

a = 1 • 
o 

The result given on page 100 may be proved formally as 

follows. 

Theorem Ill. 

Let X be an mxm matrix which satisfies the equation 

X2 + A
1
X + A2 = 0, and let the characteristic polynomial of X be 

m 

I 
i=O 

1 • m-i a.A where a 
1 0 

Then X satisfies the linear equation 

J X + K = 0 m-l m-l 
where 

and K. J A 
1 - i l' K. 1 = a. 021 - JoA2 

1+. 1+ 1. 

Proof. 

Since X satisfies its own characteristic equation, then X 

simultaneously satisfies the two equations 



Ba 

m m-l m-2 2 
X + a 1X + a 2X + ... + a 2X + a lX + a I = 0 (1) m- m- m 

MUltiplying equation (2) on the right by xm-2 and subtracting 

from equation (1) gives 

the equation 

2 
a 2X m-

+ a lX + a I = 0 
m- m 

.~-1 .~-2 m-3 2 
J 1X + K1X + a 3X + ... + a 2X + a X + a I = m- m-l m 

o . (3) 

Multiplying equation (2) on the left by J
1 

and on the right by 

Xm- 3 and subtracting from equation (3) gives 

the equation 

After applying the process i times an equation of degree (m-i) 

is obtained 

(4) 

J.Xm- 1 + .~-(i+l) .~-(i+2) X + a I K.X + a. 2A + .•• + a 1 = 
L 1 1+ m- m 0 ••.••• (i+2) . 

Multiplying equation (2) on the right by 1fD-(i+2) and on the left 
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by J. and subtracting from equation (i+Z) gives 
1 

+ ... + a lX + a I = 0 m- m 

and hence X satisfies the equation 

.In-(i+l) m-(i+Z) .In-(i+3) 
J. 1 A + K. 1 X + a. 3A + ••. + a 1 X + a I = 

1.+ 1+ 1+ m- m 

where and = a. ZI - J.Az 1+ 1 

The process is continued until a linear equation in X is 

obtained. 

Then J m_1X + Km- 1 = 0, and the proof is complete. 

0 .... (i+3) 
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Appendix B 

Section a. 

Z Extension of the method of Chapter 6 to the case of X + A
1
X + A

Z 
= O. 

Difficulties are encountered in attempting to apply the method 

to the general unilateral. equation. Some special cases are 

considered in this appendix. 

I The equation XZ + A1X + AZ = 0 where Al = kI ·for some scalar k. 

If Al = kI, the equation may be written in the form 

(X + ~ I)Z + AZ 
kZ 

0 - ilI = Z 

setting Z X + ~ I and R 
kZ 

and = = - I - A Z 4 Z 

Z 
the equation becomes Z = R. 

The characteristic coefficients of the matrices Z and Rare 

connected by the relations defined in Chapter 6, i.e. if the 

m 

I 
i=O 

m-i 
r.A respectively where 
~ 

m m-i Z and R are I z.A 
i=O 1 

Z = r = 1 
0 0 

and characteristic polynomials of 

then i = 1,2, ... ,m, j,k = O,l, ... ,m. 

A relationship also exists between the characteristic 

coefficients of Z and X and also between Rand A
Z

. 

and 

Let the characteristic polynomials of X and A
Z 

be 
m 

I 
i=O 

S 
. m-i 

.A 
1 

m 

I 
i=O 

m-i 
a.A 
~ 
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det[Z - AIl = det[X - (A - ~>"Il 
2 

Comparing coefficients of A~ 

z 
n 

= 
n 

L 
i=O 

m-n+i C. 
~ 

a . 
n-~ 

+ •••• + a 
m 

n = 1,2, ... ,m. 

det[R - AIl = det[- A2 -[ A - k
4

2
)Il 

2)m-2 
- k4 + 

Comparing coefficients of Ai 

n 

L 
i=O 

m-n+i 
C. 8 . 
~ n-~ 

n = 1,2, ••. ,m . 

A set of equations connecting the characteristic coefficients 

of X and A2 may therefore be obtained from 

m .•• (-1) 8 

r. 
~ 

i = 1,2, ... ,m, j,k = O,l, .•• ,m 

n 
m-n+iC. [~r(-1)i z = L a n-i n = 1,2, ... ,m n i=O ~ 

where 

and 
n 

m-n+iC. [~2f r = (_1)n L e . n = 1,2, ... ,m. n 
i=O ~ n-~ 

m 
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For m > 4 the computational difficulties involved in 

computing the direct relationship between the a. and 8. become 
1. 1. 

prohibitive. The equations are given for m = 2,3,4 as follows. 

2x2 Case. 

3x3 Case. 

