
POET: an evo-devo method to optimize
the weights of large artificial neural networks

Alessandro Fontana1, Andrea Soltoggio2 and Borys Wróbel1,3

1Evolving Systems Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
2Computer Science Department, Loughborough University, Loughborough LE11 3TU, UK

3Systems Modelling Laboratory, IO PAS, Sopot, Poland
fontana@evosys.org, a.soltoggio@lboro.ac.uk, wrobel@evosys.org

Abstract

Large search spaces as those of artificial neural networks are
difficult to search with machine learning techniques. The
large amount of parameters is the main challenge for search
techniques that do not exploit correlations expressed as pat-
terns in the parameter space. Evolutionary computation with
indirect genotype-phenotype mapping was proposed as a pos-
sible solution, but current methods often fail when the space
is fractured and presents irregularities. This study employs
an evolutionary indirect encoding inspired by developmental
biology. Cellular proliferations and deletions of variable size
allow for the definition of both regular large areas and small
detailed areas in the parameter space. The method is tested
on the search of the weights of a neural network for the clas-
sification of the MNIST dataset. The results demonstrate that
even large networks such as those required for image classi-
fication can be effectively automatically designed by the pro-
posed evolutionary developmental method. The combination
of real-world problems like vision and classification, evolu-
tion and development, endows the proposed method with as-
pects of particular relevance to artificial life.

Introduction
An important feature of artificial living systems is that of
learning from and computing with rich sensory information.
In biology, such feats are performed by large learning neural
structures capable of developing and learning during life-
time. Computational models of large neural networks, how-
ever, are difficult to design due to the large search space.
For example, artificial neural networks for image classifica-
tion require computationally intensive learning algorithms to
optimize large numbers of parameters (Bengio, 2009), and
evolutionary computation was not, so far, an efficient way to
do so (Koutnı́k et al., 2013). This is especially true for evo-
lutionary search with direct encodings, which ignore regu-
larities, repetitions and patterns in the desired solutions. In-
direct encodings (Lindenmayer, 1968; Stanley and Miikku-
lainen, 2003; Federici, 2004; Roggen and Federici, 2004;
Hornby, 2005) were proposed as a more suitable represen-
tation to help evolutionary search. Such encodings are in-
spired by biology, where compact genotypes encode com-
plex phenotypes such as the human body, a structure built of

a very large number of interacting cells (in the order of 1013;
Wolpert and Ticke, 2010; Bianconi et al., 2013).

Some models of direct encoding mimic biology by start-
ing from a single element, from which a final structure
grows, consisting of many such elements (Smith and Thelen,
1993; Bongard and Pfeifer, 2003; Kumar and Bentley, 2003;
Roggen and Federici, 2004). Others, notably HyperNEAT
(Stanley et al., 2009), produce a phenotype by means of a
single-step indirect mapping function of a compact geno-
type. Indirect encodings, whether they model development
or not, are characterized by compact representations of cor-
related parameters in the large phenotype space. Such com-
pact encoding, however, biases the search, sometimes with
detrimental effect, particularly in the presence of irregulari-
ties (Clune et al., 2009; van den Berg and Whiteson, 2013),
even though these findings have been later put in question
(Stanley et al., 2013). In short, while direct encodings are in-
efficient while searching regular patterns, indirect encodings
suffer from the opposite problem of struggling with irregular
and fractured search spaces.

The observation of the inefficiencies of both types of en-
coding inspired methods that can search both regularities as
well as particularities in the solution space (van den Berg
and Whiteson, 2013). The present study contributes to this
line of research by demonstrating the capabilities of an evo-
lutionary developmental method in searching large param-
eter space in a neural network for image classication. The
proposed method is inspired by biological development, and
based on gene expression mechanisms that can map genes
locally with variable intensity, affecting at times large, at
times small parts of the phenotype. For this reason, arbitrar-
ily large search spaces can be searched without losing the
ability to discover particularities.

