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Abstract

Cell formation has received much attention from academicians and practitioners because of its strategic

importance to modern manufacturing practices. Existing research on cell formation problems using integer

programming (IP) has achieved the target of solving problems that simultaneously optimise: (a) cell formation

(b) machine-cell allocation, and (c) part-machine allocation.

This paper will present extensions of the IP model where part-machine assignment and cell formation are

addressed simultaneously, and also a significant number of constraints together with an enhanced objective

function are considered. The main study examines the integration of inter-cell movements of parts and machine

set-up costs within the objective function, and also the combination of machine set-up costs associated with parts

revisiting a cell when part machine operation sequence is taken into account. The latter feature incorporates

a key set of constraints which identify the number of times a part travels back to a cell for a later machine

operation.

Due to two main drawbacks of IP modelling for cell formation, i.e. (a) only one objective function can be

involved and (b) the decision maker is required to specify precisely goals and constraints, fuzzy elements like

fuzzy constraints and fuzzy goals will be considered in the proposed model.

Overall the paper will not only include an extended and enhanced integer programming model for as-

sessing the performance of cell formation, but also perform a rigorous study of fuzzy integer program-

ming and demonstrate the feasibility of achieving better and faster clustering results using fuzzy theory.

Keywords: cellular manufacturing system; machine operation sequence; integer programming; uncertainty;

fuzzy models
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Notation

• Index Set

i machine type index i = 1, . . . , M

j part index j = 1, . . . , P

q cell index q = 1, . . . , C

k machine instance index k = 1, . . . , KM

z, r machine operation indices z, r = 1, . . . , ZOPER

l membership functions index l = 0, . . . , MF

t additional cell index for min-bounded sum operator t = 1, . . . , C

• Input Parameters

EMIN minimum number of machines allowed in a cell

EMAX maximum number of machines allowed in a cell

NCELLS number of cells in the system

Mj,q cost of allocating part j in cell q

Aj cost for part j traveling back to an already visited cell

UTILi,j utilisation of machine i by part j

KTY PESi number of machines instances for each machine type i

SETUPi,j set-up cost of machine i needed to process part j

ZOPER number of machine operations

ZTY PESj number of different operations (machine types) required by part j

Lj,z for part j the machine used for the zth machine operation in sequence

UTILMIN minimum amount of utilisation in UTILi,j matrix

UTILMAX largest amount of machine utilisation used

γ parameter for fuzzy modelling
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• Decision Variables

xi,j,q amount of processing by machines of type i for part j in cell q

yi,k,q =1 if kth machine instance of type i is assigned to cell q, 0 otherwise

wj,q =1 if part j is processed in cell q, 0 otherwise

vq =1 if cell q is formed, 0 otherwise

si,j,q integer number of machines of type i that will be used by part j in cell q

extraq,j,Lj,z
=1 if after the zth operation of part j in cell q the part leaves cell q

but returns later, 0 otherwise

xxLj,z ,j,q =1 if part j is processed in cell q for zth machine operation, 0 otherwise

λ minimum value of all membership functions

al extra variable used for ‘ ˜and’ operator

ω extra variable used for ‘ ˜and’ operator

ut extra variable used for ‘min-bounded sum’ operator
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Cellular manufacturing has been a prosperous research area for the last three decades and received a lot

of attention from academicians because of its strategic importance to ‘modern’ industrial and manufacturing

areas. The design of cellular manufacturing systems has been called Cell Formation (CF). CF is the process

of grouping parts with similar design features or processing requirements into parts families and machines into

machine cells. Extensive reviews of CF problems can be found, for example, in (Wemmerlov and Hyer (1986),

Wemmerlov and Hyer (1989), Singh (1993)).

Mathematical Programming formulations involve a wide range of manufacturing data. Several types

of integer programming formulations have been proposed over the past years. In most of these formula-

tions parts are assigned to individual machines and individual machines are allocated into cells simultane-

ously. A number of major results in the literature have as a main criterion the minimisation of intercel-

lular movements and have been discussed by: Purcheck (1975), Kusiak (1987), Kusiak and Heragu (1987),

Wei and Gaither (1990), Sankaran (1990), Zhu, Heady and Reiners (1995), Selim, Askin and Vakharia (1998),

Wang (1998), Foulds, French and Wilson (2006). However, none of the studies attempted to handle the min-

imisation of intercellular movements when machine set up costs and the part machine operation sequence is

taken into account.

