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Abstract. We consider the Schrödinger operator on the real line
with an even quartic potential. Our main result is a product for-
mula of the type

ψk(x)ψk(y) =

∫
R
ψk(z)K(x, y, z)dz

for its eigenfunctions ψk. The kernel function K is given explicitly
in terms of the Airy function Ai(x), and it is positive for appro-
priate parameter values. As an application, we obtain a particular
asymptotic expansion of the eigenfunctions ψk.

1. Introduction

In this paper we shall be concerned with solutions to the eigenvalue
problem consisting of the differential equation

(1) H(a, λ)ψ ≡ −d
2ψ

dx2
+

(
ax2 +

λ

2
x4
)
ψ = Eψ, x ∈ R,

and boundary conditions

(2) lim
x→±∞

ψ(x) = 0.

Throughout the paper we shall assume that a ∈ R and λ > 0. As is
well known, this eigenvalue problem has a discrete spectrum consisting
of real eigenvalues E0 < E1 < · · · < Ek < · · · with Ek → ∞ as
k →∞, and all eigenspaces are one-dimensional; see, e.g., Berezin and
Shubin [BS91].

For any (complex) value of E, the differential equation (1) has a
unique solution ψ = ψ(a, λ, E;x) with asymptotic behaviour

(3) ψ ∼ x−1 exp

(
−(λ/2)1/2

3
x3 − a

2(λ/2)1/2
x

)
, x→ +∞,

and the asymptotic behaviour of ψ′ is given by the derivative of the
right-hand side of (3); see, e.g., Hsieh and Sibuya [HS66] or the ap-
pendix by Dicke in [Sim70]. The eigenvalues E = Ek of (1)–(2) are
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precisely those values of E for which ψ also decays as x→ −∞, which
happens if and only if ψ is either even or odd. We let ψk(a, λ;x) ≡
ψ(a, λ, Ek;x) denote the corresponding eigenfunctions normalised by
(3). We note that this choice of normalisation is motivated by the rel-
ative simplicity of the corresponding product formula. Since ψk has k
real zeros, we have that ψk is even (odd) if and only if k is even (odd).

We shall have occasion to make use of the well known invariance of
the differential equation (1) under the scaling transformation

(4) (a, λ, E, x)→ (β−2/3a, β−1λ, β−1/3E, β1/6x), β > 0.

Insisiting on the asymptotic behaviour (3), this entails that the (de-
caying) solutions of (1) transform according to

(5) ψ(a, λ, E;x) = β1/6ψ
(
β−2/3a, β−1λ, β−1/3E; β1/6x

)
,

so that no generality would be lost by fixing λ = 1, say, once and for
all. However, we find it instructive not to do so, since many of our
formulas depend in a rather non-obvious manner on λ.

We are now in a position to describe our results. Before doing so we
find it worth emphasising that they do not have non-trivial limits as
λ→ 0. In other words they are non-perturbative in the sense that the
harmonic oscillator is not contained as a limiting case.

We note that any product ψk(x)ψk(y) of two eigenfunctions corre-
sponding to the same eigenvalue Ek satisfies the partial differential
equation

(6)
(
H(x)−H(y)

)
Ψ(x, y) = 0.

Since the eigenfunctions are either even or odd, such a product is in-
variant under the (reflection) group G generated by the interchange
x ↔ y and the simultaneous change of sign (x, y) → (−x,−y). It is
thus natural to consider solutions of (6) in terms of the variables

(7) u = xy, v = (x2 + y2)/2,

which generate the polynomial invariants of G. Although it will be
important for us to allow any (real) values for x and y, we note that
the mapping (x, y) → (u, v) is one-to-one when restricted to regions
such as −y < x < y.

In Section 2 we show that (6) admits solutions by separation of vari-
ables in terms of the variables (u, v). More specifically, these solutions
consist of an elementary function of u and a function of v given in
terms of a solution of Airy’s differential equation. We note that (up
to conjugation and change of variable) Airy’s differential equation is of
confluent hypergeometric type whereas the differential equation (1) is
of triconfluent Heun type. For our purposes, the key property of these
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solutions is the fact that they depend on three variables (x, y, z), where
z is essentially the separation constant, in a symmetric manner.