The method proposed here introduces a novel parameter
search technique that makes use of a biologically-inspired
evolutionary developmental algorithm called ET (for Epi-
genetic Tracking). ET allows evolution and development
of very large complex artificial systems built from cells
with diverse cell types (Fontana, 2008), and modeling of
biologically-relevant phenomena (Fontana, 2009), such as

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch073



Figure 1: Structure of a stem cell. A stem cell is composed
of one mobile code and several developmental genes. If the
regulatory set of the developmental gene matches the mo-
bile code of the cell and the timer matches the global clock,
that particular developmental gene is activated and a change
event (in this case a proliferation) is produced.

regeneration (Fontana and Wróbel, 2013a) and carcinogene-
sis (Fontana and Wróbel, 2013b) and the hypothetical trans-
fer of genetic elements from soma to germline (Fontana and
Wróbel, 2012). In the current study, cells are mapped to
neural network weights and the method is tested on an im-
age classification problem (hand-written images from the
MNIST dataset; LeCun and Cortes, 1998). The results
demonstrate, to the best of our knowledge, unmatched per-
formance on the MNIST dataset with purely evolutionary
methods.

The rest of the paper is organized as follows. We first de-
scribe ET as a model of developmental biology. We then
explain the new method proposed here, and its application
to searching weights in artificial neural networks. In Exper-
imental Results we show how the method can be used in an
image classification task. The final sections discuss the im-
plications of our results and draw the conclusions.

The cellular model of development
This section gives an overview of ET, a model of develop-
ment introduced in (Fontana, 2008), and belonging to the
field of Artificial Embryology (Stanley and Miikkulainen,
2003). Notable examples of Artificial Embryology models
are (Gruau et al., 1996; Eggenberger-Hotz, 1997; Cussat-
Blanc, 2008). In ET, artificial bodies are composed of two
categories of cells: stem cells and normal cells, placed on a
grid. Artificial development starts with the value of a global
clock set to 0, and with one or several stem cells on the grid.
Each stem cell (Fig. 1) has a unique mobile code, but all

Figure 2: Illustration of the ability of ET to develop cellular
structures similar to a target that contains regular patterns
and irregularities. Two developmental sequences are shown,
each in seven 1000 × 1000 frames (the frames with a red
border are the targets).

cells have the same genome, which consists of developmen-
tal genes. All cells have access to the same temporal infor-
mation provided by the global clock. As the clock advances,
developmental genes are activated.

When a developmental gene is activated in a stem cell,
the right part of the gene specifies a change event orches-
trated by the cell. Two types of change events, prolifera-
tion and apoptosis, result—respectively—in filling a volume
around the stem cell with new cells (displacing older cells if
present), or deleting the cells around this stem cell (leaving
an empty space). Where and when the change event occurs
is specified by the left part of the developmental gene, con-
sisting of a regulatory set and a timer. A gene is activated in
the stem cell whose mobile code matches the regulatory set,
and when the global clock matches the timer.

Thus, the mobile code corresponds in biology to reg-
ulators (such as transcription factors) specific for a given
cell; the global clock corresponds to regulators that provide
the temporal information in development (to which all cells
have access); the regulatory set and the timer correspond to
the regulatory sequences to which regulators can bind. In the
current software implementation, the clock and the timer are
integers, while the mobile code and the regulatory set are ar-
rays of integers (each number in the array can be interpreted
as a transcription factor or a regulatory locus, respectively).

After a proliferation, normal cells which are sufficiently
distant (the distance is a parameter of the system) from any
stem cell are turned into new stem cells. This process of
stem cell formation is inspired by the recently emerging
paradigm of dymanic stemness (Cruz et al., 2012; Roesch

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



et al., 2010). In this novel view, stemness is considered as
a dynamic property: the stem-non stem conversion would
occur in both directions, triggered by genetic and epigenetic
factors, and influenced by the cellular microenvironment. In
the ET implementation used in this paper, the stem cell for-
mation mechanism results in stem cells evenly spaced in the
body (a simplification of the biological reality introduced for
computational reasons). Each new stem cell receives a new
and unique mobile code.