Applying mathematical programming models to solve the cellular manufacturing problem is a challeng-

ing task as decision makers find it difficult to specify goals and constraints because some of the param-

eters involved cannot be estimated precisely. A number of researchers dealt with the formation of parts

families (Xu and Wang (1989), Gill and Bector (1997), Ben-Arien and Triantaphyllou (1992)), whereas oth-

ers considered fuzzy data within traditional approaches (Chu and Hayya (1991), Zhang and Wang (1992),

Ravichandran and Rao (2001)). Moreover, other authors (Tsai, Chu and Barta (1997)) considered the appli-

cation of fuzzy models for measuring uncertainty via a new proposed operator minimising the cost of excep-

tional elements. None of these studies have attempted to deal with fuzzy goals and constraints when the part ma-

chine operation sequence is taken into account and also to measure the performance of a number of opera-

tors towards the performance of a deterministic and rigidly defined CF model when a number of system at-

tributes are taken into account .

The aim of the paper is threefold: first, to produce a comprehensive integer programming (IP) model able

to assign parts to machines and machines to cells simultaneously and to minimise the cost of intercellular

movements, the set-up cost of machines and the cost of parts revisiting a cell for a later machine operation;

second, to use fuzzy IP (FIP) to model CF via a number of fuzzy operators and membership functions addressing

the uncertainty of certain elements; third, to assess the performance of deterministic versus fuzzy models as the

scale of the problem increases.
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1 Deterministic model

The proposed model is an extension of a model developed by Foulds, French and Wilson (2006), the first to

simultaneously optimise cell formation, machine-cell allocation and part machine allocation; where costs of

setting up machines for parts to be processed and part machine operation sequences are now taken into account.

Each part has a machine operation sequence which may lead to several intercell movements. The objective

function is enhanced to minimise simultaneously the number of distinct allocations of parts to cells, the set-up

costs of machines and also the number of times a part travels back to an already visited cell in order to be

processed.

The complete formulation of the mathematical programming model is shown below:

Min (

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +

M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +

C
∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i)) (1)

subject to
C

∑

q=1

yi,k,q = 1 ∀ i, k (2)

C
∑

q=1

xi,j,q = UTILi,j ∀ i, j (3)

xi,j,q ≤ si,j,q ∀ i, j, q (4)

xi,j,q ≥ UTILMIN × si,j,q ∀ i, j, q (5)

C
∑

j=1

xi,j,q ≤

KM
∑

k=1

yi,k,q ∀ i, q (6)

M
∑

i=1

KM
∑

k=1

yi,k,q ≤ vq × EMAX ∀ q (7)

M
∑

i=1

KM
∑

k=1

yi,k,q ≥ vq × EMIN ∀ q (8)

vq+1 ≤ vq ∀ q (9)

C
∑

q=1

q × yi,k,q ≤

C
∑

q=1

q × yi,k+1,q ∀ i, k (10)
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xi,j,q ≤ UTILi,j × wj,q ∀ i, j, q (11)

xi,j,q ≤ UTILMAX × xxi,j,q ∀ i, j, q (12)

xi,j,q ≥ UTILMIN × xxi,j,q ∀ i, j, q (13)

xxLj,z,j,q + xxLj,r ,j,q −

r−1
∑

zz=z+1

xxLj,zz,j,q ≤ extraq,j,Lj,z
+ 1 ∀ q, j, z, r (14)

yi,k,q, vq, wj,q, extraq,j,i, xxi,j,q = 0 or 1; 0 ≤ xi,j,q ≤ 1; si,j,q integer (15)

Objective function, (1), combines a mixture of the following three requirements to:

• Minimise number of distinct cells used by each part

• Minimise set-up costs when allocating parts to machines

• Minimise number of times a part revisits a cell for a later machine operation.

Constraint (2) ensures that kth machine of type i must be assigned to exactly one cell. Constraint (3) handles

the requirements for processing part j on machine i: the number of machines or fraction thereof required to

process part j in cell q is equal to the utilisation of machine i required to process part j in cell q. Constraint (4)

ensures that the total number of machines (in terms of machine utilisation) required to process part j in cell q

is less than or equal to the integer number of machines of type i that will used by part j in cell q. Constraint

(5) forces variable s to get the value 0 whenever x variable is zero and is not strictly necessary but aids branch

and bound. Constraint (6) ensures that the total number of machines of type i used in cell q should be less

than or equal to the number of machine instances of type i assigned to cell q. Constraints (7), (8) limit the

number of machines in each cell. Constraint (9) ensures that cells are formed in successive numerical order.

Constraint (10) assigns duplicate machines when needed to lower numbered cells in successive numerical order.

