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Abstract

We derive generalised multi-flow hydrodynamic reductions of the nonlocal kinetic
equation for a soliton gas and investigate their structure. These reductions not only
provide further insight into the properties of the new kinetic equation but also could
prove to be representatives of a novel class of integrable systems of hydrodynamic
type, beyond the conventional semi-Hamiltonian framework.

1 Introduction

The generalised soliton-gas kinetic equation represents an integro-differential system [2]

ft + (sf)x = 0, (1)

s(η) = S(η) +
1

η

∞∫
0

G(η, µ)f(µ)[s(µ)− s(η)]dµ. (2)
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Here f(η) ≡ f(η, x, t) is the distribution function and s(η) ≡ s(η, x, t) is the associated
transport velocity. The (given) functions S(η) and G(η, µ) do not depend on x and t.
The function G(η, µ) is assumed to be symmetric, i.e. G(η, µ) = G(µ, η).

System (1), (2) with

S(η) = 4η2 , G(η, µ) = log

∣∣∣∣η − µη + µ

∣∣∣∣ (3)

was derived in [1] as an infinite-genus thermodynamic limit of the Whitham modulation
equations associated with the KdV equation, ϕt − 6ϕϕx + ϕxxx = 0, and was shown to
describe macroscopic dynamics of a soliton gas, a disordered infinite-soliton ensemble of
finite density [4]. In the KdV context, η ≥ 0 is a real-valued spectral parameter and
the function f(η, x, t) is the distribution function of solitons over the spectrum so that
κ =

∫∞
0
f(η)dη = O(1) is the spatial density of solitons. If κ � 1, the first order

approximation of (2), (3) yields Zakharov’s kinetic equation for a dilute gas of KdV
solitons [11]. The quantity S(η) in (2) has a natural meaning of the velocity of an
isolated (free) soliton with the spectral parameter η and the function G(η, µ)/η is the
expression for a phase shift of this soliton occurring after its collision with another soliton
having the spectral parameter µ < η. Then s(η, x, t) acquires the meaning of the self-
consistently defined mean local velocity of solitons with the spectral parameter close to
η. A straightforward physical derivation of the kinetic equation (1), (2) for integrable
systems, based on the original Zakharov [11] phase-shift reasoning was proposed in [3].

In recent paper [2], the multi-flow hydrodynamic reductions of the kinetic equation
(1), (2) were studied using the so-called ‘cold-gas’ ansatz

f(η, x, t) =
N∑
m=1

fm(x, t)δ(η − ηm), (4)

where the ‘spectral’ components ηN > ηN−1 > · · · > η1 > 0 are arbitrary numbers. These
‘isospectral’ cold-gas reductions were shown to have the form of systems of hydrodynamic
conservation laws

uit = (uivi)x , i = 1, . . . , N , (5)

where the conserved ‘densities’ ui = ηif(ηi, x, t) and the associated velocities vi =
−s(ηi, x, t) are related algebraically:

vi = ξi +
∑
m 6=i

εimum(vm − vi) , εik = εki . (6)

Here

ξi = −S(ηi) , εik =
G(ηi, ηk)

ηiηk
, i 6= k . (7)

The isospectral cold-gas reductions (5), (6) were proven in [2] to represent integrable
(semi-Hamiltonian [9]) linearly degenerate hydrodynamic type systems (see [5], [7]) for
arbitrary N , which is a strong indication that the full kinetic equation (1), (2) could
constitute an integrable system in the sense yet to be explored.
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The present paper is devoted to a more general multi-flow hydrodynamic approxima-
tion of the kinetic equation (1), (2), which we derive by considering an ansatz (see, for
instance, [10])

f(η, x, t) =
N∑
m=1

fm(x, t)δ(η − ηm(x, t)) (8)

with the ‘spectral components’ ηk = ηk(x, t) being (unknown) functions of x and t rather
than arbitrary constants as in (4). We show that the corresponding N -flow non-isospectral
hydrodynamic reductions have the form of 2N -component hydrodynamic type systems

uit = (uivi)x, ηit = viηix, i = 1, 2, . . . , N, (9)

where the functions ui(x, t), vi(x, t) and ηi(x, t) are related algebraically by the same
equations (6), (7) provided certain restrictions on the behaviour of the kernel function
G(η, µ) for η → µ are satisfied.

System (9), (5), (6) is not integrable by the standard Tsarev generalized hodograph
method, because it possesses just N Riemann invariants and has double characteristic
velocities. However, having in mind that this system is obtained as an exact reduction of
an integrable system (at least for S(η), G(η, µ) defined by (3) — the KdV case), one can
expect that the multi-flow reductions (9) will be integrable by some modification of the
generalised hodograph method [9]. This could lead to an extension of the conventional
notion of an integrable system of hydrodynamic type. We are going to investigate this
problem in detail in future publications.