4x4 Case. 
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II The equat1'on x2 + A1X + A2 = O'where A A = A A • 1 2 2 1 

Consider the case where X, Al , A2 are 

Let the characteristic equation of X be Am 

Then X satisfies the two equations 

mXm matrices. 

+ •••• + a = 0 . 
m 

The process described in Appendix A, Theorem III may be applied 

until a linear equation in X is obtained 

J X + K = 0 where m-l m-l Kl = a I - A 2 2 

and K. 1 • a. 21 - J.A2 ~+ 1.+ 1. 

Continuing the process, a second linear equation may be obtained 

and since Al and A2 commute, X may be eliminated completely to 

obtain 

2 2 
K - J A K + J A 0 m-l m-l 1 m-l m-l 2 = • 

In the method of Chapter 6, the final equation obtained 

after the complete elimination of X was a matrix polynomial 

equation in the known matrix P and relationshi~could be obtained 

by comparison of the scalar coefficients with the known 

characteristic coefficients of P. 

In this case however, the final equation involves the two' 
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matrices A" A2 and hence comparison with the characteristic 

coefficients is not possible. 

In the 2x 2 case, it is possible, using the known matrices 

A" A2 to derive the set of constituent equations and solve for 

a" a 2 • 

For example, if A, = [-: 2 ) -, 
and 

then J, = [a, +' 
-2 

) 
K, = 

-, a,+' 

final equation K2 - J,A,K, + 
2 

and the J, A2 , 
becomes 

2 8a2+32 -a a -3a -4 a
2

+8a2+24 
'22 

[ 

A2 = [-4 
-2 

a
2
+4 4 

2 a2+4 

= 0 

-4 ) 
-4 

) 

2a, a2 +4a, +4a2 +4 

[ ] - [ 4a2+'6 
2 

a,a2+2a,+2a2+2 -a a -3a -4 a 2+8a
2 

+24 , 2 2 

[ 2 -";'8', "] -4a -4 , 
0 + 2 = 

-2a,+4a,+2 -4a -4 , 
The constituent equations from this are 

2 2 
+ 24 (' ) a

2 
+ "a2 + a,a2 

- 4a 0 , 
4a - 2a a + 4a - 2 + 32 (2) 4a, = 0 2 , 2 , 

2a2 - a a + 2a -
2 (3) 2a, + '6 = 0 , 2 , 

2 
+ "a2 + a,a2 -

2 
+ 24 (4) a

2 4a, = 0 

] 
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In this particular case there is linear dependence between 

the equations since equations (1) and (4) are the same and 

equation (2) is 2 x equation (3). 

From equations (1) and (3), using elimination methods, the 

following equations are obtained 

(5) 

(6) 

There are 4 solutions for equation (6) : -1. -8, 4+21:2, 

4-212. Substitution of these values in equation (5) gives 4 

corresponding values for a 1 : -2, 0, -1-312, -1+3/2 

From these four pairs of solutions, four matrix solutions 

These are 

[ 

2-612 

-2-12 

x = [_~ 

-4-2/2 ) 

2-612 

-4+212 ) 

2+612 

In the 3x3 case, the final equation obtained when X has 

been eliminated ~s 
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This is equivalent to 

The matrices A" A2 are known matrices, and therefore the 

original matrix equation containing 9 unknown elements in the 

matrix X has been replaced by a matrix equation containing only 

3 unknowns, a" a 2 , a3 which could be calculated using numerical 

methods. 

In the mxm case the matrix equation x2 + A,X.+ A2 = 0 

2 
where A,A2 = A2A, contains m unknowns in the matrix X. 

Using elimination methods this may be replaced by 

J, = a,I - A, 

1 = to m-2 

which contains only m unknowns a"a
2

, ••. ,a
m 

and numerical 

methods could be applied to obtain a solution. 

III The equation x2 + A,X + A2 = 0 where X, A" A2 are 2<2 matrices. 

The problems involved in the application of the method of 

Chapter 6 to the general unilateral quadratic matrix equation 

have not as yet been resolved. 
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It can however, be applied to the equation involving 2x2 

matrices and is described in this section. 

Z Let the characteristic equation of X be A + atA + a Z = o. 

Then X satisfies the two equations 

(1) 

(2) 

Eliminating x2, two linear equations in X may be obtained 

(4) 

Since At and A2 do not commute, X cannot be eliminated 

directly using elimination methods. 

However, from equation (3) 

provided at is not an eigenvalue of At. 

But det X = a2 

det[a21 - A21 
2 

St a2 + S2 a2 + 
a2 = = 

det [At - a 11 
2 

t at + "tat + "2 

where "t' "2 and St' Sz are the characteristic coefficients of 

At and A2 respectively. 

Hence 

- a 
t 
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Hence two equations have been obtained in aI' a
2 

(5) 

(6) 

and aI' a2 , SI' SZ' t can all be evaluated from the coefficient 

matrices. 

