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The contribution to the free energy for a film of liquid of thickness h on a solid surface due to
the interactions between the solid-liquid and liquid-gas interfaces is given by the binding potential,
g(h). The precise form of g(h) determines whether or not the liquid wets the surface. Note that
differentiating g(h) gives the Derjaguin or disjoining pressure. We develop a microscopic density
functional theory (DFT) based method for calculating g(h), allowing us to relate the form of g(h)
to the nature of the molecular interactions in the system. We present results based on using a simple
lattice gas model, to demonstrate the procedure. In order to describe the static and dynamic behaviour
of non-uniform liquid films and drops on surfaces, a mesoscopic free energy based on g(h) is often
used. We calculate such equilibrium film height profiles and also directly calculate using DFT the
corresponding density profiles for liquid drops on surfaces. Comparing quantities such as the contact
angle and also the shape of the drops, we find good agreement between the two methods. We
also study in detail the effect on g(h) of truncating the range of the dispersion forces, both those
between the fluid molecules and those between the fluid and wall. We find that truncating can have
a significant effect on g(h) and the associated wetting behaviour of the fluid. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4907732]

I. INTRODUCTION

The wetting of a substrate by a fluid is an important phys-
ical process and understanding such behaviour is crucial in a
variety of fields from industrial processes such as lubrication
and painting to biological applications such as tear films in the
eyes or mucus linings in the lungs. The wetting behaviour of
a fluid1,2 is determined by the manner in which the atoms or
molecules within the fluid interact with each other and with
those forming the substrate. Determining the macroscopic fluid
properties, wetting behaviour and thermodynamics, starting
from an understanding of the (microscopic) molecular interac-
tions is one of the cornerstone problems in liquid state science.2

On the macroscopic scale, the wetting behaviour of a fluid
in contact with a solid substrate can be characterised by the
contact angle that a liquid drop makes with that substrate.
Three regimes of wetting behaviour can be identified: complete
wetting, partial wetting, and non-wetting, these three states
are defined by contact angles of θ = 0◦, 0◦ < θ < 180◦, and θ
= 180◦, respectively.1 Surface tension forces arise from inter-
faces in the fluid and these can be related to the contact angle
by Young’s equation2

a)Electronic address: A.Hughes2@lboro.ac.uk
b)Electronic address: u.thiele@uni-muenster.de
c)Electronic address: A.J.Archer@lboro.ac.uk

cos θ =
γwg − γwl

γlg
, (1)

where γlg, γwl, and γwg are the liquid-gas, wall-liquid, and wall-
gas surface tensions, respectively.

The effective interface Hamiltonian (IH) model,3–6 also
referred to as the interface free energy model, describes the
height profile of a mesoscopic liquid film on a substrate. One
can find the equilibrium shape of a droplet by minimising the
free energy functional

F[h] =
 

g(h) + γlg


1 + (∇h)2


dx, (2)

where h(x) is the liquid film thickness at some point x on
the substrate and g(h) is the binding potential, which is also
referred to as the effective interface potential.3–8 g(h) is a
restricted free energy, i.e., the free energy subject to the con-
straint that the thickness of the liquid layer adsorbed on the
surfaces is h. A good discussion on the subject of restricted free
energies can be found in Ref. 9. The binding potential describes
the interaction between two interfaces and is related to the
disjoining pressureΠ = −∂g/∂h. In the IH model, the binding
potential is often approximated by simple expressions that
give the qualitatively correct behaviour. A common example
of such an approximation would be an asymptotic expansion
which is valid only for larger film thicknesses (cf. Sec. II). This

0021-9606/2015/142(7)/074702/14/$30.00 142, 074702-1 © 2015 AIP Publishing LLC
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paper sets out a method to directly calculate the binding poten-
tial from a microscopic basis, namely, via density functional
theory (DFT).2,10–15 As input, the method takes the interactions
between particles in the fluid and also the forces on the fluid
particles due to any external fields, for example, that due to the
wall of a container or a surface on which the liquid is deposited.
This calculation yields an expression for the binding potential
that is valid for all film thicknesses. The term “particle” is used
here generically to refer to the atoms/molecules/colloids in the
fluid, depending on the exact system under study. Note that it
is also possible to calculate g(h) from computer simulations—
see Refs. 16–23.

The IH model is particularly useful due to its application in
dynamical studies. By making the assumption of small surface
gradients and contact angles, Eq. (2) reduces to

F[h] =
 

g(h) + γlg

2
(∇h)2


dx, (3)

where we have omitted a constant contribution. Equation (3)
can then be employed in the thin film (or long-wave) evolution
equation,24,25 which describes the time evolution of a thin film
of liquid on a flat solid substrate. In gradient dynamics form,
it is written26,27

∂h
∂t
= ∇ ·


Q(h)∇ δF[h]

δh


, (4)

where Q(h) is a mobility factor that depends on the film thick-
ness h(x, t). Equation (4) may be derived by making a long
wave approximation in the governing Navier-Stokes equa-
tion.25,28 There are many applications of this equation to model
different situations. Steady state solutions, where ∂h/∂t = 0,
such as drop profiles, are found by minimising the free energy,
Eq. (3), with respect to the film height profile, subject to a
volume constraint. More specifically, it amounts to solving

δF
δh
= α, (5)

where α is a Lagrange multiplier stemming from the constraint
h(x) dx = V0, (6)

where V0 is a specified drop volume. A typical drop profile
resulting from such a calculation can be seen in Fig. 1(a). Note
the very thin non-zero height “precursor” film that is present
to the left and right of the drop.

A fully microscopic description has statistical mechanics
as its basis. Statistical mechanics calculates an average over an
ensemble of all possible states of the system, i.e., it averages
over all possible configurations of the particles. This average
leads to determining the fluid one body density profile ρ(r),
which represents the likelihood of finding a particle at a given
point r in the system.2 This statistical mechanical point of view
is the basis for DFT. From DFT, the grand potential, Ω, of
the system is calculated and the equilibrium density profile,
ρ(r), which minimises Ω, can be found. A typical equilibrium
density profile of a liquid drop on a solid substrate is displayed
in Fig. 1(b). Other examples of drop profiles calculated using
DFT can be found in Refs. 29–33. Note that by identifying
the surface of the liquid as the surface where the density
equals a specified value, ρint, where ρl > ρint > ρg and where

FIG. 1. Two different descriptions of a liquid drop on a surface: (a) a height
profile calculated via Eq. (7) from a mesoscopic free energy (cf. Eq. (2)) and
(b) a density profile, which gives the fluid number density at a distance z
above the surface. These are both for a fluid with βϵ = 0.9 and βϵw = 0.6
(see Sec. III for further details).

ρl and ρg are the coexisting liquid and gas densities of the
fluid, the description can be further reduced to obtain a film
height profile very similar to that displayed in Fig. 1(a). One
possible choice is to choose ρint = (ρl + ρg)/2. Alternatively,
by integrating in the z direction over such a density profile, we
can obtain a drop height profile. Here, we define the height of
the liquid film on a substrate as the adsorption divided by the
liquid-gas bulk density difference

h(x, y) =
 ∞

0

�
ρ(x, y, z) − ρg

�
dz

ρl − ρg
. (7)

It is worth noting that using DFT it is just as easy to compute
the profile for a liquid droplet that makes a contact angle with
the substrate that is greater than 90◦, than one with θ < 90◦. It
is significantly more difficult to find drop profiles for θ > 90◦

in the mesoscopic approach because for these contact angles,
Eqs. (2) and (3) cannot be employed.