Constraints (9) and (10) are included to eliminate certain symmetries. Constraint (11) picks which cells are

used by parts. Both constraints (12) and (13) ensure that whenever a part uses a machine or a fraction thereof

(xi,j,q > 0.0) variable xxi,j,q is assigned the value 1, otherwise it is assigned to 0. The key constraint (14) picks

out the number of times a part travels back to a cell for a later machine operation. A part j, whose zth machine

operation is processed in cell q, could revisit the cell q for a later machine operation i.e. (z + r)th, only when
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the 2nd machine operation (z + 1) is not processed within the same cell. In this case the value of extraq,j,Lj,z

is assigned to 1.

It is assumed that the machine utilisation for processing a part j is equal to the processing time of part j in

machine i. For this reason no time element is considered for the current model. Moreover, for each machine of

type i only a maximum of a unity of its capacity can be spent on processing a part j.

Figure 1 provides a visual representation of the CF model which was solved by running Xpress-MP

mathematical programming software. The data used are presented in Table 1. Each item in the square boxes,

i.e. Mk
i , denotes the instance k of machine of type i currently used within a cell. Also the elements in the

arrows have a certain explanation, e.g. 2(0.3) describes that part 2 is using 0.3 capacity units of the machine

that the arrow is pointing at. According to this figure all parts follow a certain route and it is worth noting

that the dotted line represents the route of part 2 which revisits a cell in order to be fully processed.

2 Fuzzification for CF

In the aforementioned deterministic model it is assumed that both the objective function and all related

constraints can be defined precisely. In practice it is very difficult for the decision maker to specify the exact

goals and constraints when modelling the problem. Tools for experimenting with changes in both coefficients

and constraints by doing either sensitivity or postoptimality analysis are well established for linear programming

(LP) models. For IP these tools are less well developed because the absence of continuity precludes the natural

extension of these tools from LP to IP, however certain experimentation is still possible. In what follows the

authors consider aspects of fuzzification within CF problems.

Although in the current model there are a lot of elements that could be fuzzy such as set up costs and

utilisation amounts, the authors consider the fuzziness concept on the number of machines included in cells.

The latter is chosen based upon the model’s main operation which is the creation of cells with a specific number

of machines in them. The resulting analysis can thus be considered as just one example of analysing fuzziness

out of a range of possible elements that could be made fuzzy. Thus the analysis is to some extent exploratory

and intended to show the possibilities of extending CF problems to incorporate more realism. The analysis will

show ways in which a range of configurations can be offered to decision makers and this range could be extended

by introducing fuzziness into other parameters, of which the number of machines in a cell is one.

In the deterministic model, equation (7), the maximum, EMAX , number of machines allowed in each of the

cells has been precisely specified. What will happen if this maximum number of machines varies between a

range, and thus is uncertain? The range assumed is defined by the upper bound of the maximum number of

machines and the lower bound of the maximum number of machines. The following two fuzzy equations describe
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the situation where the maximum number of machines takes values between a range. Depending upon the type

of the membership function used, either both equations 16, 17 are utilised or only one is employed as will be

seen later.

M
∑

i=1

KM
∑

k=1

yi,k,q

<
h vq × EMAX ∀ q (16)

M
∑

i=1

KM
∑

k=1

yi,k,q

>
h vq × EMAX ∀ q (17)

The objective function, equation (1), can also be be fuzzified (Werners (1987) and Lai and Hwang (1992)) as

follows:

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +
M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +
C

∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i)
<
h D0 = D1 − P0 (18)

where D0 is the feasible value of the best goal, which can be obtained by solving the deterministic model

with the total number of machines instances in the system. D1 is the feasible value of the worst goal which can

be obtained by solving the deterministic model with the minimum number of machines (EMIN ).

In order to transform the fuzzy model to its equivalent traditional formulation three tolerance values, P0,

PR1 and PR2 are used within the objective function (18) and constraints (16) and (17) respectively. The value

for parameter P0 can be determined as the value equal to (D1 − D0), whereas the parameter values PR1 and

PR2 depend upon the decision maker’s opinion.

For the fuzzy incorporation within the current model two membership functions, linear non-increasing

(Wiedey and Zimmermann (1978), Zimmermann (1991)) and triangular (Yang and Ignizio (1991)) will be

considered. For the transformation of the fuzzy formulation to MP formulation, fuzzy aggregation operators

will be used. Table 3 summarizes a number of operators that have been applied before in fuzzy mathematical

programming. The first three operators have linear forms after transformation whereas the last two are non-

linear and thus more difficult to handle. Moreover, all operators except the ‘min’ classical operator allow some

type of compensation; either a positive or negative (Kim, Lee and Lee (1993)). For example, the ‘fuzzy and’

operator (Werners (1988)) combines the minimum and maximum operator with the arithmetic mean and allows

compensation between the membership values of the aggregated sets leading to very good results with respect to

empirical data (?). For the current study ‘min’, ‘fuzzy and’ and ‘min-bounded sum’ operators will be examined.