In Section 3 we establish a product formula of the type

(8) ψk(x)ψk(y) =

∫
R
ψk(z)K(x, y, z)dz

for the eigenfunctions ψk of the eigenvalue problem (1)–(2); see Theo-
rem 1 for the precise statement. The kernel function K(x, y, z) is one
of the solutions of (6) obtained in Section 2, given in terms of the
standard solution Ai(x) of Airy’s equation.

Such product formulas are useful in various contexts. For example,
they can be used to define a convolution product that is important
for the harmonic analysis of the corresponding eigenfunction expan-
sions. Since the role played by product formulas in harmonic analysis
is beyond the scope of this paper (and indeed somewhat beyond our
expertise), we have not attempted to provide a comprehensive list of
relevant references. Instead, we would like to mention two sources of
inspiration that were particularly important for us when writing this
paper, and which contain numerous references to the wider literature.
One is a paper by Connett et al. [CMS93] on product formulas and
convolutions for angular and radial spheroidal wave functions, and the
other is work of Koornwinder and collaborators on Jacobi functions
and polynomials, as presented, e.g., in Koornwinder’s paper [Kor84].

A product formula of the form (8) can also be regarded as an integral
equation for the eigenfunctions ψk after a suitable choice of the vari-
able x, say. At this point we should mention that integral equations
for functions from the Heun class, as well as kernel functions in the
sense of solutions of a corresponding PDE of the form (6), has a long
history. For example, an integral equation satisfied by Lamé functions
was established in a paper by Whittaker [Whi15] published in 1915; see
also Section 23.6 of Whittaker and Watson [WW35]. More details and
references to the rather extensive literature on the subject can, e.g.,
be found in Section 31.10 of [Dig10] and in a book by Slavyanov and
Lay [SL00]. Of particular relevance to this paper is a paper by Kazakov
and Slavyanov [KS96], which contains numerous kernel functions and
integral equations for functions of Heun type as well as confluent cases
thereof. Specifically, an integral equation we obtain for the eigenfunc-
tions ψk with k even is closely related to an integral equation given in
Theorem 5 in loc. cit.; see Section 5 for further details.
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As an application of the product formula, we deduce in Section 4 an
asymptotic expansion of the eigenfunctions ψk with respect to a par-
ticular (asymptotic) sequence of functions given by integrals involving
the Airy function Ai(x).

In Section 5 we present a brief outlook on possible avenues for future
research that we find particularly interesting.

Finally, in Appendix A we collect properties of Ai(x) we have occa-
sion to use in the main text, and in Appendix B we deduce bounds on
the kernel function that is used in Section 3.

2. Kernel functions

In this section we demonstrate that the partial differential equation
(6) admits solutions by separation of variables in terms of the variables
(u, v) given by (7).

To this end we observe that

(9) H(x)−H(y) = (x2 − y2)
(
∂2

∂u2
− ∂2

∂v2
+ a+ λv

)
.

Hence, we have a solution of the form Ψ(x, y) = Φ(u(x, y), v(x, y))
of equation (6) if the function Φ(u, v) satisfies the partial differential
equation

(10)

(
∂2

∂u2
− ∂2

∂v2
+ a+ λv

)
Φ(u, v) = 0.

Moreover, assuming that Φ(u, v) = f(u)g(v), it is clear that we obtain
a solution of the latter equation by requiring that the functions f and
g satisfy the ordinary differential equations

(11)
d2f

du2
= κ2f,

d2g

dv2
= (a+ λv + κ2)g,

for some separation constant κ2. It follows that f(u) should be a linear
combination of eκu and e−κu. Furthermore, introducing a function w
by requiring that

(12) g(v) = w(λ1/3v + (κ2 + a)/λ2/3),

it is readily verified that w(x) should satisfy Airy’s differential equation

(13)
d2w

dx2
= xw.

Introducing a new variable z by setting κ = (λ/2)1/2z and reverting to
the variables x and y, we find that the solutions f and g of the equa-
tions (11) are invariant under any permutations of the three variables
(x, y, z). We thus have the following result.
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Proposition 1. Let w(x) be a solution of Airy’s equation (13). Then
the function

(14) K(a, λ;x, y, z)

≡ exp
(
(λ/2)1/2xyz

)
w

(
λ1/3

2
(x2 + y2 + z2) +

a

λ2/3

)
satisfies the identities

(15) H(x)K(x, y, z) = H(y)K(x, y, z) = H(z)K(x, y, z).

