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Abstract

It is shown that ripple structures on oblique incidence ion bombarded sur-
faces can be stable features under ion erosion without the necessity to invoke
mass redistribution, surface diffusion or micro-roughening due to surface cur-
vature dependent energy deposition. Instead the patterns are predicted to
be a natural consequence of non-linear effects due to the dependence of the
sputtering yield on the angle of incidence.
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1. Introduction

Ion-induced ripple pattern formation on semiconductor surfaces under
oblique incidence low energy impact is an important phenomenon which has
been used to fabricate reproducible patterns in nanotechnology for a number
of years [1] but even now the basic formation mechanism is still not fully
understood. One of the earliest models of ripple pattern formation was due
to Bradley and Harper [2] and since then many other models have been
proposed [3, 4, 5, 6, 7, 8, 9, 10]. Some of these models assume that ripple
patterns could form as a result of the competing effects of surface diffusion
(smoothing) and micro-roughening following the Sigmund model [11]. In the
Sigmund model roughening occurs because energy is deposited closer to a
surface in regions where there are troughs on a surface compared to regions
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of positive curvature. Sigmund was able to argue that this meant that cones
should preferentially form on ion bombarded surfaces as a result.

However this curvature dependent energy deposition should be a sec-
ond order effect compared to the first order effect of the sputtering yield
dependence on the incidence angle. If the primary effect of incidence an-
gle dependence only is taken into account, then work in the 1970s and
1980s [12, 13, 14, 15] showed that although cones and edges can form on
surfaces subjected to normal incidence ion beams, the surfaces would ulti-
mately flatten due to the sides of the cones eroding at a faster rate than the
surrounding flat surface. This is in direct contradiction to the Sigmund’s
micro-roughening argument.

Carter and Vishnyakov [3] first proposed that instead of the micro-roughening
proposal, mass redistribution could be the mechanism by which surface fea-
tures may be formed and this argument has also been used by Madi et al
[17] and by Numazawa and Smith [18] to show that ripple features can arise
purely as a result of mass redistribution alone without even the necessity to
use erosion in the argument. In the case of [18] a travelling wave solution was
found for a specific incidence angle for the non-linear equations of motion, in
the form of a cycloid which matched experimental observations very well.

In this paper an even simpler two-dimensional model is introduced which
shows that stable patterns can arise purely as a result of the non-linear depen-
dence of sputtering yield on the ion incidence angle and without the need to
invoke any other physical property. This effect was overlooked in the 1970’s
and 1980’s when the theory of surface erosion was first developed because
the models were generally formulated by assuming that the ion beam was
incident in the direction of the average surface normal. Here we reformulate
the equations for non-normal incidence and apply the model to illustrate how
stable ripple-like patterns can arise.

2. The model

The co-ordinate system is defined in Fig. 1a. The Cartesian x−y system
defines directions respectively parallel and perpendicular to the average sur-
face tangent. The gradient of the surface is given by tan θ, where θ is also the
angle between the surface normal and the y-direction; φ is the angle between
the ion beam and the surface normal while the angle ψ defines the angle
between the ion beam and the y-direction. In Fig. 1b the sputter yield de-
pendence on incidence angle φ is plotted with a fit to 1 keV ion bombardment
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of silicon [19]. Although this dependence is typical for many amorphous and
semiconductor materials, for metals there are many more maxima and min-
ima due to channelling [20] and also metals retain their crystallinity under
ion bombardment [21] whereas silicon becomes amorphous.
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Fig. 1: (a) A description of the co-ordinate system and angles used in the calculation. The y
direction defines the normal to the originally flat surface. (b) The dependence of sputtering
yield S (atoms ejected per incident ion) on incidence angle for 1 keV Ar bombardment
of Si taken from [19]. The value of φ corresponding to the maximum sputtering yield is
defined as φmax which for many materials is an angle between 50◦ and 70◦.

If it is assumed that the rate of erosion in the ion beam direction is given
by S(φ) where the flux and atom density are assumed incorporated into a
non-dimensionalised time, then it easy to show, following the methodology
given in [22] and [13] that the erosion can be described by two first order
quasi-linear partial differential equations for θ given by

∂θ

∂t
+ (sinψS(ψ − θ)− cos θ cos(ψ − θ)S ′(ψ − θ))

∂θ

∂x
= 0 (1)

and
∂θ

∂t
− (sin θ cos(ψ − θ)S ′(ψ − θ) + cosψ)S(ψ − θ)

∂θ

∂y
= 0. (2)

where the primes denote differentiation. In the first equation the partial
differential with respect to t means at constant x, whereas in the second
equation y is kept constant. These equations have been intensively investi-
gated for the case ψ = 0 [12, 13, 14, 15] but in the case of ripple formation
ψ 6= 0. The equations are of a form first investigated by Lagrange [22] and in
the 1950’s a similar set was used by Lighthill and Whitham [23] to model the