This developmental model can be evolved by means of a
genetic algorithm, and becomes an evo-devo process (exam-
ples of other evo-devo models are Joachimczak and Wróbel,
2009; Cheney et al., 2013). Briefly, in every generation a
fitness value is obtained for each genome in the population.
The fitness is computed by testing the network at the end of
the developmental process, i.e. when the value of the global
clock reaches a pre-specified value. The fitness may be de-
termined as the proximity to a predefined target structure, as
it was done in previous work (Fontana, 2008), or by other
measures, as it is described in the next section.

A peculiar feature in this implementation of the genetic
algorithm, called progressive freezing (Fontana, 2012), war-
rants a more detailed description. With progressive freez-
ing, the genomes are separated in sections of G (20 in the
current implementation) genes, each with the same timer
value. Sections are executed in a sequential order, as the
global clock advances. During simulated evolution, only one
section of all genomes evolves for a number of generations,
which means that mutations affect the regulatory sets and
right parts only of the genes in the section being currently
evolved. Development ends (and the fitness is calculated for
the genome) when the clock strikes the number correspond-
ing to the section under evolution. The other sections of the
genome remain unchanged (“frozen”). A parameter speci-
fies for how many generations a section evolves. More de-
tails of the genetic algorithm are provided in the Appendix.

From cell structures to neural networks
The coupling of the model of development and the genetic
algorithm, described in the previous section, gives origin to
an evo-devo process, which was proven capable to “devo-
evolve” structures of unprecedented complexity when prox-
imity of the developed cellular structure to a pre-specified
target was used as a fitness measure. Let us consider two
2-dimensional target structures that contain regularities and
particularities (Fig. 2). Although the search of genomes
regulating development of structures similar to a target is
not the purpose of this study, these two examples show the
capability of ET when dealing with search spaces with a
large number of parameters (in this case, colored pixels of
an image). In the present study, we build on this capability
and propose an extension of ET that creates a more gen-
eral method for parameter optimization. This new method is
called POET (for Parameter Optimization using Epigenetic

Tracking).
The following subsections describe how POET exploits

2-dimensional cellular structures to specify weights of a net-
work with arbitrary predefined topology. In this initial study,
the focus is limited to indirect developmental encoding of a
large number of static weights. Once the cellular structure
is interpreted as weights, they do not change during fitness
calculation for a particular genome. The task considered is
image classification. The fitness is computed on the per-
formance of the network on the classification of sets of im-
ages. Using a machine learning terminology, the set of im-
ages used during evolution is called “training set”. At the
end of evolution, the evolved networks are tested on a set of
images that was not seen during evolution. These additional
images are the “test set”.

Mapping the parameter space
Each weight of a neural network is associated with a pro-
gressive index i ∈ {0, N − 1} with N being the total num-
ber of weights. Each weight with index i is linked to k lo-
cations on the developmental grid—which may or may not
be the location of a cell—by means of a mapping function
f : i → {(m,n)1, (m,n)2...(m,n)k}, where m,n are co-
ordinates on the grid (Fig. 3). How do cells contribute to a
weight in the network? First, each cell has a real value in
the range [-1, 1], specified by the genetic material. Then,
the value of the weight i is derived by summing the k val-
ues of k cells specified by the mapping function f . The
function f is initialized randomly and can be modified by
a new change event called swap, orchestrated—in addition
to proliferation and apoptosis, taken from ET—by dynamic
stem cells during the growth of the cellular structure. Devel-
opment starts from a number of stem cells initially placed
on the grid (2500 evenly spaced stem cells in this study),
and proceeds through a number of developmental stages (50
in our simulations). In each stage a maximum number of
change events (20 proliferation, apoptosis and swap events
in total) was allowed to take place.