Last but not least, objectives and constraints are treated equally and there is no difference between them,

therefore their relationship is fully symmetric (Zimmermann (1991), Lai and Hwang (1992)).

Before continuing with the fuzzy model formulation, an illustration of the membership functions involved is

given in Figure 2. The membership function for the objective function (18) is linear non-increasing (no other

type of membership function can be assumed) and can be seen in Figure 2(a). Considering the fuzzy constraints,
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if constraint (16) is added only, the membership function is linear non-increasing and can be seen in Figure

2(b); However, if both constraints, (16), (17), are involved the membership function is triangular as presented

in Figure (2(c)).

The mathematical presentation for the linear non-increasing membership function of objective (18) is as

follows:

µ0(x)=























1, if cT x ≤ D0

1 − cT x−D0

P0

, if D0 ≤ cT x ≤ D0 + P0

0, if cT x > D0 + P0

In a similar way the rest of the membership functions can be expressed mathematically.

3 Defuzzification for CF

In this section a number of combinations of membership functions and aggregation operators are performed and

the fuzzy CF model is converted into an IP model.

3.1 Min operator

• Linear non-increasing membership function

Applying the ‘min’ operator the following formulation is obtained:

Max λ (19)

subject to

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +
M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +
C

∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i) + λP0 ≤ D0 + P0 (20)

M
∑

i=1

KM
∑

k=1

yi,k,q + λPR1 ≤ vq × EMAX + PR1 ∀ q (21)

0 ≤ λ ≤ 1 (22)

Besides those equations noted above, equations (2)-(6) and (8)-(15) are added here as well. From equation (21),

the number of machines allowed in a cell ranges from EMIN (crisply defined by the decision maker as in the

deterministic model) to vq × EMAX + PR1.
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• Triangular membership function

The equivalent MP formulation consists of equations (19) to (22) and equation (23) below.

M
∑

i=1

KM
∑

k=1

yi,k,q − λPR2 ≥ vq × EMAX − RR2 ∀ q (23)

It also includes crisp constraints (2)-(6) and (9)-(15).

3.2 Fuzzy and ( ˜and) operator

• Linear non-increasing membership function

The equivalent MP formulation is as follows:

Max ω + (1 − γ) ×
1

c + 1

MF
∑

l=0

al (24)

subject to

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +
M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +
C

∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i)+

ω × P0 + a0 × P0 ≤ D0 + P0 (25)

M
∑

i=1

KM
∑

k=1

yi,k,q + ω × PR1 + a1 × PR1 ≤ vq × EMAX + PR1 ∀ q (26)

ω + al ≤ 1 (27)

ω ≤ 1, al ≥ 0, γ < 1 (28)

Also crisp constraints (2)-(6) and (8)-(15) are included in this model as well.

• Triangular membership function

The objective function for this formulation is the same as equation (24) and only one new constraint is added

as follows:
M
∑

i=1

KM
∑

k=1

yi,k,q − ω × PR2 − a2 × PR2 ≥ vq × EMAX − RR2 ∀ q (29)

Also constraints (25)-(28), (2)-(6) and (9)-(15) are included here as well.

3.3 Min-bounded sum operator

• Linear non-increasing membership function

The equivalent LP formulation is as follows:

Max γ × ω + (1 − γ)

C
∑

t=1

ut (30)
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subject to

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +

M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +

C
∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i) + ω × P0 ≤ D0 + P0 (31)

ut ≤ [

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +

M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +

C
∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i) − D0]/P0+

[

M
∑

i=1

KM
∑

k=1

yi,k,t − vt × EMAX ]/RR1 ∀ t (32)

M
∑

i=1

KM
∑

k=1

yi,k,q + ω × PR1 ≤ vq × EMAX + PR1 ∀ q (33)

ut ≤ 1 ∀ t (34)

0 ≤ ω ≤ 1, γ < 1 (35)

Also equations (2)-(6) and (8)-(15) are included in the above formulation.

• Triangular membership function

For this case one more membership function is included, therefore equation (32) is differently formulated (see

equation (36)) and constraint (37) is added.

ut ≤ [

P
∑

j=1

C
∑

q=1

(Mj,q × wj,q) +

M
∑

i=1

P
∑

j=1

(SETUPi,j ×

C
∑

q=1

si,j,q) +

C
∑

q=1

P
∑

j=1

M
∑

i=1

(Aj × extraq,j,i) − D0]/P0+

[

M
∑

i=1

KM
∑

k=1

yi,k,t − vt × EMAX ]/RR1+

[vt × EMAX −

M
∑

i=1

KM
∑

k=1

yi,k,t]/RR2 ∀ t (36)

M
∑

i=1

KM
∑

k=1

yi,k,q − ω × PR2 ≥ vq × EMAX − RR2 ∀ q (37)

Objective function (30) and constraints (31), (33)-(35) are preserved and added here. Also equations (2)-(6)

and (9)-(15) are included in this formulation.

