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with application to the Helmholtz Green’s function
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A class of two-dimensional phase modulated lattice sums in which the denomi-
nator is an indefinite quadratic polynomial Q is expressed in terms of a single,
exponentially convergent series of elementary functions. This expression provides
an extremely efficient method for the computation of the quasi-periodic Green’s
function for the Helmholtz equation that arises in a number of physical contexts
when studying wave propagation through a doubly periodic medium. For a class
of sums in which Q is positive definite, our new result can be used to generate
representations in terms of θ-functions which are significant generalisations of known
results. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905732]

I. INTRODUCTION

The study of two-dimensional phase modulated lattice sums of the form
∞

m=−∞

∞
n=−∞

Q−1
mne

2πi(mξ+nη),

where Qmn is a quadratic polynomial in m and n was initiated by Glasser (1974). Glasser showed
how, when Qmn is of the form m2 + µ2n2, this sum (with the m = n = 0 term omitted) can be
evaluated explicitly in terms of θ-functions. Such sums arise when considering the Green’s func-
tion for the Laplacian on a rectangular lattice; see, for example, Borwein et al. (2013, Sec.
3.3). Actually, as Glasser noted, his method applies to the more general class of sums in which
Qmn = am2 + 2bmn + cn2, provided Qmn is always positive (m = n = 0 excepted of course). This
more general expression, which allows for lattices whose basis vectors are not orthogonal, was
derived in Stremler (2004) and applied to a problem in vortex dynamics.

Glasser’s method is briefly described as follows. First, the sum is generalised by raising Qmn to
the power s. Provided the real part of s is sufficiently large, this produces an absolutely convergent
series which can be manipulated more easily. Next, Q−smn is written as the Mellin transform of an
exponential function and the sum over one of the indices manipulated, resulting in an integral trans-
form that can be evaluated in terms of modified Bessel functions. This then yields an exponentially
convergent series (still a double sum). For the special case in which s = 1, there is considerable
simplification and one of the summations is simply a geometric progression which can be evalu-
ated explicitly. Glasser showed how this could then be used to derive a representation in terms of
θ-functions. As well as providing a method for evaluating some two-dimensional, phase modulated
lattice sums, Glasser’s approach also shows how conditionally convergent sums of this type can
usefully be considered as the analytic continuation of a more general complex function.

There are a number of extensions to the sums treated by Glasser, which are introduced in this
paper. First, we generalise Qmn to include linear and constant terms. One of the consequences of
this is that a general representation in terms of θ-functions appears no longer to be possible. More
fundamental is the extension to cases which include terms where Qmn < 0, for which there appears
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to be very little previous work. The specific case considered here is driven by the application to
the evaluation of the quasi-periodic Helmholtz Green’s function, G, for a general two-dimensional
lattice. The spectral representation for G is a phase modulated sum in which Qmn is negative for a
finite number of pairs m,n. Using results obtained via contour integration in Sec. II, we are able to
derive, in Sec. III, an expression for a general sum of this type containing a single, exponentially
convergent sum of elementary functions. We also show how Glasser’s method can be modified so
that sums of this type can still be considered as the analytic continuation of a more general complex
function.

Many alternative expressions for this Green’s function have been derived in an attempt to
produce a form that leads to an efficient computational algorithm. Most notable is the use of Ewald
summation (Ham and Segall (1961); Jordan et al. (1986); and Moroz (2006)) which produces a
doubly infinite sum that is exponentially convergent, though for the case of a rectangular lattice,
a method which leads to an exponentially convergent integral representation has also been devel-
oped by Dienstfrey et al. (2001); see also Linton (2010, Sec. 2.2.2). The approach described in
Sec. IV would appear to provide the basis for an extremely effective computational scheme for the
evaluation of G.

Finally, for a class of sums in which Qmn is positive definite, we can use the series derived in
Sec. III to generate new representations for phase modulated lattice sums in terms of θ-functions
which are generalisations of known results. This is the subject of Sec. V.

Throughout this article, we use the convention that sums are over all integers unless explicitly
stated otherwise. Hence, for example,


m,n is shorthand for

∞
m=−∞

∞
n=−∞. A dash on a summation

indicates that any terms where the denominator vanishes are to be omitted.

