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Abstract

In the first part of the thesis we define an automorphism φn for each star graph

Stn of degree n − 1, which yields permutations of labels for the edges of Stn

taken from the set of integers {1, . . . , bn/2c}. By decomposing these permutations

into permutation cycles, we are able to identify edge-disjoint Hamilton cycles

that are automorphic images of a known two-labelled Hamilton cycle H1 2(n)

in Stn. Our main result is an improvement from the existing lower bound of

bϕ(n)/10c to b2ϕ(n)/9c, where ϕ is Euler’s totient function, for the known number

of edge-disjoint Hamilton cycles in Stn for all odd integers n. For prime n, the

improvement is from bn/8c to bn/5c. We extend this result to the cases when n

is the power of a prime other than 3 and 7.

The second part of the thesis studies ‘symmetric’ collections of edge-disjoint

Hamilton cycles in Stn, i.e. collections that comprise images of H1 2(n) under

general label-mapping automorphisms. We show that, for all even n, there exists

a symmetric collection of bϕ(n)/2c edge-disjoint Hamilton cycles, and Stn cannot

have symmetric collections of greater than bϕ(n)/2c such cycles for any n. Thus,

Stn is not symmetrically Hamilton decomposable if n is not prime. We also give

cases of even n, in terms of Carmichael’s reduced totient function λ, for which

‘strongly’ symmetric collections of edge-disjoint Hamilton cycles, which are gener-

ated from H1 2(n) by a single automorphism, can and cannot attain the optimum

bound bϕ(n)/2c for symmetric collections. In particular, we show that if n is a

power of 2, then Stn has a spanning subgraph with more than half of the edges

of Stn, which is strongly symmetrically Hamilton decomposable. For odd n, it re-

mains an open problem as to whether the bϕ(n)/2c can be achieved for symmetric

collections, but we are able to show that, for certain odd n, a ϕ(n)/4 bound is

achievable and optimal for strongly symmetric collections.

The search for edge-disjoint Hamilton cycles in star graphs is important for the

design of interconnection network topologies in computer science. All our results

improve on the known bounds for numbers of any kind of edge-disjoint Hamilton

cycles in star graphs.
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Chapter 1

Introduction

The interconnection network is an essential element of designed multiprocessor sys-

tems and it is critical to determine its performance. An interconnection network

is a system formed by nodes and links among the nodes. There are two classes

of interconnection network topologies, static and dynamic. Networks with static

linking are used where the communications among nodes are known or can be es-

timated. Otherwise, a dynamic topology is used if there are changes of connections

among processors. An interconnection network of a multiprocessor architecture

can be represented by an undirected graph where vertices of the graph represent

computing nodes and edges of the graph represent communication links between

the nodes. Hypercubes, complete binary trees, butterflies and torus are examples

of interconnection network topologies. Much research has been carried out to

optimize the network in various approaches by designing new network topologies.

1.1 Star graph and hypercube

The n-dimensional star graph Stn is a graph whose vertex set is the set of all

permutations on {1, 2, ..., n}. Two vertices, u1 . . . ui . . . un and v1 . . . vi . . . vn, are

adjacent if u1 = vi, v1 = ui, and uj = vj for j ∈ {1, 2, ..., n}−{1, i}. The star graph

has been proposed [1] as an alternative interconnection network topology to the

hypercube, because of its ability to connect a greater number of nodes with lower

degree. This allows a reduction in the number of interconnections and therefore

cost, whilst maintaining high connectivity and fault tolerance. An n-dimensional

hypercubeQn or n-cube consists of 2n nodes and n×2n−1 edges. The hypercube is a

bipartite graph with vertex set consisting of all binary vectors of length n, and with

edges between two vertices whenever they differ in exactly one coordinate. The

degree and diameter of Qn are n. The attractive properties of a hypercube are node

and edge symmetry, a simple recursive structure, and an efficient embedding into

1



CHAPTER 1. INTRODUCTION 2

other interconnection networks such as ring, tree, pyramid, and mesh networks.

However, as the dimension of a hypercube increases, the degree of the hypercube

also increases. Relative to the degree, the hypercube has a rather large diameter

and average distance between nodes. Akers et al. [1] introduced the star graph

as an attractive alternative to the hypercube. An n-dimensional star graph Stn

consists of n! nodes and n!(n − 1)/2 edges. Stn has node and edge symmetry,

a smaller degree and diameter than the hypercube. In [1], Akers, Harel, and

Krishnamurthy have shown that the diameter of the n-star graph is b3/2(n− 1)c.

1.2 (n, k)-star graph

In spite of all the advantages of an n-star over the hypercube, a major drawback

is its lack of scalability. There exists a large gap between n! and (n + 1)! for

expanding an Stn to an Stn+1. To relax the restriction of the numbers of vertices

n! in an Stn, a generalized version of the star graph, the (n, k)-star graph, was

proposed in 1995 [15].

Definition 1.1. The (n, k)-star graph, denoted by Stn,k , is an undirected graph

with vertex-set P (n, k) = {p1p2 . . . pk : pi ∈ Jn, pi 6= pj, 1 ≤ i 6= j ≤ k} where

Jn = {1, 2, . . . , n} and P (n, k) be the set of k-permutations (permutatuons of k

elements) on Jn for 1 ≤ k ≤ n− 1. The adjacency is defined as follows: a vertex

p1p2 . . . pi . . . pk is adjacent to a vertex

(i) pip2 . . . pi−1p1pi+1 . . . pk , where 2 ≤ i ≤ k ( swap p1 with pi )

(ii) xp2 . . . pk where x ∈ Jn − {pi : 1 ≤ i ≤ k} ( replace p1 by x)

In consequence, Stn,k has n!/(n−k)! nodes and ((n−1)/2)×(n!/(n−k)!) edges.

A Stn,k graph preserves many attractive properties of a Stn graph, such as ver-

tex symmetry, hierarchical structure, maximal fault tolerance, and simple shortest

routing. Because of good topological properties of Stn,k, properties such as dia-

meter and connectivity [40, 15], independent number and dominating number [14]

and so on have been researched. The work [16] examines various topological prop-

erties of the (n, k)-star graph. It is shown that two different types of edges in the

(n, k)-star graph prevent it from being edge-symmetric, but edges in each class

are essentially symmetric with respect to each other. Also, the diameter and the

exact average distance of the (n, k)-star graph are derived.

Proposition 1.2 (Chiang et al. [16]). The diameter D(Stn,k) of the (n, k)-star

graph is:
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D(Stn,k) =

2k − 1 if 1 ≤ k ≤ bn/2c

k + b(n− 1)/2c if bn/2c+ 1 ≤ k < n

Moreover, It is proved that (n, k)-star graph is a Hamilton graph.

Definition 1.3. A Hamilton cycle in a graph is a cycle that includes all the

vertices of the graph exactly once.

If a graph has a Hamilton cycle, we call such graph a ‘Hamilton’ graph. It is

well known that a star graph is a Hamilton graph. Hsu et al. proved that Stn,k is

also a Hamilton graph for n ≥ 3:

Proposition 1.4 (Hsu et al. [23]). Stn,k with n ≥ 3, is a Hamilton graph.

This proposition directly follows from the structure of the Hamilton cycle and the

distance between vertices of a (n, k)-star graph. In [23], the authors also consider

the fault Hamiltonicity, and the fault Hamilton connectivity of the (n, k)-star

graph Stn,k. Other important properties of the (n, k)-star graph, are given in [23].

1.3 Edge-disjoint Hamilton cycles of

interconnection networks

The presence of edge-disjoint Hamilton cycles is a desirable feature for an inter-

connection network topology. The reason for this is that in multiport systems,

where nodes communicate with neighbours in unit time, messages can be broken

down into small units and sent along disjoint Hamilton cycles to improve per-

formance. The Hamilton decomposition of a k-regular graph G is the partitioning

of its edge set into Hamiltonian cycles, i.e. if k is even, the edge set can be

partitioned into k/2 Hamiltonian cycles, and if k is odd, the edge set can be par-

titioned into (k− 1)/2 Hamiltonian cycles and a perfect matching. Several results

concerning the existence of disjoint Hamilton cycles on graphs, in particular hy-

percubes, are known. One of the most interesting properties of the hypercube is

that it is Hamilton decomposable [35]. It is known that there are bn/2c disjoint

Hamiltonian cycles on a hypercube of dimension n:

Theorem 1.5 (Alspach et al. [5]). The binary n-cube with even n, or equival-

ently the product of n/2 cycles, C4 × C4 × . . . × C4, can be partitioned into n/2

Hamiltonian cycles.

Note that C4 × C4 × . . . × C4 is the Cartesian product of cycles of length 4

which we define in the next section. The proof of this result, however, does not
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lead to any simple algorithm to construct the disjoint Hamilton cycles. In [37],

Song presents ideas towards a simple and interesting method to this problem. He

first decomposes the hypercube into cycles of length 16, C16, and then applies a

merge operator to join the C16 cycles into larger Hamilton cycles. The case of

dimension n = 6 (a 64-node hypercube) is illustrated. He conjectures the method

can be generalized for any even n. In [35], the authors generalize the first phase of

that method, decomposition of the hypercube into C16, for any even n and prove

its correctness. Also they show a merge operator for the case of n = 8 (a 256-

node hypercube). This result can be viewed as a step toward the general merge

operator, thus proving the conjecture.

Whilst the hypercube is Hamilton decomposable, much less is known about

Hamilton cycles in the star graph. Edge-disjoint Hamilton cycles have been stud-

ied in various graph topologies. In [6, 36], multiple disjoint Hamilton cycles are

constructed in various tori and in deBruijn networks. Micheneau [34] studies dis-

joint Hamilton cycles in recursive circulant graphs. Hamilton decompositions have

been found by many authors in bipartite graphs. These include extended results

such as [26, 27] where the authors generalise to bipartite hypergraphs and prove

the Hamilton decomposability of complete bipartite hypergraphs. The work [20]

examines the Hamilton decomposition of random bipartite regular graphs by prov-

ing equivalence of two probabilistic models of 4-regular bipartite graphs. For the

recently introduced locally twisted cube [41], the existence of a Hamilton cycle

is shown in [42]. In [22], the authors have investigated the edge-fault tolerant

Hamiltonicity of an n-dimensional locally twisted cube, and in [24] two edge-

disjoint Hamilton cycles have been constructed for the locally twisted cube.

There have also been a handful of results for star graphs concerning Hamilton

cycles and paths. Most work has studied the existence of Hamilton paths with

certain properties, notably the Hamilton laceability of star graphs in [21] and the

mutually independent Hamilton laceability in [30].

Definition 1.6. Suppose G is a bipartite graph with two partite sets of equal size.

G is said to be strongly Hamilton-laceable if there is a Hamilton path between every

two vertices that belong to different partite sets, and there is a path of (maximal)

length N − 2 between every two vertices that belong to the same partite set, where

N is the order of G.

The star graph is known to be bipartite. The work [21], shows that the n-

dimensional star graph, where n ≥ 4, is strongly Hamilton-laceable:

Theorem 1.7 (Hsieh et al. [21]). The star graph Stn, with n ≥ 4 is strongly

Hamilton-laceable.
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Two Hamilton paths P1 = {u1, u2, . . . , un(G)} and P2 = {v1, v2, . . . , vn(G)} of G,

with n(G) nodes, from u to v are ‘independent’ if u = u1 = v1, v = vn(G) = un(G),

and vi 6= ui for every 1 < i < n(G). A set of Hamilton paths, {P1, P2, ..., Pk}, of

G from u to v are ‘mutually’ independent if any two different Hamilton paths are

independent.

Definition 1.8. A bipartite graph is k -mutually independent Hamilton laceable

if there exists k-mutually independent Hamilton paths between any two nodes from

distinct partite sets.

There is an interesting result in [30] with regard to the mutually independent

Hamilton-laceability of star graphs. We state this result below where IHPL(G)

denotes the maximum integer k such that G is k-mutually independent Hamilton-

laceable.

Theorem 1.9 (Lin et al. [30]). Let Stn denote the n-dimensional star graph. Then

IHPL(St2) = 1, IHPL(St3) = 0, and IHPL(Stn) = n− 2 if n ≥ 4.

1.4 Cartesian product of star graphs

As a method for combining desirable properties of component networks, the Cartesian

product of interconnection networks has been investigated recently. The Cartesian

product method is a very effective method of building larger networks from several

specified small-scale networks. Many popular networks can be constructed by the

Cartesian product.

Definition 1.10. Given any two undirected graphs G1 = (V1, E1) and G2 =

(V2, E2), where V1 and V2 are the sets of vertices, and E1 and E2 are the sets of

edges, the Cartesian product of G1 and G2 is an undirected graph G1⊗G2 = (V,E),

where

• V = {〈x1, x2〉 | x1 ∈ V1 and x2 ∈ V2}

• E = {(〈x1, x2〉, 〈y1, y2〉) | if (x1, y1) ∈ E1 and x2 = y2 or (x2, y2) ∈
E2 and x1 = y1}

Here, G1 and G2 are referred to as the ‘factor’ graphs and G1 ⊗ G2 is referred

to as the ‘product’ graph. The hyperstar is an undirected graph constructed

by repeatedly applying Definition 1.10 on a set of star graphs. Properties of

product graphs are obtained from those of the factor graphs. Such properties can

include symmetry, recursive structure, attractive topological metrics (size, degree,

diameter, etc.), optimal routing, and optimal broadcasting. These features make
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the Cartesian product of star graphs interesting and suitable for designing practical

algorithms. The work [3] investigates topological properties of the hyperstar, and

compares the hyperstar with the hypercube and the star graph. The authors also

show that the hyperstar uses a smaller number of links for fixed minimum size

requirements and scales better than the star graph and the hypercube. They also

discuss that the broadcasting cost incurred by the hyperstar is lower than the

corresponding cost of the star graph for some graph size choices and is lower than

the corresponding cost of the hypercube for all graph sizes. So, they propose the

hyperstar as an improvement over the star graph and the hypercube.

1.5 Star graph and Cayley graph

A Cayley graph is a graph defined from a pair (G,S) where G is a group and S is

a set of group elements.

Definition 1.11. Let G be a group, and let S ⊂ G be a set of group elements

such that S−1 = S. The Cayley graph (G,S) is a graph in which the vertices are

the elements of G and there is an edge between g and gx for all g ∈ G and x ∈ S.

The Cayley graph may depend on the choice of a generating set, and is con-

nected if and only if S generates G. It is known that any connected Cayley graph

on an abelian group is a Hamilton graph. Alspach [4] conjectured that every

2k-regular connected Cayley graph on a finite abelian group has a decomposition

into k edge-disjoint Hamilton cycles. Bermond, Favaron, and Maheo prove this

conjecture for a special case, where G is a Cayley graph of degree 4:

Theorem 1.12 (Bermond et al. [7]). Every 4-regular connected Cayley graph on

a finite abelian group can be decomposed into two hamiltonian cycles.

Liu, then, investigated some other cases for Alspach’s conjecture in [31]. In the

following theorems, Liu proves that the Cayley graph (G,S) can be decomposed

into Hamilton cycles provided that (G,S) is 2m-regular, G is an abelian group and

S = {s1, s2, ..., sk} is either a generating set of G such that gcd(ord(si), ord(sj)) =

1 for i 6= j or a minimal generating set of G with k = 3 and with either two

elements of order 2 or one element of prime order:

Theorem 1.13 (Liu [31]). Let G be a finite abelian group and S = {s1, s2, ..., sk}
be a generating set of G with gcd(ord(si), ord(sj)) = 1 for i 6= j. If Cayley graph

(G,S) is 2m-regular, then it can be decomposed into m Hamilton cycles.

Theorem 1.14 (Liu [31]). Let G be finite abelian group and S = {s1, s2, s3} be a

minimal generating set of G with either two elements of order 2 or one element
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of prime order. If Cayley graph (G,S) is 2m-regular, then it has a Hamilton

decomposition.

He also proves that, the conjecture is true for (G,S), where G is an abelian

group of odd order and S = {s1, s2, s3} is a minimal generating set of G.

Theorem 1.15 (Liu [31]). Let G be a finite abelian group of odd order and S =

{s1, s2, s3} be a minimal generating set of G. Then the Cayley graph (G,S) has a

Hamilton decomposition.

There are other examples of work on Hamilton decompositions of Cayley graphs

such as [39, 32, 33, 38], all concerning Cayley graphs over abelian groups.

The star graph Stn is the Cayley graph (Sn, X0) where Sn is the symmetric

group of permutations of order n, and X0 = {(0, 1), (0, 2), . . . , (0, n − 1)} ⊂ Sn.

As it is known that a Cayley graph over a symmetric group and any generating

set of transpositions has a Hamiltonian cycle [29], star graphs of any degree have

a hamiltonian cycle.

1.6 Star graph automorphisms and disjoint

Hamilton cycles

To date, the only results on edge-disjoint Hamilton cycles in star graphs are the

Hamilton decomposition of the star graph of degree 4, denoted here by St5, in [25]

and lower bounds for the number of edge-disjoint Hamilton cycles in star graphs

of degree n − 1, denoted here by Stn, given in [11]. In [25], a Hamilton cycle

for St5 is constructed by partitioning the vertices of St5 into 6 pairwise disjoint

cycles C1, ..., C6, and then producing a 7th cycle C7 that meets each of the other

cycles at exactly two vertices and a common edge. Then, the authors define an

automorphism for the graph St5, denoted Φ5 and prove that the Hamilton cycle

defined by means of C1, ..., C6, C7, produces a Hamilton cycle when mapped by

the automorphism Φ5. By showing that the 2 Hamilton cycles are edge-disjoint,

they prove there exist two edge-disjoint Hamilton cycles for St5. As 5-star is of

degree 4, this gives a Hamilton decomposition of St5.

In [11], Cada, Kaiser, Rosenfeld, and Ryjacek continue the study on Hamilton

cycles of star graphs and give new lower bounds for the number of edge-disjoint

Hamilton cycles for Stn for general n.

Before stating the results of [11], we need to give some definitions. For i ∈
{1, . . . , n}, let Ci(n) be the set of all edges στ of Stn such that σ(0) − τ(0) is

congruent to ±i modulo n and let C1 2(n) be the spanning subgraph of Stn with

edge set C1(n) ∪ C2(n). Using the concept of path graph and doubly adjacent
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Gray codes, the important outcome of [11] is the following lemma that we shall

use in this thesis:

Lemma 1.16 (Cada et al. [11]). For n ≥ 5, the graph C1 2(n) is Hamiltonian.

This paper then defines a permutation ψ on V , the set of vertices of Stn, by

ψ(i) = ij mod n, where j ∈ U ⊂ {1, . . . , n − 1}, and U is the set of elements

relatively prime to n, and then, introduces an automorphism of Stn, π 7→ ψoπ,

which carries each edge set Ci(n) to Ci j(n) = Ci(n)∪Cj(n). From an application

of Lemma 1.16, the authors derive that, Cj(n) ∪ C2j(n) is a Hamilton subgraph

of Stn for j ∈ U . The main result of [11] on edge-disjoint Hamilton cycles of star

graphs shows that Stn contains bn/8c pairwise edge-disjoint Hamilton cycles when

n is prime, and Ω(n/loglogn) such cycles for arbitrary n:

Theorem 1.17 (Cada et al. [11]). (i) If n is a prime, then Stn contains bn/8c
pairwise edge-disjoint Hamilton cycles.

(ii) For arbitrary n, there are Ω(n/loglogn) pairwise disjoint Hamilton cycles in

Stn.

1.7 Contribution

In this thesis, by defining automorphisms which produce edges with different labels

incident at each vertex in the image of a known Hamilton cycle, the lower bounds

of the number of edge-disjoint Hamilton cycles of star graphs are improved, and

bounds are obtained for edge-disjoint Hamilton cycles with certain symmetric

properties.

In Chapter 2, we introduce the basic definitions and notations that we shall

use in this thesis. We calculate new lower bounds for the number of edge-disjoint

Hamilton cycles in star graphs of odd dimension by defining an automorphism

which produces edges with different labels. As the automorphism in that chapter

is not defined for even integers and requires n to be odd, we distinguish the study

of edge-disjoint Hamilton cycles in star graphs of odd dimension from the study

of edge-disjoint Hamilton cycles in star graphs of even dimension. We also give

improved results for the number of edge-disjoint Hamilton cycles of Stn for prime

n in that chapter. A version of Chapter 2 of this thesis has been published in the

International Journal of Computer Mathematics [19].

In Chapter 3, we define ‘symmetric’ and ‘strongly’ symmetric collections of

edge-disjoint Hamilton cycles of star graphs and we produce optimal symmetric

collections of disjoint Hamilton cycles for star graphs of even dimension.
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We define directed versions of labels, distance maps, star graphs and label

automorphisms, and considers the existence of strongly symmetric collections of

disjoint Hamilton cycles for star graphs of even dimension in Chapter 4.

In Chapter 5, we study strongly symmetric collections of disjoint Hamilton

cycles for star graphs of odd dimension.

Finally, we summarise the main results of the thesis in Chapter 6.



Chapter 2

Disjoint Hamilton cycles in odd

dimensions

In the present chapter, we address the number of edge-disjoint Hamilton cycles

in star graphs of odd dimension. In both [25] and [11], edge-disjoint Hamilton

cycles in star graphs are obtained by labelling the edges of the graph in a certain

way, and then defining automorphisms which produce edges with different labels

incident at each vertex in the image of a known Hamilton cycle. If the vertices

of Stn are permutations of symbols a1, . . . , an, and edges correspond to swapping

the symbol ai in the first position with some other symbol aj, then the label of an

edge (which we call the ‘length’ of the edge) is the distance between ai and aj on

the cyclic graph whose vertices are a1, . . . , an in which an is adjacent to an−1 and

a1. In [11], it is shown that Stn has a Hamilton cycle whose edges are of length

1 or 2. There, other Hamilton cycles are produced by a set of automorphisms ψj,

one for each integer j that is coprime to n, defined by:

ψj(ai) = ak, where k = ij mod n

The automorphism ψj produces a Hamilton cycle whose edges are of length j or 2j

(modulo n). Some of these edges clash for different j’s, and the calculation in [11]

produces bϕ(n)/10c (where ϕ is the Euler function) and bn/8c lower bounds for the

number of edge-disjoint Hamilton cycles for general n and prime n respectively. In

this chapter, we give a single automorphism φn for Stn, which is applied repeatedly

to generate new edge lengths. By examining how φn permutes lengths, we obtain

better organized clashes and can offer improved bounds on the numbers of edge-

disjoint Hamilton cycles.

