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Abstract 

The copolymerisation of  3,3'" Dihexyl-2,2':5',2":5",2"'-quaterthiophene (DHQT) and (R)-(-)-

3-(1-pyrrolyl)propyl-N-(3,5-dinitrobenzoyl)-α-phenylglycinate (DNBP) was successfully 

performed electrochemically in acetonitrile (CH3CN) containing tetrabutylammonium 

tetrafluoroborate ((C4H9)4NBF4) by direct oxidation of monomer mixtures in different feed 

ratios. Copolymerisation improved the properties of the films of both polymers PDHQT and 

PDNBP, in respect to the adhesion of PDHQT onto ITO/glass surface and the chromatic 

contrast of these electrochromic materials. PDHQT, PDNBP and P(DHQT-co-DNBP) films 
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were characterised by FTIR spectroscopy, fluorescence spectroscopy, Scanning Electron 

Microscopy (SEM) and spectroelectrochemical techniques. Solutions of  PDHQT and its 

copolymers with DNBP (independently of the feed ratio) in N-methylpyrrolidone are 

fluorescent with  emission bands at 555 and 585 nm when excited at 375 nm. Reversible 

changes in the hue and saturation occur in all the copolymer films from yellow or orange in 

the reduced state to green or blue in the oxidised state, but were dependent on the proportion 

of the comonomers used to prepare the copolymers.  These changes are more significant for 

P(DHQT-co-DNBP) films deposited onto ITO/glass with 1:5 feed ratio, as shown by the track 

of the CIE 1931 xy chromaticity coordinates and by the electrochromic parameters in which 

this film (thickness 0.8 ± 0.2 µm) presented chromatic contrast (∆%T) at 660 nm of 62 %, 

coloration efficiency (η) of 266 cm2 C-1 and stability to redox cycling (∆%T = 17 % at the 

1000th cycle). Therefore, these copolymers are potentially applicable in displays and 

optoelectronic devices as electrochromic and fluorescent materials. 

 

Keywords: Copolymerisation; Electrochromism; Fluorescence; Pyrrole derivative; 

Alkylthiophene oligomers. 
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1. Introduction 

Electrochromic materials based on conjugated polymers have become one of the main 

research topics due to their notable advantages, such as low cost and simple production 

methods, processability, and the possibility of tuning the band gap (and the colour states) of 

the polymer by suitable choice of the monomer substituent [1,2]. 

A major focus in the study of electrochromic polymer materials has been that of 

controlling their colours by main-chain and pendant group structural modification as well as 

copolymerisation [3,4]. However, the structural modification of these conjugated polymers 

with the aim to improve their properties is still a challenge. For example, the introduction of 

large functionalities onto a conjugated polymer can lead to a significant steric effect on the 

polymer backbone, adversely affecting the optical and electronic properties of the polymer 

[5,6]. Otherwise, copolymerisation is an easy, facile method to combine the electrochromic 

properties of monomers and it is a common approach to obtain materials with tailored 

properties [7,8]. Usually these properties are determined by the structure, ratio, and sequence 

of the repeat units derived from the co-monomers [9]. 

Copolymerisation of oligothiophenes is particularly attractive because the oligomers 

themselves have tunable properties that affect the behaviour of the resulting polymers and 

they can provide reduced steric interactions between polymer backbone and substituent 

allowing better control of the polymer regiochemistry [10,11]. Among the variety of 

oligomers used in the synthesis of semi-conducting materials, oligothiophenes have received a 

high interest, mainly due to the π-electron delocalisation, high polarisability of sulphur atoms 

and supramolecular organisation coupled with synthetic accessibility [12-14]. In particular, 

alkyl derivatives of oligothiophenes, such as terthiophene and quaterthiophene, constitute an 

interesting class of electroactive polymers with potential application in organic electronics 

[15] that can be used as components of active layers for application in electronic devices such 
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as Organic Field Effect Transistors (OFETs) [16,17], photovoltaic cells [18] and 

electrochromic devices [19]. 3,3'" Dihexyl-2,2':5',2":5",2"'-quaterthiophene (DHQT) is largely 

investigated for such applications and is usually deposited onto a conductive surface to 

assemble a device by means of high vacuum evaporation [16,20]. However, due to the 

presence of the alkyl substituents in the oligomer chain, that confer solubility to the polymer 

[21], its electropolymerisation directly onto the electrode surface is highly dependent on the 

concentration and the applied potential and can lead to a loosely-adherent film deposited onto 

the electrode [22]. A tool to improve the formation of a uniform and well adhered film 

electrodeposited onto the electrode surface is its copolymerisation with another monomer that 

presents some other desired property. Therefore electrochemical copolymerisation is an 

efficient approach for the modification of the properties of DHQT and then to obtain a variety 

of conjugated polymers with different electrical, optical and morphological properties [23-

25]. In order to modify the properties of DHQT and thus enhance the adherence and film 

formation capability of this polymer, this work has focused on the electrochemical 

copolymerisation of DHQT with a pyrrole derivative, (R)-(-)-3-(1-pyrrolyl)propyl-N-(3,5-

dinitrobenzoyl)-α-phenylglycinate,  DNBP. 

The polymer PDNBP has already been investigated by our group and presents good 

results concerning its application as an electrochromic material [26,27]. In a previous work, 

DNBP was copolymerised with EDOT giving a multielectrochromic film with good 

chromatic contrast and great stability [28]. Herein, DHQT and DNBP were successfully 

polymerised by electrochemical oxidation of the monomer mixtures. The copolymer films 

were homogenously deposited and with good adherence onto ITO/glass and they were 

characterised by FTIR spectroscopy, fluorescence spectroscopy, SEM and 

spectroelectrochemical techniques.  In this case the copolymerisation of DHQT with DNBP 

enhanced the electrochromic properties, such as chromatic contrast, multiple change of colour 
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upon redox switching and long-term switching stability, of the individual constituents, as well 

as maintaining the fluorescence inherent to the DHQT.  

 

2. Experimental 

2.1. Chemicals 

Anhydrous acetonitrile 99.8 % (CH3CN, < 0.001 % water, Sigma-Aldrich), DHQT 

(Sigma-Aldrich), and tetrabutylammonium tetrafluoroborate ((C4H9)4NBF4, Aldrich) were 

used as received. DNBP was synthesised as previously described [29]. 

 

2.2. Characterisation 

Electrochemical experiments were carried out using an Autolab PGSTAT30 

potentiostat/galvanostat. FTIR spectra were recorded on a Nicolet 510 FTIR spectrometer. A 

Hewlett-Packard 8453 diode array spectrophotometer was used for the visible-near infrared 

(vis-NIR) spectra acquisition in the spectroelectrochemical experiments. SEM analysis was 

conducted on a JEOL JSM 6340F microscope. Thickness measurements were obtained using 

a NanoMap-500LS 3D contact stylus surface profilometer (AEP Technology).  

 

2.3. Synthesis of copolymers of DHQT with DNBP 

Solutions of DHQT (10.00, 3.33, 2.00 and 1.25 mmol L-1) and DNBP (10.00 mmol L-

1) were prepared with different feed ratios of each monomer in a supporting electrolyte 

consisting of 0.1 mol L-1 (C4H9)4NBF4/CH3CN, providing DHQT:DNBP feed ratios of 1:1, 

1:3, 1:5 and 1:8. Films of PDHQT, PDNBP and P(DNBP-co-DHQT) (Scheme 1) were 

deposited onto ITO/glass electrodes (covered area = 1.0 cm2, Rs 8-12 Ω �−1; Delta 

Technologies) using a platinum foil as the counter electrode and an Ag/Ag+ reference 

electrode (0.10 mol L-1 AgNO3/CH3CN, calibrated to the Fc/Fc+ redox couple, EFc/Fc
+ - EAg/Ag

+ 
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= 70 mV [30]). Cyclic voltammograms were acquired at a scan rate (ν) of 20 mV s-1 within 

the potential scan range of 0.0 ≤ E ≤ 0.50 V for polymerisation of DHQT and 

copolymerisation of DHQT with DNBP in a 1:1 feed ratio, 0.0 ≤ E ≤ 0.55 V for preparation of 

the copolymers with 1:3, 1:5 and 1:8 feed ratios, and 0.0 ≤ E ≤ 0.85 V for polymerisation of 

DNBP. The number of voltammetric cycles was varied in order to obtain films with similar 

deposition charge (Qdep ~ 60 mC cm-2), i.e. with similar thickness (0.8 ± 0.2 µm) [31,32] to 

avoid ambiguities in the colorimetric measurements. 

To obtain a sufficient amount of polymer for FTIR spectroscopic characterisation, a 

platinum foil was employed as working electrode. After polymerisation, the films were 

washed several times with CH3CN to remove the supporting electrolyte and the unreacted 

monomers and oligomers.  

 

2.4. Fluorescence spectroscopy 

The monomer DHQT (~ 0.05 mg), its polymer PDHQT and the copolymer films 

deposited onto ITO/glass were solubilised in 5.0 mL of N-methylpyrrolidone (NMP). Before 

the measurements all solutions were purged with N2 for 10 minutes. The photoluminescence 

emission spectra and lifetime data were recorded with a FLS920 Fluorescence Spectrometer 

equipped with a TMS300 monochromator, a S900 single photon photomultiplier detection 

system and an EPL-375 picosecond pulsed diode laser (Edinburgh Instruments).  

 

2.5. Spectroelectrochemistry 

The polymer and copolymer films deposited onto ITO/glass were characterised by 

cyclic spectrovoltammetry and double step spectrochronoamperometry in 0.1 mol L-1 

(C4H9)4NBF4/CH3CN solution as supporting electrolyte, using a platinum wire as the counter 

electrode and an Ag/Ag+ (0.1 mol L-1 in CH3CN) electrode as reference. Cyclic 
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voltammograms were acquired within the potential scan range of 0.0 ≤ E ≤ 0.45 V vs. Ag/Ag+ 

(0.1 mol L-1 in CH3CN), and chronoamperograms were obtained by application of pulses of 

E1 = 0.0 and E2 = 0.45 V for 20 s. Spectra in the range of 300 to 1100 nm were recorded 

simultaneously with the electrochemical experiments. 

CIE (Commission Internationale de l’Eclairage) principles [33] were applied in order 

to quantify the colour changes of each deposited polymer or copolymer films. CIE 1931 xy 

chromaticity coordinates and CIELAB 1976 colour space coordinates (L*a*b*) were acquired 

using a Microsoft® Excel® spreadsheet developed by Mortimer and Varley [34,35]. For 

simulation of midmorning to midafternoon natural light, the relative power distribution of a 

D55 constant temperature (5500 K blackbody radiation) standard illuminant was used in the 

calculations. As the chromaticity coordinates vary with film thickness [36] it is important to 

emphasise that all data were calculated for films prepared with similar thickness. The track of 

the CIE 1931 xy chromaticity coordinates in the CIE chromaticity diagram was obtained using 

a Spectra Lux® Software v.2.0 Beta [37].  