II. A CONTOUR INTEGRAL

The results presented in this article all ultimately stem from the evaluation of a simple contour
integral, which we describe first. Consider the function

g(z) = eπi(2ξ−1)z

(z − ζ1)(z − ζ2) sin πz
, (1)

where 0 ≤ ξ ≤ 1, and ζ1 and ζ2 are arbitrary complex numbers. Consideration of the behaviour of
this function around the large circle |z | = N + 1/2 shows that

lim
N→∞


|z |=N+1/2

g(z) dz = 0. (2)

If ζ1 and ζ2 are distinct and neither is an integer, then evaluation of the residues at z = ζ1, z = ζ2, and
all integer values of z shows that


m

e2πimξ

(m − ζ1)(m − ζ2) =
π

ζ2 − ζ1

(
eπi(2ξ−1)ζ1

sin πζ1
− eπi(2ξ−1)ζ2

sin πζ2

)
. (3)

If ζ1 = ζ2 = ζ (< Z), there is a double pole and we obtain, either directly or by taking the limit as
ζ2 → ζ1 in (3), the result


m

e2πimξ

(m − ζ)2 =
π2e2πiζξ

sin2 πζ
(1 − ξ + ξe−2πiζ). (4)

If ζ1 = k is an integer but ζ2 is not, there is a double pole at z = k, simple poles at all other integers
and at z = ζ2. This leads to


m

′ e2πimξ

(m − k)(m − ζ2) =
πeπi(2ξ−1)ζ2

(k − ζ2) sin πζ2
+

e2πikξ

(k − ζ2)2 − πi(2ξ − 1) e2πikξ

k − ζ2
. (5)
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If ζ1 = k1 and ζ2 = k2 are different integers then there are double poles at z = ki, i = 1,2 and simple
poles at all other integers. In this case,

m

′ e2πimξ

(m − k1)(m − k2) =
e2πik1ξ + e2πik2ξ

(k1 − k2)2 + πi(2ξ − 1)e2πik2ξ − e2πik1ξ

k1 − k2
. (6)

If k1 = −k2 = k , 0, this simplifies to
m

′ e2πimξ

m2 − k2 =
cos 2πkξ

2k2 + π(2ξ − 1) sin 2πkξ
k

. (7)

Finally, if ζ1 = ζ2 = k ∈ Z, there is a pole of order 3 at z = k and we obtain
m

′ e2πimξ

(m − k)2 =
π2

3
e2πikξ �1 − 6ξ + 6ξ2� . (8)

It is worth emphasising that all of the above results rely on the fact that ξ ∈ [0,1]. However, the
extension to other real values of ξ is trivial since the sums are all periodic in ξ with period 1.

III. PHASE MODULATED LATTICE SUMS INVOLVING INDEFINITE QUADRATIC
POLYNOMIALS

We are concerned here with the lattice sum

S =

m,n

Q−1
mne

2πi(mξ+nη), (9)

where

Qmn = am2 + 2bmn + cn2 + dm + en + f , ac − b2 > 0. (10)

The parameters ξ,η,a,b,c,d,e, f are all real and we assume for convenience that a > 0. The condi-
tion ac − b2 > 0 ensures that for sufficiently large |m| and |n|, Qmn > 0 or, in other words, that the
number of pairs (m,n) for which Qmn is negative is finite. For the time being, we assume that Qmn is
never zero though examples where this condition is relaxed will also be considered. Without loss of
generality, we can assume that both ξ and η lie in [0,1) but they cannot both be zero as the resulting
sum does not converge.

The sum S is then conditionally convergent, but it is known that if the sum is interpreted as the
limit over rectangular lattices of increasing size, then the result will be independent of the nature of
those rectangles. In fact, it is shown in Borwein et al. (1998) that sums of the form (9) converge to
the same value when considered as the limit of expanding areas of any reasonable shape, the defini-
tion of reasonable certainly including rectangles (in the paper referred to above, Qmn is assumed to
be positive definite but the results clearly extend to the case (10)). As a result, it is valid to perform
the sum over m first and then do the sum over n.

If we write

Qmn = a(m2 + βnm + γn), (11)

then

βn =
1
a
(2bn + d) (12)

and β2
n − 4γn = −4δ2

n, where

a2δ2
n = (ac − b2)n2 + (ae − bd)n + a f − d2/4. (13)

The roots of z2 + βnz + γn = 0 are, therefore, z = µ±n, where

µ±n = −
βn
2
± iδn (14)
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and we can write

Qmn = a(m − µ+n)(m − µ−n). (15)

Thus, using (3), we obtain

S = π

a


n

e2πinη

µ−n − µ+n
*
,

eπi(2ξ−1)µ+n
sin πµ+n

− eπi(2ξ−1)µ−n
sin πµ−n

+
-

(16)

=
π

a


n

1
δn

e−πiβnξ+2πinη sinh[2πδn(1 − ξ)] + eπiβn sinh 2πδnξ
cosh 2πδn − cos βnπ

. (17)

The apparent singularity if δn = 0, for a particular n, is removable (it corresponds to the case of a
double pole) and so does not cause any difficulty. If b = d = 0, then βn = 0 and