Of course the identities (15) remain valid under multiplication of the
function K by any constant. In the next section we shall make use of
this freedom to choose a particularly convenient kernel function.

3. Product formula

In this section we establish the product formula for the eigenfunc-
tions ψk, k = 0, 1, . . ., of the eigenvalue problem (1)–(2). As before, we
normalise the eigenfunctions by insisting on the asymptotic behaviour
(3). The relevant kernel function is obtained from (14) after multipli-
cation by λ1/3 and setting

(16) w(x) = Ai(x), x ∈ R,

where the standard solution Ai(x) of Airy’s equation (13) can, in par-
ticular, be defined by its integral representation (54). For a detailed
account of this and other standard Airy functions see, e.g., Chapter
9 in [Dig10] and references therein. The precise result can now be
formulated as follows.

Theorem 1. For a ∈ R, λ > 0 and k = 0, 1, . . ., we have a product
formula

(17) ψk(x)ψk(y) =

∫
R
ψk(z)K(x, y, z)dz

with kernel function

(18) K(a, λ;x, y, z)

≡ λ1/3 exp
(
(λ/2)1/2xyz

)
Ai

(
λ1/3

2
(x2 + y2 + z2) +

a

λ2/3

)
.

Moreover, as long as a > λ2/3a1 with a1 = −2.3381074105 . . . being
the first zero of Ai(x), the kernel function K(x, y, z) is positive for all
x, y, z ∈ R.
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Proof. We note that K(a, λ;x, y, z) > 0 for a > λ2/3a1 since Ai(x) > 0
for x > a1, see, e.g., Chapter 9 in [Dig10]; and that convergence of the
integral in (17) is clear from the asymptotic behaviour of ψk(z) and
Ai(x) (c.f. (3) and (55), respectively).

Having insisted on the asymptotic behaviour (3), the eigenfunctions
ψk transform according to (5) under the scaling transformation (4).
(Note that the statement of the Theorem is consistent with this trans-
formation property.) Hence, it is sufficient to establish the product
formula (17) for λ = 8, in which case the kernel function takes the
particularly simple form

(19) K(a;x, y, z) = 2 exp(2xyz)Ai(x2 + y2 + z2 + b), b = a/4.

We continue by showing that the right-hand side of (17) is a solution
to the eigenvalue problem (1)–(2) with E = Ek. Starting with the
differential equation (1), we should establish that

(20) H(x)

∫
R
ψk(z)K(x, y, z)dz = Ek

∫
R
ψk(z)K(x, y, z)dz.

Assuming for now that we are allowed to differentiate twice under the
integral sign, we can proceed as follows. First, acting with H(x) on the
kernel function and making use of the identities (15), we find that the
left-hand side of (20) equals

(21)

∫
R
ψk(z)H(z)K(x, y, z)dz.

Second, integrating by parts twice, we transfer the action of H(z) to the
factor ψk(z). Third, invoking the eigenfunction property Hψk = Ekψk,
we arrive at the right-hand side of (20).

These formal arguments are readily justified by the bounds on the
kernel function K(x, y, z), as well as derivatives thereof, that is pro-
vided by Lemma 2 in Appendix B. Indeed, when combined with the
asymptotic behaviour of ψk(z), the bound (65) entails that the nth-
order x-derivative of the integrand in (17) is uniformly continuous for
(x, z) ∈ R2. Consequently, we may differentiate any number of times
under the integral sign. Furthermore, since K(x, y, z) is invariant under
the interchange x ↔ z, the bound holds true also for derivatives with
respect to z. Taking into account the asymptotic behaviour of ψk(z)
and ψ′k(z), it follows that our use of integration by parts is allowed.

To verify that the right-hand side of (17) satisfies the boundary con-
ditions (2) we fix y ∈ R and ρ ∈ (0, 1). By the Cauchy-Schwartz
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inequality and Lemma 2 from Appendix B there exists a positive con-
stant C such that

(22)

∣∣∣∣∫
R
ψk(z)K(x, y, z)dz

∣∣∣∣
< C||ψk||

(∫
R

exp

(
−2ρ

3
(x2 + z2)3/2

)
dz

)1/2

.

