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Abstract

Two-soliton interactions play a definitive role in the formation of the structure
of soliton turbulence in integrable systems. To quantify the contribution of these
interactions to the dynamical and statistical characteristics of the nonlinear wave field
of soliton turbulence we study properties of the spatial moments of the two-soliton
solution of the Korteweg – de Vries (KdV) equation. While the first two moments
are integrals of the KdV evolution, the third and fourth moments undergo significant
variations in the dominant interaction region, which could have strong effect on the
values of the skewness and kurtosis in soliton turbulence.
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1 Introduction

Solitons represent an intrinsic part of nonlinear wave field in weakly dispersive media and
their deterministic dynamics in the framework of the Korteweg– de Vries (KdV) equation is
understood very well (see e.g.[1, 2, 3]). At the same time, description of statistical properties
of a random ensemble of solitons (or a more general problem of the KdV evolution of a
random wave field) still remains to a large extent an unsolved problem, especially in the
context of concrete physical applications. In particular, importance of this problem for the
description of wind-generated waves on shallow water was demonstrated in [4] – [9]. From
the theoretical point of view the description of a random soliton wave field is complementary
to the “integrable wave turbulence” theory outlined in a recent paper by Zakharov [10].

The macroscopic dynamics of random soliton ensembles (soliton gases) in integrable
systems are determined by the fundamental “microscopic” properties of soliton interactions:
(i) soliton collisions are elastic, i.e. the interaction does not change the soliton amplitudes
(or, more precisely, the discrete spectrum levels in the associated linear spectral problem);
(ii) after the interaction, each soliton gets an additional phase shift; (iii) the total phase shift
of a ‘trial’ soliton acquired during a certain time interval can be calculated as a sum of the
“elementary” phase shifts in pairwise collisions of this soliton with other solitons during this
time interval. Thus the dynamics of a soliton gas are essentially determined by two-soliton
interactions.

The study of soliton gases was initiated by Zakharov in [11] where an approximate kinetic
equation for random KdV solitons when their spatial density is small was der. This equation
describes spatio-temporal evolution of the distribution function of solitons over the (IST)
spectrum. The full kinetic equation for the KdV soliton gas of arbitrary density was derived
in [12] (see also [13]) using the thermodynamic limit of the Whitham modulation equations
and then was generalised in [14] to other integrable systems. The kinetic description of a
soliton gas makes an emphasis on the particle-like nature of solitons. At the same time,
solitons represent nonlinear coherent wave structures so the total random nonlinear wave
field associated with a soliton gas can be naturally interpreted as soliton turbulence [15]. In
view of the outlined definitive role of two-soliton interactions, it is natural to ask: what is
their specific (qualitative and quantitative) contribution to the statistical properties of soliton
turbulence? In classical (both hydrodynamic and wave) turbulence theories the random field
properties are usually described in terms of statistical moments (see e.g. [16], [17]). This
provides one with a natural motivation to start with the study of the properties of the spatial
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moments of the two-soliton KdV solution. In spite of the elementary nature of this problem
it has apparently never been considered before. In the context of the soliton turbulence
description, the knowledge of “primitive” dynamics of the spatial moments of two-soliton
solutions is a necessary ingredient in the understanding of the behaviour of the statistical
moments of the random KdV wave field.

Since the first and the second spatial moments of the two-soliton solution are conserved
under the KdV evolution, our main focus in this Letter will be on the properties of the third
and fourth moments which vary with time and which, after appropriate ensemble averaging,
will affect the behaviour of the skewness and kurtosis of the probability distribution of the
random wave field in the KdV soliton turbulence. These two statistical characteristics are
also known to play important role in the theory of rogue waves [18].

2 Dynamics of two-soliton interactions

Although multisoliton solutions of the KdV equation had been known since the very be-
ginning of the soliton theory creation [19], [20], the nature of the mass/momentum/energy
exchange occurring during the interaction of two solitons have been continued to be the
subject of rather active study (see [21] and references therein). In view of the outlined in
the Introduction key role of the two-soliton interactions in the formation of the structure of
soliton turbulence we shall need to briefly revisit here some of their basic properties.

We shall use the canonical form of the KdV equation

ut + 6uux + uxxx = 0 . (1)

The two-soliton solution of (1) has the form (see e.g. [2], [3])

u2(x, t) = 2∂2
x ln[τ(x, t)] ,

where τ = 1 + eφ1 + eφ1 + α2eφ1+φ2 ,

α =
η2 − η1
η1 + η2

, φi = −2(ηix− 4η3i t− ξi) , i = 1, 2.

(2)

Here −η21,2 are the discrete spectrum points in the associated IST formalism and ξi are the
initial phases of solitons. When t ≫ 1 solution (2) asymptotically (up to exponentially small
terms) transforms into a superposition of two single-soliton solutions (see e.g. [1], [3]):

u2 ∼ A1sech
2[η1x− 4η31t− ξ1 −∆1] + A2sech

2[η2x− 4η32t− ξ2 −∆2], (3)

where the amplitudes Ai = 2η2i , i = 1, 2 and the phase shifts ∆1,2 of the solitons due to the
interaction are: ∆1,2 = ± ln |α| assuming A1 > A2. We note that two-soliton KdV solution
(2) can be represented in a number of equivalent forms emphasising different aspects of the
soliton interaction dynamics (see e.g. [21]).

Let at the initial moment the taller soliton with amplitude A1 be located behind the
shorter one with the amplitude A2. Since the KdV soliton speed is proportional to its
amplitude, the first soliton will catch up the second one and the nonlinear interaction will
take place within certain space-time “dominant interaction region” (see [3]). There are three
types of the behaviour in the dominant interaction region depending on the amplitude ratio
r = A1/A2 > 1 of the interacting solitons [22]:
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(i) if 1 < r < 3+
√
5

2
≈ 2.62, then the interacting solitons interchange their roles without

passing through each other. They never “stick together” into a single unimodal pulse and
always retain their “identity” during the interaction. This type of interaction is often called
the “exchange interaction”. At the moment when the strength of the interaction reaches
its peak the double wave assumes a symmetric two-hump profile with the local minimum
u = u∗ = A1 − A2 at the centre (see e.g. [23]).

(ii) if 3+
√
5

2
< r < 3 the nature of the interaction changes so that the taller soliton first

absorbs the shorter one and then re-emits it. Similar to the case (i) the solitons never merge
into a single hump, but at the same time the double wave never assumes a symmetric shape.
This scenario can be associated with the transition from the “exchange” to the “overtaking
interaction”. The amplitude of the shorter soliton grows during the absorbtion phase and
assumes its maximum value 2

5
[A1+A2+(A2

1+A2
2−3A1A2)

1/2] at the moment of the strongest
interaction, say t = t∗. At the same moment t = t∗ the value of the double wave amplitude
reaches its minimum um = min [max{u2(x, t)} : t > 0].

(iii) if r > 3, then the soliton interaction mechanism is essentially the same as in case
(ii) but now the solitons merge into a single unimodal hump in the dominant interaction
region, before they separate again. This scenario is usually associated with the “overtaking
interaction”. The minimum of the resulting single pulse amplitude achieved at the moment
of the strongest interaction is um = A1 −A2.

In all three above-mentioned scenarios, the resulting double wave in the dominant in-
teraction region is wider than each of the interacting solitons and has a smaller amplitude
than that of the taller soliton before the interaction. One can derive an ordinary differential
equation describing the exact dynamics of the local maxima of the 2-soliton solution (see
[22]). However, for our purposes it is sufficient to present a simple plot of the value of the
double wave minimal amplitude um defined above, versus the amplitude ratio r−1 = A2/A1

of the individual interacting solitons. The plot of um(A2/A1) obtained from direct numerical
simulations of the collisions of different pairs of the KdV solitons is presented in Fig. 1. It
was assumed in the simulations that the initial amplitude of the taller soliton A1 = 1.

Figure 1: Dependence of the minimum of the double wave amplitude um =
min [max{u2(x, t)} : t > 0] on the soliton amplitude ratio A2/A1 in the two-soliton solu-
tion.

As one can see, the absolute minimum of the function um is achieved at A2/A1 = 1/2.62 ≈
0.38, which is the upper boundary of the transition interval 0.33 < A2/A1 < 0.38 between the
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exchange and overtaking soliton interaction scenarios (see previous Section). This property
of the two-soliton KdV solutions could have important implications for the analysis of the
random soliton wave field, in particular, for establishing the relation between the distribution
of the values of local extrema in the soliton turbulence and its spectral (IST) composition
(we recall that the initial soliton amplitudes A1,2 are directly related to the IST spectrum
— see (2)).

3 Effect of soliton interactions on the integral charac-

teristics of the wave field

Most of the features of the two-soliton interaction described in the previous section are known
very well. However, the effect of the soliton interaction on the integral characteristics of the
wave field to the best of our knowledge had not been considered before. It is this effect that
is of our primary concern in this Letter since it will have direct implications for the theory
of the KdV soliton turbulence.

As is known, the KdV equation has an infinite number of conserved quantities (Kruskal
integrals) (see e.g. [1, 2, 3]); below we present the first four of them:

I1 =

∫ ∞

−∞

u(x, t)dx, (4)

I2 =

∫ ∞

−∞

u2(x, t)dx, (5)

I3 =

∫ ∞

−∞

[u3 − 1
2
u2
x]dx, (6)

I4 =

∫ ∞

−∞

[u4 − 2uu2
x +

1
5
(uxx)

2]dx . (7)

The first three integrals (4 – 6) are usually associated with the “mass”, “momentum” and
“energy” conservation although they do not necessarily have physical meaning of the cor-
responding physical entities. All Kruskal integrals are conserved under the KdV evolution
(assuming vanishing at infinity or periodic boundary conditions for the wave field) so it is
clear from the very begining that these quantities are not affected by the soliton interaction.
Nevertheless, it is interesting to know their dependence on the soliton amplitudes since the
higher integrals (starting from the 3rd) are not necessarily positive definite. Formally, one
would need to use full two-soliton solution (2) in (4 – 7) but the calculation can be dramat-
ically simplified in view of the conservation of I1, I2, I3, I4, so that one can use asymptotic
expression (3) instead of the full solution (2) and all the integrals can be evaluated for each
soliton separately. As a result, after somewhat lengthy calculation, we obtain:

I1 = 4(η1 + η2) = 2
√
2(A

1/2
1 + A

1/2
2 ), (8)

I2 =
16

3
(η31 + η32) =

4
√
2

3
(A

3/2
1 + A

3/2
2 ), (9)

I3 =
32

5
(η51 + η52) =

4
√
2

5
(A

5/2
1 + A

5/2
2 ), (10)

I4 =
256

35
(η71 + η72) =

16
√
2

35
(A

7/2
1 + A

7/2
2 ) . (11)
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Remarkably, all the integrals I1, I2, I3, I4 turn out to be positive definite so, taking into
account the long-time asymptotic representation of the N -soliton solution as the sum of
individual solitons, analogous to (3), one can conclude that their values increase as the
number of solitons increases. As one could expect, the “higher” integrals have stronger
dependence on the amplitude than the “lower” ones.

In turbulence theory one is usually interested in the standard moments of the form

Mn(t) =

∫ ∞

−∞

un(x, t)dx , n = 1, 2, 3, . . . (12)

Obviously, for the two-soliton solution the first two moments (12) M1 and M2 coincide
with the respective Kruskal integrals I1 and I2 and, therefore, are conserved. In turbulence
theory M1 and M2 define the mean value and variance of the random wave field respectively,
and their constancy means that nonlinear interactions do not affect these two important
parameters (we note that in many problems nonlinearity leads to variations of the mean,
e.g. in the so-called wave setup phenomenon in fluid dynamics).

The next two moments, M3(t) and M4(t), are related to the skewness and kurtosis of
the probability distribution of the turbulent field. They do not coincide with the Kruskal
integrals I3 and I4 so one should not expect that they will be conserved in soliton turbulence.
Numerical evaluation ofM3 andM4 for the two-soliton solution (2) with A1 = 1 and A2 = 0.3
shows that these moments decrease in the dominant interaction region (see Fig. 2). Outside

Figure 2: The time dependence of the moments M3, M4 in the two-soliton interaction with
A1 = 1, A2 = 0.3

the interaction region M3 and M4 assume the values corresponding to the superposition of
non-interacting solitons (3):

M0
3 =

8 · 16
15

(η51 + η52) =
16
√
2

15
(A

5/2
1 + A

5/2
2 ), (13)

M0
4 =

16 · 32
35

(η71 + η72) =
32
√
2

35
(A

7/2
1 + A

7/2
2 ) . (14)

One can see that the variations of the 3rd and 4th moments are quite significant (up to 30 %)
which implies that soliton interactions can strongly affect the higher moments of the wave
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field, while the 1st and the 2nd moments remain unaffected. Physically, the decrease of the
3rd and 4th moments due to soliton interactions can be explained by the above-mentioned
decrease of the resulting pulse amplitude during the interaction. Also, as one can see from the
conservation of the third Kruskal integral (6), the decrease of the third moment

∫
u3dx results

in the decrease of the integral
∫
(ux)

2dx which implies smoothing of the monotone slopes of
the pulse during the interaction. Our simulations of two-soliton collisions characterised by
different values of the definitive interaction parameter r = A1/A2 show the same qualitative
behaviour of the higher moments in the dominant interaction region, while the amplitude of
their variations depends on the value of r. In Fig. 3 we present the numerical results for the
amplitudes of the relative variations, ∆Mi/M

0
i , where ∆Mi = M0

i −M
(min)
i , i = 3, 4, versus

r−1 = A2/A1. Again, in our numerical simulations we have assumed that the amplitude
of the greater soliton A1 = 1. Both curves are nonmonotone and have their extremum
(maximum) at the same value of the amplitude ratio A2/A1 ≈ 0.32 which is close to the
lower boundary of the transition region 0.33 < A2/A1 < 0.38 separating the exchange and
overtaking scenarios of the two-soliton interaction. Thus the two-soliton interactions with
the amplitude ratio in the transition interval are expected to have greater impact on the
higher moments in soliton turbulence.

Figure 3: Dependence of the relative variations ∆Mi/M
0
i of the third and fourth moments

of the two-soliton solution on the soliton amplitude ratio A2/A1.

To the best of our knowledge, the described effect of soliton interactions on the higher
moments of multisoliton solutions has never been reported in the literature. Taking into
account the key role of the higher moments in the characterisation of the skewness and
kurtosis of the turbulent field, an immediate implication of this effect in the context of
soliton turbulence is that the pairwise interactions of solitons must decrease the skewness
and kurtosis (compared to their values for the gas of noninteracting solitons). It is clear the
quantitative contribution of this effect will depend on the density of the soliton gas (frequency
of soliton collisions) and on its spectral (IST) composition (the ratios A1/A2 involved), i.e.
on the spectral distribution function of the soliton gas [14]. Thus, for inhomogeneous soliton
turbulence, when the density of solitons depends on the spatial coordinate, the analysis of
the higher statistical moments behaviour will be coupled with the kinetic description of the
associated soliton gas.
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In conclusion of this section we note that in classical and wave turbulence theories,
along with spatial moments, one is also interested in the Fourier transform of the velocity
field, its power spectrum etc. A similar description can be introduced for soliton turbulence
as well. The description of the Fourier spectrum evolution in the multisoliton solutions of
integrable systems is also directly related to spectral algorithms of the numerical simulations
of emergence, propagation and interaction of solitons in nonlinear dispersive media (see e.g.
[24]).

4 Conclusions

We have shown that the two-soliton interaction in the framework of the KdV equation leads
to the decrease of the 3rd and 4rth moments M3,4 of the nonlinear wave field while the 1st
and the 2nd moments remain unchanged due to the conservation of the mass and momentum.
The magnitudes of the relative variations of M3, M4 turn out to be nonmonotone functions
of the soliton amplitude ratio A2/A1 each having a single maximum located at the point
A2/A1 ≈ 0.32, close the boundary of the transition region between the exchange and over-
taking scenarios of two-soliton interactions. The qualitative implication of this dynamical
effect for the soliton turbulence theory will be a decrease of the skewness and kurtosis of the
turbulent wave field in the regions of higher density of solitons. The quantitative analysis of
the effect of soliton interactions on the structure of soliton turbulence will be made in our
future publications.
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