S = π

a


n

1
δn

e2πinη cosh[πδn(1 − 2ξ)]
sinh πδn

. (18)

If we write ∆ =
√

ac − b2, we see that

δn ∼ ∆|n|/a as |n| → ∞. (19)

Hence, provided ξ , 0, (17) expresses the original two-dimensional conditionally convergent sum
as a single exponentially convergent sum. If we write

ξ∗ = min(ξ,1 − ξ) = 1/2 − |1/2 − ξ |, (20)

then the terms in the sum decay like n−1 exp(−2πξ∗∆|n|/a). Clearly, in order to achieve the best
possible convergence, we should, therefore, determine which of the indices to treat as m and which
as n to ensure that |1/2 − ξ | ≤ |1/2 − η |.

A standard technique for avoiding the problems caused by the conditional convergence of S is
to generalise the sum and instead consider

Ss =

m,n

Q−smne
2πi(mξ+nη), (21)

which converges absolutely for Re s > 1. The expression we have derived above should then corre-
spond to setting s = 1. Note that the results in Borwein et al. (1998) essentially tell us that this sum
is well behaved, in the sense that the sum is independent of any reasonable ordering of the terms,
provided Re s > 1/2.

We can evaluate Ss for Re s > 1 by modifying the method of Glasser (1974) to accommodate
the indefinite nature of Qmn. First, we split the sum into two depending on the sign of δ2

n,

Ss = S−s + S+s =

m


δ2
n<0

Q−smne
2πi(mξ+nη) +


m


δ2
n>0

Q−smne
2πi(mξ+nη). (22)

For S+s , we express the summand as a Mellin transform and interchange summation and integration,

S+s =
1
Γ(s)

 ∞

0
xs−1


m


δ2
n>0

e2πi(mξ+nη)−Qmnx dx. (23)

Note that a2δ2
n = aQmn − (am + bn + d/2)2 and so δ2

n > 0 implies Qmn > 0.
Jacobi’s imaginary transformation in the form (Whittaker and Watson, 1927, p. 476)

m

e−m
2xe2miz =

(
π

x

)1/2 
m

e−(mπ+z)2/x x > 0 (24)

shows that, for each n,
m

e2πi(mξ+nη)−Qmnx =

(
π

ax

)1/2 
m

e−
π2
ax (m+ξ)2−δ2

nax−πiβn(m+ξ)+2πinη, (25)
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valid for all x ∈ (0,∞). If we use this in (23), we get

S+s =
π1/2

a1/2Γ(s)
 ∞

0
xs−3/2


m


δ2
n>0

e−
π2
ax (m+ξ)2−δ2

nax−πiβn(m+ξ)+2πinη dx. (26)

Integration and summation can again be interchanged and the integral can be evaluated in terms of
modified Bessel functions (Gradshteyn and Ryzhik, 2000, 3.486(4)), leading to

Ss =
2πs

asΓ(s)

m


δ2
n>0

�����
m + ξ

δn

�����

s−1/2

Ks−1/2(2π |δn(m + ξ)|) e−πiβn(m+ξ)+2πinη

+

m


δ2
n<0

Q−smne
2πi(mξ+nη). (27)

The first sum then converges exponentially in both m and n. The second sum is finite in n, but still
contains an infinite sum over m which converges like m−2se2πimξ. The first person to establish the
relationship between phase-modulated sums (the sum over m in (21)) and sums of modified Bessel
functions appears to have been Kober (1935).

We now specialise to the case s = 1 (and write S for S1). Note that K1/2(z) = e−z
√
π/2z. From

(27), we have

S = π

a


m


δ2
n>0

1
δn

e−2πδn |m+ξ |e−πiβn(m+ξ)+2πinη +

m


δ2
n<0

Q−1
mne

2πi(mξ+nη). (28)

Since m + ξ ≥ 0 for m = 0,1,2, . . . and m + ξ ≤ 0 for m = −1,−2,−3, . . ., the first sum over m can
be split at m = 0 into two geometric progressions that can be summed explicitly. The second sum,
which is finite in n, is evaluated using (3). This leads to (17) as before.

Cases where Qmn vanishes can be handled by using the appropriate results from Sec. II. We will
illustrate by means of a simple example. Consider

S =

m,n

′ e2πi(mξ+nη)

m2 + n2 − p
, (29)

where p is a positive integer and any terms where m2 + n2 = p are omitted. For a particular n there
are three possibilities; either n2 = p, in which case we use (8) with k = 0, or n2 − p = −k2 for some
non-zero integer k, in which case we use (7), or neither of these, in which case we use (18). Thus,

m,n

′ e2πi(mξ+nη)

m2 + n2 − p
=


n

e2πinη fn, (30)

where

fn =




π2

3
(1 − 6ξ + 6ξ2), if n2 = p,

cos 2πkξ
2k2 + π(2ξ − 1) sin 2πkξ

k
, if


p − n2 = k ∈ Z \{0},

π cosh[πδn(1 − 2ξ)]
δn sinh πδn

, δn =


n2 − p, otherwise.