Making use of the elementary estimate (x2 + z2)3/2 ≥ (|x|3 + |z|3)/2,
we can further bound the right-hand-side by

(23) C||ψk|| exp
(
−ρ

6
|x|3
)(∫

R
exp

(
−ρ

3
|z|3
)
dz

)1/2

,

which clearly decays to zero as x→ ±∞. Since all eigenspaces of (1)–
(2) are one-dimensional and the kernel function K(x, y, z) is invariant
under the interchange x↔ y, we can thus conclude that

(24)

∫
R
ψk(z)K(x, y, z)dz = ckψk(x)ψk(y)

for some constants ck, which remain to be determined. To this end we
shall distinguish between even and odd eigenfunctions ψk or equiva-
lently between k = 2m and k = 2m+ 1 for some m = 0, 1, . . .

Starting with the even cases, we have ψ2m(0) 6= 0, so that we can fix
x = 0. This yields (c.f. (19))

(25) 4

∫ ∞
0

ψ2m(z)Ai(y2 + z2 + b)dz = c2mψ2m(0)ψ2m(y).

We proceed to compute the leading asymptotic behaviour of the left-
hand side as y →∞. Integrating by parts, we rewrite it as

(26) 4ψ2m(0)

∫ ∞
0

Ai(y2 + s2 + b)ds

+ 4

∫ ∞
0

ψ′2m(z)

∫ ∞
z

Ai(y2 + s2 + b)dsdz.

Changing integration variable to t = s2, we find that the first term is
given by

(27) 2ψ2m(0)

∫ ∞
0

Ai(t+ y2 + b)t−1/2dt.

Invoking the case n = 0 of Lemma 1 in Appendix A and making use
of the fact that Γ(1/2) =

√
π, we deduce that this term is asymptotic

to ψ2m(0)ψ2m(y) as y →∞.
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Integrating by parts once more while keeping in mind that ψ′2m(0) =
0, we rewrite the second term in (26) as

(28) 4

∫ ∞
0

ψ′′2m(z)

∫ ∞
z

∫ ∞
s2

Ai(y2 + s21 + b)ds1ds2dz.

Since Ai(x) > 0 for x > a1, we can, for sufficiently large y, bound the
modulus of this term by

(29) 4||ψ′′2m||∞
∫ ∞
0

∫ ∞
z

∫ ∞
s2

Ai(y2 + s21 + b)ds1ds2dz.

Note that the fact that ψ2m is a solution of the differential equation (1)
for E = E2m with asymptotic behaviour (3) ensures that ||ψ′′2m||∞ <∞.
Reversing the order of integration, we can carry out the integration over
z and s2, and thus reduce the triple integral to

(30)
1

4

∫ ∞
0

Ai(t+ y2 + b)t1/2dt,

where we have again changed integration variable to t = s21. Hence,
Lemma 1 with n = 1 entails that the second term in (26) does not
contribute to the leading asymptotic behaviour of (25). It follows that
c2m = 1 for each m = 0, 1, . . .

In the odd cases we have ψ2m+1(0) = 0. On the other hand ψ′2m+1(0) 6=
0, so that a suitable starting point is

(31) 8y

∫ ∞
0

ψ2m+1(z)zAi(y2 + z2 + b)dz = c2m+1ψ
′
2m+1(0)ψ2m+1(y),

obtained from (24) by first differentiating both sides with respect to
x and then setting x = 0. Integrating by parts twice, we rewrite the
left-hand side as

(32) 8yψ′2m+1(0)

∫ ∞
0

∫ ∞
s2

s1Ai(y2 + s21 + b)ds1ds2

+ 8y

∫ ∞
0

ψ′′2m+1(z)

∫ ∞
z

∫ ∞
s2

s1Ai(y2 + s21 + b)ds1ds2dz.