This Chapter is structured as follows. In Section 2.1, we give the definitions of

edge length and our automorphism φn, and some basic results. In Section 2.2, we

show how φn permutes the distances between the ais and ajs exchanged at edges,

10
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and hence the lengths of the edges, in its image of the edges. We decompose

these distance permutations into permutation cycles which we call ‘constituents’.

Constituents play a central role in our study, and we give their properties in Sec-

tion 2.2. In Section 2.3, we show how edge-disjoint Hamilton cycles are obtained

from constituents. We prove that either all or none of the integers in constituents

are coprime to n in Section 2.4. This result is used in Section 2.5, to calculate new

lower bounds for the number of edge-disjoint Hamilton cycles in Stn of b2ϕ(n)/9c
for odd integers and bn/5c for prime numbers. In Section 2.6, we obtain bn/4c
bounds for special cases of primes.

2.1 Basic definitions and results

Throughout the sections, we assume that all graphs are undirected and n is odd

and greater than 2. The automorphism that we will define requires n to be odd.

The problem for even n is discussed in later chapters.

Definition 2.1. Let n be odd or even. The n-star graph Stn is the simple (n-1)-

regular graph of order |Sn| with a set V of vertices and a set E of edges, where Sn

is the symmetric group of permutations of order n, given by:

V (Stn) = {aρ(1) · · · aρ(n) | ρ ∈ Sn},
E(Stn) = {e | e = {aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n),

aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)}, ρ ∈ Sn}

The 4-star graph is shown in Figure 1.

Definition 2.2 ([25]). We define the distance between two elements to be:

δ(ai, aj) = min{|i− j|, n− |i− j|}, (1 ≤ i, j ≤ n).

If e = (aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n), aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)), the length

of the edge e, denoted λ(e), is defined to be δ(aρ(1), aρ(i)).

A Hamilton cycle is a cycle in a graph G which visits each vertex exactly once

and also returns to the starting vertex. The graph G is a Hamilton graph if it has

at least one Hamilton cycle.

Definition 2.3. A Hamilton cycle in a graph G with a set of n! vertices V and

a set of edges E is a pair of sequences (v, e) of vertices v = v1...vn!+1 and edges

e = e1...en! such that:

(i) ei = (vi, vi+1) ∈ E (1 ≤ i ≤ n!),
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〈1 2 3 4〉 〈2 1 3 4〉

〈4 1 3 2〉

〈1 4 3 2〉〈2 4 3 1〉

〈4 2 3 1〉

〈3 2 1 4〉

〈2 3 1 4〉 〈1 3 2 4〉

〈3 1 2 4〉
〈4 1 2 3〉

〈2 1 4 3〉

〈3 1 4 2〉

〈1 3 4 2〉

〈4 3 1 2〉
〈3 4 1 2〉

〈2 4 1 3〉〈1 4 2 3〉

〈3 4 2 1〉
〈4 3 2 1〉

〈2 3 4 1〉

〈3 2 4 1〉

〈1 2 4 3〉

〈4 2 1 3〉

Figure 2.1: The 4-star graph.
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(ii) {v1, . . . , vn!+1} = V ,

(iii) v1 = vn!+1.

Definition 2.4. Let G = (V,E) be a graph, where V is a set of vertices and

E ⊆ V × V is a set of edges. Then, a mapping Φ : V 7→ V is an automorphism

iff:

(i) Φ is bijective.

(ii) for all v1, v2 ∈ V, (v1, v2) ∈ E if and only if (Φ(v1),Φ(v2)) ∈ E.

Lemma 2.5 ([25]). Let φ : {a1, ..., an} 7→ {a1, ..., an} be a bijection. Then:

(i) Φ : V (Stn) 7→ V (Stn), given by Φ(aρ(1) . . . aρ(n)) = φ(aρ(1)) . . . φ(aρ(n)), is an

automorphism of the graph Stn,

(ii) if v = v1, . . . , vn!+1, e = (v1, v2) . . . (vn!, vn!+1)and (v, e) is a Hamilton cycle

in Stn, then the pair of sequences of vertices and edges ΦH(v, e) defined by

ΦH(v, e) = (Φ(v1) . . .Φ(vn!+1), (Φ(v1),Φ(v2))...(Φ(vn!),Φ(vn!+1)))

is also a Hamilton cycle,

(iii) if a spanning subgraph G of Stn is a Hamilton graph, then so is the spanning

subgraph that is its image Φ(G).

Definition 2.6. For i ∈ {1, ..., n}, we define the automorphism Φn to correspond

to the bijection φn given by:

φn(ai) =

ai/2, i even,

a(n+i)/2, i odd,

where 1 ≤ i ≤ n.

Lemma 2.7. φn is well-defined and bijective.

Proof. First we prove that φn is well-defined. Let ai = aj where i, j ∈ {1, . . . , n}.
Then, by Definition 2.1, i = j. So, i/2 = j/2, and (n + i)/2 = (n + j)/2. Thus,

ai/2 = aj/2, and a(n+i)/2 = a(n+j)/2, and since i ≤ n, (n + i)/2 ≤ n. As a result,

φn(ai) = φn(aj).

To prove that a function is bijective, we need to show that, it is injective and

surjective. Since φn has domain and codomain of the same cardinality, we just

need to prove that it is injective.

Let φn(ai) = φn(aj). If i is even and j is odd, then i/2 = (n + j)/2, and if j

is even and i is odd, then j/2 = (n + i)/2. Therefore, i > n or j > n which is a
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contradiction with i, j ∈ {1, . . . , n}. So, let ai/2 = aj/2 where i, j are both even, or

a(n+i)/2 = a(n+j)/2 where i, j are both odd. If ai/2 = aj/2, then, by Definition 2.1,

i/2 = j/2. So, i = j, and ai = aj where i, j are even. If a(n+i)/2 = a(n+j)/2, then,

by Definition 2.1, (n+ i)/2 = (n+ j)/2. So, i = j, and ai = aj where i, j are odd.

As a result, ai = aj and φn is injective.

The next lemma, which results from Definition 2.6, discusses the distance

between elements, when the bijection φn acts on them.

Lemma 2.8. Let r be an odd and s an even integer. Then the following hold:

(i) If δ(ai, aj) = s, then δ(φn(ai), φn(aj)) = s/2

(ii) If δ(ai, aj) = r, then δ(φn(ai), φn(aj)) = (n− r)/2

Proof. Without loss of generality, we assume that j > i.

(i) Let δ(ai, aj) = s. Consider two cases:

Case 1: If j − i ≤ (n − 1)/2, then, by Definition 2.2, s = j − i, and

i and j are both even or both odd. If both are even, by Definitions 2.2

and 2.6, we have that δ(φn(aj), φn(ai)) = j/2 − i/2 = (j − i)/2 = s/2. If

both are odd, by Definitions 2.2 and 2.6, we have that δ(φn(aj), φn(ai)) =

(n+ j)/2− (n+ i)/2 = (j − i)/2 = s/2.

Case 2: If j − i > (n − 1)/2, then, by Definition 2.2, s = n − (j − i), and

j − i is odd. Suppose j is odd and i even. Then, as (n + j)/2 − i/2 =

(n + j − i)/2 > j − i > (n − 1)/2, we have, by Definitions 2.2 and 2.6,

δ(φn(ai), φn(aj)) = n− (n+ j − i)/2 = s/2. If j is even and i odd, then, as

j − i ≥ 1, and (n + i − j)/2 ≤ (n − 1)/2, we have that δ(φn(ai), φn(aj)) =

(n+ i)/2− j/2 = (n+ i− j)/2 = s/2.

(ii) Let δ(ai, aj) = r. Consider the following cases:

Case 1: If j − i ≤ (n− 1)/2, then, by Definition 2.2, r = j − i, and j − i is

odd. Suppose j is odd and i even. Since j−i ≥ 1, and thus, (n+j)/2−i/2 >
(n − 1)/2, we have that δ(φn(ai), φn(aj)) = n − (n + j − i)/2 = (n − r)/2.

If j is even and i odd, we have that (n + i)/2 − j/2 ≤ (n − 1)/2, and so,

δ(φn(ai), φn(aj)) = (n+ i− j)/2 = (n− r)/2.

Case 2: If j − i > (n − 1)/2, then, by Definition 2.2, r = n − (j − i), and

so, j − i is even. Thus, i and j are either both even or both odd. In each of

these cases, by Definitions 2.2 and 2.6, and as (j − i)/2 ≤ (n− 1)/2, we can

check that δ(φn(ai), φn(aj)) = (j − i)/2 = (n− r)/2.
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2.2 Distance permutations and their

constituents

We show that the automorphism φn yields a permutation of distances via the

images of the ais. An analysis of the nature of this permutation will subsequently

be used to demonstrate the presence of edge-disjoint Hamilton cycles in Stn.

Definition 2.9. We define the mapping:

πn : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c}, πn(δ(ai, aj)) = δ(φn(ai), φn(aj)),

where φn is as in Definition 2.6.

We can check easily, using Lemma 2.8, that πn is a well-defined bijective map-

ping and hence an element of Sbn/2c (symmetric group of permutations of order

bn/2c). Note that, as a result of Lemma 2.8, πn(x) = x/2 if x is an even in-

teger, and πn(x) = (n − x)/2 if x is an odd integer. By elementary properties of

permutation groups, the mapping πn can be written as a product of permutation

cycles

πn = π1
n . . . π

k
n = (d11, . . . , d

1
n1

) . . . (dk1, . . . , d
k
nk

)

where

{d11, . . . , d1n1
, . . . , dk1, . . . , d

k
nk
} = {1, . . . , bn/2c}

and, for 1 ≤ i ≤ k, the expression (di1, . . . , d
i
ni

) denotes the cycle πin whose action

is to map

di1 7→ di2 7→ . . . 7→ dini 7→ di1

As such, there are ni different ways to denote πin:

(di1, . . . , d
i
ni

) = (di2, . . . , d
i
ni
, di1) = . . . = (dini , d

i
1, . . . , d

i
ni−1)

We shall call π1
n, . . . , π

k
n the constituent cycles or simply the constituents of πn or n.

A coprime constituent will be a constituent πin all of whose elements are coprime

to n.

Example 2.10. Let n = 17. We calculate π17(1) = 8, π17(8) = 4, π17(4) =

2, π17(2) = 1 and π17(3) = 7, π17(7) = 5, π17(5) = 6, π17(6) = 3. Thus,

π17 = π1
17π

2
17 where π1

17 = (1 8 4 2), π2
17 = (3 7 5 6)

The next lemma considers a case where a certain constituent πjn has just one

member, namely where the only member of πjn is n/3.
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Lemma 2.11. Let n ∈ N be odd and πn = π1
n . . . π

k
n. Then, there exists d ∈ N

satisfying n = 3d if and only if πjn = (d), for some j with 1 ≤ j ≤ k.

Proof. Let πn = π1
n . . . π

k
n. We begin with the ‘only if’ direction. Assume that

there exists d ∈ N with n = 3d. Since n is odd, so is d. As d ≤ bn/2c, there is

j ∈ {1, . . . , k} such that d is in πjn. Let πjn start with d. By Definition 2.9 and

Lemma 2.8, πn(d) = (n− d)/2. As n = 3d,

πn(d) = (3d− d)/2 = d.

Thus πjn = (d). For the ‘if’ direction, suppose there is 1 ≤ j ≤ k with πjn = (d).

This means that πn(d) = d. If d is even, then πn(d) = d/2 = d which cannot be

the case as d ≥ 1. So, d is odd and it follows from πn(d) = (n − d)/2 = d that

n = 3d.

We now prove the existence of both an odd and even number in each constituent

of πn, other than the πjn of Lemma 2.11.

Lemma 2.12. Let n be odd and πn = π1
n . . . π

k
n. Then, one of the following cases

holds:

(i) If n mod 3 6= 0, then there is at least one even number and one odd number

in πin, for all i with 1 ≤ i ≤ k .

(ii) If n mod 3 = 0 and π1
n = (n/3), then there is at least one even number and

one odd number in πin, for all i with 2 ≤ i ≤ k .

Proof. We need to prove that, if πin = (di1, . . . , d
i
ni

) where ni ≥ 2, then {di1, . . . , dini}
has at least one even and one odd number. Assume, on the contrary, that either

all numbers in πin are even or all are odd. If all the numbers in πin are even, then,

by Lemma 2.8, πin = (di1, d
i
1/2 . . . , d

i
1/2

ni−1). Since πn(di1/2
ni−1) = di1/2

ni = di1,

then either ni = 0 or di1 = 0 (as equality in Lemma 2.8 is absolute and not

modulo n), which are both contradictions. Suppose, on the other hand, that all

the numbers in πin are odd. Let β = ni − 1. Using Lemma 2.8, we can compute

πin = (di1, d
i
2, . . . , d

i
ni

) to be equal to:

(di1, (n− di1)/2, . . . , [(2β−1 − 2β−2 + . . .+ 2β−β(−1)β−1)n+ (−1)βdi1]/2
β)

As πn(dini) = di1, i.e. (n− dini)/2 = di1, we have that

[(2β − 2β−1 + . . .+ (−1)β)n+ (−1)β+1di1]/2
β+1 = di1

Thus,

[(2β − 2β−1 + . . .+ (−1)β)/(2β+1 + (−1)β)]n = di1 (2.1)
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Since (2β − 2β−1 + . . .+ (−1)β) is a geometric series, we have that

(2β − 2β−1 + . . .+ (−1)β) = (2β+1 + (−1)β)/3 (2.2)

From (2.1) and (2.2), di1 = n/3. So, by Lemma 2.11, πin = (n/3) and ni = 1 which

contradicts the assumption that ni ≥ 2.

2.3 Edge-disjoint Hamilton cycles

For i ∈ {1, . . . , bn/2c}, let Ci(n) be the set of all edges e of Stn such that λ(e) = i.

Let Ci j(n) be the spanning subgraph of Stn with edge set Ci(n)∪Cj(n) (see[11]).

We have the following lemma:

Lemma 2.13 ([11]). Let U ⊆ {1, . . . , bn/2c} be the set of elements coprime to n.

Then, for all j ∈ U , Cj 2j(n) is a Hamilton graph.

Definition 2.14. Let πn = π1
n . . . π

k
n. For i ∈ {1, . . . , k} we define

πin = (Cdi1 dini
, Cdi2 di1

, . . . , Cdij dij−1
, . . . , Cdini d

i
ni−1

)

and

πn = π1
n . . . π

k
n,

where Cp q stands for Cp q(n) for all p, q ∈ {di1, . . . , dini}. Also, denote by σ(πin)

the number of subgraphs in πin (so that, if πin = (di1, . . . , d
i
ni

), σ(πin) = ni).

Example 2.15. Let n = 17. Then,

π17 = π1
n π

2
n = (C1 2, C8 1, C4 8, C2 4)(C3 6, C7 3, C5 7, C6 5), σ(π1

17) = σ(π2
17) = 4.

Notice that, if πn = π1
n . . . π

k
n, where

πin = (di1, . . . , d
i
j, d

i
j+1, d

i
j+2, . . . , d

i
ni

),

and if Cdi1 dini
is a Hamilton graph, then, by Definition 2.9 and Lemma 2.5(iii),

ΦH(Cdi1 dini
) = Cdi2 di1

, . . . ,ΦH(Cdini−1 dini−2
) = Cdini d

i
ni−1

(2.3)

are also Hamilton graphs. We have the following result for the case of coprime

constituents.

Lemma 2.16. Let πn = π1
n . . . π

k
n. Then, for i ∈ {1, . . . , k}, if all elements of πin

are coprime to n, all subgraphs in πin are Hamilton graphs.
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Proof. As all elements of πin are coprime to n, it follows from Lemma 2.12 that

πin contains an even integer 2m. By Definition 2.9 and Lemma 2.8, πn(2m) =

πin(2m) = m. Thus, by Definition 2.14, there exists a subgraph of the form

C2m m = Cm 2m in πin, where m ∈ {1, . . . , bn/2c}, and m is coprime to n. By

Lemma 2.13, Cm 2m is a Hamilton graph. Arguing as in (2.3), all subgraphs in πin

are therefore Hamilton graphs.

Example 2.17. Let n = 31. According to Definition 2.9 and Definition 2.14,

π31 = (1 15 8 4 2)(3 14 7 12 6)(5 13 9 11 10)

π31 = (C1 2C15 1C8 15C4 8C2 4)(C3 6C14 3C7 14C12 7C6 12)

(C5 10C13 5C9 13C11 9C10 11)

As, 31 is prime, all elements of the constituents of π31 are coprime to 31. So, all

15 subgraphs in π31 are Hamilton graphs.

We are interested in edge-disjoint Hamilton cycles. Coprime constituents cor-

respond to certain sets of (pairwise) edge-disjoint Hamilton cycles.

Lemma 2.18. Let πn = π1
n . . . π

k
n and let πin = (di1, . . . , d

i
ni

), where 1 ≤ i ≤ k,

be a coprime constituent. If ni is even, then there are at least ni/2 edge-disjoint

Hamilton cycles in πin, and, if ni is odd, then the number of edge-disjoint Hamilton

cycles in πin is at least (ni − 1)/2.

Proof. Two subgraphs of the form Ci1 j1 and Ci2 j2 , where {i1, j1}∩{i2, j2} = ∅, are

obviously edge-disjoint. Since in πin the only common edges occur in Cdij dij−1
and

Cdij+1 dij
where 1 ≤ j ≤ ni (di0 = dini , and dini+1 = di1), it follows from Lemma 2.16

that, if ni is odd, there are (ni−1)/2, and, if ni is even, there are ni/2 edge-disjoint

Hamilton cycles in πin.

2.4 Multiples of constituents

In this section we show that for any i < n, that is coprime to n, the constituent of

πn that contains i is a coprime constituent. We multiply all elements of constitu-

ents of πn by m, and see whether the resulting permutation cycle is a constituent

of πmn.

Definition 2.19. Let m be an odd integer, πn = π1
n . . . π

k
n, and let πin = (di1, . . . , d

i
ni

)

be one of these constituents of πn. We denote the permutation cycle (mdi1, . . . ,md
i
ni

)

by mπin, and say that mπin is πin multiplied by m and is a multiple of πin.

The next lemma shows that a constituent of πn multiplied by m, is a constituent

of πmn.



CHAPTER 2. DISJOINT HAMILTON CYCLES IN ODD DIMENSIONS 19

Lemma 2.20. Let m be an odd integer and let πn = π1
n . . . π

k
n. If πmn = π1

mn . . . π
`
mn,

then, for every i ∈ {1, . . . , k}, there exists a j ∈ {1, . . . , `} such that πjmn = mπin.

Proof. Let πn = π1
n . . . π

k
n and (without loss of generality) d be an odd integer in

the first position of πin. As 1 ≤ d ≤ bn/2c, we have that 1 ≤ md ≤ bmn/2c and

so there exists j, with 1 ≤ j ≤ ` such that md is (without loss of generality) in

the first position of πjmn. We need to show that

(mdi1, . . . ,md
i
ni

) = (dj1, . . . , d
j
(mn)j

)

It suffices to show that, if 1 ≤ f ≤ ni and 1 ≤ g ≤ (mn)j, and

mdif = djg (2.4)

then

mπn(dif ) = πmn(djg) (2.5)

The lemma will then follow from (2.5) by an inductive argument. Suppose, then,

that (2.4) holds. As m is odd, dif and djg are either both even or both odd. If dif
and djg are both even, then, by Definition 2.9, Lemma 2.8, and (2.4),

mπn(dif ) = m(dif/2) = djg/2 = πmn(djg),

and if dif and djg are both odd, then, by Definition 2.9, Lemma 2.8, and (2.4),

mπn(dif ) = m(n− dif )/2 = (mn−mdif )/2 = (mn− djg)/2 = πmn(djg).

The above result relating multiples of constituents of n and constituents of cor-

responding multiples of n, has implications for how factors of n and integers that

are coprime to n are distributed amongst the constituents.

Lemma 2.21. Let πn = π1
n . . . π

k
n. Then:

(i) If m > 1 is a factor of n and πm = π1
m . . . π

`
m, then, for every constituent

πim of πm (1 ≤ i ≤ `), there is a constituent πjn of πn (1 ≤ j ≤ k) such that

πjn = (n/m)πim.

(ii) If a constituent πjn (1 ≤ j ≤ k) of πn is not of the form (n/m)πim for some

constituent πim of πm for some factor m of n, then all elements of πjn are

coprime to n.
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Proof. The proof of (i) follows directly from Lemma 2.20. For (ii), it is straight-

forward to show that, if some elements of πjn have a common factor p with n, then

we will have πjn = pπin/p for some i.

Corollary 2.22. Let πn = π1
n . . . π

k
n. Then there exists W ⊆ {1, . . . , k} such that,

for all i ∈ W , all elements of πin have a common factor with n, and, for all j /∈ W ,

all elements of πjn are coprime to n.

The following examples clarify multiples of constituents.

Example 2.23. Let n = 17 and m = 3. According to Definition 2.9,

π17 = π1
17 π

2
17 = (1 8 4 2)(3 7 5 6)

π3×17 = π51 = π1
51 π

2
51 π

3
51 π

4
51 π

5
51 = (1 25 13 19 16 8 4 2)

(5 23 14 7 22 11 20 10)

(3 24 12 6)(9 21 15 18)(17)

As, (3 24 12 6) = 3(1 8 4 2), and (9 21 15 18) = 3(3 7 5 6), then π3
51 = 3π1

17, and

π4
51 = 3π2

17. This implies that for i ∈ {1, 2}, there exists a j ∈ {1, 2, 3, 4, 5} such

that πj51 = 3πi17.

Example 2.24. Let n = 85. Then,

π85 = π1
85 π

2
85 . . . π

7
85 = (1 42 21 32 16 8 4 2)(3 41 22 11 37 24 12 6)

(9 38 19 33 26 13 36 18)(7 39 23 31 27 29 28 14)

(5 40 20 10)(15 35 25 30)(17 34)

This shows that all the elements in π1
85, π

2
85, π

3
85, and π4

85 are coprime to 85 and all

the elements of π5
85, π

6
85, and π7

85 have a common factor with 85.

Example 2.25. Let n = 45. Then,

π45 = π1
45 π

2
45 π

3
45 π

4
45 π

5
45 = (1 22 11 17 14 7 19 13 16 8 4 2)(3 21 12 6)

(5 20 10)(9 18)(15)

As, 45 = 32 × 5, we consider the constituents of π3, π9, and π15:

π3 = π1
3 = (1)

π9 = π1
9 π

2
9 = (1 4 2)(3)

π15 = π1
15 π

2
15 π

3
15 = (1 7 4 2)(3 6)(5)
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This implies that,

π5
45 = (15) = 3(5) = 3π3

15

π5
45 = (15) = 5(3) = 5π2

9

π5
45 = (15) = 15(1) = 15π1

3

Moreover,

π4
45 = (9 18) = 3(3 6) = 3π2

15

π3
45 = (5 20 10) = 5(1 4 2) = 5π1

9

π2
45 = (3 21 12 6) = 3(1 7 4 2) = 3π1

15

All the integers of π1
45 are coprime to n = 45.

2.5 Bounds for the number of edge-disjoint

Hamilton cycles

Our calculation of a lower bound for the number of edge-disjoint Hamilton cycles in

star graphs, will use the observation (2.6) and Lemma 2.26 below, repeatedly. Let

ϕ(n) be the Euler totient function, i.e. ϕ(n) is the number of positive integers less

than or equal to n that are coprime to n. We observe that, if d and n are coprime,

where 1 ≤ d < n, then n − d and n are also coprime, and, if 1 ≤ d ≤ (n − 1)/2,

then (n+ 1)/2 ≤ n− d ≤ n− 1. It follows that

|{d ∈ N| 1 ≤ d ≤ (n− 1)/2 and d is coprime to n}| = ϕ(n)/2 (2.6)

Lemma 2.26. Let a constituent πin = (di1, . . . , d
i
ni

) of n be such that di1 is odd,

and let f be an integer greater than or equal to 2. Then,

(πin)f (di1) = (cn± di1)/2f , (2.7)

where (πin)f (di1) applies πin f times to di1, and c is an integer such that 1 ≤ c ≤
2f−1 − 1.

Proof. By induction. For f = 2, by Definition 2.9 and Lemma 2.8, πin(di1) =

(n − di1)/2 and (πin)2(di1) = ((n − di1)/2)/2 or (n − (n − di1)/2)/2 both of which

satisfy (2.7). Assume (2.7) holds for some integer f ≥ 2. If (πin)f (di1) is even, then,

by Definition 2.9 and Lemma 2.8, (πin)f+1(di1) = πin((πin)f (di1)) = ((πin)f (di1))/2 =

(cn ± di1)/2f+1 (inductively) where 1 ≤ c ≤ 2f−1 − 1 < 2(f+1)−1 − 1. If (πin)f (di1)
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is odd, then, by Definition 2.9 and Lemma 2.8, (πin)f+1(di1) = (n− (πin)f (di1))/2 =

((2f − c)n± di1)/2f+1 and 1 ≤ 2f − c ≤ 2(f+1)−1 − 1.

The required bounds are achieved by obtaining edge-disjoint Hamilton cycles

by means of coprime constituents, and counting them using Lemma 2.18. For all

but finitely many n: specifically, for those n /∈ X where

X = {3, 5, 7, 9, 11, 13, 15, 17, 21, 31, 33, 43, 51, 63, 65, 85, 127, 129, 255, 257}, (2.8)

we use the fact that coprime constituents have at least 9 elements (proved in

Theorem 2.27 below). For the finitely many n ∈ X,n 6= 127, the bounds hold by

enumeration of all constituents (Lemma 2.28). For the case n = 127, the number

of edge-disjoint Hamilton cycles produced by the constituents is 1 short of our

target bound. We demonstrate that another edge-disjoint Hamilton cycle does

exist for this case, by use of another automorphism (Lemma 2.29).

For the remainder of the chapter, let EDH(n) denote the number of edge-

disjoint Hamilton cycles in Stn.

Theorem 2.27. If n is odd and n /∈ X, then Stn contains at least d2ϕ(n)/9e
pairwise edge-disjoint Hamilton cycles, where ϕ(n) is the Euler function.

Proof. Let πn = π1
n . . . π

k
n. By Corollary 2.22, there exists a W ⊆ {1, . . . , k} such

that, for all i ∈ W , all elements of πin are coprime to n. By Lemma 2.16, all

subgraphs in each such πin are Hamilton graphs. We first show that

σ(πin) ≥ 9 for all i ∈ W (2.9)

(using the notation σ of Definition 2.14). Let i ∈ W , so we know that all the

elements of πin are coprime to n. Assume, on the contrary, that the number of

elements in πin (= σ(πin)) is less than 9. This means that σ(πin) ∈ {1, . . . , 8}. We

will consider each case.

Case σ(πin) = 1. Here, πin = (di1). If di1 is even, then πn(di1) = di1/2 by

Definition 2.9 and Lemma 2.8, and this must equal di1, which implies that di1 = 0.

Thus, di1 must be odd and πn(di1) = (n− di1)/2 by Definition 2.9 and Lemma 2.8.

So, di1 = n/3 and di1 divides n. Since n 6= 3, di1 and n are not coprime which

contradicts our assumption.

Case σ(πin) = 2. Without loss of generality, by Lemma 2.12 we can write

πin = (di1, d
i
2) where di1 is odd. By Lemma 2.26, di1 = (πin)2(di1) = (n + di1)/4 or

(n− di1)/4. Thus, n = 3di1 or n = 5di1. Both cases contradict the assumption that

di1 and n are coprime.
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Case σ(πin) = 3. Let πin = (di1, d
i
2, d

i
3) where di1 is odd. By Lemma 2.26,

di1 = (cn+ di1)/2
3 or di1 = (cn− di1)/23 where 1 ≤ c ≤ 22 − 1. So,

cn = 7di1 or cn = 3× 3di1

Since n > 2 is coprime to di1, we have n|7 in the first case, or n|9 in the second

case, contradicting n /∈ X.

Case σ(πin) = 4. Let πin = (di1, d
i
2, d

i
3, d

i
4) where di1 is odd. By Lemma 2.26,

di1 = (cn+ di1)/2
4 or di1 = (cn− di1)/24 where 1 ≤ c ≤ 23 − 1. So,

cn = 3× 5di1 or cn = 17di1

Since n > 2 and di1 are coprime, we have n|15 in the first case, or n|17 in the

second case, contradicting n /∈ X.

Case σ(πin) = 5. Let πin = (di1, d
i
2, d

i
3, d

i
4, d

i
5) where di1 is odd. By Lemma 2.26,

di1 = (cn+ di1)/2
5 or di1 = (cn− di1)/25 where 1 ≤ c ≤ 24 − 1. So,

cn = 3× 11di1 or cn = 31di1

As n > 2 is coprime to di1, we have n|33 in the first case, or n|31 in the second

case, contradicting n /∈ X.

Case σ(πin) = 6. Let πin = (di1, d
i
2, d

i
3, d

i
4, d

i
5, d

i
6) where di1 is odd. By Lemma 2.26,

di1 = (cn+ di1)/2
6 or di1 = (cn− di1)/26 where 1 ≤ c ≤ 25 − 1. So,

cn = 32 × 7di1 or cn = 5× 13di1

Since n > 2 is coprime to di1, we have n|63 in the first case, or n|65 in the second

case, contradicting n /∈ X.

Case σ(πin) = 7. Let πin = (di1, d
i
2, d

i
3, d

i
4, d

i
5, d

i
6, d

i
7) where di1 is odd. By

Lemma 2.26, di1 = (cn + di1)/2
7 or di1 = (cn − di1)/2

7 where 1 ≤ c ≤ 26 − 1.

So,

cn = 3× 43di1 or cn = 127di1

As n > 2 and di1 are coprime, we have n|129 in the first case, or n|127 in the

second case, contradicting n /∈ X.

Case σ(πin) = 8. Let πin = (di1, d
i
2, d

i
3, d

i
4, d

i
5, d

i
6, d

i
7, d

i
8) where di1 is odd. By

Lemma 2.26, di1 = (cn+ di1)/2
8 or di1 = (cn− di1)/28 where 1 ≤ c ≤ 27 − 1. So,

cn = 3× 5× 17di1 or cn = 257di1

Since n > 2 is coprime to di1, then we have n|255 in the first case, or n|257 in the
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second case, contradicting n /∈ X.

We have thus shown that (2.9) holds. Now, the coprime constituents of n are

exactly the constituents πin where i ∈ W . By (2.9), each has at least nine elements.

Therefore, counting the edge-disjoint Hamilton cycles produced by each, we have,

by Lemma 2.18,

EDH(n) ≥
∑
i∈W

(σ(πin)− 1)/2 ≥ 1/2 [
∑
i∈W

σ(πin)− (
∑
i∈W

σ(πin))/9] (2.10)

Since the πin, (i ∈ W ) contain all integers ≤ (n − 1)/2 that are coprime to n, it

follows, by (2.6), that ∑
i∈W

σ(πin) = ϕ(n)/2 (2.11)

Therefore, by (2.10) and (2.11),

EDH(n) ≥ 1/2(ϕ(n)/2− (ϕ(n)/2)/9) = 2ϕ(n)/9

and so the integer EDH(n) ≥ d2ϕ(n)/9e. This completes the proof.

Lemma 2.28. If n ∈ X and n 6= 127, then Stn contains at least b2ϕ(n)/9c
pairwise edge-disjoint Hamilton cycles, where ϕ(n) is the Euler function.

Proof. This lemma is proved by enumerating the constituents for all n ∈ X

in (2.8), other than for n = 127. We consider the following cases:

• Let n = 3. Then, b2ϕ(n)/9c = b(2× 2)/9c = 0.

• Let n = 5. Then, b2ϕ(n)/9c = b(2× 4)/9c = 0.

• Let n = 7. Then, b2ϕ(n)/9c = b(2×6)/9c = 1. As π7 = (1 3 2), EDH(7) ≥
b3/2c = 1 ≥ 1.

• Let n = 9. Then, b2ϕ(n)/9c = b(2×6)/9c = 1. We have that π9 = (1 4 2)(3).

As 9 = 32, then (1 4 2) is a coprime constituent. So, EDH(9) ≥ b3/2c =

1 ≥ 1.

• Let n = 11. Then, b2ϕ(n)/9c = b(2 × 10)/9c = 2. As π11 = (1 5 3 4 2),

EDH(9) ≥ b5/2c = 2 ≥ 2.

• Let n = 13. Then, b2ϕ(n)/9c = b(2 × 12)/9c = 2. As π13 = (1 6 3 5 4 2),

EDH(13) ≥ 6/2 = 3 ≥ 2.

• Let n = 15. Then, b2ϕ(n)/9c = b(2 × 8)/9c = 1. We have that π15 =

(1 7 4 2)(3 6)(5). As 15 = 3× 5, then (1 7 4 2) is a coprime constituent. So,

EDH(15) ≥ 4/2 = 2 ≥ 1.
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• Let n = 17. Then, b2ϕ(n)/9c = b(2 × 16)/9c = 3. We have that π17 =

(1 8 4 2)(3 7 5 6). Since 17 is prime, both (1 8 4 2) and (3 7 5 6) are coprime

constituents. Thus, EDH(17) ≥ 4/2 + 4/2 = 4 ≥ 3.

• Let n = 21. Then, b2ϕ(n)/9c = b(2× 12)/9c = 2. We have that

π21 = (1 10 5 8 4 2)(3 9 6)(7)

As 21 = 3 × 7, (1 10 5 8 4 2) is a coprime constituent. So, EDH(21) ≥
6/2 = 3 ≥ 2.

• Let n = 31. Then, b2ϕ(n)/9c = b(2× 30)/9c = 6. We have that

π31 = (1 15 8 4 2)(3 14 7 12 6)(5 13 9 11 10)

Since 31 is prime, (1 15 8 4 2), (3 14 7 12 6), and (5 13 9 11 10) are coprime

constituents. So, EDH(31) ≥ b5/2c+ b5/2c+ b5/2c = 6 ≥ 6.

• Let n = 33. Then, b2ϕ(n)/9c = b(2× 20)/9c = 4. We have that

π33 = (1 16 8 4 2)(3 15 9 12 6)(5 14 7 13 10)(11)

As 33 = 3×11, then (1 16 8 4 2) and (5 14 7 13 10) are coprime constituents.

So, EDH(33) ≥ b5/2c+ b5/2c = 4 ≥ 4.

• Let n = 43. Then, b2ϕ(n)/9c = b(2× 42)/9c = 9. We have that

π43 = (1 21 11 16 8 4 2)(3 20 10 5 19 12 6)(7 18 9 17 13 15 14)

Since 43 is prime, (1 21 11 16 8 4 2), (3 20 10 5 19 12 6), and (7 18 9 17 13 15 14)

are coprime constituents. So, EDH(43) ≥ b7/2c+ b7/2c+ b7/2c = 9 ≥ 9.

• Let n = 51. Then, b2ϕ(n)/9c = b(2× 32)/9c = 7. We have that

π51 = (1 25 13 19 16 8 4 2)(5 23 14 7 22 11 20 10)

(3 24 12 6)(9 21 15 18)(17)

As 51 = 3×17, (1 25 13 19 16 8 4 2) and (5 23 14 7 22 11 20 10) are coprime

constituents. So, EDH(51) ≥ 8/2 + 8/2 = 8 ≥ 7.

• Let n = 63. Then, b2ϕ(n)/9c = b(2× 36)/9c = 8. We have that

π63 = (1 31 16 8 4 2)(3 30 15 24 12 6)(5 29 17 23 20 10)

(11 26 13 25 19 22)(7 28 14)(9 27 18)
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As 63 = 7×32, then (1 31 16 8 4 2), (5 29 17 23 20 10), and (11 26 13 25 19 22)

are coprime constituents. So, EDH(63) ≥ 6/2 + 6/2 + 6/2 = 9 ≥ 8.

• Let n = 65. Then, b2ϕ(n)/9c = b(2× 48)/9c = 10. We have that

π65 = (1 32 16 8 4 2)(3 31 17 24 12 6)(7 29 18 9 28 14)

(11 27 19 23 21 22)(5 30 15 25 20 10)(13 26)

As 65 = 5 × 13, then (1 32 16 8 4 2), (3 31 17 24 12 6), (7 29 18 9 28 14),

and (11 27 19 23 21 22) are coprime constituents. So, EDH(65) ≥ 6/2 +

6/2 + 6/2 + 6/2 = 12 ≥ 10.

• Let n = 85. Then, b2ϕ(n)/9c = b(2× 64)/9c = 14. We have that

π85 = (1 42 21 32 16 8 4 2)(3 41 22 11 37 24 12 6)

(7 39 23 31 27 29 28 14)(9 38 19 33 26 13 36 18)

(5 40 20 10)(25 30 15 35)(17 34)

As 85 = 5 × 17, then (1 42 21 32 16 8 4 2), (3 41 22 11 37 24 12 6),

(7 39 23 31 27 29 28 14), and (9 38 19 33 26 13 36 18) are coprime constitu-

ents. So, EDH(85) ≥ 8/2 + 8/2 + 8/2 + 8/2 = 16 ≥ 14.

• Let n = 129. Then, b2ϕ(n)/9c = b(2× 84)/9c = 18. We have that

π129 = (1 64 32 16 8 4 2)(3 63 33 48 24 12 6)

(5 62 31 49 40 20 10)(7 61 34 17 56 28 14)

(9 60 30 15 57 36 18)(11 59 35 47 41 44 22)

(13 58 29 50 25 52 26)(19 55 37 46 23 53 38)

(21 54 27 51 39 45 42)(43)

As 129 = 3 × 43, then the coprime constituents are (1 64 32 16 8 4 2),

(5 62 31 49 40 20 10), (7 61 34 17 56 28 14), (11 59 35 47 41 44 22),

(13 58 29 50 25 52 26), and (19 55 37 46 23 53 38). So, EDH(129) ≥
b7/2c+ b7/2c+ b7/2c+ b7/2c+ b7/2c+ b7/2c = 18 ≥ 18.
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• Let n = 255. Then, b2ϕ(n)/9c = b(2× 128)/9c = 28. We have that

π255 = (1 127 64 32 16 8 4 2)(3 126 63 96 48 24 12 6)

(5 125 65 95 80 40 20 10)(7 124 62 31 112 56 28 14)

(9 123 66 33 111 72 36 18)(11 122 61 97 79 88 44 22)

(13 121 67 94 47 104 52 26)(19 118 59 98 49 103 76 38)

(21 117 69 93 81 87 84 42)(23 116 58 29 113 71 92 46)

(25 115 70 35 110 55 100 50)(27 114 57 99 78 39 108 54)

(37 109 73 91 82 41 107 74)(43 106 53 101 77 89 83 86)

(15 120 60 30)(17 119 68 34)(45 105 75 90)(51 102)(85)

As 255 = 3× 5× 17, then

(1 127 64 32 16 8 4 2), (7 124 62 31 112 56 28 14),

(11 122 61 97 79 88 44 22), (13 121 67 94 47 104 52 26),

(19 55 37 46 23 53 38), (23 116 58 29 113 71 92 46),

(37 109 73 91 82 41 107 74), and (43 106 53 101 77 89 83 86)

are coprime constituents. So, EDH(255) ≥ 8/2 + 8/2 + 8/2 + 8/2 + 8/2 +

8/2 + 8/2 + 8/2 = 32 ≥ 28.

• Let n = 257. Then, b2ϕ(n)/9c = b(2× 256)/9c = 56. We have that

π257 = (1 128 64 32 16 8 4 2)(3 127 65 96 48 24 12 6)

(5 126 63 97 80 40 20 10)(7 125 66 33 112 56 28 14)

(9 124 62 31 113 72 36 18)(11 123 67 95 81 88 44 22)

(13 122 61 98 49 104 52 26)(15 121 68 34 17 120 60 30)

(19 119 69 94 47 105 76 38)(21 118 59 99 79 89 84 42)

(23 117 70 35 111 73 92 46)(25 116 58 29 114 57 100 50)

(27 115 71 93 82 41 108 54)(37 110 55 101 78 39 109 74)

(43 107 75 91 83 87 85 86)(45 106 53 102 51 103 77 90)

As 257 is prime, all the constituents are coprime constituents. So, EDH(257) ≥
16(8/2) = 64 ≥ 56.

Now, the constituents for n = 127 are as follows:

π127 = (1 63 32 16 8 4 2)(3 62 31 48 24 12 6)(5 61 33 47 40 20 10)

(7 60 30 15 56 28 14)(9 59 34 17 55 36 18)(11 58 29 49 39 44 22)

(13 57 35 46 23 52 26)(19 54 27 50 25 51 38)(21 53 37 45 41 43 42)
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Since 127 is a prime number, EDH(127) ≥ 3×9 = 27 arguing as above. However,

b2ϕ(127)/9c = 28. Thus, the b2ϕ(127)/9c bound cannot be achieved for n = 127

by our existing methods alone. For the sake of completeness, we show that St127

has a 28-th edge-disjoint Hamilton cycle, and thus the b2ϕ(n)/9c bound holds for

all odd integers n.

Lemma 2.29. If n = 127, Stn has at least 2ϕ(n)/9, i.e. 28, edge-disjoint

Hamilton cycles.

Proof. First of all, by (2.3), we can obtain 27 edge-disjoint Hamilton cycles from

the following subgraphs of the constituents of 127:

C63 1, C16 32, C4 8, C31 62, C24 48, C6 12, C61 5, C47 33, C20 40,

C7 14, C30 60, C56 15, C9 18, C34 59, C55 17, C11 22, C29 58, C39 49,

C57 13, C23 46, C26 52, C54 19, C50 27, C51 25, C53 21, C41 45, C42 43.

The edge lengths that do not appear in any of these 27 Hamilton cycles are those

in the set {2, 3, 10, 28, 36, 44, 35, 38, 37}. It suffices to find a Hamilton cycle whose

edge lengths are in this set. We obtain such a Hamilton cycle as an automorphic

image of the Hamilton cycle, which we denote by Hn, comprising edges of lengths

1 and 2, constructed in [11]. The automorphism Θ that we use is defined as in

Lemma 2.5 by the bijection θ : {a1, . . . , a127} → {a1, . . . , a127} given by:

θn(ai) =



ai−9, i even, i− 9 ≥ 1,

a127+(i−9)−1, i even, i− 9 < 1,

ai+27, i odd, i+ 27 < 127,

a(i+27)−127+1, i odd, i+ 27 > 127, i 6= 127,

a127, i = 127.

Our interest is in the possible lengths of edges in the automorphic image of Hn for

n = 127. We note, from the construction of Hn in Lemma 10 of [11], that edges

in Hn of length 2 are of the form:

(aρ(1) . . . aρ(n), aρ(i) . . . aρ(n)), δ(aρ(1), aρ(i)) = 2, 1 ≤ i ≤ n− 1, ρ(n) = n

Thus, the set of possible edge lengths in the automorphic image of H127 is a subset

of the set:

{δ(aθ(i), aθ(j)) | δ(ai, aj) = 2 and i, j 6= 127, or δ(ai, aj) = 1}

We evaluate this set for θ. The possible cases are:
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δ(ai, aj) = 2, i, j even : δ(aθ(i), aθ(j)) = 2 or 3,

δ(ai, aj) = 2, i, j odd, i, j 6= 127 : δ(aθ(i), aθ(j)) = 2 or 3,

δ(ai, aj) = 1, i even, j odd, i < j, j 6= 127 : δ(aθ(i), aθ(j)) = 37 or 38,

δ(ai, aj) = 1, i odd, j even, i < j, i 6= 127 : δ(aθ(i), aθ(j)) = 35 or 36,

δ(ai, aj) = 1, i = 126, j = 127 : δ(aθ(i), aθ(j)) = 10,

δ(ai, aj) = 1, i = 127, j = 1 : δ(aθ(i), aθ(j)) = 28.

Thus, the edge lengths of Θ(H127) ⊆ {2, 3, 10, 28, 35, 36, 37, 38} and so Θ(H127) is

a 28-th edge-disjoint Hamilton cycle in St127.

Summarizing Theorem 2.27, and Lemmas 2.28, and 2.29 gives our main result:

Theorem 2.30. For any odd integer n, Stn contains at least b2ϕ(n)/9c pairwise

edge-disjoint Hamilton cycles, where ϕ(n) is the Euler function.

We can obtain bounds for Stn which do not invoke the Euler function, when

n is prime. The bounds are an almost twofold improvement on those in [11].

We show that, Stn contains at least b2(n− 1)/9c pairwise edge-disjoint Hamilton

cycles for all prime n, and so, we can have a bound of the type bn/cc for some

constant c. Morever, we can extend these results to powers of primes greater than

7.

Corollary 2.31. If n is prime, then Stn contains at least bn/5c pairwise edge-

disjoint Hamilton cycles.

Proof. By Theorem 2.30, the number of edge-disjoint Hamilton cycles of Stn is

at least b2ϕ(n)/9c. Suppose that n < 11. We check that, if n ∈ {3, 5}, then

b2ϕ(n)/9c = 0 and, if n = 7, then b2ϕ(n)/9c = bn/5c = 1. Thus, for n ∈ {3, 5, 7},
Stn contains at least bn/5c pairwise edge-disjoint Hamilton cycles. Suppose n ≥
11. By Theorem 2.30, and the fact that ϕ(n) = n− 1 if n is prime,

EDH(n) ≥ b2ϕ(n)/9c = b2(n− 1)/9c ≥ bn/5c.

Therefore, Stn contains at least bn/5c pairwise edge-disjoint Hamilton cycles for

all prime n.

Corollary 2.32. Let n be a prime such that n /∈ {3, 5, 7}, and let β > 1. Then

Stnβ contains at least bnβ/5c pairwise edge-disjoint Hamilton cycles.

Proof. If n is prime, then ϕ(nβ) = nβ − nβ−1. Therefore, by Theorem 2.30,

EDH(nβ) ≥ b2ϕ(nβ)/9c = b2(nβ − nβ−1)/9c.
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Since n ≥ 11, nβ ≥ 10nβ−1 and thus 10(nβ − nβ−1) ≥ 9nβ. This implies that

2(nβ − nβ−1)/9 ≥ nβ/5.

So, EDH(nβ) ≥ bnβ/5c and the proof is complete.

Finally, we have the following lower bounds for the number of edge-disjoint Hamilton

cycles for the cases of powers of 3, 5 and 7.

Corollary 2.33. Let EDH(n) be the number of edge-disjoint Hamilton cycles of

Stn and β > 1. Then

(i) EDH(3β) ≥ b3β/7c,

(ii) EDH(7β) ≥ b7β/6c.

Proof. Note that, if n ∈ {3, 7}, then ϕ(nβ) = nβ − nβ−1. For (i), since 5 ×
3β ≥ 14 × 3β−1, we have that (14 × 3β) − (9 × 3β) ≥ 14 × 3β−1. It follows that

2ϕ(3β)/9 = 2(3β − 3β−1)/9 ≥ 3β/7. Thus, by Theorem 2.30, EDH(3β) ≥ b3β/7c.
For (ii), since 3×7β ≥ 12×7β−1 we have that (12×7β)− (12×7β−1) ≥ 9×7β.

Then, 2ϕ(7β)/9 = 2(7β − 7β−1)/9 ≥ 7β/6, i.e. EDH(7β) ≥ b7β/6c.

We can improve the bound b2ϕ(n)/9c to bϕ(n)/4c = ϕ(n)/4 for Stn where n

is odd and divisible by 5.

Lemma 2.34. Let n be an odd integer divisible by 5 and πn = π1
n . . . π

k
n, and let

σ(πin) be the number of elements of πin. If πin is a coprime constituent of n, then

σ(πin) is even.

Proof. Firstly, note that the last digit of the positive powers of 2 cycles through

the digits 2, 4, 6, and 8. If the power is odd, then the last digit is 2 or 8, and if

the power is even, then the last digit is 4 or 6. So, only the even powers of 2, can

be of the form 5K + 1 or 5K − 1 (integers which leave remainders 1 or −1 when

divided by 5).

Let πin be a coprime constituent where σ(πin) = e, and let d ∈ πin. According

to Lemma 2.26,

(πin)f (d) = (cn± d)/2f

where 1 ≤ c ≤ 2f−1 − 1 and f ≥ 2. Since σ(πin) = e, (πin)e(d) = (cn± d)/2e = d.

Thus, cn = d(2e ± 1), and then, cn/d = 2e ± 1. As gcd(n, d) = 1, c is divisible by

d. Let c/d = m. So, nm = 2e± 1. n is divisible by 5 implies that 2e is of the form

5K + 1 or 5K − 1. Thus, e is even.



CHAPTER 2. DISJOINT HAMILTON CYCLES IN ODD DIMENSIONS 31

Theorem 2.35. Let n be odd and divisible by 5. Then, the number of edge-disjoint

Hamilton cycles of Stn is at least ϕ(n)/4 where ϕ(n) is the Euler function.

Proof. Let n be odd and divisible by 5, and let πn = π1
n . . . π

k
n. Then, by Lemma 2.34,

if πin is a coprime constituent, σ(πin) is even for 1 ≤ i ≤ k. Thus, by Lemma 2.18,

for every coprime constituent πin, we have at least σ(πin)/2 edge-disjoint Hamilton

cycles. Let π1
n, . . . , π

`
n be all the coprime constituents of n. As, 1/2

∑`
i=1 σ(πin) =

ϕ(n)/4, the number of all edge-disjoint Hamilton cycles of Stn is at least ϕ(n)/4.

Corollary 2.36. Let EDH(n) be the number of edge-disjoint Hamilton cycles of

Stn, and let n = 5β for β ≥ 1. Then, by Theorem 2.35,

EDH(n) = EDH(5β) ≥ ϕ(n)/4 = 5β−1 = n/5

The cases of n = 5β are also considered in Chapter 5 from the point of view of

symmetric properties of collections of edge-disjoint Hamilton cycles.

2.6 Bounds for special cases of primes

In this section, we improve the lower bounds for the number of edge-disjoint

Hamilton cycles in star graphs Stn of prime dimensions. Throughout this section,

we assume that σ(πin) denotes the number of elements in constituent πin.

Lemma 2.37. Let πin = (di1, . . . , d
i
ni

) be a constituent of n such that di1 is odd, and

let (πin)g(di1) = di1 for some g ≥ 2. Then, n = di1(2
g±1)/c′ where 1 ≤ c′ ≤ 2g−1−1,

and ni = σ(πin) | g.

Proof. According to Lemma 2.26, if πin = (di1, . . . , d
i
ni

) is a constituent of n such

that di1 is odd, and f is an integer greater than or equal to 2, then

(πin)f (di1) = (cn± di1)/2f (2.12)

where 1 ≤ c ≤ 2f−1 − 1. As σ(πin) = ni and πn(dini) = di1 , then (πin)ni(di1) =

(cn± di1)/2ni = di1, and so, n = di1(2
ni ± 1)/c where 1 ≤ c ≤ 2ni−1 − 1. Thus, we

have that (πin)ni+j(di1) = dij+1 for 0 ≤ j ≤ ni − 1, and so, (πin)2ni(di1) = di1. As

a result, by an easy inductive argument, (πin)kni(di1) = di1 where k is an integer

greater than or equal to 1. As, dis 6= dir for 1 ≤ s, r ≤ ni, we can conclude

that, if (πin)g(di1) = di1, then n = di1(2
g ± 1)/c′ where 1 ≤ c′ ≤ 2g−1 − 1, and

ni = σ(πin) | g.
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In the following lemma, we prove that the number of elements in the constituent

that includes 1, is greater than or equal to the number of elements of all the other

constituents.

Lemma 2.38. Let n be odd and πn = π1
n, . . . , π

k
n, and let 1 ∈ π1

n. Then, for every

i ∈ {2, . . . , n}, σ(π1
n) ≥ σ(πin).

Proof. Let πin = (di1 . . . d
i
ni

). By Lemma 2.12 (i), let di1 be an odd integer. By

Lemma 2.26, (πin)f (di1) = (cn ± di1)/2
f where f is an integer greater than or

equal to 2 and c is an integer such that 1 ≤ c ≤ 2f−1 − 1. Since σ(πin) = ni,

(πin)ni(di1) = πn(dini) = di1. Thus, there exists an odd integer 1 ≤ c ≤ 2ni−1 − 1,

where (cn± di1)/2ni = di1, i. e.,

n = di1 × (2ni ± 1)/c

Assume that 1 ∈ π1
n. This implies that for an odd c where 1 ≤ c ≤ 2n1−1 − 1,

n = (2n1 ± 1)/c× 1. Without loss of generality, let b = di1 ∈ πin be an odd integer

greater than 1 where 2 ≤ i ≤ k. So, b ∈ {3, . . . , (n − 1)/2}, and we have that

n = b × (2ni ± 1)/c′ where 1 ≤ c′ ≤ 2ni−1 − 1. We need to prove that ni ≤ n1.

As n = (2n1 ± 1)/c × 1, then n = (2n1 ± 1)/cb × b. cb is an odd integer as c

and b are both odd. We show that if 1 < b ≤ (n − 1)/2, then cb is such that

1 < cb ≤ 2n1−1 − 1 in the following cases:

• Let c = 1. Then, n = [(2n1 ± 1)/b]× b. So, n = 2n1 ± 1. As b ≤ (n− 1)/2,

b ≤ (2n1 ± 1 − 1)/2. Thus, b ≤ 2n1−1 − 1 or b ≤ 2n1−1. Since b is odd,

b ≤ 2n1−1 − 1. Therefore, 1 < cb ≤ 2n1−1 − 1.

• Let c ≥ 3. Since b ≤ (n − 1)/2, then cb ≤ cn/2 − c/2. As n = (2n1 ± 1)/c,

it follows that cn = 2n1 ± 1. So, cb ≤ 2n1−1 − c/2± 1/2. c ≥ 3 implies that

c/2± 1/2 ≥ 1. Thus, cb ≤ 2n1−1 − (c/2± 1/2) ≤ 2n1−1 − 1.

So, we have that n = (2n1 ± 1)/cb × b where 1 < cb ≤ 2n1−1 − 1. As b ∈ πin and

σ(πin) = ni, by Lemma 2.37, ni|n1, and so, ni ≤ n1. As a result, if 1 ∈ π1
n, then

for every i ∈ {2, . . . , k}, σ(π1
n) ≥ σ(πin).

We show that all constituents of n have the same number of elements if n is a

prime integer.

Lemma 2.39. Let n be prime and πn = π1
n . . . π

k
n. Then, for 1 ≤ i, j ≤ k,

σ(πin) = σ(πjn).

Proof. Assume that 1 ∈ π1
n. We show that σ(π1

n) = σ(πin) for i ∈ {2, . . . , k}. Let

b ∈ πin be an odd integer greater than 1 where 2 < i ≤ k, and let σ(πin) = ni.
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Assume, on the contrary, that σ(π1
n) 6= σ(πin). By Lemma 2.38, σ(π1

n) ≥ σ(πin).

Thus, n1 > ni. As σ(πin) = ni and b ∈ πin, then n = b × (2ni ± 1)/c where

1 ≤ c ≤ 2ni−1. As n is prime, then, by Lemma 2.11, ni > 1, and c should be

divisible by b. Let c = h × b. Thus, n = 1 × (2ni ± 1)/h. As h is an odd integer

and 1 ≤ h < 2ni−1 − 1, by Lemma 2.37, σ(π1
n) = n1|ni. So, n1 ≤ ni which is a

contradiction. Consequently, for prime n, σ(π1
n) = σ(πin) for every i ∈ {2, . . . , k}.

Therefore, σ(πin) = σ(πjn) for 1 ≤ i, j ≤ k.

We now define two special cases of prime integers, safe primes and Fermat

primes, to obtain new lower bounds on the number of edge-disjoint Hamilton

cycles.

Definition 2.40. Let n be a prime number. Then, n is called a safe prime if

n = 2z + 1 where z is prime.

The first few safe primes are 5, 7, 11, 23, 47, 59, 83, 107, and 167.

Definition 2.41. A Fermat prime is a Fermat number Fn = 22n +1 that is prime.

The only known Fermat primes are F0 = 3, F1 = 5, F2 = 17, F3 = 257, and

F4 = 65537. We show that the number of elements in every constituent of πFn in

StFn is equal to 2n, where Fn is a Fermat prime.

Lemma 2.42. Let Fn be a Fermat prime, and let πFn = π1
Fn
. . . πkFn. Then, for

1 ≤ i ≤ k, σ(πiFn) = 2n.

Proof. Let Fn be a Fermat prime, and let 1 ∈ π1
Fn

. Then, Fn = 22n + 1. So, 2n

is the least integer which satisfies Fn = (22n ± 1)/c where 1 ≤ c ≤ 22n−1 − 1.

Therefore, σ(π1
Fn

) = 2n. Since Fn is prime, by Lemma 2.39, σ(πiFn) = 2n for

1 ≤ i ≤ k.

In the next theorems, we prove that there exist at least bn/4c edge-disjoint

Hamilton cycles of star graph Stn for two special cases of primes.

Theorem 2.43. Let n be a safe prime. Then, the number of edge-disjoint Hamilton

cycles of Stn is at least bn/4c.

Proof. Let n = 2z+ 1 be a safe prime, and let πn = π1
n . . . π

k
n. Since

∑k
i=1 σ(πin) =

(n − 1)/2, then
∑k

i=1 σ(πin) = z which is a prime number. By Lemma 2.39,

σ(π1
n) = σ(πin) for i ∈ {2, . . . , k}. So, z = k × σ(π1

n). Since z is a prime integer

and as, by Lemma 2.11, σ(π1
n) > 1, it follows that k = 1. We conclude that,

σ(π1
n) = (n− 1)/2 = z. By Lemma 2.18, there are at least (z − 1)/2 = (n− 3)/4

edge-disjoint Hamilton cycles in Stn. According to [25], for n = 5, there are two

edge-disjoint Hamilton cycles in St5. With the exception of 5, a safe prime is of
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the form 4K + 3 (integers which leave a remainder 3 when divided by 4). So,

b(n− 3)/4c = b(4K + 3− 3)/4c = K, and bn/4c = b(4K + 3)/4c = K. Therefore,

b(n − 3)/4c = bn/4c. As a result, if n is a safe prime, then Stn contains at least

bn/4c edge-disjoint Hamilton cycles and the proof is complete.

Theorem 2.44. Let Fn be a Fermat prime. Then, the number of edge-disjoint

Hamilton cycles of StFn is at least bFn/4c.

Proof. Let Fn be a Fermat prime, and let πFn = π1
Fn
. . . πkFn . Then, by Lemma 2.42,

σ(πiFn) = 2n for 1 ≤ i ≤ k. According to Lemma 2.18, for every 1 ≤ i ≤ k, we

have at least σ(πiFn)/2 edge-disjoint Hamilton cycles. As a result, if Fn is a Fermat

prime, then StFn contains at least b(Fn − 1)/4c = bFn/4c edge-disjoint Hamilton

cycles and the proof is complete.

Hence, we can improve the lower bound for the number of edge-disjoint Hamilton

cycles in star graphs Stn of prime dimensions from bn/5c to bn/4c for some special

cases of primes.



Chapter 3

Symmetric disjoint Hamilton

cycles

Symmetric properties of Hamilton decompositions have been studied extensively

in cases of complete graphs. These include ‘symmetric’ collections of Hamilton

cycles as in [2] and [8], and ‘cyclic’ collections of Hamilton cycles as in [9] and [28].

The former require the existence of a single involutory automorphism fixing all

Hamilton cycles in the collection, whereas the latter require a single automorph-

ism which is a cyclic permutation of all the vertices of the graph such that the

collection of Hamilton cycles is invariant under the application of the automorph-

ism. Hamilton decompositions having both properties have also been studied [10].

In this paper, we are interested in general symmetric properties of edge-disjoint

Hamilton cycles in star graphs Stn for the purposes of designing better fault tol-

erant interconnection network topologies. Star graphs are Cayley graphs over the

symmetric group and not much was known about disjoint Hamilton cycles in star

graphs until recently, with much of the work on Hamilton decompositions of Cay-

ley graphs revolving around Alspach’s longstanding conjecture for Cayley graphs

over Abelian groups [4]. The first results were the Hamilton decomposition for the

star graph St5 of dimension 5 constructed in [25], and the multiple edge-disjoint

Hamilton cycles for general n-dimensional star graphs Stn in [11]. Surprisingly, the

constructions were symmetric in the sense that (the edges of) any two Hamilton

cycles were images of each other under automorphisms of labelled versions of Stn,

mapping labels consistently, and all of them were automorphic to a base 2-labelled

Hamilton cycle constructed in [11]. Although asymptotic bounds for the number of

disjoint Hamilton cycles in Stn were given in [11], and the stated ϕ(n)/10 bounds

for all n in [11] were improved to ϕ(n)/5 for odd n in [19] (given in Chapter 2 of this

thesis), it was not known what the optimum bounds are for obtaining Hamilton

cycles in this way and, indeed, whether or not Stn is Hamilton decomposable by

35
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these means for any n other than 5. Furthermore, there has been no work on

how many disjoint Hamilton cycles could be generated by repeated application

of a single automorphism to the base 2-labelled Hamilton cycle, thus providing

collections of Hamilton cycles invariant under application of a single automorph-

ism as in the case of cyclic collections discussed above, and a greater degree of

symmetry for the benefit of interconnection network design. In this chapter, we

define symmetric collections of disjoint Hamilton cycles for labelled versions Stn

to be those for which, given a Hamilton cycle in the collection, there is an auto-

morphism mapping labels consistently such that the chosen Hamilton cycle is the

image of the base 2-labelled Hamilton cycle in [11] (see Lemma 1.16 in Chapter

1 of this thesis). A collection of disjoint Hamilton cycles is strongly symmetric if

a single such automorphism can generate all the Hamilton cycles from the base

Hamilton cycle. We show in this chapter that there are at most ϕ(n)/2 symmetric

disjoint Hamilton cycles, where ϕ is Euler’s totient function, and that this bound

is sharp for all even n. In Chapter 4 we give conditions, in terms of Carmichael’s

function [13], on cases of even n for which this bound can and cannot be achieved

by strongly symmetric collections. We are unable to give optimum bounds for

symmetric collections of disjoint Hamilton cycles for the case of odd n, but give

cases of odd n for which ϕ(n)/4 is the optimum bound for strongly symmetric

collections in Chapter 5. All the cases that we give, whether they are for symmet-

ric or strongly symmetric collections, improve on the known number of Hamilton

cycles in the corresponding (unlabelled) star graphs Stn.

Throughout Chapters 3, 4 and 5, all arithmetic will be modulo n when Stn is

the star graph in context. Therefore, x = y will mean x = y mod n. Mostly, the

‘mod n’ will be omitted, but may sometimes appear for emphasis. In arithmetic

modulo n, we shall use n instead of 0 so that the set of integers modulo n will

be {1, . . . , n}. If non-positive integers result from a calculation then the corres-

ponding positive integer will be meant: e.g. if n = 9 then a0 = a9 and a−4 = a5.

Integers which leave a remainder r when divided by an integer q other than n, will

be referred to as ‘of the form qK + r’, so that, for example, 5, 13, 21, . . . are of

the form 8K + 5. For graphs, whenever we refer to ‘disjoint’ Hamilton cycles, we

will mean edge-disjoint Hamilton cycles. If G is a graph, H is a subgraph of G,

and Φ an automorphism of G, Φ(H) will refer to the subgraph of G that is the

image of the vertices and edges of H under Φ. Equality of subgraphs H and H ′,

H = H ′, will mean equality of both the sets of vertices and edges.

In this chapter we work with edge-labelled undirected star graphs. Their dir-

ected counterparts will be introduced in Chapter 4. We define an edge labelling

for star graphs Stn and label automorphisms which are automorphisms that map

these labels consistently. We show that Stn cannot have symmetric collections of



CHAPTER 3. SYMMETRIC DISJOINT HAMILTON CYCLES 37

greater than ϕ(n)/2 disjoint Hamilton cycles in Theorem 3.14 and that therefore

Stn is not symmetrically Hamilton decomposable for non-prime n (Corollary 3.15).

If n is even, we show that Stn does have a symmetric collection of ϕ(n)/2 Hamilton

cycles in Theorem 3.18 and that such a collection cannot be enlarged to include

further non-symmetric 2-labelled edge-disjoint Hamilton cycles (Theorem 3.19).

3.1 Labelled star graphs and label

automorphisms

Definition 3.1. The n-dimensional labelled star graph Stn = (V,E, L) is the (n-

1)-regular graph of order |Sn|, where Sn is the symmetric group of permutations

of order n, with a set V of vertices, E of edges and a mapping of edges to integer

labels L : E 7→ {1, . . . , bn/2c}, given by:

V (Stn) = {aρ(1) · · · aρ(n) | ρ ∈ Sn},
E(Stn) = {e | e = {aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n),

aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)}, ρ ∈ Sn}

L({aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n), aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)})

= δ(aρ(1), aρ(i))

where

δ(ai, aj) = min{|i− j|, n− |i− j|} (1 ≤ i, j ≤ n)

is the distance between ai and aj on the cyclic graph whose vertices are a1, . . . , an

in which an is adjacent to an−1 and a1.

The class of automorphisms of Stn of interest are those which map labels consist-

ently.

Definition 3.2. A label map for Stn is a bijection

φ` : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c}

of labels. An automorphism Φ is a label automorphism if there exists a label map

φ` such that:

L({Φ(v1),Φ(v2)}) = φ`(L{v1, v2}), for all v1, v2 ∈ V (Stn)
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3.2 Pointwise maps and distance maps

We will generate automorphism ‘pointwise’ by means of a bijection of the elements

{a1, . . . , an}.

Definition 3.3. A pointwise map for Stn is a bijection φ as in Lemma 2.5. The

corresponding automorphism is the automorphism Φ as defined in Lemma 2.5. If

φ is such that there exists a bijection

φd : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c}

satisfying, for all ai, aj ∈ {a1, . . . , an},

δ(φ(ai), φ(aj)) = φd(δ(ai, aj)) (3.1)

then Φ is trivially a label automorphism with φ` = φd in Definition 3.2 (iii). We

shall call φd the corresponding distance map.

Distance maps allude to distances in the cyclic graph of the elements {a1, ..., an},
and not to distances in Stn. The class of label automorphisms generated by a

pointwise map and with a distance map as in Definition 3.3 will be denoted by

An.

3.3 Symmetry and strong symmetry

Our definitions of symmetry are with respect to this class of automorphisms and

the Hamilton cycle with edge labels 1 and 2 constructed in [11] as the base

Hamilton cycle with which all Hamilton cycles have to be symmetric via an auto-

morphism Φ ∈ An. First of all, we introduce some notation.

Definition 3.4. A vertex v ∈ V (Stn) of the form ai . . . (respectively . . . ai), where

ai ∈ {a1, . . . an} will be denoted by −→a i (respectively ←−a i) or −→a k
i (respectively ←−a k

i )

for some subscript k if several such vertices are under consideration. For a vertex

v = −→a i =←−a j we define head(v) = head(−→a i) = ai and last(v) = last(←−a j) = aj.

Definition 3.5. The base Hamilton cycle H1 2(n) in Stn is the Hamilton cycle

constructed in [11] consisting of alternate paths of n(n− 1)− 1 edges with label 1

and single edges with label 2:

. . . • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • 1 • . . . . . . . . . • 1 •︸ ︷︷ ︸
n(n−1)−1 edges

2 • . . .
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where the total number of edges with label 1 in H1 2(n) is n! − (n − 2)! which is

greater than the number of remaining edges with label 1 (= n!-(n!-(n-2)!)=(n-2)!)

in Stn, and such that

last(v) = an

for all vertices v in H1 2(n) of edges with label 2.

A collection of edge-disjoint Hamilton cycles in Stn are ‘symmetric’ if any

Hamilton cycle in the collection is the image of H1 2(n) under an automorphism

in An. It is ‘strongly symmetric’ if a single automorphism in An generates all the

Hamilton cycles in the collection from H1 2(n).

Definition 3.6. A collection H̃ of edge-disjoint Hamilton cycles in Stn is sym-

metric if H1 2(n) ∈ H̃ and if, for all He, Hf ∈ H̃, there is a label automorphism

Φef ∈ An such that

Φef (H
e) = Hf (3.2)

The collection H̃ is strongly symmetric if there is a single Φ ∈ An such that, for

some r ∈ N,

H1 2(n),Φ(H1 2(n)), . . . ,Φr(H1 2(n)) (3.3)

are exactly the distinct Hamilton cycles in H̃ and Φr+1 is the identity mapping.

Hamilton cycles that are the image of automorphisms in An have a similar

structure.

Lemma 3.7. Let Φ ∈ An be a label automorphism with corresponding distance

map φd. Then, Φ(H1 2(n)) is a Hamilton cycle consisting of alternate paths of

n(n− 1)− 1 edges with label φd(1) and single edges with label φd(2):

. . . • φd(1) • . . . . . . . . . • φd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

φd(2) • φd(1) • . . . . . . . . . • φd(1) •︸ ︷︷ ︸
n(n−1)−1 edges

φd(2) • . . .

Proof. Follows from Definitions 3.3 and 3.5.

From Lemma 3.7, we see that a Hamilton cycle which is the image of H1 2(n)

under a label automorphism in An, is a succession of edges the majority of which

share the same label and the remaining minority of which share the same second

label. This leads to the following definition.

Definition 3.8. A Hamilton cycle which is the image of H1 2(n) under an auto-

morphism as in Lemma 3.7, will be denoted by Hi j(n) (or just Hi j if n is clear
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from the context) where the subscript i = φd(1) is the label for the majority of the

edges and the subscript j = φd(2) is the label for the minority of the edges. We

shall call these two sets of edges the majority and minority edges of Hi j and shall

denote them by Emaj(Hi j) and Emin(Hi j) respectively.

3.4 Upper bounds for symmetric collections

Not all labels can be majority or minority labels of images of H1 2 under label

automorphisms from An. The underlying reason for this is the difference in the

length of cycles of different labels.

Definition 3.9. The spanning subgraph of Stn comprising edges with labels i and

j where i, j ∈ {1, . . . , bn/2c} will be denoted by Ci j(n) and the spanning subgraph

comprising only edges with label i will be denoted Ci(n). Each Ci(n) is a union of

disjoint cycles Bx
i (n) of edges with label i [11]

E(Ci(n)) =
⋃
x∈X

E(Bx
i (n)) (X is some index set)

We shall call a cycle Bx
i (n) an i-ball. Again, we will abbreviate our notation to

Ci j, Ci and Bx
i when n is clear from the context and will drop the x index in Bx

i

when only one i-ball is under consideration. For an i-ball Bi, |Bi| will denote the

number of edges in Bi.

Lemma 3.10. Let Bi be an i-ball in Stn, where i ∈ {1, . . . , bn/2c}. Then,

(i) |Bi| = n(n− 1) if i is coprime to n, and

(ii) |Bi| < n(n− 1) if i is not coprime to n.

Proof. Let n = dq1 and i = dq2 where d = gcd(n, i) and gcd(q1, q2) = 1. Without

loss of generality, assume that the vertex

a1 . . . an ∈ Bi

Now, the elements

a1, a1+i, . . . , a1+(q1−1)i

are distinct (else, for some r, s such that 0 ≤ r < s ≤ (q1 − 1) and K ∈ N,

Kn+(1+ri) = (1+si) and so Kdq1 = (s−r)dq2 and as gcd(q1, q2) = 1, q1 divides

(s− r) which is a contradiction as (s− r) ≤ (q1− 1)). The path in Bi of the form

−→a 1,
−→a 1+i, . . . ,

−→a 1+(q1−1)i,
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where −→a 1 = a1 . . . an, rotates the elements a1, . . . , a1+(q1−1)i within the vertex

a1 . . . an thus:

a1 → a1+i → . . . a1+(q1−1)i → a1

After q1− 1 such rotations, the starting vertex a1 . . . an is reached again, i.e. there

is a path in Bi of (q1 − 1) sets of q1 vertices

−→a 1,
−→a 1+i, . . .

−→a 1+(q1−1)i︸ ︷︷ ︸
q1 vertices

, . . . . . . . . .︸ ︷︷ ︸
q1 vertices

, . . . , . . . . . . . . .︸ ︷︷ ︸
q1 vertices

,−→a 1

separated by edges with label i, and returning to −→a 1 after q1(q1 − 1) steps. If i is

coprime to n, q1 = n and (i) follows. If i is not coprime to n, then q1 < n and (ii)

follows.

Lemma 3.11. Let Φ ∈ An and let Bx
i be an i-ball in Stn, where 1 ≤ i ≤ bn/2c.

Then, there exists an i′-ball Bx′

i′ in Stn, for some i′ with 1 ≤ i′ ≤ bn/2c, such that

Φ(Bx
i ) = Bx′

i′ and (gcd(i, n) = 1 iff gcd(i′, n) = 1)

Proof. As Φ is an automorphism, Φ(Bx
i ) is a cycle such that |Φ(Bx

i )| equals |Bx
i |.

Also, as Φ is a label automorphism all edges of Φ(Bx
i ) must have the same label,

and thus Φ(Bx
i ) must be an i′-ball, Bx′

i′ say, for some i′ where 1 ≤ i′ ≤ bn/2c.
Then, by Lemma 3.10,

gcd(i, n) = 1 iff |Bx
i | = n(n− 1) = |Bx′

i′ | iff gcd(i′, n) = 1

As a result of Lemma 3.11, we are able to give constraints on how automorphisms

Φ ∈ An map labels. Indeed, we can characterize the pointwise maps φ that

generate label automorphisms Φ ∈ An.

Lemma 3.12. Let Φ ∈ An be a label automorphism with corresponding pointwise

and distance maps φ and φd respectively, as in Definition 3.3. Then:

(i) for all labels ` ∈ {1, . . . , bn/2c},

gcd(`, n) = 1 iff gcd(φd(`), n) = 1

(ii) there exist i0, j ∈ {1, . . . , n}, where j is coprime to n, such that

φ(ai) = ai0+ji (1 ≤ i ≤ n)
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Proof. For (i), let Bx
` be a `-ball in Stn. As Φ is a label automorphism with

distance map φd, Φ(Bx
` ) is a φd(`)-ball, Bx′

φd(`)
in Stn. By Lemma 3.11, gcd(`, n) = 1

iff gcd(φd(`), n) = 1.

For (ii), let i0, i1 ∈ {1, . . . , n} be such that

φ(an) = ai0 and φ(a1) = ai1

where φ is the pointwise map of Φ. Put

jp = δ(φ(an), φ(a1)) = min{|i0 − i1|, n− |i0 − i1|}

As δ(an, a1) = 1 and δ(φ(an), φ(a1)) = jp, it follows that

φd(1) = jp (3.4)

Let ai ∈ {a1, . . . , an} and consider the ag, ah ∈ {a1, . . . , an} such that

φ(ai) = ag and φ(ai+1) = ah

As δ(ai, ai+1) = 1, by (3.1) of Definition 3.3 and (3.4) we have that

δ(ag, ah) = jp

Therefore,

g − h = jp mod n or g − h = −jp mod n

and so

h = g − jp mod n or h = g + jp mod n

As φ(an) = ai0 and φ is injective, it is clear that either

φ(an) = ai0 , φ(a1) = ai0−jp , . . . , φ(an−1) = ai0−(n−1)jp (3.5)

or

φ(an) = ai0 , φ(a1) = ai0+jp , . . . , φ(an−1) = ai0+(n−1)jp (3.6)

hold. If (3.5) is the case put j = −jp and if (3.6) is the case put j = jp and the

proof of (ii) is complete.

Definition 3.13. Given a label automorphism Φ ∈ An and corresponding point-

wise map φ(ai) = ai0+ji, i0 is called the offset and j the generator of φ.

The constraints of label automorphisms in turn impose limits on the number
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of edge-disjoint Hamilton cycles in symmetric collections.

Theorem 3.14. Let H̃ be a symmetric collection of disjoint Hamilton cycles in

Stn. Then |H̃| ≤ ϕ(n)/2, where |H̃| is the number of Hamilton cycles in H̃.

Proof. By Definition 3.6, as H̃ is symmetric, any Hamilton cycle in H̃ is the image

of H1 2 under a label automorphism and thus, by Lemma 3.7 and Definition 3.8,

is of the form Hi j with majority edge labels i and minority edge labels j. By

Lemma 3.12 (i) with ` = 1, gcd(i, n) = 1. Thus, the disjoint Hamilton cycles in

H̃ can be listed as

Hi1 j1 , Hi2 j2 , . . . , His js

with majority edges with labels i1, . . . , is respectively and minority edges with

labels j1, . . . , js respectively, and

gcd(ir, n) = 1 (for all r with 1 ≤ r ≤ s)

Therefore, {i1, . . . , is} ⊆ {1, . . . , bn/2c} is a set of edge labels coprime to n, and

there are at most ϕ(n)/2 such integer labels.

An important corollary to Theorem 3.14 is that, if n is not a prime number,

Stn is not symmetrically Hamilton decomposable.

Corollary 3.15. If n ≥ 5 is not a prime number, then there is no symmetric

collection of disjoint Hamilton cycles H̃ such that

E(Stn) =
⋃
H∈H̃

E(H),

where E(H) denotes the set of edges in Hamilton cycle H.

Proof. If the edges E(Stn) of Stn are partitioned into a collection H̃ of disjoint

Hamilton cycles, H̃ will have bn/2c such cycles if n is odd and n/2−1 such cycles

if n is even. However, if the non-prime n is odd then ϕ(n) < n− 1 and if n is even

ϕ(n) ≤ n/2. By Theorem 3.14, H̃ cannot be symmetric.

3.5 Lower bounds in even dimensions

Although Stn is not symmetrically Hamilton decomposable for any even integer

n, we will find an optimal symmetric collection of disjoint Hamilton cycles, i.e. a

collection with ϕ(n)/2 Hamilton cycles, in Theorem 3.18 below. Constructing a

symmetric collection involves finding a collection of label automorphisms which,
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when applied to H1 2, generate disjoint Hamilton cycles as the images of H1 2.

Lemma 3.12 (ii) characterizes the pointwise maps of label automorphisms to be of

the form φ(ai) = ai0+ji. In the following Lemma 3.16 (i) and (ii), the converse is

given, i.e. that any pointwise map of the form φ(ai) = ai0+ji consistently defines

a distance map of edge labels

φd : {1, ..., bn/2c} 7→ {1, ..., bn/2c}

and therefore a label automorphism.

Lemma 3.16. Let n be odd or even and i0, j ∈ {1, . . . , n} be such that j is coprime

to n. If the bijection φj : {a1, ..., an} 7→ {a1, ..., an} is defined by

φj(ai) = ai0+ji (1 ≤ i ≤ n)

then the following hold:

(i) for all ag, ah ∈ {a1, ..., an},

δ(φj(ag), φj(ah)) = min{|j(g − h) mod n|, n− |j(g − h) mod n|},

(ii) there exists a bijection φdj : {1, ..., bn/2c} 7→ {1, ..., bn/2c} such that, for all

ag, ah ∈ {a1, ..., an},

δ(φj(ag), φj(ah)) = φdj (δ(ag, ah)),

(iii) if i0 = n, i.e. φj(ai) = aji, then for the label automorphism Φj corresponding

to φj as in Definition 3.3, we have that, for all ←−a n ∈ V (Stn), there exists
←−a ′n ∈ V (Stn) such that

Φj(
←−a n) =←−a ′n,

i.e. vertices ending in an are mapped to vertices ending in an by Φj.

Proof. For (i), we have that (arithmetic expressions are evaluated modulo n):

δ(φj(ag), φj(ah)) = min{|(i0 + jg)− (i0 + jh)|, n− |(i0 + jg)− (i0 + jh)|}
= min{|j(g − h)|, n− |j(g − h)|}

To prove (ii), we need to show that if ag, ah, ag′ , ah′ ∈ {a1, . . . , an}, then δ(ag, ah) =
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δ(ag′ , ah′) implies that δ(φj(ag), φj(ah)) = δ(φj(ag′), φj(ah′)). We have that:

δ(ag, ah) = δ(ag′ , ah′) ⇒ min{|g − h|, n− |g − h|}
= min{|g′ − h′|, n− |g′ − h′|}
⇒ |g − h| = |g′ − h′| or |g′ − h′| = n− |g − h|
⇒ {|g − h|, n− |g − h|} = {|g′ − h′|, n− |g′ − h′|}
⇒ {|j(g − h)|, n− |j(g − h)|}
= {|j(g′ − h′)|, n− |j(g′ − h′)|}
⇒ δ(φj(ag), φj(ah)) = δ(φj(ag′), φj(ah′)) (by (i))

Condition (iii) follows immediately from the definition of the corresponding label

automorphism Φj, Lemma 2.5, and the fact that φj(an) = an if i0 = n.

The offset i0 in pointwise maps φ(ai) = ai0+ji is important for ensuring that there

is no clash of minority edges. Lemma 3.16 (iii) above shows that, if i0 is not

used, then vertices ending in an are mapped to vertices ending in an. As, by

Definition 3.5, minority edges have vertices ending in an, any collection of disjoint

Hamilton cycles which use exclusively pointwise maps without i0, would have all

minority edges in the collection with vertices ending in an. This would lead to

the possibility of the same edges belonging to different Hamilton cycles in the

collection, as a clash of edge labels of minority edges is unavoidable for all even n.

By use of i0, we can ensure that even though different Hamilton cycles may share

the same minority edge labels, different Hamilton cycles will not share the same

edges as their vertices will end in a different ai ∈ {a1, . . . , an}. The next lemma,

Lemma 3.17, introduces the pointwise map φ+1 which just replaces ai by ai+1.

Lemma 3.17. Let φ+1 : {a1, ..., an} 7→ {a1, ..., an} be the pointwise map defined

by:

φ+1(ai) = ai+1 (1 ≤ i ≤ n)

Then:

(i) φ+1 defines a corresponding distance map

φd+1 : {1, . . . , bn/2c} 7→ {1, . . . , bn/2c},

such that, for all ` ∈ {1, . . . , bn/2c},

φd+1(`) = `

(ii) if Φ+1 is the label automorphism corresponding to φ+1 then, for all
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←−a n ∈ V (Stn), there exists ←−a 1 ∈ V (Stn) such that

Φ+1(
←−a n) =←−a 1

i.e. vertices ending in an are mapped to vertices ending in a1 by Φ+1.

Proof. If ag, ah ∈ {a1, ..., an} then (with arithmetic being modulo n)

δ(φ+1(ag), φ+1(ah)) = min{|(g + 1)− (h+ 1)|, n− |(g + 1)− (h+ 1)|}
= min{|g − h|, n− |g − h|}
= δ(ag, ah)

Thus, φ+1 defines the identity distance map φd+1 : L 7→ L. For (ii), we have that:

Φ+1(ag1 . . . agn−1an) = φ+1(ag1) . . . φ+1(agn−1)φ+1(an)

= ag1+1 . . . agn−1+1a1

We now prove that, for all even n, there are ϕ(n)/2 symmetric disjoint Hamilton

cycles. The Hamilton cycles are generated by the label automorphisms of chosen

pointwise maps, and make additional use of the pointwise map φ+1 of Lemma 3.17

to resolve any possible clashes of minority edges.

Theorem 3.18. For all even n, Stn has a symmetric collection of ϕ(n)/2 disjoint

Hamilton cycles H̃.

Proof. Let

i1, . . . , iϕ(n)/2

be the ϕ(n)/2 integers less than n/2 which are coprime to n. First of all, for all

j ∈ {i1, . . . , iϕ(n)/2} define φj : {a1, ..., an} 7→ {a1, ..., an} by

φj(ai) = aji

Then, by Lemma 3.16 (ii), φj defines a distance map φdj and corresponding label

automorphism Φj as in Definition 3.3. Consider the image of H1 2 under Φj. From

Lemma 3.16 (i) and as j < n/2, we have that:

δ(a2, a1) = 1 and δ(φj(a2), φj(a1)) = min{|j|, n− |j|} = j

and

δ(a3, a1) = 2 and δ(φj(a3), φj(a1)) = min{|2j|, n− |2j|}
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Thus, φdj (1) = j and φdj (2) = ±2j mod n. Taking the image Φj(H1 2) for each

j ∈ {i1, . . . , iϕ(n)/2} we produce a list of Hamilton cycles (with the majority and

minority edge labels indicated in the subscripts):

Hi1 ±2i1 , . . . , Hiϕ(n)/2 ±2iϕ(n)/2 (3.7)

as in Definition 3.8. As i1, . . . , iϕ(n)/2 are distinct odd integers coprime to n, each

majority edge in any Hamilton cycle in (3.7) only occurs in that Hamilton cycle

as no other Hamilton cycle has the same edge label. However, it is possible that

different Hamilton cycles in (3.7) share the same minority edge labels. We may

have, for some distinct ir, is ∈ {i1, . . . , iϕ(n)/2},

min{|2ir mod n|, n− |2ir mod n|} = min{|2is mod n|, n− |2is mod n|}

when 2ir = −2is mod n, i.e.

2is = n− 2ir and so is = n/2− ir (3.8)

From (3.8), it is clear that any minority edge label may be common to at most

two Hamilton cycles in (3.7). To resolve this clash of minority edge labels, we

replace one of the Hamilton cycles involved by one with the same labels but

different vertices for minority edges. Suppose that the minority edges of Hir ±2ir

and His ±2is clash, so that is = n/2− ir. Consider the Hamilton cycles:

Hir ±2ir = Φir(H1 2) and H ′is ±2is = Φ+1(His ±2is) = Φ+1(Φis(H1 2)) (3.9)

By Definitions 3.5 and 3.8, all vertices of minority edges of H1 2 are of the form
←−a n, and so, by Lemma 3.16 (iii), all vertices of minority edges of Φir(H1 2) and

Φis(H1 2) are also of the form ←−a n. From the latter it follows, by Lemma 3.17 (ii),

that all vertices of minority edges of Φ+1(Φis(H1 2)) are of the form ←−a 1. Thus, as

the vertices of minority edges of Hir ±2ir are of the form ←−a n and those of H ′is ±2is
are of the form←−a 1, Hir ±2ir and H ′is ±2is are edge-disjoint despite having the same

minority edge labels. By resolving all pairs of clashes in this way in (3.7) we

produce a collection of ϕ(n)/2 symmetric and edge-disjoint cycles as required.

Theorem 3.18 shows that, for all even n, there is a symmetric collection of

ϕ(n)/2 disjoint Hamilton cycles H̃ and Theorem 3.14 shows that this is the best

that can be achieved for symmetric collections. Can this ϕ(n)/2 bound be im-

proved by adding non-symmetric disjoint Hamilton cycles to the collection H̃ in

Theorem 3.18? The answer is negative for 2-labelled Hamilton cycles sharing la-
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bels with Hamilton cycles in H̃. If an extra disjoint Hamilton cycle H ′j i could

be added, such that there is some Hamilton cycle Hi j ∈ H̃, then the label auto-

morphism that maps H1 2 to Hi j would also map H ′2 1 to H ′j i, where

H ′2 1 = C1 2 −H1 2,

is the spanning subgraph of Stn comprising the edges with labels 1 and 2 that

are not in H1 2, and H ′2 1 would be also be hamiltonian. If H ′2 1 is hamiltonian

then, even though it is not symmetric to H1 2 (as there is no distance map of

{a1, ..., an} mapping distances 1 to distances 2 and distances 2 to distances 1 for

all n greater than 5) the symmetric collection of ϕ(n)/2 disjoint Hamilton cycles

in Theorem 3.18 could be doubled in size to produce a non-symmetric collection

of ϕ(n) Hamilton cycles that are still edge-disjoint. Unfortunately, H ′2 1 is not

hamiltonian as the following theorem shows.

Theorem 3.19. The spanning subgraph H ′2 1 of Stn, comprising the edges of labels

1 and 2 that are not in H1 2, is not a Hamilton cycle if n is even.

Proof. It is clear from Definition 3.5 that the number of edges with label 2 in

H1 2 is (n-2)!. Therefore, H1 2 meets at most (n-2)! 2-balls. The total number of

2-balls in C1 2 is the number of vertices in C1 2 (= n!) divided by the number of

vertices in a 2-ball:

|C1 2|/|B2| (3.10)

As n is even and hence 2 is not coprime to n, by Lemma 3.10(ii) the number of

vertices in a 2-ball is less than n(n-1) and so, by (3.10), the number of 2-balls

exceeds (n-2)!. Hence, there is some 2-ball Bk
2 which H1 2 does not meet. Clearly,

the edges of this 2-ball Bk
2 must belong to H ′2 1 which then cannot be hamiltonian

as it contains a cycle with fewer than n! vertices.

3.6 Symmetric collections in odd dimensions

Whilst the ϕ(n)/2 upper bound, on the number of Hamilton cycles in a symmetric

collection also holds for Stn if n is odd, it is not clear that this bound can be

achieved for any odd n other than n equals 5 [25]. In the case of even n, the number

of Hamilton cycles in a symmetric collection H̃ is limited to ϕ(n)/2 because every

majority edge label in H̃ has to be coprime to n as the majority edge label 1 of

the base Hamilton cycle H1 2 is coprime to n. However, in the case of odd n, both

the majority and minority edge labels of Hamilton cycles in symmetric collections

have to be coprime to n as both the majority and minority edge labels of H1 2,

i.e. 1 and 2, are coprime to n. For this reason, it would appear that the upper
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bound for symmetric collections in the case of odd n should be ϕ(n)/4. To exceed

this bound would require a symmetric collection of Hamilton cycles H̃ containing

Hamilton cycles

Hi `, H` j ∈ H̃

such that the minority edges of Hi ` are exactly the edges with label ` that are

not present as majority edges in H` j. This is a very tight restriction which is

satisfied for n equals 5 [25] where there is a distance map which maps labels 1 to

2, and therefore 2 to 1 as there are no other labels, such that the 2 Hamilton cycles

produced automorphically map minority edges with label 2 in one Hamilton cycle

to the unused edges with label 1 as minority edges in the second Hamilton cycle.

It seems unlikely that the same majority and minority edge labels can occur in

symmetric collections for odd n if n is greater than 5 and labels 1 and 2 cannot

map to each other, though this remains an open problem. However, if ϕ(n)/4 is

the true bound, this is nearly achieved for all but one odd n by the construction

in [19] (given in Chapter 2 of this thesis).

Theorem 3.20. For all odd n 6= 127, Stn has a symmetric collection of 2ϕ(n)/9

disjoint Hamilton cycles H̃.

Proof. See [19] and Lemma 2.28 in Chapter 2 of this thesis.

In Chapter 5, we are able to achieve the ϕ(n)/4 bound for certain cases of n.

Indeed, the ϕ(n)/4 bound is achieved for strongly symmetric collections for those

cases of n.



Chapter 4

Strongly symmetric disjoint

Hamilton cycles in even

dimensions

We know from Chapter 3 that, for all even n, Stn has a symmetric collection of

ϕ(n)/2 disjoint Hamilton cycles. In this chapter, we consider whether there are

any cases where this optimal ϕ(n)/2 symmetric bound can be achieved by strongly

symmetric collections. The closest that symmetric collections come to a Hamilton

decomposition for even n, in terms of the proportion of edges used, are the cases

where n=2k. In those cases, more than half of the edges in Stn are present in a

symmetric collection of ϕ(n)/2 disjoint Hamilton cycles. We show in Theorem 4.8

below that, for all such n, Stn has a strongly symmetric collection of ϕ(n)/2

disjoint Hamilton cycles. Other cases are also shown to have strongly symmetric

collections of ϕ(n)/2 disjoint Hamilton cycles (Corollary 4.11). However, not all

even n have strongly symmetric collections at the ϕ(n)/2 bound. We show that

if n is the product of any power of 2 greater than 2 and the power of any other

prime, then there does not exist a strongly symmetric collection of ϕ(n)/2 disjoint

Hamilton cycles for Stn (Corollary 4.15).

4.1 Directed labels and directed labelled star

graphs

We introduce directed distances in (4.1) below and then directed versions of labels,

distance maps, star graphs and label automorphisms. To show strong symmetry,

we need to find a label automorphism Φ which can be used to generate a collection

of edge-disjoint Hamilton cycles starting with H1 2 and applying Φ repeatedly until

the power of Φ which is the identity map is reached. In order to prove that a certain

50
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power of Φ is the identity map, we need to consider the effect of Φ on a directed

version of our labelled star graphs.

Definition 4.1. Given ai, aj ∈ {a1, ..., an}, the directed distance δ±(ai, aj) between

ai and aj is defined to be:

δ±(ai, aj) = (i− j) mod n (4.1)

The directed labelled n-star graph St
←→
n is a triple (V,E, L), where V (St

←→
n ) = V (Stn)

is the same set of vertices as in the corresponding undirected star graph, E(St
←→
n )

has a pair of arcs, here called directed edges, in both directions for each (undirected)

edge in E(Stn),

E(Stn) = {e | e = (aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n),
aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)), ρ ∈ Sn}

and L : E(St
←→
n )→ {1, . . . , n− 1} maps directed edges to integer directed labels as

follows:

L({aρ(1) · · · aρ(i−1)aρ(i)aρ(i+1) · · · aρ(n), aρ(i) · · · aρ(i−1)aρ(1)aρ(i+1) · · · aρ(n)})

= δ±(aρ(1), aρ(i))

Note that, from Definitions 3.1 and 4.1, we have that, for all ai, aj ∈ {a1, ..., an},

δ±(ai, aj) = δ(ai, aj) mod n or δ±(ai, aj) = (−δ(ai, aj)) mod n (4.2)

A label automorphism on an undirected star graph, which defines a mapping

of labels φd, also defines a mapping of directed labels φd±, given below, of the

corresponding directed star graph.

Lemma 4.2. Let Φ ∈ An be a label automorphism of Stn with corresponding

pointwise and distance maps φ and φd respectively as in Definition 3.3. Let φd±

be a mapping of directed labels

φd± : {1, . . . , n− 1} → {1, . . . , n− 1}

defined as

φd±(x) = δ±(φ(ai), φ(aj)),

where ai, aj ∈ {a1, ..., an} are such that δ±(ai, aj) = x. Then,

(i) φd± is well defined,
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(ii) for all k ≥ 0,

(φd±)k(δ±(ai, aj)) = δ±(φk(ai), φ
k(aj)) = (φk)d±(δ±(ai, aj))

(iii) for all ` ∈ {1, . . . , bn/2c}, φd(`) = φd±(`) mod n or φd(`) = −φd±(`) mod n.

Proof. For (i), by Lemma 3.12(ii), there exist i0, j ∈ {1, . . . , n} such that, for all

ai ∈ {a1, ..., an},
φ(ai) = ai0+ji (4.3)

We need to show that, if ag, ah, ag′ , ah′ ∈ {a1, ..., an} are such that δ±(ag, ah) =

δ±(ag′ , ah′), then δ±(φ(ag), φ(ah)) = δ±(φ(ag′), φ(ah′)). Let ag, ah, ag′ , ah′ ∈ {a1, ..., an}
be such that δ±(ag, ah) = δ±(ag′ , ah′), i.e. by Definition 4.1,

(g − h) mod n = (g′ − h′) mod n

Then,

δ±(φ(ag), φ(ah)) = δ±(ai0+jg, ai0+jh) (by (4.3))

= j(g − h) (by Definition 4.1)

= j(g′ − h′)
= δ±(φ(ag′), φ(ah′))

For (ii), we have inductively by (i),

(φd±)k(δ±(ai, aj)) = (φd±)k−1(δ±(φ(ai), φ(aj))) = . . .

. . . = δ±(φk(ai), φ
k(aj)) = (φk)d±(δ±(ai, aj))

For (iii), choose i, j ∈ {1, . . . , n} such that i− j = `. Then,

φd(`) = φd(δ(ai, aj)) (by Definition 3.1)

= δ(φ(ai), φ(aj)) (by (3.1) of Definition 3.3)

= ±δ±(φ(ai), φ(aj)) mod n (by (4.2))

= ±φd±(δ±(ai, aj)) mod n (by (i))

= ±φd±(`) mod n (by Definition 4.1)

We have the following special cases of Lemma 4.2.

Lemma 4.3. Let Φ ∈ An be a label automorphism with pointwise map φ defined

by φ(ai) = ai0+ji, and let the mapping φd± be as in Lemma 4.2.
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(i) If δ±(ag, ah) = 1 then, for all k ≥ 0, δ±(φk(ag), φ
k(ah)) = jk mod n.

(ii) If δ±(ag, ah) = 2 then, for all k ≥ 0, δ±(φk(ag), φ
k(ah)) = 2jk mod n.

4.2 Mapping directed labels

Definition 4.4. Let Φ, φ, φd and φd± be as in Lemma 4.2. Then, φd± is called

the corresponding directed distance map. As φd and φd± are permutations of labels

and directed labels respectively, they can be decomposed into permutation cycles.

We shall call the permutation cycles of φd and φd± the constituents and directed

constituents, respectively, of φ or Φ.

Constituents were introduced in Chapter 2 for the automorphism studied in

that chapter. Directed constituents are just cosets of a subgroup of the multi-

plicative group of integers coprime to n modulo n. We use the term ‘directed

constituents’, instead, as a comparison with constituents. The following result

will be the basis of proofs that some power of a label automorphism is the identity

mapping.

Lemma 4.5. Let Φ ∈ An be a label automorphism of Stn with corresponding

pointwise and directed distance maps φ and φd± respectively. Suppose that, for

some k ≥ 1,

(φd±)k(1) = 1 and φk(an) = an (4.4)

Then, for all ai ∈ {a1, ..., an},

φk(ai) = ai (4.5)

i.e. Φk is the identity automorphism.

Proof. Clearly, the mapping Φk : V (Stn) 7→ V (Stn) is a label automorphism with

corresponding pointwise map φk and directed distance map (φk)d± where, for all

` ∈ {1, . . . , n− 1},
(φk)d±(`) = (φd±)k(`)

By Lemma 3.12(ii), as φk is the pointwise map of the label automorphism Φk,

there exist i0, j ∈ {1, . . . , n} such that

φk(ai) = ai0+ji (1 ≤ i ≤ n) (4.6)

Also, by Lemma 4.2(ii) and (4.4),

δ±(φk(a2), φ
k(a1)) = (φk)d±(δ±(a2, a1)) = (φd±)k(1) = 1 (4.7)
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Thus, by Definition 4.1, (4.6) and (4.7),

(i0 + 2j)− (i0 + j) = j = 1 mod n (4.8)

By (4.4), (4.6) and (4.8),

an = φk(an) = ai0+jn = ai0+n (4.9)

and so, by (4.9), i0 = n and hence φk(ai) = ai for all i in (4.6).

4.3 Primitive roots and generators

In order to construct a strongly symmetric collection of disjoint Hamilton cycles

starting from H1 2 we need to find a pointwise map φ(ai) = ai0+ji, for suitable

i0, j ∈ {1, . . . , n}, which defines the Φ that will generate the Hamilton cycles. The

majority edge labels of all Hamilton cycles in the collection will be coprime to

n as the majority edge label of H1 2 is coprime to n and therefore, by repeated

application of Lemma 3.12(i), gcd((φd)k(1), n) = 1 for all k ≥ 0, i.e.

1, φd(1), (φd)2(1), . . . , (4.10)

which are the majority edge labels of the Hamilton cycles in the collection, are

all coprime to n. To find the largest strongly symmetric collection we need to

maximize the list of distinct coprime integers in (4.10). It is tempting to consider

instead the list

1, φd±(1), (φd±)2(1), . . . , (4.11)

as, by Lemma 4.2(iii), each entry in (4.11) is only plus or minus the corresponding

entry in (4.10) and therefore represents the same (undirected) label. In order to

maximize the size of the list (4.11) we note that, by Lemma 4.3(i), it is equal to

(with all calculations being modulo n):

1, j, j2, . . .

It would seem, therefore, that choosing a primitive root modulo n as j, if such

exists, would produce the largest possible list. This would suggest that maybe for

all n that have primitive roots - in the case of even n this is known to be when

n = 2pk where p is a prime number greater than 2 - a strongly symmetric collection

of ϕ(n) disjoint Hamilton cycles could be produced by putting j equal to the

primitive root. This is not possible as Theorem 3.14 shows that a symmetric (and,

a fortiori, a strongly symmetric) collection can have at most ϕ(n)/2 Hamilton
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cycles. The reason that putting j equal to the primitive root fails is that in the

list of distinct directed labels

1, j, . . . , jϕ(n)−1

every undirected label occurs twice and corresponding Hamilton cycles would have

clashes of majority edge labels and would not be edge-disjoint. A better generator

j would be one that generates ϕ(n)/2 integers coprime to n

1, j, . . . , jϕ(n)/2−1, (4.12)

such that jϕ(n)/2 = 1 mod n, in which the corresponding undirected edge labels

are distinct. We shall show that this can be achieved for n = 2k, where k ≥ 3,

by using ‘primitive lambda-roots’ instead. Primitive lambda-roots stem from the

Carmichael function λ(n) [13] which is defined to be the smallest integer m such

that

jm = 1 mod n

for all integers j that are coprime to n. A primitive lambda root is any coprime j

satisfying

jλ(n) = 1 mod n, jk 6= 1 mod n if k < λ(n) (4.13)

If n has a primitive root then λ(n) = ϕ(n), but the more interesting cases for us

are when λ(n) 6= ϕ(n). In particular, if λ(n) = ϕ(n)/2, j is a primitive lambda

root, and −1 mod n does not appear in (4.12), then the corresponding undirected

edge labels of the directed edge labels in (4.12) will be distinct. This will follow

from the following two lemmata (all arithmetic is modulo n).

Lemma 4.6. Let j be coprime to n and such that either

(i) jϕ(n)/2 = 1 and | jq |6= 1 for any q with 1 ≤ q < ϕ(n)/2, or

(ii) jϕ(n)/2 = −1 and jq 6= −1 for any q with 1 ≤ q < ϕ(n)/2.

Then, for all r, s such that 1 ≤ r < s ≤ ϕ(n)/2,

jr + js 6= n

and therefore

1, j, . . . , jϕ(n)/2−1

is a sequence of distinct undirected edge labels of Stn .

Proof. If jr + js = n, then jr(1 + js−r) = n and, as j is coprime to n, js−r = −1

and thus neither (i) nor (ii) can be the case as s− r < ϕ(n)/2.



CHAPTER 4. STRONG SYMMETRY IN EVEN DIMENSIONS 56

Lemma 4.7. For all n = 2k where k ≥ 3, there is a primitive lambda root j

satisfying Lemma 4.6(i).

Proof. It is well known that λ(n) = ϕ(n)/2 if n = 2k and k ≥ 3. Thus, there

is some primitive lambda root j such that jϕ(n)/2 = 1. By Theorems 8.8 and

8.9 in [12], there are no ‘negating’ primitive lambda-roots of n, i.e. no primitive

lambda-roots j such that jq = −1 for some q with 1 ≤ q ≤ λ(n)(= ϕ(n)/2). Thus,

Lemma 4.6(i) is satisfied by any chosen primitive lambda root.

4.4 Strong symmetry in dimensions that are

powers of two

We can now show that Stn has a strongly symmetric collection of ϕ(n)/2 disjoint

Hamilton cycles if n = 2k and k ≥ 3.

Theorem 4.8. Let n = 2k where k ≥ 3. Then, Stn has a strongly symmetric

collection of ϕ(n)/2 disjoint Hamilton cycles.

Proof. Let the pointwise map φ be defined by

φ(ai) = a(j−1)+ji, (4.14)

where j is a primitive lambda root modulo n as in Lemma 4.7, and let H̃ be the

collection of Hamilton cycles comprising

H1 2,Φ(H1 2), . . . ,Φ
ϕ(n)/2−1(H1 2), (4.15)

where Φ is the label automorphism corresponding to φ. In order to prove strong

symmetry of H̃, Definition 3.6 requires that we prove the Hamilton cycles in (4.15)

to be edge-disjoint and Φϕ(n)/2 to be the identity mapping, i.e. φϕ(n)/2(ai) = ai for

all ai ∈ {a1, ..., an}.
Firstly, we show that no two Hamilton cycles in (4.15) share the same label

for their majority edges. Note that each undirected edge in Stn that is in H1 2,

has label equal to 1 or 2, and has two corresponding directed edges with directed

labels +1 and -1 or +2 and -2 in St
←→
n . Hence, there is a Hamilton cycle H+

1 2 in

St
←→
n which, for each undirected edge labelled 1 or 2 in H1 2, has its corresponding

positively labelled directed edge, i.e. a directed edge labelled by +1 or +2, as an

edge of the Hamilton cycle H+
1 2. (We remark here that if the vertices v1, . . . , vn!

follow the path of the Hamilton cycle H1 2, the directed edges of H+
1 2 are not

necessarily, and nor do we require them to be, the pairs (v1, v2), . . . , (vn!−1, vn!).
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Some of these pairs may be reversed in H+
1 2.) This gives rise to a succession of

Hamilton cycles in St
←→
n , obtained from those in Stn listed in (4.15),

H+
1 2,Φ(H+

1 2), . . . ,Φ
ϕ(n)/2−1(H+

1 2),

which, by (4.14) and Lemma 4.3, can be written as

H+
1 2, Hj 2j, . . . , Hjϕ(n)/2−1 2jϕ(n)/2−1 , (4.16)

displaying majority and minority directed edge labels in the subscripts. If we

can show that the two directed labels of the majority edges of any two Hamilton

cycles in (4.16) are not equal to plus or minus of each other (modulo n), then the

two undirected labels of the majority edges of the corresponding Hamilton cycles

in (4.15) are different and so no two Hamilton cycles in (4.15) have majority edges

in common. So, assume, on the contrary, that two Hamilton cycles in (4.16)

Hjr 2jr and Hjs 2js , where 1 ≤ r < s ≤ ϕ(n)/2,

have majority edge labels which are equal to plus or minus of each other, i.e.

jr = js or jr + js = n. If jr = js then js−r = 1 which contradicts the fact that

j is a primitive lambda root as s − r < ϕ(n)/2 = λ(n) (see (4.13)). But, the

chosen j satisfies that in Lemma 4.7 and therefore that in Lemma 4.6(i) and so,

by Lemma 4.6(i), jr + js 6= n. It follows that the majority edge labels of two

Hamilton cycles in (4.15) are different.

Secondly, we note that majority edge labels cannot clash with minority edge

labels in two Hamilton cycles in (4.15) as the majority edge label of H1 2 (which

equals 1) is coprime to n and therefore, by Lemma 3.12(i), the majority edge

labels of all succeeding Hamilton cycles are coprime to n, whereas the minority

edge labels of H1 2 (which equals 2) is not coprime to n which is even and therefore

all succeeding minority edge labels are not coprime to n.

Thirdly, we consider clashes of minority edge labels between two Hamilton

cycles in (4.15). A clash of minority edge labels can occur in a similar way to that

described in Theorem 3.18. As in that theorem, we switch our attention to the

vertices of minority edges instead in order to prove that the same minority edge

cannot occur in two Hamilton cycles in (4.15). We show that the sets of vertices

of minority edges, in two Hamilton cycles in (4.15), are disjoint. By Definition 3.5,

for all vertices v of minority edges in H1 2, we have that last(v) = an. We compute

such last(v)s for successive Hamilton cycles in (4.15) (below Vmin(H) denotes the
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set of vertices of the minority edges of Hamilton cycle H):

last(v) = an (v ∈ Vmin(H1 2))

last(v) = φ(an) = a(j−1)+jn = a(j−1) (v ∈ Vmin(Φ(H1 2)))

last(v) = φ2(an) = φ(φ(an)) = a(j−1)+j(j−1) = a(j−1)(1+j) (v ∈ Vmin(Φ2(H1 2)))

last(v) = φ3(an) = φ(φ2(an)) = a(j−1)+j(j−1)(j+1) = a(j−1)(1+j+j2)

(v ∈ Vmin(Φ3(H1 2)))

. . .

last(v) = φϕ(n)/2−1(an) = a(j−1)(1+j+j2+...jϕ(n)/2−2) (v ∈ Vmin(Φϕ(n)/2−1(H1 2)))

Given that j is a primitive lambda root and thus jλ(n) = jϕ(n)/2 = 1, we have that

φϕ(n)/2(an) = φ(φϕ(n)/2−1(an)) = a(j−1)(1+j+j2+...jϕ(n)/2−1)

= a(j−1)(jϕ(n)/2−1)/(j−1) = an (4.17)

and so the last(v)s φ(an), φ2(an), . . . , φϕ(n)/2−1(an), φϕ(n)/2(an) are:

aj−1, . . . , ajr−1, . . . , ajϕ(n)/2−1

No two of these can be the same, else if

ajr−1 = ajs−1, such that 1 ≤ r < s ≤ ϕ(n)/2,

then jr = js and js−r = 1 where s − r < ϕ(n)/2 contrary to the fact that j is a

primitive lambda root (4.13). As all the last(v)s are different, no two Hamilton

cycles in (4.15) can have the same minority edge. We have now shown that the

Hamilton cycles in (4.15) are edge-disjoint.

Finally,

(φd±)ϕ(n)/2(1) = (φd±)ϕ(n)/2(δ±(a2, a1))

= δ±(φϕ(n)/2(a2), φ
ϕ(n)/2(a1)) (by Lemma 4.2(ii))

= jϕ(n)/2 (by Lemma 4.3(i))

= 1,

and φϕ(n)/2(an) = an by (4.17). By Lemma 4.5, φϕ(n)/2(ai) = ai for all ai ∈
{a1, ..., an} and therefore Φϕ(n)/2 is the identity automorphism. Thus, the collec-

tion H̃ at (4.15) is strongly symmetric.
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4.5 Strong symmetry in dimensions that are

twice the power of a prime

Does Stn have a strongly symmetric collection of ϕ(n)/2 disjoint Hamilton cycles

if the Carmichael function λ(n) does not equal ϕ(n)/2? We consider the cases

where λ(n) > ϕ(n)/2 (i.e. λ(n) = ϕ(n) as λ(n) divides ϕ(n)) in this section and

where λ(n) < ϕ(n)/2 in the next section.

Lemma 4.9. Let j be a primitive root modulo n and ϕ(n) be even. Then, jϕ(n)/2 =

−1 and jr 6= −1 if 1 ≤ r < ϕ(n)/2.

Proof. As j is a primitive root modulo n, jr = −1 for some unique r with 1 ≤
r < ϕ(n). If r < ϕ(n)/2, then j2r = 1 which cannot be the case as 2r < ϕ(n). If

ϕ(n)/2 < r < ϕ(n), then j2r−ϕ(n) = 1 which cannot be the case as 2r − ϕ(n) <

ϕ(n).

Theorem 4.10. Suppose that n is even, λ(n) = ϕ(n), and that ϕ(n)/2 is odd.

Then, Stn has a strongly symmetric collection of ϕ(n)/2 disjoint Hamilton cycles.

Proof. Let j be a primitive root modulo n, so that

1 = jϕ(n), j, j2, . . . , jϕ(n)−1 (4.18)

are all the distinct integers coprime to n. By Lemma 4.9, jϕ(n)/2 = −1. Then, the

sequence

1 = (−1)ϕ(n)/2.jϕ(n)/2 = (−j)ϕ(n)/2,−j, (−j)2, . . . , (−j)ϕ(n)/2−1 (4.19)

does not contain -1, else -1 or 1 would occur in the subsequence

j, j2, . . . , jϕ(n)/2−1

of the sequence in (4.18), which cannot happen by Lemma 4.9 and the fact that

j is a primitive root. Thus, −j satisfies the conditions for j of Lemma 4.6(i) and

therefore, by that lemma, the integers in (4.19) are distinct. Put

φ(ai) = a((−j)−1)+(−j)i

and consider the Hamilton cycles

H1 2,Φ(H1 2), . . . ,Φ
ϕ(n)/2−1(H1 2), (4.20)

where Φ is the corresponding label automorphism. The sequence of majority
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edge labels of the sequence of Hamilton cycles in (4.20) is exactly the sequence of

(distinct) integers in (4.19) and thus there is no clash of majority edge labels. The

proof that majority and minority edge labels do not clash, that minority edges

do not clash and that Φϕ(n)/2 is the identity mapping is exactly the same as in

Theorem 4.8.

The set of even n for which λ(n) = ϕ(n) and ϕ(n)/2 is odd, as specified in

Theorem 4.10, is infinite. Corollary 4.11 gives an example of infinitely many such

n.

Corollary 4.11. Let n = 2pk where p is a prime number of the form 4K + 3.

Then, Stn has a strongly symmetric collection of ϕ(n)/2 disjoint Hamilton cycles.

Proof. As p is an odd prime number, there is a primitive root modulo n and so

λ(n) = ϕ(n), Also,

ϕ(n) = pk−1(p− 1)

which is of the form pk−1(4K + 2) and so ϕ(n)/2 is odd. The result follows by

Theorem 4.10.

4.6 Cases where symmetric exceed strongly

symmetric bounds

In all cases where λ(n) < ϕ(n)/2, Stn does not have a strongly symmetric col-

lection of ϕ(n)/2 disjoint Hamilton cycles. The result is also true for such odd

n. For such even n, this means that fewer strongly symmetric disjoint Hamilton

cycles are possible than merely symmetric disjoint Hamilton cycles.

Theorem 4.12. Let n be odd or even and such that λ(n) < ϕ(n)/m where m ≥
1. Then, Stn does not have a strongly symmetric collection of ϕ(n)/m disjoint

Hamilton cycles.

Proof. Let Φ be any label automorphism. By Lemma 3.12(ii), Φ is defined by

a pointwise map φ : {a1, ..., an} 7→ {a1, ..., an} such that φ(ai) = ai0+ji for some

i0, j ∈ {1, . . . , n} with j coprime to n. If φd± is the corresponding directed distance

map then, by Lemma 4.2(ii) and Lemma 4.3(i) with ag = a2 and ah = a1, we have

that:

φd±(1) = j, (φ2)d±(1) = j2, . . . , (φλ(n))d±(1) = jλ(n) (4.21)
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By Carmichael’s Theorem, as j is coprime to n, jλ(n) = 1. From (4.21), it follows

that the labels of the majority edges of the Hamilton cycles:

H1 2,Φ(H1 2), . . . ,Φ
λ(n)(H1 2) (4.22)

are, successively,

1, j, . . . , jλ(n) = 1 (4.23)

As, by Definitions 3.8 and 3.5, no two edge-disjoint Hamilton cycles can both have

majority edges with label 1, it follows from (4.23) that the Hamilton cycles (4.22)

cannot be edge-disjoint. Thus, Φ cannot generate ϕ(n)/m (ϕ(n)/m > λ(n) ) edge-

disjoint Hamilton cycles. As the chosen Φ was arbitrary, it follows that Stn does

not have a strongly symmetric collection of ϕ(n)/m disjoint Hamilton cycles.

We now give an infinite set of even n for which Stn does not have a strongly

symmetric collection of ϕ(n)/2 disjoint Hamilton cycles because λ(n) < ϕ(n)/2.

The set we choose gives a partial converse to Theorem 4.8, in that it shows that

if n = 2kpr where k ≥ 3, p is prime and r ≥ 1, then Stn does not have a strongly

symmetric collection of ϕ(n)/2 disjoint Hamilton cycles. The result is given in

Corollary 4.15 and follows from Theorem 4.12 and the calculation of Carmichael’s

function in the following two lemmata.

Lemma 4.13.

(i) If n = pα1
1 . . . pαww for distinct primes p1, . . . , pw and αi > 0 (1 ≤ i ≤ w) then

λ(n) = lcm(λ(pα1
1 ), . . . , λ(pαww ))

(ii) If n = 2k, where k ≥ 3, then

λ(n) = ϕ(n)/2 = 2k−2

Proof. See [12] Proposition 5.1, for example.

Lemma 4.14. Let n = 2kpr where k ≥ 3, p is prime and r ≥ 1. Then,

(i) if p is of the form 4K + 3 then λ(n) = ϕ(n)/4, and

(ii) if p is of the form 4K + 1 then λ(n) ≤ ϕ(n)/4.

Proof. Firstly, note that ϕ(n) = (2kpr − (2kpr)/p) ∗ 1/2 = 2k−1(p − 1)pr−1. For

(i), we have that (p − 1)/2 is odd as p is of the form 4K + 3. Thus, by repeated
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use of Lemma 4.13,

λ(n) = lcm(λ(2k), λ(pr))

= lcm(2k−2, ϕ(pr)) (pr has a primitive root)

= lcm(2k−2, (p− 1)pr−1)

= lcm(2k−2, ((p− 1)/2) ∗ 2pr−1)

= 2k−2 ∗ (p− 1)/2 ∗ pr−1 ((p− 1)/2 is odd and coprime to p)

= ϕ(n)/4

For (ii), we note that (p− 1)/2 is even. By repeated use of Lemma 4.13,

λ(n) = lcm(λ(2k), λ(pr))

= lcm(2k−2, (p− 1)pr−1)

= lcm(2k−2, (4(p− 1)/4)pr−1)

≤ 2k−1 ∗ (p− 1)/4 ∗ pr−1 ((p− 1)/4 may have factors of 2)

= ϕ(n)/4

Corollary 4.15. Let n = 2kpr where k ≥ 3, p is prime and r ≥ 1. Then, Stn does

not have a strongly symmetric collection of ϕ(n)/2 disjoint Hamilton cycles.

Proof. Follows from Theorem 4.12 and Lemma 4.14.



Chapter 5

Strongly symmetric disjoint

Hamilton cycles in odd

dimensions

Can we find optimal strongly symmetric collections for any other odd n, even

though, by the discussion in Chapter 3, optimality of symmetric collections for

odd n is an unresolved problem? We consider the case of odd n having a factor

of 5k where k ≥ 1. As 5k is not prime if k > 1, we know from Corollary 3.15 that

Stn is not symmetrically Hamilton decomposable if n is divisible by 5k (n > 5).

However, in this chapter, we are able to find a strongly symmetric collection of

ϕ(n)/4 disjoint Hamilton cycles for n=5k, for each k ≥ 1, which we prove to be

optimal. Although, this bound can be achieved for n=5k, we show that, in general,

this bound is not achievable if n has, additionally, a prime factor other than 5. We

identify other cases of odd n where the ϕ(n)/4 bound is achievable, though cannot

prove optimality in every case. The results do, however, improve, for those n, the

best existing bounds for the known number of edge-disjoint Hamilton cycles in

Stn, symmetric or otherwise. Cases where the ϕ(n)/4 bound is optimal are given

in Theorem 5.3. These are shown to include the case n=5k in Corollary 5.5.

Cases where the ϕ(n)/4 is achievable are given in Theorem 5.7, and cases where

the ϕ(n)/4 bound is both achievable and optimal are presented in Theorem 5.8.

Corollary 5.9 shows that these include the cases n=5k. Finally, Theorem 5.10

shows that not all n having factors of 5k can attain the ϕ(n)/4 bound for strongly

symmetric collections.

63
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5.1 An upper bound on strongly symmetric

collections

For certain cases of odd n we can establish an upper bound on the number of

Hamilton cycles in strongly symmetric collections. The bounds arise from the fact

that all labels of edges of Hamilton cycles in strongly symmetric collections must

be coprime to n by Lemma 3.12, and the way in which coprime labels can be

generated by a single automorphism.

Lemma 5.1. Let n be odd and suppose that Stn has a symmetric collection of

disjoint Hamilton cycles H̃. Then the following hold.

(i) All edge labels of Hamilton cycles in H̃ must be coprime to n.

(ii) For any two distinct H1, H2,∈ H̃, the majority edge labels of H1 and H2 are

different as are their minority edge labels.

Proof. The proof of (i) follows easily from Lemma 3.12(i) because if Hi j ∈ H̃ and

Φ is a label automorphism with distance map φd such that Φ(H1 2) = Hi j, then

the majority and minority edge labels i and j respectively are such that gcd(i, n) =

gcd(φd(1), n) = gcd(1, n) = 1 and gcd(j, n) = gcd(φd(2), n) = gcd(2, n) = 1.

For(ii), let

Hi1 j1 , . . . , Hi|H̃| j|H̃|
(5.1)

list the distinct Hamilton cycles in H̃. Certainly, no two Hamilton cycles in (5.1)

can have the same majority edge label ` as each of these cycles would need greater

than half of all edges with label `. But, also, unlike the case of even n, two distinct

Hamilton cycles in (5.1) cannot have the same minority edge label. To see this,

suppose that Hig jg , Hih jh ∈ H̃ are such that jg = jh and let Φg and Φh be label

automorphisms with corresponding pointwise maps φg and φh and distance maps

φdg and φdh such that

Φg(H1 2) = Hig jg and Φh(H1 2) = Hih jh (5.2)

By Lemma 3.12(ii), φg and φh are defined by

φg(ai) = ai′0+j′i and φh(ai) = ai′′0+j′′i
(5.3)

for some i′0, i
′′
0 , j
′, j′′ ∈ {1, . . . , n} with j′ and j′′ coprime to n. Then, by (5.3)

and (3.1) of Definition 3.3,

jg = φdg(2) = φdg(δ(a3, a1)) = δ(φg(a3), φg(a1)) = min{|2j′|, n− |2j′|} (5.4)
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and, in the same way,

jh = min{|2j′′|, n− |2j′′|} (5.5)

We can show, similarly, that

ig = min{|j′|, n− |j′|} and ih = min{|j′′|, n− |j′′|} (5.6)

As jg = jh, from (5.4) and (5.5) we must have that either

j′ = j′′ or j′ = n− j′′ (5.7)

Both of the cases in (5.7) give ig = ih in (5.6). This shows that if jg = jh then

Hig jg and Hih jh are the same Hamilton cycle in (5.1).

Lemma 5.2. If H̃ is a strongly symmetric collection of disjoint Hamilton cycles,

then |H̃| divides ϕ(n).

Proof. Let Φ be a label automorphism with pointwise map φ and directed distance

map φd±, such that H̃ is listed as the distinct Hamilton cycles

H1 2,Φ(H1 2), . . . ,Φ
|H̃|−1(H1 2),

where Φ|H̃| is the identity mapping. The sequence of corresponding directed labels

of majority edges starting at +1 is:

1, j, . . . , j|H̃|−1, j|H̃| = 1

By Euler’s Theorem, as j|H̃| = 1, |H̃| divides ϕ(n).

Theorem 5.3. Suppose that n is odd, ϕ(n)/2 is even, and 2 is a primitive root

modulo n. If H̃ is a strongly symmetric collection of disjoint Hamilton cycles,

then |H̃| ≤ ϕ(n)/4.

Proof. Assume, on the contrary, that |H̃| > ϕ(n)/4. Then, as H̃ is a symmetric

collection, by Theorem 3.14 we have that |H̃| ≤ ϕ(n)/2. Thus, by Lemma 5.2,

|H̃| = ϕ(n)/2 or |H̃| = ϕ(n)/3. Let the Hamilton cycles of H̃ be

Hi1 j1(= H1 2), Hi2 j2(= Φ(H1 2)), . . . , Hi|H̃| j|H̃|
(= Φ|H̃|−1(H1 2)) (5.8)

where Φ is a label automorphism such that Φ|H̃| is the identity mapping. By

Lemma 5.1(i), all edge labels must be coprime to n and, by Lemma 5.1(ii), all

majority and minority edge labels must be different. However, all edge labels

in (5.8) cannot be different else there would be 2|H̃| ≥ 2ϕ(n)/3 labels in total,
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which is more than the ϕ(n)/2 edge labels possible. Thus, some majority edge

label is equal to a minority edge label in (5.8), say in the Hamilton cycles

Hie ` and H` jf ,

where 1 ≤ e 6= f ≤ |H̃| and je = ` = if . Then,

Φ|H̃|−e+1(Hie `) = Φ|H̃|−e+1(Φe−1(H1 2)) = Φ|H̃|(H1 2) = H1 2

and so

(φd)|H̃|−e+1(ie) = 1 and (φd)|H̃|−e+1(`) = 2

and, by Lemma 4.2(iii),

(φd±)|H̃|−e+1(ie) = ±1 and (φd±)|H̃|−e+1(`) = ±2 (5.9)

Put

Ψ = Φ|H̃|−e+f

Clearly, Ψ is a label automorphism which has a corresponding pointwise map, as

in Lemma 3.12(ii),

ψ(ai) = ai0+ji,

for some i0, j ∈ {1, . . . , n}, and directed distance map ψd±. Then,

ψd±(1) = (φ|H̃|−e+f )d±(1)

= (φd±)|H̃|−e+f (1) (by Lemma 4.2(ii))

= (φd±)|H̃|−e+1((φd±)f−1(1))

= ±(φd±)|H̃|−e+1((φd)f−1(1)) (by Lemma 4.2(iii))

= ±(φd±)|H̃|−e+1(`) (as Φf−1(H1 2) = H` jf )

= ±2 (by (5.9))

It follows from this, putting φ = ψ and k = 1 in Lemma 4.2(i) and Lemma 4.3(i),

that

ψ(ai) = ai0+2i or ψ(ai) = ai0−2i

Therefore, the Hamilton cycles

H1 2,Ψ(H1 2), . . . ,Ψ
|H̃|−1(H1 2),Ψ

|H̃|(H1 2) (5.10)

yield a corresponding sequence of directed labels for majority edges starting at

+1:

+1,±2, . . . , (±2)|H̃|−1, (±2)|H̃| (5.11)
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Now,

Ψ|H̃| = (Φ(|H̃|−e+f))|H̃| = (Φ|H̃|)|H̃|−e+f

is the identity mapping as Φ|H̃| is the identity mapping. In particular, the directed

label for majority edges of Ψ|H̃|(H1 2) equals +1. From (5.10) and (5.11) this means

that

2|H̃| = 1 or (−2)|H̃| = 1

But, 2|H̃| 6= 1 as 2 is a primitive root and |H̃| ≤ ϕ(n)/2 < ϕ(n). If (−2)|H̃| = 1

then, as ϕ(n)/2 is even, |H̃| 6= ϕ(n)/2 else

1 = (−2)|H̃| = (−2)ϕ(n)/2 = 2ϕ(n)/2

which cannot be the case as 2 is a primitive root. Thus, |H̃| = ϕ(n)/3. But, then,

1 = ((−2)|H̃|)2 = 22|H̃| = 22ϕ(n)/3

which is a contradiction as 2 is a primitive root and 2ϕ(n)/3 < ϕ(n).

We show that the conditions of Theorem 5.3 are satisfied if n = 5k and hence

that Theorem 5.3 holds for those n.

Lemma 5.4. If n = 5k where k ≥ 1, then ϕ(n)/2 is even, and 2 is a primitive

root modulo n.

Proof. We have that ϕ(5k) = 5k−1(5 − 1) and so ϕ(5k)/2 is even. Also, if j is

a primitive root modulo a prime number p then j is a primitive root modulo all

powers of p if jp−1 is not of the form p2K + 1 (see [17]). As 2 is a primitive root

of 5 and 25−1 = 16 is not of the form 25K + 1, it follows that 2 is a primitive root

of 5k for all k ≥ 1.

Corollary 5.5. If n = 5k where k ≥ 1, then |H̃| ≤ ϕ(n)/4 for any strongly

symmetric collection of disjoint Hamilton cycles.

Proof. Follows from Theorem 5.3 and Lemma 5.4.

5.2 Achieving the upper bound

Corollary 5.5 shows that there cannot be more than the bound of ϕ(n)/4 Hamilton

cycles in any strongly symmetric collection if n = 5k. In fact, the bound can be

achieved. To show this, we will obtain the required edge-disjoint Hamilton cycles
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by scrutinizing the coprime constituents of the label automorphism Φn given by

the pointwise map

φn(ai) = a2i (1 ≤ i ≤ n)

In [19] the inverse of this map is used to obtain 2ϕ(n)/9 bounds on the numbers

of disjoint Hamilton cycles for all odd n. Let us consider the case of n = 25. The

only coprime directed constituent with ϕ(n) elements is

(1 2 4 8 16 7 14 3 6 12 24 23 21 17 9 18 11 22 19 13)

which can be written, using negative numbers of arithmetic modulo n, as

(1 2 4 8− 9 7− 11 3 6 12− 1− 2− 4− 8 9− 7 11− 3− 6− 12) (5.12)

The (undirected) constituent has half the number (ϕ(n)/2) of elements:

(1 2 4 8 9 7 11 3 6 12)

Now, consider the pointwise map

ψ25(ai) = φ2
25(ai) = a4i (1 ≤ i ≤ n)

i.e.

ψ25(ai) = af2(i) where φ25(ai) = af(i)

It generates the Hamilton cycles

H1 2,Ψ25(H1 2),Ψ
2
25(H1 2),Ψ

3
25(H1 2),Ψ

4
25(H1 2),

by the corresponding label automorphism Ψ25, which, by (5.12), give Hamilton

cycles with majority and minority edges as follows:

H1 2, H4 8, H9 7, H11 3, H6 12 (5.13)

Applying Ψ25 to H6 12, i.e. calculating Ψ5
25 = Ψ

ϕ(n)/4
25 (H1 2), yields a Hamilton

cycle with majority edge labels equal to 1 and minority edge labels equal to 2.

But, ψ5
25 is not the identity mapping as (ψd±25 )ϕ(n)/4(1) = −1. Consider instead the

mapping

θ25(ai) = a−4i

i.e.