(31)

For sufficiently large |n|, the third condition always applies and so (30) gives an exponentially
convergent representation for the sum.

IV. THE HELMHOLTZ GREEN’S FUNCTION FOR A TWO-DIMENSIONAL LATTICE

A quasi-periodic Green’s function is an array of sources modulated by a phase factor governed
by a Bloch vector β. For the Helmholtz equation with frequency parameter κ, this is a doubly
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infinite sum of phase modulated Hankel functions. Formally, the Green’s function can be expressed
as the spatial sum

G(r) = − i
4


Rmn∈Λ

H0(κ |r − Rmn|) eiβ ·Rmn. (32)

Here, Λ is a two-dimensional lattice, the points of which have position vectors

Rmn = ms1 + ns2, m ∈ Z, n ∈ Z. (33)

The vectors s1 and s2 are linearly independent but otherwise arbitrary. Since the difference between
any two lattice vectors Rmn and Ri j is also a lattice vector, it follows from (32) that

G(r + Ri j) = eiβ ·Ri jG(r), (34)

which demonstrates the quasi-periodicity of G. This function occurs naturally in a number of
physical contexts when considering the propagation of waves through a doubly periodic medium.
An example of how the quasi-periodic Green’s function can be used in a sophisticated numerical
scheme can be found in Barnett and Greengard (2010).

Reciprocal lattice vectors are defined via

Kmn = 2π(mb1 + nb2), m ∈ Z, n ∈ Z, (35)

where

si · b j = δi j, i, j = 1,2. (36)

The crucial property of the reciprocal lattice vectors is that for any integers i, j,m,n,

eiRmn·Ki j = 1. (37)

The area of a unit cell of the lattice Λ isA = |s1 × s2|. It follows from (37) that we can restrict β to a
single cell of the reciprocal lattice (or any equivalent region, such as the Brillouin zone (Brillouin,
1953, Chap. 6)). In other words, we can assume that β = 2π(σb1 + τb2) where 0 ≤ σ < 1 and
0 ≤ τ < 1.

The Poisson summation formula can be used to express G as a sum over the reciprocal lattice,
Λ∗. Such series are called dual, or spectral, series. We choose an appropriate integral representation
for the Hankel function H0, substitute this into (32), and use the Poisson summation formula (see,
for example, Linton (2010, Sec. 2)). If we define

βmn = β +Kmn, βmn = |βmn|, (38)

we obtain

G =
1
A


Kmn∈Λ∗

eir·βmn

κ2 − β2
mn
= −eir·β

A


Kmn∈Λ∗

eir·Kmn

β2
mn − κ2 . (39)

For the purposes of calculation, let us fix r = ξs1 + ηs2, with ξ and η both in [0,1) though not
both zero, so that

r ·Kmn = 2π(ξs1 + ηs2) · (mb1 + nb2) = 2π(mξ + nη) (40)

and we have, with β = |β |,
β2

mn = β2 + 4πβ · (mb1 + nb2) + 4π2(mb1 + nb2)2. (41)

Based on the discussion after Eq. (20), we will achieve the best possible convergence if we ensure
that |1/2 − ξ | ≤ |1/2 − η | which we can always do by interchanging ξ,η and m,n if necessary. Then,

Kmn∈Λ∗

eir·Kmn

β2
mn − κ2 ≡


m,n

e2πi(mξ+nη)

am2 + 2bmn + cn2 + dm + en + f
, (42)

where, with bi = |bi |, i = 1,2,

a = 4π2b2
1, b = 4π2b1 · b2, c = 4π2b2

2, d = 4πβ · b1, e = 4πβ · b2, f = β2 − κ2. (43)
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Since b1 and b2 cannot be parallel, ac − b2 > 0 and we have

∆ = 4π2


b2
1b2

2 − (b1 · b2)2 = 4π2b1b2 sin χ, (44)

where χ ∈ (0, π) is the angle between the vectors b1 and b2. Simple calculations then show that

ae − bd = 2τ∆2, a f − d2/4 = τ2
∆

2 − 4π2b2
1κ

2, (45)

and hence, βn and δ2
n, defined in (12) and (13), are given by

βn = 2 *
,
σ +

n + τ

b2
1

b1 · b2+
-
, (46)

