
Increasing Allocated Tasks with a Time Minimization Algorithm for a
Search and Rescue Scenario

Joanna Turner, Qinggang Meng and Gerald Schaefer

Abstract— Rescue missions require both speed to meet strict
time constraints and maximum use of resources. This study
presents a Task Swap Allocation (TSA) algorithm that in-
creases vehicle allocation with respect to the state-of-the-art
consensus-based bundle algorithm and one of its extensions,
while meeting time constraints. The novel idea is to enable
an online reconfiguration of task allocation among distributed
and networked vehicles. The proposed strategy reallocates tasks
among vehicles to create feasible spaces for unallocated tasks,
thereby optimizing the total number of allocated tasks. The
algorithm is shown to be efficient with respect to previous
methods because changes are made to a task list only once a
suitable space in a schedule has been identified. Furthermore,
the proposed TSA can be employed as an extension for other
distributed task allocation algorithms with similar constraints
to improve performance by escaping local optima and by
reacting to dynamic environments.

I. INTRODUCTION

Recently, there has been an increasing focus on developing
multi-vehicle systems to complete jobs and missions in var-
ious fields including search and rescue missions, space and
underwater exploration [1], [2]. Using multiple, specialized
vehicles in these areas entails several advantages over one
single all-purpose vehicle. They can be more cost-effective,
are able to cover more ground, and are more resilient to
failures [3].

The challenge however is to co-ordinate multiple vehicles
to perform tasks while optimizing a chosen objective [4].
Considering a search and rescue scenario, where survivors
need to be rescued before specified deadlines, the two main
objectives are to maximize the number of survivors while
minimizing the average waiting time before their rescue.
One option is to use a centralized system, where a cen-
tral server gathers information from each vehicle in the
team, and then computes an allocation for each vehicle.
The benefit of this approach is that the central server can
optimize a chosen global objective based on a complete
set of information from all vehicles. The drawbacks are the
resulting single point of failure, and the requirement that each
vehicle must have a communication link with the central
server. Thus, the possible mission range is limited, and a
heavy communication and computation burden is put on the
central server. Distributed methods for task allocation can be
used to overcome these limitations. Here, the planner runs
on each vehicle simultaneously and the solution is reached

J. Turner, Q. Meng and G. Schaefer are with the Department of
Computer Science, Loughborough University, Loughborough, UK
J.Turner@lboro.ac.uk; Q.Meng@lboro.ac.uk;
gerald.schaefer@ieee.org

through the interaction and exchange of information between
them [3].

In the case of multi-assignments, where each vehicle
can be allocated a sequence of one or more tasks, the
complexity of the task allocation problem becomes NP-
hard [3]. Consequently, as the number of tasks and vehicles
increases, it is usually too computationally expensive to
consider each possible combination of tasks for each possible
vehicle in order to find the optimal solution. Therefore,
heuristic methods are employed to speed up the process of
finding a solution while maintaining an efficient and scalable
algorithm [5].

The consensus-based bundle algorithm (CBBA) [6] was
developed to tackle the distributed multi-assignment task
allocation problem. It employs a greedy auction strategy
to generate a task bundle, followed by a consensus pro-
cedure to resolve any conflicting assignments arising from
inconsistencies in situational awareness. Of the various ex-
tensions and modification, [7] and [8] address multi-agent
task assignments and heterogeneous networks. [9] incorpo-
rates time windows of validity and fuel costs as part of
the scoring scheme as well as real-time re-planning for
broken communication links. [10] extends the CBBA to
permit asynchronous communication, while [11] developed a
strategy based on the CBBA and the algorithm from [12], for
assigning critical tasks where agents have limited capacity.
[13] propose an alternative method using a game theory
approach for resolving conflicts. Most relevant to this paper
is the approach in [14], which introduces the concept of
a significance value of a task. Rather than using a greedy
approach to task inclusion, the strategy there aims to directly
optimize a global mathematical objective. Specifically, it
addresses the minimization of the average waiting time of
survivors in a search and rescue scenario with deadlines.
In this case, the significance of a task is measured as
its start time in a vehicle’s schedule with the addition of
delays caused to later tasks. Vehicles will include into their
schedules the tasks whose significance they can improve the
most.

