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Abstract. We address the problem of how a group of agents can
decide to share a resource, represented as a unit-sized pie. We in-
vestigate a finite horizon non-cooperative bargaining game, in which
the players take it in turns to make proposals on how the resource
should be allocated, and the other players vote on whether or not to
accept the allocation. Voting is modelled as a Bayesian weighted vot-
ing game with uncertainty about the players’ weights. The agenda,
(i.e., the order in which the players are called to make offers), is
defined exogenously. We focus on impatient players with heteroge-
neous discount factors. In the case of a conflict, (i.e., no agreement
by the deadline), all the players get nothing. We provide a Bayesian
subgame perfect equilibrium for the bargaining game and conduct an
ex-ante analysis of the resulting outcome. We show that, the equilib-
rium is unique, computable in polynomial time, results in an instant
Pareto optimal agreement, and, under certain conditions provides a
foundation for the core of the Bayesian voting game. Our analysis
also leads to insights on how an individual’s bargained share is in-
fluenced by his position on the agenda. Finally, we show that, if the
conflict point of the bargaining game changes, then the problem of
determining a non-cooperative equilibrium becomes NP-hard even
under the perfect information assumption.

1 Introduction
We are concerned with one of the fundamental questions in multi-
agent systems: There is a set of agents with complementary resources
that can be combined to produce a joint gain, and all individually de-
sire as large a portion of this gain as possible. How should they divide
the gain between themselves? We assume the joint gain is a contin-
uously divisible unit-sized “pie”, so the problem is for the players to
determine how to divide the pie amongst themselves. Conflict arises
because each agent prefers to maximize its own share of the pie.

There are two key approaches for resolving such a conflict [12].
One approach is to model the situation as a cooperative game and
distribute the pie as per its equilibrium, and the other is to model the
scenario as a non-cooperative bargaining game, and distribute the
pie as per its equilibrium solution. A study of the relation between
the solutions generated by these two approaches forms the Nash pro-
gram. In this paper, we follow the Nash program in the context of
multilateral bargaining over a unit-sized divisible pie.

Over the years, a number of non-cooperative models of mul-
tilateral bargaining grew out of Rubinstein’s bilateral bargaining
game [13] in which the players decide how to split a unit-sized pie
by exchanging a series of offers and counter-offers. These include
[1, 14, 6, 5] and the focus of this research is on addressing issues such
as determining their equilibria and studying the computational and
economic properties of equilibrium outcomes. However, the scope of

1 University of Loughborough, UK, s.s.fatima@lboro.ac.uk
2 University of Oxford, UK, email: mjw@cs.ox.ac.uk

the results of this research is limited since they are based on assump-
tions such as perfect information, no deadline or a very constrained
bargaining deadline, no time discounting or all the players having
a common discount factor, or the agenda (the term agenda refers to
the order in which the players are called to make proposals) being
random (see Section 6 for details).

One of our aims therefore is to extend the scope of the existing
results by dropping the above mentioned assumptions. Specifically,
we consider a new and more realistic bargaining context with a flex-
ible deadline, heterogeneous discount factors (i.e., discount factors
may differ across agents), imperfect information, and an exogenously
defined agenda. As we will show, these considerations lead to differ-
ences in terms of the type (i.e., stationary or subgame perfect) of
equilibrium but also in terms of the resulting equilibrium shares.

Our second aim is to address new research issues (viz., analyze
how a player’s position on the agenda influences his equilibrium
share, and how the conflict point of a bargaining game influences
the complexity of computing its equilibrium) in the above context.

To this end, we propose a bargaining game that runs in a series of
rounds. The agents take it in turns to propose a division of the pie:
the order in which players make proposals is defined by an exoge-
nous agenda. After a proposal is made, the remaining players vote
on whether to accept or reject it. Voting takes place using a weighted
voting game, in which each player has a weight, and a proposal is
accepted if the sum of the weights of those in favour of the proposal
meets or exceeds a certain quota. If a proposal is accepted, then it is
implemented; otherwise we turn to the next player on the agenda to
make a proposal in the next round. If no proposal is accepted by a
fixed deadline, i.e., there is a conflict, all the players receive nothing.
The agents have imperfect information about their weights. Imperfect
information is modelled with a Bayesian voting game [9].