4 Models Assessment

To assess the results of each of the aggregation operators within the CF model four data sets are used. The first

data set (DS 1) was created by adopting numerical values from Foulds, French and Wilson (2006) and randomly

generated some more needing to meet the requirements of the current model. The numerical values of DS 1
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are presented in Table 2. The remaining data sets were randomly generated by a computer program developed

with MatLab. The sets were chosen in order to provide variety of parameter values in the models.

The first three data sets have the same size as DS 1 in terms of the number of machine types and parts used.

DS 4 has a different size with both machines types and parts equal to nine. DS 2 is similar to DS 1 because

of the total number of machine instances, but utilisation and set-up cost matrices differ as they were randomly

generated. DS 3 has a greater number of machine instances, therefore its computation is more intense. For DS

4, most of the input parameters have dissimilar values with the rest of the data sets.

Last but not least the maximum number of machines allowed in a cell takes different values depending upon

the total number of machine instances in each of the data sets and the number of cells allowed to be created.

When fuzzy models are used, fuzzy intervals are used to define those numbers; upper bound of maximum

number of machines and lower bound of maximum number of machines allowed in a system is the interval

specified when triangular membership function is used. Sometimes depending upon the size of the problem, the

value of the lower bound of maximum number of machines becomes equal to the minimum number of machines

rigidly defined by the decision maker. For the linear non-increasing membership function the upper bound of

the maximum number of machines is also specified. The minimum number of machines is explicitly acquired in

order to avoid creating a single cell with all machines in it.

5 Performance of Models

All models were solved by running Xpress-MP package on a PC with Intel 3.20 GHz Pentium 4 Processor.

Clustering performances were measured in terms of number of cells created, distinct cells used by each part,

number of times a part visits a cell for later machine operation, CPU time and total cost of dealing with intercell

movements and set-up costs.

Table 5 summarises the computational results for all four data sets. For each data set, six cases for the fuzzy

models (three operators and two membership functions), plus two cases for the proposed deterministic model

are examined. The final case (case 8) where the deterministic model is utilised it examines a possible impact

on the solution quality when the maximum number of machines is relaxed when the upper bound is specified.

From Table 5, it is observed that the CPU times for both ‘fuzzy and’ and ‘min-bounded sum’ operators

vary but they differ marginally, whereas ‘min’ operator requires more execution time. However, the clustering

results for all operators are different and this can be verified by the number of cells created, the distinct number

of cells used by each part and the number of later revisits of parts to an already visited cell. The performance

of ‘min’ operator is not promising especially when a linear non-increasing membership function is employed as

it requires the longest time to process (especially when problem size increases i.e DS’s 3, 4), and the clustering
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results are not better than those produced from the other two operators. The performance of the latter slightly

improves when a triangular membership function is assumed. Overall and as can be seen from the tables the

computation time for each problem is very long for the ‘min’ operator. For two of the data sets the algorithm

fails to converge after excessive computational time.

The ‘fuzzy and’ operator arrives at acceptable clustering results and the required CPU time is quite low

for either non-increasing or triangular membership functions when smaller data sets are utilised. It is worth

noting that the ‘min-bounded sum’ operator results in significant CPU time reduction when larger data sets

are used (i.e. DS 3, DS 4) compared to the other two operators but it has two weaknesses: a) it is time

consuming to obtain one of its constraints, in which all the membership functions must be summed up and, b)

clustering results seem to be affected because all the membership functions of the constraints are added within

one constraint when formulation takes place. It is particularly encouraging that on the data sets considered,

for the linear non-increasing version of the ‘min-bounded sum’ operator only small amounts of CPU time are

required and these are substantially lower that those required for the deterministic versions of the problem.

Constraints (31), (32) may be helping to reduce integrality gap and aid convergence.

Moreover, for both ‘fuzzy and’ and ‘min-bounded sum’ operators experiments were carried out in order to

determine a proper γ parameter value (γ parameter can take values between the range [0.0, 0.9]). Table 4

summarises the results of using DS 1 for the ‘min-bounded sum’ operator. According to the table the best γ

values for cases 5, 6 are 0.4 and 0.5 respectively. It has been decided by the researchers that the best γ value

should be determined by the lowest executing CPU time and not the total cost. The latter varies in very small

ranges because of the machine set-up costs configuration. For determining the remaining best γ values a similar

process was followed.