θ25(ai) = a−f2(i) where φ25(ai) = af(i)
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Choosing ai, aj such that δ±(ai, aj) = `, where ` is a given directed label, we have

that
θd±25 (`) = θd±25 (δ±(ai, aj))

= δ±(θ25(ai), θ25(aj)) (by Lemma 4.2(i))

= δ±(a−4i, a−4j)

= −4(i− j)
= −δ±(φ2

25(ai), φ
2
25(aj))

= −(φ2
25)

d±(δ±(ai, aj)) (by Lemma 4.2(ii))

= −(φ2
25)

d±(`)

i.e., by Lemma 4.2(ii),

θd±25 (`) = −(φ2
25)

d±(`) = −(φd±25 )2(`) (5.14)

Also,

(θd±25 )ϕ(n)/4(1) = (θd±25 )5(1)

= (−(φ2
25)

d±)5(1) (by (5.14))

= (−1)5((φ2
25)

5)d±(1) (by Lemma 4.2(ii))

= −(φ10
25)

d±(1)

= −(φd±25 )10(1) (by Lemma 4.2(ii))

= −(−1) (from (5.12))

= +1

Thus, the Hamilton cycles

H1 2,Θ25(H1 2),Θ
2
25(H1 2),Θ

3
25(H1 2),Θ

4
25(H1 2),

where Θ25 is the corresponding label automorphism have, by (5.12) and (5.14),

directed majority and minority edges as follows:

H1 2, H−4 −8, H−9 7, H11 −3, H6 12 (5.15)

These have the same undirected edge labels as in (5.13), but θ25 differs from ψ25 in

that (ψd±25 )ϕ(n)/4(1) = −1 whereas (θd±25 )ϕ(n)/4(1) = +1. Thus, θ
ϕ(n)/4
25 is the identity

mapping by Lemma 4.5, and so (5.15) is a strongly symmetric collection of ϕ(n)/4

disjoint Hamilton cycles.

For n = 25, we have used the fact that 2 is a primitive root which generates

ϕ(n)/2 directed labels, starting at +1 and finishing at -1, and that ϕ(n)/2 is even

and ϕ(n)/4 is odd, i.e. ϕ(n)/2 is of the form 4K + 2. This has allowed −φ2
25 to

be applied an odd number (ϕ(n)/4) of times thereby producing an odd number

of pairs of labels of successive edge-disjoint Hamilton cycles, returning to label 1
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and not -1. We shall show that these properties hold for n = 5k for all k. In fact,

we give a more general theorem (Theorem 5.7 below) which also gives conditions

where ϕ(n)/4 strongly symmetric disjoint Hamilton cycles can be obtained when

2 is a primitive lambda-root of n.

Lemma 5.6. Let n be odd and let the pointwise maps φn and θn be defined by

φn(ai) = af(i) and θn(ai) = a−f2(i) (1 ≤ i ≤ n),

where f(i) = i0 + ji for some i0, j ∈ {1, . . . , n}. Then, if φd±n and θd±n are the

corresponding directed distance maps, we have that, for all directed labels `,

θd±n (`) = −(φd±n )2(`)

Proof. Choosing ai and aj to be such that δ±(ai, aj) = `, where ` is a directed

label, then we have that

θd±n (`) = θd±n (δ±(ai, aj))

= δ±(θn(ai), θn(aj)) (by Lemma 4.2(i))

= δ±(a−f2(i), a−f2(j))

= −(f 2(i)− f 2(j))

= −δ±(φ2
n(ai), φ

2
n(aj))

= −(φ2
n)d±(δ±(ai, aj)) (by Lemma 4.2(ii))

= −(φ2
n)d±(`)

= −(φd±n )2(`) (by Lemma 4.2(ii))

Theorem 5.7. Let n be odd. Then, Stn has a strongly symmetric collection of

ϕ(n)/4 disjoint Hamilton cycles if either of the following conditions holds:

(i) ϕ(n)/2 is even, λ(n) = ϕ(n)/2, 2 is a primitive lambda-root of n, and -1 is

not a power of 2 (modulo n),

(ii) ϕ(n)/2 is of the form 4K + 2 and 2 is a primitive root of n.

Proof. To prove (i), let the pointwise map φn be defined by

φn(ai) = a2i (1 ≤ i ≤ n)

Then, repeated application of the corresponding directed distance map φd±n gen-

erates ϕ(n)/2 directed edge labels

1, 2, . . . , 2ϕ(n)/2−1
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By Lemma 4.6(i), as 2ϕ(n)/2 = 2λ(n) = 1 and -1 is not a power of 2, these are

distinct as undirected edge labels. Thus, the sequence of Hamilton cycles

H1 2,Φ
2
n(H1 2), . . . , (Φ

2
n)ϕ(n)/4−1(H1 2), (5.16)

where Φn is the label automorphism corresponding to φn, which have directed

edge labels as follows:

H1 2, H4 8, . . . , H2ϕ(n)/2−2 2ϕ(n)/2−1

are edge-disjoint. If (φ2
n)d± is the directed distance map of the pointwise map φ2

n

then, as 2ϕ(n)/2 = 1, it follows by Lemma 4.2(ii) that

1 = 2ϕ(n)/2 = (φd±n )ϕ(n)/2(1) = ((φ2
n)d±))ϕ(n)/4(1) (5.17)

Also,

(φ2
n)ϕ(n)/4(an) = φϕ(n)/2n (an) = an, (5.18)

as φn(an) = an. Thus, by (5.17), (5.18) and Lemma 4.5 (with φ equal to φ2
n and

k equal to ϕ(n)/4),

(φ2
n)ϕ(n)/4(ai) = ai for all ai ∈ {a1, ..., an},

i.e. (φ2
n)ϕ(n)/4 is the identity mapping, and so the Hamilton cycles in (5.16) are

strongly symmetric.

For (ii), let the pointwise maps φn and θn be defined by:

φn(ai) = af(i) and θn(ai) = a−f2(i), where f(i) = 2i.

Consider the Hamilton cycles

H1 2,Θn(H1 2), . . . ,Θ
ϕ(n)/4−1
n (H1 2), (5.19)

where Θn is the label automorphism corresponding to θn. These have directed

edge labels as follows:

H1 2, Hθd±n (1) θd±n (2), . . . , H(θd±n )ϕ(n)/4−1(1) (θd±n )ϕ(n)/4−1(2) (5.20)

Now, as φn(ai) = a2i, we have that, by Lemma 4.3,

(φd±n )k(1) = 2k and (φd±n )k(2) = 2k+1 for all k ≥ 0. (5.21)
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Then, the sequence of directed labels in (5.20)

1, 2, θd±n (1), θd±n (2), . . . , (θd±n )ϕ(n)/4−1(1), (θd±n )ϕ(n)/4−1(2)

which, by Lemma 5.6, equals

1, 2, −(φd±n )2(1), −(φd±n )2(2), . . . ,

. . . (−1)ϕ(n)/4−1((φd±n )2)ϕ(n)/4−1(1), (−1)ϕ(n)/4−1((φd±n )2)ϕ(n)/4−1(2),

by (5.21) equals

1, 2, −22, −23, . . . , (−1)ϕ(n)/4−12ϕ(n)/2−2, (−1)ϕ(n)/4−12ϕ(n)/2−1. (5.22)

As 2 is a primitive root of n, by Lemma 4.9, 2ϕ(n)/2 = −1 and -1 does not oc-

cur in (5.22). By Lemma 4.6(ii), (5.22) corresponds to a sequence of distinct

undirected edge labels. Hence, the Hamilton cycles in (5.19) are edge-disjoint.

It remains to prove that Θ
ϕ(n)/4
n is the identity mapping. We have that

(θd±n )ϕ(n)/4(1) = (−1)ϕ(n)/4((φd±n )2)ϕ(n)/4(1) (by Lemma 5.6)

= (−1)ϕ(n)/4(φd±n )ϕ(n)/2(1)

= (−1)ϕ(n)/42ϕ(n)/2 (by (5.21))

= −2ϕ(n)/2 (as ϕ(n)/4 is odd)

= 1 (as 2ϕ(n)/2 = −1)

As θn(an) = a−4n, θn(an) = an and so θ
ϕ(n)/4
n (an) = an. It follows, by Lemma 4.5,

that θ
ϕ(n)/4
n , and therefore Θ

ϕ(n)/4
n , is the identity mapping.

Theorem 5.7(i) is satisfied by n equal to the following composite odd multiples

of 3 less than 100:

15, 21, 39, 45, 57, 69, 75, 87, 99.

In the cases of n = 51 or n = 93, 2 is not a primitive lambda-root and, for n = 63,

λ(n) = ϕ(n)/6. If n = 33, ϕ(n)/2 is even, λ(n) = ϕ(n)/2 and 2 is a primitive

lambda-root, but -1 is a power of 2. The composite odd multiples of 5 less than

100 that satisfy Theorem 5.7(i) for n are:

15, 35, 45, 55, 75, 95.

For n = 65 or 85, λ(n) does not equal ϕ(n)/2. In the cases of n equal to a power

of certain primes, we can obtain a more general result using Theorem 5.7(ii).
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Theorem 5.8. Let n = pk, where p is a prime number of the form 8K + 5 and

k ≥ 1, be such that 2 is a primitive root of n. Then, Stn has a strongly symmetric

collection of ϕ(n)/4 disjoint Hamilton cycles. Moreover, the ϕ(n)/4 bound cannot

be improved.

Proof. We have that ϕ(n) = ϕ(pk) = pk−1(p − 1). So, ϕ(n)/2 = pk−1(p − 1)/2.

As p is of the form 8K + 5, (p − 1)/2 is of the form 4K + 2. Since pk−1 is an

odd integer, ϕ(n)/2 = pk−1(p − 1)/2 is also of the form 4K + 2. Then, as 2 is a

primitive root modulo n, it follows by Theorem 5.7(ii), that Stn has a strongly

symmetric collection of ϕ(n)/4 disjoint Hamilton cycles. Furthermore, n satisfies

the conditions of Theorem 5.3 and so the ϕ(n)/4 bound is optimal.

Corollary 5.9. Let n = 5k, where k ≥ 1. Then, Stn has a strongly symmetric

collection of ϕ(n)/4 disjoint Hamilton cycles and the ϕ(n)/4 bound cannot be

improved.

Proof. The conditions of Theorem 5.8 are satisfied for n = 5k (k ≥ 1) as 2 is a

primitive root modulo n by Lemma 5.4.

5.3 Failure to achieve the upper bound

The case of n = 221 is interesting because it does not satisfy the conditions of

Theorem 5.7(i) or (ii) yet has a strongly symmetric collection of ϕ(n)/4 disjoint

Hamilton cycles. Consider the following two coprime constituents for the pointwise

map φ221 for St221 defined by φ221(ai) = a6i (1 ≤ i ≤ 221):

(1 6 36 5 30 41 25 71 16 96 87 80 38 7 42 31 35 11 66 46 55 109 9 54 103

45 49 73 4 24 77 20 101 57 100 63 64 58 94 99 69 28 53 97 81 44 43 37)

(2 12 72 10 60 82 50 79 32 29 47 61 76 14 84 62 70 22 89 92 110 3 18 108 15

90 98 75 8 48 67 40 19 107 21 95 93 105 33 23 83 56 106 27 59 88 86 74)

The corresponding label automorphism Φ221 generates the Hamilton cycles

H1 2,Φ221(H1 2),Φ
2
221(H1 2), . . . ,Φ

47
221(H1 2) (5.23)

whose edge labels are, respectively, as shown below:

H1 2, H6 12, H36 72, H5 10, H30 60, H41 82, H25 50, H71 79, H16 32,

H96 29, H87 47, H80 61, H38 76, H7 14, H42 84, H31 62, H35 70, H11 22,

H66 89, H46 92, H55 110, H109 3, H9 18, H54 108, H103 15, H45 90, H49 98,
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H73 75, H4 8, H24 48, H77 67, H20 40, H101 19, H57 107, H100 21, H63 95,

H64 93, H58 105, H94 33, H99 23, H69 83, H28 56, H53 106, H97 27, H81 59,

H44 88, H43 86, H37 74.

Moreover, Φ48
221 is the identity mapping. Also, ϕ(221) = 192 and λ(221) = 48.

Thus, (5.23) is a strongly symmetric collection of ϕ(221)/4 = 48 disjoint Hamilton

cycles. So far, in order to generate disjoint Hamilton cycles from H1 2 for odd n,

we have sought pointwise maps φn which have produced coprime constituents in

which 1 and 2 are present and adjacent to each other. The case of n = 221

has achieved the ϕ(n)/4 bound in a different way with 1 and 2 not occurring in

the same coprime constituent. Given the case of n = 221, we may ask whether

the ϕ(n)/4 bound can be achieved for strongly symmetric collections for all odd

n, albeit using different methods to that in Theorem 5.7? The answer to this

question is negative. The example we give is a partial converse to Corollary 5.9.

We show below in Theorem 5.10 that if n is a power of 5 multiplied by the power

of another prime, then there are infinitely many cases for which there does not

exist a strongly symmetric collection of ϕ(n)/4 disjoint Hamilton cycles for Stn .

Theorem 5.10. Let n = 5kpm where k > 1, m ≥ 1, and p is a prime number of

the form 10K + 1. Then, there does not exist a strongly symmetric collection of

ϕ(n)/4 disjoint Hamilton cycles for Stn .

Proof. As 5k and pm are coprime we have that

ϕ(5kpm) = ϕ(5k)ϕ(pm)

= (5k(5− 1)/5)(pm(p− 1)/p)

= (5k−14)(pm−1(p− 1))

Since p is of the form 10K + 1, p− 1 is of the form 10K. Therefore,

λ(n) = lcm(λ(5k), λ(pm)) (by Lemma 4.13(i))

= lcm(φ(5k), φ(pm)) (as 5k and pm have primitive roots)

= lcm(5k−14, pm−1(p− 1))

≤ (5k−14)(pm−1(p− 1))/10

= ϕ(n)/10

The result follows by Theorem 4.12 as λ(n) < ϕ(n)/4.
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Conclusions

In Chapter 2, we introduced Stn as a star graph of n! vertices and we have sought to

obtain edge-disjoint Hamilton cycles as automorphic images of a known Hamilton

cycle in Stn. This method provides a way of constructing edge-disjoint Hamilton

cycles, as the known starting Hamilton cycle given in [11] of edge lengths 1 or

2 can itself be constructed from the construction of a special kind of Hamilton

cycle, called a ‘doubly adjacent Gray code’, in path graphs [18]. It is unknown

as to whether there are 2 edge-disjoint Hamilton cycles in any Stn for n > 5,

which partition the edges of lengths 1 and 2. If that was the case, automorphisms

by our method would only require bn/4c lower bounds to produce bn/2c edge-

disjoint Hamilton cycles, i.e. a Hamilton decomposition of Stn. In this sense, the

bn/4c bound is a kind of optimum bound that a method of generating edge-disjoint

Hamilton cycles by automorphism can achieve. Our bn/5c lower bound for n equal

to powers of certain primes, has come close to this ideal. However, although the

Hamilton decomposition of St5 in [25] gives an automorphism which is defined,

as here, by means of a bijection of the ais, and which, furthermore, maps lengths

equal to 1 to lengths equal to 2 and vice-versa, such an automorphism does not

exist for n > 5. Thus, if two edge-disjoint Hamilton cycles of edges lengths 1 and

2 do exist, this can only be proved by some other method. A number of open

problems remain. Aside from the question mentioned above, of whether edge-

disjoint Hamilton cycles of edge lengths 1 or 2 exist, the ultimate open problem

of this chapter is as follows:

Open Problem 6.1. Let Stn be a star graph. For which integers n is Stn

Hamilton decomposable?

Thus far, this has only been demonstrated for St5 and there are no results

proving non-existence for any n. In the meantime, we can ask if there are infinitely

many Hamilton decomposable star graphs; this may be possible to prove for some

prime n.

75
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In Chapter 3 we have investigated symmetric collections of disjoint Hamilton

cycles for labelled versions Stn. In that chapter, we have defined symmetric col-

lections of disjoint Hamilton cycles for labelled Stn to be those for which, given

a Hamilton cycle in the collection, there is an automorphism mapping labels con-

sistently such that the chosen Hamilton cycle is the image of the base 2-labelled

Hamilton cycle. We have shown that there are at most ϕ(n)/2 symmetric disjoint

Hamilton cycles and this bound is sharp for all even n. So, if n is not a prime num-

ber, Stn is not symmetrically Hamilton decomposable. Our result in Section 3.5

of that chapter revealed that, the spanning subgraph H ′2 1 of Stn, comprising the

edges of labels 1 and 2 that are not in H1 2, is not a Hamilton cycle if n is even.

Whilst the ϕ(n)/2 upper bound on the number of Hamilton cycles in a symmetric

collection also holds for Stn if n is odd, it is not clear that this bound can be

achieved for any odd n other than n equal to 5 [25]. Moreover, in that chapter,

we have studied the labels for the majority of the edges and the labels for the

minority of the edges. In the case of even n, the number of Hamilton cycles in a

symmetric collection H̃ is limited to ϕ(n)/2 because every majority edge label in

H̃ has to be coprime to n as the majority edge label 1 of the base Hamilton cycle

H1 2 is coprime to n. However, in the case of odd n, as both the majority and

minority edge labels of H1 2, i.e. 1 and 2, are coprime to n, both the majority

and minority edge labels of Hamilton cycles in symmetric collections have to be

coprime to n . For this reason, the least upper bound for symmetric collections

for odd n may be ϕ(n)/4. This bound is nearly achieved by a 2ϕ(n)/9 bound for

all odd n other than n = 127 in Chapter 2. Consequently, the following problem

has not been completely solved in Chapter 3:

Open Problem 6.2. For all odd n 6= 127, does Stn has a symmetric collection

of ϕ(n)/4 disjoint Hamilton cycles?

We have given the bounds of the number of edge-disjoint Hamilton cycles

based on graph automorphisms which produce edges with different labels incident

at each vertex in the image of the base Hamilton cycle given in [11]. But, there

may exist another structure for the base Hamilton cycle which is different from

the structure of the cycle with edge lengths 1 or 2, that does not have majority or

minority edges. Further work could investigate properties of such new Hamilton

cycles as base Hamilton cycles without any majority or minority edges and similar

or different automorphisms, to determine whether they could be used to establish

or refute the existence of Hamiltonian decompositions.

In Chapters 4, we have investigated whether there are any cases where this op-

timal ϕ(n)/2 symmetric bound can be achieved by strongly symmetric collections

for even n. In that chapter, we introduced directed labels and directed labelled
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star graphs and defined a collection of disjoint Hamilton cycles to be strongly sym-

metric if a single automorphism could generate all the Hamilton cycles from the

base Hamilton cycle. We were not able to determine the exact optimum bound of

strongly symmetric disjoint Hamilton cycles for star graphs Stn for all even n in

that chapter. But, to find the largest strongly symmetric collection we have used

primitive lambda-roots of n stemming from Carmichael’s function λ(n), and we

have considered two different settings: that n = 2k in Section 4.4, and n = 2pk for

prime p of the form 4K + 3 in Section 4.5. We have shown that, for all such n,

Stn has a strongly symmetric collection of ϕ(n)/2 edge-disjoint Hamilton cycles.

However, not all even n have strongly symmetric collections at the ϕ(n)/2 bound.

We have shown that if n is the product of any power of 2 greater than 2 and the

power of any other prime, then there does not exist a strongly symmetric collection

of ϕ(n)/2 disjoint Hamilton cycles for Stn.

In Chapter 5, we have continued our study of strongly symmetric properties of

edge-disjoint Hamilton cycles in star graphs Stn where n is an odd integer. The-

orem 5.7, gives conditions where ϕ(n)/4 strongly symmetric disjoint Hamilton

cycles can be obtained when 2 is a primitive lambda-root of odd n. We have

also discussed some interesting cases that does not satisfy the conditions of The-

orem 5.7 yet has a strongly symmetric collection of ϕ(n)/4 disjoint Hamilton

cycles. Furthermore, as a result of Theorem 5.8, For n = 5k where k ≥ 1, Stn

has a strongly symmetric collection of ϕ(n)/4 disjoint Hamilton cycles and the

ϕ(n)/4 bound cannot be improved. We were unable to give optimum bounds for

symmetric collections of disjoint Hamilton cycles for the case of odd n, but the

ϕ(n)/4 bound is shown to be optimal and achievable for strongly symmetric collec-

tions for infinitely many odd n in that chapter. As a final result of this thesis, we

have considered the question of whether Stn has a strongly symmetric collection

of ϕ(n)/4 disjoint Hamilton cycles for all odd n? Theorem 5.10, has provided a

negative answer to this problem for all integers n that are powers of 5 greater than

1 multiplied by the power of another prime. So, there are infinitely many cases

for which there does not exist a strongly symmetric collection of ϕ(n)/4 disjoint

Hamilton cycles for Stn. We now state an open problem arising from Chapters 4

and 5:

Open Problem 6.3. Let Stn be a star graph. What are the optimum bounds for

strongly symmetric collections of edge-disjoint Hamilton cycles that can be achieved

for all even n or for all odd n?

It would be interesting to investigate some other structures for labelling the

edges of Hamilton cycles and introduce some other kind of labelled star graphs and

label automorphisms. If we can device more efficient methods to obtain Hamilton
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cycles which are edge-disjoint, it may be possible to improve the existing bounds

on symmetric and strongly symmetric collections of edge-disjoint Hamilton cycles

for star graphs Stn given in this thesis.

To summarize, we give a table of results listing the bounds of the number of

edge-disjoint Hamilton cycles which we have achieved in this thesis:

n
Symmetric
Collection

Strongly Symmetric
Collection

Even = ϕ(n)/2

2k, k ≥ 3
(λ(n) = ϕ(n)/2)

= ϕ(n)/2

λ(n) = ϕ(n), ϕ(n)/2 is odd
(e.g. n = 2pk, p = 4K + 3)

= ϕ(n)/2

λ(n) < ϕ(n)/2
(e.g. n = 2kpr, k ≥ 3, p > 2)

< ϕ(n)/2

Odd = ϕ(n)/5

(2ϕ(n)/9, if n 6= 127)

ϕ(n)/2 is even, 2 is PR
(e.g. n = 5k, k ≥ 1)

≤ ϕ(n)/4

ϕ(n)/2 is even, λ(n) = ϕ(n)/2
2 is PLR, -1 is not a power of 2

= ϕ(n)/4

ϕ(n)/2 = 4K + 2, 2 is PR
(e.g. n = 5k, k ≥ 1)

= ϕ(n)/4

n = 5rpm, r > 1, p = 10K + 1 < ϕ(n)/4

• PR is primitive root, and PLR is primitive lambda root.

• p is a prime integer.
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