2 Generalised hydrodynamic reductions

2.1 Evolution equations

Substituting (8) into (1) we obtain (hereafter we shall be using a shorthand notation ηi

for ηi(x, t))

∂

∂t

(
N∑
i=1

f i(x, t)δ(η − ηi)

)
+

∂

∂x

(
s(η, x, t)

N∑
i=1

f i(x, t)δ(η − ηi)

)
= 0,

Differentiating and collecting the terms for δ(η − ηi) and δ′(η − ηi) we obtain

N∑
n=1

[fnt + (s(η, x, t)fn)x]δ(η − ηn)−
N∑
n=1

[fnηnt + s(η, x, t)fnηnx ]δ′(η − ηn) = 0. (10)

Here f i ≡ f i(x, t). Evaluating asymptotic behavior of this expression near each point ηi

we arrive 2N component hydrodynamic type system (cf. (5))

f it + (s(ηi, x, t)f i)x = 0, ηit + s(ηi, x, t)ηix = 0, n = 1, . . . , N . (11)

It is instructive to derive the hydrodynamic reduction (11) by a direct calculation. This
is done by integrating (10) with respect to η over a small vicinity of each point η = ηi

with the weights 1 and (η − ηi), respectively.
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Let us fix x = x0. Then, assuming the ordering ηN > ηN−1 > · · · > η1 > 0 to hold for
all t in a small vicinity of x0 we introduce N closed intervals σi = [ηi−εi, ηi+εi] choosing
εi > 0 in such a way that in the vicinity of x0 one has ηj(x, t) ∈ σi iff j = i.

We now integrate (10) over σi:∫
σi

[
N∑
n=1

[fnt + (s(η, x, t)fn)x]δ(η − ηn)−
N∑
n=1

[fnηnt + s(η, x, t)fnηnx ]δ′(η − ηn)

]
dη = 0,

which reduces, after integrating the term with δ′i) by parts, to∫
σi

[
N∑
n=1

[fnt + s(η, x, t)fnx +
∂s(η, x, t)

∂x
fn +

∂s(η, x, t)

∂η
fnηnx ]δ(η − ηn)

]
dη = 0 . (12)

Now, integration over σi immediately leads to the hydrodynamic conservation law:

f it + (s(ηi, x, t)f i)x = 0 , (13)

which is valid in the small vicinity of x0. If we assume that the above restrictions on the
behaviour of functions ηi(x, t) hold for any x = x0 ∈ R, t > 0, equation (13) will be valid
on the entire real line. Setting i = 1, . . . , N in (12) we immediately obtain the first N
equations in (11).

To derive the second set of equations (11) we multiply (10) by (η − ηi) and integrate
over σj to get ∫

σj

[
N∑
n=1

[fnt + (s(η, x, t)fn)x]δ(η − ηn)(η − ηi)

]
dη

−
∫
σj

[
N∑
n=1

[fnηnt + s(η, x, t)fnηnx ](η − ηi)δ′(η − ηn)

]
dη = 0.

(14)

If j = i, the first integral in (14) vanishes, while the second one, after integrating by parts
and utilising the fact that each interval σi contains only its “own” value ηi, yields∫

σi

∂

∂η

(
(η − ηi)[f iηit + s(η, x, t)f iηix]

)
δ(η − ηi)dη

=

∫
σi

(
[f iηit + s(η, x, t)f iηix] + (η − ηi)∂s(η, x, t)

∂η
f iηix

)
δ(η − ηi)dη = 0.

(15)

Evaluating the integral in (15) we get

ηit + s(ηi, x, t)ηix = 0, i = 1, . . . , N . (16)

It is not difficult to see that, if j 6= i, we recover equations (13). Thus, the compatibility
of the non-isospectral ansatz (8) with the kinetic equation (1), (2) imposes restrictions
(16) on the functions ηi(x, t).
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Generally, 2N -component hydrodynamic type system (11) possesses N conservation
laws

∂t(ϕi(η
i)f i) + (s(ηi, x, t)ϕi(η

i)f i)x = 0,

where ϕi(η
i) are arbitrary functions of a single variable. It is convenient to choose ϕi(η

i) =
ηi so that (11) reduces to (cf. (5))

uit = (uivi)x, ηit = viηix, i = 1, . . . , N , (17)

where ui = ηif i, vi = −s(ηi, x, t).