This paper proposes the Task Swap Allocation (TSA) algo-
rithm extension of the Significance Method (SM) in [14]. It is
designed to iteratively improve the total number of allocated
tasks after the original solution is generated. While the SM
aims to optimize waiting time and meet deadlines, it does not
effectively prioritise the maximisation of task assignments
with regards to those deadlines. This results in potentially
feasible task assignments being rendered infeasible due to the
ordering and allocation produced by the SM. With the aim of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288376824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

maximizing survivors rescued, the proposed TSA redefines
the global objective from minimizing average waiting time
to maximizing tasks allocated. It takes advantage of existing
space in a vehicle’s schedule to shift assigned tasks among
vehicles in order to create a feasible space for unassigned
tasks. While the paper focuses on a search and rescue
scenario, the algorithm can be applied to other scenarios,
including cleaning chemical spills, patrolling, and checking
for structural integrity.

II. PROBLEM STATEMENT

Consider a search and rescue scenario with n hetero-
geneous autonomous vehicles and m survivors. The goal
is to provide targeted emergency support to the survivors
as quickly as possible. Some may require food supplies,
while others may require medical provisions. Different types
of vehicles will be capable of executing different types
of tasks to match specific needs. With the knowledge of
survivors’ locations, and a planner on each vehicle, the
vehicles will use local communication to co-ordinate a rescue
plan to provide the necessary support. For this problem, each
survivor must be visited by at least one vehicle in order to
be deemed rescued. Each vehicle will sequentially visit the
targets assigned to it, but is not required to return to its
initial location. The main challenge is assigning the tasks
in a way that satisfies the global objectives. While aiming
to maximize the number of survivors rescued by reaching
them before their individual deadlines, waiting times should
also be minimized since health conditions are time critical. A
deadline reflects an assumed given estimate of the remaining
time available to successfully reach a survivor before they are
considered “unrescuable”. In this scenario, the term task and
survivor are used interchangeably.

To formulate the problem mathematically, V =
[v1, . . . , vn]

ᵀ denotes the set of heterogeneous autonomous
vehicles and T = [t1, . . . , tm]ᵀ the set of survivors waiting
to be rescued. The allocation A = [a1, . . . , an]ᵀ is a partition
of T, where ai, i = 1, . . . , n, is an ordered list of survivors
allocated to be rescued by vehicle vi. The optimization
objective of minimizing waiting time is formulated as

J = min

 1

m

n∑
j=1

αi∑
k=1

ci,k(ai)

 , (1)

where ci,k(ai) represents the time cost associated with ve-
hicle vi rescuing the k-th survivor in ai, and αi represents
the number of survivors assigned to vi. The constraints are
as follows:

|ai| ≤ mi (2)
n⋃
i=1

ai = T, ai
⋂

aj = ∅ with i 6= j, (3)

compatibility matrix H with entries hi,k = 0, 1, (4)

sk,a ≤ sk, (5)

Here, Equation (2) determines that a vehicle vi can be
assigned a maximum of mi survivors, where | · | indicates

the cardinality of the ordered task list belonging to vi.
Equation (3) specifies that an allocation {a1, . . . , an} is a
partition of the whole set of survivors. This constraint ensures
a conflict free assignment, where each task can be assigned
to no more than one vehicle. With a network of heteroge-
neous vehicles, each task may be assigned only to vehicles
functionally capable of performing them. A compatibility
matrix is therefore defined in (4), where hi,k = 1 if the
type of vehicle i is capable of performing the type of task
k. Equation (5) adds a constraint on the possible start time
of a rescue. Each survivor has an individual deadline for
starting a rescue sk. The start time sk,a for rescuing the k-th
survivor, determined by its position in a vehicle’s ordered
task list, can therefore be no later than sk. A symmetric
communication matrix G(t) is also defined, where an entry
gi,j(t) = 1 indicates that a direct communication connection
exists between vehicles vi and vj at time t.

III. SIGNIFICANCE METHOD

This section describes the key aspects of the Significance
Method as defined for the search and rescue scenario. This
description will be helpful for describing the proposed TSA.