The remainder of this paper is set out as follows: in Sec. II,
the binding potential and the procedure for calculating it are
discussed. A simple DFT, for the lattice-gas model, is pre-
sented in Sec. III that is used to demonstrate the procedure. The
dependence of the fluid behaviour on the particle interactions
is discussed in Sec. IV. In particular, it is shown that truncating
the range of the dispersion interactions between the particles
has a profound effect on the binding potential and interfacial
phase behaviour. The method of fitting a function to the calcu-
lated data is given in Sec. V, followed by the results of passing
the binding potential from the lattice-gas model to the thin film
IH model in Sec. VI. Finally, conclusions are drawn in Sec. VII.

II. THE BINDING POTENTIAL

For any fluid, coexistence between the liquid and gas
phases occurs when the temperature T , chemical potential µ,
and pressure p of the two phases are equal. It then follows, for
a given volume V , that the bulk grand free energy, Ω = −pV ,
of either phase occupying the same volume is also equal. For a
system where the liquid and gas phases of a fluid exist together

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.176.202.20 On: Tue, 17 Feb 2015 16:27:27



074702-3 Hughes, Thiele, and Archer J. Chem. Phys. 142, 074702 (2015)

at the point of liquid-gas coexistence, any excess, over bulk,
contributions to the free energy of the system must stem solely
from the interface that forms between the two phases. This
excess grand potential per unit area of the interface defines the
surface tension between those two phases. In this case, it is
the liquid-gas surface tension γlg. Now, consider a system with
chemical potential µ = µcoex, the value at coexistence, where a
film of liquid separates the bulk gas from a solid surface (cf.
Fig. 2). The excess free energy now consists of the sum of the
two interfacial tensions and also the interaction between the
two interfaces. The excess grand potential in such a system is
given by Ωex(h) ≡ Ω + pV = ωex(h)A, where A is the area of
the interface and

ωex(h) = γwl + γlg + g(h), (8)

h is the liquid film thickness, γwl and γlg are the wall-liquid
and liquid-gas surface tensions, respectively.34 The final term
g(h) is the binding potential, which gives the contribution to
the free energy from the interaction between the two interfaces.
This has the property that as h → ∞, g(h) → 0. The absolute
minimum of the grand potential defines the equilibrium film
thickness h.

In the case of liquid droplets surrounded by their vapour
on a solid substrate, the absolute minimum of the binding
potential is directly related to the equilibrium contact angle of
the drop,35,36

θ = cos−1
(
1 +

g(h0)
γlg

)
, (9)

where g(h0) is the value at the minimum of the binding poten-
tial. This corresponds directly to Young’s equation, Eq. (1);
the absolute minimum of the binding potential corresponds to
the equilibrium state of the system and gives the equilibrium
excess grand potential, i.e., the wall-gas surface tension

ω(h0) = γwl + γlg + g(h0) = γwg. (10)

Replacing γwg in Eq. (1) with this expression leads to Eq. (9).
Equation (8) is given above as a function of the film height

h. From a microscopic viewpoint, it is often more convenient
to use the adsorption of the fluid as the order parameter charac-
terising the fluid at the interface, instead of the film thickness.
The total adsorption is readily calculated from the fluid density
profile as

Γ =
1
A


(ρ(r) − ρb) dr. (11)

FIG. 2. A schematic of the system: a film of liquid of thickness h separating
a semi-infinite volume of gas from a solid surface.

ρb is the equilibrium bulk fluid density, which in the cases
considered here is the gas density ρg . We may also define a
local adsorption [c.f. Eq. (7)] as follows:

Γ(x, y) =
 ∞

0

�
ρ(x, y, z) − ρg

�
dz, (12)

so that when the definition in Eq. (7) for the film height h is
used, we have Γ = h(ρl − ρg). For other definitions of the film
height h, then

Γ ≈ h(ρl − ρg). (13)

The dependence on how precisely h is defined becomes negli-
gible, for large h. Thus, Eq. (8) and also the binding potential
g may be given as a function of the adsorption. Note, however,
that negative adsorptions are possible, e.g., at a purely repulsive
wall, and in such a situation, describing the liquid film at the
wall via a film thickness h becomes meaningless, since the
quantity h defined in Eq. (7) then becomes negative.

For a system with chemical potential µ = µcoex − δµ,
i.e., off-coexistence, then there is an additional contribution
Γδµ, that must be added to the right hand side of Eq. (8).4,37

Together with Eq. (13), this gives

ωex(h) ≈ γwl + γlg + (ρl − ρg)hδµ + g(h). (14)

Often, asymptotic forms of binding potentials are used
which are strictly valid only in the limit of a large film thick-
ness.4 There are two main asymptotic forms of the binding
potential that are considered, the choice of which depends
on the assumed particle interactions and the range of those
interactions. For van der Waals’ (dispersion) interactions, the
following asymptotic form is appropriate:3,38–40

g(h) = a
h2 +

b
h3 + · · ·. (15)

The equivalent disjoining pressure is24,25

Π(h) = 2a
h3 +

3b
h4 + · · ·. (16)

Under certain approximations, the asymptotic behaviour shown
in Eq. (15) can be calculated analytically including the values
of the coefficients a and b, and how they depend on the
temperature.

With only short ranged interactions between particles, the
binding potential can be expressed asymptotically as3,7,8,41,42

g(h) = a exp(−h/ξ) + b exp(−2h/ξ) + · · ·. (17)

The length ξ is the bulk correlation length in the liquid phase
at the interface.

These asymptotic forms, truncated after a few terms, are
used frequently throughout the literature (independently or as
combinations of the two forms1,25,43,44) even though they are
only strictly valid for thick liquid films and cannot describe the
binding potential as h → 0. To describe the small h behaviour,
the full form of g(h) is required. A fully microscopic theory,
that describes the fluid structure at the wall, is required to
obtain this.

Fig. 3 shows binding potentials for various values of a
parameter ϵw, which determines whether or not the fluid wets
the wall. These binding potentials are calculated using the
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FIG. 3. A series of binding potentials for a fluid with fixed inverse tem-
perature βϵ = 0.9 against a solid substrate with varying attraction strength
βϵw. A change in wetting behaviour, from non-wetting to wetting occurs, as
indicated by the change in the position of the minimum in g (Γ) from a low
finite adsorption to a large (Γ→ ∞) adsorption, as βϵw increases.

microscopic DFT-based approach that is introduced below
(cf. Sec. III). The parameter ϵw characterises the interaction
strength between the wall and the fluid particles. The full form
of the long range (algebraic) dispersion interactions between
the particles is included and so for large Γ, g(Γ) has the asymp-
totic form given in Eq. (15). In Fig. 3, we see that for small
values of ϵw (weakly attracting, solvophobic wall) the global
minimum in g is at a small value of Γ, i.e., the liquid does not
wet the wall. As ϵw is increased, there is a first order wetting
transition when βϵw ≈ 0.74 and for βϵw > 0.74, the global
minimum in g(Γ) is at Γ → ∞, i.e., there is a macroscopically
thick film of liquid on the wall at coexistence µ = µcoex.