δ2
n =

1
16π4b4

1

�
∆

2(n + τ)2 − 4π2b2
1κ

2� . (47)

With these values for βn and δ2
n (if one of ξ or η is zero, we can assume it is η), we then have the

exponentially convergent sum

G = −πeir·β

aA

n

1
δn

e−πiβnξ+2πinη sinh[2πδn(1 − ξ)] + eπiβn sinh 2πδnξ
cosh 2πδn − cos βnπ

. (48)

For each value of n, there are singularities, whenever ±iδn − βn/2 = m is an integer, equivalent to
pairs (m,n) for which κ2 = β2

mn. These singularities correspond to resonances of the unit cell of
the lattice (i.e., eigenvalues of the negative Laplacian on a cell of the lattice with quasi-periodic
boundary conditions; see Ham and Segall (1961) and Barnett and Greengard (2010)). In the context
of photonic crystals, they can be thought of as the result of the dispersion relation intersecting
a light line. The terms in the sum decay like n−1 exp(−2πξ∗|n|(b2/b1) sin χ), and so, for a given
lattice, convergence will deteriorate as the position vector r approaches points of the lattice (as this
corresponds to ξ∗ → 0). These are points at which, from (32), G has a logarithmic singularity.

V. REPRESENTATIONS IN TERMS OF θ-FUNCTIONS

From (17), noting that δn is real and positive for sufficiently large n, we can expand the
denominator in powers of e−2πδn to yield

S = π

a


n

1
δn

e2πinηe−πiβnξ
∞
j=0

*
,
e−2πδn( j+ξ) − e−2πδn(2+ j−ξ)

+eπiβn
(
e−2πδn( j+1−ξ) − e−2πδn( j+1+ξ))+

-
U j(cos βnπ), (49)

where U j(cos θ) = sin[( j + 1)θ]/ sin θ is a Chebyshev polynomial of the second kind. This can be
rearranged, taking advantage of properties of the Chebyshev polynomials: U0(x) = 1, U1(x) = 2x,
U j(x) − xU j−1(x) = xU j−1(x) − U j−2(x) = T j(x), T j(cos θ) = cos jθ, to yield

S = π

a


n

1
δn

e2πinηe−πiβnξ *.
,
e−2πξδn +

∞
j=1

(
e−πi jβne−2π( j+ξ)δn + eπi jβne−2π( j−ξ)δn)+/

-
. (50)

This representation is exponentially convergent in both j and n and holds for any sum of form (9)
with Qmn as in (10).

If δ2
n is a multiple of (n + ν)2 for some rational number ν, then (50) can be evaluated in terms of

θ-functions. Since Qmn = a((m + βn/2)2 + δ2
n), we consider sums of the form

S =

m,n

e2πi(mξ+nη)

x2(m + µ + λ(n + ν))2 + (n + ν)2 , (51)
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for which βn = 2(µ + λn + λν) and δn = |n + ν |/x (x > 0). Sums of this type form only a subset
of those where Qmn is of form (10), in particular Qmn must be positive definite, but the results
derived in this section would appear to extend significantly the available θ-function representations
for phase-modulated lattice sums.

Below, we consider three separate cases. First, we consider the case when ν ∈ Q is not an
integer. In this case, the denominator never vanishes, whatever the values of λ and µ and they
can take arbitrary real values. However, in order to derive a θ-function representation, we need
to insist that µ is rational (it may take integer values). The second case is when ν is an integer.
Clearly by shifting the index n, it is easy to express such a sum in terms of the ν = 0 case. We
then need to insist that µ is not an integer to avoid a vanishing denominator, and in order to derive
a θ-function representation, we again need to consider rational values of µ. Finally, we consider
the case when µ = ν = 0 with the m = n = 0 term omitted. This latter case is equivalent to that
considered in Stremler (2004) and will only be touched on briefly. Sums with other integer pairs µ,
ν (with the appropriate term omitted) are easily expressed in terms of this.

The numbering that we use for θ-functions follows Whittaker and Watson (1927). A number of
basic properties of θi(z,q), i = 1,2,3,4 will be used below and we collect them here for reference.
Thus, if Im τ > 0 and q = eiπτ, then

θ1(z + π,q) = −θ1(z,q), θ1(z + πτ,q) = −e−2ize−πiτθ1(z,q),
θ1(z + π/2,q) = θ2(z,q), θ4(z + πτ/2,q) = ie−ize−iπτ/4θ1(z,q), (52)

θ3(z + πτ/2,q) = e−ize−iπτ/4θ2(z,q).
Taken together these identities allow us to express θ1(z + mπ/2 + nπτ/2,q) for any integers m and n
as a multiple of one of the functions θi(z,q).