The key results of our research are as follows. For our bargaining
game, we provide a Bayesian subgame perfect equilibrium (SPE) and
conduct an ex-ante analysis of the resulting outcome. We show that
the equilibrium is unique, is computable in polynomial time, results
in an instant Pareto optimal agreement, and, under certain condi-
tions (given in Section 4) provides a foundation for the core of the
Bayesian voting game. In addition, our analysis generates the follow-
ing key insights about the noncooperative equilibrium: i) a player’s
share is independent of his weight and depends only on whether he
is a veto player or not, ii) every non-veto player who is not the first
mover will get nothing regardless of the agenda, iii) every veto player
will get a non-zero share that depends on his position on the agenda,
iv) if there are no veto players, then the first mover will get the en-
tire pie regardless of how the remaining players are arranged on the
agenda. Finally, we show that changing the conflict point from one
where all the players receive nothing to one where each player re-
ceives a constant share makes the problem of computing the non-
cooperative equilibrium NP-hard even under the perfect information
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assumption.
The paper makes two key contributions i) we investigate some

established research questions – i.e., how to obtain a noncooperative
equilibrium, what are its properties, what is the link between it and
the core – in a new and more realistic bargaining context, and ii) we
address new research questions (i.e., how a player’s position on the
agenda impacts on his equilibrium share, and how the conflict point
impacts on the complexity of computing an equilibrium) in the new
context.

Section 2 introduces our bargaining game. In Section 3, we ana-
lyze its equilibrium. The relation between the non-cooperative equi-
librium and the core is shown in Section 4. Section 5 shows how the
conflict point impacts on the complexity of computing an equilib-
rium. Section 6 discusses related literature and Section 7 concludes.

2 The Model
There is a resource, modeled as a unit-sized divisible pie, that must
be allocated between a set of p players. An allocation specifies how
the pie is split between the players, and is represented as a vector
(x1, . . . , xp). The element xi (0 ≤ xi ≤ 1) denotes player i ’s alloca-
tion, i.e., the amount of the resource that player i receives. A player’s
utility from an allocation depends both on his share of the pie and the
time at which he receives his allocation. Time is divided into discrete
time periods numbered 1, 2, . . .. Player i ’s utility from an allocation
x at time t is defined as:

ui(x , t) = δt−1
i · xi (1)

where 0 < δi ≤ 1 is i ’s discount factor. Thus, the discount factors
are heterogeneous, and, at time t , i ’s utility gets discounted by δt−1

i .
The p players want to implement an allocation that has majority

support. For this, we propose a non-cooperative bargaining game.
This is a finite-horizon game of T discrete time periods, i.e., bar-
gaining must end within T rounds. In each round, a chosen player
makes an offer that specifies an allocation. The outcome of bargain-
ing is an offer that has majority support. Majority support is modelled
with a weighted voting game.

2.1 The Weighted Voting Game G

A weighted voting game (WVG) is a 3-tuple G = (P ,w , q) where
P = {1, . . . , p} is the set of players, w is the weight vector with
wi > 0 denoting the weight for player 1 ≤ i ≤ p, and q ∈ R is the
quota. The total weight of coalition C ⊆ P is w(C ) =

∑
i∈C wi .

The characteristic function (v : 2P → {0, 1}) of a game G is:

v(C ) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise

The set of all binary strings of length p will be denoted B . A coalition
C ∈ B is winning if v(C ) = 1, otherwise it is losing. A player is
called a veto player if a winning coalition cannot be formed without
him, i.e., i is a veto player if for each C ⊆ N such that v(C ) = 1,
we have i ∈ C . Let Z ⊆ P denote the set of all veto players with
|Z | = z , and N ⊆ P the set of all non-veto players with |N | = n .
Also, let SW (SL) be the set of all winning (losing) coalitions.

2.2 The Noncooperative Bargaining Game G1

The proposed game (G1) proceeds in a series of rounds. We let the
bargaining deadline be T = mp for a finite integer m ≥ 1, i.e.,

an agreement must be reached within T rounds, otherwise all the
players will get a conflict share of zero3. By letting T be a multiple
of p, we give all the players an equal number of chances to make a
proposal. Note that, m could be any positive integer and this is what
we mean by flexible deadline. We suppose that A = (1, . . . , p) is an
exogenously defined bargaining agenda.

Bargaining begins at t = 1 with player 1 proposing an offer
x t = (x t

1 , . . . , x
t
p) (with

∑p
i=1 x

t
i ≤ 1) that specifies how to split the

pie between the p players. All the remaining players then respond by
either accepting or rejecting x t . Let C t

A denote the set of players that
accept the proposal x t and C t

R those that reject it. If
∑

i∈Ct
A
wi ≥ q ,

the game ends at t and the pie is split as per the offer x t . But, if∑
i∈Ct

A
wi < q , time is incremented and bargaining proceeds to the

second round when player 2 will propose. The remaining players
1, 3, . . . , p respond. If 2 gets majority support, then the pie is split
as per x2 (i.e., player 2’s offer) and the game ends. Otherwise, the
process repeats. If no winning coalition is formed within T time pe-
riods, the game ends and all the players get a conflict share of zero.
Let O = 0 denote this conflict point where 0 denotes a vector of p
zeros.

Note that, as T = mp, the order in which the players are called
to make a proposal is 1, . . . , p, 1, . . . , p, . . .. Thus, for a time t =
(m −X − 1)p + i (where 0 ≤ X ≤ m − 1 and 1 ≤ i ≤ p), player
i will be the proposer.