The SM is a distributed task allocation algorithm that aims
to directly optimize a specified objective, using a concept
called significance. This method differs from the CBBA,
which uses an auction-based approach and therefore cannot
directly target an objective to optimize. Inspired by the
CBBA, the SM iterates over two phases, the task inclusion
phase and the consensus phase. In the former, a vehicle will
iteratively include tasks that provide the greatest improve-
ment to the global objective. This improvement is determined
by the greatest difference between a task assignment’s cur-
rent global significance value, and the significance it would
have in a vehicle’s task list who is not already assigned to that
task. In the latter phase, conflicting assignments are resolved.
These conflicts occur when two or more vehicles are assigned
to the same task. In this instance, the vehicle with the lowest
significance will keep the task, while the others release it
through a task removal procedure. The whole process repeats
until no further improvements can be made, and all conflicts
are resolved.

A. Significance

The key idea is that the significance of a task, within a
certain position in a vehicle’s task list, represents its local
impact on the objective being optimized. Given a task tk
assigned to a vehicle vi, the definition of significance is

wk(ai 	 tk) = ci(ai)− ci(ai 	 tk), (6)

where ci(ai) is the total cost incurred by vehicle vi when
visiting all survivors in ai. ai 	 tk denotes the removal of
task tk from its position in the ordered list ai. If the task
were to be reinserted in the same position in the task list
from which it was removed, the value of its significance
would be the same. It is bidirectional.

With the objective of minimizing waiting time, the cost of
a task is the time at which a vehicle can start its execution.

The significance of a task then becomes its time cost, with
the addition of any delays incurred to later tasks as a result
of that task’s inclusion. Significance is then formally defined
as

wk(ai 	 tk) = ci,b(ai)+
|ai|∑

r=b+1

{ci,r−1(ai)− ci,r−1(ai 	 tk)}, k ∈ aᵀi ,
(7)

where b represents the position of task tk in vi’s task list,
ci,b(ai) denotes the time cost of tk at position b in vi’s task
list, and the summation computes the delays incurred to later
tasks in the task list. Each vehicle stores a significance list
to record every task’s significance value, defined as γi =
[w1, . . . , wm]ᵀ. A global consensus is reached when each
vehicle has an identical copy of this list.

B. Task Inclusion Phase
To determine which task to include, a vehicle first com-

putes the marginal significance for each task not currently
in its task list. Like significance, marginal significance is
also calculated as its start time and any delays caused to
later tasks. It is computed by temporarily inserting the task
into the vehicle’s task list at each available position. The
value for the position incurring the lowest total for cost and
delays is recorded as the task’s marginal significance. The
term marginal here is used to distinguish it from significance.
When a task is assigned to a vehicle, its value is defined
as its significance. When a vehicle is determining which
task to include, the value computed is known as marginal
significance. A list to store the marginal significance on each
vehicle is defined as γ∗i = [w∗1 , . . . , w

∗
m]ᵀ. The vehicle will

look to include the task that gives the greatest improvement
to the global significance, satisfying

m
max
k=1
{γi,k − γ∗i,k} > 0, k = 1, . . . ,m. (8)

The task corresponding to the maximum improvement to-
wards the global objective is then included into the vehicle’s
ordered task list. This phase repeats until no more tasks can
be added.

C. Consensus and Task Removal Phase
Once the task inclusion phase is complete, the signif-

icance of all tasks and the vehicle IDs associated with
those values are updated and broadcast to vehicles where
gi,j = 1. A consensus procedure is then used to resolve
conflicting assignments. Vehicles with a higher significance
for a conflicting assignment will be the ones to release the
task. Once significance and associated vehicle ID values
have been updated following consensus, if a vehicle has
several tasks to remove, they are iteratively removed in
order of greatest objective improvement. When this phase is
completed, the process starts again from the task inclusion
phase, and repeats until no inclusions or removals can be
made for a given length of time. At this point, the system
is deemed to have converged and the task allocation process
ends.