Swap During a swap event, an area around the stem cell
exchanges the values of the function f with another area
of the grid (Fig. 4). The swap area has the shape of an
ellipse whose size, elongation and orientation are specified
in the right part of the associated gene. The centers of the
two swapped areas are given by the location of the stem cell
which gives origin to the swap event and by another couple
of coordinates, also contained in the gene’s right part. The
swap event has the purpose to cluster in the same area of
the grid parameters which are correlated, so that they can be
optimized together by means of a proliferation or apoptosis
event.

Proliferation and apoptosis As in standard ET, when a
stem cell undergoes proliferation, the right part of the acti-
vated POET gene specifies the shape of the region filled by

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



Figure 3: Parameter mapping in POET. To each cell two
numbers are associated: a real valued number, represented
by the intensity of shading, and an integer value (shown in-
side the cell). The value of parameter whose index value
is i is calculated by adding all real valued numbers of cells
whose integer value is i.

Figure 4: Swap event in POET. Two elliptical regions are
selected in the grid and the values contained therein are
swapped. This operation leaves the values associated with
each cell in the grid (represented by the intensity of shad-
ing) unaffected.

new cells in the same way as the swap area, and the same
goes for the area emptied during apoptosis (Fig. 5). The
activated gene specifies also the differentiation state of the
new cells resulting from proliferation. The state includes a
real value that contributes to a weight in the neural network.

Neural network and classification
An input example in the MNIST set is a 28×28 pixel image.
The resulting 784 inputs are fed to an equal number of input
neurons in the input layer of the network. A hidden layer
comprises 336 neurons, and the output layer has 80 neurons,
divided in 4 groups of 20 neurons each (Fig. 6). The struc-
ture in this particular setting was devised to classify only
the first four digits (0 to 3) of the MNIST dataset. In addi-
tion, the network structure is constrained such that the net-
work may be seen as four separate networks with structure

Figure 5: Proliferation events in POET. Proliferations events
affect elliptical regions, changing the values (represented by
the intensity of shading) inside the regions, without affecting
the associated parameter indexes.

784 · 84 · 20 for input, hidden and output neurons, respec-
tively. Each network has 784 ·84+84 ·20 = 67536 weights,
resulting in a total of 67538 · 4 (subnetworks) = 270144
total weights. This large number is generally considered in-
tractable for any evolutionary search method with direct en-
coding.

The constraints on the network topology imply that the
algorithm is evolving effectively four separate networks for
each class to be classified. The lack of processing units that
extract common features to more classes is in contrast to
other approaches in the literature, particularly deep learning.
While the present method may indeed be applied to deep
structures, the experiments presented here are a proof-of-
concept of the potential of optimizing a very large parameter
space.

Correspondingly, the grid was divided into four quad-
rants, each of which associated to a given subnetwork (Fig.
7). In other words, the weights of each subnetwork are
mapped to one quadrant only, and the swap event is re-
stricted in such a way as to preserve the “fencing” between
quadrants. More specifically, the rule imposed states that,
if the center of the source ellissoid of a swap event belongs
to quadrant Q, also the center of the destination ellissoid is
forced to belong to quadrant Q.

An image is assigned a class by observing which of the
four output neuron groups has the highest activation value
(the sum of activations of all members). In case the first and
the second groups have the same activation value, the image
is not assigned to any class. The fitness function is expressed
as

Fitness = 0.75 · (Occ −Oh) + 0.25 · sign(Occ −Oh)

where Occ is the average output of the neurons in the correct
class, Oh is the average value of the highest output group ex-
cluding Occ. The first term (Occ−Oh) is proportional to the
margin between the values of the correct class and the best of

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



Figure 6: Structure of the neural network used for the classi-
fication of MNIST images (784-pixel images of digits). The
network is composed of four subnetworks, each dedicated to
a given class (one of four digits). Nodes of the output layer
of subnetwork 1 (blue) are fully connected to nodes of the
hidden layer of the same subnetwork, which are fully con-
nected to all 784 input nodes. The same is true for the other
subnetworks. There is no connections between neurons of
different subnetworks.

the other groups (negative if the correct class is not correctly
classified); the second term sign(Occ − Oh) introduces a
nonlinear step which gives a fitness premium when a cor-
rect classification is achieved. This fitness measure creates a
gradient in the fitness landscape towards a correct classifica-
tion. Preliminary experiments (data not shown) indicated an
advantage of this fitness function in comparison to simpler
versions that considered only the number of correct classifi-
cations.