3 Noncooperative Equilibrium Analysis
We first show how to obtain equilibrium for the perfect information
setting and then for an imperfect information setting.

3.1 Perfect Information Setting
We will obtain an equilibrium for G1 by using backward induction.
For a time period t ≤ T , ctW ⊆ P will denote a winning coalition
containing the proposing player and C t

W will denote the set of all
such winning coalitions. We will begin by showing how to obtain
equilibrium in the context of Example 1 and then, in Theorem 1,
characterize the equilibrium for any general bargaining situation.

Example 1 We have P = {1, 2, 3}, w = (2, 1, 2), and q = 4. The
deadline is T = 6. The discount factors are δ1 = 1/4, δ2 = 1/2,
and δ3 = 3/4. The agenda is A = (1, 2, 3).

The veto players are Z = {1, 3}. Since A = (1, 2, 3), player 1
will propose in rounds 1 and 4, player 2 in rounds 2 and 5, and player
3 in rounds 3 and 6. Consider the last round t = 6 when player 3 will
propose. Since this is the last round, player 3 will keep the entire pie
by offering x6 = (0, 0, 1), and the others will accept. In the previous
round t = 5, player 2 will give to player 3 his discounted share (i.e.,
x5
3 = δ3) since player 3 is a veto player, nothing to player 1 since he

is a non-veto player, and keep the remaining pie (i.e., x5
2 = 1 − δ3)

for himself. Then, at t = 4, player 1 will give x4
3 = δ23 to player

3 (since he is a veto player), nothing to player 2 (since he is a non-
veto player), and keep x4

1 = 1 − δ23 for himself. Thus, player 1 will
form a winning coalition with player 3. Then at t = 3, player 3 will
give x3

1 = (1 − δ23) · δ1 to player 1, nothing to player 2, and keep
x3
3 = (1− δ1 + δ23 · δ1) for himself. Continuing in the same way, we

can see that an agreement will occur at t = 1 and result in the shares
(1− δ23 + δ1 · δ23 − δ1 · δ43 , 0, δ23 − δ1 · δ23 + δ1 · δ43).

3 In Section 5, we will consider non-zero conflict shares.
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Here, only the veto players 1 and 3 get a non-zero share while
the non-veto player gets nothing. We can verify that if the non-veto
player is the first mover (say we have the agenda A = (2, 1, 3)), then
all the three players will get a non-zero share in the pie.

We are now ready to characterise equilibrium strategies. In the
following text, x t

i will denote player i ’s equilibrium share for time t .

Time (t) Equilibrium strategy
Player i’s offer will be an x t that solves:
Ot : Minimize

∑
j∈P\{i} x t

j · cj
t = (m −X − 1)p + i s.t.

∑
j∈P\{i} wj · cj + wi ≥ q

0 ≤ X ≤ m − 1 cj ∈ {0, 1} for j ∈ P\{i}; ci = 1
1 ≤ i ≤ p x t

j = δj · x t+1
j for j ̸= i

x t
i = 1−

∑
j∈P\{i} x t

j

Each player j ∈ P\{i} responds to x t :
Proposer: player i If uj (x t , t) ≥ uj (x t+1, t + 1) Accept

Else Reject
t = T Player p proposes to keep the whole pie

Proposer: player p and all the other players accept.

Table 1. Subgame perfect equilibrium strategies for G1.

Time period (t) Equilibrium shares (x )
(x1

1, . . . ,x
1
p) where

t = 1 x1
j = 0 if (j > 1 and j /∈ Z )

Proposer: player 1 x1
j = x2

j · δj if j ∈ Z\{1}
x1
1 = 1−

∑
j∈Z\{1} x1

j

· · · · · ·
t = (m −X − 1)p + i (xt

1, . . . ,x
t
p) where

0 ≤ X ≤ m − 1 x t
j = 0 if (j ̸= i and j /∈ Z )

1 ≤ i ≤ p x t
j = x t+1

j · δj if j ∈ Z\{i}
Proposer: player i x t

i = 1−
∑

j∈Z\{i} x t
j

· · · · · ·
(xt

1, . . . ,x
t
p) where

t = (m − 1)p + 1 x t
j = 0 if (j > 1 and j /∈ Z )

Proposer: player 1 x t
j = x t+1

j · δj if j ∈ Z\{1}
x t
1 = 1−

∑
j∈Z\{1} x t

j

· · · · · ·
t = (m − 1)p + i (0, ..,0,xt

i , ..,x
t
p) where

1 ≤ i ≤ p x t
j = 0 if (j < i) or (j > i and j /∈ Z )

Proposer: player i x t
j = x t+1

j · δj if j ∈ Z ∩ (∪p
i+1k)

x t
i = 1−

∑
j∈Z\{i} x t

j

· · · · · ·
(0, ..,0,xt

t−1,x
t
p) where

t = mp − 1 x t
p−1 = 1 and x t

p = 0 if p /∈ Z
Proposer: player p − 1 x t

p−1 = 1− δp and x t
p = δp if p ∈ Z

t = mp (0, ..,0,1)
Proposer: player p

Table 2. Equilibrium shares for the game G1.