If [AI all] is singular, the same process could be applied 

with equation (4) 

and 

Then 

det[a2Al - a l A2] 

det[A2 - a
2

1] 

provided a2 is not an eigenvalue of A
2

• 

Alternatively the constituent equations may be formed from 

Let 
Al = r PI Pz ) A2 = 

r 
ql qz 1 I . P3 P4 I q3 q4 I 

J I ) , 

substituting in 

[A2 - a21] [AI -
-1 

- A ] all [a21 = a 2Al - a l A2 2 

............ -------------------



lOb 

P4-a l -P Z 
ql-a Z qz D D a Z- q l -q 

Z 

-P Pl -a l q3 q4-a Z . 3 
D D 

-q a Z- q4 3 

[""-"" ',', -',', i 
= 

a ZP3-a l Q3 aZP4-alQ4 

where D 
Z 

- (p + P4)a l = a + P1P4 - PZP3 1 1 

The four equations obtained are 

Equation (A). 

Equation (B). 
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Equation (C). 

Equation (D). 

o . 

For matrices of order greater than 2x2 the problem of 

eliminating X completely arises at the final stage when two linear 

equations in X have been obtained. 

As shown in section 11 the two linear equations 1n X which 

are obtained are 

However since A1 and A2 do not commute 1n general, X is 

not eliminated completely by continuing the process . 

........ ------------
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The only possibility is to express X uSlng an inverse matrix 

from one equation and substitute in the other. The equations 

obtained are 

[ J A - K ]J-1 K - J A 
m-1 1 m~l m-1 m-1 m-1 2 o provided det J

m
_

1 
I 0 

[ J A ]-1 J A + K = 0 . d d d [K ] J. 0 J m- 1 Km_1 - m-1 1 m-' 2 m-' provl e et m-1 - J m_1A, r . 

Again these matrix equations involve only m unknowns, 

a,a
2

, ... ,am rather than the m
2 

unknowns contained in the original 

equation and so might have some advantages if solutions are sought 

by numerical methods. 

Section S. 

Extension of the method of Chapter 6 to the equation Xn = P. 

I 
3 The equation X = P. 

In Chapter 6 a set of equations was obtained relating the 

characteristic coefficients of X and P in,the equation X2 = P. 

Some progress has been made in attempting to do the same for the 

equation X3 = P though an explicit formula has not as yet been 

found. &, attempt to find this is shown in part 11 of this 

section. 
m 

Let the characteristic polynomials' of X and P be L 
m i=O 
L m-l respectively, where and a.A a = a = 1. 

i=O 
1 0 0 

Then X satisfies the equation 

m m-' m-2 
X + a

1
x + a

2
X + •••• + a ,X + a I = O. 

m- m 

m-l a.A 
1 
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Since X also satisfies the equation X3 = P, then substituting P 

3 for X gives a quadratic equation in X, whose coefficients are 

scalar polynomials in P. This is 

where 

[~] 
3 

I 
i=O 

r=O,l,2 

A second quadratic equation may be obtained by multiplying 

this equation on the right by X and substituting P for X3 again. 

Hence for mXm matrices, X satisfies the two equations 

( 1 ) 

(2) 

where Ao' A1 , A2 are scalar polynomials in P defined by the given 

formula. 

Eliminating X2 gives two linear equations in X 

Eliminating X completely gives 

A2[A3 p2 + A3 p A3 3A A A P] 0 o 0 1· + 2 - 0 1 2 = 

m-2 This is a polynomial in P of degree m + 2[--3-] • 

(3) 

(4) 

2 
The factors A and the expression in square brackets are 

o 
m-2 

irreducible factors of degr~e 2[--3-] and degree m respectively. 

Since P satisfies a polynomial equation of degree > m then the 

minimum polynomial of P must be a factor of this polynomial. 
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As in Chapter 6, we concentrate on the case where P 1S non 

derogatory and take the expression in square brackets to be the 

minimum and characteristic polynomial of P. 

Hence, for non derogatory P, the characteristic coefficients 

~i' i = 0,1 , ••• ,m, may be equated with the coefficients in the 

equation 

a sP + ••• m- a 
m-2 (m-2)-3[-] 

3 

+ a 4P + ..... + m-

[m;I])3 
a m-I P P 

(m-l )-3 [-3-] 

1 
[~])3 

+ a I + a 3P + .••.. + a P 3 
m m- m-3[~] 

. 3 

+ a 4P + m- ... } 

{a I + a 3P + m m-
) . . . -r P = 

The method 1S illustrated 1n the following examples. 

2x2 Case. 