DFT gives a route by which the free energy may be calcu-
lated, taking into account the microscopic structure of the fluid
at the wall and the interactions of the particles within it. The
equilibrium state of the system is found by minimising the
grand potential functional2,10–15

Ω[ρ(r)] = F [ρ(r)] +


Vext(r)ρ(r) dr − µ


ρ(r) dr, (18)

where F is the intrinsic Helmholtz free energy functional, µ is
the chemical potential, and Vext is the external potential. The
equilibrium density profile, ρ(r), is that which satisfies the
Euler-Lagrange equation

δΩ[ρ]
δρ(r) = 0. (19)

Once an approximation for F is specified, this equation is
solved numerically via a scheme in which an initial density
profile is supplied and then iterated until a specified conver-
gence criterion is reached.45,46

In order to calculate the binding potential as a function
of the adsorption using DFT, it is required to evaluate the free
energy for any specified Γ, i.e., in addition to the equilibrium
profile, we require other non-equilibrium profiles for a range of
values of the adsorption Γ. By using the procedure developed
and justified in Ref. 47 (see also Ref. 48), the excess density
(ρ(r) − ρb) is normalised at each iterative step, which is equiv-
alent to including an (fictitious) additional effective external

potential that stabilises a wetting film of the desired thickness
with the specified value of Γ. Using this normalisation proce-
dure, the excess grand potential can be obtained for a range of
values of Γ. The binding potential is then given via Eq. (8) by
subtracting the values of the solid-liquid and liquid-gas surface
tensions.

III. A MICROSCOPIC MODEL

The method outlined above for calculating the binding
potential is valid for any DFT model. To illustrate the proce-
dure, a simple approximate DFT for a lattice-gas, is used. The
model is only briefly described here: a full description and
derivation can be found in Ref. 45. The system is discretised
by a cubic lattice and the fluid particles, all assumed to be
identical and spherical, occupy only one cell each on the lattice.
The diameter of each particle, and the width of each cell, is
σ and there are M = MiMjMk lattice cells and N < M fluid
particles in the system. A point in the lattice is denoted i
= (i, j, k) and Mi, Mj, and Mk are the number of cells in the i, j,
and k directions, respectively. Note i, j, and k are integers. Any
configuration of particles in the system can then be described
by the set of occupation numbers, {ni}, where ni = 1 if there
is a particle in cell i and ni = 0 otherwise. The average of an
ensemble of all such systems may be taken and then the average
occupation number of each cell is described by the density ρi
= ⟨ni⟩. It may be assumed that the equilibrium density profile
only varies in one direction, or, as for the calculations below,
it is assumed that the density profile is invariant in the third
dimension, so only a two-dimensional (2D) slice of the system
needs to be studied. Here, the z-axis direction, indexed by
k, is assumed to be invariant. The energy of the full three-
dimensional system is given by the Hamiltonian

E = −1
2

M
i=1


j,i

ϵ̃ i,jninj +

M
i=1

Ṽini, (20)

where Ṽi is the external potential and ϵ̃ i,j is a Lennard-Jones-
like pair potential between particles at lattice sites i and j

ϵ̃ i,j = v(ri,j) =



−ϵ/ri,j
6 for ri,j ≥ σ,

∞ for ri,j < σ,
(21)

where ri,j is the distance between a pair of particles located at
lattice sites i and j. If one assumes that the system is invariant
along the direction indexed by k, then a mean-field approxi-
mation for the internal energy U is the following 2D sum:

U = ⟨E⟩ = −1
2

M2d
i0=1


j0,i0

ϵ i0,j0ρi0ρj0 +

M2d
i0=1

Vi0ρi0, (22)

where
M2d

i0=1 sums over the M2d = MiMj sites in the 2D lat-
tice plane where k = 0 and i0 = (i, j,0). The third (invariant)
dimension is now accounted for in the interaction weights ϵ i,j
and Vi. The sums are written explicitly in Eqs. (B1)–(B5) in
Appendix B, these equations also give the weights when the
range of particle interactions is truncated. The grand potential
of this system can be approximated as follows:45
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Ω({ρi0}) =U − T S − µN,

= kBT
M2d
i0=1

�
ρi0 ln(ρi0) + (1 − ρi0) ln(1 − ρi0)

�

− 1
2

M2d
i0=1


j0,i0

ϵ i0,j0ρi0ρj0 +

M2d
i0=1

ρi0(Vi0 − µ), (23)

where kB is Boltzmann’s constant and S is the entropy.65

Included implicitly in the above equation is the particle diam-
eter σ = 1.

The set of lattice densities that describes the system at
equilibrium is found by solving [c.f. Eq. (19)]

∂Ω

∂ρi
= 0, (24)

for every lattice site i. From Eqs. (23) and (24), we obtain

kBT ln
(

ρi

1 − ρi

)
−

MiM j
j=1

ϵ i,jρj + Vi − µ = 0. (25)

Solving this coupled set of Eqs. (25) gives the equilibrium fluid
profile {ρi}. However, in order to obtain the non-equilibrium
profile with specified adsorption Γd, the iterative method devel-
oped in Ref. 47 must be used. This is equivalent to solving the
set of coupled equations [c.f. Eq. (25)]

kBT ln
(

ρi

1 − ρi

)
−

MiM j
j=1

ϵ i,jρj + Vi + V eff
i − µ = 0, (26)

where V eff
i is the fictitious additional potential mentioned at

the end of Sec. II. It has the property that V eff
i → 0 as i

→ ∞, far from the wall. This additional potential stabilises a
film of liquid with the specified adsorption against the wall.
Note that V eff

i is a-priori unknown, it is calculated on-the-
fly self-consistently as part of the minimisation algorithm.47

This is done by re-normalising the density profile during every
iteration of the algorithm by replacing the value of the density
with

ρnew
i =

Γd

Γold
(ρold

i − ρb) + ρb, (27)

where Γd is the desired adsorption and Γold is the adsorption
corresponding to the density profile {ρold

i }, obtained from
iterating Eq. (25). More details about this algorithm and its
properties can be found in Ref. 47.

Note that this procedure does not require the bulk phase to
be at coexistence, although in all the results presented here it
is at coexistence. As the bulk fluid state point (µ,T) is varied,
the form of the restricted free energy g(Γ) also changes as
well as the bulk densities and, in consequence, the interface
tensions. Note also that one can vary the adsorption Γ by the
standard method of varying the value of the chemical poten-
tial µ. Calculations (not presented here) show that the main
difference between results from our method for varying the film
thickness via a fictitious external potential, with results from
varying it by changing µ are to be seen when the adsorption
is small. This is particularly so when the fluid wets the wall,
because in this case, to obtain a small adsorbed film height by
varying the chemical potential requires a large shift in the value
away from that at coexistence.

The bulk fluid phase diagram is displayed in Fig. 4. For
details about how this is calculated, see, e.g., Refs. 45 and 49.
The binodal and spinodal are both displayed. The binodal gives
the densities of the coexisting gas and liquid states. Within the
spinodal curve, the uniform fluid is unstable and spontaneous
demixing occurs. The bulk critical point is at density ρσ3 = 0.5
and temperature kBT/ϵ = 1.5.

DFT is a statistical mechanical theory—i.e., in principle, it
should give the ensemble average density profile of the fluid. A
statistical description of a fluid confined in an external potential
should yield a (ensemble average) density profile with the same
symmetry as that potential.10,50 Thus, for a planar wall, the
equilibrium density profiles only vary with the distance from
the wall. Fig. 5 shows typical examples of such profiles for
the lattice-gas model and of the corresponding points on the
binding potential that they represent. This series of density
profiles range from small (including negative) values of the
adsorption to large values, where the profiles indicate that there
is a thick film of liquid at the wall.