Just as we did above, we shall consider the two terms separately. In-
terchanging the order of integration, carrying out the integration over
s2, and then setting t = s21, we deduce that the first term is equal to

(33) 4yψ′2m+1(0)

∫ ∞
0

Ai(t+ y2 + b)t1/2dt,

which by Lemma 1 is asymptotic to ψ′2m+1(0)ψ2m+1(y). Moreover, fol-
lowing the reasoning in the even case, we readily bound the modulus
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of the second term by

(34)
2

3
y||ψ′′′2m+1||∞

∫ ∞
0

Ai(t+ y2 + b)t3/2dt

for sufficiently large y. Invoking again Lemma 1, we can thus conclude
that also c2m+1 = 1 for each m = 0, 1, . . . This concludes the proof of
Theorem 1. �

As a straightforward corollary of Theorem 1, we now infer the eigen-
function expansion of the kernel function K(x, y, z) defined by (18).
It is clear from Lemma 2 in Appendix B that K(x, y, z) is square-
integrable in z, say. Since the eigenfunctions in question form a com-
plete orthogonal set in L2(R, dz) (see, e.g., Berezin and Shubin [BS91]),
it follows that

(35) K(x, y, z) =
∞∑
k=0

1

||ψk||2
K̂k(x, y)ψk(z)

with

(36) K̂k(x, y) ≡
∫
R
ψk(z)K(x, y, z)dz.

Making use of the product formula (17), we thus arrive at the following
result.

Corollary 1. For a ∈ R and λ > 0, we have the eigenfunction expan-
sion

(37) K(x, y, z) =
∞∑
k=0

1

||ψk||2
ψk(x)ψk(y)ψk(z).

4. An asymptotic expansion of the eigenfunctions

We recall that the eigenfunctions ψk admit an asymptotic expansion
of the form
(38)

ψk(x) ∼ x−1 exp

(
−(λ/2)1/2

3
x3 − a

2(λ/2)1/2
x

)(
1 +

∞∑
n=1

Bk,nx
−n/2

)
as x→ +∞; see Hsieh and Sibuya [HS66]. In principle, the coefficients
Bk,n can be computed by substituting the right-hand side of (38) for
ψ in the differential equation (1).

Elaborating on the latter part of the proof of Theorem 1, we shall
in this section establish a rather different asymptotic expansion of the
eigenfunctions. To simplify the computations and formulae involved
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we fix λ = 8, which entails no loss of generality, c.f. (4)–(5). Again, it
will be important to consider even and odd eigenfunctions separately.

We start with even case. For x = 0, the product formula (17) takes
the simple, but non-trivial, form

(39) ψ2m(0)ψ2m(y) = 4

∫ ∞
0

ψ2m(z)Ai(y2 + z2 + b)dz, b = a/4.

Successively integrating by parts, we find that the right-hand side can
be rewritten as the series

(40) 4ψ2m(0)

∫ ∞
0

Ai(s21 + y2 + b)ds1

+ 4ψ
(2)
2m(0)

∫ ∞
0

∫ ∞
s3

∫ ∞
s2

Ai(s21 + y2 + b)ds1ds2ds3

+ · · ·+ 4ψ
(2n)
2m (0)

∫ ∞
0

∫ ∞
s2n+1

· · ·
∫ ∞
s2

Ai(s21 + y2 + b)ds1 · · · ds2n+1

+R2n(y),

where the remainder term is given by

(41) R2n(y)

= 4

∫ ∞
0

ψ
(2n+1)
2m (z)

∫ ∞
z

∫ ∞
s2n+1

· · ·
∫ ∞
s2

Ai(s21 + y2 + b)ds1 · · · ds2n+1dz

for each n = 0, 1, . . . Note that the odd terms in the series vanish, since
ψ2m is even. Reversing the order of integration in each term, we can
carry out all integrations in (40) except those over s1. Then introducing
the variable t = s21, we obtain the series

(42) 2ψ2m(0)φ0(y) + 2
ψ

(2)
2m(0)

2!
φ1(y) + · · ·+ 2

ψ
(2n)
2m (0)

(2n)!
φn(y) +R2n(y),

with

(43) φn(b; y) ≡
∫ ∞
0

Ai(t+ y2 + b)tn−1/2dt, n = 0, 1, . . .

We note that the integrals appearing on the right-hand side can be
evaluated explicitly by combining the formula (58), which reduces each
integral to the special case n = 0, with Aspnes’ evaluation (59) of the
n = 0 integral. Moreover, it is clear from Lemma 1 in Appendix A that
the functions φn(y) form an asymptotic sequence in the sense that

(44) φn+1(y)/φn(y)→ 0, y →∞,
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for all n = 0, 1, . . . Following standard notation, we shall thus write

(45) f(y) ∼
∞∑
n=0

anφn(y)

if, for each m = 0, 1, . . ., we have

(46)

(
f(y)−

m∑
n=0

anφn(y)

)/
φm(y)→ 0, y →∞.

