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THE ROSTHERNE BELL 
By D. Watts Russell 

 

Merrily, merrily, over the Mere, 

The echoes rose and fell; 

Rose on the breeze, fell on the ear, 

Dingdong the Rostherne bell. 

 

On buttress old, and crumbling stone, 

The masons plied their trade, 

Repaired the courses overthrown, 

The rents that time had made. 

 

When, lo! from battlement to base 

A shivering shakes the steeple; 

Down drops the big bell from its place, 

Right in among the people! 

 

Down the steep bank that crowns the lake 

It crashed, and leapt, and rolled, 

Through birch-wood copse, and briar, and brake, 

And ’mid the Lindens old. 

 

Till on the margin of the Mere, 

’Tis fain at length to settle, 

Exhausted by its mad career, 

That ponderous mass of metal. 

 

But oh the sweat, and oh the toil, 

The strain of the muscles’ power, 

The bursting sob, the weary coil 

To try it back to the Tower! 

 

Quoth one in wrath: ‘Thou senseless lump, 

I would the devil had you!’ 

When at the word, with a spring and a thump, 

Back towards the lake it flew. 

 

First, in its headlong course, it crushed 

Th’ unlucky wight who swore, 

Then down the bank it madly rushed 

They never saw it more. 

 

In depths unfathomable drowned, 

No more that tuneful tongue 

Shall greet the ear with cheerful sound 

At morn or even song. 

 

And now whenever peal the bells 

From Rostherne’s tower so hoary, 

The wailing sound too plainly tells 

Of its departed glory. 
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ABSTRACT 
 
Much of the current research into the processing and storage of carbon (C) in small 
lakes has focused on arctic and boreal lake systems, due to their global abundance.  
However this has led to an imbalance in the interpretation of lake functioning.  
Oligotrophic lakes are prevalent in the arctic and boreal zone, but are typically net 
heterotrophic due to loading of catchment-derived dissolved organic carbon (DOC) 
which alters their metabolic balance.  In comparison, temperate lake systems tend to 
be more nutrient rich, typically due to anthropogenic activity, and would therefore be 
expected to exhibit the signs of net autotrophy, as a result of higher rates of gross 
primary production (GPP) and lower rates of catchment-derived DOC potentially 
subsidising respiration (R). 
 
In order to test the hypothesis that temperate, eutrophic lakes are net autotrophic 
(GPP > R) on an annual basis the C-dynamics of Rostherne Mere (maximum depth, 
zm, 31 m) and Tatton Mere (zm = 11 m), two monomictic Cheshire-Shropshire meres, 
were quantified over an 18 months period from 2010 – 2012.  This monitoring study 
used high-resolution (hourly) oxygen (O2) sonde measurements, combined with 
high-resolution data from an automated on-lake monitoring buoy at Rostherne Mere 
(as part of the national UKLEON lake network) to calculate rates of epilimnion C-
fixation.  For both lakes, sediment traps were also used to determine water column 
C-flux and sediment core data to establish C-burial efficiency of these strongly 
stratifying lakes.  Water column profiles of dissolved O2 and CO2 was also measured 
at 2 – 4 weekly intervals across both lakes.  Particular attention was focused on: i) 
the long term C-storage of eutrophic, monomictic lakes; ii) up-scaling C-
accumulation estimates from these two meres to the Cheshire-Shropshire meres 
region and all UK eutrophic waters; and iii) methodological sensitivity for estimating 
C-fixation, flux and burial efficiency and upscaling C-accumulation estimates.  The 
results show that both lakes are net autotrophic on an annual basis, on average 
fixing 121 ± 2 g C m-2 yr-1 and sequestering 68 ± 4 g C m-2 yr-1, a C-burial efficiency 
of ~60%. 
 
If up-scaled to the Cheshire-Shropshire meres region, annual C-accumulation was 
estimated to be 506 ± 32 t C yr-1 or 0.05 ± 0.001 Mt C since 1900.  From this, it was 
estimated that UK eutrophic waters could be sequestering 0.12 ± 0.01 Mt C yr-1 or 
13.3 ± 0.2 Mt C since 1900.  Annual UK CO2 emissions are ~128.85 Mt C yr-1, 
therefore UK eutrophic waters currently offset 0.09% of yearly UK CO2 emissions. 
 
Despite the finding that eutrophic, stratifying lakes have high C-fixation and 
sequestration values, lakes in other areas of the globe such as the arctic and boreal 
zones are typically a more important long term C-sink as they are far more abundant 
within the landscape and local soils are typically very poor within low C retention 
rates.  Further investigation is needed into how lakes function on a regional and 
national scale, the importance of lake type and number when up-scaling C 
accumulation estimates and the potential impact on future C accumulation as a 
result of a changing environment and supra-regional policies in areas such as 
Europe. 
 
Keywords: limnology, carbon cycle, lake metabolism, autotrophy, heterotrophy, 
eutrophication, lake sediments, temperate, high-resolution monitoring, Rostherne 
Mere, Tatton Mere.
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1 INTRODUCTION 

 

1.1 RESEARCH IN CONTEXT 

The Earth’s climate is regulated by complex chemical, physical and biological 

interactions between the atmosphere, terrestrial biosphere and hydrosphere.  These 

processes are extremely sensitive to change, particularly within the atmosphere, 

through either natural or anthropogenic emissions of gases and aerosols and can 

produce feedbacks to the climate system (Denman et al., 2007).  The global carbon 

cycle has a vital role within the climate system as it incorporates terrestrial, aquatic 

and atmospheric processes. 

 

The natural carbon cycle is driven through the continuous exchange of large 

volumes of carbon, particularly in gaseous forms CO2 and CH4, between the 

atmosphere, terrestrial biosphere and hydrosphere.  For the last ~10,000 years this 

natural system has largely maintained stable concentrations of atmospheric gases , 

however since ~1750, anthropogenic burden of this system has led to the natural 

cycle being perturbed by human activities such as increases in fossil fuel emissions 

and land cover change, which releases previously captured carbon back into the 

atmosphere, see Figure 1.1 (Denman et al., 2007; Prentice et al., 2001).  Currently, 

the rate of anthropogenic CO2 emissions are outpacing the storage potential of the 

natural carbon cycle, leading to global levels of atmospheric CO2 to rise steadily from 

around 275 µmol mol-1 in 1750 to approximately 390 µmol mol-1 in 2011 (NOAA, 

2013).  There is currently an upward trend of around 1.9 µmol mol-1 a year, the 

largest growth rate observed since continuous direct atmospheric measurement 

began.  Prior to industrialisation decadal and centennial changes in atmospheric CO2 

variations were less than 10 µmol mol-1 and most likely due to natural processes 

(Figure 1.2). 

 

The rate of global atmospheric CO2 change is however not stable as short-term, 

interannual variations in the rate of atmospheric CO2 concentration change are 

primarily controlled by changes in the flux of CO2 between the atmosphere and the 

terrestrial biosphere, with a smaller but significant fraction due to buffering on the 

oceans.  The variability in the terrestrial flux with the atmosphere is driven in 
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response to climatic fluctuations in temperature, precipitation, CO2 and nutrient 

availability.  If the climate was to become more favourable for growth, the likelihood 

is that productivity increases and carbon uptake from the atmosphere is enhanced 

through the uptake of CO2 by plants and the return of CO2 to the atmosphere by the 

decay of organic material.  El Niño-Southern Oscillation (ENSO) events are also a 

major source of interannual variability in atmospheric CO2 concentration, as they 

affect the interaction between biospheres through changes to land and sea surface 

temperatures, precipitation and the increased incidence of fires (Denman et al., 2007; 

Prentice et al., 2001). 

 

 

 
Figure 1.1 The global C cycle for the 1990s, showing the main annual fluxes in GtC 

yr-1.  Pre-industrial ‘natural’ fluxes are solid lines and ‘anthropogenic’ modifications 

and fluxes are dashed lines, italics and underlined (modified from Denman et al., 

2007) 

 

After entering the atmosphere about 50% of anthropogenic CO2 remains trapped 

here, whilst about 30% is taken up by the oceans and the remainder utilised in the 

terrestrial biosphere.  The majority of the anthropogenic CO2 pulse retained in the 

atmosphere is removed within 30 years; a further 30% is removed within a few 
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centuries; and the remaining 20% will typically stay in the atmosphere for many 

thousands of years (Denman et al., 2007).  Increasing levels of CO2 within the 

atmosphere can have a negative feedback effect on the climate as a consequence of 

enhancing the natural greenhouse effect within the earth’s atmosphere where water 

vapour and CO2 trap surface reflected, long wave radiation within the atmosphere 

which is then re-radiated either into space or back toward the earth’s surface 

(Lockwood, 2005).  Carbon uptake and storage in the terrestrial biosphere arises 

from the net difference between carbon uptake by vegetation growth, reforestation 

and soil sequestration, and carbon loss due to heterotrophic respiration, 

deforestation, fire, pollution and other disturbance factors affecting biomass and soils 

(Solomon et al., 2007). 

 

Figure 1.2 Atmospheric concentrations of CO2 over the past 1,000 years. Ice core 

and firn data for several sites in Antarctica (shown by different symbols) are 

supplemented with the data from direct atmospheric measurements at Mauna Loa 

(red line) over the past few decades (Prentice et al., 2001). 

 

Similarly to increases in atmospheric CO2 concentrations global average surface 

temperatures have increased significantly during the 20th Century, especially since 

1950, see Figure 1.3.  The rate of warming over the last 50 years (0.13°C ± 0.03°C 

per decade) is nearly twice that for the last 100 years trend with most of the 

observed increase in global average temperatures since the mid-20th century being 

very likely due to the observed increase in anthropogenic greenhouse gas 

concentrations (Solomon et al., 2007).  The most prominent effects of increasing 

temperatures are reduced terrestrial and ocean uptake of atmospheric CO2, 

increasing the fraction of anthropogenic emissions remaining in the atmosphere. 
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This positive carbon cycle feedback leads to larger atmospheric CO2 increases and 

greater climate change with increased emissions, but the strength of this feedback 

effect varies markedly among current climate models (Denman et al., 2007; Solomon 

et al., 2007). 

 

Warming over the last few decades is widespread across the globe and has been 

faster over land regions than the oceans, but due to the distribution of continental 

landmass is greatest at higher northern latitudes.  There is evidence to suggest long 

term changes in large scale atmospheric circulation, such as strengthening westerly 

winds and modification of the North Atlantic Oscillation (NAO), influencing regional 

climate trends and weather patterns where there are strong interactions with the 

atmosphere, oceans and other components of the climate system (Trenberth & 

Jones, 2007). 

 

 

Figure 1.3 Millennial Northern Hemisphere (NH) temperature reconstruction (blue) 

and instrumental data (red) from AD 1000 to 1999. Smoother version of NH series 

(black), and two standard error limits (gray shaded) are shown (Houghton et al., 

2001). 
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The increase in global atmospheric CO2 levels leads to both positive and negative 

feedbacks to the carbon and climate system as a result of biogeophysical and 

biogeochemical processes in terrestrial and aquatic systems. Changes in the rate of 

terrestrial photosynthesis and plant productivity respond to variations in temperature, 

precipitation and nutrient availability. If climate conditions become more favourable 

for growth, productivity increases, and carbon uptake from the atmosphere and 

storage in the terrestrial system is enhanced. Land-use changes however, such as 

deforestation, lead to loss of carbon from vegetation and soils. Even so, the current 

global balance in terrestrial systems is a net uptake of CO2 (Cole et al., 2007; 

Prentice et al., 2001; Dean & Gorham, 1998).  Changes to productivity in aquatic 

systems are more complex however, as CO2 does not significantly limit 

photosynthesis in the oceans.  Other physical and biological factors such as light 

availability, temperature, nutrient availability and competition have much greater 

influence on organisms, meaning anthropogenic carbon is not directly taken up and 

stored.  However, considerable volumes of CO2 can be buffered within the water 

column through the dissolution of calcium carbonate (CaCO3) from the deep ocean 

(Denman et al., 2007). 

 

Table 1.1 The organic carbon burial rates in lakes and oceans gathered from a 

range of sources.  Lake types studied denoted by o = oligotrophic, m = mesotrophic, 

e = eutrophic and r = reservoir. 

 

 Source 
Lake types 

studied 

Burial rate 

(g C m
-2

 yr
-1

) 

Total burial 

(Tg C yr
-1

) 

Oceans 

~71% Surface 

Dean & Gorham (1998) 

Denman et al. (2007) 

- 

- 

- 

- 

97 

100 

All Lakes 

~0.6% Surface 

Dean & Gorham (1998) 

Stallard (1998) 

Einsele et al. (2001) 

Cole et al. (2007) 

o m r 

o m r 

o m e r 

o m e r 

14 

4.5 

- 

- 

42 

- 

69 

50 

Small Lakes 

(< 500 km
2
) 

~0.2% Surface 

Mulholland & Elwood (1982) 

Dean & Gorham (1998) 

Einsele et al. (2001) 

o 

o m 

o m e 

27 

72 

40 

- 

23 

48 

 

Despite the importance of terrestrial and atmospheric carbon cycling most of the 

research investigating the response of natural systems to projected anthropogenic 

CO2 rises has been focused on the oceans because they provide the largest 
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potential global carbon sink (Cole et al., 2007; Downing et al., 2006; Einsele et al., 

2001; Dean & Gorham, 1998). More recently a number of authors have begun to 

explore the huge potential of lakes for carbon storage.  However, there are 

significant variations in the estimates given for lake C-dynamics from these studies, 

largely due to the variability of lake productivity.  This variability is typically as a result 

of lake type and trophic status, lake size, the number of lakes within different studies 

and an incomplete understanding of lake metabolism (Table 1.1). 

 

1.2 THE CARBON CYCLE IN LAKES 

Compared to the world’s oceans, small lakes (typically < 500 km2) only cover 

approximately 0.2% of the earth’s surface yet are estimated to sequester anywhere 

between 23 Tg (x1012 g) and 48 Tg of organic carbon each year, the equivalent to 

1/3 of annual ocean carbon burial (Table 1.1).  This disproportionate processing of 

carbon in small lakes makes them a potentially meaningful component of the global 

carbon cycle. 

 

 

 

Figure 1.4 A simplified conceptual diagram of carbon flux in lakes. Carbon pools 

(boxes); exchanges (dashed arrows); conversions (solid arrows); processes (labelled 

on solid arrows) (Finlay et al., 2009). 
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Figure 1.4 shows a typical open-basin lake system which has interactions with the 

terrestrial system and atmosphere.  Until recently, however, this view of lakes was 

not widely held as inland waters were considered passive transporters of organic 

and inorganic carbon from the land to the ocean.  This attitude has been challenged 

by a number of authors (Tranvik et al., 2009; Cole et al., 1994, 2007; Downing et al., 

2006) and it is now widely accepted that inland waters, especially lakes, are active 

components of the global carbon cycle that processes terrestrially derived carbon for 

storage in sediments, emission to the atmosphere or export to the oceans (Figure 

1.4). 

 

1.2.1 Organic Carbon 

Organic carbon available in lakes and rivers is generally composed of either 

dissolved or particulate matter. The most abundant fraction of the organic pool is 

DOC and plays an important role in the aquatic carbon cycle and energy balance.  

DOC is a primary food source in the aquatic food web and an essential part of the 

acid-base chemistry of many low-alkalinity freshwater systems forming water-soluble 

complexes with trace metals, aiding their mobility and transport from terrestrial 

systems to the ocean (Pace & Prairie, 2004; McKnight et al., 2003; Wetzel, 2001).  

DOC is arbitrarily defined from POC, for the purpose of scientific study, as any 

fraction below 0.45 µm, typically as the result of filtration. 

 

Typically aquatic systems contain a combination of allochthonous (terrestrially 

derived) and autochthonous (photosynthetically produced) organic carbon.  Carbon 

sourcing is known to have significant impact on lake functioning and can impact pH, 

metal binding and subsequent availability of organic compounds (Scott et al., 1998; 

McKnight et al., 1992).  The instantaneous measurement of DOC and POC has been 

found to be highly biased towards recalcitrant compounds that are resistant to 

microbial decay.  These compounds persist in inland waters for longer periods than 

more liable components which are utilised more rapidly because they are typically 

more biologically available (Bass et al., 2010; Wetzel, 2001). 

 

1.2.1.1 Allochthonous Organic Carbon 

Characteristically, the majority of allochthonous organic carbon that enters the 

aquatic environment is plant matter.  In general this plant matter enters rivers and 
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lakes as decomposed dissolved organic compounds, which has been broken down 

in-situ or the upper horizons of the soil, that it is resistant to further rapid microbial 

degradation (Wetzel, 2001; Del Giorgio & Cole, 1998).  On entering the lake, either 

from a river channel, through run-off or groundwater flow, DOC is gradually broken 

down by photochemical or biological processes to DIC and POC (Wetzel, 2001; 

Stumm & Morgan, 1981), with the resulting CO2 and CH4 typically being released to 

the atmosphere and the particulate matter transferred to the sediments.  Further 

degradation of DOC also releases bound nutrients such as P and N, increasing their 

bioavailability (Porcal et al., 2009; Wang et al., 2000).  It has been well documented 

that detrital DOC and POC constitutes a much greater percentage of organic matter 

within a lake than living matter because the decomposition of organic matter 

releases carbon, energy and nutrients into the ecosystem (Hanson et al., 2003; 

Houser et al., 2003; Cole, 1999; Tranvik, 1992; Wetzel, 1992). 

 

1.2.1.2 Autochthonous Organic Carbon 

Autochthonous DOC has several origins including photosynthetic inputs of the littoral 

and pelagic flora through secretion and autolysis of cellular contents, the excretion of 

DOC by zooplankton and other higher animals and the bacterial chemosynthesis of 

organic matter with a subsequent release of DOC (Wetzel, 1983).  Phytoplanktonic 

DOC is typically colourless and composed of carbohydrates and amino acids that 

can be rapidly metabolised by bacteria (Søndergaard et al., 1995; Wright, 1970). 

Aquatic macrophytes in the littoral zone also release DOC in amounts comparable to 

that released by phytoplankton (Wetzel, 1990; Wetzel & Manny, 1972). However, 

decomposition of these labile compounds is often very rapid meaning they constitute 

only a small proportion of DOC in natural waters (Gergel et al., 1999). 

 

1.2.1.3 Distribution of Organic Carbon 

Levels of DOC and POC within a lake system are often extremely stable from year to 

year (Fukushima et al., 1996), aside from small seasonal fluctuations observed in the 

surface waters.  For DOC this is most often attributed to the highly recalcitrant 

compounds that are slow to decompose and are typically balanced by inputs of 

similar compounds into the lake.  Highly liable organic matter, usually produced by 

phytoplankton, is difficult to monitor as its breakdown is extremely rapid and would 



9 
 

not be revealed by a standard sampling frequency such as weekly or monthly 

(Wetzel, 2001). 

 

Observed levels of POC equally follow a seasonal pattern of distribution, mostly 

following the productivity of phytoplankton during periods of stratification.  In more 

productive or eutrophic lakes large spikes in POC build in the hypolimnion during 

summer months as large inputs from the epiliminion renders it anoxic and intensified 

bacterial productivity causes increases in POC. 

 

The ratio of DOC:POC has been observed to be consistent at around 10:1 in 

oligotrophic to mesotrophic lakes (Sobek et al., 2006; Hanson et al., 2004), however, 

this figure is more variable in eutrophic lakes as the DOC:POC ratio fluctuates with 

season and depth and can be anything from 1:1 during high productivity months to 

10:1 in winter (Wetzel, 2001; Hanson et al., 2004). 

 

1.2.2 Lake Metabolism 

Traditionally, lake monitoring and research has explored nutrient cycling, chiefly 

phosphorus and nitrogen enrichment (Kalff, 2001; Wetzel, 2001).  Such enrichment 

is responsible for modifying the productivity regime within lakes, shifting them from 

unproductive or oligotrophic towards productive or eutrophic systems.  More recently, 

quantifying rates of primary production and respiration, and the relative dominance 

between the two, has become critical to understanding energy flows and nutrient 

cycling (Figure 1.5). These developments have led to a growing literature on the 

metabolism of small lakes (Tranvik et al., 2009; Sobek & Tranvik, 2005; Hanson et 

al., 2003; Prairie et al., 2002). 

 

Primary production and respiration are the major metabolic pathways by which 

organic matter is produced and transformed within lake systems. GPP is the total 

fixation of inorganic carbon by any organism photosynthesising within a system and 

R is the remineralisation of any system organic carbon to CO2. Net ecosystem 

production (NEP) is the difference between GPP and ecosystem R and can be used 

to represent the overall metabolic balance of an ecosystem (Equations 1.1 and 1.2). 
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NEP = C storage + C export – C import    (1.1) 

NEP = GPP – R      (1.2) 

 

When NEP is positive, GPP exceeds R, the system becomes net autotrophic as 

significantly more organic material is produced than degraded, with a majority of this 

material being stored in the system (Staehr et al., 2010; Cole et al., 2000). When 

NEP is negative, R exceeds GPP and the system becomes net heterotrophic, as it 

respires more organic carbon than was fixed by primary productivity within the lake. 

Sustained negative values of NEP suggest that ecosystem respiration within a lake 

is being subsidised by organic matter that was imported from the terrestrial 

catchment (Sobek et al., 2005; Hanson et al., 2003). 

 

 

 

Figure 1.5 Carbon input, storage (Δ), net atmospheric flux and output from four lakes 

representing the classical categories of lake trophic status. Units for the values in the 

arrows are g cm2 yrˉ1. DOC and TP concentrations are mean annual values (adapted 

from Hanson et al., 2004). 

 

 

GPP: 609 GPP: 213 

 Δ 63  Δ 25 
DIC 53% 

DOC 43% 
POC   4% 

     Eutrophic          Mesotrophic 

   DOC: 5 mg/L
-1

        DOC: 5 mg/L
-1 

   TP: 100 µg/L
-1

              TP: 35 µg/L
-1

 

DIC 36% 
DOC 59% 
POC   5% 

43 34 30 60 

5
4

 5 

GPP: 74 

GPP: 40 

 Δ 7 

 Δ 17 DIC 17% 
DOC 77% 
POC   6% 

DIC 53% 
DOC 43% 
POC   4% 

   Oligotrophic          Dystrophic 

   DOC: 2 mg/L
-1

        DOC: 20 mg/L
-1 

     TP: 5 µg/L
-1

              TP: 20 µg/L
-1

 

43 8 65 223 

2
8

 

1
4
1

 



11 
 

Due to its increasing abundance within aquatic systems, terrestrial DOC has been 

found to have a strong influence on the metabolic functioning of aquatic ecosystems 

(Lennon et al., 2006; Hanson et al., 2003; Hudson et al., 2003; Gergel et al., 1999).  

The majority of studies into carbon budgets of lakes indicate external loading often 

dominates over internal production (Bass et al., 2010; Canham et al., 2004; Cole & 

Caraco, 2001; Carignan et al., 2000).  Prairie et al. (2002) proposed a productivity 

threshold within lakes controlled by DOC concentration, at levels up to 4 – 6 mg/L 

systems would most likely be autotrophic and GPP > R whereas at levels over 6 

mg/L R > GPP and net heterotrophy would be prevalent.  Hanson et al. (2003) 

developed this threshold further by suggesting DOC concentrations below 10 mg/L 

would support a balanced metabolism but lakes with concentrations greater than 10 

mg/L would have a negative metabolism. 

 

Levels of DOC in freshwater systems have been observed to be increasing globally, 

especially within the last few decades (Evans et al., 2005).  The potential 

mechanisms responsible for recent changes in aquatic DOC concentrations include 

increasing atmospheric CO2 concentrations, climate warming, N deposition, and 

hydrological changes. Any change in DOC concentrations and properties in lakes 

and streams will also impact the interactions between DOC, nutrients, and trace 

metals.  Terrestrial DOC is known to impart colour into lakes, which reduces both 

visible and UV light within the water column, thus acting as a sunscreen for aquatic 

micro-organisms. As discussed earlier DOC, through its constituent acids, has an 

effect on the pH of aquatic systems, binds metals and affects their toxicity and the 

bioaccumulation of nutrients such as N, P and Fe, controlling their bioavailability and 

mobility. Clearly, changes in DOC quality and quantity are likely to have ecological 

repercussions.  

 

There is potential for the DOC cycle to be modified as a result of climate change, 

since one of the sinks for aquatic DOC is its degradation to CO2 and CH4. If the 

balance between DOC losses to the atmosphere versus transfer to the sediments of 

lakes is altered, greenhouse gas production and release to the atmosphere can 

increase or decrease, affecting the severity of climate change. In addition, if lake 

water levels fall, previously protected organic sediments may be exposed to greater 
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aeration which would lead to greater CO2 and CH4 evasion to the atmosphere 

(Benoy et al., 2007; Mortsch & Quinn, 1996). 

 

1.2.3 Inorganic Carbon & pH 

Inorganic carbon is the primary source of carbon for photosynthesis.  These organic 

compounds are produced by a variety of organisms including algae, cyanobacteria 

and higher plants both within lakes or the catchment and imported into the aquatic 

system.  The majority of inorganic carbon exists as DIC in a number of forms 

(Equations 1.3 to 1.6). CO2 is extremely soluble in water and when it dissolves is 

hydrated to form carbonic acid (H2CO3), a weak acid which dissociates quickly to 

form bicarbonate ( C  
 
) and carbonate (C  

2-
) ions. 

 

 

CO2 + H2O ⇋ H2CO3     (1.3) 

H2CO3  ⇋  C  
 

 + H+    (1.4) 

 C  
 

  ⇋ C  
2-

 + H+    (1.5) 

 

DIC (ΣC 2) = [CO2 aq] + [H2CO3] + [ C  
 
] + [C  

2-
]  (1.6) 

 

For convenience dissolved CO2 and H2CO3 added together is termed "free CO2" 

because the amount of H2CO3 is usually extremely low. The effect of pH on the 

proportions of free CO2, bicarbonate, and carbonate is illustrated in Figure 1.6.  Free 

CO2 is present in significant proportions between pH 4 and 7, decreasing rapidly by 

pH 8, and only accounts for 0.003 % by pH 9; between pH 7 and 10 bicarbonate 

predominates; above pH 9.5 carbonate is significant. 