Sometimes, a particular sum can be evaluated in terms of θ-functions in more than one way,
leading to an identity between these functions, which is invariably equivalent to Jacobi’s imaginary
transformation. This transformation has already been used in series form in Sec. III. In terms of
θ-functions, this transformation gives rise to, for example,

θ1(z,q) = −i(−iτ)−1/2ez
2/πiτθ1(τ′z,q′), |arg(−iτ)| < π/2, (53)

θ1(z,q)
θ2(z,q) = −i

θ1(τ′z,q′)
θ4(τ′z,q′) ,

θ3(z,q)
θ4(z,q) =

θ3(τ′z,q′)
θ2(τ′z,q′) , (54)

where τ′ = −1/τ and q′ = eiπτ′.

A. Case 1: ν = q/p, where q and p are integers and p does not divide q

Define ζp = e2πi/p (since p does not divide q we have p > 1). We make use of the identity, valid
for |r | < 1,


n

e2πinη

|pn + q| r
|pn+q | = −1

p

p−1
ℓ=0

ζ
−q(ℓ+η)
p ln

(
1 − ζ

ℓ+η
p r

) (
1 − ζ

−ℓ−η
p r

)
. (55)

One way to establish this identity is to expand the right-hand side as a Taylor series in r . One finds
that the coefficient of rm is

1
pm

*.
,
ζ
η(m−q)
p

p−1
ℓ=0

ζ
ℓ(m−q)
p + ζ

−η(m+q)
p

p−1
ℓ=0

ζ
−ℓ(m+q)
p

+/
-
.

The first sum over ℓ is zero unless (m − q)/p is an integer. If it is, there is an integer n such that
m = pn + q and the sum equals p. Similarly, the second sum is zero unless there is an integer n such
that pn + q = −m and then the sum is again p.
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If we use this in (50) with βn = 2(µ + λn + λν) and δn = |n + ν |/x, we obtain

S = −π
x

e−2πiµξ
p−1
ℓ=0

ζ
−q(ℓ+η)
p


ln
�
1 − e2πiαℓ

�2

+

∞
j=1

(
e−2πi jµ ln

�
1 − e2πiαℓρ2 j�2 + e2πi jµ ln

�
1 − e−2πiαℓρ2 j�2

) 
, (56)

where

αℓ =
1
p
(ℓ + η + ξ (i/x − λ)) , ρ = eπi(i/x−λ)/p. (57)

Equation (56) is valid for all µ, but in order to make further progress, we assume that µ = r/s, r and
s integers with s > 0. The sum over j can be split into s separate sums depending on the value of
j mod s and each of these new sums can be written as a sum over all positive integers k by suitably
defining k in each case. If we define

T±t =
∞
k=1

ζ±r ts ln ���1 − e∓2πiαℓρ2[s(k−1)+t]��� , (58)

then

S = −2π
x
ζ
−rξ
s

p−1
ℓ=0

ζ
−q(ℓ+η)
p


ln |sin αℓ| +

s
t=1

�
T−t + T+t

�
, (59)

where we have made use of the fact that
p−1

ℓ=0 ζ
−ℓq
p = 0.

Now,

T−s + T+s = ln
∞
k=1

�
1 − 2ρ2sk cos 2παℓ + ρ4sk� = ln

�����
θ1(παℓ, ρ

s)
2Gρs/4 sin παℓ

�����
, (60)

where G is defined via 2ρs/4G3 = θ ′1(0, ρs) (Whittaker and Watson, 1927, Secs. 21.3 and 21.42).
The factor 2Gρs/4 can, however, be ignored because it vanishes when the sum over ℓ is performed.
The rest of the sum over t can be evaluated by noting that

s−1
t=1

�
T−t + T+t

�
=

s−1
t=1

�
T−s−t + T+t

�
(61)

=

s−1
t=1

ζ r ts ln
∞
k=1

���1 − 2ρs(2k−1) cos[2π(αℓ + τ(1/2 − t/s))] + ρ2s(2k−1)��� (62)

=

s−1
t=1

ζ r ts (ln |θ4(π(αℓ + τ(1/2 − t/s)), ρs)| − ln |G|) , (63)

where τ = s(i/x − λ)/p (so that ρs = eπiτ). The function θ4 can be expressed in terms of θ1 using
(52) and we note that the modulus of the resulting factor multiplying θ1 does not depend on ℓ and so
vanishes when the sum over ℓ is performed. Putting everything together yields the final result

m,n

e2πi[(m+µ)ξ+(n+ν)η]

x2(m + µ + λ(n + ν))2 + (n + ν)2 = −
2π
x

p−1
ℓ=0

s−1
t=0

e2πi(tµ−ℓν) ln |θ1 (παℓt, ρ
s)| , (64)

where µ = r/s, ν = q/p and

αℓt =
1
p
(ℓ + η + (t − ξ) (λ − i/x)) , ρ = eπi(i/x−λ)/p. (65)

Alternatively,

παℓt = z +
πℓ

p
− πtτ

s
, ρs = eπiτ, z =

πη

p
+

πξτ

s
. (66)
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In this form, we can see that our original sum has been expressed as a sum involving the evaluation
of a θ-function at ps points distributed across the fundamental parallelogram of the θ-function
shifted by the complex number z.

The singularity as (ξ,η) → (0,0) is easily extracted since θ1(w, ρ) ∼ θ ′1(0, ρ)w +O(w2) as
w → 0. The zeros of θ1(w,eπiτ) occur at w = (m + nτ)π for integers m and n. Hence, the leading-
order behaviour in (64) as (ξ,η) → (0,0) comes from the ℓ = t = 0 term and we get the logarith-
mic singularity −(π/x) ln[(η − λξ)2 + ξ2/x2]. Note that (64) is valid if r = 0, in which case the
right-hand side is independent of the value chosen for s, though this is far from obvious.

Equation (64) is a generalisation of results that appear in Berndt et al. (2012) for the case λ = 0,
µ ≡ r/s = 0, and ξ = η = 1/2. In the case where q/p = r/s = 1/2, the sum can be cast as a sum
over odd integers, and for λ = 0, this case was considered recently in Bailey and Borwein (2013).
From (64), we can show

m,n odd

eπi(mξ+nη)

x2(m + λn)2 + n2 =
π

2x
ln
������

θ2
�
z,e−π/x−πiλ� θ4

�
z,e−π/x−πiλ�

θ1
�
z,e−π/x−πiλ

�
θ3
�
z,e−π/x−πiλ

�
������
, (67)

where z = π(η − λξ + iξ/x)/2, in agreement with Bailey and Borwein (2013, Eq. (47)) when λ = 0.
For specific values of the parameters, it is sometimes possible to express the combination of
θ-functions that appear in formulas of this type as the root of a polynomial equation and hence
evaluate the sum as the logarithm of an algebraic number. A particularly nice example, which we
reproduce here from Bailey and Borwein (2013), is given by setting x2 = 3, ξ = λ = 0, and η = 1/3
in (67), whence it can be shown that 

m,n odd

enπi/3

3m2 + n2 =
π ln 3

8
√

3
. (68)

When λ = 0 and x = 1, sums of form (51) can be related to the displaced lattice sums inves-
tigated by McPhedran et al. (2007); see also Chaps. 3 and 4 of Borwein et al. (2013). The most
significant difference between their work and that presented here is that our focus is on phase-
modulated sums rather than raising the denominator to the power s (not to be confused with the
integer s in the rest of this section) and relating the sums to Dirichlet L-series. As the most simple
example, if we set ξ = η = 0 (but raise the denominator to the power s so that we have convergence
provided Re s > 1), then Glasser (1973) showed that


m,n odd(m2 + n2)−s = 22−s (1 − 2−s) ζ(s)β(s),

where ζ(s) is the Riemann zeta function and β(s) is Dirichlet’s beta function defined for Re s > 0
by

∞
n=0(−1)n/(2n + 1)s. This shows the singular nature of the sum as s → 1+ since ζ(s) has a

simple pole at s = 1 whilst β(1) = π/4.
Returning to (64), cases where either or both of p and s are greater than 2 lead to more

complicated expressions. As an illustration, we provide two examples,


m,n

e2πi[(m+1/2)ξ+(n+1/4)η]

x2(m + 1/2)2 + (n + 1/4)2 =
2π
x

ln
������

θ2
�
z,e−π/2x� θ4

�
z,e−π/2x�

θ1 (z,e−π/2x) θ3 (z,e−π/2x)
������

+
2πi
x

ln
������

θ1
�
z̃,e−π/2x� θ3

�
z̃,e−π/2x�

θ2 (z̃,e−π/2x) θ4 (z̃,e−π/2x)
������
, (69)

where z = (π/4)(η + iξ/x) and z̃ = z + π/4, and


m,n

e2πi[(m+1/3)ξ+(n+1/3)η]

x2(m + 1/3)2 + (n + 1/3)2 = −
2π
x

ln |Θ00Θ11Θ22|

+
π

x
ln |Θ01Θ10Θ12Θ21Θ02Θ20| − πi

√
3

x
ln
�����
Θ01Θ12Θ20

Θ10Θ21Θ02

�����
, (70)

where we have written

Θm,n = θ1

(
π

3
(η + iξ/x + m − in/x),e−π/x

)
. (71)
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The techniques used in Bailey and Borwein (2013) can no doubt be extended to allow expressions
like those that appear on the right-hand sides of (69) and (70) to be written in terms of logarithms of
algebraic numbers for specific rational values of ξ, η, and x.