The corresponding fictitious potentials are also displayed
in Fig. 5. At the minimum in g(Γ), the fictitious potential
V eff

i is, of course, zero, because this corresponds to the equi-
librium state. Moving away to either side of this minimum,
V eff

i increases rapidly and the largest magnitude potentials are
observed for low adsorptions Γ, for values of Γ where the
gradient in g(Γ) is largest. In Fig. 5, the density profile (and
associated potential V eff

i ) corresponding to Γσ2 = 0.304 is very
close to equilibrium and so V eff

i is very small everywhere. In
contrast, the fictitious potential for Γσ2 = 0.004 is much larger,
as the gradient of g(Γ) at this point is also large. For larger
adsorption values, in the tail of the binding potential, V eff

i can
be either weakly attractive or weakly repulsive. This is due
to the oscillations in g(Γ) stemming from the fact that we are
dealing with a lattice model. In a continuum DFT model, these
oscillations decrease in amplitude as Γ increases or are entirely
absent, depending on the fluid state point. In the subsection
below, we discuss this issue further.

Note that even when the typical microstates of the system
consist of liquid drops on the surface, after performing a statis-

FIG. 4. The phase diagram for the lattice fluid in the temperature kBT /ϵ
versus density ρσ3 plane. The solid (red) line is the binodal curve and the
dashed (blue) line is the spinodal curve.
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FIG. 5. In (a), we display the binding potential g (Γ) for a fluid with bulk gas density ρσ3= 0.107 and temperature βϵ = 0.9 against a planar wall with attraction
strength βϵw = 0.6. In (d), we display a magnification of tail of g (Γ), for larger values of the adsorption Γ. Marked on g (Γ) are points that correspond to the
density profiles displayed in (b), and the corresponding fictitious potentials V eff

i , which are displayed in (c) and (e). The marked points have adsorption values
Γσ2= 0.004, 0.304, 0.6, 1.6, 3.6, 4.6, 5.6, 6.6, 7.6, 8.6, 9.6 (note that the density profiles for the final four values are not displayed in (a) and (b), for clarity).
The fictitious potential is that which must be applied to stabilise a film of liquid with the given adsorption in an open (grand-canonical) system. We observe a
clear relation between the gradient of g (Γ) and the magnitude and sign of the fictitious external potential.

tical average over all states, the resultant density profile should
be invariant in the direction parallel to the substrate.50 In order
to study liquid drops or liquid ridges (invariant in one direction
along the surface), one must break the translational symmetry
and impose that the centre of mass be located at a particular
point or line on the surface. By constraining the centre of mass,
2D drop profiles (i.e., liquid ridges) can also be found for the
same system even though the external potential only varies in
one direction.

Fig. 6 displays such 2D density profiles for external wall
potentials of varying attraction strengths. These are calculated
by solving Eq. (25). However, the value of µ is not at the outset
imposed, instead the total adsorption (11) is specified. This
is done by renormalising the density profile at each iteration
of the algorithm via Eq. (27). For more details about this
algorithm, see Ref. 45.

Fig. 6 shows that for weakly attracting walls (small ϵw),
it is energetically favourable for the liquid not to be in contact
with the wall and the contact angle is large. As ϵw is increased,
the contact angle decreases as the fluid seeks to have greater
contact with the wall. As discussed below (see also Fig. 3),
there is a wetting transition at βϵw ≈ 0.74 and for values
of βϵw greater than this, the liquid spreads over the surface
(θ = 0). Note that the lattice-gas DFT, with various different
choices for ϵ i,j, has been used extensively to study wetting
and also to calculate profiles for liquid drops on surfaces—see
e.g., Refs. 51–53 for some recent example. As far as we are
aware, in all previous studies, the adsorption on the surface is
determined by the choice of µ, either explicitly, or by fixing the
total number of particles in the system, N . Since the fictitious
potential that we use in our method to stabilise the drops is
almost always rather small, the density profiles we obtain are
actually rather similar to those found previously when the
interaction and wall potentials are the same.

A. The binding potential via the sharp-kink
approximation

Some of the interfacial and wetting behaviour of the
lattice-gas model can be elucidated in a particularly simple
manner by making the so-called sharp kink (SK) approxima-
tion.3,4 Specifically, the lattice gas density profile is taken to
be

ρi =




0 for i ≤ 0,
ρl for 0 < i ≤ h,
ρg for i > h,

(28)

where h is the position of the liquid-gas interface and the sur-
face of the solid wall is at the lattice site i = 0. No minimisation
is necessary under this approximation and the binding potential
for any given film thickness h can be calculated directly. For
a system with truncated fluid-fluid interactions, the binding
potential can be calculated as

g(h) = (ρl − ρg)σ3
∞

i=h+1

Vi, (29)

when h > L, the range of the fluid-fluid interactions. An
asymptotic expansion of this sum gives (see also Ref. 6)

g ∼ ϵwπ(ρl − ρg)σ3
(
σ2

12h2 +
σ3

12h3 + · · ·
)
. (30)

Truncating this series gives an approximation that is valid
for large h. The coefficients given in Eq. (15) can therefore
be calculated explicitly for the lattice-gas model under this
approximation. Figure 7 shows the binding potential for βϵ
= 0.9 and βϵw = 0.55 on a log-log plot, calculated using the
full lattice-gas model and comparing with results from the SK
approximation. The analytically calculated asymptotic limit in
Eq. (30) is plotted to O(h−2), which agrees very well with a
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FIG. 6. A series of 2D density profiles for a drop of the lattice-gas fluid with
βϵ = 0.9, deposited on various solid substrates with attraction strength param-
eters βϵw = 0.2, 0.5, 0.6, 0.72, and 0.74. The fluid-fluid particle interaction
range is truncated to L = 5.

numerical evaluation of the full SK approximation. The numer-
ical and analytic SK results begin to slightly drift apart for
larger adsorptions. This is because in the numerical calculation
the external potential is truncated to a range of 100σ whereas
the analytic calculation assumes an infinite interaction range.
This truncation results in the numerical result diverging from
the ∼h−2 decay in Eq. (30) for large h.

The density profile obtained by minimising the DFT, in
contrast to the SK approximation, incorporates a better approx-
imation for the true shape of the liquid-gas interface and also
the effect of this interface being close to the wall. Thus, for
small values of Γ (i.e., small h), this approximation is far more
reliable. Also, it includes the correct Γ−2 asymptotic decay for
large Γ. Note that in Fig. 7, the oscillations in the tail of the
binding potential are present as a result of the system being
discretised on a lattice. The free energy is lower when the
liquid-gas interface is between two lattice sites, rather than on
a lattice site. Thus, as the specified adsorption is increased, the
liquid-gas interface moves continuously away from the wall
which leads to oscillations in g(Γ). These oscillations lie on
top of the correct ∼Γ−2 asymptotic decay; i.e., for large h, the
binding potential is of the form g ≈ ϵwπσ

5(ρl − ρg)/(12h2)
− B cos(2πh/σ), where the amplitude of the oscillations B is

FIG. 7. The binding potential for βϵ = 0.9 and βϵw = 0.55 calculated for the
lattice gas model and compared with results from the sharp kink approxima-
tion, displayed on a log-log plot. The green dashed line corresponds to the
leading order (∼h−2) term in Eq. (30) and the dotted blue line to a numerical
evaluation of the sum in Eq. (29). The red solid line is the result from a
constrained minimisation of the full functional.