Theorem 1 For a WVG G with 0 ≤ z < p veto players, the bar-
gaining game G1 with agenda A = (1, . . . , p) admits the subgame
perfect equilibrium given in Tables 1 and 2, and results in an imme-
diate agreement.

Proof 1 We use backward induction. For the last time period t =
mp, the player p will propose to keep a hundred percent of the pie
and all the remaining players will agree. Thus, the equilibrium shares
will be x = (0, . . . , 0, 1) (see the last row in Table 2).

In each of the previous time periods t < T , the proposer (say
player i ) will consider the set C t

W of all possible winning coali-
tions containing i . For each c ∈ C t

W , the optimal offer will max-
imize i ’s share x t

i = 1 −
∑

j∈c\{i} δj x
t+1
j while giving to each

player in c\{i} his discounted share for t + 1, and nothing to those
players that do not belong to c\{i}. Between all these |C t

W | op-
timal offers, the one that maximizes x t

i (or, equivalently, minimizes∑
j∈c\{i} δj x

t+1
j ) will be his equilibrium offer. Thus, we must find a

coalition c ∈ B that solves Ot (see Table 1).
Consider t = mp − 1 when player p − 1 will propose. His offer

will depend on whether the last mover, i.e., player p, is a veto player
or not. If p ∈ Z , then the proposer p − 1 needs player p to form
a winning coalition and must give to p his discounted share for the
next time period, i.e., x t

p = δp . But the proposer will give nothing to
the players 1, . . . , p − 2, i.e., x t

j = 0 for ∪p−2
1 j . Thus, p − 1 will

keep x t
p−1 = 1 − δp for himself. Here, the winning coalition will

be c = P . But if p /∈ Z , p − 1 can form a winning coalition with
some or all of the players in ∪p−2

1 j . Since all the players in ∪p−2
1 j

get nothing in the equilibrium for T , p − 1 will propose to keep
the whole pie and the players ∪p−2

1 j will accept. Thus, the winning
coalition will be c = P\{p}, and the equilibrium shares will be as
given in row mp − 1 of Table 2. Note that, p − 1 will get a non-zero
share regardless of whether he is a veto player or not, and the last
mover will get a non-zero share only if he is a veto player. Thus, only
the players in {p − 1} ∪ (Z ∩ {p}) will get a non-zero share while
the rest get nothing.

Backward induction for rows of Table 2 marked in red lines: Con-
sider t = (m − 1)p + i (for 1 ≤ i ≤ p − 1) when mover
i will propose. We will assume that the equilibrium shares are
(0, . . . , 0, x t

i , . . . , x
t
p) where x t

j = 0 if (j < i ) or (j > i and j /∈ Z ),
x t
j = x t+1

j · δj if j ∈ Z ∩ (∪p
i+1k), and x t

i = 1−
∑

j∈Z\{i} x
t
j . In

words, we will assume that only the players in Z ∩ (∪p
i+1k) ∪ {i}

get a non-zero share while the rest get nothing at t . Given this as-
sumption, we will prove that the equilibrium shares for t − 1 will
be (0, . . . , 0, x t−1

i−1 , . . . , x
t−1
p ) where x t−1

j = 0 if (j < i − 1) or
(j > i − 1 and j /∈ Z ), x t−1

j = x t
j · δj if j ∈ Z ∩ (∪p

i k), and
x t−1
i = 1 −

∑
j∈Z\{i} x

t−1
j . I.e., we will prove that only player

i − 1 and the veto players in ∪p
i k will get a non-zero share while the

rest get nothing at t − 1.
Consider the time t − 1 when i − 1’s offer will be a solution to

Ot−1. The proposer will be able to form a winning coalition with
all the veto players and some non-veto players. We are given that, at
t , only player i and the veto players in ∪p

i+1k get a non-zero share
while the rest get nothing. This implies that, player i − 1 must give
each veto player in ∪p

i+1k his discounted share for the next time pe-
riod. Note that. he need not give anything to player i if i is a non-veto
player, since i−1 can form a winning coalition without i . Therefore,
at t − 1, only the players i − 1 and the veto players in ∪p

i k will get a
non-zero share and the rest get nothing. Here, the winning coalition
will be c = P if i ∈ Z , and c = P\{i} otherwise.