 

Lakes offset anthropogenic CO2 rises because they act as a buffer to atmospheric 

CO2 increases and can regulate atmospheric CO2 concentration through a number of 

mechanisms (Volk & Hoffert, 1985).  The uptake of anthropogenic CO2 is dominated 

by inorganic carbon uptake at the surface and physical transport of anthropogenic 

carbon from the surface to deeper water layers.  Figure 1.7 outlines the main carbon 

pumps that regulate natural atmospheric CO2 changes within lakes. 
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Figure 1.6 Relationship between pH and relative proportions of inorganic carbon 

species in solution (reproduced from Wetzel, 1975). 

 

The solubility pump in water is driven by a difference in the partial pressure of CO2 

which results in a flux of carbon from a higher concentration to a lower concentration.  

Because of its solubility and chemical reactivity, CO2 is easily taken up by lakes and 

dissolved CO2 can be exchanged with the atmosphere until the partial pressure in 

surface water and air are equal.  As atmospheric CO2 increases, the dissolved CO2 

content of water in the lake surface increases at a similar rate, most of which reacts 

with water to form bicarbonate ( C  
 

).  Meanwhile, the carbonate (C  
2-

) content 

decreases, since the net effect of adding CO2 to water is a reaction with C  
2-

 to form 

 C  
 

.  There is therefore less available C  
2-

 to react with further CO2 additions, 

causing an increasing proportion of the added CO2 to remain in its dissolved form or 

free CO2. This increase in CO2 concentration restricts further uptake, so that the 

overall ability of surface lake water to take up CO2 decreases at higher atmospheric 

CO2 levels. 

 

The uptake capacity for CO2 also varies significantly due to additional factors, most 

importantly water temperature, salinity and alkalinity (Wetzel & Likens, 2000; Stumm 

& Morgan, 1981).  In freshwater systems, however, lake salinity varies very little over 

a yearly cycle and is not as important as temperature and alkalinity for altering the 

uptake of CO2.  Alkalinity is the acid buffering capacity of a water body; without 

which any acid added would immediately change lake water pH.  The higher the 

alkalinity, the greater the ability of the water body to neutralise added acids.  
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Alkalinity is important for fish and aquatic life because it protects or buffers against 

rapid pH changes.  The pH of water determines the solubility and biological 

availability of chemical constituents such as nutrients like P, N, and C (Wetzel & 

Likens, 2000; Stumm & Morgan, 1981). 

 

 
 

Figure 1.7 Three main carbon pumps govern the regulation of natural atmospheric 

CO2 changes by lakes (adapted from Denham et al., 2007).  

 

The sum of CO2,  C  
 

 and C  
2-

 constitutes the dissolved inorganic carbon (DIC) 

fraction within a water body and is utilised in the production of particulate organic 

carbon (POC) which leads to the transfer of organic carbon vertically, in a downward 

flux, from the surface of a lake to the deeper water of a lake creating an organic 

carbon pump within lake circulation (Denham et al., 2007; Prentice et al., 2001).  

Organic particles are then re-mineralized, oxidized to DIC and other inorganic 

compounds such as CO2 through the action of bacteria, with an accompanying 

decrease in dissolved oxygen.  The gradient of CO2 between the lake surface water 

(low) and deeper lake water (high) is maintained by the solubility and organic carbon 

pumps and regulates the exchange of CO2 between lakes and atmosphere (Denham 

et al., 2007; Prentice et al., 2001). 
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Current empirical data, from mainly oligotrophic to mesotrophic lakes, suggest that 

spatial and temporal differences in partial pressure of CO2 (pCO2) arise mainly from 

changes in primary production, ecosystem respiration and mixing regieme, factors 

that are strongly influenced by subsidies of inorganic nutrients and organic material 

from the catchment (Hanson et al., 2003; Prairie et al., 2002; Cole et al., 1994). 

 

1.2.4 Calcium Carbonate (CaCO3) 

Typically Ca2+ influences growth in aquatic environments as it is a micro-nutrient 

required for metabolism in higher plants.  The concentration of Ca2+ has a seasonal 

dynamic linked to the stratification cycle in most lake, with a typically uniform 

concentration during the mixed phase and spatial variability within the water column 

associated with rapid increases in the rate of photosynthesis during the summer 

months (Otsuki & Wetzel, 1974).  When combined with inorganic carbon Ca2+ forms 

compounds including CaCO3 and Ca( C  
 

)2 which are controlled by the availability 

of CO2 (Equation 1.7).  

 

 

 

The calcium carbonate counter pump in Figure 1.7 highlights that there are changes 

in the release of CO2 within surface waters during the formation of CaCO3 by 

organisms and photosynthesis.  This disturbs the equilibrium, allowing new CO2 to 

diffuse into the water, resulting in greater than expected amounts of dissolved CO2.  

A large amount of “free C 2” remains in solution to maintain an equilibrium with Ca
2+, 

 C  
 

, C  
2-

 and CaCO3.  This is because Ca( C  
 

)2 can only exist in solution and 

the amount of free CO2 required to maintain the stability of this compound increases 

rapidly with an increase in the  C  
 

 content.  However, if CO2 is lost from a solution 

of Ca( C  
 
)2 in equilibrium with ([CO2 aq] + [H2CO3]) and C  

2-
, CaCO3 will 

precipitate until the equilibrium is re-established as shown in Equation 1.8.  In 

                 Ca2+       Ca2+ 

              ↓  ↓ 

DIC (ΣC 2) = [CO2 aq] + [H2CO3] + [HCO3
−
] + [CO3

2-
]  (1.7) 

              ↓       ↓ 

         Ca(HCO3
−

)2  CaCO3 
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alkaline, hard water lakes CaCO3 can also start precipitating when pH is increased 

sufficiently to promote the above reaction to occur.  Excess CO2 can be lost through 

a number of processes including photosynthetic utilisation and inflows of CO2 

enriched groundwater, promoting the release of CO2 to the atmosphere from the 

surface waters (Wetzel, 2001). 

 

   Ca( C  
 

)2 ⇋ CaCO3 ↓ + H2O + CO2   (1.8) 

       Calcite 

 

The calcium ion and CaCO3 equilibrium are especially important in fresh water.  This 

equilibrium requires that a small amount of carbonic acid is always present.  If it is 

removed, by photosynthesis for example, then the bicarbonate changes to carbonate, 

which precipitates because of its low solubility.  Insoluble CaCO3 precipitates when 

CO2 is removed during periods of high photosynthesis.  If CO2 is added to the 

system, by respiration, then the carbonate changes to bicarbonate until the excess 

CO2 has been used up (Lampert & Sommer, 2007).  Organic matter coated with 

CaCO3 in the surface sediments reduces the rate of dissolution of sedimenting 

CaCO3 and can form a major sink for inorganic carbon and organic carbon matter, 

especially in alkaline, hard water ecosystems (Wetzel, 1970; 1972). 

 

1.2.5 Lake Sediments 

Compared to other fluxes in the global carbon cycle, organic carbon burial 

constitutes a small flux of about 100 Tg C yr-1 in marine sediments (Denman et al., 

2007), and this has led to the accumulation of vast stocks of carbon, removed from 

the active carbon cycle.  The rate of sequestration of organic carbon in the 

sediments of lakes is comparable to or even higher than in marine sediments and 

soils (Downing et al., 2009; Cole et al., 2007; Einsele et al., 2001).  Lakes not only 

bury organic carbon, but are also active sites for the mineralisation of organic carbon, 

originating from autochthonous or allochthonous sources.  The organic carbon that 

reaches the lake sediment surface will partly be mineralised to CO2 or CH4 by 

heterotrophic micro-organisms, and partly be buried in the sediments.  The 

proportion that is buried is termed the organic carbon burial efficiency, while the 

fraction of the sediment organic carbon that is lost through microbial processing is 

termed organic carbon mineralisation.  As a consequence, the amount of organic 
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carbon that is eventually buried is a direct function of the burial efficiency.  The burial 

efficiency in lake sediments is related to oxygen exposure, but the effect of 

temperature on organic carbon mineralisation and burial remains unclear (Cole et al., 

2007).  Relationships between lake sediment mineralisation and temperature are 

subject to a number of interdependent factors such as lake depth and mixing regime, 

organic carbon source and lake trophic status.  With the current focus on 

anthropogenically driven global warming and the substantial amount of carbon 

buried by lakes in their sediments, it is critical to gain understanding of how 

temperature affects burial efficiency rates within lakes, and clarify the future role of 

lakes as carbon sinks. 

 

However, the reasons for the high efficiency of organic carbon burial in lake 

sediments are still poorly understood.  Extensive studies on marine sediments have 

identified a wide array of different factors that may contribute to the preservation of 

organic carbon in sediments such as primary production rate, chemical composition 

of organic matter, sediment accumulation rate and bottom water oxygen 

concentration (Hedges et al., 1999).  Many of these factors are interdependent, and 

their relative importance is likely to shift with any predicted changes to the climate. 

 

Bacteria are the major decomposers of organic matter in aquatic systems (Fenchel & 

Blackburn, 1979).  Temperature is an important factor determining microbial activity 

in both the water column and sediment (White et al., 1991; Graneli, 1978).  In 

stratified, temperate lakes, water in the epilimnion overlying the littoral sediments can 

be 10 – 15°C warmer water in the hypolimnion, and this should result in significantly 

higher rates of activity. Yet, the activity of microbial communities may also be 

dependent on the quality and quantity of organic matter reaching the sediments, 

highlighting the potential differences in externally derived to internally derived carbon 

(den Heyer & Kalff, 1998).   

 

Eutrophication increases the input of autochthonous carbon to the sediment, which 

compared to allochthonous carbon is more liable, i.e. easier to decompose than the 

complex organic matter from the catchment, and therefore mineralised to a far 

greater extent than buried in the sediments (Sobek et al., 2009; Cole et al., 2007). 

Oxygen consumption during carbon mineralisation leads to anoxic bottom waters, 
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which is typically observed in eutrophic stratified lakes.  Cornett & Rigler (1980) 

estimated that as much as 85% of oxygen consumption in the hypolimnion of lakes 

occurs in the sediments.  As anoxic conditions do not impede the degradation of 

autochthonous carbon, eutrophication thereby promotes the production of inorganic 

carbon (CO2 and CH4) in hypolimnetic sediments.  The inorganic carbon can, 

dependent on water column depth, result in the emission of CO2 and CH4 from the 

lake to the atmosphere (McGinnis et al., 2006). This means that if a lake is subject to 

eutrophication, the carbon burial efficiency is likely to be lower than a lake subject to 

high levels of allochthonous carbon loading but overall volume of primary production 

will promote an increased burial rate.  Inorganic carbon production is also likely to 

increase in eutrophic lakes and be emitted to the atmosphere (Sobek et al., 2009). 

 

Changes to the climate have the capacity to modify the export of carbon from 

catchments to lakes.  There have been recorded increases in the export of terrestrial 

carbon from the catchment in some regions, e.g. DOC in northern Europe, and this 

has resulted in an observed increase in the sedimentation of allochthonous carbon in 

lakes (von Wachenfeldt & Tranvik, 2008). Increased allochthonous carbon input to 

the sediments has probably resulted in a higher carbon burial efficiency in these 

lakes as allochthonous carbon is more likely to be buried in the sediments than 

mineralised (Figure 1.8). 

 

Climate change could also modify the thermal properties of lakes.  Surface waters 

are expected to experience substantial heating, while hypolimnetic waters will warm 

at a much slower but measureable rate (De Stasio et al., 2006). This has two 

implications with respect to the fate of sediment carbon. Firstly, higher epilimnetic 

temperatures will promote carbon mineralisation, as the bacteria involved in 

mineralisation are more efficient in warmer temperatures, and thereby reduce the 

burial efficiency in epilimnetic sediments.  Secondly, an increased temperature 

difference between epilimnetic and hypolimnetic waters implies prolonged periods of 

stratification, which have the potential to greatly increase the oxygen deficiency and 

inorganic carbon production in bottom waters (Jankowski et al., 2006).  The strong 

relationship between carbon burial efficiency and oxygen exposure time, i.e. the less 

time sediments are exposed to oxygen the more efficient they are at burying carbon, 

suggests that increasing hypolimnetic oxygen deficiency would result in a small 



19 
 

increase in the burial efficiency of hypolimnetic sediments in the future (Sobek et al., 

2009).  However, the relationship is strongest between carbon from allochthonous 

and oxygen exposure time (Gudasz et al., 2010; Sobek et al., 2009). 

 

 

 

Figure 1.8 The relationship between the organic carbon burial efficiency and the 

sedimentation rate.  Open circles represent sites receiving sediment from mainly 

autochthonous sources; closed circles represent sites receiving sediment from 

mainly allochthonous sources. The dashed lines show the 95% confidence bands 

(Sobek et al., 2009). 

 

The high burial efficiency in lake sediments illustrates the importance of lakes as 

modifiers of carbon.  In both research by Sobek et al. (2009) and Cole et al. (2007), 

the mean burial efficiency for allochthonous lake sediments was 66% with the 

remainder being mineralised to CO2 and CH4, which may eventually reach the 

atmosphere.  The efficiency of lake sediments at transforming terrestrial carbon 

suggests that they could not only act as carbon sinks, but also as transformers of 

terrestrial organic carbon to atmospheric CO2 and CH4.  The efficiency of autotrophic 

systems was much lower, with a mean burial efficiency of 22% and higher levels of 

mineralisation and inorganic carbon production.  This could possibly be attributable 

to the very large differences between the studied sediments in terms of organic 

matter sources, degradation pathways and microbial decomposers (Sobek et al., 

2009; Cole et al., 2007). 
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1.3 PROJECT AIMS 

 

The aim of this project is to determine the carbon dynamics of eutrophic lakes in the 

UK.  The project will focus on the Cheshire-Shropshire Meres, specifically Rostherne 

Mere and Tatton Mere, testing the following overarching hypothesis: 

 

H1: The eutrophic lakes of the Cheshire-Shropshire Meres are (A) autotrophic 

systems, therefore (B) a net carbon sink in the UK’s carbon budget. 

 

A: Establishing autotrophy/heterotrophy for Rostherne Mere and Tatton Mere. 

 

Objectives: Use high-resolution O2 measurements to define daily NEP and calculate 

daily, monthly and seasonal C-fixation estimates using the metabolic equation 

δ 2/δt = NEP + F + A, first established by  dum (1956). 

 

Specific questions to address A: 

 What is the level of autotrophy/heterotrophy for each lake? 

 How does autotrophy/heterotrophy change seasonally? 

 How variable are C-dynamics between years? 

 What is the spatial variability in C-dynamics at each lake? 

 

B: Establish the importance of eutrophic lakes as a C-source/sink (B1) over 

time and (B2) space. 

 

B1: Examine the long C-storage of Rostherne Mere and Tatton Mere. 

 

Objectives: Measure the flux of C through the water column into the sediments 

using sediment traps and sediment core analysis. 

 

Specific questions to address B1: 

 How efficient are the lakes at transferring C to the sediment surface? 

 What is the burial efficiency? 

 Can a reliable lake-basin C-accumulation rate be estimated? 
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B2: Up-scale C-accumulation estimates from Rostherne Mere and Tatton Mere to 

the Cheshire-Shropshire meres region and all UK eutrophic waters. 

 

Objectives: Calculate and compare C-storage potential for all the Cheshire-

Shropshire meres and UK eutrophic waters, based on average areal values for 

Rostherne Mere and Tatton Mere. 

 

Specific questions to address B2: 

 How representative are these two lakes of the Cheshire-Shropshire meres? 

 How representative are these two lakes of UK eutrophic standing waters? 

 What is the role of eutrophic lakes in the UK C-cycle? 

 How do C-dynamics, burial and storage of these temperate, eutrophic lakes 

compare to other lake systems globally? 

 

C: Review the analytical techniques and methods used during this project in 

addressing the overarching hypothesis H1 (parts A and B). 

 

Objectives: Examine key analytical variables within equations used to calculate 

NEP, CO2 flux and converting O2 production to C-assimilation; and examine the 

process of up-scaling from individual lakes, to regional and national scales. 

 

Specific questions to address C: 

 What affect does varying these key measurements/constants have in the final 

estimates? 

 What impact does a single-site sonde deployment have on metabolism estimates? 

 Is a full C-balance needed or are metabolic estimates representative? 

 What are the errors and assumptions associated with up-scaling within the 

project at each scale? 
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2 METHODS & STUDY SITES 

 

2.1 UK INLAND WATER DISTRIBUTION 

The United Kingdom has a total inland water area of approximately 3504 km2 (~1.4% 

of total area) comprising 675 km2 in England, 125 km2 in Wales, 1604 km2 in 

Scotland and 1100 km2 in Northern Ireland.  Current estimates suggest that about 50% 

of this total inland water area could be eutrophic, though there is a significant 

disparity between nations, as over 80% of inland water in England is thought likely to 

be eutrophic, compared to some 40% in Wales, 15% in Scotland and 85% in 

Northern Ireland.  The total UK area of eutrophic standing waters is therefore likely to 

be around 1785 km2 (JNCC, 2008). 

 

2.2 THE CHESHIRE & SHROPSHIRE MERES 

The Cheshire & Shropshire meres are a group of more than 60 productive lakes 

(total lake area approximately 7.5 km2) with a distinct nutrient status that lie on the 

glacial geology of the Cheshire-Shropshire plain that offer a unique study opportunity 

due to their varied size, morphometry and nutrient status.  Their distribution is neither 

uniform nor random, with most of the sites occurring in distinct local groupings 

(Figure 2.2).  A comprehensive review of the meres by Reynolds (1979) determined 

that the mean maximum depth and total area of the largest 45 meres was 6.3 m and 

0.11 km2 respectively (Figure 2.1). 

 

Figure 2.1 The relationship between maximum known depth and present surface 

area of the 45 largest meres (Reynolds, 1979). 
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Through long term data records and sediment cores, that have been extracted from 

a number of the meres, it is believed that the eutrophic condition of these lakes is 

long established (Grimshaw & Hudson, 1970; Gorham, 1957; Tattersall & Coward, 

1914).  Their distinct status results from receiving large concentrations of nutrients 

from their managed, surrounding catchments which flow into the meres either via 

surface inflow or groundwater that has percolated through the glacial deposits rich in 

minerals and salts.  Consequently the meres are rich in major ions, with an 

abundance of bicarbonate causing the waters to become alkaline and essentially 

well buffered against acidification.  The groundwater flow maintains extremely stable 

water levels, long water retention times and high nutrient concentrations within the 

meres.  The combination of long retention times and high nutrient concentrations 

contributes to efficient utilisation of nutrients available.  The open water planktonic 

communities in the meres are typical of temperate eutrophic lakes with a prevalence 

of diatoms, Dinoflagellates and blue-green algae. These populations are on average 

large and fast growing, with algal populations often exceeding 20 g m-2 dry weight, 

and approaching the theoretical upper limit on population size determined by the 

underwater light climate rather than the lack of nutrient availability (Reynolds, 1979). 

 

Nitrogen has been suggested as being an important limiting nutrient in many of the 

Shropshire & Cheshire meres (Moss et al., 1992).  There may also be internal 

sources of nutrients, such as nitrogen fixation by cyanobacteria and the release of 

phosphate and ammonium from the sediment during anoxic conditions (Mortimer, 

1941).  Nearly all of the meres are also rich in DOM and deep enough to allow stable 

thermal stratification and anoxia of the lower water layers to occur during the 

summer, often 6 – 8 months per year.  These long periods of stratification allow for 

high accumulation rates, excellent levels of organic preservation and enable detailed 

analysis of sediments to be carried out with high temporal resolution. 

 

However despite the relative stability of the meres over the last ~150 years, there are 

a number of potential threats to their unique characteristics including climate change, 

further enrichment, reduced water levels due to natural and anthropogenic sediment 

infilling, and habitat change or fragmentation including invasive species. 
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2.2.1 Rostherne Mere, Cheshire 

 

 

 

Figure 2.3 Bathymetry of Rostherne Mere (surveyed May 2010).  Depths shown are 

in metres. 

 

Rostherne Mere, the deepest and one of the largest of the Cheshire & Shropshire 

meres, is designated a SSSI, RAMSAR site and became a National Nature Reserve 

in 1961 (Figure 2.3).  The lake has an area of 0.49 km2 and a catchment area of 

more than 9 km2; its maximum depth is 31 m, with a mean depth of 13.6 m 

(Livingstone & Reynolds, 1981).  There is limited surface drainage within the 

catchment, with the only surface inflow into Rostherne Mere of any significance 

Sampling Locations for Spatial 
Survey (YSI, CO2, Water 
Sampling) 

Sediment trap stations 

Meteorological station 

Thermistor chain 
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being Rostherne Brook which drains from another smaller lake, The Mere at Mere, 

about 1.5 km to the south.  The main surface outflow from Rostherne Mere is to the 

east through Blackburn's Brook.  The balance of the supply is assumed to be mainly 

through deep-percolating ground water.  The lake is eutrophic, with a high 

bicarbonate alkalinity (1.9 meq L-1) and high concentrations of available phosphorus 

(216 µg L-1), nitrogen (1217 µg L-1) and silicon (This study; Grimshaw & Hudson, 

1970; Gorham, 1957; Tattersall & Coward, 1914).  The water column stratifies 

thermally in the summer months; the benthic oxygen demand is such to render the 

entire hypolimnion anoxic within only a few months. 

 

It is believed that the creation of the lake depression was caused by the gradual 

dissolution of the rock-salt layers contained within the deeper geological strata 

(Tatersall & Coward, 1914).  The eutrophic status of the lake is a result of 

anthropogenic nutrient enrichment notably runoff from the surrounding farmland and, 

between 1935 and 1991, by effluent discharge from a since diverted nearby sewage 

treatment works (Carvalho, 1993) and is maintained to date by efficient nutrient 

recycling within the sediments and water column.  The degree of nutrient enrichment 

together with morphological and hydrological characteristics of the lake and its water 

catchment result in summer stratification and regular development of algal blooms 

well documented since the beginning of the century (Pearsall, 1932; Tattersall & 

Coward, 1914). 

 

Chemical analyses of the water of Rostherne Mere have previously been carried out 

by Tattersall & Coward (1914), Gorham (1957), Grimshaw & Hudson (1970), and 

Carvalho (1993).  Most of these data, however, only gives detail on the available 

concentrations of nitrogen and phosphorus.  A number of previous studies have 

considered various aspects of Rostherne Mere nutrient budgeting (Moriera, 1996; 

Walker, 1987; Rogers, 1975; Brinkhurst & Walsh, 1967), but to date no study has 

focused on the carbon cycle and the impact eutrophication has upon the lakes mass-

balance.  This interaction is important to consider, especially since the introduction of 

European Commission’s Water Framework Directive (WFD) in the early 2000s, as 

significant reductions in nitrogen and phosphorus loading into rivers and lakes 

across UK has led to a steady decline in the concentrations of these nutrients being 

recorded in the water column (Moss et al., 2005; Krivtsov et al., 2001, 2002).  
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Rostherne Mere’s current hypertrophic status is unlikely to continue indefinitely, 

meaning we might expect a very long continuing reduction in TP concentrations in 

Rostherne Mere, perhaps over several decades before it achieves P limitation and 

the expected progressive oligotrophication (Moss et al., 2005). 

 

The lake and its catchment have attracted the attention of the scientific community 

for nearly a century due to its unusual over-deep basin and fully stratifying nature, 

with a valuable monitoring record being developed over this period.  For these 

reasons it is considered an important site for research in freshwater biology, water 

chemistry, and lake sediments (e.g. Krivtsov et al., 2001, 2002; Moss et al., 1994, 

1997; Carvalho & Moss, 1995; Reynolds & Bellinger, 1992; Reynolds & Sinker, 1976; 

Pearsall, 1932; Tattersall & Coward, 1914).  More recently Rostherne Mere has 

formed part of the United Kingdom Lake Ecological Observatory Network (UKLEON) 

project, which monitors key freshwater sites at high resolution in an attempt to model 

aquatic biogeochemistry and the level of regional coherence in lake response to a 

changing climate.  The lake makes an ideal research candidate due to the ease of 

site access, existing research infrastructure and the security of being able leave 

monitoring equipment. 
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2.2.2 Tatton Mere, Cheshire 

 

 

 

Figure 2.4 Bathymetry of Tatton Mere (surveyed May 2010).  Depths shown are in 

metres.  

 

Part of the larger Tatton Park Estate, Tatton Mere sits in 8.1 km2 of landscaped deer 

park and is currently owned and managed by the National Trust (Figure 2.4).  Like 

many of the meres on the Shropshire-Cheshire plain it is designated as a SSSI and 

is included in the recently designated Midland Meres & Mosses (Phase 1) RAMSAR 

site, which protects wetlands of international importance.  To date Tatton has mainly 

Sampling Locations for Spatial 
Survey (YSI, CO2, Water 
Sampling) 

Sediment trap stations 

YSI buoy 

Thermistor chain 
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only been included in a number of studies of the larger Shropshire-Cheshire meres 

system with basic surface water chemistry being recorded (Bennion & Simpson, 

2011; Carvalho & Moss, 1995; Moss et al., 1994).  With an area of 0.32 km2 and a 

maximum depth of 11 m it is smaller and shallower than neighbouring Rostherne 

Mere, but closer to the average max depth/total area for the meres calculated by 

Reynolds (1979) in Figure 2.1.  Subsequently, due to its shallower depth the mere 

only supports weak stratification during the summer months.  It is fed through both 

surface and groundwater flow from Knutsford Moor.  Like many of the surrounding 

meres Tatton Mere has elevated levels of nitrogen (826 µg L-1) and phosphorus (442 

µg L-1), and a history of anthropogenic disturbance dating back many centuries (This 

Study; Moss et al., 1994). 

 

 

Table 2.1 A comparison of the physical and chemical characteristics of Rostherne 

Mere and Tatton Mere, Cheshire, where (a) this study, (b) Woof & Wall (1984), (c) Moss 

et al. (1994) and (d) Carvalho (1993). 

 

 Rostherne Mere Tatton Mere 

Surface Area (km
2
) 

Maximum Depth (m) 

Volume (m
3
) 

Catchment Area (km
2
) 

Retention Time (days) 

Mixing Regime 

TP Annual Average (µg L
-1

) 

TN Annual Average (µg L
-1

) 

DOC Annual Average (mg L
-1

) 

Alkalinity (meq L
-1

) 

0.49 
(b) 

31 
(a) 

6.9 x 10
6 (a)

 

9.4 

600 
(d) 

Monomictic 
(a) 

216 
(a) 

1217 
(a) 

7.30 
(a) 

2.26 
(a) 

0.32 
(c) 

12 
(a) 

1.3 x 10
6 (a)

 

5.1 

120 
(a) 

Monomictic 
(a) 

442 
(a) 

826 
(a) 

4.40 
(a) 

2.06 
(a) 
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2.3 THE CLIMATE OF NORTH WEST ENGLAND 

The North West of England has a very varied landscape from dramatic upland areas 

such as the Pennines and Lake District to lowland plains surrounding Liverpool and 

Manchester.  The Cheshire plain lies at the southernmost point of North West 

England between north Wales, the Mersey estuary and the Pennines.  The UK Met 

Office station at Manchester Airport, less than 7 km from the area of study, provides 

a detailed record of the regions climate (Table 2.1). 

 

Table 2.2 Summary of 1981 – 2010 averages at Manchester Airport Met Station 

(adapted from UK Met Office, 2012). 

 

 
Mean Max 

Temp (°C) 

Mean Min 

Temp (°C) 

Sunshine 

(hours) 
Rainfall 

(mm) 

Days of 

Rainfall ≥ 

1mm 

Wind at 

10m 

(m s
-1

) 

Jan 7.3 1.7 52.5 72.3 13.1 4.7 

Feb 7.6 1.6 73.9 51.4 9.7 4.6 

Mar 10 3.3 99 61.2 12.3 4.7 

Apr 12.6 4.9 146.9 54 11.2 4.1 

May 16.1 7.7 188.3 56.8 10.4 4.1 

Jun 18.6 10.5 172.5 66.1 11.1 3.6 

Jul 20.6 12.6 179.7 63.9 10.9 3.5 

Aug 20.3 12.4 166.3 77 12 3.5 

Sept 17.6 10.3 131.2 71.5 11.1 3.7 

Oct 13.9 7.4 99.3 92.5 13.6 4.1 

Nov 10 4.2 59.5 81.5 14.1 4.1 

Dec 7.4 1.8 47.1 80.7 13.5 4.2 

Year 10.1 1416.2 828.8 142.9 4.1 

 

The climate of Cheshire is dominated by exposure to westerly maritime air masses, 

but protection given by the Pennines and north Welsh mountains means the area is 

sheltered from some of the extremes experienced in other parts of North West 

England.  For example, rainfall is generally well distributed throughout the year, but 

there is seasonality within the data.  Spring is the driest season in the region with 
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maximum rainfall occurring during autumn/winter.  Being on a low-lying plain, 

temperatures in Cheshire can be on average between 0.5°C and 1°C warmer than 

more exposed areas of North West England.  Lowest temperatures usually occur in 

January with peak temperatures typically during July. 

 

The wind rose for Rostherne Mere, generated from data collected at the Rostherne 

Mere on-site automatic meteorological station, reflects typical wind conditions for 

North West England (Figure 2.5), with a prevailing south-westerly wind direction 

through the year, but a high frequency of north to north-east winds in spring.  The 

climate of Cheshire and Greater Manchester is modified by the channelling of winds 

between the Pennines and hills of north Wales, giving the winds a southerly bias. 

 

 

 

 

Figure 2.5 Wind rose data for Rostherne Mere Oct 2010 – Apr 2012. Data collected 

from the on-lake automatic weather station. 

 

The temperature data recorded by the automatic weather station situated on 

Rostherne Mere, Cheshire (Figure 2.6) show the mean air temperature during 2011 

was 10.9°C (30 year average for Manchester – 10.1°C; UK Met Office, 2012).  A 

mean maximum of 20.4°C and a mean minimum of -1.5°C were recorded in 2011, 
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the mean maximum was very close to the 30 year average of 20.6°C but the mean 

minimum was significantly below the 30 year average of 1.6°C (~3°C cooler).  During 

the 2010 stratification period (stratification periods highlighted by grey bars/dashed 

lines) mean air temperature was 13.8°C, a slightly higher mean air temperature of 

14.1°C was recorded during the same period in 2011.  However, the winter of 

2010/2011 was extremely cold as temperatures dropped well below freezing during 

December 2010, something not experienced during the winter of 2011/2012.  

December 2010 was exceptionally cold with the monthly average air temperature 

being ~4.5°C cooler than expected (Dec 2010 -0.09°C; 30Av 4.5°C); similarly 

monthly average air temperature in April 2011 was in excess of 2.5°C warmer than 

would be expected (Apr 2011 11.6°C; 30Av 8.75C).  Warmer than average mean air 

temperatures in April 2011 could potentially have led to a more rapid onset of 

stratification in Rostherne Mere and Tatton Mere than in previous years.  The mean 

air temperature recorded at the beginning of 2012 was very close to the 30 year 

average (2012 6.4°C; 30Av 6.2°C). 

 

 
Figure 2.6 Mean temperature data for Rostherne Mere, Cheshire.  (a) Daily mean 

temperature (°C) for study period and (b) monthly mean temperature (black bars) 

compared with 30 year mean (white bars). 
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The rainfall patterns recorded in Knutsford, Cheshire (Figure 2.7) show that in 2011 

total rainfall was 916.2 mm (30 year average for Manchester – 828.8 mm; UK Met 

Office, 2012).  During the 2010 stratification period rainfall totalled 502.7 mm, a 

slightly higher total of 561.8 mm fell during the same period in 2011.  However, the 

winter of 2010/2011 was extremely dry only 191.5 mm of rainfall was recorded; 78% 

of total rainfall expected during this period.  December 2010 was exceptionally dry 

with only 11% of the expected rainfall; similarly April 2011 was very dry with only 20% 

of the 30 year average rainfall recorded during the month.  The wettest month was 

April 2012 when 125.4 mm of rainfall was recorded, the equivalent of 225% of 

average.  Lower than average rainfall levels in 2010, especially during the winter, 

means that groundwater levels are unlikely to have been fully recharged in the 

Rostherne Mere and Tatton Mere catchments. 

 

 

Figure 2.7 Precipitation data for Knutsford, Cheshire (6 km from Rostherne Mere 

and 1 km from Tatton Mere).  (a) Daily mean precipitation (mm) for study period and 

(b) total monthly precipitation (black bars) compared with 30 year mean (white bars). 
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2.3 METHODS 

Initial surveys began at Rostherne Mere in spring 2010 and Tatton Mere in winter 

2010, both concluding in April 2012 at the beginning of a new stratification cycle.  An 

identical procedure was followed when sampling at Rostherne Mere and Tatton Mere. 

 

2.3.1 Meteorological Data 

A range of meteorological variables were collected using an automatic weather and 

water quality monitoring station situated on Rostherne Mere (Figure 2.8) to 

determine the climate of the study area and used in the calculation of lake 

metabolism data.  The stations meteorological sensors, mounted approximately 2m 

from the surface of the lake, included: 

 

 Air Temperature (°C) 

 Solar Radiation (W m-2) 

 Barometric Pressure (mB) 

 Wind Speed (m s-1) 

 Wind Direction (°) 

 

 

Figure 2.8 Automatic weather and water quality monitoring station on Rostherne 

Mere, Cheshire. 
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Data were collected for each variable every 1 minute, stored on local data-loggers 

and transmitted over-the-air every 24 hours to be stored at the UK Environmental 

Change Network data centre.  The station forms part of the UK Lake Ecological 

Observatory Network (UKLEON) led by CEH Lancaster, who also manages the data 

within the UK Environmental Change Network.  The station is, however, owned and 

maintained by Loughborough University.  A YSI 600R water quality sonde was also 

deployed in the surface of the lake from the station between May 2010 and April 

2012, with data managed locally (see Section 2.3.3). 

 

2.3.2 Physical Characteristics & Water Chemistry 

A range of standard limnological techniques and water samples were taken at 

typically 3 week intervals during stratification, increasing to monthly visits during the 

mixed period.  A consistent method of survey was used at the meres which included 

a vertical profile at the deepest point of each lake (Figure 2.9; 2.10) and a spatial 

surface survey covering both littoral and pelagic areas (Figures 2.3 & 2.4).  These 

points did not vary during the project and were established from an initial bathymetric 

survey across the meres. 

 

 

Figure 2.9 Water column survey depths and dates at Rostherne Mere. 
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Figure 2.8 Water column survey depths and dates at Tatton Mere. 

 

2.3.2.1 Lake Bathymetry 

Detailed bathymetric surveys were carried out at both Rostherne Mere and Tatton 

Mere in May 2010 using a Garmin GPSMAP 431s sonar with dual-beam transducer.  

The unit is designed to transmit a sound pulse from the transducer in the water 

surface and record that same signal when it bounces back from the bed of the lake.  

An echo-sounder attached to the transducer filters and records the travel time of the 

pulse.  At the same time that the pulse occurs, the in-built GPS unit records the 

location of the reading.  The unit and transducer were attached to the boat transom 

and following a systematic grid pattern across the lake, depth data points were 

generated (approximately 2700 data points for Rostherne Mere and 1000 data points 

for Tatton Mere).  The individual data points were then mapped in ArcGIS v10.1. 

 

2.3.2.3 YSI Sonde and CO2 Gas Analyser 

Oxygen concentration, temperature, pH and conductivity were measured at 1 m 

intervals in the vertical profile and within the surface 0.5 m for the spatial surveys 

using a YSI 6600 V2 multi-parameter sonde.  The sonde was regularly laboratory 

calibrated using standard solutions.  pCO2 was measured at the same intervals as 

the YSI survey using a PP Systems EGM-4 Gas Analyser with a Cole-Palmer 

peristaltic pump.  An atmospheric reading was taken at the lake side during each 

visit.  Whilst the lake was mixed (isothermal) the Rostherne Mere sampling interval 

was increased as the water column was assumed homogenous.  Data were plotted 
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using Surfer 8.0 and the data between surveys interpolated using programme 

defaults for Ordinary Kriging, a statistical technique that estimates the value at 

locations not sampled from weighted average values of nearby locations. 

 

2.3.2.4 Water Sampling 

Water samples were collected for DOC, POC and alkalinity analysis at 3 m intervals 

in the vertical profile and within the surface 0.5 m for the spatial survey in 500 ml 

polypropylene bottles.  The bottles were rinsed out twice with lake water prior to 

filling and every effort was made to ensure no air bubbles were trapped in the 

samples.  Within 24 hours of collection the samples were filtered through pre-

washed Whatmann GF/F glass-fibre filters (0.45 µm) using a hand pump.  These 

filters were pre-combusted prior to fieldwork by heating to 550°C for 2 hours and 

weighed before use.  POC was measured from the GF/F filters by drying overnight at 

105°C, weighing then combusting at 550°C for 2 hours and weighing again.  

Samples for DOC were transferred into a 60 ml HDPE Nalgene bottle, taking care 

not to trap air bubbles in the sample.  The samples were labelled, sealed with 

Nescofilm, a laboratory self-sealing film designed to resist air and gas diffusion, and 

stored at ~4°C overnight in the refrigerator before analysis at Loughborough 

University on a Shimadzu TOC analyser (TOC-VCSN) with an ASI-V auto sampler.  

The standards (50 ppm to 100 ppm) were automatically calibrated using the TOC 

analyser. 

 

A small amount of each water sample was left unfiltered for determining alkalinity by 

titration to two end points with colour indicator solutions.  The method, adapted from 

Wetzel & Likens (2000), is described below: 

 

1. Place 0.01 M HCl into a burette 

2. Pipette 10 ml unfiltered water sample into a 100 ml conical flask 

3. Add 5 drops phenolphthalein indicator to conical flask 

4. If pale pink, titrate to colourless (usually a few drops) and record volume of 

acid used in ml (y1) 

5. Add 5 drops BDH indicator 

6. Titrate to grey colour and record total volume of acid used in ml (y2) 
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Both phenolphthalein alkalinity and total alkalinity were determined using Equation 

2.1: 

Alkalinity (meq/L) = 10y/x     (2.1) 

 

where 10 represents the volume of standard acid used i.e. 0.01 M, x is volume of 

water sample, here 10 ml, with y1 used for phenolphthalein alkalinity and y2 for total 

alkalinity.  The relationships between various forms of alkalinity are expressed as 

follows: 

 

a. y1 = 0. All alkalinity is bicarbonate. 

b. y1 < ½y2. Bicarbonate and carbonate alkalinity both exist. 

c. y1 = ½y2. All alkalinity is carbonate. 

 

Classification of the principle forms of alkalinity was obtained from Equations 2.2 to 

2.3: 

   Bicarbonate Alkalinity = y2 – y1    (2.2) 

   Carbonate Alkalinity = y1     (2.3) 

 

Separate water samples were collected every 4 months for nutrient analysis, they 

included: 

 

 Total Phosphorus (TP) – all forms of P in the water column. 

 Soluble Reactive Phosphorus (SRP) – P immediately available for growth. 

 Total Nitrogen (TN) – all forms of N in the water column. 

 Nitrate-N – N immediately available for growth (NO3-N). 

 

A single 500 ml sample was taken at 0.5 m, 12 m and 24 m at Rostherne Mere and 

0.5 m, 5 m and 10 m at Tatton Mere in polypropylene bottles rinsed twice with lake 

water prior to filling.  Within 24 hours of collection the samples were prepared for 

analysis at the Lancaster Environment Centre, a 60 ml sample filtered through pre-

washed Whatmann GF/F glass-fibre filters (0.45 µm) (for SRP and Nitrate-N) and 

another 60 ml unfiltered sample (for TP and TN).  Field blanks of filtered de-ionised 

and unfiltered de-ionised water were also provided. 
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2.3.3 Lake Metabolism 

The metabolism of the meres was determined from the ‘free-water’ approach (Odum, 

1956) using in-situ measurements of dissolved oxygen diel fluctuations, a period of 

24 hours day and night, as a proxy for rates of GPP and R.  Identical YSI 600R 

sondes were deployed in the surface, mixed layer of both lakes and programmed to 

record oxygen concentration, temperature, pH and conductivity every 15 minutes.  

The YSI sondes were regularly cleaned and calibrated to minimise drift in readings, 

especially during periods of high productivity.  A mean sampling interval of 1 hour 

was used to calculate NEP daily estimates, with meteorological data such as wind 

speed, air temperature and barometric pressure from the automatic weather station 

on Rostherne Mere.  Epilimnion or mixed layer depth (zmix in Table 2.3) was inferred 

from a permanent thermistor or temperature sensor chain deployed in each lake and 

determined as the depth where water temperature starts to decrease at a rate of 1°C 

m–1 or more.  The metabolism of a system is calculated from an equation first 

established by Odum (1956) and is typically written as: 

 

δO2/δt = NEP + F + A     (2.4) 

NEP = GPP – R      (2.5) 

 

where GPP is photosynthesis, R is respiration, δO2/δt is the observed change in 

dissolved oxygen through time, F is atmospheric flux of oxygen and A represents 

other processes that cause changes in dissolved oxygen concentration at the 

sampling site.  δO2/δt can be directly measured, F is modelled as a function of the 

oxygen concentration gradient between water and atmosphere with a wind-driven 

exchange coefficient, and A is assumed to be negligible and typically removed from 

the calculation.  The equations used to calculate lake metabolism are shown in Table 

2.3, and their use is visualised in Figure 2.11. 

 

The physical exchange of oxygen with the atmosphere (F; Eq. 2.13) is the product of 

the difference in measured dissolved oxygen concentration (O2 aq) from dissolved 

oxygen saturation (O2 sat), piston velocity (kO2) and the depth of the mixed layer (zmix).  

Oxygen saturation is the oxygen concentration in water in equilibrium with the 

atmosphere and is calculated as a function of ambient temperature (Eq. 2.6), but 

must also be corrected for barometric pressure (Eq. 2.7, 2.8).  The piston velocity 
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drives the rate of exchange between the lake and the atmosphere (Eq. 2.12).  It is 

dependent upon the gas transfer coefficient (k600; Eq. 2.11), estimated as a function 

of wind speed at 10 m above the lake surface (U10; Eq. 2.10), and the Schmidt 

number (sO2).  The Schmidt number represents the ratio of diffusion of momentum 

to the diffusion of mass in a fluid; the diffusion coefficient is temperature dependent 

and is therefore calculated as a function of temperature (Eq. 2.9). 

 

Table 2.3 Equations used to calculate lake metabolism. 

 

Parameter Equation Source Eq. 

The governing equation δO2/δt = NEP + F + A Odum (1956) 2.4 

Oxygen saturation as a 
function of temperature 
(T, Celsius) 

O2 sat (mg L
-1
) = –0.00006 T

3
 + 0.0069 T

2
 – 0.3906 T + 14.578  2.6 

Correction of O2 sat for 
barometric pressure 
(BP, millibars) 

Correction factor = (BP 0.0987 – 0.0112) / 100 

 

O2 sat (mg L
-1
) BP Correction = O2 sat (mg L

-1
) · correction factor 

Staehr et al. (2010) 

2.7 

 

2.8 

Schmidt number, from 
water temperature 
(T, Celsius) 

sO2 = 1800.6 – 120.10 T + 3.7818 T
2
 – 0.047608 T

3
 Wanninkhof (1992) 2.9 

Wind speed correction at 10 
metres height (U10) from 
measured wind speed height 
(Uz) 

U10 = Uz · 1.22 Wanninkhof (1992) 2.10 

Piston velocity 
(converted from cm/h 
to m/d) 

k600 (m d
-1
) = ((2.07 + (0.215 · U10)

1.7
) / 100) · 24 

 

kO2 (m d
-1
) = k600 (sO2 / 600) 

0.5
 

Cole & Caraco (1998) 

 

Jähne et al. (1987) 

2.11 

 

2.12 

Gas Flux 
(zmix = mix layer depth) 

F (mg O2 L
-1
 d

-1
) = kO2 (O2 sat – O2 aq) / zmix  2.13 

Day fraction and daylight 
determination 
 
Di = Current time; SR = 
Sunrise; SS = Sunset 

Day fraction = Actual Date – (Last Day of Previous Year) 

 

Daylight “Day (1) or Night (2)” = IF(AND((Di – FLOOR(Di-

1,1))>SR, (Di – FLOOR(Di-1,1))<SS),1,2) 

 

2.14 

 

2.15 

 

R R (mg O2 L
-1
 d

-1
)= F – δO2/δt  2.16 

GPP GPP (mg O2 L
-1
 d

-1
) = δO2/δt – F + R  2.17 

NEP NEP (mg O2 L
-1

 d
-1
) = GPP – R  2.18 

NEP to C Flux Conversion 
 
PQ = 1.25 
DAYS = no. of days in 
dataset 

mmol CO2 L
-1
 = ((SUM mg O2 L

-1
 d

-1
) / (16 · 2)) / PQ 

mg C L
-1
 = (mmol CO2 L

-1
 · 44) · (12 / 44) 

g C m
-2
 d

-1
 = mg C L

-1
 · zmix / DAYS 

 2.19 
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Figure 2.11 Converting measured data to metabolic process.  Numbers refer to 

equations explained in Table 2.3. 

 

Respiration (R; Eq. 2.16) is determined from the physical exchange of oxygen and 

the observed change in dissolved oxygen through time; in this case 1 hour intervals.  

Gross Primary Productivity (GPP; Eq. 2.17) is the product of the physical exchange 

of oxygen, the observed change in dissolved oxygen and respiration.  The main 

assumptions within the equation are that GPP is zero at night, and therefore R is 

estimated directly from night time changes in dissolved oxygen concentration, and 

daytime R is equal to night time R.  Daylight is determined by inputting sunrise and 

sunset times for each month then performing a logical test (IF) asking, is the current 

time interval before or after sunrise/sunset? 

 

The calculated NEP value (Eq. 2.18) is the observed changes in dissolved oxygen 

after accounting for the atmospheric exchange and is used to infer the productivity of 

the meres, i.e. a positive figure infers net autotrophy and a negative figure infers net 

heterotrophy.  The oxygen derived NEP figure was converted to carbon units using a 

photosynthetic quotient (PQ), the molar ratio of the rate of oxygen production to that 

of carbon assimilation, of 1.25 (Hanson et al., 2003; Williams & Robertson, 1991; 

Grande et al., 1989).  Equation 2.19 shows how the volumetric rates of carbon 

assimilation (mmol CO2 L
-1) can be turned into areal rates (g C m-2) by multiplying by 

mixing depth (zmix).  These rates represent the average carbon assimilation per 

Observations   Derived Parameters   Metabolic Rates 

Dissolved Oxygen 

Water Temperature 

Barometric Pressure 

Wind Speed 

Calendar 

O2 aq 

O2 sat 

O2 sat 

sO2 

k600 U10 

kO2 

2.11 

2.12 

2.8 

2.10 

2.6 

2.13 z F 

2.7 

2.9 

R 

GPP 

2.14 & 2.15 

2.17 

NEP 2.18 

C Flux 

PQ 

2.19 

2.16 
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square metre of the entire lake, which when multiplied by the lake area, gives an 

estimate of whole lake carbon assimilation flux. 

 

To evaluate the reliability of the metabolic rates to errors associated with the 

modelling previously described (Table 2.3; Figure 2.9) a simple sensitivity analysis 

was performed, where several parameters in the model were modified by ±10% to 

investigate their influence on daily NEP estimates (Staehr et al., 2010; Dubois et al., 

2009; Bade et al., 2004).  Two key assumptions central to the method of calculating 

metabolism were tested.  First, was testing the sensitivity of metabolism to 

uncertainty in estimating the oxygen saturation concentration (Table 2.3; Eq. 2.6).  

Incorrect values of O2 sat could originate due to errors in temperature, barometric 

pressure measurements, or poor calibration.  Errors of this sort would cause 

inaccuracies in the oxygen flux term (F) of the governing equation for oxygen 

dynamics.  Second, was testing the sensitivity of metabolism to uncertainty in k, the 

piston velocity (Table 2.3; Eq. 2.12).  This error would also influence the O2 flux term 

(F), but in a different manner than error in O2 sat. 

 

2.3.4 Dissolved Inorganic Carbon 

The components of the carbonate system within the meres were calculated from the 

direct measurement of two quantities (CO2 and pH).  Inorganic carbon is the primary 

source of carbon for photosynthesis and forms the acidity buffer within the lake, 

which can help to regulate against increases in CO2.  The carbonate species are 

related by the following equilibria (Equation 2.20): 

 

CO2 + H2O ⇋  CO 
 

 + H+ ⇋ CO 
2-

 + 2H+   (2.20) 

 

where K1 and K2 are equilibrium constants, often referred to as the first and second 

dissociation constants of carbonic acid, respectively.  The equations used to 

estimate of the relative importance of the DIC species are presented in Table 2.4.  

Equilibrium constants presented are suitable for low salinity and freshwater 

ecosystems and from temperatures 0 - 50°C. 

 

 

K1 K2 
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Table 2.4 Equations used to calculate lake DIC fractions. 

 

Parameter Equation Source Eq. 

 enry’s 
Constant 

KH = 10^(2385.73 / Temp (K) - 14.0184 + 0.01526 Temp (K)) 
Maberly (1996), refit from 
Harned & Davis (1943) 

2.21 

K1 K1 = EXP(290.9097 - 14554.21 / Temp (K) - 45.0575 lnTemp (K)) 
Millero (1979), refit from 
Harned & Davis (1943) 

2.22 

K2 K2 = EXP(207.6548 - 11843.79 / Temp (K) - 33.6485 lnTemp (K)) 
Millero (1979), refit from 
Harned & Scholes (1941) 

2.23 

[H
+
] [H

+
] = 10

-pH  2.24 

DIC DIC (µmol L
-1
) = CO2 (1 + K1 / [H

+
] + K1K2 / [H

+
]
2
) 

Zeebe & Wolf-Gladrow 
(2001) 

2.25 

CO2 CO2 (µmol L
-1
) = fCO2 · KH 

Zeebe & Wolf-Gladrow 
(2001) 

2.26 

 CO 
 
  CO 

 
 (µmol L

-1
) = DIC / (1 + [H

+
] / K1 + K2 / [H

+
]) 

Zeebe & Wolf-Gladrow 
(2001) 

2.27 

CO 
2 

 CO 
2-

 (µmol L
-1
) = DIC / (1 + [H

+
] / K2 + [H

+
]
2
 / K1K2) 

Zeebe & Wolf-Gladrow 
(2001) 

2.28 

 

2.3.4.1 Carbon Dioxide Flux 

Surface partial pressure CO2 flux, equation 2.29, was calculated at monthly intervals 

from the pCO2 data collected during the water chemistry surveys at the meres to 

determine the fate of CO2. 

 

fCO2 = kCO2 · KH (pCO2 aq – pCO2 sat)   (2.29) 

 

where fCO2 is the flux of a CO2 gas across the air–water interface, kCO2 is the gas 

transfer velocity at a given temperature, KH is  enry’s Constant for CO2 solubility in 

freshwater, and pCO2 aq and pCO2 sat are the measured gas partial pressures in 

freshwater and air, respectively.  The equations used to calculate CO2 flux are 

shown in Table 2.5, and their use is visualised in Figure 2.12.  Equilibrium constants 

presented are suitable for low salinity and freshwater ecosystems and from 

temperatures 0 - 50°C. 

 

The initial pCO2 values collected represent its mole fraction measured in dry air, so a 

correction has to be applied that assumes the air at the air-water interface to be 

saturated with water vapour (pH2O; Eq. 2.30).  In dry air and at 1 atm the value of 

the mole fraction is equal to the value of the partial pressure.   enry’s Constant (KH) 
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is the concentration of a CO2 gas in solution at a given temperature and is directly 

proportional to the partial pressure of that gas above the solution (Eq. 2.33).  The 

piston velocity (kCO2) drives the rate of exchange between the lake and the 

atmosphere (Eqs. 2.36; 2.37).  It is estimated as a function of wind speed at 10 m 

above the lake surface (U10; Eq. 2.35), and the Schmidt number (sCO2) when wind 

speeds are ≥ 3m s-1.  The Schmidt number represents the ratio of diffusion of 

momentum to the diffusion of mass in a fluid; the diffusion coefficient is temperature 

dependent and is therefore calculated as a function of temperature (Eq. 2.34). 

 

Table 2.5 Equations used to calculate CO2 lake-atmosphere exchange fluxes. 

 

Parameter Equation Source Eq. 

Water vapour 
pressure 
(T, Kelvin) 

pH2O = EXP (24.4543 - (6745.09/T) - 4.8489 ln (T/100) - 0.000544) 
Zeebe & Wolf-Gladrow 

(2001) 
2.30 

pCO2 aq 
(T, Kelvin) 

pCO2 aq (µatm
-1
) = CO2 (µmol mol

-1
) · (BP (atm) – pH2O) 

Zeebe & Wolf-Gladrow 
(2001) 

2.31 

pCO2 sat pCO2 sat (µatm
-1
) = CO2 (µmol mol

-1
) · (BP (atm) – pH2O) 

Zeebe & Wolf-Gladrow 
(2001) 

2.32 

 enry’s Constant KH = 10^(2385.73 / Temp (K) - 14.0184 + 0.01526 Temp (K)) 
Maberly (1996), refit 
from Harned & Davis 
(1943) 

2.33 

Schmidt number, 
from water 
temperature 
(T, Celsius) 

sCO2 (m d
-1
) = 1911.1 – 118.11 T + 3.4527 T

2
 – 0.04132 T

3
 Wanninkhof (1992) 2.34 

Wind speed 
correction at 10 
metres height 
(U10) from 
measured wind 
speed height (Uz) 

U10 = Uz · 1.22 Wanninkhof (1992) 2.35 

Piston velocity 
(converted from 
cm/h to m/d) 

kCO2 (m d
-1
) = ((2.07 + (0.215 U10)

1.7
) / 100) · 24 U10 < 3m s

-1
 

 

kCO2 (m d
-1
) = 0.31 · U10 · (sCO2 / 600)

-0.5
 U10 ≥ 3m s

-1
 

Cole & Caraco (1998) 
 
Wanninkhof (1996) 

2.36 

 

2.37 

Gas Flux fCO2 (mmol m
-2
 d

-1
) = kCO2 · KH (pCO2 sat – pCO2 aq)  Vachon et al.( 2010) 2.29 

Carbon flux 
(converted from 
m

-2
 d

-1
 to m

-2
 y

-1
) 

mg CO2 m
-2
 y

-1
 = ((fCO2  · 44) / 1000) 

mg C m
-2
 y

-1
 = (g CO2 m

-2
 y

-1
) · (12 / 44) 

 2.38 
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Figure 2.12 Converting measured data to CO2 flux.  Numbers refer to equations 

explained in Table 2.5. 

 

2.3.4.2 Calcium Carbonate 

The formation and dissolution of CaCO3 can provide an insight into the buffering 

capabilities of a lake system as the equilibrium is sensitive to concentration of 

dissolved CO2 in the water column.  Sudden changes in the concentration of CO2 

can occur through a number of processes including losses as a result of 

photosynthetic utilisation and inflows of excess CO2 from enriched groundwater, 

promoting the release of CO2 to the atmosphere from the surface waters (Wetzel, 

2001).  This equilibrium can be estimated using the Saturation Index (SI) in Equation 

2.39: 

    

SI = pH - pHs     (2.39) 

 

where pH is the measured pH and pHs is the pH of the water if it were in equilibrium 

with CaCO3 at the existing calcium ion [Ca2+] and bicarbonate ion [ CO 
 
] 

concentrations.  Systems with a positive SI are oversaturated with respect to CaCO3 

and this tends to lead to the precipitation of CaCO3 when suitable precipitation nuclei 

are available such as algae, whereas systems with a negative SI are under-

saturated with respect to CaCO3 and tend to dissolve CaCO3.  The SI for a saturated 

system is zero i.e. waters in equilibrium with CaCO3 and have neither CaCO3 

Observations   Derived Parameters   CO2 Flux 

Dissolved CO2 

Wind Speed 

sCO2 

kCO2 

fCO2 

Atmospheric CO2 

CO2 aq 

pH2O 

2.30 

2.36 
U10 < 
3m s

-1
 

CO2 sat 

Barometric Pressure 

Water Temperature 

Yes 

N
o

 

o
 

U10 

2.37 

2.35 

2.34 

2.38 C Flux 

2.33 KH 

2.32 

2.29 

2.31 
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precipitation nor a tendency to dissolve CaCO3 and so separates conditions where 

CaCO3 precipitation is likely (SI >0) or not (SI < 0).  The equations used to calculate 

the calcite saturation index are shown in Table 2.6, and their use is visualised in 

Figure 2.13. 

 

The SI was calculated using a complete mineral analysis, therefore initially the ionic 

strength of the ions present in calcium carbonate ( CO 
 

, CO 
2-

, Alk) is required (Eq. 

2.40).  The ionic strength of a solution is a measure of the concentration of ions in 

that solution. Ionic compounds, when dissolved in water, dissociate into ions.  K2 

refers to the second dissociation constant for carbonic acid (Eq. 2.41) and is a 

function of water temperature.  KS is the solubility product constant for CaCO3 and 

also a function of water temperature (Eq. 2.42).  The activity coefficient of electrolyte 

solutions ( ; Eq. 2.43) is a dimensionless quantity that represents how close the 

solution is to ideal behaviour according to  enry’s Law and is function of 

temperature (A; Eq. 2.44).  pHs represents the pH of the water if it were in 

equilibrium with CaCO3 at the existing calcium ion [Ca2+] and bicarbonate ion [ CO 
 

] 

concentrations.  The difference between pH and pHs signifies the SI of calcium 

carbonate (Eq. 2.39). 

 

Table 2.6 Equations used to calculate calcium carbonate saturation index (SI). 

 

Parameter Equation Source Eq. 

Ionic strength 

        
  

 
where c refers to the concentrations of all ions present in 
solution; z is the charge of the ion 

Stumm & Morgan (1981) 2.40 

K2 
(T, Kelvin) 

pK2 = 107.8871 + 0.03252849 T – 5151.79 / T – 38.92561 
logT + 563713.9 / T

2 Plummer & Busenberg (1982) 2.41 

Calcite Solubility 
Product  
(T, Kelvin) 

pKs = 171.9065 + 0.077993 T – 2839.319 / T – 71.595 logT Plummer & Busenberg (1982) 2.42 

Davies activity 
coefficient 
(T, Celsius) 

   =                  
 

where   = 0.0008 T + 0.4881 and   is ionic strength 

Stumm & Morgan (1981) 

2.43 

 

2.44 

pHs pHs = pK2 – pKs + p[Ca
2+

] + p[ CO 
 ] + 5  Snoeyink & Jenkins (1980) 2.45 

Saturation Index SI = pH - pHs  2.39 
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Figure 2.13 Converting measured data to the calcite saturation index.  Numbers 

refer to equations explained in Table 2.6. 

 

2.3.5 Carbon Accumulation and Burial from Trap and Sediment Data 

The carbon accumulation rate and burial efficiency of both meres was calculated 

from a dated master sediment core and sediment trap data (Figure 2.14).  The 

procedure for this is explained below: 

 
Figure 2.14 Diagram showing the method used to determine carbon sequestration 

and burial efficiency in Rostherne Mere and Tatton Mere. 
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2.3.5.1 Sediment Traps 

The total organic carbon settling input to the sediment was calculated by using the 

estimates of GPP and sediment traps, which measure the sedimentation rate.  At 

Rostherne Mere a system of KC Denmark open sediment trap stations were set at 

10 m and 22 m within the lake basin collected sinking seston (organic and inorganic 

particles) through the water column and reset every 3 months.  These traps 

comprise 4 open, clear plastic tubes (450 mm length/ ø72 mm internal diameter) with 

a trapping ratio of 1:6.3 and trapping area of 0.10 m2.  Technicap PPS 4/3 automatic 

sequencing traps were also set at 10 m and 22 m at Rostherne Mere to collect 

sediments at a high resolution, 2 week interval.  These traps comprise a large open 

funnel (1310 mm length/ ø252 mm internal diameter) with a trapping ratio of 1:5.1 

and trapping area of 0.05 m2 that delivers sediment to 12 individual 500 ml plastic 

bottles that were programmed to each collect sediment for 2 weeks.  The traps were 

reset every 6 months as dictated by the trapping interval used.  At Tatton Mere a 

single KC Denmark open sediment trap station was set at 7 m and reset at 6 week 

intervals during the winter and at 3 week intervals during the stratification period.   

 

The organic matter and carbonate content within the sediments traps was 

determined using LOI at 550°C and 925°C (see section 2.3.5.2).  Trap samples were 

stored frozen and either freeze-dried or thawed out prior to analysis.  A small number 

of samples were subsequently freeze-dried as part of the UKLEON research project.  

Here samples were initially frozen using Dry Ice then transferred to a Christ BETA 1-

8LD freeze-drier, which uses a vacuum to slowly reduce the pressure inside the drier 

over several hours to allow the frozen water in the material to sublimate directly from 

the solid phase to the gas phase. 

 

2.3.5.2 Sediment Core Collection 

The master sediment core for Rostherne Mere (RM_Liv_2011, 112 cm long), taken 

at 26 m water depth in September 2011, was cut at 1 cm intervals from 0 – 50 cm 

and 0.5 cm intervals from 50 cm to 112 cm due to sediment compression through the 

core as further sediment accumulation occurs over time and expected lower 

sediment accumulations rate pre-20th century.  Samples were kept frozen in the 

laboratories at Loughborough University until needed for analysis.  The master 

sediment core for Tatton Mere (SCM41E, 119 cm long), taken at 11.6 m water depth 



49 
 

in February 2010 by Bennion et al. (2010), was cut at 1 cm intervals throughout 

except for 0 – 2 cm which was an amalgamated sample. 

 

2.3.5.3 Estimation of Organic Matter and CaCO3 Content 

Organic matter was estimated for trap and core samples using loss-on-ignition (LOI).  

LOI is determined by the following method (Dean, 1974): 

 

1. 1g wet weight of sample is dried overnight at 105°C. 

2. Once cooled samples are weighed (to 4 decimal places). 

3. Samples are transferred to furnace at 550°C for 2 hours. 

4. Once cooled samples are reweighed (to 4 decimal places). 

5. Difference between dry weight and ash weight is the percentage of dry weight 

lost on ignition. 

6. Remaining ash sample may then be used for carbonate analysis, by heating 

to 925°C for 4 hours. 

7. Once cooled samples are reweighed (to 4 decimal places). 

8. Difference between ash weight and weight lost at 925°C is multiplied by 2.274 

(the molecular weight of CaCO3 divided by the molecular weight of CO2) to 

derive the carbonate content which can then be expressed as a percentage of 

the dry weight. 

 

For freeze-dried samples Equation 2.46 was used to calculate the flux of organic 

matter (g C m-2 d-1): 

 

Flux = Total Sample (g) / Trap Area (m2)  x  Weight %LOI  x  0.46       (2.46) 

   Number of Collecting Days (d)    100 

 

For wet samples Equation 2.47 was used to calculate the flux of organic matter (g C 

m-2 d-1): 

 

Flux = Total Sample (ml) / Sub Sample (ml)  x  Organic Matter (g) x 0.46      (2.47) 

Collecting Days (d) x Trap Area (m2)  

 



50 
 

Organic content was converted to organic carbon (OC) for each sample by 

multiplying the percentage of OM by a factor of 0.46 (Dean, 1974).  Fluxes were 

summed up for each trap sample to give an average estimate for the sampling 

period. 

 

2.3.5.4 Sediment Core Dating 

For the Rostherne Mere master core, 10g wet weight subsamples of the core were 

taken every 2 cm from 0 – 50 cm and every 4 cm from 50 cm – 112 cm, dried at 

50°C, and pulverised after weighing with a mortar and pestle in preparation for lead-

210 (210Pb) analysis performed by Dr Dan Engstrom, St. Croix Watershed Research 

Station, Minnesota, USA. 

 

The analysis of 210Pb is used as a dating technique because once formed, from 

either sediments or rocks containing uranium-238 (238U) or in the atmosphere from 

radium-226 (226Ra), it can begin to accumulate in lake sediments.  The 210Pb 

eventually decays, over time, into a non-radioactive form of lead. The half-life of 

210Pb is 22.3 years, which means if the sediment layers are undisturbed, as the 

sediment ages it slowly loses its radioactivity.  Cores are typically dated through the 

analysis of a series of stratigraphic levels from the core surface to a depth where 

unsupported 210Pb is no longer measurable. It takes approximately 7 half-lives, or 

150 years for the 210Pb in a sample to reach near-zero radioactivity (Wetzel, 2001). 

 

210Pb was measured at 16 depth intervals through its grand-daughter product 210Po, 

with 209Po added as an internal yield tracer.  The polonium isotopes were distilled 

from 0.5 g dry sediment at 550 °C following pretreatment with concentrated HCl and 

plated directly onto silver planchets from a 0.5 N HCl solution (modified from Eakins 

& Morrison, 1976).  Activity was measured for 1-6 x 105 s with ion-implanted surface 

barrier detectors and an Ortec alpha spectroscopy system.  Unsupported 210Pb was 

calculated by subtracting supported activity from the total activity measured at each 

level; supported 210Pb was estimated from the asymptotic activity at depth (the mean 

of the lower most samples in the core) or alternatively, from 214Pb activity measured 

by gamma spectrometry at selected core intervals.  From the resulting 210Pb profile, 

dates and sedimentation rates were determined according to the constant rate of 
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supply model with confidence intervals calculated by first-order error analysis of 

counting uncertainty (Appleby, 2001). 

 

The core samples were corrected for sediment focusing, the preferential deposition 

of fine-grained sediments in deeper regions of the lake basin, to enable a single 

sediment core to be used to estimate whole basin accumulation.  This correction is 

applied to the whole core and therefore assumes that focusing is constant over time, 

which may not be a valid assumption in some cases. However, the benefits of using 

focusing-corrected estimates considerably outweigh possible problems associated 

with the approach (Engstrom & Rose, 2013).  The correction is based a focusing 

factor for 210Pb flux: 

 

FC = F (210Pb site)     (2.48) 

  F (210Pb atm) 

 

where F(210Pb site) is site specific flux of unsupported (excess) 210Pb and F(210Pb atm) 

is atmospheric flux of excess 210Pb, both expressed in Bq m-2 yr-1.  Following this 

method, a focusing correction value of 0.7 was calculated for Rostherne Mere. 

 

Dating of the Tatton Mere core was carried out at University College London (UCL) 

using the well-established technique of spheroidal carbonaceous particle analysis 

(SCP) (Appleby, 1994).  This method was chosen for Tatton Mere as a full SCP 

record was present, allowing percentiles from the cumulative curve to each be 

ascribed a date. 

 

Dried sediment was subjected to sequential chemical attack by mineral acids to 

remove unwanted fractions leaving a suspension of mainly carbonaceous material 

and a few persistent minerals in water. SCPs are composed mostly of elemental 

carbon and are chemically robust. The use of concentrated nitric acid (to remove 

organic material), hydrofluoric acid (siliceous material) and hydrochloric acid 

(carbonates and bicarbonates) therefore does them no damage. A known fraction of 

the resulting suspension was evaporated onto a coverslip and mounted onto a 

microscope slide. The number of SCPs on the coverslip was counted using a light 

microscope at x450 magnification and the sediment concentration calculated in units 
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of ‘number of particles per gram dry mass of sediment’ (gDM-1). The criteria for SCP 

identification under the light microscope followed Rose (2008). Analytical blanks and 

SCP reference material (Rose, 2008) were included in each batch of sample 

digestions. Reference concentrations agreed with the expected values while no 

SCPs were observed in the blanks. The detection limit for the technique is ~100 

gDM-1 and concentrations have an accuracy of ~ ± 45 gDM-1.  The core was 

subsequently dated using cumulative SCP inventory profiles (Rose & Appleby, 2005) 

where a date for each 10-percentile of the cumulative SCP profile, from the start of 

the record (0%) to the concentration peak (100%) was allocated to the core. 

 

Using these time-stratigraphic horizons and the thickness of sediment between them, 

sedimentation rates can be determined using Equation 2.48: 

 

Sedimentation rate (cm yr-1) = length between time stratigraphic horizons (cm) 

       time period (yr)          (2.48) 

 

2.3.5.5 Estimating Carbon Burial Efficiency 

The organic carbon burial efficiency (Equation 2.49) is calculated as the ratio 

between organic carbon gross sedimentation rate (g C m-2 yr-1), derived from mass 

depositional sediment trap data (Rostherne Mere 22 m deep sequencing trap and 

Tatton Mere 7 m deep open trap station), and organic carbon net sedimentation rate 

(g C m-2 yr-1) into the surface sediments as measured from the master cores taken at 

each lake.  However there is some debate over the method for calculating net 

sedimentation rate with Gälman et al. (2008) arguing that it is derived from surface 

sediments > 10 years old, as the majority of C mineralisation takes place within 10 

years of initial deposition, and Sobek et al. (2009) maintaining that only sediment 

layers > 25 years old should be considered due to longer term on-going 

mineralisation within the sediment. 

 

 

Burial Efficiency % (BE) =   OC Net Sedimentation Rate  (2.49) 

   OC Gross Sedimentation Rate 
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Following Gälman et al. (2008), core sediments < 10 years old were discounted from 

calculating organic carbon net sedimentation rate (Equation 2.50): 

 

OC Net Sedimentation Rate = Sediment AR (> 10 years) x (LOI / 100) x 0.46    (2.50) 

 

Alongside determining organic carbon content (Section 2.3.5.3); the method devised 

by Sobek et al. (2009) requires the density and porosity for the sediment layers > 25 

years old to be calculated (Eqs. 2.49 – 2.51).  Dry bulk density (ρ) of the sediment 

was calculated from the organic carbon content according to Müller et al. (2005) and 

assumes that the sediment is a two-phase mixture between silicate and carbonate 

minerals (density ~2.65 g cm-3) and organic matter (density ~1 g cm-3) (Equation 

2.49): 

 

ρ (g cm-3) = –0.0523 (OC%) + 2.65   (2.51) 

 

From dry bulk density (ρ, g cm-3) and water content (WC%), porosity (Φ) was 

calculated as follows (Equation 2.50): 

 

Φ = WC% / (WC% + (1 – WC%) ρ)   (2.50) 

 

Finally, the net sedimentation rate was calculated from the sedimentation rate (SR, 

mm yr-1), dry bulk density and porosity (Equation 2.51): 

 

OC Net Sedimentation Rate = SR (> 25 years) x ρ / Φ     (2.51) 

  



54 
 

2.3.6 Summary of Data Acquisition 

A summary of all field and laboratory data required for the calculation of carbon 

fixation, flux and burial efficiency in Rostherne Mere and Tatton Mere are shown in 

Table 2.7.  All field data was collected  and where stated processed at 

Loughborough University.  Where facilities weren’t available external laboratories 

were utilised and are denoted by superscript numbers. 

 

Table 2.7 Summary of project data acquisition. Items marked with superscript 

numbers denote external laboratory work where (1) Lancaster Environment Centre, (2) 

BGS, Keyworth, (3) St. Croix Watershed Research Station, Minnesota and (4) UCL. 

 

Field Data Laboratory Data Data Calculations 

Lake Bathymetry TP 
(1)

 & SRP 
(1) 

Lake Metabolism 

NEP = GPP – R Air Temperature TN 
(1)

 & Nitrate-N 
(1) 

Solar Radiation Ca
2+ (2)

 Inorganic Carbon 

DIC=[CO2 aq]+[H2CO3]+[ CO 
 
]+[CO 

2-
] Barometric Pressure Alkalinity 

Wind Speed DOC CO2 Flux 

Wind Direction POC Calcium Carbonate Flux 

Water Temperature LOI OC Flux 

O2 Concentration Freeze-drying OC Accumulation & Focusing 

pH 
210

Pb Core Dating 
(3) 

OC Burial Efficiency 

Conductivity SCP Core Dating 
(4) 

 

CO2 Concentration   

Lake Cores   

Lake Sediment Traps   
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3 RESULTS 

 

3.1 METEOROLOGICAL DATA 

 
 

Figure 3.1 Meteorological data recorded at the automatic weather station deployed 

on Rostherne Mere for the period of study.  All data are daily means. (a) Air 

temperature (°C), (b) surface water temperature (°C), (c) solar radiation (W m-2), (d) 

barometric pressure (mB) and (e) wind speed (m s-1).  Periods of lake stratification 

are shown with grey bars and dashed lines. 
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The climate of Cheshire East is temperate maritime.  Between May 2010 and May 

2012 the mean air temperature was 10.9°C, with a mean high of 20.8°C in 2010 and 

20.4°C in 2011 and a mean low of -7.8°C in 2010 and -1.5°C in 2011 (Figure 3.1a).  

The mean surface water temperature in Rostherne Mere was 12.6°C, with a mean 

high of 21.8°C in 2010 and 20.7°C in 2011, the mean low of 3.2°C occurred in both 

2010 and 2011 (Figure 3.1b).  Air temperature is highly correlated with surface water 

temperature in Rostherne Mere (r2 = 0.84; p < 0.01) and Tatton Mere (r2 = 0.84; p 

<0.01). 

 

Solar radiation maximum values occurred during July 2010 and June 2011, and 

lowest values during January 2011 and 2012 (Figure 3.1c).  The highest recorded 

average pressure was 1035 mB in December 2010 and 1039 mB in January 2011.  

The lowest recorded average pressure was 970 mB in November 2010 and 981 mB 

in December 2011.  The average wind speed between May 2010 and May 2012 was 

2.3 m s-1, and informed the selection of low wind speed constants for use in 

calculating net ecosystem production (Figure 3.1e). 

 

3.2 ROSTHERNE MERE 

 

3.2.1 Water Chemistry 

 

Figure 3.2 Depth-time plot of temperature (°C) measured in Rostherne Mere from 

May 2010 to April 2012.  Periods of lake stratification are shown with grey bars are 

dashed lines. 
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Rostherne Mere is a warm monomictic, eutrophic lake system.  Figure 3.2 shows 

temperature stratification over the period of study and highlights the very distinct 

monomictic mixing regime.  Stratification is initiated in mid-March and continues until 

mid-November when it breaks down and the lake remains mixed for the remainder of 

the year.  A water temperature of approximately 7°C seems critical for the onset and 

breakdown of stratification.  Stratification is very intense during June, July and 

August with surface water temperatures reaching up to 22°C creating a very small 

epilimnion, typically only 4 – 5 m deep.  Once stratification has begun to break down 

the lake becomes isothermal within a matter of weeks.  No significant ice cover was 

observed during the study period. 

 

Table 3.1 Summary of phosphorus and nitrogen nutrient availability in Rostherne 

Mere 2010 – 2012.  Water column mean concentration ± SD. 

 

  
Total P 

(µg L
-1

) 

SRP 

(µg L
-1

) 

Total N 

(µg L
-1

) 

Nitrate-N 

(µg L
-1

) 

19 May 2010 

0.5m 

12m 

24m 

Mean 

168 

232 

254 

218 ± 45 

148 

221 

250 

206 ± 53 

1540 

1820 

1930 

1763 ± 201 

907 

1392 

1395 

1231 ± 281 

14 Sept 2010 

0.5m 

12m 

24m 

Mean 

97 

336 

914 

449 ± 420 

21 

316 

871 

403 ± 432 

920 

2000 

2780 

1900 ± 934 

18 

1411 

956 

795 ± 710 

27 Jan 2011 

0.5m 

12m 

24m 

Mean 

313 

324 

325 

321 ± 7 

291 

300 

301 

298 ± 6 

1630 

1680 

1680 

1666 ± 29 

710 

752 

760 

741 ± 27 

27 May 2011 

0.5m 

12m 

24m 

Mean 

222 

303 

437 

321 ± 109 

186 

274 

387 

282 ± 101 

1290 

1940 

2300 

1850 ± 512 

846 

1278 

1221 

1118 ± 235 

02 Nov 2011 

0.5m 

12m 

24m 

Mean 

178 

199 

933 

437 ± 430 

105 

110 

870 

362 ± 440 

82 

87 

2170 

1290 ± 1204 

116 

128 

22 

89 ± 58 

08 Mar 2012 

0.5m 

12m 

24m 

Mean 

323 

306 

310 

313 ± 9 

290 

288 

286 

288 ± 2 

1840 

1840 

1850 

1840 ± 6 

1356 

1283 

1225 

1288 ± 66 
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Levels of total phosphorus (TP) and total nitrogen (TN) are both high in Rostherne 

Mere (Table 3.1) but do show variability through the water column and with time.  

During the period of study surface water nutrient means were 216 ± 88 µg P L-1 

(mean ± SD; n = 6) and 1217 ± 639 µg N L-1 (n = 6) respectively.  The hypertrophic 

(TP > 100 µg L-1; TN > 1200 µg L-1) levels of P suggest that N is likely to be the 

growth limiting nutrient within Rostherne Mere.  Variability in water column 

concentrations are linked to stratification as during mixed months the concentrations 

of both P and N are virtually uniform (27 Jan 2011 and 08 Mar 2012), whereas 

during stratified months (19 May 2010, 14 Sept 2010, 27 May 2011 and 02 Nov 2011) 

the epilimnion nutrients are heavily depleted in contrast to those in the hypolimnion. 

 

 

Figure 3.3 Depth-time plot of pH measured in Rostherne Mere from May 2010 to 

April 2012 

 

The pH of Rostherne Mere exhibits marked seasonality, reaching 9.3 within the 

epilimnion and falling to 6.1 in the hypolimnion during the summer months of 2010 

and 2011; winter values averaged 7.4 ± 0.5 (n = 193; Figure 3.3). 

 

The mean transparency at Rostherne Mere was recorded at 2.8 ± 1.5 m (n = 31; 

Figure 3.4).  Highest transparency was measured during the mixed phase, 

December 2010 and January 2011 respectively (6.0 & 6.2 m), with lowest 

transparency occurring during both July and August 2010 & 2011 (1.1 m). 
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Figure 3.4 Secchi disc depths recorded in Rostherne Mere from May 2010 to April 

2012 

 

3.2.2 Organic Carbon Production 

 

 

 

Figure 3.5 Depth-time plot of dissolved oxygen (mg L-1) measured in Rostherne 

Mere from May 2010 to April 2012. 

 

Alongside thermal stratification (Figure 3.2), Rostherne Mere also experiences 

dissolved oxygen (O2) stratification (Figure 3.5).  Summer oxygen super saturation in 

the epilimnion (> 14 mg L-1) is echoed by hypoxia (< 2 mg L-1) in the hypolimnion.  

Low oxygen concentrations develop quickly in the hypolimnion with the onset of 

stratification and depletion rises quickly from depth as oxygen is consumed, leaving 

over 50% of the lake hypoxic.  This trend persists until lake turnover, when 
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concentrations steadily increase as oxygenated water from the epilimnion is mixed 

down into the anoxic hypolimnion. 

 

Figure 3.6 Hourly surface oxygen concentration (mg L-1) for Rostherne Mere.  Black 

line is measured surface concentration; red line is oxygen saturation concentration.  

 

Figure 3.6 shows hourly O2 data compared to the expected oxygen saturation.  The 

lake is under saturated with oxygen during the winter months when the lake is fully 

mixed and temperatures are at their lowest (lowest oxygen values recorded in 

December 2010 and 2011).  Similarly the lake is super saturated with oxygen during 

the summer months when the lake is stratified and photosynthesis only occurs in the 

top 4 – 5 m of the water column (highest oxygen values were recorded in June 2011). 

 
Figure 3.7 Daily net ecosystem production (NEP) calculated in Rostherne Mere from 

Nov 2010 to Apr 2012.  Positive values represent a flux of O2 out of the lake and 

negative values represent a flux of O2 into the lake. 
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Utilising the data in Figure 3.7, the NEP of Rostherne Mere was calculated (following 

the method set out in Section 2.3.3) to show that for 2011 the lake is a net 

autotrophic, producing more carbon through photosynthesis than is lost through 

respiration (2.24 ± 0.8 mg O2 L
-1; converted to C fixation 0.37 ± 0.25 g C m-2 d-1).  

The level of photosynthetic production during stratification is very high (7.94 ± 0.9 mg 

O2 L
-1; converted to C fixation 3.05 ± 0.19 g C m-2 d-1) but losses due to respiration in 

winter months are nearly as high (-5.70 ± 0.2 mg O2 L
-1; converted to C fixation 2.70 

± 0.34 g C m-2 d-1), meaning that overall there is net autotrophy within Rostherne 

Mere.  The data are summarised in Table 3.2. 

 

Table 3.2 Summary of seasonal NEP values calculated in Rostherne Mere.  Mean 

NEP values are average ± SD; mean C fixation value average ± SD generated from 

sensitivity testing. 

 

 

Mean Monthly 

NEP 

mg O2 L
-1

 

Mean Stratified 

NEP 

mg O2 L
-1

 

Mean Daily 

C Fixation 

g C m
-2

 d
-1

 

Total C Fixation 

g C m
-2

 yr
-1

 

Study Period 

(n = 16) 
0.97 ± 0.7 - 0.30 ± 0.22 135.1 ± 99 

2011 

(n = 10) 
2.24 ± 0.8 7.94 ± 0.9 0.37 ± 0.25 135.6 ± 91 

 

The mean DOC concentration for the study period was 7.2 ± 0.5 mg C L-1 (n = 387) 

with a small annual variation between 2010 (7.0 ± 0.6 mg C L-1; n = 146) and 2011 

(7.4 ± 0.4 mg C L-1; n = 210).  DOC concentration in both the epilimnion and 

hypolimnion varied seasonally (Figure 3.8a).  The peak epilimnetic concentration 

occurred in July 2011 (8.0 mg C L-1) and hypolimnetic DOC concentration peaked in 

September 2010 (9.4 mg C L-1) and September 2011 (9.1 mg C L-1).  Lowest DOC 

levels occurred in February 2011 (6.8 mg C L-1), with the concentration being 

uniform through the water column. 

 

DOC loading is extremely variable in Rostherne Brook, as a result of seasonal 

rainfall and river discharge patterns (Figure 3.8b).  DOC peaked during winter, 

February 2011 (9.4 mg C L-1) and December 2011 (11.7 mg C L-1), and was lowest 

during late summer, September 2010/11 (2.3/2.7 mg C L-1). 
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Figure 3.8 (a) Depth-time plot of DOC (mg L-1) measured in Rostherne Mere from 

May 2010 to April 2012.  (b) Levels of DOC (mg L-1) discharged from Rostherne 

Brook, range of DOC measured in Rostherne Mere denoted by dashed line. 

 

3.2.3 Inorganic Carbon 

Levels of carbon dioxide (CO2) within Rostherne Mere exhibit an inverse distribution 

to O2 profile, where the peak occurs in the hypolimnion rather than the epilimnion 

(Figure 3.9).  The rapid onset of stratification in mid-March leads to under saturation 

of CO2 in the epilimnion by April and the epilimnion remains under saturated until 

stratification breaks down in November.  Mean summer epilimnion CO2 

concentration was 190 µmol mol-1, whilst the hypolimnion concentration peaked at 

over 11,500 µmol mol-1 in December 2010 and 2011.  Due to the very small 

epilimnion, over 85% of the water column was supersaturated with CO2 for most of 

the year (> 395 µmol mol-1).  The breakdown of stratification and mixing of the water 

column significantly dilutes the CO2 concentration, meaning winter water column 

mean CO2 concentration was ~1700 µmol mol-1.  This implies that during the mixed 

(a) 

(b) 



63 
 

phase the lake was permanently super saturated with CO2 and did not totally de-gas 

back to atmospheric CO2 concentrations before the next period of stratification 

occurred. 

 

 
 

Figure 3.9 Depth-time plot of CO2 concentration (µmol mol-1) measured in 

Rostherne Mere from May 2010 to April 2012.  The black dashed box represents 

data that was missing and generated using kriging interpolation. 

 
Figure 3.10 Monthly surface pCO2 (µatm) measured in Rostherne Mere from May 

2010 to April 2012.  Horizontal black line represents overlying atmospheric pCO2 

(µatm).  Values above this line represent super saturation of CO2 and values below 

represent under saturation CO2. 

 

Figure 3.10 emphasises the seasonal pattern of surface pCO2 concentration in 

Rostherne Mere.  Periods of under saturation typically occurred during stratification 

and super saturation during the mixed phase.  However super saturation did occur 

during May 2011 as a result of wind speeds with enough energy to temporarily break 
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stratification and mix epilimnetic waters into the hypolimnion.  The study mean 

surface water pCO2 was 662 µatm, with a 2010 mean of 789 µatm and a 2011 mean 

of 590 µatm. 

 

Areal rates of surface water CO2 flux (calculated following the method set out in 

Section 2.3.4) indicate that Rostherne Mere is a net source of CO2 to the 

atmosphere (Figure 3.11; Table 3.3).  Between May 2010 and May 2012 the lake is 

emitting 9.47 mmol CO2 m
-2 d-1 (41.52 g C m-2 yr-1).  The 2011 mean is slightly lower 

at 7.64 mmol CO2 m
-2 d-1 (33.51 g C m-2 yr-1).  As expected, during the stratified 

period, Rostherne Mere is a net sink of CO2 from the atmosphere (- 4.54 mmol CO2 

m-2 d-1), as a result of pCO2 under saturation for the majority of the stratified cycle 

(Figure 3.10). 

 
Figure 3.11 Monthly surface CO2 flux (mmol m-2 d-1) in Rostherne Mere from May 

2010 to April 2012.  Positive values represent an outward flux of CO2 from the lake 

to the atmosphere and negative values represent inward flux of CO2 from the 

atmosphere in to the lake. 

 

Table 3.3 Summary of CO2 flux calculated in Rostherne Mere. Values ± SD. 

 

 

Mean CO2 flux 

 

mmol CO2 m
-2

 d
-1

 

Mean Stratified 

CO2 flux 

mmol CO2 m
-2

 d
-1

 

Mean Daily 

C flux 

g C m
-2

 d
-1

 

Total C flux 

 

g C m
-2

 yr
-1

 

Study Period 

(n = 28) 
10.75 ± 26 - 4.54 ± 4.2 0.13 ± 0.2 47.09 ± 73 

2010 

(n = 9) 
12.72 ± 33 -3.91 ± 4.1 0.15 ± 0.4 55.71 ± 146 

2011 

(n = 16) 
7.64 ± 23 - 4.94 ± 4.7 0.10 ± 0.2 33.48 ± 72 
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The concentration of calcium (Ca2+) within the water column of Rostherne Mere is 

highly variable with both depth and time (Figure 3.12).  The concentration is most 

variable in the surface waters (0.5 m) and shows particularly rapid changes during 

the summer months when stratification is strongest.  In 2010, within the space of 2 

weeks the level of calcium within the epilimnion drops from 52.9 mg Ca L-1 to 39.1 

mg Ca L-1.  This sudden drop is echoed by a sharp rise in the    
 -

 standing stock 

(Figure 3.18) and under saturation of CO2 in the epilimnion.  Variability is much less 

pronounced further down the water column (12m & 24 m) but does show change 

over time as the lake moves from being stratified, where Ca2+ concentrations are 

higher than the epilimnion, to fully mixed when eventually the concentration is 

uniform throughout the entire water column. 

 
Figure 3.12 Summary of calcium (Ca2+) availability in Rostherne Mere 2010 – 2012.  

Green line represents 0.5 m, red line represents 12 m and blue line represents 24 m. 
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Figure 3.17 Summary of calcite saturation index (lines) and shallow sequencing trap 

CaCO3 flux data (bars) in Rostherne Mere 2010 – 2012.  Values of saturation > 0 

suggest the water is oversaturated with CaCO3 and values < 0 signify CaCO3 

undersaturation. Green line represents 0.5 m, red line represents 12 m and blue line 

represents 24 m. 

 

Monthly patterns in the DIC pool (Figure 3.18a) show an overall decline of total DIC 

over the study period (r2 = 0.56).  There is a decline from a mean water column 

concentration of 1548 µmol L-1 in 2010 to 1135 µmol L-1 in 2011.  As a result of 

    
 

 constituting approximately 83% of the total DIC pool in Rostherne Mere over 

the study period there was an equally important concentration decline (r2 = 0.59).  

Due to the complex nature of inorganic carbon there were no similar reductions in 

   
 -

 and CO2 concentrations.  Levels of    
 -

 within the water column, typically the 

epilimnion, pulse due to high pH and low CO2 concentrations.  Average highs of 

around 15 µmol L-1 (July and August 2010; August and September 2011) can result 

in the precipitation of CaCO3 (Figure 3.17).  Typically    
 -

 only constitutes 0.5% of 

the inorganic carbon measured in Rostherne Mere over the study period.  The 

overall concentration of CO2 rapidly increases after stratification, from ~100 µmol L-1 

during the mixed phase, to over 250 µmol L-1 by August 2010 & 2011.  The CO2 

concentration reflects the huge increases in hypolimnetic CO2 as a result of 

respiration (Figure 3.18c and 3.18d).  On average, CO2 forms 16.5% of the inorganic 
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carbon pool, but this can be as low as 5% in winter (February 2011) and as high as 

30% in summer (July 2011). 

 
 

Figure 3.18 Monthly water column means for DIC fractions calculated in Rostherne 

Mere from May 2010 to April 2012. 

 

Standing stocks of total dissolved inorganic carbon and CO2 were calculated from 

the concentration data (Figure 3.19).  The overall patterns in total standing stocks 

matched the concentration figures and showed that overall DIC fell from a peak of 

159,242 kg C in July 2010 to just 54,141 kg C in April 2012.  Although there are 

(a) 

(b) 

(c) 

(d) 
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seasonal fluxes in stocks, yearly mean showed a 30% drop in dissolved organic 

carbon.  The standing stock of total CO2 merely replicates the seasonal trend in CO2 

accumulation in the hypolimnion, with little annual mean variation (2010: 10,100 kg C; 

2011: 11,750 kg C).  However, declining total DIC stocks and stable CO2 stocks 

mean that the overall percentage of inorganic carbon composed of CO2 has 

increased from 7% in 2010 to 12% in 2011.  

 
 

Figure 3.19 Monthly total inorganic carbon stocks (kg C) calculated for Rostherne 

Mere from May 2010 to April 2012. 

 

  

(a) 

(b) 
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3.2.4 Sediment Data 

A combination of open traps and sequencing traps were deployed at 12m and 24m 

in Rostherne Mere and collected a total of  227.5 ± 7 g C m-2 yr-1 (n = 20; 12m 

sequencing trap), 142.3 ± 6 g C m-2 yr-1 (n = 13; 24m sequencing trap between June 

2011 and April 2012) and 30.3 ± 9 g C m-2 yr-1 (n = 3;12m open trap) and 47.5 ± 5 g 

C m-2 yr-1 (n = 3; 24m open trap) between May 2010 and April 2012 (Figure 3.20).  

This equates to approximately 134.6 ± 7 g C m-2
 yr-1 (both sequencing traps) during 

2011.  Data from the two automatic sequencing traps were used in the C-balance for 

Rostherne Mere. 

 

 

 

Figure 3.20 Rostherne Mere organic carbon flux (g C m-2 d-1) from sediment trap 

data October 2005 to April 2012. a) Shallow traps set at 8 – 10 m, b) Deep traps set 

at 22 – 25 m.  Grey bars refer to open sediment traps and are scaled for deployment 

time.  Scatter plot refers to sequencing sediment traps, typically set for 2 week 

collection periods. 
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Figure 3.21 RM_Liv_2011 (Rostherne Mere Open Water Core) dating results. (a) 

Total 210Pb activity (pCi g-1) through the core. (b) Sediment 210Pb age (yr). (c) 

Sediment accumulation rates (g cm-2 yr-1) since 1850. 

 

The open water core from Rostherne Mere (RM_Liv_2011) was dated using the 

210Pb method; the results of the analysis are shown in Figure 3.21.  The dates and 

sediment accumulation rates from the 210Pb analysis were used to calculate the rate 

OC accumulation (137.3 g C m-2 yr-1 in 2002) and then corrected for sediment 

focusing, ~0.7, to provide a mean OC accumulation rate for the entire lake basin 

(96.1 g C m-2 yr-1) (Table 3.4). 

 

(a) (b) 

(c) 
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Table 3.4 Summary of RM_Liv_2011 (Rostherne Mere Open Water Core) sediment core data. 

 

Top of 
Interval 

Base of 
Interval 

Model Date Date Error 
Sedimentation 

Rate 
Sediment 

Accumulation 
Sediment Acc. 

Error 
Organic C 

Accumulation 
OC Focus 
Corrected 

cm cm A.D. ± SD
 

cm
-2

 yr
-1 

g m
-2

 yr
-1

 ± SD g C m
-2

 yr
-1

 g C m
-2

 yr
-1

 

0 1 2010 2.00 - 1000 0.007 130.94 91.66 

4 5 2002 2.04 0.47 1053 0.008 137.34 96.14 

8 9 1996 2.01 0.62 1300 0.011 158.90 111.23 

12 13 1991 2.18 0.81 1213 0.011 162.48 113.74 

16 17 1987 2.37 1.01 946 0.007 132.16 92.52 

20 21 1983 2.47 1.15 1315 0.013 150.47 105.33 

24 25 1979 2.69 1.15 1202 0.011 139.37 97.56 

28 29 1974 2.99 1.00 1085 0.012 114.47 80.13 

32 33 1968 3.43 0.80 1023 0.014 107.90 75.53 

36 37 1960 4.23 0.61 832 0.012 80.95 56.67 

40 41 1952 5.29 0.47 825 0.015 82.62 57.84 

44 45 1942 6.92 0.36 681 0.016 64.90 45.43 

48 48 1930 9.64 0.29 634 0.020 58.99 41.30 

52 52.5 1918 13.72 0.24 519 0.023 48.59 34.02 

56 56.5 1897 25.71 0.20 348 0.027 31.31 21.92 

60 60.5 1859 76.09 0.16 314 0.070 28.67 20.07 

 

 

7
1
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The OC burial efficiency of Rostherne Mere (Table 3.5) was calculated using two 

competing methods (Sobek et al., 2009 and Gälman et al., 2008).  OC deposition is 

derived from sediment trap data (Figure 3.20) and OC burial is derived from the 

dated core RM_Liv_2011.  The Gälman et al. (2008) method discounts the first 10 

years of the core and estimates OC burial efficiency to be 71%, whereas the Sobek 

et al. (2009) method discounts the first 25 years of the core and estimates OC burial 

efficiency to be 99%. 

 

Table 3.5 Rostherne Mere organic carbon burial in sediments, deposition onto the 

sediment as determined by sediment traps, and burial efficiency. 

 

Method 
No. of years 

discounted 

OC Deposition 

g C m
-2

 yr
-1

 

OC Burial 

g C m
-2

 yr
-1

 

Burial Efficiency 

% 

This Study 10 134.8 96.1 71 

Sobek et al. (2009) 15 134.8 133.2 99 
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3.3 TATTON MERE 

 

3.3.1 Water Chemistry 

Tatton Mere is a warm monomictic, eutrophic lake system, however Figure 3.22 

shows thermal stratification over the period of study is weakly defined and warmer 

water can mix down into the lower lake depths during stratification.  Mean lake 

temperature for the study period was 10.2°C.  Weak stratification is typically initiated 

in early April and continues until mid-October when it breaks down and the lake 

remains mixed for the remainder of the year.  A temperature of approximately 10°C 

seems critical for the onset and breakdown of stratification.  Stratification intensified 

during July and August with surface water temperatures reaching up to 20°C 

creating a very small epilimnion, typically only 3 – 4 m deep.  Once stratification has 

begun to break down the lake becomes isothermal slowly cooling through the 

following months, reaching a low of 3.0°C during February 2011 and 2012.  

Temperature is variable during mixed periods, most likely as a result of groundwater 

inputs.  No ice cover was observed during the study period. 

 

 
 

Figure 3.22 Depth-time plot of temperature (°C) measured in Tatton Mere from Feb 

2011 to April 2012.  Periods of lake stratification are shown with grey bars are 

dashed lines. 

 

Levels of TP and TN are both high in Tatton Mere (Table 3.6) during the period of 

study, surface water means were 442 ± 170 µg P L-1 (n = 5) and 827 ± 202 µg N L-1 
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(n = 5) respectively.  The hypertrophic (TP > 100 µg L-1; TN > 1200 µg L-1) levels of 

P suggest that N is likely to be the growth limiting nutrient within Tatton Mere.  

Concentration variability within the water column can be linked to stratification and 

biological uptake, as during mixed months the concentrations are virtually uniform 

(24 Nov 2010, 15 Feb 2011 and 02 Nov 2012) whereas during productive months 

(17 Aug 2011) the epilimnion nutrients are heavily depleted in contrast to those in the 

hypolimnion. 

 

Table 3.6 Summary of nutrient availability in Tatton Mere 2010 – 2012.  Water 
column mean concentration ± SD. 
 

  
Total P 

(µg L
-1

) 

SRP 

(µg L
-1

) 

Total N 

(µg L
-1

) 

Nitrate-N 

(µg L
-1

) 

24 Nov 2010 0.5 m 360 338 763 434 

15 Feb 2011 0.5 m 381 350 1110 547 

17 Aug 2011 

0.5 m 

5 m 

10 m 

Mean 

444 

490 

1905 

947 ± 831 

343 

412 

1839 

865 ± 845 

590 

500 

2580 

1220 ± 1176 

Readings 

Too Low 

02 Nov 2011 

0.5 m 

5 m 

10 m 

Mean 

731 

727 

751 

736 ± 13 

629 

621 

626 

625 ± 4 

730 

790 

740 

750 ± 32 

144 

164 

155 

154 ± 10 

08 Mar 2012 

0.5 m 

5 m 

10 m 

Mean 

296 

323 

314 

311 ± 14 

262 

266 

286 

271 ± 13 

940 

950 

1040 

977 ± 55 

459 

412 

525 

465 ± 57 

 

 

The pH of Tatton Mere also shows some seasonality within the lake, with pH 

reaching 9.5 within the epilimnion and falling to 6.4 in the hypolimnion during the 

summer months of 2011, winter values averaged 7.8 ± 0.3 (n = 117; Figure 3.23). 
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Figure 3.23 Depth-time plot of pH measured in Tatton Mere from Dec 2010 to April 

2012. 

 

The mean transparency at Tatton Mere was recorded at 2.6 ± 0.9 m (n = 19).  The 

highest transparency was measured during the mixed phase, April 2011 and 2012 

respectively (4.1 and 4.5 m; Figure 3.24), with lowest transparency occurring during 

July and August 2011 (1.3 m).  The decreasing secchi disc depth throughout the 

period of lake stratification is consistent with increasing temperatures, oxygen super 

saturation and CO2 under saturation in the epilimnion. 

 
Figure 3.24 Secchi disc depths measured in Tatton Mere from Dec 2010 to April 

2012. 
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3.3.2 Organic Carbon Production 

 
 

Figure 3.25 Depth-time plot of dissolved oxygen (mg L-1) measured in Tatton Mere 

from Dec 2010 to April 2012. 

 

Dissolved oxygen stratification is more stable than temperature stratification within 

Tatton Mere (Figure 3.25).  Summer oxygen super saturation in the epilimnion (>14 

mg L-1) is contrasted by hypoxia (< 2 mg L-1) in the hypolimnion.  Low oxygen 

concentrations develop in the hypolimnion with the onset of stratification and steadily 

decline as oxygen is consumed.  The zone of hypoxia within the lake increases from 

June through to September leaving 60% of the lake with either low O2 concentration 

or anoxia during the summer months.  This trend persists until lake turnover, when 

O2 concentration steadily increases as oxygenated water from the epilimnion is 

mixed down into the hypoxic hypolimnion. 

 

Figure 3.26 Hourly surface oxygen data for Tatton Mere.  Black line is measured 

surface concentration; red line is the oxygen saturation concentration.  
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Figure 3.26 shows hourly O2 concentration data is compared to the expected O2 

saturation.  The lake is typically under saturated with O2 during the winter months 

when the lake is fully mixed and temperatures are at their lowest, however warm 

spring periods in February 2011 and March 2012 (Figure 3.1) led to spikes in oxygen 

associated with early algal blooms.  Similarly the lake is typically super saturated 

with oxygen during the summer months when the lake is stratified and 

photosynthesis is only occurring in the top 3 – 4 m of the water column, however 

high wind speeds in September 2011 (Figure 3.1) is likely to have led to a mixing of 

epilimnetic and hypolimnetic waters causing a drop in the overall surface oxygen 

concentration (highest oxygen values recorded in July 2011 & March 2012; lowest 

values recorded in September 2011). 

 
Figure 3.27 Daily Net Ecosystem Production (NEP) calculated for Tatton Mere 

between January 2011 and April 2012. Positive values represent a flux of O2 into the 

lake and negative values represent a flux of O2 out of the lake. 

 

Utilising the data in Figure 3.26, the NEP of Tatton Mere was calculated (following 

the method set out in Section 2.3.3) and shows that for 2011 the mere is net 

autotrophic, producing more carbon through photosynthesis than is lost through 

respiration (2.38 ± 0.8 mg O2 L
-1; converted to C fixation 0.32 ± 0.24 g C m-2 d-1).  

The level of photosynthetic production during stratification is very high (7.44 ± 0.9 mg 

O2 L
-1; converted to C fixation 2.17 ± 0.19 g C m-2 d-1), with losses due to respiration 
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in winter months being nearly as high (-5.05 ± 0.4 mg O2 L
-1; converted to C fixation 

1.84 ± 0.36 g C m-2 d-1).  The data are summarised in Table 3.7. 

 

Table 3.7 Summary of seasonal NEP values calculated in Tatton Mere. Mean NEP 

values are average ± SD; mean C fixation value average ± SD generated from 

sensitivity testing. 

 

 

Mean Monthly 

NEP 

mg O2 L
-1

 

Mean Stratified 

NEP 

mg O2 L
-1

 

Mean Daily 

C Fixation 

g C m
-2

 d
-1

 

Total C Fixation 

g C m
-2

 y
-1

 

Study Period 

(n = 15) 
3.65 ± 0.7 - 0.50 ± 0.26 180.9 ± 94 

2011 

(n = 11) 
2.38 ± 0.8 7.44 ± 0.9 0.32 ± 0.24 118.6 ± 88 

 

The Mean DOC concentration for the study period was 4.4 ± 0.3 mg C L-1 (n = 174), 

but varied in both the epilimnion and hypolimnion seasonally (Figure 3.28).  The 

peak epilimnetic concentration was measured in January 2012 (4.9 mg C L-1).  The 

hypolimnetic DOC concentration peaked in September 2011 (5.4 mg C L-1).  Lowest 

DOC levels were measured in March 2011 for both the epilimnion (3.8 mg C L-1) and 

hypolimnion (4.0 mg C L-1). 

 

 
 

Figure 3.28 Depth-time plot of DOC (mg L-1) measured in Tatton Mere from Dec 

2010 to April 2012. 
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3.3.3 Inorganic Carbon 

Levels of CO2 within Tatton Mere exhibit an inverse stratification, where the peak 

occurs in the hypolimnion rather than the epilimnion (Figure 3.29).  The onset of 

stratification in early April leads to under saturation of CO2 in the surface waters and 

a steady increase in hypolimnetic concentration.  Mean surface summer surface CO2 

concentration is 150 µmol mol-1, whilst the hypolimnion concentration peaks at over 

7,500 µmol mol-1 in September 2011.  Over 50% of the water column has high CO2 

concentrations during the summer months.  The breakdown of stratification and 

mixing of the water column significantly dilutes the CO2 concentration, with winter 

water column mean concentration being ~1100 µmol mol-1.  As a result, during the 

mixed phase the lake gradually de-gases CO2 to the atmosphere and the lake 

eventually returns to CO2 equilibrium with the atmosphere. 

 

 
 

Figure 3.29 Depth-time plot of CO2 (µmol mol-1) measured in Tatton Mere from Dec 

2010 to April 2012. 

 

Figure 3.30 emphasises the seasonal pattern of surface pCO2 concentration in 

Tatton Mere.  Periods of under saturation typically occurred during stratification and 

super saturation during the mixed phase.  The study mean surface water pCO2 was 

560 µatm, with a 2011 mean of 540 µatm. 
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Figure 3.30 Monthly surface pCO2 (µatm) measured in Tatton Mere from Dec 2010 

to April 2012.  Horizontal black line represents overlying atmospheric pCO2 (µatm).  

Values above this line represent super saturation of CO2 and values below represent 

under saturation CO2. 

 

Areal surface water CO2 flux (calculated following the method set out in Section 

2.3.4) indicates that Tatton Mere is a net source of CO2 to the atmosphere (Figure 

3.31; Table 3.8).  On average the lake emits 8.38 mmol CO2 m
-2 d-1 (36.74 g C m-2 y-

1).  The 2011 mean is slightly lower than this figure at 7.92 mmol CO2 m
-2 d-1 (34.71 

g C m-2 d-1).  As expected, during the stratified period, Tatton Mere is a net sink of 

CO2 from the atmosphere (2011: - 3.49 mmol CO2 m
-2 d-1), as a result of pCO2 under 

saturation during the stratified cycle (Figure 3.30). 

 

 
Figure 3.31 Monthly surface CO2 flux (mmol m-2 d-1) in Tatton Mere from December 

 2010 to April 2012.  Positive values represent an outward flux of CO2 from the lake 

to the atmosphere and negative values represent inward flux of CO2 from the 

atmosphere in to the lake. 
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Table 3.8 Summary of CO2 flux calculated in Tatton Mere.  Values ± SD. 

 

 

Mean CO2 flux 

 

mmol CO2 m
-2

 d
-1

 

Mean Stratified 

CO2 flux 

mmol CO2 m
-2

 d
-1

 

Mean Daily 

C flux 

g C m
-2

 d
-1

 

Yearly C flux 

 

g C m
-2

 y
-1

 

Study Period 

(n = 19) 
7.78 ± 19 - 3.49 ± 11 0.10 ± 0.2 34.12 ± 83 

2011 

(n = 12) 
7.92 ± 20 - 3.49 ± 11 0.09 ± 0.2 34.68 ± 91 

 

The concentration of calcium (Ca2+) within the water column of Tatton Mere shows 

moderate variation between depths and over time (Figure 3.32).  The concentration 

follows a similar trend at both 0.5 m and 10 m, but as the lake enters stratification in 

April epilimnetic Ca2+ levels drop below hypolimnetic levels.  The lowest surface 

concentration is found during April 2011 at 36.9 mg Ca L-1, similarly the lowest 

concentration at depth also occurs in April 2011 at 40.2 mg Ca L-1.  A spike in the 

   
 -

 standing stock (Figure 3.34) and under saturation of CO2 in the epilimnion 

occur during July and August 2011 when there is the greatest difference between 

epilimnion and hypolimnion Ca2+ concentrations.  During the mixed phase at Tatton 

Mere concentrations of Ca2+ are virtually identical. 

 
Figure 3.32 Summary of calcium (Ca2+) availability in Tatton Mere 2010 – 2012.  

Green line represents 0.5 m and blue line represents 10 m. 
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Figure 3.33 Summary of calcite saturation index (lines) and shallow sequencing trap 

CaCO3 flux data (bars) in Tatton Mere 2010 – 2012.  Values of saturation > 0 

suggest the water is oversaturated with CaCO3 and values < 0 signify CaCO3 

undersaturation. Green line represents 0.5 m and blue line represents 10 m. 

 

Monthly patterns in the DIC pool (Figure 3.34a) show some variation in total DIC 

over the study period, but no overall decline.  The highest water column 

concentration of 1454 µmol L-1 occurs in November 2010, but similar peaks of 1330 

µmol L-1 in August 2011 and 1322 µmol L-1 in October 2011 do occur.  Lowest levels 

of DIC were found in January 2012 (602 µmol L-1).  The     
 

 pool in Tatton Mere is 

important in comparison to    
 -

 and CO2, as it constitutes on average 93% of total 

inorganic carbon.  Due to the complex nature of inorganic carbon there were not 

similar patterns in    
 -

 and CO2 concentrations.  Levels of    
 -

 within the water 

column, typically the epilimnion, pulse due to high pH and low CO2 concentrations.  

Average highs of around 70 µmol L-1 (August & September 2011) can result in the 

precipitation of CaCO3 (Figure 3.33).  Typically    
 -

 only constitutes 1.5% of the 

inorganic carbon measured in Tatton Mere over the study period.  The overall 

concentration of CO2 increases steadily after stratification, from ~40 µmol L-1 during 

the mixed phase, to over 80 µmol L-1 by August 2011.  The CO2 concentration 

reflects the increases in hypolimnetic CO2 (Figure 3.34c and 3.34d) as a result of 

respiration.  On average, CO2 forms only 5% of the inorganic carbon pool, but this 
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can be as low as 2% in winter (February 2011) and as high as 10% in summer (June 

2011). 

 
 

Figure 3.34 Monthly water column means for DIC fractions calculated in Tatton Mere 

from Dec 2010 to April 2012. 

 

Standing stocks of total dissolved inorganic carbon and CO2 were calculated from 

the concentration data (Figure 3.35).  The overall patterns in total standing stocks 

match the concentration figures and show that overall DIC peaked at 26,915 kg C in 

February 2011 with the low of 9,594 kg C occurring in January 2012.  The standing 

(a) 

(b) 

(c) 

(d) 
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stock of total CO2 shows peaks during the mixed phase (January 2012: 1,274 kg C; 

November 2011: 1,586 kg C) and relatively consistent stocks of ~400 kg C during 

stratification. 

 
 

Figure 3.35 Monthly total inorganic carbon stocks calculated for Tatton Mere from 

Dec 2010 to April 2012. 

  

(a) 

(b) 
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3.3.4 Sediment Data 

The open trap deployed at Tatton Mere collected a total of 41.4 ± 3 g C m-2 yr-1 (n= 8) 

between January 2011 and April 2012 (Figure 3.36).  This equates to approximately 

33.5 ± 2 g C m-2
 yr-1 (n = 6) during 2011.  However the open trap potentially under-

trapped sediment due its location within the lake basin, but can be correcting by 

comparing the difference between open trap and sequencing trap data at Rostherne 

Mere over the same 12 month period.  Using a correcting factor of 3, a more 

representative figure of 100.5 g C m-2 yr-1 can be used to signify OC deposition when 

calculating the OC sedimentation rate of Tatton Mere. 

 

Figure 3.36 Tatton Mere organic carbon flux (g C m-2 d-1) from sediment trap data 

January 2011 to April 2012.  Grey bars refer to an open sediment trap, set at 7 m, 

and are scaled for deployment time. 

 

The SCP concentrations for the open water core taken at Tatton Mere (SCM41E) are 

shown in Figure 3.37. SCPs initially occur at 79 - 80 cm, from which concentrations 

steadily increase to around 45 cm and then more rapidly to 20 cm when they 

increase dramatically to a peak of over 51000 gDM-1 at 14 – 15cm.  Concentrations 

then decrease rapidly again to the sediment surface. 

 

In this core the SCP concentration peak is well defined and although the sample 

resolution means it could lie between 11 and 18 cm, it is most likely to fall in the 
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middle of this range, meaning a depth of 14 – 15 cm is assigned the date of 1978 ± 4. 

The mean sediment accumulation rate for the last 35 years would therefore be 0.48 

cm yr-1.  The rapid increase feature (~1950) is not obvious in SCM41E, but 

extrapolation of the mean sedimentation rate for 1978 – 2010 would put 1850 at ~70 

– 75 cm. This is not so far out from the observed start of the SCP record and 

therefore it is likely that the SCP record is intact. This being the case we can use the 

cumulative SCP inventory approach (Rose & Appleby, 2005) to date this core. This 

provides a date for each 10-percentile of the SCP record providing 11 dates rather 

than three using the alternative approach.  Dates modelled from this cumulative SCP 

chronology for SCM41E are given in Table 3.9. 

  

 

Figure 3.37 SCP profile and concentrations for SCM41E (Tatton Mere Open Water 

Core), recreated from Bennion et al. (2010) dataset. 

  

Mean depth 
(cm) 

SCP Conc. 

(gDM
-1
) 

90% C.L. 

(gDM
-1
) 

1 

4.5 

9.5 

14.5 

19.5 

24.5 

29.5 

34.5 

39.5 

44.5 

49.5 

54.5 

59.5 

64.5 

69.5 

79.5 

89.5 

99.5 

109.5 

118.5 

6781 

16077 

26445 

51439 

17569 

21319 

18604 

12219 

10651 

2787 

3901 

958 

3808 

2619 

1177 

500 

0 

0 

0 

0 

1661 

2626 

3863 

5900 

2460 

3389 

2919 

2151 

2334 

1032 

1445 

664 

1866 

1048 

1153 

490 

0 

0 

0 

0 
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Table 3.9 Summary of SCM41E (Tatton Mere Open Water Core) sediment core data.  

Original data taken from Bennion et al. (2010). 

 

Top of 
Interval 

Base of 
Interval 

Model 
Date 

Sedimentation 
Rate 

Sediment 
Accumulation 

Organic C 
Accumulation 

cm cm A.D. cm
-2

 yr
-1 

g m
-2

 yr
-1

 g C m
-2

 yr
-1

 

0 2 2010 - 500 61.79 

5 6 2000 0.48 559 62.51 

9 10 1992 0.50 657 66.70 

13 14 1984 0.48 649 70.02 

17 18 1975 0.46 625 65.76 

21 22 1966 0.45 557 60.72 

25 26 1957 0.43 583 63.07 

29 30 1947 0.42 626 68.56 

33 34 1938 0.42 597 67.84 

37 38 1928 0.41 540 64.93 

41 42 1918 0.41 525 68.10 

45 46 1908 0.40 509 71.01 

 

The OC burial efficiency of Tatton Mere (Table 3.10) was calculated using two 

competing methods (Sobek et al., 2009 and Gälman et al., 2008).  OC deposition is 

derived from sediment trap data (Figure 3.35) and OC burial is derived from the 

dated core SCM41E (Bennion et al., 2010).  The Gälman et al. (2008) method 

discounts the first 10 years of the core and estimates OC burial efficiency to be 62%, 

whereas the Sobek et al. (2009) method discounts the first 25 years of the core and 

estimates OC burial efficiency to be 71%. 

 

Table 3.10 Tatton Mere organic carbon burial in sediments, deposition onto the 

sediment, as determined by sediment traps and burial efficiency. 

 

Method 
No. of years 

discounted 

OC Deposition 

g C m
-2

 yr
-1

 

OC Burial 

g C m
-2

 yr
-1

 

Burial Efficiency 

% 

This Study 10 100.5 62.51 62 

Sobek et al. (2009) 15 100.5 71.79 71 
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3.4 LAKE CARBON POOL COMPARISON 

 

 

 

Figure 3.38 Graphical representation of Rostherne Mere carbon pools and 

interactions. 
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A visual interpretation of the 2011 carbon pools in Rostherne Mere and Tatton Mere 

are presented in Figures 3.38 and 3.39.  The largest pool in both systems is DIC, 

comprising     
 

,    
 -

 and CO2, which shows some variability in size through the 

year as a result of photosynthesis and respiration.  However, there is a larger CO2 

stock within Rostherne Mere compared to Tatton Mere due to its greater volume.  In 

both lakes the DIC pool is largest in winter during the mixed period when respiration 

is at its greatest meaning the lakes become supersaturated with CO2 and de-gas to 

the atmosphere (Figure 3.38c and 3.39c). 

 

During stratification the epilimnion becomes depleted of CO2, causing the DIC pool 

to be at its lowest during the yearly lake cycle, the under saturation within the 

epilimnion means CO2 is drawn into the surface waters from the atmosphere to 

increase the concentration but very high levels of photosynthesis cause the 

epilimnion to be consistently under saturated with CO2.  The    
 -

 pool is at its 

greatest during the summer period and typically leads to precipitation of CaCO3 

within the surface waters, however during the summer the hypolimnion is depleted of 

   
 -

 as a result of the larger CO2 pool from respiration and low pH values mean that 

the CaCO3 saturation threshold is severely reduced and CaCO3 dissolution occurs.  

This CO2 stock in the hypolimnion increases through stratification, as it is unable to 

mix with the epilimnion, to its largest concentration throughout the year (Figure 3.38b 

and 3.39b). 

 

Productivity within both meres is overall positive for the year but is larger in 

Rostherne Mere than Tatton Mere.  Positive NEP occurs during the summer months 

within the epilimnion but shifts to negative NEP in winter when respiration is 

dominant.  DOC pools are extremely stable throughout the year in both Rostherne 

Mere and Tatton Mere, suggesting it is unlikely the lakes are subsidised by large 

amounts of external, catchment DOC during the winter months.  The production and 

breakdown of POC within the water column is shown in Figure 3.38b and 3.39b 

where high productivity during the summer increases the surface POC load but as it 

sinks through the hypolimnion is broken down through respiration, suggesting the 

likely amount of carbon reaching the sediments is much reduced on the values 

produced in the epilimnion.  
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Figure 3.39 Graphical representation of Tatton Mere carbon pools and interactions.  
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4 DISCUSSION 

 

4.1 DISCUSSION OUTLINE 

Following the flow of C through Rostherne Mere and Tatton Mere, from its initial 

fixation in the surface waters by photosynthesis, flux and transformation through the 

water column and ultimate burial in the lake sediments (Figure 4.1), this discussion 

aims to investigate the processes driving the C-dynamics in the Cheshire-Shropshire 

meres.  In particular it will address: 

 

 The drivers of NEP in the Cheshire-Shropshire meres. 

 Loss and recycling of C within the water column. 

 Lake CO2 dynamics. 

 C-burial efficiency of both individual lakes and the wider Cheshire-Shropshire 

meres. 

 The significance of C-storage in lakes, regionally and nationally and the 

implications for future management. 

 How the Cheshire-Shropshire meres compare to other lake regions. 

 A methodological review of the techniques used during this project. 

 

There has been a considerable shift in aquatic ecosystems research, particularly 

lakes, in an attempt to improve our understanding of their C-dynamics (Tranvik et al., 

2009; Cole et al., 2007).  Research areas of particular interest include ecosystem 

metabolism (e.g. Van de Bogert et al., 2012; Sadro et al., 2011; Coloso et al., 2010; 

Staehr & Sand-Jensen, 2007), C-burial efficiency (e.g. Sobek et al., 2009, 2011; 

Gälman et al., 2008) and the long term stability of aquatic C-dynamics (e.g. 

Anderson, et al., 2014; Tranvik et al., 2009; Alin & Johnson, 2007).  These 

ecosystem properties are increasingly subject to high-frequency measurement, 

especially since the development of sophisticated and portable sensors (Staehr, et 

al., 2010; Hanson et al., 2008; Van de Bogert et al., 2007), which have enabled the 

implementation of various collaborative projects across the globe, from regional to 

international scales, mapping high-frequency changes in environment and ecological 

processes with a particular focus on C-dynamics in many cases (e.g. Tranvik et al., 

2009; Downing et al., 2006). 
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Figure 4.1 Summary of 2011 C-mass balance for Rostherne Mere and Tatton Mere; 

atmospheric CO2 losses are calculated as part of net ecosystem production, but 

presented here as a net loss from the lake. Yearly CO2 retention is excess free-CO2 

measured within the water column at the beginning of 2012 stratification cycle that 

was not evaded from the lake during turnover. Sensitivity testing expressed as 

uncertainty bounds (±). 

Sediment Accumulation 
96.1 ± 10 g C m

-2
 yr

-1 

Yearly Sediment C Storage 
47 ± 5 t C yr

-1 

Rostherne Mere C-mass balance
 

Net Ecosystem Production 
135.6 ± 91 g C m

-2
 yr

-1 

Sediment Trap Collection 
134.6 ± 7 g C m

-2
 yr

-1 

Atmospheric CO2 Losses 
33.5 ± 72 g C m

-2
 yr

-1 

Yearly CO2 Retention 
5.6 ± 0.4 t C yr

-1 

Sediment C Storage since 1900 
4045 ± 60 t C 

Sediment Accumulation 
62.5 ± 3 g C m

-2
 yr

-1 

Yearly Sediment C Storage 
20 ± 0.9 t C yr

-1 

Tatton Mere C-mass balance
 

Net Ecosystem Production 
118.6 ± 88 g C m

-2
 yr

-1 

Sediment Trap Collection 
100.5 ± 6 g C m

-2
 yr

-1 

Atmospheric CO2 Losses 
34.7 ± 91 g C m

-2
 yr

-1 

Yearly CO2 Retention 
0.3 ± 0.04 t C yr

-1 

Sediment C Storage since 1900 
2341 ± 19 t C 
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However, there are significant variations in the estimates given for lake C-dynamics 

from these studies, largely due to the variability of lake productivity.  This variability is 

typically as a result of lake type and trophic status, lake size, the number of lakes 

within different studies and an incomplete understanding of lake metabolism, as 

current techniques tend only provide a partial measurement of processes (e.g. 

extrapolating to whole year from a season, spot sampling etc.) (Cole et al., 2007; 

Einsele et al., 2001). 

 

4.2 CARBON FIXATION 

Quantifying the rate of C-fixation within the boundaries of a lake system is an 

essential element of NEP calculation and determining the ability of a lake to store or 

export C (Cole et al., 2000).  The rate of primary productivity is typically dependent 

upon nutrient supply (largely N and P), but can be limited by other factors such as 

temperature and light availability (Søndergaard et al., 2003; Reynolds & Davies, 

2001).  The majority of research into lake productivity to date has focussed on boreal 

lakes as they are, globally, most abundant (Sobek et al., 2007; Downing et al., 2006).  

This imbalance, however, has led to the perception that most lakes are oligotrophic, 

heavily loaded with catchment-derived DOC and therefore net heterotrophic (Sand-

Jensen & Staehr, 2007; Duarte & Prairie, 2005; Hanson et al., 2003).  In contrast, 

temperate lake systems tend to be more nutrient rich, usually due to anthropogenic 

activity, in comparison to oligotrophic lakes, yet despite their visibility and 

accessibility, are poorly understood due to fewer studies or longer term datasets 

being available to assess critically their impact on the C-cycle (Downing et al., 2008; 

Gelda & Effler, 2002). 

 

4.2.1 Trophic State & Lake Metabolism 

The metabolism of lakes, typically presented as NEP, has become widely employed 

as a proxy for lake productivity.  By estimating metabolism (or net production) lakes 

can be subsequently described as either autotrophic, a net C sink if GPP > R, or 

heterotrophic, a net C source if GPP < R.  Previous studies have determined that 

DOC and TP are often the most important drivers of metabolism in lakes (Hanson et 

al., 2003; Cole et al., 2000; del Giorgio & Peters, 1994). 
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Table 4.1 Calculated areal net carbon production rates for different groups of lakes. 

Positive values signify net autotrophy and negative values signify net heterotrophy. 

 

Group Lake Type 
Calculated areal carbon 

production rates 

Time period of 

emission rate 
Source 

Cheshire-

Shropshire 

Meres 

Eutrophic 

0.30 g C m
-2

 d
-1 

0.62 g C m
-2

 d
-1 

 

Annual average 

Summer average 

(165 days) 

This study 

Gribsø, Denmark 

Slotssø, Denmark 

Dystrophic 

Mesotrophic 

- 0.47 g C m
-2

 d
-1 

- 0.45 g C m
-2

 d
-1 

Up-scaled to annual 

values from 8 month 

study period 

Staehr et al. 

(2010) 

Onondaga Lake, NY Eutrophic 0.75 g C m
-2

 d
-1 

Up-scaled to annual 

values from 4 month 

study period 

Gelda & Effler 

(2002) 

Paul Lake, MI 

Peter Lake, MI 

Oligo/Meso 

boundary 

- 0.062 g C m
-2

 d
-1 

0.076 g C m
-2

 d
-1 

Up-scaled to annual 

values from 

seasonal datasets 

Coloso et al. 

(2010) 

Lake Hampen, 

Denmark 
Mesotrophic 0.061 g C m

-2
 d

-1 69 day study period 

(during stratification) 

Staehr et al. 

(2012) 

 

Hanson et al. (2004) modelled the influence of TP and DOC on the C dynamics of 

lakes representing a range of lake trophic status (oligotrophic, mesotrophic, 

eutrophic and dystrophic) and demonstrated that the majority of lakes, globally, 

would be expected to be net heterotrophic on an annual basis.  Heterotrophy is 

characteristically driven by high DOC loading and low TP concentrations (e.g. Sand-

Jensen & Staehr, 2009; Duarte & Prairie, 2005).  The majority of the DOC load in 

heterotrophic lakes has been imported from the surrounding catchment and the 

introduction of this terrestrial C has been found to subsidise bacterial respiration and 

lead to elevated levels of CO2 within the water column and increase net CO2 

emissions to the atmosphere (e.g. Maberly et al., 2012; Lennon, 2004).  However, 

the research model also highlighted that lakes with a low DOC burden and moderate 

to high TP levels were net autotrophic on an annual basis.  This was the case for 

both Rostherne Mere and Tatton Mere, which were found to be net autotrophic on an 

annual basis (Annual NEP – RM: 135.6 g C m-2 yr-1; TM: 116.8 g C m-2 yr-1).  

Following on from Prairie et al. (2002), who suggested the autotrophy/heterotrophy 

boundary lay between a DOC loading range of 4 – 6 mg L-1, Hanson et al. (2004) 

found that when DOC concentrations in lakes exceeded 8 mg L-1, these lakes were 

consistently heterotrophic.  Epilimnetic DOC concentrations in both Rostherne Mere 
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(7.2 mg L-1) and Tatton Mere (4.4 mg L-1) fall below this DOC boundary of 8 mg L-1 

(Figures 3.8; 3.28). 

 

Table 4.1, however, highlights the high levels of variability in metabolism estimates 

among lakes and even within trophic classifications.  Obviously DOC, TP and TN 

have a significant role in influencing lake metabolism, but other factors such as 

stratification regime, light availability and anthropogenic land-use changes can 

impact productivity and respiration within a lake (Coloso et al., 2010; Tsai et al., 

2008). 

 

The lakes of this study and Gelda & Effler (2002) were classified as eutrophic and 

showed net autotrophy on an annual basis, however, the research by Gelda & Effler 

(2002) estimated yearly C production from a 4 month (summer) study period, whilst 

the estimates for Rostherne Mere and Tatton Mere were generated from a full year’s 

monitoring.  However, if only summer data was used to calculate the NEP of the 

Cheshire-Shropshire meres, the estimate would potentially be twice that of the full 

year dataset (Table 4.1).  Despite annual net autotrophy within the Cheshire-

Shropshire meres, there was distinct seasonal variability.  Net autotrophy was 

observed when the lakes were stratified and net heterotrophy was observed during 

periods of overturn (Figure 3.8; 3.25).  Coloso et al. (2010) and Staehr et al. (2010) 

both utilised shorter, seasonal studies to estimate annual C production, however 

there are issues surrounding when to conduct seasonal surveys and how long these 

surveys should last (Coloso et al., 2011; Staehr et al., 2010).  Finally, Staehr et al. 

(2012) presented C production rates from a 69 day study, during peak levels of 

production, which cannot be representative of a lakes overall levels of productivity. 

 

Table 4.2 Summer near-surface average nutrient concentrations (µg L-1) for 

classifying lakes into different trophic state categories (adapted from Kalff, 2001) 

 

Trophic State Inorganic N Total N Total P 

Oligotrophic 

Mesotrophic 

Eutrophic 

Hypertrophic 

< 200 

200 – 400 

300 – 650 

500 – 1500 

< 350 

350 – 650 

650 – 1200 

> 1200 

< 10 

10 – 30 

30 – 100 

> 100 
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Nutrient loading, especially catchment P loading, has been a long established 

problem in the Cheshire-Shropshire meres (Carvalho, 1993; Nelms, 1984; Reynolds 

& Sinker, 1976).  The mean annual levels of TN and TP within both Rostherne Mere 

(1217 µg N L-1; 216 µg P L-1) and Tatton Mere (826 µg N L-1; 442 µg P L-1) suggest 

they are not just eutrophic but exhibit the characteristics of hypertrophic systems 

(Table 4.2).  Typically P is seen as the most likely nutrient to limit productivity within 

a lake because it is naturally scarce and, although many cyanobacteria have the 

ability to exploit and fix N from the atmosphere, if there is an N deficiency within the 

water column they can utilise P to stimulate production (Schindler, 1977). 

 
Figure 4.2 Redfield Ratios for the 16 deepest meres.  Black circles are lakes with no 

clear nutrient limitation; red squares are lakes that are likely to be P limited and blue 

triangles are lakes that are likely to be N limited. 

 

Using the Redfield Ratio, the atomic ratio of N and P found in plankton (16 N: 1 P), it 

can be determined which nutrient, if any, is deficient and likely restricting growth 

within a lake.  If the ratio of N:P > 20, P is scarce relative to N meaning P is 

potentially limited, but if N:P < 10, N is likely to be limiting; if N:P < 20 but > 10, 

neither nutrient is considered limiting.  Of the deepest 16 lakes on the Cheshire-

Shropshire Plain, 7 could be classified as P limited, 4 as N limited and 5 as not 

nutrient deficient (Table 4.3).  The P limited lakes tend to be small (< 20 ha) and 

relatively shallow (r = –0.582), whilst there is virtually no pattern to N limitation or 

nutrient deficiency (Figure 4.2).  Rostherne Mere can be classified as neither N or P 

limited with a N:P ratio of 12.46, implying another factor is probably contributing to 
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limiting growth (e.g. light or a micronutrient), while Tatton Mere is likely N limited with 

a N:P ratio of 4.13. 

 

Anthropogenic activity within a catchment, such as agriculture or sewage discharge, 

usually leads to a release of P into aquatic habitats altering its availability for 

synthesis into organic matter (Søndergaard et al., 2003).  Typically the 

eutrophication of lakes is exacerbated by natural factors such as water residence 

time (WRT) and thermal stratification which allows the accumulated P to be recycled 

and released on an annual basis between the sediment and water column.  This is 

especially problematic on the Cheshire-Shropshire Plain, where the larger meres 

have WRT in excess of 1 year.  Attempts to improve water quality over the last 20 

years have seen an overall reduction in P concentrations through reducing external 

loading, however the majority of the lakes in the area remain eutrophic due to annual 

P recycling within the lake system itself (Moss et al., 2005). 

 

In thermally stratified lakes, such as those in the Cheshire-Shropshire meres, the 

majority of P recycling occurs during the summer months in the hypolimnion, where 

the concentration steadily increases.  As successive surface blooms of particulate 

organic matter (POM) are broken down in the hypolimnion, both C and P become 

mobilised and free-O2 is consumed through respiration.  As anaerobic conditions 

begin to dominate the lake hypolimnion during summer the release of phosphate into 

the water column is promoted.  Initially this phosphate is trapped in the hypolimnion, 

but once the hypolimnion mixes into the upper waters, as the thermocline erodes, 

the phosphate becomes mixed through the entire water column (Tables 3.1; 3.6).  

During the winter months, once overturn is complete and the lake becomes 

isothermal, the primary method of P recycling occurs through the precipitation of iron 

phosphate onto sediment particles and transfer into sediments.  This precipitation of 

iron phosphate reduces any potential P losses during winter from increased river and 

groundwater discharge and will be released back into the water column the following 

spring, with the onset of low redox conditions.  Consequently the concentration of P 

within a eutrophic, stratifying lake system may be maintained or even gradually 

increase (e.g. even if external P loading falls over time) (Allott, 2011; Reynolds & 

Davies, 2001). 
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Table 4.3 Summary of lake depth, area and chemical variables for the 16 deepest meres (> 8m Z max) on the Cheshire-Shropshire 

Plain.  Data collated from Fisher et al. (2009) and this project. 

 

Mere 
Area 

(km
2
) 

Z max 

(m) 
A/Z max 

Known Summer 

Stratification 

TP 

(µg L
-1

) 

TN 

(µg L
-1

) 

N:P 

Ratio 
N/P Limited 

Berrington Pool 0.03 12 2.08 
 

113 720 14.09 - 

Betton Pool 0.06 10.9 5.87 
 

96.8 1500 34.27 P 

Blake Mere 0.08 14.1 5.95  62 1380 49.23 P 

Bomere Pool 0.10 15.2 6.57 
 

48.8 1000 45.33 P 

Cole Mere 0.28 11.5 24.34  262 1370 11.56 - 

Comber Mere 0.52 11.8 43.64  362 900 5.49 N 

Crose Mere 0.15 9.3 16.12  55 1320 53.09 P 

Ellesmere 0.46 18.8 24.46  894 1210 2.99 N 

Marbury Big Mere 0.11 8 13.75 
 

251 2610 23.00 P 

Mere Mere 0.16 8.1 19.75 
 

86.8 1800 45.87 P 

Newton Mere 0.08 16.4 5.06  196 1330 15.01 - 

Oak Mere 0.18 8 22.87 
 

61 330 11.96 - 

Pick Mere 0.18 9.2 19.56 
 

96 1010 23.27 P 

Rostherne Mere 0.49 31 15.80  216 1217 12.46 - 

Tatton Mere 0.32 12 26.66  442 826 4.13 N 

White Mere 0.26 14.5 17.93  694 1440 4.59 N 

 

9
8
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However oxygen availability is not the only process to have an effect on the binding 

and release of P from sediments.  The process has also been found to be sensitive 

to changes in pH and alkalinity in calcareous lakes.  The ability of calcareous lakes 

to buffer phosphorus loading is associated with co-precipitation of P and calcium 

carbonate from the water column (Søndergaard et al., 2003; Otsuki & Wetzel, 1974). 

 

With such elevated levels of nutrients found in the water column of many of the 

Cheshire-Shropshire meres, it is likely that another process is responsible for limiting 

productivity.  In such nutrient rich lakes, algae can become so abundant the self-

shading can begin to limit the crop (Moss et al., 2005; Reynolds & Davies, 2001).  As 

a result, this reduction in light penetration becomes the growth limiting factor, rather 

than nutrients, and under such conditions blue-green algae frequently become 

dominant especially if they have the ability to ‘over-winter’ on the sediments and 

survive until the following growth season.  Rostherne Mere and Tatton Mere have 

been found to be dominated by blue-green algae, especially species such as 

Microcystis which is known to be a common light-limited population (Moss et al., 

1994; Reynolds & Bellinger, 1992), suggesting that self-shading could be limiting 

growth rates within the water column of these lakes. 

 

4.3 CARBON FLUX 

The majority of lakes globally are supersaturated with CO2 in respect to the 

atmosphere; this makes them a net source of C to the atmosphere (Sobek & Tranvik, 

2005; Cole et al., 1994).  Table 4.4 compares data from a variety of studies 

highlighting the global trend of surface water CO2 super-saturation.  Algesten et al. 

(2004) estimated flux using the relationship between DOC and CO2 in a subset of 

lakes then extrapolating the result to many oligotrophic lakes in northern and central 

Sweden.  Kortelainen et al. (2006) sampled 177 oligotrophic lakes 4 times 

throughout the year to infer annual flux rates.  Alin and Johnson (2007) gathered 

previously published pCO2 and wind speed data to estimate yearly flux rates.  

Lazzarino et al. (2009) used summer CO2 values and average wind speeds from 

oligotrophic and mesotrophic lakes to estimate yearly flux rates. 

 

The data from the Cheshire-Shropshire Meres and Balmer & Downing (2011) 

highlights the seasonal variability of surface CO2 in lakes, particularly eutrophic 
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systems.  The Cheshire-Shropshire meres are consistently under-saturated with CO2 

during summer when productivity is high and free-CO2 is utilised in photosynthesis 

leading to CO2 being drawn down from the atmosphere into the lake (a negative flux).  

After overturn the large volumes of CO2 that have built up in the hypolimnion are 

mixed into the entire water column and gradually diffuse into the atmosphere and 

ultimately make the meres net sources of CO2 on an annual basis (Figures 3.13; 

3.30). 

 

Table 4.4 Calculated areal CO2 emission rates for different groups of lakes.  Positive 

values reflect a flux out of the lake to the atmosphere and negative values reflect a 

flux into the lake from the atmosphere. 

 

Group 
Calculated areal carbon 

emission rates 

Time period of 

emission rate report 
Source 

Cheshire-

Shropshire Meres 

34 g C m
-2

 yr
-1 

– 8.7 g C m
-2

 
 

Calculated annual flux 

Calculated total summer 

flux (165 days) 

This study 

North American 

Agricultural 
– 0.1 g C m

-2
 yr

-1 

Estimated annual flux 

from summer data 

(123 days) 

Balmer & Downing 

(2011) 

Finnish lakes 42 g C m
-2

 yr
-1 

Estimated annual flux 
Kortelainen et al. 

(2006) 

Large lakes of the 

world (>500 km
2
) 

62 g C m
-2

 yr
-1 

Estimated annual flux 
Alin & Johnson 

(2007) 

Florida lakes 328 g C m
-2

 yr
-1 

Estimated annual flux 
Lazzarino et al. 

(2009) 

 

The flux of carbon within a lake system relates to the processing of both 

autochthonous and allochthonous matter.  Boreal systems are typically loaded with 

terrestrially-derived DOC and poor nutrient availability and autotrophic C production, 

meaning the majority of the organic matter degradation within the lake is 

heterotrophic (Jonsson et al., 2007; Sobek et al., 2006; Hudson et al., 2003).  In 

eutrophic lakes there is typically an abundant supply of nutrients to support large 

algal blooms, often multiple blooms per year, with a usually lower ratio of terrestrially 

derived DOC subsidising bacterial processes meaning autotrophy is prevalent 

(Staehr et al., 2011, 2012; Sadro et al., 2011).  However Maberly et al. (2012) have 

discovered, contrary to previous understanding, that a net efflux of CO2 from lakes 
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represents net heterotrophy as a result of terrestrial DOC imports (Duarte & Prairie, 

2005).  They show that in relatively clear-water lakes such as the English Lake 

District high CO2 concentrations can also result from the direct input of already fixed 

and broken down terrestrial CO2 through hydrological pathways such as rivers and 

groundwater.  They have demonstrated that if levels of terrestrially derived DOC are 

low with a lake system, which implies a low contribution to lake respiration, but 

concentrations of CO2 are high, this CO2 can derive from terrestrially fixed C that has 

already been broken down in the soil. 

 

4.3.1 Sediment Traps 

The flux of particulate matter within Rostherne Mere and Tatton Mere was measured 

using sediment traps.  Understanding the flux of C through the water column is vital 

in determining potential C losses, typically through the transformation of OC to IC by 

bacterial and photo-oxidation (Stets et al., 2009; Cole et al., 2007; Graneli et al., 

1996).  Sediment traps can also be used to calculate the flux of OC to the sediment 

surface within lakes and this technique has widespread use (Sobek et al., 2006, 

2011; Algesten et al., 2004).  There was little or no loss found between the upper 

(epilimnion) and lower (hypolimnion) traps in Rostherne Mere during the study period 

(Figure 3.18).  This could be as a result of high OM settling velocities, high levels of 

OM preservation within the traps or low levels of mineralisation within the water 

column, with the majority of OM mineralisation occurring in the sediment surface due 

to the short distance to the anoxic zone in the summer months due to stratification. 

 

4.3.2 CO2 Regeneration 

The regeneration of CO2 within the water column, or in-situ losses of OC, have 

received some attention recently (Sobek et al., 2003; Jonsson et al., 2001; den 

Heyer & Kalff, 1998) and research suggests that levels of OC mineralisation are 

typically lower in-situ than in surface sediments.  However there is also an element 

of IC transformation as CaCO3, precipitated in the surface waters of many highly 

productive lakes, including Rostherne Mere and Tatton Mere, will be dissolved lower 

down the water column to maintain inorganic carbon equilibrium, as the hypolimnion 

becomes more acidic and concentrations of free-CO2 increase (Wetzel, 2001; 

Figures 3.15; 3.32). 
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There is also evidence from this study to suggest that deeper, strongly stratifying 

eutrophic lakes may potentially retain CO2 over periods longer than the annual 

stratification cycle.  For example, despite mixing each winter, levels of CO2 remained 

well above atmospheric levels in Rostherne Mere throughout the overturn period and 

this remaining CO2 (5.6 ± 0.4 t C) was once again trapped in the hypolimnion the 

following spring with the onset of stratification (Figure 4.1).  As Rostherne Mere has 

a residence time of approximately 2 years, it would require the lake to be isothermal 

and fully mixed for ~11.5 years for the trapped CO2 to be returned to the atmosphere 

and the lake to fully de-gas (peak loss rate at Rostherne Mere 1 g C m-2 d-1). 

 

4.3.3 Other Losses 

Alongside the generation and loss of CO2 from lakes as a result of C mineralisation, 

CH4 and the re-release of previously bound metals and nutrients is likely to occur.  

The flux of CH4, in particular, is complex and depends on many factors, including 

temperature, water depth and the amount of organic C available.  It is believed that 

CH4 will represent a small fraction of the overall C flux within the lake, and therefore 

was not measured in this study (Lennon et al., 2006; Matthews et al., 2003). 

 

4.4 CARBON STORAGE 

The storage potential of lakes is directly affected by their size, levels of production 

and loss within the system; typically oligotrophic and mesotrophic lakes have very 

low recorded C burial rates (e.g. < 10 g C m-2 yr-1 Anderson et al., 2013; ~28 g C m-2 

yr-1, Gälman et al., 2008; 21 g C m-2 yr-1, Jonsson et al., 2007) when compared to 

eutrophic and hypertrophic lakes (e.g. 68 g C m-2 yr-1 this study; 88 g C m-2 yr-1 

Heathcote & Downing, 2011).  However these values have to be taken into context 

with other system processes, such as C fixation and C loss, to provide an 

understanding of the overall C-balance within a lake.  Lake C burial estimates can be 

determined from mass balance budgets, where the burial component is the 

difference between total inputs and losses to the sediment (Sobek et al., 2006), or 

sediment core analysis (Anderson et al., 2014).  The focus of this study, two small, 

very eutrophic lake systems, had a mean C AR of 68 g C m-2 yr-1 (RM, 96.1 g C m-2 

yr-1; TM, 62.5 g C m-2 yr-1) derived from sediment core analysis, where only the first 

10 years of the core are discounted from analysis (see Section 4.4.2). 
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4.4.1 Sediment Focusing 

A major consideration when undertaking C burial calculations is the phenomenon of 

sediment focusing.  Originally described by Likens & Davis (1975), sediment 

focusing is used to describe the observed increase in net sediment accumulation in 

the deepest part of a lake basin.  The processes behind sediment focusing can vary 

between basins and seasons, however without correction the estimates provided 

from a typical single deep core method is likely to lead to an overestimation of C 

burial (Engstrom & Rose, 2013; Molot & Dillon, 1996).  Sediment focusing correction 

was performed on the Rostherne Mere core (RM_Liv_2011) using the 210Pb flux 

correction method (Engstrom & Rose, 2013), reducing the C AR by ~30% (131 g C 

m-2 yr-1 corrected to 92 g C m-2 yr-1), as the bathymetry of the basin suggests that 

focusing is likely to occur.  Although focusing is very likely to occur at Tatton Mere, 

focusing correction was not performed on the Tatton Mere core (SCM41E; Bennion 

et al., 2010) as SCP dating was used in the analysis and 210Pb flux was not available 

for the core. 

 

The most common processes associated with sediment focusing that might occur at 

Rostherne Mere are sliding and slumping of sediment on the slopes, intermittent 

complete mixing during the overturn period and peripheral wave attack around the 

shallow shore zone.  Each of these processes has been shown to redistribute 

sediment from shallow regions to deep waters and is typically observed in both the 

sediment core record and sediment trap data (Hilton et al., 1986; Hilton, 1985).  

Small increases in sediment trap accumulation were observed after the overturn 

period in both Rostherne Mere (Figure 3.18) and Tatton Mere (Figure 3.35); however 

the latter is likely to be as a result of methodological error, and water column mixing 

at overturn is liable to lead to the re-suspension and deposition of some material 

from across the basin. 

 

4.4.2 Burial Efficiency 

Although lakes are extremely efficient at storing C when compared to other systems, 

such as terrestrial and ocean environments (Tranvik et al., 2009; Alin & Johnson, 

2007; Dean & Gorham, 1998), a degree of mineralisation will continue to occur in the 

sediment surface after deposition (Sobek et al., 2009).  Typically the burial efficiency 

of a lake will vary as a result of a number of factors, but the most important are the C 
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source (terrestrial or aquatic), oxygen exposure time and sedimentation rate (Sobek 

et al., 2009).  There is, however, a degree of uncertainty within the literature over the 

length of time significant mineralisation persists.  The sediments at Rostherne Mere 

below 12 – 15 m are anoxic for ~9 months of the year and anoxic at Tatton Mere for 

~7 months of the year, during the stratification cycle.  This means the sediments are 

not exposed to oxygen during the peak levels of GPP and therefore rates of 

mineralisation could be reduced at both lakes.  Sobek et al., (2009) and others 

calculate burial efficiency in lake cores on sediment layers > 25 years old and create 

a steady-state model of core C burial.  However Gälman et al. (2008) demonstrated 

that maximum OC mineralisation rates occur in sediments < 5 years old and drops 

dramatically after ~10 years and only discount sediment layers < 10 years old.  

Following these methods, burial efficiency calculations for both Rostherne Mere and 

Tatton Mere yielded varying results (Table 4.5). 

 

Table 4.5 Rostherne Mere and Tatton Mere OC burial efficiency determined by 

competing methods. 

 

Method 
No. years 

excluded 
RM BE % TM BE % 

Gälman et al. (2008) 10 71 62 

Sobek et al. (2009) 15 99 71 

 

This discrepancy in burial efficiency is undoubtedly as a result of the Sobek et al. 

(2011) method over-estimating OC burial rates due to the implication that lake OC 

burial rates are constant and steady over the last 100 – 150 years.  However, in 

Rostherne Mere and other European eutrophic lakes, the rate of OC burial has 

changed significantly since 1900, increasing rapidly with a period of pronounced 

eutrophication ~1950 A.D. linked to the introduction of artificial fertilisers and land 

use changes (Battarbee et al., 2011; Anderson et al., 2014), and then falling again 

as lake management was introduced to help reduce levels of eutrophication.  

Rostherne Mere, in particular has seen a pronounced decrease since 1996 following 

sewage diversion in 1991, from C burial rates in excess of 111 g C m-2 yr-1 to 92 g C 

m-2 yr-1, which has been quite stable over the last couple of decades (Table 3.4).  



105 

This means that discounting sediments younger than 25 years, as suggested by 

Sobek et al. (2009), skews the result in favour of higher OC burial rates.  Discounting 

the first 25 years of the Rostherne Mere core leads to a burial efficiency nearly equal 

the current levels of gross sedimentation into the surface sediments. 

 

4.4.3 Significance of Lake Carbon Storage 

Rostherne Mere and Tatton Mere form part of the Cheshire-Shropshire meres, a 

group of more than 60 productive lakes that lie within a small geographical area in 

NW England (Cheshire-Shropshire Plain ~5,400 km2), and have the potential to be 

annual net carbon stores as a result of their persistent eutrophic status over that last 

~150 years (Table 4.6).  Annual C storage estimates from this study predict a 

combined yearly C accumulation rate for the two lakes of 68 ± 4 t C yr-1 (weighted 

average – see below).  Using data obtained from two, dated sediment cores these 

two lakes have sequestered 6041 ± 97 t C since 1900.  This consistent net storage 

means the carbon is removed from the wider carbon cycle on a long-term basis i.e. 

not easily available for further use within the lakes metabolism cycle or to be 

exchanged with the atmosphere. 

 

Table 4.6 Estimates of C accumulation within groups of eutrophic lakes. Yearly C AR 

based on mean AR 68 g C m-2 yr-1; Total C AR since 1900 based on mean Total AR 

7458 g C m-2. (a) JNCC (2008).  Mt C = 1 million t C. 

 

 
Total Lake 

Area 
Yearly C AR 

Total C AR 

since 1900 

Rostherne Mere and Tatton Mere 0.81 km
2 

68 ± 4 t C yr
-1

 6041 ± 97 t C 

All Cheshire-Shropshire Meres 7.5 km
2 

506 ± 32 t C yr
-1 

0.05 ± 0.001 Mt C 

All UK Eutrophic Waters 1,785 km
2 (a) 

0.12 ± 0.01 Mt C yr
-1

 13.3 ± 0.2 Mt C 

 

Up-scaling the data to all the Cheshire-Shropshire meres was based upon a mean 

yearly C accumulation rate of 68 g C m-2 yr-1 and total C accumulation since 1900 

was based upon a mean total accumulation rate of 7458 g C m-2.  These figures 

were calculated by weighting the individual lake areal estimates 15% RM: 85% TM, 

to reflect the composition and distribution of the Cheshire-Shropshire meres total 
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lake area.  Approximately 15% of the total area of the meres will have a depth >18 m 

with an observed very high C AR when compared to the balance of 85% of total lake 

area covered by meres with a depth >18 m, reflecting a lower observed C AR.  The 

annual C accumulation rate for the Cheshire-Shropshire meres were therefore 

estimated to be 506 ± 32 t C yr-1 and 0.05 ± 0.001 Mt C since 1900.  However these 

values are likely an over-estimate of C accumulation rates as the mean data 

generated by this study only robustly reflects 50% of all the Cheshire-Shropshire 

meres, as very small/shallow lakes are likely to have annual C accumulation rates 

below 68 g C m-2 yr-1. 

 

The same mean yearly and total C accumulation rates were used to estimate C 

accumulation rates for all eutrophic waters in the UK.  No accurate figures exist for 

total number of eutrophic lakes in the UK, so an estimate for total area of UK 

eutrophic water was used instead, but this is likely to include reservoirs which are 

more likely to be a net source of C to the atmosphere due to their low water 

residence times and rapid siltation (Tranvik et al., 2009).  The annual C accumulation 

rate for all UK eutrophic waters were therefore estimated 0.12 ± 0.01 Mt C yr-1 and 

13.3 ± 0.2 Mt C since 1900.  The Cheshire-Shropshire meres consequently only 

contribute about 0.5% of annual UK lake C accumulation and storage. 

 

Table 4.7 Annual natural C sequestration compared to annual UK CO2 emissions.  

UK eutrophic waters yearly C sequestration based on mean AR 68 g C m-2 yr-1.  

Where (a) DECC (2014), (b) Forestry Commission (2014), (c) this study and (d) JNCC 

(2008).  Mt C = 1 million t C. 

 

 Total Area 
Total 

Emissions/Sequestration 
Mean Areal Rate 

2012 Total UK CO2 

Emissions 
(a) 243,610 km

2 
-  128.85 Mt C yr

-1 
-  529 t C km

-2 

2010 UK Forest Carbon 

Sequestration 
(b)

 
28,500 km

2 
2.9 Mt C yr

-1 
101 t C km

-2 

2011 UK Eutrophic Waters 

Sequestration 
(c)

 
1,785 km

2 (d)
 0.12 Mt C yr

-1 
68 t C km

-2 

 

Lakes are seen to many as efficient long-term stores of carbon and offer potential to 

offset some of the extra burden placed on the global C-cycle by anthropogenic C 
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emissions (e.g. Anderson, et al., 2009; Tranvik et al., 2009; Downing et al., 2008; 

Cole et al., 2007).  However current CO2 emission rates in the UK, and globally, far 

outstrips the current storage potential of natural sinks such as forests and lakes 

(Table 4.7).  Major UK CO2 sources include numerous anthropogenic sources such 

as industrial process, transport and energy supply, but also a number of natural 

sources including plant and animal respiration and the loss of soils as a result of 

land-use changes (inc. changes in land management practices; Alonso et al., 2012) 

though these losses have yet to be accurately quantified.  Annual UK CO2 emissions 

are ~128.85 Mt C yr-1 (DECC, 2014), which means that annual UK forest C 

sequestration (2.9 Mt C yr-1; Forestry Commission, 2014) only currently offsets 2.24% 

of UK yearly CO2 emissions.  This value is, though, significantly larger than the 

annual UK eutrophic waters C sequestration (0.12 Mt C yr-1; this study) which offsets 

only 0.09% of yearly UK CO2 emissions. 

 

The data also show that UK forests are, on average, annually more efficient C-sinks 

when compared to UK eutrophic waters (~67% C of UK forests), although UK lake 

sequestration rates can vary dramatically from values close to or in excess UK forest 

C sequestration rates for hypertrophic lake systems to net C sources for oligotrophic 

lake systems.  The expected annual C sequestration by UK forests is expected to fall 

over the next ~10 years as future predictions of C sequestration assume restoration 

of commercial conifer plantations with replanted trees to be native, slower growing 

species, and that planting of new woodland will continue at the same rate as in 2011 

(Forestry Commission, 2014). 
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4.5 A CROSS-SYSTEM PERSPECTIVE 

 

 
 

Figure 4.3 Graphical representation of carbon pools for (a) Temperate lake systems; 

Rostherne Mere (2011) integrated water column, a eutrophic lake and (b) Arctic lake 

systems; SS4 (1999) integrated water column, an oligotrophic lake (data from 

Anderson et al., unpublished). 

 

The Cheshire-Shropshire meres are net autotrophic systems, where the annual C 

production and burial exceed annual rates of C mineralisation (Figure 4.3a).  They 

receive low levels of terrestrially-derived DOC and are P-loaded, supporting high 

rates of C production within the epilimnion.  Despite the prevalence of net autotrophy, 

the meres are a net source of CO2 to the atmosphere.  The source of this free-CO2 is 

unclear as, however, as although there is a contribution from the mineralisation of 

OC within the surface sediments, the rates of OC mineralisation from the literature 
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show rates in eutrophic lakes range from 13.6 mmol C m-2 d-1 at 25m water depth, 

under anoxic conditions, to 34.9 mmol C m-2 d-1 in shallower, oxygen exposed 

sediments (Maerki et al., 2009), and may only account for ~8% of total mineralisation 

(den Heyer & Kalff, 1998).  It is also unlikely that the transfer of CO2 from the 

catchment, through rivers and groundwater flux, is a major input into the Cheshire-

Shropshire meres as DOC loading is low, well below figures quoted in the literature 

that would promote net heterotrophy (Figures 3.10; 3.27).  Other potential sources of 

CO2 within the water column could include the dissolution of silicon (Si), as both 

Rostherne Mere and Tatton Mere have abundant diatom communities (Carvalho, 

1993; Moss et al., 1992; Nelms, 1984) or the re-mineralisation of CaCO3, that has 

been precipitated in the epilimnion of the lakes during periods of peak GPP, but as it 

sinks into the hypolimnion pH falls and the concentrations of CO2 rise promoting its 

breakdown into other DIC fractions (Figures 3.15; 3.32)  

 

The eutrophic meres are a contrast to the oligotrophic lakes found across the arctic 

and boreal zone, including Greenland (Figure 4.3b).  Here the majority of lakes are 

net heterotrophic on an annual basis as anthropogenic activity and land-use change 

leads to increased DOC-loading and nutrient availability (Anderson et al., 2009; 

Ågren et al., 2008; Jonsson et al., 2007).  Levels of C production within oligotrophic 

lakes are extremely small when compared to eutrophic systems.  This can be as a 

result of more frequent mixing regimes, and a much reduced growing season due to 

their geographic location.  The DOC load is usually very large, in this case SS4 has 

DOC concentrations > 62 mg L-1, and has been found to subsidise lake respiration in 

numerous studies (e.g. Duarte & Prairie, 2005).  This is likely to be one reason why 

overall quantities of inorganic carbon (mainly as CO3
2-

 and HCO3
−

) within the SS4 are 

substantially higher than those in eutrophic lakes such as Rostherne Mere and 

Tatton Mere. 

 

4.5.1 Temperate Systems 

There are approximately 300,000 small lakes between 0.1 km2 and 5 km2 across 

Europe covering an area ~240,000 km2 (Kastowski et al., 2011).  Of these, 113,338 

(61,880 km2) could be classified as temperate systems (United Kingdom and 

mainland Europe excluding the Alps region) and account for ~25% of European lake 
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surface area.  However, they potentially store in excess of 0.32 Mt C yr-1, which is 

nearly 35% of all European lake C accumulation.  This is most likely a conservative 

estimate as the C accumulation rates are based on a mean European C 

accumulation rate of 5 g C m-2 yr-1 (n = 228; Kastowski et al., 2011), whereas 

Anderson et al. (2014) have estimated that 20th century C accumulation rates across 

Europe could be as high as 30 g C m-2 yr-1 (n = 93) for meso-eutrophic lakes, 

meaning the real estimate of European small lake C accumulation could be in 

excess of 1.85 Mt C yr-1 (Table 4.8). 

 

Table 4.8 Estimates of C accumulation rates in lake across Europe.  Mean C AR 

multiplied by total lake area. Mt C = 1 million t C. 