a small number that depends on the state point and manner in
which the interactions are treated. As the range of the fluid-
fluid interactions is increased, the amplitude of these oscilla-
tions B decreases (c.f. Fig. 8). Thus, apart from these oscil-
lations, the binding potential calculated from the full minimi-
sation matches up well for large Γ with the results from the
SK approximation. We attempted to extract the coefficients
for the higher terms in the expansion in Eq. (15) from our
numerical results, since analytic expressions for these exist.54

However, the oscillations induced by the lattice in g(h) make
this problematic. Note too that the free energy contribution
from the liquid-gas free interface γlg is a little different in

FIG. 8. The binding potential for the fluid with inverse temperature βϵ = 0.8
at a wall with attraction strength βϵw = 0.5. The various different curves
correspond to truncating the fluid-fluid pair interactions at different values
of the truncation length L. The wall-fluid interactions remain fixed at a
truncation of 100σ. Note that we vary L in a manner that does not change the
bulk fluid phase diagram. We see that the fluid is predicted to be more wetting
as L becomes shorter; in fact, the interfacial phase behaviour changes from
non-wetting to wetting, purely as a result of truncating the interaction range.
The inset shows the same curves plotted on a log-log scale which shows that
the asymptotic decay form for large Γ is the same in all cases because of the
long-ranged wall-fluid interactions.
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the SK approximation compared to that obtained from the
full minimisation. The respective values are subtracted when
calculating g(Γ) in the two methods.

For small values of the adsorption, large differences are
seen between the SK results for g(Γ) and those from the full
minimisation. This demonstrates that the SK approximation
should only be used for thicker films and a microscopic theory
for the fluid structure (DFT) is required to accurately calculate
a binding potential that is valid for thin (h . 3σ) liquid films.

IV. THE INFLUENCE OF THE RANGE OF PARTICLE
INTERACTIONS

In Sec. II, the manner in which the particle interactions
influence the (asymptotic) form of the binding potentials was
discussed; i.e., for long range dispersion interactions, the alge-
braic decay form in Eq. (15) is appropriate, whereas for short-
range forces, the exponential form in Eq. (17) is the cor-
rect asymptotic form. In this section, the cross-over from one
regime to the other is explored as the interaction potentials in
the lattice-gas model are truncated at different ranges.

When comparing systems with different interaction
ranges, it is important that the truncation does not change
the bulk fluid phase diagram. Otherwise, even if comparing
systems at the same temperature T , the value of (T − Tc), where
Tc is the bulk critical temperature, would not be the same for
systems with a different truncation range L. For the simple
mean-field approximation to the free energy in Eq. (23), the
bulk uniform fluid free energy is determined by the integrated
interaction strength of the pair potential


ϵ i,j, i.e., the total

potential that arises from the interaction of a single particle
with all others within the interaction range. As the interaction
range is adjusted, one must vary the value of ϵ , the parameter
governing the overall strength of the pair interactions, to ensure
that the integrated interaction strength remains constant so that
the bulk fluid phase diagram remains unchanged. All values of
βϵ quoted here are the strength of the interaction when the
interaction range is truncated to only the nearest neighbour
lattice sites (L = 1).

Truncating the range over which particles in the system
interact changes the overall shape of the resulting binding
potential. In particular, if all interaction potentials (both fluid-
fluid and wall-fluid) are truncated, then the tail of the binding
potential decays exponentially to zero. If there are any long
ranged (not truncated) interactions then, in three dimensions,
the binding potential tail decays algebraically∼h−2. By varying
the range of the particle interactions in the lattice-gas model,
both of these regimes are seen and also there is a crossover
from one to the other as the truncation range L is varied. These
results are displayed in Figs. 8 and 9.

Fig. 8 shows the binding potential for βϵ = 0.8, βϵw
= 0.5, and at different truncation ranges, L, of the fluid-fluid
interactions. Note, however, that the interactions between wall
and fluid particles extend over the entire domain in all cases
(the domain size is Mk = 100σ). As the truncation range L
is increased, it becomes energetically favourable for the fluid
not to wet the substrate and so a minimum in g(Γ) at a finite
value of the adsorption Γ appears; i.e., the interfacial phase

FIG. 9. The binding potential for the fluid with inverse temperature βϵ = 0.9
at a wall with attraction strength βϵw = 0.7. For these values, the fluid
wets the wall. In contrasts to the case in Fig. 8, here we truncate both the
wall-fluid and fluid-fluid interactions at the same range, L. The different
curves correspond to varying L from between 1 and 80 particle diameters.
As L is decreased, the range of g (Γ) decreases. In the inset, the black dashed
line is 0.001Γ−2. As L is increased, the binding potential approaches this
large Γ asymptotic decay form.

behaviour changes purely as a result of how the fluid-fluid
particle interactions are modelled. Note that since the value of
g(Γ) at the minimum g(Γ0) ≡ g(h0) decreases as L increases,
from Eq. (9), this indicates that increasing the interaction range
L makes the fluid less wetting and increases the contact angle.
This shows that care should always be taken when modelling
the interaction between two fluid particles: truncating the pair
potentials at too small a distance may result in significant errors
in predictions for the interfacial phase behaviour. Fig. 8 also
shows the ∼Γ−2 decay of g(Γ) as Γ → ∞ that is present in
all cases, due to the presence of the long ranged wall-fluid
interactions.

The effect of truncating the range of all interactions
(including the wall-fluid potential) on the binding potential is
shown in Fig. 9 for the case when βϵ = 0.8 and βϵw = 0.7.
The binding potential for L = 80 is the longest ranged, having
the slowest decay to zero as Γ increases. As L is decreased,
the range of g(Γ) decreases. The inset of the figure shows
the same data on a log-log scale which enables one to clearly
see the form of the asymptotic decay of g(Γ) as Γ → ∞.
As expected from the discussion above, as the range of the
interactions L is increased, an increasingly large portion of
algebraic ∼Γ−2 decay is present. However, it should be pointed
out that formally speaking, it is only when L → ∞ that the
ultimate asymptotic decay of g(Γ) as Γ → ∞ changes from
exponential to algebraic.

V. A FITTING FUNCTION FOR THE BINDING
POTENTIAL

In order to take the binding potentials calculated via DFT
in the previous section and use them with the mesoscale IH
model, a suitable fit function is required. The fit function
should have the same form as that observed in the DFT results
so that it can accurately fit the data. Several aspects of the
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binding potential curves are particularly important for the fit
function to be correct: At small values of the adsorption Γ, the
binding potential exhibits a minimum and a maximum when
the fluid is non-wetting or near to the wetting transition. These
need to be fitted well; in particular, the value at the minimum
g(h0) needs to be the correct value [c.f. Eq. (9)]. Also, the true
binding potential is finite for Γ = 0 (unlike the approximation
in Eq. (15) and other such power-series) and so the fit function
should not diverge at Γ = 0. Finally, when dispersion inter-
actions are present, the fit function should exhibit the correct
Γ−2 decay as Γ → ∞. Therefore, the following form for the fit
function is suggested:

g(Γ) = A
exp[−P(Γ)] − 1

Γ2 , (31)

with

P(Γ) = a0Γ
2e−a1Γ + a2Γ

2 + a3Γ
3 + a4Γ

4 + a5Γ
5 + a6Γ

6. (32)

The rationale for this choice is as follows: For small x, exp(x)
≈ 1 + x, and so at low adsorptions, this form gives g(Γ)
≈ A(a0e−a1Γ + a2 + a3Γ + · · ·). For high adsorptions, this form
gives g(Γ) ∼ −AΓ−2, which is the correct form for the asymp-
totic Γ → ∞ decay. The coefficient of the highest order term
in P(Γ) must be positive. The second exponential within the
outer exponential function [i.e., the exponential term with
coefficient a0 in P(Γ)] helps to correctly fit the minimum at low
adsorptions, which is often asymmetric, being much steeper
on the low adsorption side of the minimum, compared to the
other side, as can seen in Fig. 10. The constant a1 in Eq. (31) is
usually quite large and positive so that the inner exponential
term has almost no effect on the form of g(Γ) on the large
adsorption side of the minimum.