For considering the combinatorial explosion on the CPU times of all operators used a comparison between

DS 1 (the smallest data set recorded in Table 5) and DS 4 (the largest data set) will now be made. As the

size of the problem increases computation intensifies especially for the ‘min’ operator where no compensation

between the membership functions of the aggregated sets is performed. For the ‘fuzzy and’ operator the CPU

time increases significantly as the size of the problem becomes larger especially when a linear non-increasing

membership function is employed. For the ‘min-bounded sum’ operator things are different as CPU time is

kept low regardless how big the problem is. Although CPU times are very promising for the latter, clustering

results are not so good (see DS 4) compared with the ‘fuzzy and’ operator. Therefore, the ‘fuzzy and’ operator,

when a triangular membership function is employed, can be characterised as a good operator with promising

clustering results and reasonable CPU times even when data sets become larger.

For cases 7 and 8, the deterministic model is utilised and it can be observed that more effort with trial and

error is needed till an appropriate number of maximum number of machines allowed in a cell is decided for
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obtaining a good solution. Also as the size of the problem increases (see DS 3 or DS 4) the CPU time increases

significantly. However, employing a good operator (in terms of clustering results and CPU time) the use of the

fuzzy model is quite straightforward. It can flexibly adjust the number of machines, given a tolerance value,

thus avoiding time consuming trial and error.

6 Summary and Conclusions

This paper proposes an efficient integer mathematical programming formulation where parts are assigned to

machines and machines to cells simultaneously, when an enhanced objective function is taken into account.

Fuzzy integer programming models are also developed to form manufacturing cells when uncertainty is taken

into account. Two membership functions with three operators were applied and the results compared. From all

the computational analyses the following conclusions can be drawn:

• It is a difficult and a very important issue for the decision maker to choose the appropriate number of

machines allowed in a cell. If the size of the problem is small then there are some chances with trial and

error that a good solution may be obtained. However, once the problems size increases, trial and error is

not effective. Thus, fuzzy mathematical programming is a more promising alternative methodology.

• The fuzzy mathematical programming provides a more flexible way of representing the problem and it

leads in most cases to better clustering results, especially when the ‘fuzzy and’ operator was employed.

The CPU time depends upon the operator used. Although the ‘min’ operator is the most frequently

used method, it did not perform well especially when a linear non-increasing membership function was

used. The ‘min-bounded sum’ operator shortened the CPU significantly and outperformed the rest of the

operators as well as the deterministic model, especially when a bigger problem was considered.

• The time advantage of using a fuzzy model rather than a deterministic model becomes significant once a

larger scale model is used and the tolerance value of the constraints becomes bigger.

• The triangular membership function performed better than the linear non-increasing membership function

for the CF problem and it seems to be more appropriate for modelling the constraints when a number of

machines, either maximum or minimum are involved.

For the purpose of this study small to medium sized data sets were used because with mathematical

programming as the size of the problem increases computation intensifies. It will be possible to solve some

larger sized problems, but ultimately a limit will be reached when computation times become excessive. For

this reason the development of a heuristic algorithm will be the subject of future research. In this way the
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performance of fuzzy models could be compared against heuristic outputs even when large data sets are utilised.

Also the specifications of the problem can be enhanced by considering a multiple fuzzy linear objective function.
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Table 1: Numerical values for IP CF model

Part/Machines utilisation & Number of machine instances

Parts/Mi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P

10

j=1
UTILi,j KTY PESi

M1 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 1

M2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 3.1 4

M3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 1.2 2

M4 0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 3.0 3

M5 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 6.1 7

M6 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 1.8 2

M7 0.0 0.5 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.9 1

Set-up Costs

Parts/Mi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1 0.00 2.95 0.00 1.96 0.00 0.00 0.00 1.92 0.00 0.00

M2 0.00 0.00 0.00 5.12 2.42 0.00 5.05 0.00 1.54 2.16

M3 0.00 0.00 2.93 0.00 0.00 0.00 0.00 1.94 1.45 0.00

M4 0.00 5.54 0.00 2.91 2.42 2.38 0.00 0.00 0.00 0.00

M5 2.91 2.59 0.00 2.88 5.42 4.91 2.63 4.93 4.81 0.00

M6 0.00 2.82 0.00 0.00 0.00 0.00 2.73 0.00 0.00 2.49

M7 0.00 2.78 0.00 2.12 2.12 0.00 0.00 0.00 0.00 0.00

Part-Machine operation Sequence & ZTYPES

Sequence/Parts 1 2 3 4 5 ZTYPES

P1 M5 1

P2 M1 M4 M5 M7 M6 5

P3 M3 1

P4 M1 M2 M4 M5 M7 5

P5 M2 M5 M4 M7 4

P6 M4 M5 2

P7 M5 M2 M6 3

P8 M1 M3 M5 3

P9 M3 M5 M2 3

P10 M2 M6 2

EMIN = 6, EMAX = 8 & NCELLS=3
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Table 2: Numerical values for DS 1