Backward induction for rows of Table 2 marked in black lines:
Going further back, consider a time t = (m − X − 1)p + i for
some 0 ≤ X ≤ m − 1 and some 1 ≤ i ≤ p when player i
will be the proposer. We will assume that the equilibrium shares are
(x t

1 , . . . , x
t
p) where x t

j = 0 if (j ̸= i and j /∈ Z ), x t
j = x t+1

j · δj if
j ∈ Z\{i}, and x t

i = 1 −
∑

j∈Z\{i} x
t
j . In words, we will assume

that only the players in Z ∪ {i} get a non-zero share while the rest
get nothing at t . Given this assumption, we will prove that the equi-
librium shares for t − 1 will be (x t−1

1 , . . . , x t−1
p ) where x t−1

j = 0
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if (j ̸= i − 1 and j /∈ Z ), x t−1
j = x t

j · δj if j ∈ Z\{i − 1}, and
x t−1
i = 1 −

∑
j∈Z\{i−1} x

t−1
j . That is, we will prove that only the

players in {i − 1} ∪ Z will get a non-zero share while the rest get
nothing at t − 1.

Consider the time period t − 1 when i − 1 will propose an offer
that solves Ot−1 defined in Table 1. We know that, the proposer will
be able to form a winning coalition with all the veto players and
some non-veto players. In addition, we are given that, at t , only the
players in Z ∪ {i} get a non-zero share while the rest get nothing.
This implies that, the proposing player (i − 1) must give each veto
player his discounted share for the next time period. But he need not
give anything to player i if i is a non-veto player, since i − 1 can
form a winning coalition without i . This means that, at t − 1, only
the players in {i − 1} ∪ Z will get a non-zero share and the rest
get nothing. The winning coalition will be c = P if i ∈ Z , and
c = P\{i} otherwise.

Thus, we get the equilibrium shares as given in Table 2. An agree-
ment will result in the first time period. !

Theorem 1 leads to the following interesting observations.

Observation 1 A player’s equilibrium share depends not on his
weight but on whether he is a veto player or not. For the agenda
A = (1, . . . , p), the first mover (regardless of whether he is a veto
player or not) will get a non-zero share in the pie. Every veto player
will get a non-zero share. None of the non-veto players in ∪p

2i will
get any share (indeed, this is what we saw in Example 1: player 2,
the only non-veto player, got nothing and the pie was split between
the two veto players). If there are no veto players (i.e., z = 0), then
the first mover will get the entire pie and the rest will get nothing.

Observation 2 The equilibrium outcome for G1 is ‘unique’. It is ‘in-
dividual rational’ (IR) since each player gets a non-negative share in
the pie. It is also ‘Pareto optimal’ (PO) since, in the equilibrium for
each time period, the pie is fully allocated to some non-empty subset
of players in P . In addition, there is instant agreement so the pie is
not wasted through shrinkage (there would be wastage from shrink-
age if an agreement were to result at t > 1).

Theorem 2 The equilibrium shares for the first time period can be
computed in O(mp2) time.

Proof 2 Which of the p players are veto can be determined in O(p2)
time [3]. The equilibrium shares for the last time period t = T are
(0, . . . , 0, 1). For each time period t < T , each player’s discounted
share can be computed in constant time. Since there are p players,
the total time to compute all the shares for t will be O(p). There are
T = mp time periods in all, and we go backward from the last to
the first time period. Thus, the equilibrium shares for the first time
period can be computed in O(mp2) time. !

3.2 Imperfect Information Setting
We consider uncertainty over the players’ weights in the WVG. In
a multi-agent setting, a player’s weight could represent the quality
or quantity of resources it possesses. For example, in the domain of
transportation logistics, the weight of a company could represent the
number of deliveries it can make. But this number depends on uncer-
tain traffic conditions. Thus, the players would be uncertain with re-
gard to their ‘weights’ and we model this uncertainty with the follow-
ing Bayesian WVG of imperfect information. This Bayesian WVG
belongs to the class of Bayesian coalitional games defined in [9].

In the Bayesian voting game, there are b possible weight vectors
and w j

i denotes the weight of player i in the j th vector. The players
have probabilistic beliefs over these vectors; B j denotes the proba-
bility that the weight vector is w j and

∑b
j B

j = 1. For b = 1, this
setting reduces to the perfect information setting. Thus, a Bayesian
WVG is defined as the 4-tuple G = (P ,w ,B , q). We assume that
w , B , q , T , δ, and the agenda are known to all the players.

There are three distinct time frames at which one can perform
the analysis of a game of imperfect information: the ex-ante stage,
the interim stage, and the ex-post stage [7]. We conduct equilib-
rium analysis at the ex-ante stage, i.e., when no agent knows his
weight. We define the Bayesian weight of a coalition C ⊆ P
as w̄(C ) =

∑b
j=1 B

j · (
∑

i∈C w j
i ). In words, w̄(C ) is the ex-

pected weight of coalition C . Player i is a Bayesian veto player
if
∑b

j=1 B
j · (

∑
k∈P\{i} w

j
k ) < q , otherwise, he is not. In words,

player i is a Bayesian veto player if the expected weight of the coali-
tion P\{i} is lower than the quota (i.e., P\{i} is a losing coali-
tion), otherwise i is Bayesian non-veto player. For this setting, let
the z = |Z | element set Z denote the set of Bayesian veto players.
The characteristic function for G = (P ,w ,B , q) is defined as:

v̄(C ) =

{
1 if w̄(C ) ≥ q
0 otherwise

Thus, a coalition is ex-ante winning if its expected weight equals
or exceeds the quota. Otherwise, it is losing. Here, the set SW (SL)
will denote the set of all ex-ante winning (losing) coalitions. Before
characterizing the equilibrium for this imperfect information setting,
we will work out the equilibrium for Example 2.