Integrating by parts once more in (41), and making use of the fact

that ψ
(2n+1)
2m (0) = 0, we deduce the following bound for the remainder

term:

(47) |R2n(y)|

< 4||ψ(2n+2)
2m ||∞

∫ ∞
0

∫ ∞
z

∫ ∞
s2n+2

· · ·
∫ ∞
s2

Ai(s21 + y2 + b)ds1 · · · ds2n+2dz

= 2
||ψ(2n+2)

2m ||∞
(2n+ 2)!

φn+1(y),

valid for y2 + b ≥ a1. Note that the asymptotic behaviour of ψ2m,
combined with the fact that ψ2m satisfies the differential equation (1)

for E = E2m, ensures that ||ψ(2n+2)
2m ||∞ <∞.

Starting instead from the observation

(48) ψ′2m+1(0)ψ2m+1(y) = 8y

∫ ∞
0

ψ2m+1(z)zAi(y2 + z2 + b)dz,

the odd case can be treated in a similar manner. Doing so we arrive at
the following result.

Proposition 2. For a ∈ R and m = 0, 1, . . ., we have the asymptotic
expansions

(49) ψ2m(y) ∼ 2

ψ2m(0)

∞∑
n=0

ψ
(2n)
2m (0)

(2n)!
φn(y)

and

(50) ψ2m+1(y) ∼ 4y

ψ′2m+1(0)

∞∑
n=0

ψ
(2n+1)
2m+1 (0)

(2n+ 1)!
φn+1(y)

as y →∞ (where b = a/4 and we have set λ = 8).
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We find it worth noting that one can also obtain the result in (49) by
substituting for ψ2m(z) in the right-hand side of (39) its Taylor series

(51) ψ2m(z) =
∞∑
n=0

ψ
(2n)
2m (0)

(2n)!
z2n

and integration formally term by term. This process is readily justified
by a suitable application of Lemma 1 in Appendix A, and is closely
related to the use of Watson’s lemma in the context of Laplace integrals;
see, e.g., Copson [Cop65]. This point of view highlights the fact that
the specialisation (39) of the product formula connects representations
of ψ2m around the origin and infinity, respectively. The result in (50)
can be obtained in a similar manner.

5. Outlook

In this paper our focus has been on establishing the product formula
in Theorem 1 for the eigenfunctions of the eigenvalue problem (1)–(2)
of a quartic oscillator. Below we add a few remarks on possible avenues
for future research that we find particularly interesting.

Let us begin by considering the product formula as an integral equa-
tion for the eigenfunctions. More specifically, assuming k = 2m for
some m = 0, 1, . . . and setting x = 0 in (17), we arrive at

(52) ψ2m(0)ψ2m(y)

= 2λ1/3
∫ ∞
0

ψ2m(z)Ai

(
λ1/3

2
(y2 + z2) +

a

λ2/3

)
dz.

(In the odd cases k = 2m+ 1 a non-trivial result is obtained by differ-
entiating the product formula before setting x = 0.) In Section 4 we
exploited this point of view to deduce a particular asymptotic expan-
sion of the eigenfunctions. One may ponder what further properties
can be gleaned from the integral equation (52). We note, in particular,
that the eigenvalue ψ2m(0) provides the link between the asymptotic
normalisation (3) adopted in this paper and the normalisation given
by

(53) ψ(0) = 1, ψ′(0) = 0.

It is also of interest that (52) is related to the integral equation appear-
ing in Theorem 5 of Kazakov and Slavyanov [KS96]. More precisely,
setting λ = 8 and a = −4f , writing ψ2m(z) = z1/2w(z2), and changing
integration variable to t = z2, we arrive at the integral equation (65)
in loc. cit. for w with γ = 1/2. (Note, however, that the condition
γ − 1 > 0 in said theorem is then not satisfied.)
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In this paper we have only made use of the kernel function obtained
from (14) by setting w(x) = Ai(x). It is natural to enquire whether
any use could be found for the kernel functions given by other solu-
tions of Airy’s equation (13). For example, judging by its asymptotic
behaviour, one may expect that the Airy function Bi(x) is relevant
to solutions of the differential equation (1) that tend to infinity as
x→ ±∞.

