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Reliability, risk and lifetime distributions as performance indicators for 

life-cycle maintenance of deteriorating structures 
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Abstract 

Structural capacity deterioration is among the main causes of increasing failure probabilities 

of structural systems, thus maintenance interventions are a crucial task for their rational 

management. Several probabilistic approaches have been proposed during the last decades for 

the determination of cost-effective maintenance strategies based on selected performance 

indicators. However, benefits and drawbacks of each performance indicator with respect to 

the others should be further analyzed. The objective of this paper is to investigate 

probabilistic approaches based on the annual reliability index, annual risk, and lifetime 

distributions for life-cycle maintenance of structural systems. Maintenance schedules are 

obtained for representative series, parallel, and series-parallel systems considering total 

restoration of component resistances whenever a prescribed threshold, based on a selected 

performance indicator, is reached. Effects related to different structural configurations and 

correlation among failure modes are investigated. The superstructure of an existing bridge is 

used to illustrate the presented approaches. 
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Introduction 

The economic growth of developed countries has led to the creation of extended civil 

infrastructure networks and facilities. During their life-cycle, these structural systems have 

been often subjected to natural hazards and aging phenomena caused by environmental and 

mechanical stressors that decrease their initial performance. At the same time, the current 

social and political trends promote maintaining existing structures for extended periods of 

time due to the high direct and indirect costs associated with their eventual replacement. 

Moreover, several of these structures have significantly lower structural performance today 

than was initially associated with their designs. This is due to the increasing demand during 

their operating conditions, and the often ineffective or inappropriate maintenance [1]. 

Accurate modeling of structures, hazards, stressors and load effects is a major 

challenge for the structural engineering community. Because of several uncertainties related 

not only to the structural models, but also to randomness inherent within natural phenomena 

and loads, probabilistic methods provide the most rational way to obtain high accuracy 

predictive models, aiming at making optimal decisions for maintenance of the structures. 

Remarkable contributions have been made to the development of techniques for performance 

and risk assessment during the structural life-cycle of both individual structures and networks, 

in the effort of achieving a comprehensive integrated framework and ensuring adequate 

structural reliability through optimization techniques [2]. Risk assessment and subsequent 

decision making has been recognized, in recent years, as being of the utmost importance [3-5]. 

In this context, a comprehensive guideline on risk-based decision making, including system 

and network modeling, hazard analysis, risk quantification by risk indicators and risk 

reduction measures, has been proposed [6]. Indicators for assessing the time-dependent 

performance of damaged bridges, in terms of structural vulnerability, redundancy, and 

robustness, have been also investigated [7]. 

 The objective of this paper is to investigate probabilistic approaches based on annual 

reliability index, annual risk, and lifetime distributions for life-cycle maintenance of 

structural systems. In particular, different approaches to the problem of determining 
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maintenance schedules are discussed. The aim of this paper is to provide indications on 

advantages and drawbacks of these indicators. Threshold-based maintenance problems are 

solved by analyzing the effects of various system configurations and failure mode 

correlations. Maintenance options are restricted to essential maintenance, implying total 

restoration of component resistance after repair. It is assumed that, when a prescribed 

threshold is reached, maintenance is performed. 

This paper is composed of two main parts. In the first one, two point-in-time 

performance indicators are introduced, the annual reliability index and annual risk, and are 

used for solving maintenance problems. The annual reliability index has been proposed as an 

important tool for the assessment of optimal maintenance plans in civil [8, 9] and marine 

structures [10, 11]. Single objective optimization [12] and multi-objective optimization 

techniques [13] involving reliability analysis and cost-based decision making have been 

reported. While the reliability index is uniquely connected to the failure probability of the 

structure, risk takes into account direct and indirect consequences associated with total or 

partial failure of the system and it is defined as the product of failure probability and 

consequences estimated in monetary terms [14]. Risk analysis gives maintenance priority to 

those components having the worst consequences, not only economically, but also socially 

and environmentally. 

 In the second part of this paper, lifetime distribution approaches are discussed. 

Representation of structural performance through lifetime distributions has the advantage that 

it can be used via closed-form expressions. On the other hand, a lifetime distribution 

represents the overall effect of all variables involved in the structural resistance and loads, 

therefore the effect of a single random variable is not easy to find. A further limitation when 

dealing with system analysis is that closed-form solutions are usually known only for the two 

particular cases of statistically independent and perfectly correlated failure modes. 

Maintenance strategies based on lifetime distributions may take into considerations 

importance factors, giving indications on which components should be repaired to obtain the 

most beneficial effect on the entire system [15]. The main advantage of using lifetime 

distributions is their computational efficiency, making them particularly suitable for 
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optimization methods [16]. Herein, threshold-based essential maintenance is examined with 

respect to availability and hazard functions. Finally, the considered approaches are applied to 

the superstructure of an existing bridge.  

Maintenance for improving life-cycle performance  

Several strategies can be considered for improving the life-cycle performance of a system. 

Maintenance interventions have, in general, two different aims: (a) blocking or slowing down 

the structural deterioration process, therefore increasing the time required to reach a 

predefined limit state; or (b) restoring, partially or totally, the resistance of one or more 

components of the structure when a given condition is reached, to improve the performance 

of the system. The first strategy is usually categorized as preventive maintenance; in general, 

preventive maintenance is applied at prescribed time instants during the lifetime of the 

system. The second one, namely essential maintenance, is instead usually performed when 

one or more performance indicators reach predefined thresholds, representative of degrading 

states of the structure. In this paper, the latter approach is considered. Figure 1 shows the 

effect of essential maintenance by assuming that the structural resistance is returned to its 

initial value after repair. Time delay for performing repair is not considered; therefore, the 

resistance is instantaneously increased at the repair time, and the cost of the maintenance 

intervention is concentrated at the same instant. It has to be noted that the load effect is, in 

general, increasing over time due, for example, to the increasing demand in terms of traffic 

load to which bridges are usually subjected. Such load is not affected by maintenance actions 

during the structural life-cycle. 