2.2 Closure relations

The closure relations connecting the field variables ui, vi, and ηi in (17) are obtained by
substituting the same ansatz (8) into the integral equation (2). Since we are going to use
the variables ui instead of f i, we slightly modify ansatz (8) as follows

ηf(η, x, t) =
N∑
i=1

ui(x, t)δ(η − ηi) . (18)

Substitution of (18) into (2) yields

s(η, x, t) = S(η) +
N∑
m=1

um
G(η, ηm)

ηηm
[s(ηm, x, t)− s(η, x, t)] , (19)

As in [2], we introduce (see (7))

εik =
G(ηi, ηk)

ηiηk
, i 6= k . (20)

There is an important point to be made. In the linearly degenerate reductions (5), (6) as-
sociated with the isospectral ansatz (4) involving arbitrary constants ηi, the dependencies
of ξi = −S(ηi) and εik on the relevant components of the vector η = {η1, η2, . . . , ηN} are
not important from the viewpoint of integrability — these only provide the connection
with the original nonlocal equation (2) — see [2]. However, under the generalised ansatz
(8), ηis become dependent variables, ηi = ηi(x, t), so the aforementioned dependencies
become essential for the structure of the corresponding hydrodynamic reductions.

Now we pass to the limit as η → ηi in (19) to obtain, assuming limη→ηi s(η, x, t) = −vi
(continuity),

vi =
∑
m6=i

εimum(vi − vm)− S(ηi) +
ui

(ηi)2
lim
η→ηi

G(η, ηi)(s(η, x, t)− s(ηi, x, t)). (21)

If the limit
lim
η→ηi

G(η, ηi)(s(η, x, t)− s(ηi, x, t)) (22)
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exists then (21) becomes

vi =
∑
m6=i

εimum(vi − vm)− S(ηi) + gi(u,v,η), (23)

where

gi(u,v,η) =
ui

(ηi)2
lim
η→ηi

G(η, ηi)[s(η, x, t)− s(ηi, x, t)].

The existence of the limit (22) implies that the function G(η, µ) has at most a simple pole
singularity on the diagonal µ = η.

If the limit (22) vanishes for all i = 1, . . . , N (which happens if G(η, µ) either vanishes
itself or has a singularity weaker than a simple pole as µ→ η) then gi ≡ 0 and equation
(23) reduces to the closure conditions (6), (7) obtained for the isospectral cold-gas reduc-
tion. Below we restrict our consideration just to this, most important, case, which arises,
in particular, in the case of the kinetic equation for the KdV solitons [1], when the kernel
function G(η, µ) has only logarithmic singularity on the diagonal – see (3).

In conclusion of this section we note that nonexistence of the limit (22) for some
given G(µ, η) signifies incompatibility of the delta function ansatz (18) with the integral
equation (2) for that particular kernel G(µ, η).

3 The structure of generalised multi-flow hydrody-

namic reductions

Motivated by the results of [2] for the isospectral cold-gas hydrodynamic reductions (5),
(6) we introduce a symmetric matrix ε̂ = [εmn]N×N with the off-diagonal elements εik(η)
defined by (20) and the diagonal elements εkk being some new field variables rk(u,η).

Theorem 1. ([2]): Algebraic system (6) admits the parametric solution

ui =
N∑
m=1

βmi, vi =
1

ui

N∑
m=1

ξmβmi, (24)

where symmetric functions βik(r,η) are the elements of the matrix β̂ = [βmn]N×N such
that β̂ε̂ = −1.

Proof : We replace (6) by an equivalent system

vi = ξi +
N∑
m=1

εimum(vm − vi). (25)

(note that summation in (25) goes over all m including m = i (cf. (6)). Then (25) can
be re-written in the form

vi

(
1 +

N∑
m=1

εimum

)
= ξi +

N∑
m=1

εimumvm.
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Substituting (24) into the above formula we obtain

vi

(
1 +

N∑
m=1

N∑
k=1

βmkε
ki

)
= ξi +

N∑
m=1

N∑
k=1

ξmβmkε
ki. (26)

Taking into account β̂ε̂ = −1, one can see that expressions at both sides of (26) vanish
independently. Thus (26) is an identity, hence the parametric representation (24) is
consistent with system (6). The Theorem is proved.

Corollary: The field variables rk(u,η) are rational functions of the conserved densi-
ties um, namely,

rk = − 1

uk

(
1 +

∑
m 6=k

umεmk(η)

)
, k = 1, 2, ..., N. (27)

Indeed, multiplying both sides of the first relationship in (24) by εik and performing
summation over i we obtain:

N∑
m=1

umεmk =
N∑
m=1

N∑
n=1

βmnε
nk = −1.

Thus, ∑
m6=k

umεmk + rkuk = −1,

which immediately yields (27).