Experimental results
The experiments tackled the classification of four digits,
from 0 to 3. Although only a part of the MNIST set was
used in this first study, the results demonstrate the feasibil-
ity of purely evolved neural weights in image classification.
The evolution was performed using 1000 training images for
each digit. Fig. 8 shows examples of correctly classified im-
ages.

At the end of evolution, the set of evolved weights were
extracted and tested on a different platform (MATLAB) to
verify the performance both on the training set and on the
test set of the MNIST dataset. The error rates in classifica-
tion averaged over four simulations are summarized in Ta-
bles 1 and 2. Fig. 9 shows the developed organism of one of
the champion networks. From this graphical representation,
it is evident that the large search space makes it difficult to
understand intuitively how the quarter of a million weights
cooperate to perform classification. However, one hypothe-
sis is that each cell proliferation contributes to the extraction

Figure 7: Subdivision of the grid into four quadrants. Each
quadrant maps the weights associated to one of the four sub-
networks which perform the classification task. The colors
correspond to the colors in Fig. 6.

Figure 8: Examples of handwritten digits from the MNIST
set that were correctly classified.

of useful features, which then contribute in the output layer
to the correct classification.

The results outline two important points. The first is that
a purely evolutionary algorithm was shown to solve image
classification with a large neural network. Although the er-
ror rates are worse when compared to the state-of-the-art
learning algorithms on the MNIST set, they nevertheless
demonstrate the capability of the algorithm to perform clas-
sification in such a problem domain, which was tradition-
ally considered intractable with evolutionary algorithms. In
particular, it is possible to observe that the network acquires
throughout evolution the capability of recognizing well writ-
ten digits. Fig. 10A shows the case of the digit 3 that
was recognized with the highest confidence, while Fig. 10B
shows a digit 3 that was misclassified as 2. Interestingly,
the second guess was 3. The examples indicate that the al-
gorithm fails in a human-like fashion particularly when the
hand-written digit presents ambiguities.

A second remarkable aspect is the fact that the algorithm

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



Table 1: Summary of performance for four champion net-
works evolved in independent runs on a subset of the MNIST
training database (1000 examples for each digit class).

Training set - Classification error
run no. class 0 class 1 class 2 class 3 mean
run 1 1.30% 1.80% 11.20% 9.40% 5.93%
run 2 1.80% 3.10% 8.20% 6.10% 4.80%
run 3 0.80% 2.10% 10.30% 8.80% 5.50%
run 4 0.70% 2.60% 8.50% 8.00% 4.95%
mean 1.15% 2.40% 9.55% 8.08% 5.29%

Table 2: Summary of performance for the four champion
networks assessed using a subset of the MNIST database
different than the training set (1000 examples for each digit
class).

Test set - Classification error
run no. class 0 class 1 class 2 class 3 mean
run 1 0.80% 2.40% 11.60% 8.50% 5.83%
run 2 1.20% 4.10% 9.40% 6.40% 5.28%
run 3 1.10% 2.30% 10.90% 8.50% 5.70%
run 4 0.60% 3.60% 9.10% 6.40% 4.93%
mean 0.93% 3.10% 10.25% 7.45% 5.43%

evolved with a limited number of examples, 1000 for each
digit class to be exact. The MNIST set, however, contains
approximately 6000 examples for each digit. The error rates
on the test set, composed of examples (1000 for each digit)
that were not seen during evolution, indicate a clear gener-
alization capability. Whereas most evolutionary algorithms
tend to exploit the evolutionary environments and to perform
less well with new inputs, the proposed POET method ap-
pears to generalize well. In particular, we observe that the
drop in performance on the test set is extremely small. Ta-
bles 1 and 2 indicate that the network 1 has even slightly im-
proved performance, whereas networks 2, 3 and 4 have very
marginal drops in performance, 0.48%, 0.20%, and 0.24%
respectively.