Example 2 There are three players P = {1, 2, 3}. There are b =
2 weight vectors: w1 = (1, 2, 3) with probability 1/3 and w2 =
(2, 1, 2) with probability 2/3. The quota is q = 4. The deadline is
T = 6. The discount factors are δ1 = 1/4, δ2 = 1/2, and δ3 = 3/4.
The agenda is A = (1, 2, 3).

Here, the set of Bayesian veto players is Z = {1, 3} since w̄(1, 2) <
q , w̄(1, 3) = q and w̄(2, 3) < q . Given Z , we can find the equilib-
rium for G1 using backward induction in just the same way as we did
for the perfect information setting. In the last round t = 6, the pro-
poser, i.e., player 3, will keep the entire pie and the other two players
get nothing. In the previous round t = 5, the proposer, i.e., player
2, will form a winning coalition by giving δ3 to player 3 (since he is
a Bayesian veto player who gets positive utility in the last time pe-
riod), nothing to player 1 (since he is a Bayesian veto player but he
gets nothing in the last time period), and keeping 1− δ3 for himself.
So the shares will be (0, (1 − δ3) · δ42 , δ53). Continuing backward,
we get (1 − δ23 + δ1 · δ23 − δ1 · δ43 , 0, δ23 − δ1 · δ23 + δ1 · δ43) as the
shares for t = 1. Here, both Bayesian veto players get a non-zero
share and the non-veto player gets nothing. By changing the agenda
to A = (2, 1, 3), one can verify that all the three players will get a
non-zero share at t = 1.

We are now ready to characterize the equilibrium.

Theorem 3 For a Bayesian voting game G with 0 ≤ z < p veto
players, the bargaining game G1 with agenda A = (1, . . . , p) ad-
mits the ex-ante subgame perfect equilibrium given in Tables 1 and
2, and results in immediate agreement.

Proof 3 The proof is based on backward induction. For the last time
period t = T , the equilibrium shares will be (0, . . . , 0, 1). For t =
T − 1, the shares will be (0, . . . , 0, 1− δp , δp) if p ∈ Z (i.e., p is a
Bayesian veto player), and (0, . . . , 0, 1, 0) otherwise. Note that the
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set Z in Theorem 1 is the set of veto players but here, Z is the set of
Bayesian veto players. Given this, the equilibrium for any time period
t depends on which players are Bayesian veto players and which
ones are not. Thus, in each time period, the proposing player will
need to give to every Bayesian veto player his discounted share for
the next time period, and nothing to the Bayesian non-veto players.
The rest of the proof follows from the proof for Theorem 1. !

Theorem 3 leads to Observation 2 of Section 3.1 and, in addition, to
Observation 3 listed below:

Observation 3 A player’s equilibrium share depends not on his
weight but on whether he is a Bayesian veto player or not. For the
agenda A = (1, . . . , p), the first mover (regardless of whether he is
a Bayesian veto player or not) will get a non-zero share in the pie.
Every Bayesian veto player will get a non-zero share in the pie. None
of the Bayesian non-veto players in ∪p

2i will get any share (indeed,
this is what we saw in Example 2: player 2, the only Bayesian non-
veto player, got nothing and the pie was split between the two veto
players). If there are no Bayesian veto players (i.e., z = 0), then the
first mover will get the entire pie and the rest will get nothing.

Theorem 4 The equilibrium shares for the first time period can be
computed in O(b2p2 +mp2) time.

Proof 4 The only difference between this proof and that for Theo-
rem 2 is that, for the latter, it takes O(p) to time find which of the
p players are veto. But, for imperfect information, it takes O(b2p2)
time. The rest of the proof follows from Theorem 2. !

4 Noncooperative Equilibrium and the Core
Following [9], we define the ex-ante core of a Bayesian WVG as
follows. An allocation x is in the ex-ante core of a Bayesian game
G = (P ,w ,B , q) if it is Pareto optimal, individual rational, and for
each C ⊆ P ,

∑
i∈C xi ≥ v̄(C ). This definition covers both perfect

and imperfect information settings (recall that for the former setting
b = 1 and for the latter b > 1).

Let x (G1) denote the equilibrium allocation for t = 1 for
the imperfect information case. Then, the conditions for the non-
cooperative equilibrium to be in the ex-ante core of G =
(P ,w ,B , q) are given in Theorem 5. Those conditions when it is not
in the core are given in Theorem 6. In these theorems, 1 ≤ L ≤ p
will denote the last Bayesian veto player on the agenda, i.e., all the
players L+ 1, . . . , p will be Bayesian non-veto players.