Another interesting possibility is to attempt to make use of the prod-
uct formula (17) in the harmonic analysis of expansions in the eigen-
functions ψk.
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Appendix A. A standard solution of Airy’s equation

In this appendix we collect properties of the standard solution Ai(x)
of Airy’s equation (13) we have occasion to use in the main text. For
further details see, e.g., Chapter 9 in [Dig10] and references therein.

First of all, we recall the integral representation

(54) Ai(x) =
1

2πi

∫ ∞eiπ/3
∞e−iπ/3

exp(ζ3/3− ζx)dζ,
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where the contour of integration consists of two rays emerging from the
origin at angles ±π/3; and the asymptotic expansion

(55) Ai(x) ∼
exp

(
−2

3
x3/2

)
2πx1/4

∞∑
k=0

Γ(3k + 1/2)

(−9)k(2k)!
x−3k/2,

which is valid uniformly as |x| → ∞ in any closed subsector of the
sector | arg x| < π.

In both Section 3 and 4 the integrals

(56)

∫ ∞
0

Ai(t+ x)tn−1/2dt, n = 0, 1, . . .

play an important role. Using the fact that Ai(x) is a solution of
Airy’s equation (13), all such integrals can be reduced to the special
case n = 0. More precisely, assuming n = 1, 2, . . ., we have∫ ∞

0

Ai(t+ x)tn−1/2dt =

∫ ∞
0

Ai′′(t+ x)tn−3/2dt

− x
∫ ∞
0

Ai(t+ x)tn−3/2dt

=

(
d2

dx2
− x
)∫ ∞

0

Ai(t+ x)tn−3/2dt.

(57)

Iterating this process n times, we obtain

(58)

∫ ∞
0

Ai(t+ x)tn−1/2dt =

(
d2

dx2
− x
)n ∫ ∞

0

Ai(t+ x)t−1/2dt.

Moreover, Aspnes [Asp66] obtained the following integral evaluation:

(59)

∫ ∞
0

Ai(t+ x)t−1/2dt = 22/3πAi2(x/22/3);

see Equation (B17) and set the normalisation constant N = π. Com-
bining (58) with (59) yields an explicit evaluation of the integrals in
(56). This enables us, in particular, to determine the asymptotic be-
haviour of these integrals, which we make use of in both the proof of
Theorem 1 and in the discussion leading up to Proposition 2. The
precise result now follows.



A PRODUCT FORMULA FOR A QUARTIC OSCILLATOR 15

Lemma 1. For n = 0, 1, . . ., we have an asymptotic expansion of the
form

(60)

∫ ∞
0

Ai(t+ x)tn−1/2dt

∼ Γ(n+ 1/2)

2
√
π

exp
(
−2

3
x3/2

)
x(n+1)/2

(
1 +

∞∑
k=1

Cn,k
x3k/2

)
as |x| → ∞ in any closed subsector of the sector | arg x| < π.

Proof. We shall prove the statement by induction on n. Substituting
the asymptotic expansion (55) for Ai(x) in the right-hand side of (59)
and using the fact that Γ(1/2) =

√
π, we arrive at (60) for n = 0 with

the coefficients C0,k given by

(61) C0,k =
1

π

(
−2

9

)k k∑
m=0

Γ(3m+ 1/2)Γ(3(k −m) + 1/2)

(2m)!(2k − 2m)!
.

Assume that (60) holds true up to some n = 0, 1, . . . Then appealing
to (57) with n→ n+ 1, we infer

(62)

∫ ∞
0

Ai(t+ x)tn+1/2dt

∼ Γ(n+ 1/2)

2
√
π

(
d2

dx2
− x
)

exp
(
−2

3
x3/2

)
x(n+1)/2

(
1 +

∞∑
k=1

Cn,k
x3k/2

)
.

To establish that the right-hand side is of the required form we observe

(63)
x(n+2)/2

exp
(
−2

3
x3/2

) ◦ ( d2

dx2
− x
)
◦

exp
(
−2

3
x3/2

)
x(n+1)/2

− (n+ 1/2)

= x1/2
d2

dx2
−
(

2x+
n+ 1

x1/2

)
d

dx
+

(n+ 1)(n+ 3)

4x3/2
.