An example of the fitting function is displayed in Fig. 10.
The function is plotted with the original data and the SK results
as a comparison. The SK results do not describe the behaviour
at small Γ whereas the fit function gives a very good approx-
imation to the data over the whole range. The leading order

FIG. 10. The binding potential for a fluid with βϵ = 0.9 and βϵw = 0.55 with
truncated interaction ranges of 5σ and 100σ, for the fluid-fluid and wall-fluid
interactions, respectively. The data calculated from the DFT model are shown
with the fitting function Eq. (31) (parameter values are given in Appendix A)
and the sharp-kink binding potential for the same parameters. The inset shows
the same data on a log-log scale.

coefficient of the decay of the binding potential, A in Eq. (31),
can either be calculated directly using the SK approximation
or can be found by fitting the DFT data, both methods give
similar results. The value for A from the SK approximation is
used here. In Appendix A, we give the fit parameter values in
Eq. (31) for a range of values of βϵ , βϵw, and L.

VI. DROPLET PROFILES OBTAINED USING THE
BINDING POTENTIAL

Using the binding potential calculated from the DFT, a
drop thickness profile can be calculated from the IH model, by
minimising the free energy in Eqs. (2) or (3). This drop profile,
despite being the result of a mesoscale calculation, contains
information about the nature of the microscopic interactions
between particles in the system via the binding potential. Of
course, a drop profile can also be calculated directly using DFT;
the result of such a calculation is shown in Fig. 6. However, it
is computationally easier to treat larger systems using the IH
model. Also, non-equilibrium situations are much more easily
modelled via Eq. (4) than with a dynamical DFT model that
includes all the hydrodynamics.55,56 However, since the two
approaches are both based upon the same microscopic inter-
actions, the resulting drop profiles from each method should
be the same at the mesoscopic scale. This section shows how
the two approaches compare. We find that overall, the drop
shape profiles from the DFT and from the IH model are in good
agreement, a result which a-priori is not obvious, if bearing
in mind the degree of coarse-graining in going from a density
profile to a film height profile. The good agreement between
the two is thus more than a mere consistency test.

Performing the minimisation described in Sec. III for the
lattice-gas DFT, constrained via Eq. (27), on a 2D domain
yields density profiles such as those displayed in Fig. 6. These
2D profiles correspond to the density profile of a cross section
through a liquid ridge on a surface with centre of mass along
the line x = 0. The location of the liquid-gas interface can
be calculated using Eq. (7). The alternative procedure, which
yields a very similar result, is to just plot the contour where
the density ρi = (ρg + ρl)/2 = 0.5. Note that this treats the
(strictly) discrete density profile as a continuous function. In
Fig. 11 are displayed drop profiles obtained from DFT and
using Eq. (7), compared with results obtained from minimising
Eq. (2) together with the binding potential obtained from DFT
for various values of βϵw. These results show that drop profiles
obtained via the two methods coincide well with each other, as
was also observed in Ref. 33. In Fig. 12 are comparisons of a
droplet profile found via the DFT route with droplets calculated
from a minimisation of both the full curvature free energy
Eq. (2) and the long wavelength approximation free energy,
Eq. (3). This shows that the full curvature free energy (2) gives
closer agreement with the DFT results than the approximation
in Eq. (3), as one would expect. Note too that when the contact
angle is very small, then the drop shape is very sensitive to
variations in the parameters.

Determining the contact angle from drop profiles obtained
using the IH model is not straight-forward because the profiles
have a precursor film. The DFT calculations show (see, e.g.,
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FIG. 11. Comparison of drop profiles calculated from DFT (points) and from
the IH model, Eq. (2) (dashed lines). We compare drops of equal maximum
height for a range of values of the wall attraction strength ϵw. The two
methods coincide well across the range of contact angles. These are for the
case when the particle interactions are truncated to a range of L = 5 with a
strength of βϵ = 0.9. The parameters used in the fitting functions for g (h),
used to obtain the IH results, can be found in Appendix A.

Figs. 1, 5, and 6) positive adsorption on the surface outside of
a droplet. However, the fluid density in the first ( j = 1) layer of
lattice sites is substantially less than one—see also the inset in
Fig. 12. This indicates that the density on the surface outside
of the drops is not even a complete monolayer and so calling
it a “precursor film” is arguably misleading.

Returning to the issue of calculating the contact angle in
an IH pre-cursor film model: here, this is calculated from the
curvature at the top of the drop, at x = 0. Liquid droplets of a
suitable size have the shape of a spherical cap. This is the case
when the volume of the drop is small enough that gravity does
not play a significant role but also large enough that the shape
at the maximum is not distorted by the binding potential. It is
droplets of this size that are studied here. In these cases where
the drops have this spherical cap shape, the contact angle for
the drop is calculated by fitting a circle to the highest point of
the drop profile. The contact angle that this circle makes with

FIG. 12. Drop profiles calculated from the DFT density profiles together with
those from the IH model using both the full curvature free energy (2), and the
long wavelength approximation, Eq. (3). These results are for βϵ = 0.9, and
βϵw = 0.5 (top figure), and βϵw = 0.7 (bottom figure). In the inset we show
a magnification of the contact line region. Note the “precursor” film height
≪σ indicating that this is sub-monolayer.

the substrate is taken to be the contact angle of the drop. This
procedure is straight-forward: The curvature at a stationary
point, i.e., the maximum point of the liquid drop, is simply the
second derivative of the height profile at that point and so the
radius of curvature is given as

rc =
1

h′′(xmax) , (33)

where xmax is the point where the height of the droplet h is at its
maximum value. Defining a to be the distance from the point
that the circle meets the substrate to the centre of the base of
the drop, then the contact angle is given by

θc =
π

2
− cos

(
a
rc

)
. (34)

Comparisons made in this way can only be used to relate
the two theories for systems where a liquid drop exists, i.e.,
for a partially wetting system. The focus here is also on drops
with an acute contact angle as these profiles can be calculated
by minimising Eq. (3), but droplets with obtuse contact angles
cannot. For non-equilibrium problems, one makes the assump-
tion of small contact angles (long-wavelength) and utilises the
thin film equation, Eq. (4), with the free energy functional
given by Eq. (3). We should also mention that making the long-
wave approximation, i.e., going from Eq. (2) to Eq. (3), also
results in the drop shape away from the surface ceasing to be
the arc of a circle and instead being a parabola.28 Thus, for the
long-wave theory (3), we fit the drops with a parabola, in order
to make a fair comparison. Fig. 13 shows the comparison of
contact angles calculated for different values of βϵw, from the
DFT model and from the IH model, for both the full curvature
case and the long-wavelength approximation.