A possible explanation for this fact is that the gene ex-
pression mechanisms, from which weights are derived, per-
form distributed weight changes, rather than specific single-
weight mutations. Therefore, rather than fitting single pixels
in the input images (which may lead to overfitting), classifi-
cations may relay on larger pixel areas. Another hypothesis
is that the size of the network (relatively small for such im-
age classification tasks) contributed to reduce the gap in per-
formance between the training and the test set. To sum up,
more analysis is needed at this point to explain the high gen-
eralization capabilities of the proposed algorithm. Nonethe-
less, the evidence presented here suggests that the proposed
algorithm may implicitly bring high generalization capabil-
ities.

Figure 9: Image of the POET grid at the end of develop-
ment, for one of the champions in the image classification
evolutionary experiments. The grayscale-code indicates the
contribution of the cell to weights. Elliptical areas outline
the locations of several cell proliferations.

Discussion
The results described here demonstrate, for the first time in
this particular domain, the full potential of indirect encoding
in the optimization of large search spaces. In particular, the
method shows that evolutionary search may leave the do-
main of toy problems and be applied to real world problems
such as image recognition and classification. The rationale
for the method performance is the ability of ET to devo-
evolve target shapes of any kind and size. In this work, we
have replaced a geometric target with a computational one,
and proved that the method still works. Nonetheless, more
investigations with different network topologies is needed to
assess the intrinsic mechanisms and rules of POET’s search
dynamics. The generalization capabilities, suggested by the
similar error rates both in the training and in the test set, in-
dicate that the developmental method may extract general
features of the input spaces. This encouraging result calls
for more analysis on the network topologies that emerge au-
tonomously from the interaction of evolution and develop-
ment.

The absolute error rates on the training set (around 5%)
are similar to error rates of other 2-layer neural networks
with a similar number of hidden units (300) (LeCun and
Cortes, 1998), although those rates refer to the complete
MNIST dataset. It is important to observe that this study
proposes a proof-of-concept on the use of evolutionary de-

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



A B

Figure 10: Examples of correct and incorrect classifications.
(A) This digit was classified as 3 with the highest confi-
dence. (B) This digit (labelled as 3 in the MNIST set) was
classified as 2 with low confidence, the second guess was 3.

velopmental algorithms on image classification problems. A
more optimized evolutionary process, for example involv-
ing larger populations or more generations (see Appendix),
might lead to better performance. A second consideration
is that the evolutionary developmental network might be
used effectively as a starting point for further training with
a standard approach (e.g., error backpropagation or Hebbian
learning), possibly resulting in an improvement of the clas-
sification rate.

The process of development, directed by genetic instruc-
tions in stem cells, implies that the phenotype grows during
a lifespan before reaching a mature state when it is capable
to classify the input images. During development, the mor-
phogenetic process in the current algorithm does not involve
neural plasticity. Therefore, an exciting future direction con-
sists in the combination of evolution, development, and plas-
ticity. Particularly in the domain of image classification, in
which learning algorithms for deep structures performed the
best, the combination of development and learning is of high
interest to understand general principles of learning in living
organisms.

In this work the mapping of the 2D grid points to param-
eters (the weights) is initially done randomly and then al-
lowed to change by means of swap events under genetic con-
trol. This mapping method is only one among many possi-
ble, and we are currently entertaining other possibilities. As
the model is further improved, we plan to keep using swap
events, because they help bring correlated parameters close
to each other. Thanks to swap events such parameters can be
optimized together. Otherwise they would have to be opti-
mized independently, and encoded (in the case of the genetic
algorithm) with separate genes.

A final consideration regards the possibile use of the opti-
mization method proposed in this initial work. Here, POET
was employed to optimize weights in artificial neural net-
works. Nevertheless, the method is not limited to this do-
main and, in fact, any number of parameters in a large search
space can be optimized with the proposed method. This will
be the matter of future work.