Repair priority can be given to one or more structural components, based on their 

effects on the system failure and possible consequences. The decision-making process may 

lead to different repair choices and different maintenance times depending on which 

performance indicator is considered. In the following, different configurations of a three-

component system are analyzed, and essential maintenance schedules are evaluated with 

respect to different performance indicators and thresholds. In general, structural systems can 

be modeled as either series, parallel, or series-parallel systems. Herein, these three different 
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configurations will be analyzed, considering for each one of them two cases: (a) statistical 

independence, and (b) perfect correlation between their failure modes. These cases are 

associated with lower and upper bounds of the system failure probability. 

Annual reliability and annual risk as performance indicators 

A rational way to treat uncertainties arising from natural randomness, modeling, and 

prediction imperfections is to consider probabilistic approaches. In this context, failure 

probability of a system is defined as the probability of violating one or more limit states 

associated with the system failure modes. The performance function  g t  for a given failure 

mode is generally defined as: 

      g t r t q t   (1) 

where  r t  and  q t  are the instantaneous resistance and load effect at the time instant t , 

respectively. Resistance and load are time-dependent random variables; for engineering 

systems, if no maintenance is considered, resistance is usually deteriorating over time, while 

loads are increasing. Considering a system with several failure modes, the point-in-time 

system failure probability sysP  at time t  can be evaluated as: 

    any 0         0sys iP t P g t t       (2) 

where  ig t  is the performance function associated with the i -th system failure mode. 

 Determining the system failure probability is usually a formidable task, requiring 

solution of multiple integrals whose dimension increases with the number of failure modes. 

For this reasons, various approximation methods have been proposed. The most used 

approximate methods for obtaining the probabilities of occurrence of various failure modes 

are first-order reliability method (FORM) and second-order reliability method (SORM) that 

allow to solve the problem by approximating the limit state surface in the standardized 

normal space, at the most likely failure point, with a linear function and a second order 
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surface, respectively. Given the definition of system failure state in Eq. (2), the associated 

reliability index  t  can be determined in approximate form as: 

     1 1 syst P t     (3) 

where   is the standard normal cumulative distribution function. In usual applications, the 

probability of failure and the associated reliability index are evaluated at constant time 

intervals. Herein, a one year time interval is used, and reference will be made to the annual 

reliability index.  

 During recent years, due to the increasing necessity of taking into account 

consequences associated with partial and/or total system failure, risk-based decision making 

has become an important tool for maintenance optimization. Risk assessment may be either 

qualitative or quantitative. Qualitative risk assessment deals, in general, with simple 

descriptions of the types of hazards, their consequences and likelihood, reporting all these 

aspects in opportunely built risk matrices [17]. Herein, quantitative risk assessment is 

considered; risk associated with a component failure is defined as the product of the i-th 

component failure probability  iP t  at time t  and the consequences  iC t  associated with its 

failure: 

      i i iR t P t C t  (4) 

The most common way of quantifying consequences is to determine the various losses 

associated with failure and their effective (or equivalent) cost. Herein, the cost associated 

with consequences of component/system failure is composed of the direct cost dirC  and the 

indirect cost indC . The first type refers to monetary loss deriving from component failure, and 

can be estimated by the rebuilding or replacement costs of the failed components. Indirect 

consequences are more difficult to quantify, since they are dependent on the subsequent 

system failure and its consequences in a broader perspective, taking into account different 

aspects not only strictly economic, but also, for example, safety and environmental loss. 
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Safety loss indicates a measure of damage inflicted to persons due to the system failure, in 

terms of fatalities, injuries or generic health issues. Environmental loss indicates, instead, 

degradation or contamination of the environment subsequent to the system failure [18]. 

Quantification of indirect consequences can be cumbersome when the system is part of a 

network, since the interaction with other systems in the same network has to be analyzed. 

Also, consequences associated with safety or environmental aspects are hardly quantifiable in 

monetary terms (for example, the monetary value of human life).  

Analogously, direct and indirect risk can be evaluated. In particular, considering 

failure of a single component i, the associated direct and indirect risk can be quantified, 

respectively, as follows: 

 
     
       |

dir dir
i i j i i

ind ind
i i j i sys i j i i

R t P F F C t

R t P F F P F F F C t



 




 (5) 

in which  i j iP F F   represents the probability of failure of the i-th component at time t when 

all other components are surviving, and  |sys i j iP F F F   represents the system failure 

probability conditioned by the event i j iF F  . Therefore, the total risk associated with the 

component failure is obtained as: 

      tot dir ind
i i iR t R t R t   (6) 

The total risk associated with the whole system is evaluated, in analogous way, as: 

     tot dir ind
sys sysR t P t C C   (7) 

where  sysP t  is the failure probability of the whole system, and dirC  and indC  are direct and 

indirect consequences associated with the whole system failure. To propose a direct 

comparison with the annual reliability index, herein annual risk has been used. In practical 

applications, risk associated with the remaining structural life-cycle is to be used. While in 

real applications the life-time risk should be applied, according to theoretical decision theory 



8 
 

and risk analysis, it would not allow a straightforward comparison with the annual reliability 

index. Therefore, in the following, annual risk is used to allow this comparison. 

