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Andrea Soltoggio
Neurorobotic systems learn with difficulties when a continuous flow of information and delays make the cause-effect relationships ambiguous. 
The Hypothesis Testing (HT) plasticity proposed in this study models learning dynamics that account for ambiguity in the sensory-motor 
information flow improving drastically discrimination capabilities and memory capacity with respect to previous models. The new rule models 
consolidation to long-term memory and helps solve the plasticity-stability dilemma. 
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Conclusion. The HT-plasticity improves both exploration and 
exploitation capabilities of the network. It increases memory 
capabilities by preserving established learned relationships, it 
detects coincidental facts as irrelevant and allows for the 
combination of more learning scenarios and skills.
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SIMULATIONSAmbiguous cause-effect relationships
with delayed rewards

What sequence of stimuli
and actions effectively
causes a reward? One single
instance cannot disambiguate
the relationship if delays and 
asynchronous information
flow are present.
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Rarely Correlating Hebbian Plasticity (RCHP)
(equivalent to R-STDP)
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Hypothesis Testing Plasticity. Addition of 
1) short-term and long-term components
2) hypothesis testing potentiation and depression with 
negative baseline modulation (term b)
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Consolidation of
hypotheses (weights)
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NEURO-ROBOTICS APPLICATIONS : combination of skills
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(a) Memory capacity, preservation of information over different learning 
scenarios (b) Utility of memory when revisiting a previously learned scenario

iCub learns the colors

Uncertain feedback signals in 
human-robot interaction

Operant conditioning  with 
reversal learning. Learning from 
trial and error in human-robot 
interactions

Classical conditioning: 
iCub makes new friends

(a) Improved exploration speed  (b) Discrimination capability and robustness 
of the HT rule with respect to the previous approaches

Problem
- large input-output flow
- delayed rewards
- ambiguous cause-effect 
relationships
- no external reward-predictors 
(i.e. expected average rewards)

Network
- 300 inputs, 30 outputs
- 9000 stimulus-action pairs

Advantages
- short-term components 
represent hypotheses
- long-term components 
represent established facts
- HT allows for learning over 
multiple scenarios
- HT plasticity allows for higher 
discrimination of true cause-
effect relationships

Suitable for
- using memory capacity of network
- modeling knowledge-discovering in 
ambiguous environments
- studying classical and operant 
conditioning over long time scale and 
multiple associations
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Previous experiments with RCHP can now be all combined and expanded 
thanks to the increased memory capabilities and different learning scenarios