Theorem 5 The noncooperative equilibrium allocation x (G1) will
be in the ex-ante core of the Bayesian voting game G = (P ,w ,B , q)
with 0 < z < p veto players if

C1 the first mover is a Bayesian veto player, or
C2 the first mover is a Bayesian non-veto player and the discount

factor for the last Bayesian veto player on the agenda is δL = 1.

Proof 5 As per Observation 2 (note that both, Theorem 1 for perfect
information and Theorem 3 for imperfect information, lead to Ob-
servation 2), the equilibrium solution is IR and PO. Thus, we need
to prove that, for each C ⊂ P ,

∑
i∈C xi ≥ v̄(C ). We will do this

first for the condition C1. Since 0 < z < p, we know that there is
at least one Bayesian veto player. Given this, as per Observation 3,
the pie will be split only between the Bayesian veto players. Also,
as per Observation 3, none of the Bayesian non-veto players will
get any share. Now, the only Bayesian winning coalitions are those

that contain all the Bayesian veto players. Thus, for every C ∈ SW ,∑
i∈C xi(G1) = 1 and v̄(C ) = 1. In addition, for every losing

coalition C ∈ SL,
∑

i∈C xi(G1) < 1 and v̄(C ) = 0. It follows
that, for the condition C1, x (G1) is in the ex-ante core.

Next, consider the condition C2 for which the first mover is a
Bayesian non-veto player and the last veto player’s discount factor
is δL = 1. As per Table 2, only those players that are in Z ∪ {1} will
get a non-zero share while the rest get nothing. Also, as per Table 2,
the veto player L will get a 100% of the pie at time (m − 1)p + L.
Moreover, since δL = 1, his share for all the previous time periods
will remain the same. Thus, at t = 1, L will get the entire pie and
the remaining players will get nothing. Since every winning coali-
tion must contain the Bayesian veto player L, for every C ∈ SW ,∑

i∈C xi(G1) = 1 and v̄(C ) = 1. In addition, for every losing
coalition C ∈ SL,

∑
i∈C xi(G1) < 1 and v̄(C ) = 0. It follows

that, for the condition C2, x (G1) is in the ex-ante core.

Theorem 6 The noncooperative equilibrium x (G1) will not belong
to the ex-ante core of the Bayesian voting game G = (P ,w ,B , q) if

C3 there are no Bayesian veto players in G , or
C4 the discount factor for the last Bayesian veto player is 0 < δL <

1 and the first mover is a Bayesian non-veto player.

Proof 6 Consider the condition C3 first. If there are no Bayesian
veto players, then, as per Observation 3, the first mover will get the
entire pie. Since there are no veto players, the first mover will be
a non-veto player. Not every winning coalition will contain the first
mover. This means that there will be winning coalitions C ∈ SW

such that
∑

i∈C xi(G1) = 0 and v̄(C ) = 1. Clearly, for the condi-
tion C3, x (G1) will not be in the ex-ante core.

Consider the condition C4. As per Observation 3, the non-veto
first mover will get a non-zero share. However, since he is non-veto,
there will be winning coalitions that do not include the first mover.
In other words, the coalition P\{1} will be ex-ante winning, i.e.,
v̄(P\{1}) = 1 but

∑
i∈P\{1} xi(G1) < 1. Thus, for the condition

C4, the noncooperative equilibrium will not be in the ex-ante core.

5 A Non-zero Conflict Point for the Game G1

As per the game G1 defined in Section 2.2, all the players get nothing
if they fail to reach an agreement within T time periods. That is, the
conflict point was O = 0. Now, suppose that we change the conflict
point from O = 0 to O = α: instead of giving nothing, we give a
constant share αi ≥ 0 (with

∑p
i=1 αi = 1) to each player i ∈ P in

the case of a conflict. Thus, each player i ∈ P will receive a share of
αi at time T +1. These shares could, for instance, be determined by
a neutral arbitrator and made known to the players at the start of the
noncooperative bargaining.

Given this new definition of the conflict point, let us determine the
equilibrium offer for Example 1 for the time period T assuming that
α1 = α2 = α3 = 1/3. At T = 6, the proposer (i.e., player 3) will
give a non-zero share to those players that he needs to form a winning
coalition with and nothing to the others. Since player 3 needs player
1 to form a winning coalition, he will give to player 1 his discounted
share (i.e., δ1 ·α1 = 1

4 ·
1
3 ) and to player 2, he will give nothing (since

player 3 does not need player 2 to form a winning coalition). Thus,
the equilibrium offer for T will be (1/12, 0, 11/12) and this will be
accepted by player 1.

Finding the equilibrium for T was easy for the above example
because there were only 3 players. However, in general, this problem
will be computationally hard as is demonstrated in Theorem 7.
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Theorem 7 If the player’s conflict shares are α (αi ≥ 0 and,∑p
i=1 αi = 1), then the problem of computing an equilibrium offer

for G1 is NP-hard even under the perfect information assumption.