By a direct computation, we deduce

(64)

(
x1/2

d2

dx2
−
(

2x+
n+ 1

x1/2

)
d

dx

)(
1 +

∞∑
k=1

Cn,k
x3k/2

)

=
3Cn,1
x3/2

+
1

4

∞∑
k=2

12kCn,k + (3k − 3)(3k + 2n+ 1)Cn,k−1
x3k/2

.

Since (n+ 1/2)Γ(n+ 1/2) = Γ(n+ 3/2), it follows that (62) indeed is
of the form (60) with n → n + 1. Moreover, combining the last two
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formulae with (61) we could, in principle, calculate the values of all
coefficients Cn,k.

Finally, we note that term-wise differentiation of the asymptotic se-
ries is permited since the asymptotic expansion (55), and by inference
the expansions (60), is valid uniformly in any closed subsector of the
sector | arg x| < π. �

Appendix B. Bounds on a kernel function

In the proof of Theorem 1, as well as when inferring its Corollary
1, we require suitable bounds on the kernel function (18) and some
of its derivatives. For simplicity, we shall restrict our attention to
the particularly simple kernel function K(a;x, y, z) obtained by setting
λ = 8, c.f. (19). The bounds are, however, readily generalised to other
values of λ by suitable scalings of the variables and parameters involved.
The following lemma contains the precise statements and proofs of the
pertinent bounds.

Lemma 2. Let a, y ∈ R. For each n = 0, 1, . . . and ρ ∈ (0, 1), there
exists a positive constant C = Cn(ρ, a, y) such that

(65)

∣∣∣∣∂nK(a;x, y, z)

∂xn

∣∣∣∣ < C exp

(
−2ρ

3
(x2 + z2)3/2

)
for all x, z ∈ R.

Proof. Since the Airy function Ai(x), and consequently the kernel func-
tion K(a;x, y, z), is a smooth function, it is sufficient to establish the
decay bounds

(66)

∣∣∣∣∂nK(a;x, y, z)

∂xn

∣∣∣∣ = O

(
exp

(
−2ρ

3
(x2 + z2)3/2

))
as x2 + z2 →∞.

To this end we introduce polar coordinates

(67) x = r cos θ, z = r sin θ,

and consider the functions

(68) Fn(r, θ) ≡ ∂nK(a;x(r, θ), y, z(r, θ))

∂xn
.

We find it convenient to introduce the function

(69) ξ(r) ≡ r2 + y2 + b,

since it will appear repeatedly throughout the proof, and, in most cases,
to suppress its dependence on r.
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We observe that

(70) F0(r, θ) = 2 exp(yr2 sin 2θ)Ai(ξ),

and that each function Fn, n = 1, 2, . . ., is given in terms of Fn−1 by
the formula

(71) Fn = cos θ
∂Fn−1
∂r

− sin θ

r

∂Fn−1
∂θ

.

Proceeding by induction on n, it is readily verified that

(72) Fn = exp(yr2 sin 2θ)
(
PnAi(ξ) +QnAi′(ξ)

)
for some polynomials Pn = Pn(r) and Qn = Qn(r) of degree at most
2n and 2n − 1, respectively, with coefficients given by polynomials in
cos θ and sin θ. Hence, we can find positive constants Cn = Cn(a, y)
such that

(73) |Fn(r, θ)| < Cn(1 + r2n) exp(yr2)
(
|Ai(ξ)|+ |Ai′(ξ)|

)
.

From the the asymptotic expansions of Ai(x) and Ai′(x) (see (55)
for the former and Eq. (9.7.6) in [Dig10] for the latter), we infer the
decay bounds

(74) Ai(ξ) = O

(
ξ−1/4 exp

(
−2

3
ξ3/2
))

,

(75) Ai′(ξ) = O

(
ξ1/4 exp

(
−2

3
ξ3/2
))

,

as ξ →∞. Moreover, we clearly have

(76) ξ(r)3/2 = r3 +O(r), r →∞.
Combining (73)–(76), we conclude that

(77) Fn(r, θ) = O

(
exp

(
−2ρ

3
r3
))

, r →∞,

for each ρ ∈ (0, 1). Reverting to the variables (x, z) and keeping (68)
in mind, we arrive at the decay bounds (66). �
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