Theorem 2: Under parametrization (24) the 2N-component hydrodynamic type sys-
tem (17), (6), (7) reduces to a quasi-diaginal form:

ηit = viηix, i = 1, . . . , N ; (28)

rkt = vkrkx +
1

uk

(∑
n6=k

un(vn − vk)∂ε
nk

∂ηk
− ξ′k

)
ηkx, k = 1, . . . , N . (29)

Proof : The evolution equations (28) for ηi(x, t) are the same as in (17) so we need only
to derive equations (29) for rk(x, t), k = 1, . . . , N . Substituting parametric representation
(24) into the conservation laws (17) we obtain

∂t

(
N∑
m=1

βmi

)
= ∂x

(
N∑
m=1

ξmβmi

)
.

Multiplying both sides by εik, performing summation over the repeated index i and using
the relationship β̂ε̂ = −1, one arrives at the equation

N∑
i=1

N∑
m=1

βmi∂tε
ik =

N∑
i=1

N∑
m=1

ξmβmi∂xε
ik − ∂xξk. (30)
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A simple but not entirely trivial calculation using the following obvious property of the
matrix ε̂(r,η):

∂εnk

∂rs
= δnkδks ,

and the evolution equations (28) for ηk, shows that (30) reduces to

rkt = vkrkx +
1

uk

N∑
s=1

(
N∑
n=1

N∑
m=1

βmn(ξm − vs)
∂εnk

∂ηs
− ∂ξk
∂ηs

)
ηsx, k = 1, . . . , N. (31)

Then taking into account (see (24))

N∑
m=1

βmi = ui,
N∑
m=1

ξmβmi = uivi,

equations (31) reduce to the form (29). The Theorem is proved.

Eliminating ui from (24), we obtain expressions relating v to η and r:

vi(r,η) =

N∑
m=1

ξmβmi

N∑
m=1

βmi

, (32)

while ui(r,η) are given by the first equation in (24). Now, system (28), (29) is closed.
For the isospectral case, when ηi, i = 1, 2, . . . , N are constants so ∂tη

i = ∂xη
i = 0 and

we recover from (29) the Riemann invariant representation

rit = vi(r)rix (33)

of system (5), (6) obtained in [2] with the use of the linear degeneracy of the isospectral
cold-gas hydrodynamic reductions. As a matter of fact, one can see now that the Riemann
invariant equations (33) could be readily obtained directly from system (5), (6) by the
substitution into it of the parametric solution (24).

Thus, the 2N -component hydrodynamic reduction (17) admits parametrization (24)
resolving algebraic system (6) and reducing the evolution equations to the form (28),
(29). System (28), (29) has double characteristic velocities vk( r,η) (32). However, in
the general case, just N functions ηk(x, t) are Riemann invariants (i.e. only a half of
the complete hydrodynamic system (17) can be written in diagonal form), while the field
variables rk(x, t) become Riemann invariants only if the corresponding ηk =const.

In conclusion of this Section we note that linear degeneracy of system (33) proved in [2]
implies that ∂vi(r)/∂ri = 0 for all i = 1, . . . N . The latter property clearly remains valid
for the characteristic velocities vi(r,η) of the generalised hydrodynamic reductions (28),
(29), however, now this is no longer associated with the notion of linear degeneracy of a
hydrodynamic type system in the classical sense [6], [8] since rk are no longer Riemann
invariants and also ∂vi(r,η)/∂ηi 6= 0.
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4 Conclusion

In this paper, we have derived the generalised hydrodynamic reductions of the nonlocal
kinetic equation for a soliton gas (1), (2) by considering the non-isospectral multi-flow
ansatz (8) for the distribution function. These new reductions have turned out to have
rather unusual structure which we have revealed by using the parametric solution (24)
to the algebraic closure conditions (6), (7). More precisely, the non-isospectral N -flow
hydrodynamic reductions of the kinetic equation are shown to represent 2N -component
half-diagonal systems of hydrodynamic type (28), (29) with N Riemann invariants and N
double characteristic velocities. The feature that makes the derived reductions deserving
special attention is that, while they are clearly not integrable by Tsarev’s generalised
hodograph transform method [9], they could still prove to be integrable in some new sense
yet to be understood. Indeed, having in mind that system (28), (29) can be derived as a
generalised hydrodynamic reduction of the kinetic equation associated with an integrable
equation (e.g. with the KdV equation — for S(η), G(η, µ) defined by (3)), one can expect
that this reduction will be integrable by some nontrivial extension of the generalised
hodograph method.

As a by-product of our calculations we recover the Riemann invariant structure of
the isospectral cold-gas reductions (5), (6), (7) studied in [2]. We note that our present
compact derivation, unlike that in [2], does not make any use of the linear degeneracy
property of the reductions under study.
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