Proof 7 At T + 1, each player i ∈ P will get a utility of αi · δTi .
Consider time T . The proposer (i.e., player p) will consider all those
winning coalitions that he is a member of, and for each c ∈ CT

W , his
optimal offer at T will be an x such that xT

j = αj · δj for each
j ∈ c\{p}, xT

j = 0 for each j /∈ c, and xT
p = 1 −

∑
j∈c\{p} αj ·

δj . Thus, we must find a winning coalition that maximizes xT
p (or,

equivalently, minimizes
∑

j∈c\{p} αj · δj ). That is, we must find a
coalition c ∈ B (recall from Section 2.1 that B denotes the set of all
binary strings of length p) that solves the problem OT :

OT : Minimize
∑p−1

i=1 αi · δi · ci
s.t.

∑p−1
i=1 wi · ci + wp ≥ q

ci ∈ {0, 1} for 1 ≤ i ≤ p − 1 (2)

The problem OT is NP-hard by reduction from the integer knap-
sack problem [8]; the weight (profit) of knapsack item i is wi (αi ·δi )
and the knapsack capacity is q − wp . Thus, even with perfect infor-
mation, the equilibrium is hard to compute. !

Note that, a crucial difference between the optimization problem Ot

in Table 1 and the optimization problem OT in Equation 2 is that, for
the former, only the veto players need to be given a non-zero share
but, for the latter, one or more non-veto players must be allocated a
non-zero share because the conflict utilities are non-zero. Thus, for
the latter, we need to find which non-veto players to include in the
winning coalition. This difference makes the latter problem hard.

6 Related Research
The existing multilateral noncooperative bargaining games for divid-
ing a pie can be divided into two types: unanimity games [4, 15,
11, 10] and majority games [1, 14]. [4] studied n-person unanim-
ity bargaining with transferable utility, perfect information, discrete
time periods, and a common discount factor. They showed conditions
when stationary equilibria are efficient, and when such outcomes
converge to core outcomes. [15, 11, 10] conducted similar analysis
for a non-transferable utility (NTU) game.

[1] studied majority bargaining by assuming perfect information
with all players having unit weight and a common discount factor.
This work was later extended in [14] to general weighted voting by
assuming perfect information, an infinite horizon, and no time dis-
counting. Here, a random proposer is chosen with some probability
at the beginning of each time period. The game has a stationary equi-
librium in which each player’s utility is proportional to his voting
weight. In contrast, we consider a finite horizon imperfect informa-
tion setting with heterogeneous discount factors and an exogenously
defined agenda (because, generally, the formation of the agenda is
not random, but is shaped by political parties). With regard to re-
sults, we showed a unique, Pareto optimal, and no-delay Bayesian
SPE outcome, and that a player’s equilibrium share depends not on
his weight but on whether he is a veto player or not.

[2] studied bargaining for formation of multiple coalitions. There
is a finite number of discrete rounds and a fixed agenda in which the
players are arranged in decreasing order of their weights. The out-
come is an offer with majority support. This work assumes perfect in-
formation and focuses on comparing the efficiency of the equilibrium
with the global optimum. In contrast, we focused on non-cooperative

equilibrium and its relation to the core in an imperfect information
setting, and studied the impact of a player’s position on the agenda
on his equilibrium share.

[6] analyzed bargaining for resource sharing assuming perfect in-
formation, no time discounting, and a fixed deadline equal to the
number of players. Here, an offer is implemented just if the sub-
sequent players on the agenda accept it. In contrast, we focus on
majority games in an imperfect information setting with heteroge-
neous discount factors and a flexible deadline. Finally, unlike them,
we show how a player’s position on the agenda affects his utility.

7 Conclusions and Future Work
We investigated strategic behavior in a finite-horizon noncooperative
bargaining game with a deadline and heterogeneous discount factors.
The outcome is an allocation with majority support. In the case of a
conflict, i.e., there is no agreement within the deadline, all the players
get nothing. Majority support is modelled with a Bayesian weighted
voting game with uncertainty over the players weights. The ex-ante
Bayesian subgame perfect equilibrium for the noncooperative game
can be computed in polynomial time and it results in a unique, in-
stant, and Pareto optimal agreement. We gave those conditions when
the noncooperative equilibrium is in the core of the Bayesian voting
game and those when it is not. We also showed how an individual’s
share for noncooperative bargaining is influenced by his position on
the agenda. Lastly, we showed that, if the conflict point is changed,
the problem of computing an equilibrium becomes NP-hard even for
the perfect information setting.

In this paper, our focus was on bargaining over a single pie. An
obvious extension is to consider multiple pies. Another possibility is
to use a vector voting game (a generalized version of weighted voting
games considered in this paper) for modelling majority support.
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