A 
o 

= 
o 

L 
i=O 

o 

L 
i=O 

i 
a 3.P 0- 1 

= a I, 
o 

o 

L 
i=O 

o . 
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r,ives 

Equating the coefficients with the characteristic coefficients 

of P gives the two equations 

3x3 Case. 

0 0 
i I L 

a,I, A, I A = a,-3iP = = aZ- 3iP = aZI, 0 i=O i=O 

, 
I L a

3
1 ,.. a P AZ = a3- 3iP = 

i=O 0 

Substitution in (5) gLves 

3 pZ 3 P (a31 + p)3 - 3a,aZ(a31 P)P 0 a, + aZ + + = 

Equating coefficients, the equations obtained are 



4x4 Case. 

o 
A = I 

o i=O 

1 

I 
i=O 

i 
a Z- 3iP 

Substitution in (S) gives 

l6b 

1 

Al = I 
i=O 

Equating coefficients, the equations obtained are 

SxS Case. 

1 
i 1 

i A = I a3- 3iP = a
3

1 + a P, Al = I a4- 3/ 0 i=O 
. 0 

i=O 

1 
i AZ = I as - 3iP = asI + azP 

i=O 

= a41 + alP 
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Substitution ~n (5) gives 

Equating coefficients the equations obtained "are 

3 - 3a laZa
3 

+ 2 
- 3a

2
a

4 
+ 2 a2 3a

3 3a 1a
4 

- 3a1a
S 

= "z 

3 - 3aZa
3
a4 + Z 2 a

3 
3a 1a4 - 3a1a

3
a

S 
- 3a

4
a

S 
+ 3a2a S = " 3 

3 Z a
4 - 3a3a4 as + 3a2aS = "4 

3 
as = "5 

6x6 Case. 

1 I i L ~ 
I L A = a4- 3iP = a4 +a/ • AI = as - 3iP = a I + a

2
P 

0 i=O i=O S 

Z 
a p2 L ~ a

6
1 +a/ A2 = a6- 3/ + 

i=O 0 

Substitution in (5) g~ves 

(a
4

1 
3 2 

(aSI azp)3p (a
6

1 a p2)3 + alP) P + + + + a
3

P + 
0 
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Equating coefficients the equations obtained are 

In Chapter 6 the equations relating the characteristic 

. 2 
coefficients of X and P in the equation X .- P were obtained by 

using the companion form of X. 

Similarly the relations between the characteristic coefficients 

of X and P in the equation X3 = P may be obtained by using the 

companion form of X and evaluating det[C3 - AI] which can be 
x 

reduced to the evaluation of a 3x3 determinant by row and column 

operations. 

The process is illustrated in the 5x5 case as follows. 

Let the characteristic pOlynomials of X and P be 

5 
. L 

i=O 

5-i a.A , 
1 

5 
L 

i=O 

5-i 
a. . A , 

1 
a 

o 

Let the companion form of X be C . 
x 

= a 
o 

= 1 • 
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Then e = 0 0 0 0 
x 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-a 
5 

-a 
4 

-a 
3 

-a2 -a l 

e3 
= 

( 0 0 0 I 0 
x 

0 0 0 0 

-a 
5 

-a 4 
-a 

3 
-a 

2 
-a 

I 

(a l a4 -as) (a
l
a

3
-a

4
) (a

l
a2-a

3
) 

2 
alaS (a

l
-a

2
) 

l ",', -';',' (a
l
a

5
+a

2
a

4 (a l a
4
-a

S 
2 3 (a

l
a

3
-a4 +a2 2a la 2-a

3
-a l 

2 2 2 -a
l
a

4
) +a2a

3
-a

l
a

3
) -a I a 2) 

det [e3 
x - All after row operations simplifies to 

det 

r-', 
0 0 0 

-I- 0 0 

-a 
S -a4 

-a -I-
3 -a 2 

-a 
I 

0 -a -a -a I- -a -I- -a 

I 
5 4 I 3 2 

l 0 0 -a -a I- -a -a ), -a -). 
5 2 4 I 3 

= det 0, 0 0 0 

0 0 0 0 

0 0 -a -I-
3 

-a -a ), 
5 2 

-a -a I-
4 I 

0 0 -a -a ), 
4 I 

(-a -),», 
3 

-a -a I-
5 2 

0 0 -a -a A 
5 2 

(-a -a ),)1-
4 I 

(-a -),)1-
3 
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Setting det[C3 - AI] = 0 
x 

then 

This is a polynomial in A of degree 5 and since 

det[C3 - AI] = det[P - AI] then the coefficients may be equated 
x 

to the characteristic coefficients of P. 

This gives the same set of equat.ions connecting the 

characteristic coefficients of X and P as those obtained by 

the elimination method. 