Conclusions

A new generative-developmental system for parameter opti-
mization, named POET, is presented. The method is tested
on the optimization of weights of a large neural network,
evolved to classify handwritten digits from the MNIST
database. The results show competitive error rates for evo-
lutionary algorithms (although not for state-of-the-art learn-
ing algorithms), but more interestingly, they show impres-
sive generalization capabilities on the test set, a remarkable
result for evolutionary methods. To the best of our knowl-
edge, the proposed method is the first purely evolutionary
algorithm to search the neural network weights to classify
the MNIST database. While this first test was performed on
a subset of the MNIST database, and on a shallow neural
network, the results are encouraging for the possible future
application of POET to deep neural networks and more chal-
lenging classification problems.

Appendix

This section presents additional implementation de-
tails. We provide the source code of our software at
www.evosys.org/software. Here a brief description of the
key parameters of the algorithm.
For the experiments we used a grid size of 1000 × 1000
cells, in which an initial number of 2500 stem cells was in-
jected. The maximum distance between stem cells was 10
grid points (a higher distance elicited the formation of new
stem cells). Development was allowed to proceed for 50 de-
velopmental stages. In each stage a maximum number of
20 events (proliferation, apoptosis and swap combined) was
allowed to take place. The maximum size of the event area
was 200×200 cells. Each developmental stage was evolved
in 1000 generations. Each neural weight was mapped to 3
different positions on the grid.

For the genetic algorithm, we used a population size of
512 distinct individuals. Each individual was composed of
1000 genes, and each gene was encoded with 500 base-4
digits, for a total genome size of 500000 digits. We used
wheel selection with elitism (the best 64 genomes were
copied without mutation in the next generation). We em-
ployed the genetic operators of mutation (with probability
0.005 per digit), and crossover (with probability 0.5 for each
offspring genome).

Acknowledgements

This work was supported by the Polish National Science
Center (project BIOMERGE, 2011/03/B/ST6/00399). This
work was also partially supported by the European Com-
munitys Seventh Framework Programme FP7/2007-2013,
Challenge 2 Cognitive Systems, Interaction, Robotics under
grant agreement No 248311 - AMARSi.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems



References
Bengio, Y. (2009). Learning deep architectures for AI. Foundations

and Trends in Machine Learning, 2(1):1–127.

Bianconi, E., Piovesan, A., Facchin, F., Beraudi, A., Casadei, R.,
Frabetti, F., Vitale, L., Pelleri, M., Tassani, S., Piva, F., Perez-
Amodio, S., Strippoli, P., and Canaider, S. (2013). An esti-
mation of the number of cells in the human body. Annals of
Human Biology, 40(6)2:463–467.

Bongard, J. and Pfeifer, R. (2003). Evolving complete agents us-
ing artificial ontogeny. In Morpho-functional Machines: The
New Species, pages 237–258. Springer.

Cheney, N., MacCurdy, R., Clune, J., and Lipson, H. (2013). Un-
shackling evolution: Evolving soft robots with multiple ma-
terials and a powerful generative encoding. In Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO), pages 167–174.

Clune, J., Ofria, C., and Pennock, R. (2009). The sensitivity of Hy-
perNEAT to different geometric representations of a problem.
In Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO), pages 675–682.

Cruz, M., Siden, A., Calaf, G., Delwar, Z., and Yakisich, J. (2012).
The stemness phenotype model. ISRN Oncology.

Cussat-Blanc, S. (2008). From single cell to simple creature mor-
phology and metabolism. In Proceedings of the 11th Interna-
tional Conference on the Simulation and Synthesis of Living
Systems (ALife XI), pages 134–141.

Eggenberger-Hotz, P. (1997). Evolving morphologies of simulated
3d organisms based on differential gene expression. In Pro-
ceedings of the 4th International Conference on the Simula-
tion and Synthesis of Living Systems (ALife IV), pages 205–
213.

Federici, D. (2004). Using embryonic stages to increase the evolv-
ability of development. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO) Workshop
Program.