B. Case 2: ν = 0, µ not an integer

In this case, βn = 2(µ + λn) and δn = |n|/x. The n = 0 term in (17) needs to be treated sepa-
rately, using (4), and then the other terms are expanded as in (50). We can then make use of the
series expansion ln(1 − z) = −∞

n=1 zn/n, valid provided |z | ≤ 1 and z , 1. In this way, we can
show that

S = π2e−2πiµξ

x2 sin2 πµ
(1 − ξ + ξe2πiµ) − 2π

x
e−2πiµξ


ln
�
1 − e2πiα�

+

∞
j=1

�
e−2πi jµ ln

�
1 − e2πiαρ2 j� + e2πi jµ ln

�
1 − e−2πiαρ2 j��


, (72)

where α = η − λξ + iξ/x and ρ = e−π/xe−πiλ.
Once again, we assume that µ = r/s, r and s integers, though now we need to insist that µ is not

an integer. The analysis is essentially the same as before but now there is no sum over ℓ to knock out
the factors which appear when the infinite products are written in terms of θ-functions. However,s−1

t=0 ζ
r t
s = 0 and thus we find that

S = π2e−2πiµξ

x2 sin2 πµ
(1 − ξ + ξe2πiµ) − 2π

x
e−2πiµξ


π

x

( s
4
− ξ

)
+ ln |θ1(πα, ρs)|

+

s−1
t=1

ζ r ts (ln |θ4(π(α + τ(1/2 − t/s)), ρs)|)

. (73)

If we now express θ4 in terms of θ1 and note that

s−1
t=1

tζ r ts =
s

ζ rs − 1
, (74)

(µ = r/s is not an integer), we arrive at


m,n

e2πi[(m+µ)ξ+nη]

x2(m + µ + λn)2 + n2 =
π2

x2 sin2 πµ


1 +

(
ξ − s

2

) �
1 − e−2πiµ�



− 2π
x

s−1
t=0

e2πitµ ln
�
θ1
�
πα − πtτ/s,eπiτ�� , (75)

where τ = s(i/x − λ).
If λ = 0, we get nothing new here because the sum could equally well be evaluated from

(64), the equivalence of the two resulting expressions being a consequence of (53). If we set
µ ≡ r/s = 1/2 in (75), we obtain

m,n

e2πi[(m+1/2)ξ+nη]

x2(m + λn + 1/2)2 + n2 =
π2

x2 (2ξ − 1) − 2π
x

ln
������

θ1
�
πα,eπiτ�

θ1 (πα − πτ/2,eπiτ)
������

(76)

= −2π
x

ln
������

θ1
�
πα,e−2π/x−2πiλ�

θ4
�
πα,e−2π/x−2πiλ

�
������
, (77)

where we have used (52).
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C. Case 3: µ = ν = 0

We consider

S =

m,n

′ e2πi(mξ+nη)

x2(m + λn)2 + n2 , (78)

where the m = n = 0 term is omitted. Note that any sum with denominator am2 + 2bmn + cn2 and
ac > b2 can be written as a multiple of a sum of this type. We have βn = 2λn, δn = |n|/x, and
the only value of n for which −βn/2 ± iδn is an integer is n = 0. The sum over m when n = 0 is
evaluated using (8) and we obtain

S = π2

3x2

�
1 − 6ξ + 6ξ2� + π

x


n

′1
n

e−2πiλnξ+2πinη sinh[2πn(1 − ξ)/x] + e2πiλn sinh 2πnξ/x
cosh 2πn/x − cos 2λnπ

. (79)

The sum can be treated as in the previous case except that now µ = 0 and so

S = π2

3x2

�
1 − 6ξ + 6ξ2� − 2π

x


ln
�
1 − e2πiα� + ln

∞
j=1

�
1 − 2ρ2 j cos 2πα + ρ4 j�


, (80)

where again α = η − λξ + iξ/x and ρ = e−π/xe−πiλ. If we now write the infinite product as a
θ-function and simplify, we obtain the result

m,n

′ e2πi(mξ+nη)

x2(m + λn)2 + n2 =
2π2ξ2

x2 − 2π
3x

�
ln 2 + 3 ln |θ1(πα, ρ)| − ln

�
θ ′1(0, ρ)

��
, (81)

which is equivalent to Stremler (2004, Eq. (24)) and, with λ = 0, to Borwein et al. (2013, Eq.
(3.3.18)).
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