Part/Machines utilisation & Number of machine instances

Parts/Mi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

P

10

j=1
UTILi,j KTY PESi

M1 0.0 0.3 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.5 1

M2 0.0 0.0 0.0 1.0 0.5 0.0 0.9 0.0 0.1 0.6 3.1 4

M3 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.2 0.1 0.0 1.2 2

M4 0.0 1.2 0.0 0.9 0.5 0.4 0.0 0.0 0.0 0.0 3.0 3

M5 0.4 0.2 0.0 0.8 1.1 1.0 0.6 1.0 1.0 0.0 6.1 7

M6 0.0 0.7 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.3 1.8 2

M7 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.4 1

Set-up Costs

Parts/Mi P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1 0.00 2.95 0.00 1.96 0.00 0.00 0.00 1.92 0.00 0.00

M2 0.00 0.00 0.00 5.12 2.42 0.00 5.05 0.00 1.54 2.16

M3 0.00 0.00 2.93 0.00 0.00 0.00 0.00 1.94 1.45 0.00

M4 0.00 5.54 0.00 2.91 2.42 2.38 0.00 0.00 0.00 0.00

M5 2.91 2.59 0.00 2.88 5.42 4.91 2.63 4.93 4.81 0.00

M6 0.00 2.82 0.00 0.00 0.00 0.00 2.73 0.00 0.00 2.49

M7 0.00 0.00 0.00 2.12 2.12 0.00 0.00 0.00 0.00 0.00

Part-Machine operation Sequence & ZTYPES

Sequence/Parts 1 2 3 4 5 ZTYPES

P1 M5 1

P2 M1 M4 M5 M6 4

P3 M3 1

P4 M1 M2 M4 M5 M7 5

P5 M2 M5 M4 M7 4

P6 M4 M5 2

P7 M5 M2 M6 3

P8 M1 M3 M5 3

P9 M3 M5 M2 3

P10 M2 M6 2

EMIN = 3, EMAX = 6 & NCELLS=5
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Table 3: Common Operators used in Fuzzy MP

Operator Formulation∗ Format after References

transform.

‘Min’ µD = min µS
† Linear Mjelde (1986)

Zimmermann (1978)

Zimmermann (1991)

‘Fuzzy and’ µD =γmin µS + (1 − γ)/(T + 1) ×
PT

S=0
µS Linear Werners (1988)

‘Min − bounded sum’ µD =γmin µS + (1 − γ)min(1,
PT

S=0
µS) Linear Luhandjula (1982)

‘Product’ µD = ΠT
S=1 µS Nonlinear Zimmermann (1978)

‘γ’ µD = (ΠT
S=0)

1−γ [1 − ΠT
S=0(1 − µS)]γ Nonlinear Luhandjula (1982)

Zimmermann (1983)

∗ The objective is to maximise µD.

† µS is membership function of the Sth fuzzy constraint (S is index of fuzzy constraints, S = 0, ..., T ).

Table 4: Results of varying γ values for the ‘min-bounded sum’ operator (DS 1)

Case 5: Linear non-increasing membership function Case 6: Triangular membership function

γ CPU Time (secs) Total Cost γ CPU time (secs) Total Cost

0.1 97 237.01 0.1 18 237.01

0.2 23 237.01 0.2 27 231.47

0.3 28 231.47 0.3 63 231.47

0.4 10 231.47 0.4 19 237.01

0.5 12 231.89 0.5 9 231.47

0.6 202 231.59 0.6 55 231.47

0.7 549 231.47 0.7 103 237.01

0.8 325 237.01 0.8 77 231.47

0.9 135 231.47 0.9 47 212.47
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Table 5: Computational results for fuzzy and crisp models

Data Set 1: Problem size (M × P ) = (7 × 10); NCELLS=5; EMAX = 6; P0 = 32.91; PR1 = 2; PR2 = 3, Machine Instances= 20

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost

Functions by Each Part of Parts (secs)

1 ‘Min’ Linear non-increasing 4 12 0 2010 211.47

2 ‘Min’ Triangular 3 12 1 32 219.95

3 ‘ ˜and’ Linear non-increasing 4 12 0 40 217.01

4 ‘ ˜and’ Triangular 3 12 1 38 212.47

5 ‘Min− bounded sum’ Linear non-increasing 3 14 0 10 231.47

6 ‘Min− bounded sum’ Triangular 3 14 0 9 231.47

7 Deterministic Model EMAX = 6 4 12 0 109 219.92

8 Deterministic Model EMAX = 8 4 12 0 32 210.92

Data Set 2: Problem size (M × P ) = (7 × 10); NCELLS=5; EMAX = 6; P0 = 33; PR1 = 2; PR2 = 3; Machine Instances= 20