3



flow of traffic. The method of solution involves integration along the charac-
teristic curves [22] but since the right hand sides of the equations are zero,
the characteristic curves define straight lines of constant surface orientation
(θ = const). The characteristic curves are given in the usual way [22] by the
equations

dx

dt
= sinψS(ψ − θ)− cos θ cos(ψ − θ)S ′(ψ − θ) (3)

and
dy

dt
= − sin θ cos(ψ − θ)S ′(ψ − θ)− cosψS(ψ − θ) (4)

These lines have gradient given by

dy

dx
= (− sin θ cos(ψ − θ)S ′(ψ − θ)− cosψS(ψ − θ)) (5)

/(sinψS(ψ − θ)− cos θ cos(ψ − θ)S ′(ψ − θ)).

Thus the surface evolution can be plotted graphically in the same way as
the Huyghen’s wave front construction in geometrical optics, except that now
the wavefront does not propagate isotropically. Instead parts of the surface
expand into facets, whereas other parts of the surface contract into edges or
shocks (discontinuities in θ). The shocks are equivalent to caustic curves in
geometrical optics [24]. To examine which parts of the surface expand and
which parts contract, consider a small element of the initial surface δs0. After
time t, using equations 3 and 4 it is possible to evaluate how δs0 evolves .
After some algebra the corresponding element, δs, on the evolved surface can
be calculated as

δs2 = δs2
0
(1 + 2tκ[cos(ψ − θ)S ′′(ψ − θ) (6)

−2 sin(ψ − θ)S ′(ψ − θ)])

×[1 + tκ[cos(ψ − θ)S ′′(ψ − θ)−

2 sin(ψ − θ)S ′(ψ − θ)].

Here κ is the curvature of the surface and is a function of θ. Thus expansion
waves occur when the function g(θ, ψ) is positive where

g(θ, ψ) = κ[cos(ψ − θ)S ′′(ψ − θ)− 2 sin(ψ − θ)S ′(ψ − θ)]. (7)

Equation (7) was also derived in [12] when ψ = 0 and an equivalent expression
by Budil and Hobler [16].
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3. Results and Discussion

One can now see why this formulation is in contradiction to the micro-
roughening argument of Sigmund for normally incident ion beams (ψ = 0) by
using a specific example. Consider a surface initially described by a simple
sinusoidal curve subject to erosion by a normally incident beam shown in
Fig. 2 for different times. One can see how the surface maxima evolve into
discontinuities due to the collapse of surface elements (κ < 0), whereas the
bottom of the valleys expand (κ > 0). The sides of the ‘cones’ evolve into
facets corresponding to the maxima (gθ = 0) in equation 7 before the surface
eventually flattens due to these facets eroding more quickly than the flat
concave areas of the surface. This rather remarkably depends on the third
derivative (the maximum occurs when gθ = 0) of the sputtering yield with
respect to the incidence angle and the surface curvature defines whether or
not locally flat regions either sharpen (tops of ridges) or expand (bottoms
of valleys). Facets therefore do not always form corresponding to planes
where the sputtering yield is a maximum as was predicted over 40 years ago
by Stewart and Thompson [25]. Conical structures do form and persist on
ion-bombarded surfaces due to crystallinity effects such as grain boundaries
or due to impurities shielding parts of a surface that erode at a faster rate.
Indeed similar structures can also be seen in geology such as at Tent Rocks
in New Mexico. However any initially flat surface under bombardment by
a normally incident beam with the sputtering yield-angle of incidence de-
pendence as given in Fig. 1b will remain flat since any perturbations in the
surface height will flatten as the result in Fig.2 demonstrates.

Now consider a similar situation when the beam is incident with ψ = 75◦

on a surface y = sin 0.262x. The value of 0.262 was chosen so that maximum
negative gradient on the trailing slopes of the sine wave were approximately
aligned with the incoming beam. The result is shown in Fig. 3. In this case
the initial undulations grow slightly with the front side of the ripples devel-
oping an orientation equal to the maximum gradient of the initial sinusoidal
structure and the trailing edges parallel to the characteristic curve corre-
sponding to that orientation. The steady state structure is a rippled surface
with the same wavelength as the initial undulations but with an enhanced
height. Note that this situation only arises because all the characteristics
have negative slope and all the surface except that which has the maximum
gradient collapses into the edge at the top of the structure. At lower angles
of incidence the smoothing process occurs similar to that shown in Fig.2.
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Fig. 2: The erosion of the sinusoidal curve y = sinx when the beam is incident along the
y-direction with the angular yield dependence given by the curve shown in Fig. 1b after 2
different times (a) t = 0.5 and (b), t = 1.2. The dashed curves are the characteristic lines.
The solid curve is the envelope of the evolved surface.
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Fig. 3: The erosion of the sinusoidal curve y = sin 0.262x incident at ψ = 75◦ with the
angular yield dependence given by the curve shown in Fig. 1b after 2 different times (a)
t = 4.0 and (b), t = 16. The dashed curves are the characteristic lines. The solid curve is
the envelope of the evolved surface.

7



1/4                         1/2                        3/4

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

x/

ψ = 0

ψ = 75
ο

ο

Fig. 4: The function g(θ, ψ) plotted as a function of wavelength for the two initial sinusoidal
curves shown in Figs. 2 (ψ = 0) and 3 (ψ = 75◦). The unbroken line refers to Fig. 2 and
the dashed line refers to Fig. 3.
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Fig. 4 gives the function g plotted as a function of wavelength for the
two initial sinusoidal curves shown in Figs. 2 and 3. We can see that in
the case of the normally incident beam there is a region in the first half
wavelength including the maximum at x/λ = 1/4 where the characteristics
converge, g < 0, forming the fast eroding apex, whereas in the case of oblique
incidence the characteristics diverge, g > 0, in the first quarter wavelength
promoting facets as seen in Fig. 3. The characteristics converge in the second
quarter wavelength for oblique incidence which collapses into an edge.

Fig. 5 shows the case of a stably eroding structure where the original
surface shape is preserved. In this case the beam is exactly aligned along the
characteristics from plane (1) which also defines the slope of the trailing edge,
labelled (2) in Fig. 5a. If the gradient of this edge is steeper so that shadowing
occurs, then a facet develops at the convex apex which expands and the
trailing edge will decay until it becomes parallel to the beam direction. This
situation gives the maximum height that a periodic system of intersecting
planes of a set wavelength λ can attain and remain stable under further
erosion. Intersecting planes of the form shown in Fig. 5 can only occur
if the gradient of the characteristics from the plane with positive gradient
(labelled (1)) is negative and aligned with the direction of the incoming
beam. This is only possible for a small range of θ and for ψ > φmax. The
range of allowable values is plotted in Fig. 5b. The maximum angle for
plane (1) occurs when the beam is at grazing incidence to the initial surface
and θ = 24.81◦ for the S(φ) dependence shown in Fig. 1. The variation
of plane gradient as a function of incidence angle is plotted along with the
corresponding height to wavelength ratio. The example plotted in Fig. 3 for
ψ = 75◦ develops into such structures with a leading plane angle of θ ≈ 10◦

and a height to wavelength ratio of about 0.18. Initially this value was 0.08
and the structures grow in height until they reach the steady state value.
The stepped structures predicted in Fig. 5 are thus equivalent in some sense
to the stable travelling wave solutions described in [18] but without the need
to invoke mass redistribution as a mechanism for their formation.

The theory cannot explain how initial undulations in the surface height
occur on a flat uniform surface since it is based on the idea that surface
orientations are preserved under ion erosion but what it shows is that when
certain preferred angles of orientation are formed they remain stable un-
der erosion and in some circumstances initial undulations can be magnified.
These stable structures are in some sense similar to the travelling wave solu-
tions previously found [18] but without the need to invoke mass redistribution
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Fig. 5: (a) The erosion of intersecting planes when the beam is incident along the direction
of the characteristics, for ψ = 70◦ and θ = 4.8◦, when t = 0.2. The dashed curves are
the characteristic lines. (b) The allowable angles of plane 1 as a function of the beam
direction ψ for the situation when the beam is aligned parallel to plane 2 (solid line) for
the sputter yield curve shown in Fig. 1b. The broken line gives the height to wavelength
ratio of these structures as a function of incidence angle.

as a mechanism. We conclude that non-linear effects are highly significant
to explain the stability of ripple patterns on ion bombarded surfaces. How-
ever one might expect that either mass redistribution or atomistic effects
such as those proposed in [26] should be the important processes by which
the specific surface orientations are formed and which the non-linear model
described here predicts would be stabilised by bombardment.
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Satoshi Numazawa and Mukesh Ranjan for useful discussions. RS is also
grateful to the Helmholtz Zentrum Dresden Rossendorf for the funding to
pursue this work and to the British Council exchanges with India scheme,
UKIERI Grant: IND/CONT/E/13-14/642.

[1] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt and H.
L. Hartnagel, Science 285 1551 (1999).

[2] R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6 2390
(1988).

[3] G. Carter and V. Vishnyakov, Phys. Rev. B 54 17647 (1996).

10



[4] R. Cuerno and A. L. Barabási, Phys. Rev. Lett. 74 4746 (1995).

[5] M. Castro, R. Cuerno, L. Vazquez and R. Gago, Phys. Rev. Lett. 94
016102 (2005).
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