 

3. Results and Discussion 

3.1. Electrochemical copolymerisation 

In order to prepare copolymer chains with alternating monomer units, the oxidation 

potential of the starting monomers should be relatively close [23,38,39], usually below 0.2 V. 

As can be seen in Figure 1, the onset of the oxidation potential of DHQT is ~ 0.42 V while the 

onset of the oxidation potential of DNBP is ~ 0.78 V, so the difference between the oxidation 

potential of each one is ca. 0.36 V. As this difference is above 0.2 V we used the diffusion 

method strategy proposed by Kuwabata et al. [40] to guarantee that the copolymerisation has 

been achieved. This strategy consists of oxidising DHQT at potentials where DNBP oxidation 

occurs, i.e. using a higher concentration of the monomer with the highest oxidation potential 
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(DNBP). In order to confirm the suitable feed ratios of DHQT and DNBP, a series of 

experiments with different feed ratios were carried out.  

Cyclic voltammograms recorded during the electropolymerisation of DHQT (Figure 

2a) show the formation of a sharp redox couple with anodic peak potential (Epa) ~ 0.39 V and 

cathodic peak potential (Epc) ~ 0.32 V. On repetitive scanning the current of each peak 

increased, implying that a layer of redox-active and conductive material was deposited on the 

electrode, however, when the modified electrodes were withdrawn from solution the film 

either partially re-dissolved or became dislodged from the electrode surface forming 

heterogeneous films. A similar behaviour was observed by Jones and Higgins [22] with other 

alkyl-terthiophene and -quaterthiophenes and by Zotti et al. [41] with a series of dialkoxy-

substituted thiophene oligomers which may be ascribed to the high solubility of the 

polymers/oligomers from the former and to the low rate of coupling of the latter leading to the 

exclusive deposition of soluble oligomers [9]. Therefore, as can be seen in Fig. 2a, the low 

current values observed during the reduction process of the as-formed PDHQT can be 

attributed to the solubility of the fresh formed oxidised polymer/oligomers.  

When the proportion of DHQT and DNBP was the same (1:1), the cyclic 

voltammograms recorded during the copolymerisation were similar to the results observed for 

DHQT (Figure 2b), however an adherent and homogeneous film was deposited onto 

ITO/glass or Pt. Increasing the concentration of DNBP in the mixture leads to the formation 

of polymer films electrodeposited at slightly higher oxidation potentials (0.55 V) presenting 

two redox peaks that tend to overlap as the proportion of DNBP in the copolymer increases. 

So, the evolution of new redox pairs at potentials different from the potentials of both 

homopolymers indicated the formation of a copolymer. It seems that a synergic behaviour 

occurs displacing both the oxidation potential of the DNBP, even in higher proportion of 

DNBP in the mixture, as well as the Epa and Epc of the copolymer when compared with each 
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homopolymer. This effect can be explained by the diminution of the steric hindrance caused 

by the voluminous groups present in DNBP and by the lateral alkyl chains present in DHQT 

[5,42].  

  

3.2. FTIR spectra 

PDHQT, PDNBP and P(DHQT-co-DNBP) films deposited onto Pt were analysed by 

FTIR spectroscopy (diffuse reflectance) as shown in Figure 3. According to the spectrum 

recorded for PDHQT, the diagnostic bands at about 3066 and 790 cm-1 are attributed to the C-

Hβ stretching and bending vibrations, respectively. The bands at 1500, 1461 and 1376 cm-1 

originate from the stretching modes of C=C and C–C in the thiophene ring [15,21,43]. 

Furthermore, vibrations from the C–S bond in the thiophene ring of DHQT appear at 926, 875 

and 832 cm−1, which also can be observed for the copolymer main chain independently of the 

co-monomer proportion used. Moreover it is possible to notice a band at around 1095 cm-1 in 

all spectra attributed to the vibrations corresponding to the BF4
- anion, used as 

electrolyte/dopant agent. Bands related to the (C4H9)4N+ cation occur in the same region 

(2960-2870 cm-1) as the DHQT alkyl chain vibrations and could not be identified.  

The FTIR spectrum of PDNBP shows characteristic bands at 1743 and 1670 cm−1 that 

are assigned to the ester and amide C=O stretching, respectively. Both bands can be observed 

in the spectra of the copolymers in all different comonomer proportions. The bands at 1627, 

1453, and 730 cm−1 are ascribed to the stretching and bending modes of the benzene ring. Due 

to the low intensity of the peaks at 1627 and 1453 cm-1, it was not possible to identify them in 

the spectra of the copolymers, but the peak at 730 cm-1 can be seen.  

The evolution of the bands in the fingerprint region (Figure 3 inset) with increase of 

the concentration of DNBP is also interesting. The peaks at 832 and 790 cm-1 appear in the 

spectra of all copolymers, but their intensity decreases with an increase in DNBP 
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concentration, which infers there is a decrease of DHQT units incorporated into the 

copolymer. Another interesting feature is the evolution of the bands at around 926, 875 and 

725 cm-1 (in the PDHQT spectrum) in the spectra of the copolymers. In this case, the peaks 

move from 926 to 921 cm-1, 875 to 883 cm-1 and 725 to 735 cm-1 with the increase of the ratio 

of DNBP in the copolymer. This may be regarded as evidence of copolymerisation 

distinguishing itself from the simple addition of the spectra of PDHQT and PDNBP indicating 

that the DNBP units are incorporated into the copolymer chain. Analysis of these results, 

together with data from the fluorescence spectra, SEM images and cyclic voltammograms, 

gives evidence that the copolymerisation of DHQT and DNBP was successfully achieved 

independently of the copolymer’s proportion. 

 

3.3. Photoluminescence properties 

DHQT and PDHQT are good light emitters while DNBP and PDNBP are not 

fluorescent, therefore the characterisation of these materials by fluorescence spectroscopy 

provides additional information about the formation of copolymers. The photoluminescence 

properties of DHQT and derivatives have previously been reported in the literature [44-46]. 

The spectra show two emission bands at 450 and 480 nm. Spectra of the solutions of PDHQT 

and P(DHQT-co-DNBP) in NMP show that they are also fluorescent with two emission bands 

at 555 and 585 nm when excited at 375 nm, but the photoluminescence intensity decreases 

when the proportion of DHQT in the copolymer is lowered (Figure 4). Similar behaviour was 

observed by Yue et al. [47] when they investigated a copolymer of benzanthrone and 

thiophene in which the emission intensities of the copolymer films dissolved in DMSO 

decreased as the feed ratios of benzanthrone/thiophene decreased.  

It is possible to observe two additional bands at 458 and 488 nm in the spectra of 

PDHQT, attributed to the presence of oligomers formed during the electropolymerisation 
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process. These emission bands attributable to oligomers are absent in the copolymer spectra, 

suggesting that the copolymerisation of DHQT with DNBP avoids the formation of soluble 

oligomers. Furthermore, the splitting of bands due to vibronic coupling can be clearly seen in 

the fluorescence spectra of DHQT, PDHQT and of copolymers. This coupling can be 

attributed to the planarisation of the system upon excitation, i.e. the solution ground state is on 

average twisted, while the excited state is more planar, having greater quinoid character 

[44,47]. Compared with the DHQT, is it possible to observe a large bathochromic shift in the 

emission wavelength of PDHQT and all copolymers. This red-shift of emission spectra can be 

attributed to the higher conjugation of the polymer/copolymer backbone in comparison with 

the DHQT [48,49]. There is no shift in emission wavelength as the copolymer ratio is 

changed, suggesting formation of block copolymers. These aspects of the fluorescence of 

these materials are the subject of ongoing investigation. 

 

3.4. Morphology 

The properties of conjugated polymers are strongly dependent on their morphology 

and structure. According to Turkarslan et al. and Nie et al. the analysis of the morphology of 

the polymer and its copolymer films by SEM technique can provide evidence of 

copolymerisation [24,25]. Therefore, SEM micrographs of PDHQT, PDNBP and copolymer 

films prepared in different proportions were examined. Figure 5 shows SEM images of each 

polymer and of the P(DHQT-co-DNBP) deposited onto ITO/glass with 1:5 feed ratio. The 

morphology of the PDHQT film is sponge-like (Figure 5a) with pores of less than 1 µm 

diameter. These pores could originate from the dissolution of the oligomers and/or polymer 

during the electropolymerisation process [9]. On the other hand, the morphology of PDNBP is 

compact and homogeneous with globular grains (Figure 5c) [32,50]. Meanwhile, the 

morphology of the copolymer film (Figure 5b) was between PDHQT and PDNBP, further 
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confirming the occurrence of copolymerisation. For other proportions the morphologies of 

the copolymers are quite similar, except for the copolymer deposited onto ITO/glass with 1:1 

feed ratio. In this case the morphology was the same as PDHQT.  

 

3.5. Spectroelectrochemical characterisation 

PDHQT and its copolymer films deposited onto ITO/glass electrodes were 

characterised by cyclic spectrovoltammetry in monomer-free CH3CN containing 0.1 mol L−1 

(C4H9)4NBF4, in order to determine the potential window that would provide the maximum 

colour contrast and also to measure the wavelengths of maximum absorption (λmax) of the 

film in the reduced and oxidised states. PDNBP films have already been investigated 

previously and the results of their spectroelectrochemical characterisation are shown and 

discussed in refs. [26] and [28].  

The cyclic voltammograms of the copolymer films presented the same behaviour 

shown during the electropolymerisation, i.e. the features of the cyclic voltammograms were 

dependent on the feed ratio of the comonomers. The cyclic voltammogram of P(DHQT-co-

DNBP) deposited onto ITO/glass with a 1:1 feed ratio shows similar behaviour of the PDHQT 

film, presenting just one redox couple with an anodic peak (Epa) at 0.39 V and a cathodic peak 

(Epc) at 0.32 V vs. Ag/Ag+ (0.1 mol L-1 in CH3CN), while the cyclic voltammograms of the 

copolymers deposited with 1:3, 1:5 and 1:8 feed ratios show two oxidation peaks and just one 

broad reduction peak (Figure 6 and Table 1). These two oxidation peaks tend to overlap as the 

proportion of DNBP increases in the copolymer film. Although PDHQT and P(DHQT-co-

DNBP) deposited with 1:1 feed ratio have presented the same Epa and Epc values, it is possible 

to observe differences in the symmetry between their oxidation and reduction peaks in the 

cyclic voltammogram. This difference can be attributed to the higher solubility of the PDHQT 