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost

Functions by Each Part of Parts (secs)

1 ‘Min’ Linear non-increasing 3 13 0 10875 229.24

2 ‘Min’ Triangular 3 13 0 1149 229.24

3 ‘ ˜and’ Linear non-increasing 4 13 2 5913 225.82

4 ‘ ˜and’ Triangular 3 13 0 996 229.24

5 ‘Min− bounded sum’ Linear non-increasing 3 14 3 35 236.82

6 ‘Min− bounded sum’ Triangular 3 14 3 21 236.82

7 Deterministic Model EMAX = 6 4 13 2 4554 225.82

8 Deterministic Model EMAX = 8 3 12 1 433 220.24

... continues on next page
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Table 5 – continues from previous page

Data Set 3: Problem size (M × P ) = (7 × 10); NCELLS=5; EMAX = 8; P0 = 21; PR1 = 2; PR2 = 5; Machine Instances= 27

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost

Functions by Each Part of Parts (secs)

1 ‘Min’ Linear non-increasing - - - > 57 hours -

2 ‘Min’ Triangular 3 12 1 6966 246.91

3 ‘ ˜and’ Linear non-increasing - - - > 57 hours -

4 ‘ ˜and’ Triangular 3 12 1 10431 246.91

5 ‘Min− bounded sum’ Linear non-increasing 3 13 1 17 251.49

6 ‘Min− bounded sum’ Triangular 3 13 1 51 267.75

7 Deterministic Model EMAX = 8 4 12 2 16499 264.14

8 Deterministic Model EMAX = 10 3 12 0 8341 262.14

Data Set 4: Problem size (M × P ) = (9 × 9); NCELLS=5; EMAX = 8; P0 = 35; PR1 = 4; PR2 = 5; Machine Instances= 28

Case Operator Membership Cells Created Distinct Cells Used Later Revisits CPU Time Total Cost

Functions by Each Part of Parts

1 ‘Min’ Linear non-increasing - - - > 50 hours -

2 ‘Min’ Triangular 3 11 0 25448 243.27

3 ‘ ˜and’ Linear non-increasing 4 11 1 114171 249.69

4 ‘ ˜and’ Triangular 3 11 0 2752 243.27

5 ‘Min− bounded sum’ Linear Non-Increasing 3 12 5 9 263.69

6 ‘Min− bounded sum’ Triangular 3 12 5 49 263.69

7 Deterministic Model EMAX = 8 4 11 1 48974 257.99

8 Deterministic Model EMAX = 12 3 10 1 688 245.11
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Figure captions

Figure 1. Part/Machine cell allocation.

Figure 2(a). Objective function (18)

Figure 2(b). Fuzzy constraint (16)

Figure 2(c). Fuzzy constraints (16), (17)

24 Papaioannou and Wilson, AnOR 2009



M
1
1

Cell 1

Cell 3

M
5

5 (
1.0

)

5 (0.1)

Cell 2

M
2
3

5
5

5 (0.5)

6

M
1 (0.4)

1

M
5
77 (0.6)

M
2
4

M
6
2

7 (0.9)
7 (0.8) 7

2 (0.3)

8 (0.1)

4 (0.1)

M
3
1

M
5
1

8

8 (0.2)

8 (1.0)

M
2
14 (1.0)

M
4

4  
(0

.4)

4 (0.5)

4
1

2

M

5 (0.5)

5
2

M

4 (0.8)

7
1

M5 (0.2)

4 (0.2)

4
5

2 (0.6) 3
M

4

2 (0.6)

2 (0.2)

2 (0.5)

1
M

6 2

2 (0.7)

2
M

3

4
M

5

2
M

2

9 (0.1)

3 (0.9)

3
9 (1.0) 9 (0.1)

9

6 (0.4)

3
M

5

6 (1.0)
6

10 (0.6)

10 (0.3)

10

F
ig

u
re

1
:

P
a
rt/

M
a
ch

in
e

C
ell

A
llo

ca
tio

n

2
5

P
a
p
a
io

a
n
n
o
u

a
n
d

W
ilso

n
,
A

n
O

R
2
0
0
9



1

D0 + P0

µ
0

c xTD0

(a) Objective function (18)
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(c) Fuzzy constraints (16), (17)

Figure 2: Membership Functions
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