An alternate way to obtain the contact angle is by calculat-
ing the largest gradient of the drop profile. The inverse tangent
of this gives the contact angle. These “maximum gradient”
contact angles are also shown in Fig. 13. This figure shows
that results based on the full curvature free energy agree well
with those calculated from the DFT model. The IH model in the

FIG. 13. The contact angle for a range of different values of βϵw, for
βϵ = 0.9, calculated from both the DFT and IH models. Contact angles are
calculated for both the full curvature and long-wave approximation versions
of the IH model, using both the circle fitting and maximum gradient methods.
The circle fitting method does not well represent the actual contact angle of
the droplet from the long-wave IH model.
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long-wave approximation only agrees with the DFT results for
very small contact angles, as expected. For the full curvature
model, the contact angle found by fitting a circle to the profile
matches the DFT results better than those from the maximum
gradient method. The droplet shape calculated under the long-
wavelength approximation is no longer that of a spherical cap,
it is instead parabolic, and so a similar procedure to the circle
fitting method is employed where a parabola is fitted to the
droplet profile. Results for the contact angle obtained via these
fits are shown in Fig. 13. Clearly, these results depend heavily
on the method used to find the contact angle of the droplets and
although the circle/parabola fitting method gives better results,
it is only applicable to specific drop shapes—see Ref. 22 for a
further discussion on extracting a contact angle from a drop
profile. Note also that the contact angles in Fig. 13 calculated
via DFT are the only results to extend beyond 90◦; droplet
profiles cannot be found in this range using the IH model.

The calculated contact angles are weakly dependent on
the size of the drop. All contact angles extracted from the IH
model are calculated from droplets that have a height of 35σ.
Calculating contact angles from droplets of a specific height,
rather than a specific volume, seems to give more consistent
results. The range at which particle interactions are truncated
does not significantly affect how well the results from the two
models (DFT an IH) agree with each other. Over the range
of parameters studied, up to a truncation range of L = 40, the
discrepancy in the contact angle between the two models is
typically a few percent.

VII. CONCLUSIONS

In this paper, we have developed a microscopic DFT
based method for calculating the binding potential g(Γ) at
various different state points and interaction potentials of
various different strengths and ranges between the surface
and the liquid. These were subsequently used as input to a
mesoscopic interface free energy model, which was then used
to calculate the height profile of liquid drops on surfaces. The
liquid height profiles are very similar in shape to the profiles
obtained directly from the DFT, indicating that the coarse-
graining procedure used to obtain g(Γ) is valid.

The binding potential is calculated as a function of the
adsorption Γ, which can be related to the film height via
Eq. (13). It is calculated using the method developed in Ref. 47
for studying nucleation of the liquid from the gas phase. This
method constrains the fluid density profile to have a specified
value of Γ, which is equivalent to imposing an additional
fictitious external potential that stabilises the adsorbed film
with the given adsorption. Note that this fictitious potential is
not known a-priori and is calculated on-the-fly as part of the
minimisation to obtain the fluid density profile.

The method presented for calculating the binding potential
is general and it should be possible to use if for any DFT. Here,
it has been implemented using a simple DFT for a lattice-gas,
that in Eq. (23). A better description of the free energy of a
lattice-gas is possible, we refer the interested reader to, e.g.,
Ref. 57 for a more sophisticated and accurate approximation
for the lattice-gas free energy. The lattice-gas approximation
was used in order to more easily test the results for a range

of different drop sizes. Note that to calculate the 2D density
profiles for drops of the size in Fig. 6 (or even larger) with
a more sophisticated continuum DFT can be computationally
time consuming—e.g., using the commonly used approxima-
tion F [ρ(r)] = FFMT[ρ(r)] + Fatt[ρ(r)], where FFMT[ρ(r)] is
the fundamental-measure theory approximation of the free en-
ergy of a fluid of hard-spheres and Fatt[ρ(r)] is a simple mean-
field approximation for the contribution to the free energy due
to the attractive interactions between the fluid particles.2,11–15

However, one of the draw-backs of the lattice-gas model is that
the discretization onto a lattice leads to unrealistic small ampli-
tude oscillations in g(Γ), particularly for larger values of βϵ
(i.e., for lower temperatures)—see, e.g., Fig. 7. A more realistic
continuum DFT model will not exhibit such oscillations that
do not decay in amplitude with distance from the wall. Note,
however, that oscillations may be present in the true binding
potential. These, if present, stem from the packing of the parti-
cles, rather than from the discretization onto a lattice and are
to be expected whenever the fluid exhibits layering transitions.

Another drawback of the lattice-gas is that the mapping
of the continuum fluid onto the lattice constitutes a signifi-
cant approximation. This prevents a quantitative comparison
between our results with existing simulation results for con-
tinuum models, such as those in Refs. 16–23. However, since
we do find good qualitative agreement, we are currently apply-
ing the method using continuum (FMT) DFT. Results from
this follow-on study will be published elsewhere, including
comparison with simulation results.

It should also be emphasised that it remains straight-
forward to calculate droplet profiles using DFT rather than
using the mesoscale model over the full range of contact
angles, i.e., including when the contact angle >90◦. However,
the IH model is particularly advantageous when considering
the non-equilibrium situation, which can be described using
Eq. (4), albeit this equation is derived under the assumption of
small contact angles and only accounts for convective transport
with no slip at the substrate. It is shown in Fig. 13 how the
accuracy rapidly breaks down for larger contact angles. Non-
equilibrium phenomena can also be studied using dynamical
DFT, see, e.g., Refs. 58–61 for more on this approach.

One of the striking results of the present work is the obser-
vation of the degree to which the binding potential changes
when the range at which particle interactions are truncated is
changed—see in particular Figs. 8 and 9. Crucially, the value
of g(Γ) at the minimum that can be present at low values of the
adsorption depends very sensitively on the truncation range.
This minimum can change from being just a local minimum
(a metastable equilibrium point) to become the global ener-
getic minimum which represents a shift in the phase behaviour
from wetting to non-wetting. In fact, for very short truncation
ranges, the minimum can be completely removed. The conclu-
sion from this part of our study is that to determine accurately
the location of a wetting transition in theory or simulations, one
must ensure that the truncation is not so severe as to induce such
errors. The tails of the potentials matter!

This is important in the context of (coarse-grained) Molec-
ular Dynamics simulations where dispersion forces are often
cut off at distances of a few particle diameters. Ref. 22, for
instance, employs a cut-off length for the Lenard Jones inter-
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actions of two times the equilibrium bead distance and finds, in
consequence, that the extracted binding potential is well fitted
by a sum of exponentials as in Eq. (17), similarly to our results
when only short-range interactions are considered.

Note also that for weakly attracting (solvophobic) walls,
the minimum in g(Γ) is at very small, or potentially even nega-
tive, values of Γ. In this regime, describing the sub-monolayer
adsorption via a film-thickness h is a somewhat misleading
concept. In this regime, the minimum in the binding potential is
very asymmetric, rising very sharply on the small Γ side of the
minimum, but rising far less steeply as Γ is increased from the
value at the minimum. To incorporate this behaviour in the fit-
function for g(Γ), we had to use the exponential in the function
P(Γ) in Eq. (31). This also means that the minimum in g(Γ) is
not well-approximated by a quadratic function when the mini-
mum is at a small value of Γ and so, of course, capillary-wave
theory also does not apply in this regime, since capillary-wave
theory assumes Gaussian fluctuations in a harmonic potential.
Also, when the adsorption at the surface is sub-monolayer,
then a non-equilibrium situation can no longer be described
by Eq. (4); it can instead be described via a gradient dynamics
model with a diffusive dynamics.