Fontana, A. (2008). Epigenetic tracking, a method to generate ar-
bitrary shapes by using evo-devo techniques. In Proceedings
of the 8th International Conference on Epigenetic Robotics
(EPIROB).

Fontana, A. (2009). Epigenetic tracking: biological implications.
In Proceedings of the 10th European Conference on Artificial
Life (ECAL), volume 5777 of LNCS, pages 10–17.

Fontana, A. (2012). Epigenetic Tracking: an evolutionary-
developmental approach to generate 3-dimensional simu-
lated structures. PhD thesis, Technical University of Gdansk,
Gdansk, Poland.

Fontana, A. and Wróbel, B. (2012). A model of evolution of de-
velopment based on germline penetration of new “no-junk”
DNA. Genes, 3:492–504.

Fontana, A. and Wróbel, B. (2013a). An artificial lizard regrows
its tail (and more): regeneration of 3-dimensional structures
with hundreds of thousands of artificial cells. In Proceedings
of the 12th European Conference on Artificial Life (ECAL),
pages 144–150.

Fontana, A. and Wróbel, B. (2013b). Embryogenesis, morphogens
and cancer stem cells: putting the puzzle together. Medical
Hypotheses, 81(4):643–649.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A comparison be-
tween cellular encoding and direct encoding for genetic neu-
ral networks. In Genetic Programming 1996: Proceedings of
the 1st Annual Conference, pages 81–89.

Hornby, G. (2005). Measuring, enabling and comparing modular-
ity, regularity and hierarchy in evolutionary design. In Pro-
ceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO), pages 1729–1736.

Joachimczak, M. and Wróbel, B. (2009). Evolution of the morphol-
ogy and patterning of artificial embryos: scaling the tricolour
problem to the third dimension. In Proceedings of the 10th
European Conference on Artificial Life (ECAL), volume 5777
of LNCS, pages 33–41.

Koutnı́k, J., Cuccu, G., Schmidhuber, J., and Gomez, F. (2013).
Evolving large-scale neural networks for vision-based rein-
forcement learning. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO), pages 1061–
1068.

Kumar, S. and Bentley, P. (2003). On growth, form and computers.
Academic Press.

LeCun, Y. and Cortes, C. (1998). MNIST handwritten digit
database. AT&T Labs [Online]. Available: http://yann. le-
cun. com/exdb/mnist.

Lindenmayer, A. (1968). Mathematical models for cellular interac-
tion in development. Journal of Theoretical Biology, 18:280–
315.

Roesch, A., Fukunaga-Kalabis, M., Schmidt, E., Zabierowski, S.,
Brafford, P., Vultur, A., Basu, D., Gimotty, P., Vogt, T., and
Herlyn, M. (2010). A temporarily distinct subpopulation of
slow-cycling melanoma cells is required for continuous tu-
mor growth. Cell, 141(4):583–594.

Roggen, D. and Federici, D. (2004). Multi-cellular development: is
there scalability and robustness to gain? In Parallel Problem
Solving from Nature-PPSN VIII, pages 391–400. Springer.

Smith, L. and Thelen, E. (1993). A dynamic systems approach to
development: applications. The MIT Press.

Stanley, K., Clune, J., D’Ambrosio, D., Green, C., Lehman, J.,
Morse, G., Pugh, J., Risi, S., and Szerlip, P. (2013). CPPNs
effectively encode fracture: a response to critical factors
in the performance of HyperNEAT. University of Central
Florida Dept. of EECS Technical Report CS-TR-13-05.

Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-
based encoding for evolving large-scale neural networks. Ar-
tificial Life, 15(2):185–212.

Stanley, K. and Miikkulainen, R. (2003). A taxonomy for artificial
embryogeny. Artificial Life, 9(2):93–130.

van den Berg, T. and Whiteson, S. (2013). Critical factors in the
performance of HyperNEAT. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO), pages
759–766.

Wolpert, L. and Ticke, C. (2010). Principles of development. Ox-
ford University Press.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems




