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The acquisition of preschool mathematical abilities: Theoretical, methodological and 

educational considerations. An introduction 

Mathematical skills are crucial to success in modern Western societies. We are 

continuously confronted with mathematical information and tasks in both our professional 

and private daily life. During the last few decades, researchers have tried to unravel the basic 

structures and processes that contribute to mathematical proficiency in children, adolescents, 

and adults, mainly focusing on the domain of number and arithmetic (e.g., De Smedt, Noël, 

Gilmore, & Ansari, 2013; Duncan et al., 2007; Fuchs et al., 2009; Gersten & Chard, 1999). 

These studies have increased our understanding of people’s mathematical development, and, 

to some extent, also provided building blocks for effective teaching strategies. However, they 

have not yet succeeded in revealing the full complexity of mathematical acquisition 

processes, particularly during the preschool years. 

This special issue aims to complement our insights into the development of mathematical 

proficiency by bringing together six recent empirical studies and two discussant papers on the 

acquisition of key number and arithmetic knowledge and skills in preschoolers, an important 

but up until now rarely investigated age group (see, e.g., the recent review by De Smedt et al., 

2013). In all these contributions, the authors explore how the interplay between preschoolers’ 

key number and arithmetic skills and other subject and environmental factors, especially 

preschoolers’ linguistic skills (e.g., phonological awareness, print knowledge) and home 

numeracy environment, contribute to children’s more general mathematical competencies. 

In this introduction, we first provide a brief overview of the major findings about the 

acquisition of key mathematical abilities that will be focused on in the contributions to the 

special issue, i.e., young children’s quantitative reasoning competencies, counting skills, 

magnitude understanding and their tendency to spontaneously focus on numerosity. Next, we 

summarize some major findings concerning the complex relation between young children’s 
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early mathematical competencies and their linguistic skills, followed by a discussion of the 

influence of the characteristics of the home environment. We end this introduction with an 

overview of the structure and the content of the special issue. 

Quantitative Reasoning 

Departing from Piaget’s logical operations framework (e.g., Piaget, Inhelder, & 

Szeminska, 1960; Piaget & Szeminska, 1952), it has often been argued that young children’s 

logical or quantitative reasoning skills, i.e., their competencies to reason about the logical or 

quantitative relations among numbers and operations, are of primary importance for their 

further mathematical development. For a long time, young children’s logical or quantitative 

reasoning skills were considered as central precursors of children’s later mathematical 

development. However, from the 1970s on, the pivotal role of these so-called Piagetian skills 

has been questioned. By contrast, an ever-growing number of researchers formulated 

theoretical and empirical arguments for the importance of young children’s counting and 

magnitude understanding skills (Verschaffel, Greer, & De Corte, 2007). Nowadays, we are 

evidencing renewed research attention for young children’s logical reasoning skills and their 

importance for people’s further mathematical development (e.g., Nunes, Bryant, Barros, & 

Sylva, 2012). But, rather than being the primary or even only key mathematical skill, 

children’s reasoning competencies are seen as complementary to other, more “pure” number 

and arithmetic skills, with independent and important contributions of both the former and the 

latter type of mathematical abilities to children’s further mathematical development. 

Recent studies on children’s logical or quantitative reasoning competencies (e.g., Nunes 

et al., 2012) focus on three key logical relations between numbers and operations, namely (a) 

correspondence, (b) additive composition, and (c) inverse relations between operations. 

The first quantitative reasoning skill, correspondence, refers to children’s understanding 

of one-to-one and one-to-many relations between sets of objects. If two sets of objects 
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contain exactly the same number of items, then the items in the first set are in one-to-one 

correspondence with the items in the second set; this one-to-one correspondence 

understanding underlies children’s knowledge of the principle of cardinality (e.g., Gelman & 

Gallistel, 1978). One-to-many correspondences are important for children’s understanding of 

multiplication and division operations: If the first set of objects is in one-to-three 

correspondence with the second set of objects, and if the first set of objects is also in one-to-

three correspondence with the third set of objects, then the second and the third set of objects 

are equal. Although children’s understanding of one-to-one correspondences attracted the 

attention of many researchers, children’s knowledge of one-to-many correspondences has 

been far less studied, limiting our insights into this quantitative reasoning skill (but see 

Frydman & Bryant, 1988; Nunes & Bryant, 1996; Nunes et al., 2007, 2012; Piaget, 1952). 

The second quantitative reasoning skill, additive composition, applies to relations 

between quantities as well as operations. Additive composition indicates that any quantity or 

addition operation is composed of, or can be divided into, two other quantities or addition 

operations respectively; any quantity or addition operation can thus be expressed as the sum 

of two other quantities or operations respectively (e.g., 6 = 4 + 2; adding 6 is the same as first 

adding 4 and next adding 2). Understanding additive composition is an important precursor 

for children’s understanding of the structure of numbers and the structure of the number 

system; it also underlies children’s fluency in performing addition operations. The scarce 

number of studies on additive composition indicates that this quantitative reasoning skill is 

not easily acquired, with evidence for first understanding of the additive composition of 

quantities around the age of 6 (Nunes & Bryant, 1996) and of the additive composition of 

operations around the age of 11 (Brown, 1981; Vergnaud, 1982). 

The third quantitative reasoning skill, inverse relations between operations, refers to the 

fact that adding and subtracting the same quantity, or multiplying and dividing by the same 
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quantity, cancel each other out (e.g., 6 + 3 – 3 = 6; 6 × 3 ⁄ 3 = 6). Understanding the inverse 

relation between addition and subtraction and between multiplication and division is 

important for the acquisition of clever computation strategies such as the indirect addition 

strategy (i.e., answering 12 – 9 by counting on from 9 until 12; cf. Torbeyns, De Smedt, 

Stassens, Ghesquière, & Verschaffel, 2009; Verschaffel, Baroody, & Torbeyns, 2009). The 

meta-analysis of Gilmore and Papadatou-Pastou (2009) on children’s understanding of the 

inverse relation between addition and subtraction revealed large interindividual differences in 

both the age of acquisition of this understanding and its relation with children’s arithmetic 

computational skills. 

Although children’s acquisition of quantitative reasoning skills recently re-attracted the 

interest of several researchers, this key mathematical competency is far less studied than 

children’s development of counting and magnitude understanding skills (Verschaffel et al., 

2009). Future studies are needed to unravel the developmental path of children’s quantitative 

reasoning abilities in younger age groups, and more specifically before the start of formal 

mathematics instruction, with special attention to its interplay with other key mathematical 

precursors including counting and magnitude understanding skills. As a contribution to these 

promising venues for further research, this special issue includes recent empirical data on the 

refinement and validation of tasks designed to assess quantitative reasoning skills in these 

younger age groups (see Nunes, Bryant, Evans, & Barros, this issue). 

Counting 

As outlined above, the theoretical conceptualisation and education practice relating to the 

development of numerical understanding were heavily influenced by Piaget’s logical 

operations framework (e.g., Piaget et al., 1960; Piaget & Szeminska, 1952), in which 

counting was seen as merely a rote skill, unimportant for children’s further mathematical 

development until the major logical foundations are acquired. However, during the last 
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decades, an increasing number of researchers has questioned the pivotal role of these logical 

operations in children’s mathematical development and has shown, at the same time, the 

importance of children’s verbal and object counting knowledge and skills for this 

development (Verschaffel et al., 2007). 

Verbal counting refers to children’s ability to verbally produce the number word 

sequence in forward and backward order. The (older) developmental studies of Fuson and 

colleagues (Fuson & Hall, 1983; Fuson, Richards, & Briars, 1982) provided empirical 

evidence for two overlapping phases of verbal counting development. In the first phase, the 

acquisition phase, children learn the conventional sequence of the verbal number words. 

During this phase, children understand the number word sequence as a single, connected 

serial whole from which the different number words cannot be produced separately. In the 

second phase, the elaboration phase, children gradually learn to decompose the number word 

sequence into its separate number words and construct relations among these number words. 

This progression enables children to produce the verbal number word sequence in both 

directions and starting from any number (e.g., starting to count on from the number 5). In line 

with the latter, international and cross-cultural studies revealed that the acquisition of verbal 

counting skills cannot be reduced to merely “rote counting”, as verbal counting requires a 

basic understanding of the principles and patterns that govern the cultural- and language-

specific number system (see Fuson [1992] and Clements & Sarama [2007] for reviews on this 

topic). 

The development of children’s object counting competencies, that is, their ability to 

count a set of objects and determine its cardinality, does not only involve a good mastery of 

the verbal number word sequence - or verbal counting skills - but also (a) a thorough 

understanding of the counting principles and (b) the coordination of the production of 

counting words with indicator actions as pointing to or moving objects (Clements & Sarama, 
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2007). According to Gelman and Gallistel (1978), five counting principles govern people’s 

object counting, namely (a) the one-one principle, defined as assigning one and only one 

number word to each object that needs to be counted; (b) the stable order principle, defined as 

always producing the number words in the same order; (c) the cardinal principle, defined as 

understanding that the last stated number word indicates the number of objects in the set; (d) 

the order irrelevance principle, referring to the fact that the order in which objects are counted 

is irrelevant; and (e) the abstraction principle, stating that the first four principles can apply to 

any set of objects. A task that is particularly well-suited to investigate children’s 

understanding of these counting principles, is the Puppet Counting (or Error Detection) task 

(e.g., Cirino, 2011; Geary, 2011; Geary, Brown, & Samaranayake, 1991). In this task, 

children are instructed to evaluate whether a puppet has counted correctly, respecting the 

basic principles for valid object counting, or not. Using this task, an increasing number of 

researchers provided empirical evidence for preschoolers’ understanding of the counting 

principles as well as support for mathematically weaker children’s difficulties in grasping 

these principles (Clements & Sarama, 2007; Geary, 2011). 

In addition to acquiring a thorough understanding of the five counting principles, the 

development of object counting skills requires motoric progression. To correctly count a set 

of objects, children must also be able to accurately coordinate their verbal number word 

utterances with their pointing or moving actions during the counting process. Immature 

coordination competencies result in asynchronous object counting acts. The coordination of 

the verbal production of the number word sequence and the behavioural moves that 

accompany the counting act allows correct object counting, by simultaneously or 

synchronously stating the verbal number word and pointing to or moving the object that is 

counted (= simultaneous or synchronous counting). A milestone in children’s object counting 

development is the mastery of resultative counting skill, defined as the ability to connect the 
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verbal number words stated during the counting process to the number of objects in the set 

counted; or, in other words, children’s ability to correctly answer the question “How many?” 

by only mentioning the verbal number word they stated as the last number word in the 

counting act. Resultative counting involves (explicitly or implicitly) understanding the 

cardinal principle, and is mastered by most children at preschool age already (Clements & 

Sarama, 2007). 

Although it can be theoretically argued that young children’s counting skills are pivotal 

for their further mathematical development, due to their role in acquiring a thorough 

understanding of the number sequence and in developing adequate computation strategies 

(Geary, 2004), empirical evidence on the predictive role of counting for the acquisition of 

more advanced mathematical competencies remains rather scarce (but see Aunola, Leskinen, 

Lerkkanen, & Nurmi, 2004; Geary, Hoard, & Hamson, 1999; Koponen, Aunola, Ahonen, & 

Nurmi, 2007; Koponen, Salmi, Eklund, & Aro, 2012; Martin, Cirino, Sharp, & Barnes, 

2014). Moreover, the specific relation between preschoolers’ counting skills and 

understanding and other key mathematical abilities such as magnitude understanding has 

been rarely studied (but see Ebersbach & Erz, 2014; Ebersbach, Luwel, Frick, Onghena, & 

Verschaffel, 2008; and Simms, Muldoon, & Towse, 2013, for studies in older age groups). 

The fine-grained analysis of the role of preschoolers’ counting understanding and counting 

skills in the acquisition of other key mathematical abilities and of more advanced 

mathematical competencies thus offers interesting avenues for further research, which are 

addressed in the contributions to this special issue (see Ebersbach, Luwel, & Verschaffel, this 

issue; Hannula-Sormunen, Lehtinen, & Räsänen, this issue). 

In addition to these theoretical challenges, the tasks that are currently used to address 

preschoolers’ counting competencies require careful consideration. As illustrated by various 

empirical studies on young children’s counting skills, researchers currently apply a rich 
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diversity of tasks that are all assumed to tap into children’s counting competencies. To 

analyse young children’s verbal counting skills, both simple counting tasks in which children 

are required to count as far as they can or until they are told to stop, starting from 1 (e.g., 

Cirino, 2011; Hannula, Räsänen, & Lehtinen, 2007; Simms et al., 2013) and more advanced 

counting tasks in which children are instructed to count from a given number to another 

number (e.g., Ebersbach et al., 2008; Lipton & Spelke, 2005) are applied. The same holds for 

the analysis of young children’s object counting skills, relying on the above-mentioned “How 

many?” task in which children (simply) have to count a range of objects to determine the total 

number of objects in this range (e.g., Cirino, 2011; Hannula et al., 2007; Le Corre & Carey, 

2007) as well as on more complex “Give me N” tasks in which they have to produce the 

correct set of objects themselves (Wagner & Johnson, 2011; Wynn, 1992). Up until now, the 

theoretical underpinnings of the different types of tasks as well as their methodological 

strengths and weaknesses have received scarce research attention. This special issue includes 

fine-grained comparative analyses of the theoretical and methodological characteristics of the 

different types of tasks (see Batchelor, Keeble, & Gilmore, this issue). 

Magnitude Understanding 

During the last decade, several cognitive psychologists (e.g., Feigenson, Dehaene, & 

Spelke, 2004; Piazza et al., 2010) have argued that humans are born with an evolutionary 

ancient system allowing them to represent and process numerical quantities or magnitudes, 

that is, the so-called Approximate Number System (ANS). In the ANS, numerical magnitudes 

are assumed to be represented approximately on a mental number line, with increasingly 

imprecise representations for increasing magnitudes (Dehaene, 2001). Magnitudes are 

represented nonsymbolically, but, over development, symbolic representations (e.g., verbal 

number words, Arabic numerals) are mapped onto these pre-existing nonsymbolic 

representations. Children’s magnitude understanding is typically investigated with two types 
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of tasks that are assumed to access their ANS numerosity representations, namely (a) 

nonsymbolic or symbolic magnitude comparison and approximate addition tasks, and (b) 

number line estimation tasks. 

The first type of tasks, magnitude comparison and approximate addition tasks, involve 

the comparison of two sets of nonsymbolic or symbolic numerosities to indicate the largest 

set (e.g., Barth, Beckmann, & Spelke, 2008; Gilmore, McCarthy, & Spelke, 2007, 2010; 

Halberda & Feigenson, 2008; Xenidou-Dervou, De Smedt, van der Schoot, & van Lieshout, 

2013). In magnitude comparison tasks, children are required to compare the magnitude of 

two given sets of numerosities, whereas in approximate addition tasks, they need to compare 

the result of adding two numerosities (first set) with another given numerosity (second set). 

Typically, children perform well on magnitude comparison and approximate addition tasks if 

the distance between the to be compared numerosities is large, but have more difficulties in 

correctly comparing numerosities at small distances (= distance effect), with performances 

increasing with age. Children’s performances on these tasks are also characterised by a size 

effect, indicating that larger magnitudes have to be more distant from each other than smaller 

magnitudes in order to be discriminated accordingly. This size effect also decreases from 

infancy to adulthood, suggesting a higher sensitivity towards larger numerosities with 

increasing age. The above findings are all interpreted as an increasing precision of the 

representation of magnitude - or, stated otherwise, increasing magnitude understanding - with 

age (Gallistel & Gelman, 2000, 2005; Piazza et al., 2010). 

Next to magnitude comparison and approximate addition tasks, number line estimation 

tasks are also used to investigate children’s magnitude understanding. Number line estimation 

tasks require children to estimate the position of a nonsymbolic or symbolic numerosity on an 

external number line (e.g., Booth & Siegler, 2006; Siegler & Opfer, 2003). Developmental 

data have shown that numerosities from larger ranges obey a logarithmic representation, 



Running head: INTRODUCTION  11 
 

while smaller numerosities are mentally represented as linearly increasing magnitudes. With 

increasing age, the mental representation becomes linear for larger numbers too. This 

logarithmic-to-linear representation shift is typically interpreted in terms of increasing 

precision of children’s magnitude representations. However, the logarithmic-to-linear 

representation shift model has recently been challenged and has led to alternative accounts of 

these representations of number (Barth & Paladino, 2011; Ebersbach et al., 2008; Moeller, 

Pixner, Kaufmann, & Nuerk, 2009; see also Eriksson & Häggström, 2014). 

During the last decade, empirical studies on magnitude understanding provided 

converging evidence for the importance of this mathematical skill for children’s further 

mathematical development. Correlational and longitudinal studies in typically developing 

children (e.g., Booth & Siegler, 2006; De Smedt, Verschaffel, & Ghesquière, 2009; Halberda 

& Feigenson, 2008; Holloway & Ansari, 2009) and studies in children with mathematical 

difficulties (e.g., Butterworth, 2005; De Smedt, Reynvoet, Swillen, Verschaffel, Boets, & 

Ghesquière, 2009; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Landerl, Bevan, & 

Butterworth, 2004; Rousselle & Noël, 2007) demonstrated that children’s magnitude 

understanding is related to, and even predictive of, their general mathematics achievement. 

In the last few decades numerous empirical investigations of children’s magnitude 

understanding, as measured with one or more of the above-mentioned tasks, have 

significantly increased our insights into the development of this key mathematical skill as 

well as its importance for people’s further mathematical development. However, we are still 

confronted with important theoretical, methodological and educational questions that require 

further research. 

A first set of unanswered questions relates to our theoretical understanding of children’s 

magnitude representations. As outlined above, numerical magnitudes can be represented 

nonsymbolically and/or symbolically. It is generally assumed that newborns are already able 
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to represent and manipulate nonsymbolic magnitudes (e.g., Xu & Spelke, 2000). Over the 

course of development, children also develop the ability to represent and manipulate 

magnitudes in a symbolic way by using verbal number words and written Arabic numerals. 

Successful mathematical development requires children to map these symbolic 

representations onto the pre-existing nonsymbolic representations of magnitude (Lipton & 

Spelke, 2005), a process by which formal numerical symbols acquire their meaning (Griffin, 

2002). However, the nature and role of this mapping process are currently under discussion. 

Whereas some authors argue for a consistent and close mapping between symbolic and 

nonsymbolic representations in people’s mathematical development (e.g., Gilmore et al., 

2007, 2010; Mundy & Gilmore, 2009; Xenidou-Dervou et al., 2013), others question the 

pivotal role of this mapping process (e.g., Kadosh, & Walsh, 2009; Le Corre & Carey, 2007; 

Lyons, Ansari, & Beilock, 2012). This special issue aims at contributing to our understanding 

of the nature and role of symbolic onto nonsymbolic mappings in preschoolers’ mathematical 

development by discussing the design and validation of a new mapping task in relation to 

preschoolers’ acquisition of object counting skills (see Batchelor et al., this issue). 

A second set of issues that require further research attention relates to the methods used 

to assess young children’s magnitude understanding. Although magnitude comparison, 

approximate addition and number line estimation tasks are all assumed to directly access 

children’s magnitude representations on their mental number line, the strengths and the 

weaknesses of these different types of tasks are currently under discussion. As argued in 

more detail by other authors (cf. Ebersbach, Luwel, & Verschaffel, 2013; Gilmore et al., 

2013; Sasanguie, Defever, Van den Bussche, & Reynvoet, 2011), these tasks’ theoretical 

underpinnings as well as their methodological constraints can be critically questioned and 

require careful consideration in future investigations using these tasks. As explained earlier, 

to assess young children’s magnitude understanding, researchers mainly rely on magnitude 
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comparison and number line estimation tasks. However, it is being increasingly argued that 

the performance on these tasks might not reflect the characteristics of the number 

representations per se (i.e., the number line account; Dehaene, 1997), but can rather be 

accounted for by the use of strategies which may (e.g., counting; Petitto, 1990 (e.g., the 

proportion judgment account; Barth & Paladino, 2011) be related to numerical understanding 

(see, e.g., Sasanguie, 2013). 

Finally, as children’s magnitude understanding has been shown to be correlated to - and 

even predictive of - children’s mathematical achievement, researchers recently tried to 

stimulate children’s mathematical development on the basis of intervention programs, aiming 

at enhancing magnitude understanding in children before or at the beginning of systematic 

instruction in number and arithmetic at elementary school (e.g., Brankaer & Meeus, 2009; 

Obersteiner, Reiss, & Ufer, 2013; Ramani & Siegler, 2008, 2011; Räsänen, Salminen, 

Wilson, Aunio, & Dehaene, 2009; Siegler & Ramani, 2008, 2009; Whyte & Bull, 2008; 

Wilson, Dehaene, Dubois, & Fayol, 2009). However, the number of intervention studies is 

currently still limited and the results are heterogeneous, ranging from very small effects after 

intensive training to large effects after short-term interventions. Moreover, most of these 

intervention studies are subject to serious methodological flaws, including the absence of a 

proper control group. The educational implications of the above results on the acquisition of 

magnitude understanding and on its pivotal role in children’s concurrent and further 

mathematical development thus also provides an interesting avenue for future studies on this 

topic. 

Spontaneous Focus on Numerosity 

Recently, young children’s attentional processes, and especially their tendency to 

spontaneously focus on the numerical characteristics of their environment (abbreviated to 

SFON), became an important research topic in the domain of elementary mathematics. As 
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originally defined in Hannula (2005), SFON refers to children’s spontaneous, self-initiated 

focus of attention on the exact number of a collection of items or incidents. SFON is defined 

as a specific attentional process, separate from more general attentional or motivational 

competences such as focusing and maintaining attention on the task situation. This 

spontaneous focus on exact number is assumed to promote children’s self-initiated 

mathematical practice during daily-life activities and play, and consequently enhance their 

further mathematical development (Hannula, Lepola, & Lehtinen, 2010). Although the 

relation between children’s SFON, their self-initiated mathematical practice in daily-life and 

their further mathematical development was not yet empirically addressed, previous studies 

on children’s SFON tendency before school age not only revealed large interindividual 

differences in children’s spontaneous focus on number but also positive relations between 

preschool children’s SFON and their acquisition of precursor and later mathematical 

competencies (Hannula, 2005; Hannula & Lehtinen, 2001, 2005; Hannula et al., 2007; Potter, 

2009). 

Children’s SFON tendency is typically investigated using Imitation tasks, as the Parrot or 

Mailbox Imitation tasks (for a detailed description of SFON tasks, see Hannula, 2005, and 

Hannula-Sormunen, in press). In these tasks, children are confronted with an adult feeding a 

parrot with a small number of differently-coloured berries or posting a small number of 

differently-coloured envelopes into a mailbox, and instructed to “do exactly the same” as the 

adult did. Children tend to differ widely in their spontaneous focus on the number of berries 

or envelopes during task execution. These interindividual differences in children’s SFON 

tendency are shown to be positively related to their development of counting and number 

sequence skills before school age (Hannula, 2005; Hannula & Lehtinen, 2001; 2005; Hannula 

et al., 2007; Potter, 2009). Moreover, recent longitudinal studies by Hannula and colleagues 

revealed that young children’s SFON tendency at preschool age is an important predictor of 
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their mathematical development during the first years of formal schooling and even at the end 

of the primary school (Hannula et al., 2010; Hannula-Sormunen, in press). Given the 

importance of SFON for children’s further mathematical development, a first intervention 

study on the stimulation of young children’s SFON in day care settings was set up by this 

same group of researchers. Although still tentative and requiring further investigation in 

other, larger and also older age groups, the results of this first study were positive, 

demonstrating that 3-year-olds’ SFON tendency can be enhanced through guided focusing 

activities in preschool (Hannula, Mattinen, & Lehtinen, 2005). 

Notwithstanding the positive findings on the pivotal role of young children’s SFON 

tendency in the acquisition of later mathematical skills, the complex interplay between 

preschoolers’ SFON and other key mathematical abilities at preschool age requires further 

research attention. Moreover, as young children’s SFON tendency is currently studied with 

different types of Imitation tasks as well as other types of tasks that are assumed to tap onto 

the same underlying processes (e.g., Model task, Finding task; see Batchelor, 2015; Hannula-

Sormunen, in press), the reliability and validity of the diverse SFON tasks needs to be 

carefully investigated to allow valid conclusions about the developmental path of this 

mathematical precursor and in relation to other important mathematical competencies (for a 

critical study of different types of SFON tasks, see Batchelor, 2015). The contribution of 

Hannula-Sormunen et al. (this issue) addresses several of these important pending issues. 

Early Mathematical Abilities in Relation to Young Children’s Linguistic Skills 

Although generally defined as two clearly distinct and different academic domains, 

children’s performances in the domain of mathematics and in the domain of reading are 

positively, and even predictively, related to each other (e.g., Duncan et al., 2007; Hecht, 

Torgesen, Wagner, & Rashotte, 2001; Juel, 1988; LeFevre, Fast, et al., 2010). Children’s 

mathematical and reading skills are related from very early ages on, before the start of formal 
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school instruction in these domains (McClelland et al., 2007; Welsh, Nix, Blair, Bierman, & 

Nelson, 2010). Departing from Dehaene and colleagues’ triple-code model for numerical 

cognition (cf. Dehaene, Molko, Cohen, & Wilson, 2004; Dehaene, Piazza, Pinel, & Cohen, 

2003), LeFevre and colleagues (2010) proposed and validated a model of mathematical 

development involving three different precursor pathways, namely a linguistic, spatial and 

quantitative pathway. By following children’s acquisition of early and later mathematical 

skills longitudinally from preschool until the first years of formal mathematics instruction, 

LeFevre and colleagues (2010) provided empirical evidence for the unique and independent 

contributions of the linguistic and the quantitative precursor pathways to children’s 

mathematical development. 

These researchers’ definition of the linguistic pathway involved two of the three primary 

early literacy skills that are generally assumed important for both mathematics and reading 

development, namely phonological processing and oral language skills. In addition to 

phonological processing and oral language skills, children’s print knowledge is distinguished 

as an important (linguistic) precursor for their further mathematical development (Purpura, 

Hume, Sims, & Lonigan, 2011). 

The first early literacy skill, phonological processing abilities or phonological 

awareness, refers to children’s abilities to analyse the sound structure of oral language and 

(consequently) manipulate language through tasks involving rhyme detection, matching, 

blending and/or deleting parts of words (Wagner & Torgesen, 1987). The second early 

literacy skill, oral language, includes children’s word knowledge, vocabulary and 

understanding of grammatical rules (Storch & Whitehurst, 2002). The third early literacy 

skill, print knowledge, includes a child’s knowledge of letter names and sounds, words, and 

basic conventions about books and print. Each of these three early literacy skills can arguably 

be related to the acquisition of children’s symbolic magnitude understanding, knowledge of 
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verbal number words and written Arabic numerals, understanding of mathematical concepts 

and/or acquisition of fact knowledge. 

Numerous researchers empirically investigated the assumed positive and predictive 

relations between children’s phonological awareness skills and their specific as well as 

general mathematical competencies (e.g., De Smedt, Taylor, Archibald, & Ansari, 2010; 

Fuchs et al., 2006, 2009; Krajewski & Schneider, 2009; Martin et al. 2014; Savage, Carless, 

& Ferraro, 2007). Taken together, these studies provided empirical evidence for the pivotal 

role of young children’s phonological awareness skills in the acquisition and further 

development of mathematical competencies. Although far less studied than young children’s 

phonological awareness skills, oral language also proves positively and predictively related to 

children’s mathematical development (Hooper, Roberts, Sideris, Burchinal, & Zeisel, 2010; 

Romano, Babchishin, Pagani, & Kohen, 2010; Toll & Van Luit, 2014). A limited number of 

investigations on young children’s print knowledge and mathematics, indicated that the 

former (linguistic) skill is correlates with and even predicts the latter (mathematical) 

competencies (Matthews, Ponitz, & Morrison, 2009; Piasta, Purpura, & Wagner, 2010; 

Purpura et al., 2011). However, additional empirical evidence on these relations is needed to 

validate the available results, an issue addressed in the contribution of Purpura and Napoli 

(this issue). 

Early Mathematical Abilities and the Characteristics of the Home Environment 

Already at school entry, children differ widely in their basic reading and mathematical 

competencies. These interindividual differences in children’s basic academic skills suggest 

that the home environment plays a crucial role in the fluent acquisition of early literacy and 

mathematical competencies (cf. Ramani & Siegler, 2011). Although the contribution of the 

home literacy environment to children’s literacy development has been studied in great detail, 

resulting in theoretical models on the complex interplay between these two variables (cf. 
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Sénéchal & LeFevre, 2002), the relation between the characteristics of the home numeracy 

environment and children’s mathematical development have been explored in far less detail 

(but see Blevins- Knabe & Musun-Miller, 1996; Kleemans, Peeters, Segers, & Verhoeven, 

2012; LeFevre et al., 2009; LeFevre, Polyzoi, Skwarchuk, Fast, & Sowinski, 2010). 

Recently, Skwarchuk, Sowinski, and LeFevre (2014) proposed a theoretical model on the 

relation between young children’s home numeracy environment and their early mathematical 

development, departing from the scarce number of empirical studies on this relation and their 

home literacy model. In their home numeracy model, Skwarchuk et al. (2014) distinguish 

between two types of home numeracy experiences, namely (a) formal numeracy experiences, 

referring to parents’ explicit teaching activities in the domain of mathematics, and (b) 

informal numeracy experiences, involving daily-life and playful situations that allow parents 

to interact mathematically with the child (e.g., playing number board games, cooking 

activities). Using questionnaires, parents’ formal and informal numeracy activities were 

analysed; in addition to these activities, parents’ general academic expectations were 

questioned as well. 

Confirming the results of previous studies, Skwarchuk and colleagues (2014) found 

empirical support for the expected positive relation between young children’s home 

numeracy experiences and their early mathematical development. As expected, the parents’ 

academic expectations contributed only indirectly, via the home numeracy activities, to this 

development. Interestingly, and complementing previous work on this topic, the results of 

Skwarchuk and colleagues (2014) revealed distinct and unique pathways between the type of 

home numeracy experiences and children’s early mathematical skills: Whereas young 

children’s formal home numeracy experiences uniquely contributed to their acquisition of 

symbolic number knowledge, informal home numeracy experiences uniquely contributed to 

the development of their nonsymbolic arithmetic skills. Although promising, these 
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conclusions on the complex interplay between young children’s home numeracy experiences 

and their further mathematical development, in general as well as on specific subskills, 

require further research attention to both deepen and broaden our insights into this complex 

domain. The study of Segers, Kleemans, and Verhoeven (this issue) focuses on the relation 

between preschoolers home numeracy and home literacy environment and their acquisition of 

key mathematical competencies. 

Overview of the Special Issue 

Despite the ever-growing research attention on children’s mathematical development in 

the last few decades, our insights into the developmental paths at very young, that is, 

preschool, ages are still limited. Moreover, the complex interplay between, on the one hand, 

preschoolers’ key mathematical competencies and, on the other hand, their concurrent and 

further mathematical development and linguistic skills and context factors including home 

numeracy experiences offer interesting and important venues for future investigations. This 

special issue aims to deepen and refine our understanding of preschoolers’ mathematical 

development by addressing the above mentioned weaknesses and perspectives for further 

study. 

In the first contribution, Batchelor, Keeble, and Gilmore focus on the nature and the 

timing of the process of mapping symbolic and nonsymbolic magnitude representations in 

preschool children in relation to their counting competencies, that is, understanding of 

cardinality. Using a newly-developed mapping task suited for preschool children, they not 

only deepen our theoretical understanding of this fundamental process, but also add to the 

methodological state-of-the-art in this domain. 

In the second contribution, Ebersbach, Luwel, and Verschaffel analyse the complex 

interplay between two key mathematical abilities in preschool and elementary school 

children, that is, the interplay between children’s magnitude understanding as measured by a 
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number line estimation task that either does or does not involve additional reference points, 

and their familiarity with the numbers in the corresponding number domain. Doing this, these 

authors provide building blocks for furthering our theoretical and methodological insights 

into children’s acquisition of magnitude understanding as investigated with number line 

estimation tasks. 

The third contribution, of Hannula-Sormunen, Lehtinen, and Räsänen, presents a 

longitudinal study on preschoolers’ acquisition of three key mathematical abilities, that is, 

subitizing based enumeration, counting, and SFON, in relation to their mathematical 

competencies at the end of primary school. Starting from a model delineating the direct and 

indirect relations between these three key mathematical abilities and children’s further 

mathematical development, the authors complement our theoretical understanding of the 

developmental pathways from preschool age up to the end of primary school. The 

longitudinal design of the presented study and the variety of tasks used to address 

preschoolers mathematical abilities offer interesting avenues for future studies in this domain. 

Nunes, Bryant, Evans, and Barros complement the previous contributions by focusing on 

young children’s quantitative reasoning skills (fourth contribution). In their contribution, 

Nunes and colleagues present a newly-developed task to assess 5-year-olds’ quantitative 

reasoning skills and discuss the psychometric qualities of this task as evidenced in their 

longitudinal study. As such, this contribution significantly adds to the further study and 

improvement of young children’s quantitative reasoning development. 

In the fifth contribution, Purpura and Napoli address the largely unexplored interplay 

between preschoolers’ language and print knowledge skills and their early mathematical 

competencies. By involving a large number of preschool children aged 3 to 5 years, the 

authors explore the relations between these early literacy skills at different stages in the 

mathematical development process. Their results provide new and important insights into the 
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complex interplay between these less frequently investigated linguistic competencies and 

mathematical precursors in young age groups. 

The sixth contribution, by Segers, Kleemans, and Verhoeven, aims at unravelling the 

unique contributions of the home literacy and the home numeracy environment to 

preschoolers’ mathematical development. Using questionnaires addressing parent 

expectations and activities in both the domain of literacy and the domain of numeracy and 

controlling for children’s general cognitive competencies, these authors complement our 

understanding of the unique role of preschoolers’ home numeracy expectations for their 

mathematical development. 

The special issue ends with two discussant contributions by two experts in the domain of 

(preschool) mathematical development. In their papers, David Geary and Douglas Clements 

discuss the major issues and findings in the different contributions from, respectively, a 

cognitive psychological and mathematics educational point of view. As such, they integrate 

the different contributions to the special issue into one comprehensive whole. 
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