(oligomers) in comparison with its copolymers. 
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The changes in the absorbance spectra of the copolymer films as a function of the 

potential applied to the electrode during cyclic voltammetry are presented in Figure 7. The 

spectrum of the P(DHQT-co-DNBP) film deposited onto ITO/glass with 1:1 feed ratio is quite 

similar to the spectrum of the PDHQT film (not shown). Spectroelectrochemical 

characterisation of PDNBP films was discussed earlier in ref. [26]. Spectra of the copolymer 

films prepared using 1:3, 1:5 and 1:8 feed ratios presented similar behaviour and exhibited a 

band with λmax in the range of 440-453 nm in the reduced state (0.0 V). With increasing 

potential the peak intensity of this band decreases and is displaced to shorter wavelengths.  It 

is possible to observe the formation of a new band at ca. 660 nm for the copolymer films 

prepared using 1:3 or 1:5 feed ratios or at 692 nm for the P(DHQT-co-DNBP) film deposited 

with 1:8 feed ratio (Table 1). Besides this, a rise in the absorbance in the overall near infrared 

region (NIR, above 800 nm) was identified for all copolymer films. This reveals the formation 

of bipolarons, attributed to the highly conducting state of the polymer film [51,52].  

As can be seen in Table 1, comparison of the band gap energy (Eg) values (estimated 

from the optical absorption edge in the onset of the π-π* transition of the film in the neutral 

state using the Tauc relation [53,54], see Figure S1 in Supplementary Information) obtained 

for PDHQT, the copolymers, and PDNBP shows that introduction of DNBP into the PDHQT 

chain led to an intermediate λmax value for the copolymers. Furthermore, the Eg value for 

PDHQT (1.97 eV) is quite lower than that calculated by Facchetti et al. [44] for the DHQT 

(2.88 eV), indicating that even with the dissolution of oligomers during the 

electropolymerisation process, a conjugated chain is deposited onto the electrode surface. 

The description of colour, or the comparison of two colours is a subjective process and 

it is difficult to describe this accurately. So in order to give a better interpretation of the 

changes in the spectral absorption bands according to the potential applied to the system, the 

CIE 1931 xy chromaticity coordinates were calculated from the in situ spectra of each film 
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and their trajectories for PDHQT, P(DHQT-co-DNBP) deposited onto ITO/glass in different 

proportions and PDNBP are shown in Figure 8 (see also Tables S1-S6 and Figure S2 in 

Supplementary Information). It can be clearly seen that whilst the colour variation for the 

films of PDHQT, PDNBP and P(DHQT-co-DNBP) deposited onto ITO/glass with 1:1 feed 

ratio is very low, the other copolymer films present a remarkable change in their colour 

according to the applied potential. In this case, their colours change from orange in the 

reduced state (0.0 V) through light yellow and finally to green or blue in the reduced state 

(0.45 V) depending on the proportion of each comonomer used to prepare the films. 

The relative luminance (%Y) can offer a different perspective on light transmittance of 

the film relative to spectroelectrochemistry where a low value of luminance corresponds to an 

opaque material while a high value is characteristic of a highly transparent material giving a 

perception of the changes in brightness. So both luminance and chromaticity coordinates 

provide valuable information that allows the observer to understand changes in the colour of 

the material [4]. The potential dependence of the relative luminance (Figure 9) shows that 

PDHQT and P(DHQT-co-DNBP) films deposited onto ITO/glass with 1:1 feed ratio 

presented similar behaviour with a small variation of the luminance between the reduced and 

oxidised states. Besides PDNBP film has shown small variation in the luminance values 

according to the potential applied; their luminance values are lower (c.a. 50-60 %) than 

PDHQT and the 1:1 copolymer indicating that this film is more opaque. However, the 

changes in brightness are more pronounced in the copolymers deposited onto ITO/glass with 

1:3 or 1:5 feed ratios.   

The values of the CIELAB 1976 L*a*b* coordinates for each polymer and their 

copolymers deposited onto ITO/glass in different proportions are shown in Table 2. L* can be 

interpreted as being the lightness variable of the material, while a* and b* are concerned with 

the red-green and yellow-blue saturation of the colour, respectively. The PDHQT and all 
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copolymer films show positive values for a* (colour perceived as red) and for b* (colour 

perceived as yellow) in the reduced state, reaching a maximum (a* = 27) for the copolymer 

deposited onto ITO/glass with 1:5 feed ratio. PDHQT and P(DHQT-co-DNBP) deposited 

onto ITO/glass with 1:1 feed ratio are yellow and the other copolymers are orange in the 

reduced state. For PDNBP film in the reduced state a* is negative indicating that the 

perceived colour is green and b* is positive (yellow) giving a yellowish green colour. When 

the applied potential increases (from 0.00 to 0.45 V), a negative change (towards green) in a* 

occurs, coupled with a decrease in b* for PDHQT and all copolymer films quantifying the 

perceived colour state as a combination of green and yellow at 0.45 V.  This change is more 

significant for the copolymer deposited onto ITO/glass with 1:5 feed ratio, where b* changes 

to negative values (towards blue) and the colour of this copolymer is a combination of green 

and blue. For PDNBP film in the oxidised state a* and b* values are positive but small and 

the colour of the film is light blue.  

 

3.6. Electrochromic properties 

The electrochromic performance of the copolymer films with respect to chromatic 

contrast (∆%T), coloration efficiency (η) and stability to redox cycles was investigated by 

double step potential spectrochronoamperometry. As can be seen in Table 1 the λmax of the 

polymers and its copolymers are different, therefore ∆%T and η were measured at different 

wavelengths (close to their λmax) in order to achieve the highest contrast for each film. For the 

copolymers deposited onto ITO/glass with 1:3, 1:5 and 1:8 feed ratio, the chromatic contrast 

(∆%T) was 55, 62 and 50 %, respectively (Table 2), which is 30 - 40 % higher than that of the 

PDNBP deposited onto ITO/glass with Qdep = 60 mC cm-2 at 485 nm in its first cycle (∆%T = 

11.0) [26]. The stability of the copolymer film deposited onto ITO/glass with 1:5 feed ratio 

following long-term switching between the oxidised and reduced states was tested and 
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showed  ∆%T = 17 % at the 1000th cycle with the changes in the colour still perceived by the 

eye. Otherwise, when PDHQT or PDNBP films were switched in the same experimental 

conditions, these films reached just 100 and 350 double step potential cycles, respectively, 

and presented a severe decrease in the chromatic contrast (∆%T < 10 %).  

Coloration efficiency, η, was calculated according to Eq. (1) using the data obtained 

from spectrochronoamperometry experiments at λmax of each sample: 

η(λ) = (log Tb − log Tc) / Q                                                                                                       (1) 

where Tb is the transmittance of the bleached form at a certain wavelength, Tc the 

transmittance of the coloured form at the same wavelength and Q the charge density (in C 

cm−2) necessary to produce the chromatic change. 

Coloration efficiency (η) for the copolymer film deposited onto ITO/glass with 1:5 

feed ratio was 266 cm2 
 C-1, which is ca. 10 times higher than the values reached for PDNBP 

deposited with the same Qdep (60 mC cm-2) [26] and are in accordance with the values cited in 

the literature for polymers obtained from thiophene and pyrrole derivatives [55,56]. These 

results suggest that the copolymer films can be used to assemble electrochromic devices, 

since a relatively small amount of charge injected per unit area is necessary for attainment of 

a perceptible colour change.  

  

4. Conclusions  

Copolymerisation of DHQT and DNBP leads to an interesting combination of the 

properties observed in the corresponding homopolymers and is an excellent tool for the fine-

tuning of colour with a view to electrochromic applications. P(DHQT-co-DNBP) films 

presented higher chromatic contrast (35 – 62 %) as compared to the homopolymers, but these 

properties were dependent on the proportion of each comonomer used to prepare the 

copolymers. Accordingly, this synergic effect observed when the two monomers are 
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polymerised can be explained by the diminishing of the steric effect of the voluminous groups 

present in both thiophene and pyrrole derivatives facilitating the electropolymerisation 

process and permitting that the copolymer can adopt a highly conjugated planar conformation.   

Similarly to the analysis of the morphology of the films, the characterisation by 

fluorescence spectroscopy has helped to obtain additional information about the structure of 

the copolymer, suggesting the formation of a block copolymer. Furthermore, fluorescence 

measurements show that the PDHQT and its copolymers with DNBP are good yellow light 

emitters. The enhanced electrochromic properties of the P(DHQT-co-DNBP) copolymer films 

are interesting for the application of these materials as active layers in optoelectronic devices, 

such as displays and smart windows. Therefore, the combination of DHQT and DNBP make 

these structures useful for promising applications as electrochromic and fluorescent materials. 
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Table 1. Anodic peak potential (Epa), cathodic peak potential (Epc), λmax at reduced (0.0 V) 

and oxidised (0.45 V) states and band gap energy (Eg) of the copolymer films prepared using 

different feed ratios.  

 EpaI (V) EpaII (V) EpcI (V) 
λmax (nm) 

Eg (eV)a 
0.0 V 0.45 V 

PDHQT 0.39 - 0.32 381, 474b 381, 638 1.97 

P(DHQT-co-DNBP) 1:1 0.39  - 0.32  380, 475b 380, 641 2.08 

P(DHQT-co-DNBP) 1:3 0.27  0.33 0.25  446 390, 659 2.11 

P(DHQT-co-DNBP) 1:5 0.24  0.30 0.24  453 459, 657 2.11 

P(DHQT-co-DNBP) 1:8 0.23  0.30 0.24  440 431,692 2.10 

PDNBP 0.35 - 0.27 350, 390a 460 2.38 

a calculated from the onset of the π–π* transition; b shoulder.  
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Table 2. Colorimetry and electrochromic properties of the polymers and its copolymer films 

deposited onto ITO/glass with different feed ratios.  

 E (V) L* a* b* ∆%T η (cm2 C-1) 

PDHQT 0.00 92 2 30 
22a 82a 

 0.45 87 -6 13 

P(DHQT-co-DNBP) 1:1 0.00  87 8  30 
35a 110a 

 0.45 83 -6 11 

P(DHQT-co-DNBP) 1:3 0.00  78 31  104 
55b 150b 

 0.45 51 -13 14 

P(DHQT-co-DNBP) 1:5 0.00  73 27  82 
62b 266b 

 0.45 50 -12 -1 

P(DHQT-co-DNBP) 1:8 0.00  76 19  73 
50c 148c 

 0.45 60 -4 23 

PDNBP 0.00 83 -1 5 
11d 30d 

 0.45 78 1 5 

a Calculated at λ = 640 nm, b calculated at λ = 660 nm, c calculated at λ = 700 nm, d calculated 

at λ = 485 nm. 
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Figure Captions 

 

Scheme 1. Electrochemical copolymerisation of DHQT and DNBP.  

   

Figure 1. Anodic polarisation curves of (a) DHQT and (b) DNBP in 0.1 mol L-1 

(C4H9)NBF4/CH3CN, ν = 20 mV s-1. 

 

Figure 2. Cyclic voltammograms of (a) DHQT, (b) 1:1,  (c) 1:3, (d) 1:5 and (e) 1:8 

DHQT:DNBP molar concentration proportions (feed ratios), and (f) DNBP in 0.1 mol L-1 

(C4H9)NBF4/CH3CN, ν = 20 mV s-1.  

 

Figure 3. FTIR spectra for (a) PDHQT, P(DHQT-co-DNBP) with (b) 1:1, (c) 1:3, (d)1:5 and 

(e) 1:8 feed ratios, and (f) PDNBP films deposited onto Pt. Inset: Expanded view of the finger 

print region. 

 

Figure 4. Emission spectra of (a) DHQT, (b) PDHQT, P(DHQT-co-DNBP) prepared with (c) 

1:1 and (d) 1:5 feed ratios, in NMP solution (excitation at 375 nm). Inset: photoluminescence 

of (a) DHQT, (b) PDHQT, P(DHQT-co-DNBP) prepared with (c) 1:1 and (d) 1:5 feed ratios, 

in NMP solution, when exposed to UV light. 

 

Figure 5. SEM images of (a) PDHQT, (b) P(DHQT-co-DNBP) deposited onto ITO/glass with 

1:5 feed ratio and (c) PDNBP. 
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Figure 6. Cyclic voltammograms of PDHQT (___) and P(DHQT-co-DNBP) films deposited 

onto ITO/glass in (___) 1:1, (___) 1:3, (___) 1:5 and (___) 1:8 feed ratios in 0.1 mol L-1 

(C4H9)NBF4/CH3CN, ν = 20 mV s-1.  

  

Figure 7. Spectroelectrochemical characterisation of the P(DHQT-co-DNBP) films deposited 

onto ITO/glass with (a) 1:1, (b) 1:3, (c) 1:5 and (d) 1:8 feed ratio in (C4H9)4NBF4 / CH3CN 

0.1 mol L-1 showing absorbance as a function of the applied potential from 0.00 to 0.45 V in 

0.05 V intervals.  

 

Figure 8. Calculated colour trajectory in the CIE 1931 colour space for (a) PDHQT, 

P(DHQT-co-DNBP) films deposited onto ITO/glass with (b) 1:1, (c) 1:3, (d) 1:5 and (e) 1:8 

feed ratios and (f) PDNBP. 

 

Figure 9. Relative luminance (%Y) vs. applied potential of ( ) PDHQT, P(DHQT-co-DNBP) 

films deposited onto ITO/glass with ( ) 1:1, ( ) 1:3, ( ) 1:5 and ( ) 1:8 feed ratios and ( ) 

PDNBP. 



 39 

Table 1. Anodic peak potential (Epa), cathodic peak potential (Epc), λmax at reduced (0.0 V) 

and oxidised (0.45 V) states and band gap energy (Eg) of the copolymer films prepared using 

different feed ratios.  

 EpaI (V) EpaII (V) EpcI (V) 
λmax (nm) 

Eg (eV)a 
0.0 V 0.45 V 

PDHQT 0.39 - 0.32 381, 474b 381, 638 1.97 

P(DHQT-co-DNBP) 1:1 0.39  - 0.32  380, 475b 380, 641 2.08 

P(DHQT-co-DNBP) 1:3 0.27  0.33 0.25  446 390, 659 2.11 

P(DHQT-co-DNBP) 1:5 0.24  0.30 0.24  453 459, 657 2.11 

P(DHQT-co-DNBP) 1:8 0.23  0.30 0.24  440 431,692 2.10 

PDNBP 0.35 - 0.27 350, 390a 460 2.38 

a calculated from the onset of the π–π* transition; b shoulder.  
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Table 2. Colorimetry and electrochromic properties of the polymers and its copolymer films 

deposited onto ITO/glass with different feed ratios.  

 E (V) L* a* b* ∆%T η (cm2 C-1) 

PDHQT 0.00 92 2 30 
22a 82a 

 0.45 87 -6 13 

P(DHQT-co-DNBP) 1:1 0.00  87 8  30 
35a 110a 

 0.45 83 -6 11 

P(DHQT-co-DNBP) 1:3 0.00  78 31  104 
55b 150b 

 0.45 51 -13 14 

P(DHQT-co-DNBP) 1:5 0.00  73 27  82 
62b 266b 

 0.45 50 -12 -1 

P(DHQT-co-DNBP) 1:8 0.00  76 19  73 
50c 148c 

 0.45 60 -4 23 

PDNBP 0.00 83 -1 5 
11d 30d 

 0.45 78 1 5 

a Calculated at λ = 640 nm, b calculated at λ = 660 nm, c calculated at λ = 700 nm, d calculated 
at λ = 485 nm. 
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Supplementary Information 

 

Calculation of  Eg 

The band gap energy (Eg) values of each polymer and its copolymers were estimated from the 

optical absorption edge on the onset of π-π* transition of the film in the neutral state using the 

Tauc relation. 

A hν  = (hν - Eg)n  

Where A is the absorbance, hv is the photon energy and n is ½ for allowed direct transitions in 

the material. The Eg of the polymers and copolymers were obtained from extrapolation of the 

straight line portion of their (A hν)2 vs. hν  plots to A = 0 as shown in Figure 1S. 
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a)  

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

 



 43 

Figure S1 (Supplementary Information): Absorbance squared versus the photon energy (hν) 

extrapolated to zero absorption of the (a) PDHQT, P(DHQT-co-DNBP) deposited with (b) 

1:1, (c) 1:3, (d) 1:5 and (e) 1:8 feed ratio, and PDNBP films. 
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Colorimetric data 

All colorimetric data for the polymer and copolymer films are shown in Tables S1 – S6. 

Figure 2 shows an expanded region in the CIE 1931 colour space for each polymer and 

copolymer. 

 

Table S1. Numerical chromaticity coordinates for PDHQT films deposited onto ITO/glass 

according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.386 0.398 79.66 92 2 30 

0.05 0.387 0.398 79.54 91 2 30 

0.10 0.387 0.398 79.44 91 2 30 

0.15 0.387 0.398 79.28 91 2 30 

0.20 0.387 0.398 79.04 91 2 30 

0.25 0.385 0.397 78.43 91 2 29 

0.30 0.376 0.392 76.55 90 0 25 

0.35 0.353 0.381 71.63 88 -5 16 

0.40 0.353 0.380 69.39 87 -5 16 

0.45 0.347 0.376 68.66 87 -6 13 

 

 

Table S2. Numerical chromaticity coordinates for P(DHQT-co-DNBP) films deposited onto 

ITO/glass with 1:1 feed ratio according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.397 0.393 70.03 87 8 30 

0.05 0.397 0.393 69.87 87 8 30 

0.10 0.397 0.393 68.78 87 8 30 

0.15 0.397 0.393 69.62 87 8 30 

0.20 0.397 0.393 69.39 87 8 30 

0.25 0.397 0.393 69.04 87 8 29 

0.30 0.388 0.389 67.29 86 6 26 

0.35 0.361 0.381 64.81 84 -1 17 

0.40 0.352 0.378 63.41 84 -4 14 
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0.45 0.344 0.375 62.29 83 -6 11 

 

Table S3. Numerical chromaticity coordinates for P(DHQT-co-DNBP) films deposited onto 

ITO/glass with 1:3 feed ratio according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.533 0.448 54.02 78 31 104 

0.05 0.533 0.447 53.29 78 31 103 

0.10 0.533 0.447 52.68 78 31 103 

0.15 0.533 0.447 51.72 77 30 102 

0.20 0.526 0.446 44.89 73 27 92 

0.25 0.518 0.446 38.68 69 24 81 

0.30 0.476 0.438 25.44 57 14 51 

0.35 0.420 0.424 20.76 53 4 31 

0.40 0.379 0.414 20.43 52 -4 21 

0.45 0.339 0.406 19.58 51 -13 14 

 

 

Table S4. Numerical chromaticity coordinates for P(DHQT-co-DNBP) films deposited onto 

ITO/glass with 1:5 feed ratio according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.517 0.442 45.87 73 27 82 

0.05 0.517 0.442 45.81 73 27 82 

0.10 0.517 0.442 44.98 73 27 82 

0.15 0.515 0.440 43.00 71 26 82 

0.20 0.499 0.437 35.77 66 22 82 

0.25 0.462 0.428 26.90 59 13 45 

0.30 0.385 0.390 18.94 51 3 17 

0.35 0.326 0.370 18.28 50 -8 4 

0.40 0.303 0.360 17.91 49 -9 2 

0.45 0.317 0.365 17.87 49 -12 -1 
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Table S5. Numerical chromaticity coordinates for P(DHQT-co-DNBP) films deposited onto 

ITO/glass with 1:8 feed ratio according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.491 0.445 49.23 76 19 73 

0.05 0.491 0.444 48.41 75 19 72 

0.10 0.490 0.442 46.38 74 19 70 

0.15 0.481 0.437 40.54 70 18 61 

0.20 0.459 0.429 33.72 65 13 48 

0.25 0.435 0.423 30.29 62 8 38 

0.30 0.413 0.419 28.89 61 3 32 

0.35 0.394 0.415 28.67 60 -1 27 

0.40 0.377 0.409 28.50 60 -3 24 

0.45 0.382 0.411 28.33 60 -4 23 

 

 

Table S6. Numerical chromaticity coordinates for PDNBP films deposited onto ITO/glass  

according to the applied potential. 

E (V) x y %Y L* a* b* 

0.00 0.350 0.361 61.80 83 -1 5 

0.05 0.349 0.360 60.35 82 0 5 

0.10 0.347 0.358 58.28 81 1 4 

0.15 0.346 0.355 56.36 80 2 4 

0.20 0.345 0.354 55.18 79 3 4 

0.25 0.345 0.353 54.24 79 3 4 

0.30 0.344 0.352 53.53 78 2 4 

0.35 0.343 0.353 53.05 78 1 4 

0.40 0.341 0.356 52.69 78 1 5 

0.45 0.340 0.356 52.00 78 1 5 
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Figure S2 (Supplementary Information): Expanded graphs of the calculated colour 

trajectory in the CIE 1931 colour space for (a) PDHQT, P(DHQT-co-DNBP) films 

deposited onto ITO/glass with (b) 1:1, (c) 1:3, (d) 1:5 and (e) 1:8 feed ratios and (f) 

PDNBP film. 
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