Some difficulty has been encountered 1n attempting to find 
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an explicit formula connecting the characteristic coefficients 

of X and P, but the set of equations may be formed for any given 

m, by formation of the polynomials A., i = 0,1,2 and computation 
1 

of the polynomial in P of degree m from equation (5). 

11 An attempt to find an explicit formula connecting the 

characteristic coefficients of X and P in the equation X3 = P. 

It has been shown in part I that if P is non derogatory its 

characteristic coefficients may be equated with the coefficients 

of P in the equation 

Then 

where 

A 
Z-r a P1 

3 · , m-r- ~ 
r=O,1,2 

Consider the case where m is a multiple of 3. 

(m-3) (m-3)_1 

{alP 3 
3 

A = + a4P 
0 

(m-3) (m-3)_1 

Al {azp 3 P 3 . = + as 

(m-3)_Z 
+ P 3 a

1 
+ ... 

(m-3)_Z 
3 

+ aSP + ... 

+ ... + a 3P m-

+ a sP + a ZI} m- m-

+ a 4P + a I} m- m-l 

The formula for the cube of a polynomial of degree n is 

'+ .•. + L 
i+j+k=s 

3n-s 
a.a.a. P , 

1 J K 

i,j,k = O,1,2, ... ,n . 
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From this, it is clear that 

3n 
= I \ 3n-s 

L a.a.akP 
i+j +k=3s 1 J s=o 

i,j ,k = 0,3,6. ",3n 

and further 

n n-1 n-2 
[a P + a 3P + a 6P + •.. r r+ r+ 

3n 
a I]3 = I 

r+3n 
\ 3n-s 
L a.a.akP 

i+j+k=3r+3s 1 J s=o 

i,j,k = r,r+3,r+6, ... ,r+3n . 

Using the last formula it is possible to obtain expressions 

for A3 
0' 

For A3 
0' 

Then 

setting r = 1 and n m-3 
= -3-

m-3 
L 

s=o 

m-2 
= I 

s=l 

\ (m-3)-s 
L a.a.akP 

i+j +k=3+3s 1 J 

L 
i+j +k=3s 

(m-2)-s 
a.a.akP 

1 J 

3 For A
1

, setting r = 2 and n m-3 
= -3-

m-3 
I 

5=0 

\ (m-3)-s 
L a.a.akP 

i+j+k=6+3s 1 J 

m-1 
(m-1 )-5 L I a.a.akP 

s=2 i+j +k=3s 1 J 

For 3 setting 0 and m A2 , r = n =3 

A
3 

m 
L I m-s = a.a.~p 2 

5=0 i+j +k=3s 1 J 

i,j,k = 1,4,7, ... ,m-2 • 

i,j , k = 2,5,8, ... ,m-1 . 

i ,j ,k O,3,6", ... ,m = . 
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Since A does not involve a o' a m-1 or a 
0 m 

and A1 does not involve a o' a 1 or a m 

The two summations for A3 and A3 may be set from s = o to m. 
0 1 

A3pZ 
m 
L L m-S 

i ,j , k 1.4.7 •...• m-Z = a.a.,\p = 
0 s=O i+j +k=3s ~ J 

A3p 
m 
L L m-s 

i.j .k Z.S.S •...• m-1 = a.a.,\P = 1 s=O i+j+k=3s ~ J 

A3 
m 
L L m-s 

i.j .k O,3,6, ... ,m = a.a.akP = . Z s=O i+j +k=3s ~ J 

m 
Though each term can be expressed as L L 

s=O. i+j +k=3s 

m-s 
a.a.akP 
~ J 

the choice of i.j.k is different for each term. 

m-3 {a
z
p-3- + 

Z 
=-5 

+ [a 10a Z + a 7aS + a4aS + a1~11P3 + .••. 

+ L 
i+i=3(s-1) 

Z =-s 3 a.a.P 
~ J 

+ ..• + a Za I m- m-1 

+ ••. 



A
2

P = 

= 

2 
3 m 

L L 
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2 
"O'iIl-5 
3 

5=2 i+j =3(5-1) 
a.a.P 
~ J 

m 

{aoP3 

m 
3 
L 

5=0 

+1 

+ •.•• 

+ L 

m !!: -1 
3 3 + a

3
P + a

6
P 

+1-5 

m-5 a.a.a P 
i+j +k=35 ~ J K 

m 

+ 

L \' m-g 
L a.a.akP 

5=1 i+j +k=35 ~ J 

~ 1 .4.7. • . . .. m-2 

J = 2.5.8 ...... m-I 

2 
+ amP} .... a 3P m-

~ = 1.4.7 •....• m-2 

j 2.5.8 .....• m-l 

k = 0.3.6 ...... m . 
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The coefficient of pm-s in the expression 

can therefore be obtained from 

a.a.a
k i+j+k=3s 1 J 

i,j,k = 1,4,7 ..... m-2 

+ L a.a.a
k 1 J 

i,j,k = 2,5,8 ••... m-1. 
i+j +k=3s 

+ L a.a.a 
"k 1JI< 1+J+ =,. 

- 3 L 
i+j +k=3s 

a.a.a
k 1 J 

III The equation x4 = p. 

i,j,k = 0,3,6 ..... m 

1 = 1 ,4,7 m-Z 

J = 2,5,8 .••• m-1 

k = 0,3,6 ...• m 

Let the characteristic polynomials of X and P be 

m 

L 
i=O 

m-i a.A 
~ 

and 
m 

L 
i=O 

m-i 
CI.A 

1 
respectively where a 

o 

.. h . Xm + m-1 Then X sat1sf1es t e equat10n a
1
X 

= 0. o 
= 1 • 

Since X also satisfies the equation x4 = P, then substituting 

p for X4 gives a cubic equation in X, whose cOefficients are 

scalar polynomials in P. 

This is 

Aox3 + A1X2 + AZX + A3 = 0 



where A 3-r 

[~l 
4 

= I 
i=O 

for m = 2, define A. = a.I 
1 1 
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i 
a 4.P m-r- ~ 

1 ::: 0,1,2 

r=0,',2,3 

A = 0 
3 

A second cubic equation may be obtained by multiplying 

this equation on the right by X and substituting P for X4 again. 

Hence for mXm matrices, X satisfies the two equations 

As in the equation X3 = P, X may be eliminated completely 

since the coefficients commute with each other. The computational 

problems are greatly increased however. 

Eliminating X completely, the equation obtained is 

[J2K, 
Z - - J,KZl LZ 

= 0 

J, 
2 

- A A, where = A, , K, = A,A2 - AoA3' L, = A,A3 
o _ 

JZ = A,J, - AoK" KZ = AZJ, - AoL, , LZ = A3J, 

Clearly, an attempt to write this equation in terms of A., 
1 

i = 0, .•• ,3 would be very difficult. 

IV The equation Xn = P. 

Let the characteristic polynomials of X and P be 

- A2p 
0 



m 

L 
i=O 

m-~ 
a.A 
~ 

and 
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m 

L 
i=O 

m-i 
a.A respectively where a 
~ 0 

• .ID m-l Then X satisfies the equation x + a
1
X 

= a o 
= 1. 

+ a I = O. 
m 

Since X also satisfies the equation Xn = P, then substituting 

n . 
P for X g~ves an equation in X of degree (n-l) 

where 

A (n-l )-r = 

for m ~ 

If m < n-l then A. 
~ 

and A. = 
~ 

a m-r-n. 
1 

n-l 

a.I for 
~ 

0 for 

i 

m 

( 1 ) 

~ = 0,1,2, ... n-l 

= O,l, ... ,m 

< i ~ n-l 

A second equation of degree (n-l) may be obtained by multiplying 

equation (1) on the right by X and substituting P for Xn again. 

Then X satisfies the two equations 

n-l + A
1
Xn- z + A Xn- 3 

A 0 A X + ... + = 
0 Z n 

(1) 

n-l 
+ AzXn- z + A

3
Xn- 3 

A P 0 A X + ... + = . 1 0 
(z) 

Since the coefficient matrices are all pOlynomials in P and 

commute with each other, elimination methods may be applied to 

eliminate X completely. The computational problems however, 

are very great. 
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Appendix C 

Section CL. 

In this thesis, various methods of .solution of the unilateral 

matrix equation AoX
n 

+ A1X
n

-
1 

+ ••• + An = 0 have been discussed. 

Emphasis has mainly been placed on the case where the equation 

is monic, i.e. A = I. In cases where A is nonsingular, the 
o 0 

equation can obviously be made monic by multiplication on the 

-1 
left by A • o 

In section 3.3, Method I could only be applied if the equation 

were first made monic and hence would not be useful in the case of 

singular A [see however, section SI. 
o 

Methods such as those described in section 3.2, Methods I 

and 11 could still be applied with singular A. These methods 
. 0 

depend upon finding solutions of the scalar equation g(A) = 0 

where 
n n-l 

g(A) = det[AoA + AlA + ••• + AnI. Since the leading 

coefficient of this determinant is det[A I, then if A is singular, 
o 0 

the polynomial will be of degree less than mn and hence the number 

of roots to be found will be less than in the case of nonsingular 

A • 
o 

The method described in section 4.2 also depends upon 

+ A I to find possible 
n 

characteristic polynomials for x. The choice of factors will be 

reduced ·since the polynomial g(A) will be of degree less than mn. 

Other problems arise in this method if A is singular. If 
o 

m 
the characteristic polynomial of X is L 

i=O 
X satisfies the two equations 

m-i a.A 
1 

a 
o 

= 1 then 
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(, ) 

= 0 (2 ) 

Multiplying equation (2) on the left by A and equation (,) on 
o 

m-2 
the right by X and subtracting gives equation (3) 

(3) 

The elimination cannot be continued since Ao and A, do not 

in general commute. 

It would be necessary to make equation (3) monic by mUltiplying 

-, 
on the left by [a,Ao - A,] • If both Ao and [a,A

o 
- A,] are 

singular then the process may break down. 

For nonsingular [a,Ao - A,l then equation (3) becomes 

~-, + B,Xm- 2 + 'B2~-3 + ••• + B = 0 
m-I (4) 

where 

and B = [a A - A ]-' [a A] 
i , 0 , i+' 0 for i=2,3, ... ,m-' 

The process could be ,continued by combining equations (4) 

and (1) to obtain an equation in X of degree (m-2) which would 

again have to be made monic to continue the process. 

It can be seen that if A is singular, the method of 
o 

section 4.2 can be applied, but it involves the calculation of 

an inverse matrix at each stage, and if the leading coefficient 

of the equation obtained becomes singular then the method may 

break down. 
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Section 8. 

Dennis, Traub and Weber [1976] consider solutions of the 

+ A = 0 
n 

(1) 

It is stated by them that if A is singular, 'one can shift 
. 0 

co-ordinates and reverse the order of the coefficients to get a 

related problem with a nonsingular leading coefficient'. 

e.g. Multiplying equation (1) on the right by X-
n gives 

A X1- n + A X-n 
n-1 n 

o 

or + ••• (2) 

where 
-1 

Y = X • 

Hence if A is singular but A is nonsingular equation (2) 
o n 

can be solved instead and the solution X for equation (1) 

obtained from X = y-1 • 

This method could be applied for singular A in solving 
o 

equation (1), for n = 2, by Method I of section 3.3, since 

equation (2) could then be made monic provided A2 was nonsingular. 

There are problems which are not mentioned by Dennis, Traub 

and Weber. Reversing the coefficients would not be an advantage 

if both A and A were singular. 
o n 

For example, if Aox2 + A,X + AZ = 0 

where 

Though Ao and A2 are singular, solutions may still be 

obtained by use of latent roots and vectors as described in 

section 3.2. 
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2 
Det[AoA + AlA + A21 = A(A-3)(2A+l) and the latent roots 

are 0, 3, -2 with latent vectors [-~ ) [: ) and [_: ) respectively. 

The solutions obtained are X = 

and X = 
1 j. 

-1 

1 
"2 
5 
4 

5 
"2 

These solutions could not be obtained by the iterative 

method described by Dennis, Traub and Weber in section 3.2 since 

the equation could not be made monic even after the order of the 

coefficient matrices have been reversed. 

This equation could not be solved either by the method 

described by Roth [p.641 since this requires the equation to be 

made mon1C. 

Another problem involved in revers.ing the order of the 

coefficients 1S that the multiplication of equation (1) by X-n 

assumes that there is at least one nonsingular solution and so 

the method could not lead to a solution X which was singular. 

However, the iterative method in section 3.2 is designed to lead 

to the dominant solvent which cannot be singular since all the 

eigenvalues of a dominant solvent are greater in modulus than 

those of any other solvent and hence are all greater than zero. 

In fact, if A is singular and there is a singular solvent 
o 

X, then A would also be singular since 
n 

n 
det[A X 

o 



Sc 

- det[A ) 
n 

and if there is a solution X such that det[X) ~ 0 then det[A ) 
n 

must also be zero, and so it would not be possible to obtain 

a nonsingular leading coefficient by reversing the order of the 

coefficients. 
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Appendix D 

The problems of singular matrices can affect many of the 

methods of solution described in this thesis. The case of the 

singular leading coefficient has been discussed in Appendix C, 

but singular matrices can also arise at some stage in applying 

a particular method, or an iterative method may break down because 

of the singularity of a matrix. 

The particular problems which ar1se when J 1 is singular 
m-

in the method described in Chapters 4 and 6 have been discussed 

[pages 101 to 108]. Problems encountered in other methods due 

to singular matrices or zero denominators are now described. 

Section Z.5. Direct solution of matrix equations. 

In the case of ZxZ matrices, the equations xZ = A, XAX = B, 

xZ + X - A = 0 were shown, subject to certain conditions, to 

have 4 solutions, since the element Xz could. always be found as 

Z the root of an equation which was a quadratic in (x
2
). If the 

conditions are not fulfilled however, the number of solutions 

is reduced. 

If a
2 

F 0, a quadratic in O(xZ)Z is obtained in the solution 

of xZ = A, on. page Z8 

( ) Z} 4 ~ Z ( ) 2 4 TrA KZ + ~a2 TrA Xz - a 2 = 0 ( 1 ) 

Z 

and hence 
a Z 

(TrA) ± Z/fAT 
provided that (TrA) ± Z/fAT F 0 . 

Z 
If the denominator is zero, however, then 41AI - (TrA) = 0 

and hence equation (1) becomes 



-----------

2d 

and there are therefore only Z possible values for X
z 

and hence' 

. . l' ( only Z possLble matrLx so utLons. 

Z 
On page 33 a quadratic in (xZ) LS obtained in the solution 

of XAX = B, provided that bZ of 0 .' 

This is 

[pZ _ I 11 I 4 Z Z 4 4 AB'] Xz - ZbZ PXZ + b
Z 

where P = Trace (AB) 

o (Z) 

and hence provided P ± zllAllBI F 0 . 

If the denominator is zero then pZ - 41AI IBI = 0 and 

equation (Z) becomes 

and therefore there are only Z possible values for x
z

. 

The quadratic in (xZ)Z obtained in the solution of x2 + X - A = 0 

on page 34 is 

2 4 Z 2 4 
[(TrA) - 4lAI]xz + aZ[- 1 - Z(TrA)]xZ + a

Z 
= 0 (3) 

Z 
Z __ a22. {( 1 and hence x
2 

provided that a
Z 

of 0 

+ 2(TrA) ± /1 • 4(TrA) + 16!A! 1; 
2 (TrA) - 41AI ) 

provided that (TrA)Z - 41AI of o. 

If the denominator is 'zero then equation (3) becomes 
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and therefore there are only 2 possible values for x2 and hence 

only 2 matrix solutions. 

Section 3.2. A survey of some methods of solution of the unilateral 

Matrix equation. 

Method I breaks down if the matrix T obtained by solving 

n n-l 
A TO + A1TD + •.• AT = 0 is singular since no matrix of the o n 

form X = TDT- l can then be found. This can occur if the A. on the 
1 

diagonal of the matrix D are not in fact the eigenvalues of a 

solution matrix X. 

Section 3.3. The Quadratic Matrix Equation. 

Several methods in this section express the solution X 1n 

a form which involves the inverse of a matrix. All of them can 

fail when this matrix is singular. 

Method I forms the matrix R = and evaluate s 

f(R) where f(A) is a factor of det[R AI]. 

If f(R) = [ ~ :) then either X = _NM- l or X = _VU- l • 

Clearly this method may fail if both M and U are singular. 

Similarly Method 2 may break down if both H12 and H22 are 

singular since the solution X is expressed as either 

[page 69]. 

Method 4, using the Schur canonical form of a matrix expresses 

-1 
the solution X as X = U21 U

ll 
and may fail if U

ll 
is singular. 
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Section 5.2. The method of Simple Iteration. 

This method involves.the rearrangement of a matrix equation 

f(X) = 0 in the form X = g(X) and forming the iterative process 

X. 1 = g(X.). 
1+ 1 

Clearly any rearrangement which involves the inverse of a 

coefficient matrix·cannot be applied directly if that coefficient 

is singular. 

-1 2 
e.g. the iterative pr.ocess Xi+1 = - A1 [A

2 
+ X 1 formed from 

x2 + A1X + A2 = 0 cannot be applied if A1 is singular. 

The method of simple iteration also may fail at some stage 

if the rearrangement involves the inverse of X. 

-1 
e.g. Xi+1 = - A2Xi - A1 may fail if one of the iterates Xi 

becomes singular. 

When these problems occur it is possible that a different 

rearrangement may lead to a solution. 

Section 5.3. Bernoulli's Algorithm. 

-1 This is an iterative process in which the sequence X. X. 1 
1 1-

.converges to the dominant solvent. Though a dominant solvent 

is nonsingular, the method could fail at some stage if X. became 
1 

singular, which could happen if no dominant solvent existed.· 

Section 5.5. An iterative ~thod for the solution of matrix 

equations using the characteristic matrix of a solution. 

This method uses an iterative process formed from the 

elimination method described in Chapter 4 

- J-
1 

K 1 where m-1 m-
T = a (i) I A 
"1 1 - l' K (i)I - A 

1 = a Z Z 
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and J ;K -JA 
r+1 r r 1 

K ; a(i)I - J A 
r+1 r+Z r Z 

This method may break down at some stage if the matrix J 
m-1 

becomes singular. This could happen if the choice of initial 

values for a 1aZ •... am did not produce a convergent sequence. 

This appendix shows that. problems of singularity can affect 

many methods of solution of matrix equations. The singularities 

may arise from the given coefficient matrices or from the method 

itself. Iterative processes may break down due to singularities 

when conditions for convergence are not satisfied. 