Finally, it should also be pointed out that although in the
present work we have developed a method for calculating a
better approximation for the binding potential, our approach is
still a mean-field theory and therefore does not include all fluc-
tuation effects, because our theory is based on Eq. (2). Some

effects of fluctuations at wetting transitions can be included
by replacing γlg in Eq. (2) with a function γ(h). However,
as Parry and co-workers have showed, the effective interface
Hamiltonian is in fact non-local.62–64 Non-locality and fluc-
tuation effects are particularly important at wetting transi-
tions.
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APPENDIX A: FIT FUNCTION PARAMETERS

Table I contains the parameters to the fitted binding poten-
tials that have been used throughout this paper and also for a
selection of other state points. For ease of reference, the fitting
function is repeated here

g(Γ) = A
exp[−P(Γ)] − 1

Γ2 , (A1)

with

P(Γ) = a0Γ
2e−a1Γ + a2Γ

2 + a3Γ
3 + a4Γ

4 + a5Γ
5 + a6Γ

6.

TABLE I. This table lists the parameters used in the fitting function to generate the results shown in the figures within the main text. The parameters are
identified by the figure in which the binding potential is used, the title of that curve in the figure, and some additional identification where applicable. Values
are rounded to three decimal places and the value of a1 is enforced. For L = 5, the corresponding liquid gas surface tension values are βγlg = 0.111, 0.228 and
0.351, for βϵ = 0.8, 0.9 and 1.0, respectively.

Figure βϵ βϵw L A a0 a1 a2 a3 a4 a5 a6

11 and 12 0.9 0.5 5 −0.073 1.142 8 −3.078 3.283 −1.272 0.173 0.000
11 and 10 0.9 0.55 5 −0.081 1.080 8 −2.153 2.074 −0.705 0.084 0.000
11 0.9 0.6 5 −0.088 0.964 8 −1.325 0.930 −0.036 −0.097 0.019
11 0.9 0.65 5 −0.096 0.770 8 −0.534 −0.245 0.762 −0.358 0.051
12 0.9 0.7 5 −0.103 0.609 8 0.138 −1.037 1.158 −0.451 0.060
. . . 0.8 0.5 2 −0.062 0.431 8 0.431 −1.448 1.562 −0.649 0.097
. . . 0.8 0.5 3 −0.062 0.562 8 −0.203 −0.900 1.175 −0.468 0.062
. . . 0.8 0.5 4 −0.062 0.669 8 −0.473 −0.548 0.903 −0.363 0.047
. . . 0.8 0.5 5 −0.062 0.776 8 −0.679 −0.222 0.634 −0.262 0.033
. . . 0.8 0.5 10 −0.062 0.998 8 −1.035 0.415 0.107 −0.074 0.009
. . . 0.8 0.5 20 −0.062 1.125 8 −1.194 0.752 −0.162 0.011 0.0001
. . . 0.8 0.5 40 −0.062 1.104 8 −1.179 0.678 −0.100 −0.007 0.002
. . . 0.9 0.6 2 −0.081 0.620 8 −0.108 −0.902 1.878 −1.093 0.228
. . . 0.9 0.6 3 −0.088 0.786 8 −0.851 0.177 0.670 −0.405 0.068
. . . 0.9 0.6 4 −0.096 0.824 8 −1.049 0.573 0.211 −0.182 0.030
. . . 0.9 0.6 5 −0.102 0.823 8 −1.133 0.766 −0.019 −0.078 0.014
. . . 0.9 0.6 10 −0.110 0.851 8 −1.273 1.023 −0.280 0.026 0.000
. . . 0.9 0.6 20 −0.118 0.797 8 −1.234 0.965 −0.258 0.023 0.000
. . . 0.9 0.6 40 −0.125 0.748 8 −1.170 0.898 −0.236 0.021 0.000
. . . 1.0 0.65 2 −0.104 0.830 8 −1.186 1.224 0.172 −0.420 0.112
. . . 1.0 0.65 3 −0.104 1.000 8 −1.961 2.217 −0.720 0.008 0.026
. . . 1.0 0.65 4 −0.104 1.060 8 −2.232 2.584 −1.036 0.148 0.000
. . . 1.0 0.65 5 −0.104 1.072 8 −2.385 2.718 −1.088 0.153 0.000
. . . 1.0 0.65 10 −0.104 1.057 8 −2.594 2.863 −1.120 0.150 0.000
. . . 1.0 0.65 20 −0.104 1.037 8 −2.646 2.882 −1.111 0.146 0.000
. . . 1.0 0.65 40 −0.104 1.026 8 −2.658 2.880 −1.105 0.144 0.000
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APPENDIX B: PARTICLE INTERACTION POTENTIALS

The net interaction potential between a fluid particle and a
planar wall made of particles interacting with the fluid particle
via a Lennard-Jones-like potential, with the same form as in
Eq. (21) is

Vi = ϵw f

0
i′=−∞

∞
j′=−∞

∞
k′=−∞

((i − i′)2 + j ′2 + k ′2)−3, (B1)

where we assume the surface of the wall is located in the
plane i = 0. The parameter ϵw f characterises the strength of the
interaction between a single wall particle and a fluid particle.
The triple sum above spans all of the particles in the wall; i.e.,
the wall is modelled as being discretised on a lattice just as the
fluid is and that a wall particle is present on every lattice site
where i ≤ 0. The sums in Eq. (B1) can be simplified to obtain

Vi =



−ϵw/i3 for i ≥ 1
∞ for i < 1

, (B2)

where the parameter ϵw determines the net strength of attrac-
tion to the wall.

The (2D) effective fluid-fluid particle interactions are gov-
erned in a similar manner by the potential

ϵ i,j = ϵ


(i′2 + j ′2)−3 + 2

∞
k′=1

(i′2 + j ′2 + k ′2)−3

. (B3)

The parameter ϵ is the strength of a single Lennard-Jones pair
interaction between two fluid particles and ϵ i,j is the weighted
interaction between two particles taking into account all of the
interactions in the invariant k dimension. In the right hand side
of Eq. (B3), i′, j ′, and k ′ are the distances between a pair of
lattice sites in the i, j, and k directions, respectively.

Due to the fact that calculating long ranged particle inter-
actions can be time consuming, making computer calculations
rather slow, it is often necessary to truncate the interactions
to some interaction range Lσ. When particle interactions are
truncated at a range of Lσ, the external potential Eq. (B1)
becomes

Vi = ϵw f

0
i′=−L

L
j′=−L

L
k′=−L




((i − i′)2 + j ′2 + k ′2)−3 for ((i − i′)2 + j ′2 + k ′2) ≤ L2

0 otherwise
, (B4)

and the fluid-fluid particle interaction weights (B3) are then given as

ϵ i,j =




ϵ


(i′2 + j ′2)−3 + 2

k′≤
√

L2−i′2− j′2
k′=1

(i′2 + j ′2 + k ′2)−3


for |i − j| ≤ L

0 otherwise.

(B5)
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