 

 
Number of 

Lakes 

Mean C AR 
Total C AR 

g C m
-2

 yr
-1

 

Cheshire-Shropshire meres 

(This study) 

62 

(7.5 km
2
) 

68 
506 t C yr

-1
 

0.05 Mt C since 1900 

All UK eutrophic waters 

(This study; JNCC, 2008) 

- 

(1,785 km
2
) 

68 
0.12 Mt C yr

-1
 

13.3 Mt C Since 1900 

0.1 – 5 km
2
 temperate European lakes 

(Kastowski et al., 2011) 

113,338 

(61,880 km
2
) 

5 
0.32 Mt C yr

-1
 

30.9 Mt C since 1900 

Meso-eutrophic European lakes 

(Anderson et al., 2014) 

113,338 

(61,880 km
2
) 

30 
1.85 Mt C yr

-1
 

185 Mt C since 1900 

 

The estimation of annual C accumulation rates remains unclear, as studies by 

Tranvik et al. (2009) and Kortelainen et al. (2004) estimated long term global C burial 

rates to be ~5 g C m-2 yr-1.  These studies, however, mainly focused on long term 

Holocene averages and made no attempt to correct for more recent C accumulation 

rates.  In areas such as Europe recent C accumulation rates will have been affected 

by increasing levels of anthropogenic interference, especially eutrophication from 

both point sources (wastewater treatment) and diffuse sources (agricultural runoff).  

Anderson et al. (2014) highlights this trend of increasing European C accumulation 

rates throughout the 20th century as mean C AR measured in lakes (n = 93) 

increased from 17 g C m-2 yr-1 in the 19th century to 40 g C m-2 yr-1 between 1900 

and 1950 and to 60 g C m-2 yr-1.  The rates could be even higher for hypertrophic 
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lakes (TP >100 µg L-1) at 100 g C m-2 yr-1 post-1950; these data are supported by C 

AR measured at Rostherne Mere (TP 216 µg L-1; C AR 96.1 ± 10 g C m-2 yr-1).  The 

increasing C accumulation trend across Europe, especially since 1950, has an 

impact on any up-scaling calculations as this non-linear trend is difficult to predict in 

and between lakes.  However, in the past 15 – 20 years, there has been an overall 

decline in C burial in a number of lakes, including Rostherne Mere and Tatton Mere 

(Tables 3.4 & 3.9; Anderson et al., 2014).  The decline is likely as a result of 

European policy introduced to reduce nutrient loading from both point sources and 

diffuse sources, because as many as 44% or almost 6500 lakes monitored across 

Europe, as part of the European Water Framework Directive, are failing to achieve 

good ecological status or potential.  Evidence suggests that the highest pollution 

pressures on these lakes are agricultural runoff and wastewater treatment (EEA, 

2012; Kronvang et al., 1993). 

 

The decision by the European Commission to implement the European Water 

Framework Directive suggests a long-term management plan to improve the water 

quality and ecological status of lakes across Europe to a good chemical and 

ecological status by 2015, and introduces the principle of preventing any further 

deterioration of status (EEA, 2012).  This typically means managing catchments to 

reduce and control the amount of pollution loading into these systems with the aim of 

improving overall species diversity, reducing their vulnerability to climate change and 

improving their recreational quality.  This management plan has led to an overall 

improvement in water quality especially a significant decrease in nutrient loading in 

lakes, by 31% between 1992 and 2010.  The impact of reducing lake nutrient loading 

will most likely be a reduction in the number of eutrophic lakes or lakes likely to 

become eutrophic across Europe.  This is undoubtedly a positive outcome for 

species diversity and improving the recreational quality of lakes but has the potential 

to seriously impact the C accumulation potential for European lakes (Table 4.8), as 

less productive lakes (oligotrophic and mesotrophic lakes) typically have very low 

recorded C burial rates (e.g. < 10 g C m-2 yr-1 Anderson et al., 2013; ~28 g C m-2 yr-1 

Gälman et al., 2008; 21 g C m-2 yr-1 Jonsson et al., 2007) when compared to 

eutrophic and hypertrophic lakes (e.g. 68 g C m-2 yr-1 this study; 88 g C m-2 yr-1 

Heathcote & Downing, 2011).  According to the recent sediment records eutrophic 
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lakes are sequestering more C than at any other time in their history (Anderson et al., 

2014). 

 

4.5.2 Arctic and Boreal Systems 

Arctic and boreal lake systems are seen as perhaps having the greatest C storage 

potential due to their global abundance in comparison to other lake types, and their 

typical high density within a landscape.  With an approximate land coverage in SW 

Greenland of about 14%, Anderson et al. (2009) calculated that the Holocene 

standing C stock for small lakes in the area (extrapolating to an estimated 20,000 

lakes) to be in the region of 49 Mt C. This value is about half of that estimated C 

stock for the regional soil pool, but in only 5% of the land area.  These standing stock 

determinations yield organic C accumulation rates of between 3.5 – 11.5 g C m-2 yr-1.  

Other lake dense regions, including Finland, have also been intensely studied and 

Kortelainen et al. (2004) calculated the standing C stock for ~56,000 lakes, 

extrapolated from a study of 122 lakes, to be in the region of 1900 – 2700 Mt C.  

These estimates suggest that small lakes buried two-thirds of the C store of all 

Finnish lakes although they represent only one third of the lake area.  While the rates 

of C accumulation are not as high as those estimated for eutrophic and hypertrophic 

systems, such studies indicate the importance of incorporating high density lake 

regions into models of regional C balance.  Oligotrophic lakes in the arctic and boreal 

zone are however, currently most vulnerable to a changing climate, meaning that as 

temperatures increase, the likelihood of their C-dynamics being disrupted increases.  

Mixing regimes are likely to change as periods of ice-cover will be reduced and the 

strength of stratification may be increased.  There will also be further catchment 

changes, in arctic regions in particular, as areas of permafrost decrease and 

previously frozen soils can be eroded, not only potentially releasing previously long-

term stored C into the atmosphere but increase the DOC and nutrient loads to these 

lakes.  This has the potential for greater C evasion from arctic lakes as 

allochthonous DOC typically consists of recalcitrant compounds that resist microbial 

decay and are less biologically available for primary production.  Such compounds 

can persist within the water column and restrict primary productivity through their 

impact on in-lake light climate (Porcal et al., 2009; Cardille et al., 2009; White et al., 

2000). 
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4.6 METHODOLOGICAL EVALUATION 

The key uncertainties highlighted by this research are summarised and ranked in 

order of most significance to the overall analysis: 

 

(i) Calculation sensitivity testing; although the fundamental technique for 

measuring metabolic rates from O2 diel has not notably changed since its 

introduction by Odum (1956) and others, new modelling and statistical analysis has 

begun to provide better estimates for the mixing of O2 due to wind and flow variability 

(F; Eq. 2.13), air-water flux coefficients (k; Eqs. 2.11; 2.12) and oxygen saturation 

(Eq. 2.6) as a result of extensive laboratory and field tests, allowing uncertainties to 

be more reliably accounted for when considering lake metabolism (Staehr et al., 

2010; Cole & Caraco, 1998; Wanninkhof, 1992).  However, these statistical analyses 

are only valid if the errors associated with their calculation are considered.  

Evaluating the sensitivity of metabolic rates to potential errors in key assumptions 

requires simple sensitivity testing.  Modifying data models by ± 10% to investigate 

their influence on metabolic rates can illustrate the potential errors associated with 

incorrect measurements of temperature or barometric pressure, for example, due to 

poor equipment calibration (Staehr et al., 2010; Dubois et al., 2009; Bade et al., 

2004).  Equally, estimates of CO2 storage and flux were based on established 

calculations (Zeebe & Wolf-Gladrow, 2001; Cole & Caraco, 1998; Wanninkhof, 1992; 

Millero, 1979) that attempt to minimise the number of uncertainties in calculations 

such air-water flux coefficients (k; Eqs. 2.36; 2.37) and water vapour pressure (pH2O; 

Eq. 2.30), but are obviously somewhat simplified expressions of natural processes to 

allow meaningful estimates to be made. 

 

(ii) Photosynthetic quotient (PQ); when converting oxygen derived metabolism to 

carbon units a photosynthetic quotient (Eq. 2.19), the molar ratio of the rate of 

oxygen production to that of carbon assimilation, is used.  Uncertainty exists 

surrounding the value of PQ as it has been shown to vary between algal species, 

over time and with nutrient availability (Williams & Robertson, 1991; Grande et al., 

1989).  There is some agreement that this value is likely to fall between 1.0 – 1.3, 

though most experimental data are derived from algal cultures and little data exist for 

natural populations (Williams & Robertson, 1991). 

 



114 

(iii) Heterogeneity; the majority of recent studies investigating lake ecosystem 

metabolism have utilised a high frequency, sonde based ‘free-water’ approach as 

these estimates can provide in-situ high frequency, precise measurements from 

multi-variable sensors over a wide range of timescales (daily, seasonally and 

annually) (e.g. Coloso et al., 2008; Van de Bogert et al., 2007).  However, although 

the cost of sondes has fallen over recent years they still represent significant 

investment within a project and typically metabolic estimates are derived from a 

single sensor placed at one depth within the epilimnion at the centre of a lake (Sadro 

et al., 2011; Staehr et al., 2010).  This means that when calculating metabolic 

processes in lakes from O2 concentration for example, heterogeneity is assumed i.e.  

the concentration is the same throughout the mixed zone as measured at the sonde 

depth, metabolism is happening at the same rate throughout the mixed zone and 

littoral areas, despite a mixing depth often lower than that at the centre of the lake, 

and discounting the greater interaction with sediments in these areas.  The degree to 

which a single sonde can represent whole-lake metabolism depends on a number of 

factors, including lake morphometry (% of lake area pelagic or littoral), strength of 

vertical mixing, depth of the active mixing layer (zmix) and the variability in the 

abundance of phytoplankton and bacteria throughout the water column (Sadro et al., 

2011).  Van de Bogert et al. (2007) suggests that single-site metabolic estimates 

may not represent whole-lake metabolism or only pelagic metabolism, but rather 

something between these two endpoints. 

 

Similarly, there is risk of heterogeneity when estimating C accumulation rates as the 

majority of studies to date have used a single central basin sediment core to 

estimate whole lake basin accumulation (e.g. Heathcote & Downing, 2011; Finlay et 

al., 2010; Bennion et al., 2010).  This is achieved by applying a correction factor for 

sediment focusing towards the centre of the lake, based on the flux of 210Pb in the 

core relative to the atmospheric 210Pb flux for the region in which the lake is located. 

The method assumes: (1) the atmospheric 210Pb flux is known with some level of 

certainty; (2) the sediment constituent of interest is focused to the same degree as 

210Pb, and (3) focusing to the core site has remained relatively constant over the 

period of interest.  The most appropriate method for addressing 

over/underestimation of whole lake C accumulation is by using multiple dated 

sediment cores for each lake basin, but this is an expensive and extremely labour 
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intensive approach and cannot realistically be applied to budget-limited studies or 

regional studies of more than 10 lakes (Engstrom & Rose, 2013; Anderson et al. 

2014). 

 

(iv) No. of lakes in study; when designing a study that involves the potential for up-

scaling it is important to determine whether the sample (i.e. number of lakes) is 

representative of the area or region being subject to investigation.  This is because it 

is impractical (expensive and labour intensive) to consider sampling every lake, there 

has to be a trade-off between data intensity and sample size, as most scientific 

research works to limited budgets and equipment.  There is a choice between fewer 

lakes more intensely with a higher data resolution but potentially be representative of 

fewer lake classifications or do you study more lake classifications less intensely with 

a lower data resolution but potentially overlook key trends within each classification.  

For many key variables, however, regional change across all lakes may not be 

mirrored in similar changes in individual lakes making it difficult to model larger lake 

regions from a few individual lakes.  For example, Cardille et al. (2009) identified in 

their study that groundwater in modelled lake hydrologic budgets decreased by 

~10% with increasing precipitation. However, the decrease was not uniform across 

all lakes and was not predictable as a proportion of groundwater in lakes of different 

sizes.  Rather, the regional trend was driven by a small number of lakes whose 

reliance on groundwater declined substantially in wetter scenarios.  Lake responses 

reveal that they are not independent elements reacting to the same perturbation; 

rather the models show lakes are sometimes coupled and sometimes uncoupled to 

regional trends, with many of the elements that influence carbon and water budgets 

having several highly non-linear characteristics.  More generally, the variety of 

behaviour among different lakes appears to be related to a wide array of factors, 

including lake and watershed size and shape, upstream and downstream 

connections and the composition of land cover in the lake’s watershed (Anderson et 

al., 2013; Weyhenmeyera & Karlsson, 2009; Cardille et al., 2009; Sobek & Tranvik, 

2005). 

 

Another consideration when up-scaling is the ability to model regional, national or 

supra-national trends using total lake area.  The majority of lake studies estimate C 

accumulation rates on an areal basis, typically g C m-2 yr-1, meaning the most robust 
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models have to be calculated using known lake area.  Up-scaling from a single or 

small number of lakes to total number of lakes in a region/nation allows for a 

potentially greater over/underestimation of C accumulation as total lake area is 

based on the sample of the study i.e. an assumption that all lakes in the modelled 

region have the same area as your sample.  On smaller scale studies, such as this, 

an accurate total lake area exists for 63 lakes of the Cheshire-Shropshire plain, 

whereas the estimates for total eutrophic lake area within the UK, Europe and 

globally are based on either computer models or ‘best guess’ estimates from existing 

published data, meaning data is inferred using the best current knowledge but is still 

potentially over/underestimating C accumulation on the larger scale. 

 

That is not to say that the up-scaling method cannot be used to give a useful first 

estimate for assessing larger regional or national trends as although modelling a 

handful of lakes and up-scaling to thousands simplifies the natural environment, it 

does allow meaningful estimates to be made where none may currently exist 

(Cardille et al., 2009). 

 

(v) Sediment traps and mineralisation; the use of sediment traps is very 

widespread when investigating lake sedimentation, with a variety of open and 

sequencing traps now available to provide a range of sediment data over a number 

of timescales (days, weeks and months).  Both open and sequencing traps were 

used during this project and a number of issues became apparent during their 

deployment, most notably in-situ sediment mineralisation and water turbulence, 

especially when using an open trap design. 

 

The mineralisation of sediment in traps is a known issue within the literature (Filstrup 

et al., 2009; von Wachenfeldt & Tranvik, 2008; Bloesch & Burns, 1980); however it is 

almost unavoidable due to the timescales involved in sediment trap experiments.  

Bloesch & Burn (1980) estimated, from a mesotrophic lake basin, that ~10% 

mineralisation is likely to occur within the trap within a 1 – 2 week period, however 

when exposure times are increased to 3 months the rate of mineralisation increased 

to ~30%.  Based on these findings an optimal trap reset period is 2 weeks.  Both the 

open and sequencing traps in this study spent the majority of their time in the 
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hypoxic zone of the lake which has the potential to reduce the amount of 

mineralisation that will occur (Gudasz et al., 2010). 

 

Water turbulence can affect both settling sediment and the re-suspension of 

sediment from the bottom waters (Bloesch & Burns, 1980).  The design of a 

sediment trap can either minimise or exacerbate water turbulence.  For example 

Bloesch & Burns (1980) conducted experiments on various trap designs and found 

that open cylindrical traps were the most efficient trapping design (95 – 100%), with 

sediment settling patterns minimally disrupted by turbulence and open traps with a 

funnel shape consistently under-trapped (25 – 60%), especially under turbulent 

conditions.  A funnel design was used during this project in an attempt to maximise 

collection amount per trap and subsequent comparisons with the sequencing traps 

found that the open traps under-trapped by 3 – 4 times that of the sequencing traps.  

Consequently the open trap data for Tatton Mere was tripled in an attempt to provide 

a more representative sedimentation rate.  Sediment re-suspension is likely to occur 

at both Rostherne Mere and Tatton Mere; however there was only a small increase 

in sequencing trap rates observed after overturn (Figure 3.18; 3.35) suggesting that 

it is does not significantly alter the overall sediment flux data. 

 

4.7 FURTHER RESEARCH 

This thesis has made a substantial contribution to furthering the application of 

metabolic modelling in lake systems but has highlighted some of the keys areas that 

hold potential for further enquiry.  These research issues fall into two broad groups: 

(1) Methodological studies assessing heterogeneity, and (2) Studies that explore and 

develop better analytical tools for understanding lake metabolism. 

 

(i) Long-term monitoring; despite the increase in studies focusing on the 

metabolism of lakes globally, the majority of this work has utilised short-term 

(typically less than 4 months), high frequency sonde data to provide yearly C-fixation 

estimates (Table 4.1).  This free-water oxygen approach, as used in this study, has 

overcome many of the limitations of the bottle and chamber method used extensively 

before the introduction of automatic water quality sensors, but there is still much to 

learn about these methods, particularly what sampling regime is necessary to 

adequately capture ecosystem estimates of processes like metabolism.  Without 
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further evaluation of sensor-based methods, process estimates will suffer 

ambiguities similar to traditional techniques (Van de Bogert et al., 2005).  For 

example, a single centrally located oxygen sensor may measure some unknown 

value between pelagic metabolism and whole-lake metabolism.  These uncertainties 

may be reduced with improved sampling designs coupled with models that 

incorporate spatial heterogeneity in ecosystem processes. 

 

Although it is intuitively clear, and shown in a few lakes, that one sensor is often not 

sufficient to provide true whole-lake metabolism (Staehr et al., 2011; Coloso et al., 

2008; Van de Bogert et al., 2007), further studies are needed on the extent to which 

this is a general problem, and what to do about it.  More precisely, further 

recommendations of how and when to perform depth-integrated determinations of 

lake metabolism using automatic profiling systems.  Also further recommendations of 

how and when to perform multiple sonde measurements of lake metabolism using 

horizontally distributed sondes.  In general, by determining lower uncertainties 

associated with horizontal and vertical heterogeneity, labour intensive and expensive 

measurement programs could be avoided. 

 

Van de Bogart et al. (2012) have tried to quantify how many sensors are needed to 

produce more robust estimates.  They believe that substantial gains can be made 

with just a few additional sensors and confidence in metabolism estimates goes up 

with each additional sensor used, but with diminishing returns.  While there is no 

definite answer to the question, they examined some benchmarks for comparison.  

Using the partitioned day-to-day variance as a benchmark, an evaluation was 

undertaken of the number of sensors needed to match the precision of the daily 

metabolism estimate to the level of precision obtained given the temporal variation 

over a 10 day deployment. Obtaining estimates that reduce the uncertainty 

attributable to spatial heterogeneity to the level of uncertainty for a week’s worth of 

values brought the result into a range that many ecologists could accept. At between 

10 and 14 sensors were needed to meet GPP and R in Sparkling Lake.  However, 

between 5 and 7 sensors were needed to meet this target for Peter Lake GPP and 

R.  Because estimates of GPP and R are correlated, NEP (GPP – R) is somewhat 

decoupled from the spatial variation. Indeed, for estimates of NEP, just two randomly 



119 

placed sensors achieve a level of precision on par with 10 day temporal precision for 

both lakes. 

 

Although a single-sensor location chosen at random is not likely to represent the 

lake-wide mean determined by multiple sensor locations for a single day, many 

researchers are interested in time frames longer than a single day. It is likely that 

deployments for a week, month, or an entire season at a single site may come closer 

to the lake-wide mean, and might be adequate if the primary interest is in time 

frames longer than a single day. While estimates of metabolism can vary greatly 

from one location within a lake to the next over periods of days, the challenges are 

not insurmountable.  It can no longer be assumed that a single sonde location is an 

accurate representation of a lake at the daily time scale.  Van de Bogart et al. (2012) 

suggest that using 4 sondes across the lake is necessary to provide reasonable 

confidence in daily whole-lake estimates and hence longer-term. 

 

(ii) No. of lakes to study; typically any upscaling that occurs within studies simplifies 

the natural environment by mirroring key variable changes across an entire region 

that may not be reflected in individual lakes.  The susceptibility of interconnected 

lakes to climate change effects is not uniform, and ideally lake districts should be 

studied as a whole (Cardille et al., 2009).  Hanson et al. (2007) believe that sampling 

lakes across their full size distributions in a variety of regions may prove to be 

important for characterising lakes at the global scale. Recent work by Downing et al. 

(2006) estimated that 99% of the world’s lakes are smaller than 0.1 km2, and that 

these lakes account for 31% of the total lake surface area, making research on small 

lakes a vital part of the global picture. 

 

(iii) Lake sensitivity; there are many analytical considerations to made when 

estimating lake metabolism from high-frequency sonde data as these 

measurements, particularly dissolved oxygen, are often noisy (Figures 3.8 & 3.25).  

Although there is a basic understanding of what controls this variability over multiple 

timescales within the literature (e.g. Hanson et al., 2006), there is a need for 

analytical solutions to help separate variation caused by physical and chemical 

processes from biological processes that affect metabolism (Staehr et al., 2010).  An 

assumption central to calculating metabolism from O2 diel is that respiration 
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measured during night-time is used to represent respiration during daylight hours, 

which is masked by the signal for primary productivity.  However, small-scale studies 

investigating respiration in ponds with dense phytoplankton communities indicated 

higher respiration during daylight hours (Sadro et al., 2011; Karakaya, 2011).  This 

implies that the current method using a 1:1 ratio may be underestimating daytime 

respiration and thus affect primary productivity measurements.  The extent to which 

this occurs in the context of lakes and what to do about it needs consideration.  

Other issues of data sensitivity concern uncertainties associated with calculating the 

air-water exchange term.  Most literature uses wind speed as a proxy of turbulence 

on the lake surface to calculate piston velocity (k) and state that a relationship 

between wind and k should be established for each lake due to local conditions, but 

this is often difficult to achieve due to lack of local, established meteorological 

stations.  Ideally, analytical methods and/or techniques should be made that enable 

continuous estimation of k (Staehr et al., 2010). 

 

Despite the assumptions and uncertainties associated with using a sonde based 

‘free-water’ approach to determining metabolic rates in lakes, its relative ease of 

application, data quality and high temporal resolution will continue to make the 

technique a suitable method for determining the magnitude and variability in 

metabolic rates in lakes.  Application of a common protocol on measurements and 

data analysis will hopefully improve our ability to compare metabolic rates, 

understand the importance of different drivers, and the importance of lakes for 

carbon storage and release globally (Cole et al., 2010; Staehr et al., 2010; Hanson et 

al., 2008; Van de Bogert et al., 2007). 

 

4.8 CONCLUSIONS 

There is significant progress being made each year to better our understanding of 

lake metabolism, especially as technology for measuring lake metabolic processes 

continues to develop.  This is the case for lakes such as Rostherne Mere and Tatton 

Mere, where unattended monitoring has enabled lake productivity to be measured, 

near uninterrupted, for ~18 months, for the first time.  Previous research at these 

meres has been mainly limited to nutrient studies examining their eutrophic history 

through sediment cores, diatom analysis and short term enclosure studies (e.g. 

Moss et al., 2005; Carvalho, 1993; Walker, 1987; Davision et al., 1985; Nelms, 1984).  
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However despite the greater recognition of the importance of lake water quality in 

regions such as Europe through the EU Water Framework Directive, which can have 

a major impact on the C-dynamics of a lake, the majority of studies into lake 

metabolism are focused on boreal zone lakes (e.g. Sobek et al., 2003, 2006; 

Algesten et al., 2004).  This trend is beginning to change, however, as although the 

overall C-storage potential of temperate, eutrophic lakes may not be as high as in 

the boreal zone (typically as a result of the sheer abundance of lakes in many 

regions) there is a growing shift towards understanding the metabolism of lake 

regions or lake groups as the global climate begins to change.  As a result, regionally 

integrated carbon budgets are becoming more widely investigated (e.g. Anderson et 

al., 2013; Buffam et al., 2011) and high-resolution monitoring projects have been 

formed with collaboration between numerous research institutions creating networks 

from national to continental and global scale (e.g. GLEON http://www.gleon.org, 

GLOBOLAKES http://www.globolakes.ac.uk, NETLAKE https://www.dkit.ie/netlake 

and UKLEON http://www.ceh.ac.uk/sci_programmes/water/uk-lake-ecological-

observatory-network). 

 

This study has highlighted that intensive, unattended lake monitoring is achievable, 

but to succeed on a larger scale requires investment in people and technology.  The 

UKLEON (UK Lake Ecological Observatory Network) project has begun to connect 

11 lakes, of various trophic status and mixing regimes, across Northern Ireland, 

north Wales, NW England and central Scotland through standardised equipment, 

both in-lake and meteorological, and the data collection method in an attempt to 

forecast lake behaviour, the effect of meteorology on the fate of carbon within lakes 

and understand the level of regional coherence in lake response on sub-seasonal 

timescales.  Advancements within the UKLEON projects on the methods employed 

in this study include permanent surface water pCO2 sensors and the installation of 

an automatic winch system for sonde measurements through the entire water 

column at regular intervals (i.e. every hour).  Although projects such as UKLEON 

and others are data intensive, they provide the prospect of significantly furthering our 

knowledge of lake functioning and the potential impacts of a changing climate. 

 

The awareness of the importance of lakes within the terrestrial landscape has 

increased significantly over recent decades; mostly as a result of our improved 



122 

understanding of lake function.  When compared to other components of the C cycle, 

lakes can be efficient at both processing and storing allochthonous and 

autochthonous OC in a long term sink (Tranvik et al., 2009; Cole et al., 2007; 

Downing et al., 2006).  However estimates of their current levels of productivity and 

storage potential are varied, often spatially and temporally constrained and difficult to 

upscale to larger lake regions.  To date the majority of lake research has been 

focused on arctic and boreal lakes, which tend to be DOC-loaded and net 

heterotrophic.  In particular eutrophic and hypertrophic lake systems are often 

overlooked, despite their abundance and importance across Europe and other 

temperate zones. 

 

This project has attempted to address this research gap by showing that eutrophic 

lakes are an important component of the C-cycle.  Stratifying, eutrophic lakes in 

particular bury a high percentage of C assimilated within the water column, due to 

persistent anoxia within the hypolimnion, as a result of strong stratification.  As a 

result, C mineralisation rates in such systems are typically lower than those 

experienced in more oxygenated, generally better mixed shallow lakes.  This 

assertion is based upon an intensive, high frequency approach that provides data on 

C-fixation, loss and burial for over 18 months, in an attempt to reduce the errors 

associated with calculating a lake C balance based on extrapolation of seasonal data.  

This project has not only shown that this method of high-intensity monitoring 

provides a valid and robust dataset, but has enabled two eutrophic lakes to be 

assessed in near unparalleled detail. 
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