For illustrative purposes, the four systems shown in Figure 2 are considered. These 

systems consist of the same three components, arranged in series, parallel and series-parallel 

and are governed by the performance function in Eq. (1). For the series-parallel case, two 

different arrangements are considered (see Figure 2(c) and 2(d)). It is assumed that the 

resistance of the components is deteriorating, due to a deterministic progressive reduction of 

their cross-sectional areas over time [19]. Components resistances are considered lognormal 

random variables, with mean  
ir

t  and standard deviation  
ir

t : 

 
       

   
0

0

1 1 1

1

i y y

i y

t

r i i F i i F

t

r i i F

t D A t D A

t D A

  

 

    

 
 (8) 

where 0iA   initial cross-sectional area of the i-th component (3.0, 3.1 and 2.9 cm2 for 

components one, two and three, respectively), iD   deterioration rate (0.003 per year for 

components one and two, 0.001 per year for component three), while 
yF  and 

yF  are mean 

and standard deviation of the yield strength (250 MPa and 10 MPa, respectively, for all 

components). 

 Analogously, the time-variant load effect is considered lognormal distributed with 

mean and standard deviation, respectively, as: 

 
   
   

0
1

0.05
i i

i i

t

q i q

q q

t l

t t

 

 

 


 (9) 

where il   rate of increase of load over time and 
0 iq   mean load at the initial time (i.e. 

0.0002 per year and 55 kN, respectively, for all components). Two different correlation cases 

have been studied. In the first case, failure mode of the components have been considered 

statistically independent, and therefore having no correlation (i.e., 0  , where  

correlation coefficient). In the second case, perfect correlation ( 1  ) has been considered. 
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The analysis is herein limited to these two correlation conditions; however, in practical 

applications, correlation between failure modes should be properly modeled and, in some 

cases, sensitivity analysis with respect to the various parameters involved in the calculation 

may be necessary. 

Annual failure probabilities and annual reliability indices for the three components 

and systems in Figure 2 have been evaluated, considering 50 years of service life, using the 

software RELSYS (RELiability of SYStems) [20]. The software uses FORM to first compute 

the failure probability of all components of the system; then, it progressively reduces the 

system to equivalent subsystems until a single equivalent component remains. For the four 

systems in Figure 2, annual risks associated with both system and component failures have 

been evaluated. Indirect consequences associated with the system failure have been assigned 

the overall nominal value 610 . Direct consequences, dir
iC , associated with each component 

(nominal replacement/repair cost of each component) have been assumed as 104 for 

components one and two, and 105 for component three). Annual risk associated with failure 

of each component has been calculated using Eqs. (5) and (6). As shown in Eq. (5), two 

different probabilities must be determined. The first one is the probability of failure of the i-th 

component when the other two components j and k survive. For the statistical independent 

and perfectly correlated cases the probability of this event is computed, respectively, as: 

 
           
          

0 0

1 1

1 1

max 0; max ;

i j i i j k i j k

i j i i j k i j k

P F F P F F F P F P F P F

P F F P F F F P F P F P F

 

 

  

  

   

     

 (10) 

The probability of failure of the system conditioned by failure of only i-th component, 

 |sys i j iP F F F  , can be evaluated as the failure probability of a new reduced system in which 

the i-th component has been removed. 

 Figure 3 shows the annual failure probabilities and the annual reliability index for the 

three-component systems illustrated in Figure 2. For the same systems, annual risk is reported 

in Figures 4 and 5 for statistically independent and perfectly correlated failure modes, 

respectively. For the latter case, by substituting Eq. (10) into Eq. (5), at each instant the 
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annual risk associated with a single component has to be zero for all components except one. 

As expected, the highest annual failure probability (i.e., lowest annual reliability index) is 

obtained for the series system A in the statistical independent case, while the lowest annual 

failure probability (i.e., highest annual reliability index) and annual risk are obtained for the 

parallel configuration B in the statistical independent case (see Figure 3b). In particular, the 

latter differs in several orders of magnitude in terms of both annual failure probability and 

annual risk compared to all other systems. 

Reliability-based and risk-based maintenance 

Since the aim of this paper is to examine how different performance indicators affect 

decision-making for maintenance strategies, in this section maintenance scheduling is 

determined based on system thresholds defined in terms of annual reliability index and 

annual risk. Two different strategies have been considered for the two performance indicators. 

Firstly, reliability-based maintenance has been analyzed. Two arbitrary system 

reliability thresholds, ,1 3.5t   and ,2 4.0t  , have been selected. For each case, 

maintenance is performed whenever the predefined threshold ,t k  is reached, within 50 years 

of service life. Actually, the threshold will be reached at a point-in-time within a one year 

interval; however, maintenance is performed at the beginning of the following year, when the 

annual system reliability index is, actually, lower than the predefined threshold. At such 

instant in time, essential maintenance is performed on the component with the lowest annual 

reliability. This approach disregards failure consequences.  

The second investigated strategy is risk-based maintenance. In this case, maintenance 

is performed on the component having the highest associated annual risk, when the system 

risk-threshold ,t kR  is exceeded. Therefore, direct and indirect consequences associated with 

each component failure assume a relevant weight in the decision process. If the loss 

associated with failure of a specific component is much higher than the loss associated with 

any other component, then it has to be expected that the highest repair priority will be given 

to this component. Two system thresholds ,t kR  have been selected, so that they are associated 
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with the same system annual failure probability (i.e. the same corresponding reliability 

thresholds ,t k ). Therefore: 

      , , ,
dir ind dir ind

t k sys k t kR P C C C C       (11) 

By substituting values of ,1t  and ,2t  into Eq. (11), the risk thresholds ,1 261tR   and 

,2 35tR   have been obtained.  For both strategies, statistically independent and perfectly 

correlated failure modes have been considered.  

When failure modes are statistically independent, both the reliability and the risk 

thresholds are never reached for the parallel system B in the considered 50 years of service 

life, due to its extremely low annual failure probability. For the other cases, since the 

reliability and risk thresholds are related through Eq. (11), the first maintenance time occurs 

at the same instant when using ,1t  or ,1tR  (or analogously, when using ,2t  or ,2tR ) for all 

systems. On the other hand, the component with lowest annual reliability index may be 

different from the one with highest annual risk. Following the reliability-based approach, in 

several cases repair actions on single components are associated with very low improvement 

of the system reliability. This happens because the same importance is given to all 

components.  

Conversely, in the risk-based approach, component importance is based on failure 

consequences. This consequence-based importance is mainly dependent on the component 

location inside the considered system  whenever the indirect consequences are much higher 

than the direct ones, since, in this case, system failure consequences are much more 

significant than the replacement cost of the component itself (direct consequences). Thus, in 

the proposed examples, in which indirect consequences are assumed one order of magnitude 

higher than the most expensive component replacement cost, the same maintenance plans are 

obtained for the series system A using either reliability or risk-based approach. In contrast, in 

the two series-parallel systems C and D, the number of repair actions is lower in the risk-

based maintenance case (i.e., total cost of the maintenance plan is lower). Moreover, 

comparing systems C and D, it can be noticed that, for the risk case, repair priority is always 
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given to the series component 3 in Figure 2, even if this is not the most expensive one (e.g., 

in system D). 

When perfectly correlated failure modes are considered, repair is performed at least 

once for all systems and thresholds. In this case, results obtained considering reliability-based 

maintenance always match those obtained by a risk-based approach. In fact, when failure 

modes are perfectly correlated, the component with highest associated annual risk is also the 

one with the highest annual failure probability, and therefore with the lowest annual 

reliability. Since reliability and risk thresholds have been selected to correspond to the same 

system annual failure probability (Eq. (11)), then matching risk and reliability thresholds ( ,1t  

and ,1tR ; ,2t  and ,2tR ) will be reached at the same instant of time, thus, the same components 

will be repaired. 

Maintenance schedules obtained for the four systems in Figure 2, considering 

reliability or risk thresholds, are graphically represented in Figures 6 and 7 for statistically 

independent and perfectly correlated failure modes, respectively. Detailed annual reliability 

and annual risk profiles during 50 years of service life are illustrated for the series-parallel 

system C in Figure 8 for the case of reliability-based maintenance considering the threshold 

,1t  and in Figure 9 for risk-based maintenance considering the threshold ,1tR . Whenever two 

or more repair actions are required in a one year interval, it is considered that they are both 

performed at the same time (i.e., when the first repair is required). Figures 8(a) and (b) show 

annual reliability and annual risk profiles, respectively, when the threshold ,1t  is used under 

the assumption of statistically independent failure modes, while Figures 8(c) and (d) are 

associated with the case of perfectly correlated failure modes. Annual risk and annual 

reliability profiles, respectively, corresponding to the risk threshold ,1tR  are plotted in Figures 

9(a) and (b) for statistically independent failure modes, and Figures 9(c) and (d) for the 

perfectly correlated case.  

Cumulative cost profiles of all the considered maintenance plans are shown in Figure 

10 for systems A, C, and D. The parallel system B has not been shown, since only two 

possible results are obtained, with only one or two repairs. While for the series system A the 

most expensive plans are associated with the cases of statistically independent failure modes, 
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for the series-parallel systems C and D the most expensive plan has the same cost for both 

correlation cases. Regarding the series-parallel systems, as mentioned previously, the risk 

approach allows a reduction of the total maintenance cost by reducing the number of required 

repair actions. 

Survivor, availability and hazard functions 

A disadvantage of the previously examined performance indicators is the lack of closed-form 

solutions over time. Annual reliability index and annual risk have to be evaluated at 

predetermined instants of time, returning a solution that, not only is not continuous in time, 

but usually requires approximate numerical methods that may be computational inefficient 

for complex system analysis. Lifetime distributions are alternative representations of the 

lifetime structural reliability through continuous functions that can be defined in closed-form 

by considering the time to failure of components and systems as a random variable [21]. On 

the other hand, considering directly the performance functions associated with the failure 

mode of the systems provides a clear understanding of the separate effect of the contribution 

of each random variable to either resistance or loads. Instead, lifetime distributions represent 

the combined effect of all the uncertainties on the structure, lacking an explicit distinction 

between resistance and load effects. A second disadvantage of using lifetime distributions is 

due to the fact that closed-form solutions are usually known only for statistically 

independence and perfect correlation among system components, while, using annual 

reliability or annual risk allows to take into account any possible degree of correlation among 

the random variables involved in the definition of the system performance functions. 

Among the different known lifetime distributions, the more appropriate ones for 

threshold-based approaches are availability and hazard functions. It is convenient first to 

introduce the survivor function, representing the probability that a component or system is 

still surviving (not failed) at a given time instant: 

    FS t P T t   (12) 



14 
 

where FT   time to failure of the considered component or system [22]. The availability 

function  A t  is, analogously, the probability of the system still functioning at a given time 

instant, and it is equivalent to the survivor function for non-repairable systems [21]. While 

the survivor function is a non-increasing function over time, the availability function can 

increase its value when a repair is performed; however, it is bounded in the interval  0,1 .  

The hazard function is defined as the limit for 0t   of the failure probability in the 

time interval  ,t t t  , conditioned by the system still surviving at time t , and averaged over 

the same time interval t , that is: 

    
 0

|
lim

f f

t

P t T t t T t S t
h t

t S t 

         


 (13) 

where  S t  is the derivative of the survivor function over time. Therefore, while the 

availability (and the survivor function) is directly related to the probability of failure of the 

system, the hazard function gives an indication of the rate of system failure. 

 For the systems A, B, and C in Figure 2, the closed-form of the system survivor (and 

equivalently availability) function and hazard functions can be obtained for both the 

statistically independent and perfectly correlated cases using, for example, the minimal path 

or minimal cut set techniques [22]. In particular, denoting  SS t ,  PS t , and  SPS t  the 

survivor functions and  SA t ,  PA t , and  SPA t  the availability functions for series, parallel 

and series-parallel systems, respectively, and  iS t  the survivor functions of the single 

components, the following relations, valid for statistically independent and perfectly 

correlation among components, are valid: 

 
     

      

3

0 0
1

1 1
1 max 1

S S i
i

S S i

S t A t S t

S t A t S t

 

 

 


 

 

   


 (14) 
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      

      

3

0 0
1

1 1

1 1

1 min 1

P P i
i

P P i

S t A t S t

S t A t S t
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
 (16) 

The hazard functions for the same systems can be straightforwardly evaluated by inserting 

Eqs. (14), (15), and (16) into Eq. (13), thus obtaining the following equations: 
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 (18) 
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 (19) 

where coefficients  i t ,  i t , and  i t  are defined as: 

  
    1      if   1 max 1

   , 1,2,3
0      otherwise

i j
j

i

S t S t
t i j

    


 (20) 
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  
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   , 1,2,3
0      otherwise

i jj
i

S t S t
t i j

    


 (21) 

             1 2 31   if   1  max min 1 ; 1 ; 1
  1,2,3

0   otherwise

i
i

S t S t S t S t
t i

         


(22) 

In the following it is assumed that the time to failure of the components in Figure 2 

follows the Weibull distribution: 
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


 (23) 

considering 3
1 6 10   , 1 2.0k   for the first component, 3

2 8 10   , 2 2.2k   for the 

second component, and 3
3 3 10   , 3 1.4k   for the third one. Availability and hazard 

functions for both cases of statistically independent and perfectly correlated failure modes are 

depicted in Figure 11 for the systems A, B and C. 

Availability-based and hazard-based maintenance 

The main advantage of utilizing lifetime distributions for developing efficient maintenance 

strategies is that it is possible to operate directly in analytical form. Maintaining the previous 

assumptions that only essential maintenance is applied on the system, after n maintenance 

actions have been performed at the times 1, , nT T  over a component, its survivor function 

can be expressed as: 

  
 

   

1

1 1
1

                                    

   ,  1

i

n
i

i n k k n n
k

S t t T

S t
S t T S T T T t T k 



 
 

    



 (24) 
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where 0 0T  is the initial observation time. Eq. (24) properly defines the survivor function as 

continuous and non-increasing. In other words, the corresponding availability function is 

obtained by simply restoring the survivor function to its original value after each repair [16]: 

     1       i i n n nA t S t T T t T      (25) 

In an analogous way, considering the definition of the hazard function Eq. (13), the latter is 

also restored to its initial value after each repair: 

     1       i i n n nh t h t T T t T      (26) 

Obviously, Eqs. (24), (25) and (26) refer to each component of the system, while system 

availability and hazard functions can be determined using minimal path or minimal cut set 

techniques.  

 In this section, two different thresholds-based approaches are considered. In the first 

case, attention has been focused on the availability function and the following thresholds 

have been selected: ,1 0.94tA   and ,2 0.96tA  . When these thresholds are reached, essential 

maintenance is performed on a single component, as it has been done for the reliability-based 

and risk-based approaches in the previous section. Since only integer maintenance times have 

been considered, the thresholds can be seen as warning states, so that, when reached between 

two years, essential maintenance is not performed immediately, but on the following year. 

Since a closed-form is available for system and component availability functions, the 

following availability importance factor ,A iI  has been defined for each component: 

    
 ,

sys
A i

i

A t
I t

A t





 (27) 

where  sysA t  is the system availability function and  iA t  is the i-th component one. This 

factor may be normalized as: 
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,
1

A i
A i m

A i
i

I t
I t

I t





 (28) 

where m is the total number of components.  

The factor *
,A iI  gives, at each time instant, a measure of how a variation of the 

availability of the i-th component would affect the system availability. Therefore, in the 

proposed approach, essential maintenance is performed on the component having the highest 

availability importance factor at the maintenance time, rather than the lowest availability. 

Note that *
, 1A iI   implies that the system availability depends only on the i-th component. 

Conversely, *
, 0A iI   indicates that the i-th component do not contribute at all to the variation 

of the availability of the system, and an eventual repair of only this component would not 

improve the system performance. The importance factor is clearly dependent on both the 

system configuration and correlation among components. Figure 12 shows values of 

importance factors over time for statistically independent components for systems A, B and C. 

For the series-parallel system C the component in series has the highest importance factor 

during the service life of the structure. On the other hand, for series and parallel systems the 

most important component is changing over time. 

Figure 13 summarizes the results for both systems A and C for the statistically 

independent case, while Figure 14 reports results for the systems A, B and C for the case of 

perfectly correlated failure modes. When components are statistically independent, the 

parallel system availability never reaches the selected thresholds during the considered 

system service life, and therefore no maintenance schedule is reported for this case in Figure 

13. Results obtained for the series-parallel system C, considering the threshold ,1tA , are 

reported in terms of system and component availability and hazard functions for the case of 

statistically independent components in Figures 15(a) and (b), respectively, and for the case 

of perfect correlation in Figures 15(c) and (d).  

 The second approach that has been followed is the hazard-based one. Maintenance 

strategies based on the hazard function by using prescribed thresholds and optimization 

techniques have been proposed in [23, 24]. Herein, similar to the availability approach, two 
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thresholds are defined, this time in terms of hazard function values: 3
,1 2 10th    (years-1) and 

3
,2 1.5 10th    (years-1). Moreover, a normalized hazard importance factor is defined as: 

    

 
,*

,

,
1

h i
h i m

h i
i

I t
I t

I t





 (29) 

where: 

    
 ,

sys
h i

i

h t
I t

h t





 (30) 

representing, at each time instant, the effect on the system hazard of a variation in a single 

component hazard. In this case, essential maintenance is performed on the component with 

the highest hazard importance factor. Results obtained following this new approach 

considering the thresholds ,1th  and ,2th  for both statistically independent and perfect 

correlated cases are reported in Figures 13 and 14 as well. Moreover, for system C, results are 

shown in detail in Figure 16 for both statistically independent and perfectly correlated failure 

modes. 

 There is not a direct relation between the two sets of thresholds ,ktA  and ,kth , as there 

was for reliability and risk thresholds. The aim of the two methods is, indeed, different. When 

considering the availability threshold, a limit is imposed on the probability of the system 

being functional at any time. Taking into account the hazard function allows, instead, to 

impose a limit to the rate of failure (and not the probability of failure) of the system and, 

therefore, to control how quickly the system tends to become non-functional. This last 

method may be more or less conservative, in terms of availability, depending on the system 

configuration and the correlation among the components. The hazard-based method is, in 

particular, very conservative with respect to the availability-based one for the series system A 

with statistically independent components due to its fast increasing failure rate. 
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 For both cases of availability and hazard-based maintenance, using importance factors 

reduces the number of repaired components. In the reliability and risk approaches, it may be 

observed that in several cases multiple components are repaired at once. In the risk case, this 

happens because the component with highest annual risk may be not the most important with 

respect to the system failure. Analogously, in the proposed reliability-based approach, 

neglecting any importance factor leads often to repair of components that did not provide a 

significant contribution to the system performance. Clearly, importance factors may be 

defined also for the reliability and risk cases, although no closed-form can be given and, 

therefore, they may be evaluated only numerically, especially when performance functions 

are nonlinear expressions involving several random variables with various correlations and 

distributions. The use of importance factors in the availability and hazard-based procedures 

entails that only the most critical component is repaired each time, except for a few cases in 

which repairing only the component with highest importance factor is still not sufficient to 

increase the availability over the threshold level (or to decrease the hazard function below its 

threshold). Also, comparing results based on availability and hazard, it can be seen how the 

definition of two different impact factors may lead to totally different strategies, in which 

priorities are given to different components, still maintaining an adequate system 

performance level. For example, for the parallel system B with perfectly correlated 

components, repair is performed only on component three when considering availability, 

while component two is the most important one with respect to hazard (see Figure 14).  

Case study: a reinforced concrete bridge superstructure 

In the following, the four discussed approaches are applied to the superstructure of a 

reinforced concrete bridge whose model is based on the data provided in [25] for the E-17-

HS bridge located over interstate highway in Adams County, Colorado. The end spans are 

herein considered. The bridge deck is supported by four reinforced concrete T-girders and a 

cross-section of the bridge is shown in Figure 17(a). The bridge has been modeled as a series-

parallel system (Figure 17(b)), so that failure for this bridge is given by either failure of the 

deck or two adjacent girders. Detailed information on this bridge can be found in [25, 26]. 
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Based on these data, two different limit states have been used for the deck and girders. The 

most critical failure mode for the deck is associated with its flexural behavior. Considering 

the capacity moment RM  and the load moment LM , neglecting the effects of the dead load, 

the associated performance function can be written as [25]: 

 
2 2

,
1 , 2 3

,

d y d d
deck R L d y d d d trk

c d

A f
g M M C A f C C

f


        (31) 

where dA  is the cross-sectional area of the deck steel reinforcement, ,y df  its yield strength, 

d  is an uncertainty factor related to the depth of the reinforcement into the deck, ,c df  is the 

compressive strength of the deck concrete, d  is a modeling uncertainty factor and trk  is a 

random variable representing the effect of the load due to a HS20 truck. Coefficients iC  are 

deterministic ( 1
1 4.323 10C   , 3

2 4.085 10C   , 3 5.287C  ). For the girders, the shear 

failure mode is the most critical one and the performance function associated with such 

failure mode, neglecting the dead load effects, can be written as [25]: 

 4 , , 5 , , ,i c g d i g g i y g d i g trk f fg C f C A f V I D       (32) 

where ,g iA  is the cross-sectional area of the shear reinforcement on the i-th concrete girder, 

,y gf  the girder reinforcements yield strength, ,d i  is the uncertainty factor related to the depth 

of the reinforcement into the girder, ,c gf  is the compressive strength of the girder concrete, 

g  is a modeling uncertainty factor, trkV  is the shear due to a truck load, fI  is the girder 

impact factor, and fD  the distribution factor. Also in this case the coefficients iC  are 

deterministic ( 4 30.925C  , 5 5.093C  ).  

Random variables involved into Eqs. (31) and (32) are considered lognormal with 

means and standard deviations reported in Table 1. Cross-sectional area of the reinforcement 

bars of both deck and girders are assumed to be subjected to corrosion and, therefore, their 

value is decreasing over time. Degradation of the reinforcement bars can be caused by several 

factors, like chloride penetration, alkali aggregate reactions, and concrete carbonation among 

others [27]. Several corrosion models can be found in literature, depending on the considered 
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structural system and environmental factors affecting it ([27] – [31]). Herein, it is assumed 

that the corrosion of the reinforcement rebars is due to the chloride penetration. In this case, 

the chloride concentration over time  ,lC x t  (g/mm3) can be expressed as the following 

solution of the second Fick’s law [28]: 

   0, 1
2

l l

x
C x t C erf

Dt

     
  

 (33) 

in which x  (mm) is the depth of the bars from the concrete surface, 0lC  (g/mm3) is the 

concentration of the diffusing chloride ions on the surface of the concrete, D  is the diffusion 

coefficient (considered constant in time and space) and erf  is the error function. Then, the 

corrosion initiation time distribution for the reinforcement steel has been evaluated by Monte 

Carlo based on Eq. (33) and considering a critical threshold limit for the chloride 

concentration. Finally, the residual reinforcement bars diameter over time has been evaluated 

as: 

    0bar inid t d r t T    (34) 

where 0d  is the initial reinforcement bar diameter (26 mm for the deck, 18 mm for the shear 

reinforcement of the girders); r  and iniT  are lognormal random variables representing the rate 

of corrosion, and the initiation time of corrosion, respectively. Traffic load distributions are 

evaluated considering the average daily truck traffic on the bridge based on the load model 

proposed by Nowak [32]. Analytical and numerical aspects of corrosion and load models are 

discussed in details in [25, 33]. Random variables involved in the determination of the deck 

resistance are considered statistically independent from the variables associated with the 

girders. A coefficient of correlation of 0.7 is considered for the random variables involved in 

the limit state functions of the four girders. Figure 18(a) shows the annual reliability index for 

the deck, the interior and the exterior girders of the bridge.  

 For the evaluation of components and system annual risks, direct consequences have 

been considered equivalent to rebuilding costs of deck and each girder, assumed as $100,000 
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and $40,000, respectively. Indirect consequences have been evaluated as the sum of three 

different contributes: running cost, time loss cost, and safety and environment loss. The first 

contribute corresponds to the cost of running vehicles along the detour that has to be followed 

after the bridge failure [34]: 

 r v d DT dC C L A d  (35) 

where vC  is the average cost for running a vehicle ($0.16/km), dL  is the length of the detour 

(herein considered as 10 km), DTA  is the average daily traffic (assumed as 400 vehicles per 

day) and dd  is the time period, in days, in which the bridge is not accessible, that, in this case, 

has been considered as one year.  

The time loss cost is the monetary value of the time spent by passengers and trucks to 

drive through the detour, and it has been estimated based on [34]: 

 1
100 100

p p d DT d
t ad car trk

T T L A d
C C O C

s

  
    

  
 (36) 

where adC  and trkC  are the estimated time values for an adult person ($7.05 per hour) and 

trucks ($20.56 per hour), respectively; carO  is the average vehicle occupancy in cars (1.56 

adult per vehicle); pT  is the percentage of trucks on the total number of vehicles (herein 

assumed as 4%); and s  is the average speed of the detour (64 km/h). Finally, safety and 

environmental loss should be estimated by a specific analysis that lies outside the scope of 

this paper; thus, an arbitrary value of $5M has been assumed. Direct, indirect and total annual 

risks for deck, girders and superstructure have been evaluated by means of Eqs. (5) and (6). 

Total annual risk for the bridge superstructure and its components is shown in Figure 18(b). 

 Maintenance plans have been evaluated for the described structure considering both a 

reliability threshold ( 3.5t  ) and the associated risk threshold ( $1,340tR  ), such that they 

both correspond to the same system failure probability, 4
, 2.3 10f sysP   . Results are shown 

in Figure 19 in terms of annual reliability and annual risk. Considering the reliability-based 

approach, exterior girders and deck are repaired simultaneously, because of their lower 
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annual reliability index. However, this does not happen in the risk case, since higher priority 

is given to the deck that is the series component in the system. Over the 70 years of 

considered life-cycle herein considered, the reliability-based approach returns an additional 

repair for the exterior girders when compared with the risk-based approach, with only a 

marginal improvement of the system annual reliability. 

 Finally, availability and hazard approaches are considered. Deck and girders have 

been assumed to follow the Weibull distribution (Eq. (23)) considering 38 10   , 2.4k   

for the deck; 38 10   , 2.3k   for the exterior girders; and 36 10   , 2.1k   for the 

interior girders. Figures 20(a) and (b) illustrate availability and hazard functions, respectively, 

for components and system, considering the two extreme cases of statistically independent 

and perfectly correlated failure modes, constituting upper and lower bounds for the possible 

lifetime distributions for the system. Availability and hazard thresholds have been given 

values 0.95tA   and 33 10th    and corresponding results are shown in Figure 21 and 22 for 

both statistically independent and perfectly correlated cases. Comparing the two approaches 

in terms of availability, the hazard approach results to be more conservative for statistically 

independent failure modes (the minimum value for the corresponding availability is 0.96, that 

is higher than the threshold tA ). However, in both cases, only the deck is repaired twice. 

Conversely, the hazard approach is less conservative for perfectly correlated failure modes, 

when the availability reaches the value of 0.94, although it requires one additional repair for 

the deck.  

Conclusions 

Two annual performance indicators, namely annual reliability index and annual risk, and two 

lifetime distributions (availability and hazard functions) have been considered to define 

system threshold-based approaches for the determination of maintenance times of 

deteriorating structural systems. Different system models of the same components have been 

analyzed, as well as different correlation among structural failure modes. The approach 

presented has broad applicability to any structure that can be adequately modeled as a system 
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of interrelated components such as highway bridges, naval vessels, and aerospace structures. 

The conclusions are as follows:  

1.  Since annual reliability index and annual risk are both strictly connected with 

the system failure probability, similar trends have to be expected in the timing 

for maintenance produced by these two approaches. In particular, when 

analyzing systems with perfectly correlated failure modes, reliability and risk-

based approaches provide the same results for all system models considered. 

2.  Differences in results provided by risk and reliability-based methods are 

observed when failure modes are not perfectly correlated and consequences 

associated with single components are significantly different. In these cases, 

the risk-based approach gives higher maintenance priority to the component 

with highest associated annual risk, allowing a reduction of the number of 

required repairs over the service life-cycle of deteriorating structures. 

3.  Although approaches based on lifetime distributions are somehow limited to 

the extreme cases of independence or perfect correlation among failure modes, 

the possibility of defining importance factors allows to choose a priori which 

component has to be repaired to obtain the maximum effect on the system 

reliability. Therefore, maintenance schedules obtained through this kind of 

approach require, in general, a lower number of repairs compared to the 

reliability-based approach.  

4.  There is not a direct relation between availability and hazard thresholds, since 

the two approaches aim at controlling different aspects of the problem 

(probability of being functional and rate of failure, respectively). However, the 

hazard-based method seems to be more conservative than the availability 

method, when no correlation among failure modes is present. 

Certainly, further research is needed on decision making based on combining several 

indicators at the same time (reliability and risk, availability and hazard) through multi-

objective optimization methods, involving also minimization of maintenance cost. 
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Table 1 

Mean 
 
and standard deviation   of the random variables associated with the definition of 

the bridge performance functions (based on Akgül 2002 [25]). 

 

Variables Dimensions     Variables Dimensions     

,y df  MPa 309 34 ,y gf  MPa 309 34 

,c df  MPa 19 3.4 
,c gf  MPa 19 3.4 

d   1 0.02 
,d i   1 0.02 

d   1.02 0.06 g   1.02 0.06 

fI   1.15 0.12 fD   1.44 0.18 

,,deck g intr r
 

mm/year 0.076 0.002 ,g extr
 

mm/year 0.15 0.002 

iniT  years 9.96 4.75    

 

Table 1



Figure captions 

Figure 1 Resistance, load effect and maintenance cost over time. 

 

Figure 2 Three-component system configurations. 

 

Figure 3 Annual failure probability and annual reliability index for systems A-D in 

Figure 2: (a)-(b) statistically independent and (c)-(d) perfectly correlated 

failure modes. 

 

Figure 4 Annual risk for systems A-D IN Figure 2 considering statistically independent 

failure modes. 

 

Figure 5 Annual risk for systems A-D in Figure 2 considering perfectly correlated 

failure modes. 

 

Figure 6 Reliability-based and risk-based maintenance schedules considering statistical 

independent failure modes. Systems A, C, and D in Figure 2. 

 

Figure 7 Reliability-based and risk-based maintenance schedules considering perfectly 

correlated failure modes. Systems A-D in Figure 2. 

 

Figure 8 Essential maintenance considering reliability-based threshold (t,1). System C 

with (a)-(b) statistically independent and (c)-(d) perfectly correlated failure 

modes. 

 

Figure 9 Essential maintenance considering risk threshold (Rt,1); System C with (a)-(b) 

statistically independent and (c)-(d) perfectly correlated failure modes. 

. 



 

Figure 10 Maintenance cost profiles for systems A, C, and D. 

 

Figure 11 Survivor and hazard functions for systems A-C, (a)-(b) statistically 

independent and (c)-(d) perfectly correlated failure modes. 

 

Figure 12 Availability importance factors considering independent failure modes of 

systems A, B and C in Figure 2. 

 

Figure 13 Availability-based and hazard-based maintenance schedules considering 

statistical independent failure modes. Systems A and C. 

 

Figure 14 Availability-based and hazard-based maintenance schedules considering 

perfectly correlated failure modes. Systems A-C. 

 

Figure 15 Essential maintenance considering availability threshold (At,1): system C in 

Figure 2 with (a)-(b) statistically independent and (c)-(d) perfectly correlated 

failure modes. 

 

Figure 16 Essential maintenance considering hazard threshold (ht,1): system C in Figure 

2 with (a)-(b) statistically independent and (c)-(d) perfectly correlated failure 

modes. 

 

Figure 17 Bridge superstructure cross-section (adapted from Akgul 2002 [18]) and its 

series-parallel model. 

 

Figure 18 Bridge superstructure: (a) annual reliability index and (b) risk with no 

maintenance. 

 



Figure 19 Bridge superstructure: (a)-(b) reliability-based maintenance and (c)-(d) risk-

based maintenance. 

 

Figure 20 Bridge superstructure: (a) availability and (b) hazard functions. 

 

Figure 21 Essential maintenance considering availability threshold (At): bridge 

superstructure considering (a)-(b) statistically independent and (c)-(d) 

perfectly correlated failure modes. 

 

Figure 22 Essential maintenance considering hazard threshold (ht): bridge superstructure 

considering (a)-(b) statistically independent and (c)-(d) perfectly correlated 

failure modes. 
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