IV. THE TASK SWAP ALGORITHM

The proposed Task Swap Allocation (TSA) algorithm im-
proves the Significance Method by increasing the number of
allocated tasks when possible. The solution generated by the
SM is often dependent on the order and combination of task
inclusions. If a solution is reached that is suboptimal with
regards to number of tasks allocated, there is no functionality
to reallocate tasks to create a feasible space for unallocated
tasks. In a search and rescue mission, this limitation would
result in survivors not being rescued when they could have
otherwise been.

A recurring situation where a maximal allocation exists but
cannot be reached is described in the following. Consider
the scenario shown in Fig. 1(a). To satisfy (5), a task’s
start time must be before its deadline, although it may end
after the deadline. The time delay before and between tasks
represents the time required for vehicles to travel to the
survivor locations. The delay in reaching the first task is
dependent on a vehicle’s starting position. Tasks t1 and t2
have been allocated to minimize waiting time. If t1 and t2
were the only tasks, this allocation would be the optimal
solution. Consider an unallocated task t3. Suppose that due
to the locations of the vehicles and tasks, and t3’s early
deadline, v1 would be the only vehicle able to reach t3 in

2000 400 600 800 1000 1200 1400 1600

t1V1

2000 400 600 800 1000 1200 1400 1600

t2V2

2000 400 600 800 1000 1200 1400 1600
Time (s)

t3Unallocated

t1 deadline

t2 deadline

t3 deadline

(a)

2000 400 600 800 1000 1200 1400 1600

t1

V1

2000 400 600 800 1000 1200 1400 1600

t2V2

2000 400 600 800 1000 1200 1400 1600
Time (s)

t3

Unallocated

t1 deadline t2 deadline

t3 deadline

(b)

Fig. 1: (a) Vehicle 1 and vehicle 2’s task schedules. A task must be started
before the deadline in order to rescue that survivor, but may end after
the deadline. t1 and t2 are optimized to minimize waiting time but t3
is unallocated. v1 is the only vehicle close enough to reach t3 in time, but
cannot feasibly include it into its schedule given t1. (b) If t1 is reassigned
from v1 to v2, this creates the space for v1 to include the unallocated task
t3.

time. However, as v1 is currently assigned t1, which also has
an early deadline, v1 cannot feasibly include t3 into its task
list. The solution, as illustrated in Fig. 1(b), would be for v2
to take on t1, making room for v1 to include t3. Although
the waiting time for t1 and t2 has increased, all tasks would
then be allocated achieving a maximum assignment. The
SM is currently unable to perform such an exchange when
optimizing waiting time.

To facilitate the exchange of tasks between vehicles with
the aim of optimizing the number of allocations, the com-
putation of significance is modified to meet the objective of
maximizing task allocations. For this objective, significance
reflects a task’s potential to make room for an unallocated
task if removed. Unallocated tasks are set to have the highest
significance value, defined as Usig . Assigned tasks that could
feasibly be replaced by an unallocated task then have a
relatively lower significance than Usig based on a reduction
rate r. For the remainder of this paper, r = 0.5. The
significance successively decreases by r for each additional
change required to make room for an unallocated task. This
approach allows vehicles to release tasks that can make space
for unallocated tasks after being reassigned.

Fig. 2 illustrates how the significance of a task encourages
the least disruptions to existing task lists. Assuming v3 could
include the unallocated task t4 in place of t3, t3’s significance
becomes half that of t4: Usig ∗ r = 100. v2 can include t3 in
place of t2, giving t2 a significance of 50 in v2’s task list. v1
is capable of including both t3 and t2. As t3’s significance
is higher, t1 prioritizes t3 for inclusion thereby preserving
v2’s task list from unnecessary changes. This is desirable
as following the SM, t2’s task list will remain optimized
for minimizing average waiting time. The significance of a
task in the context of maximizing task allocations is formally
defined as

wk(ai 	 tk) =
|Fi,k|
max
u=1
{Fi,k,u ∗ r}, k ∈ aᵀi , 0 < r < 1, (9)

where F is the list of significance values belonging to tasks

t1V1

t2V2

Time (s)

t4Unallocated

t3V3

200

50

100

Fig. 2: TSA minimizes changes to existing task assignments to create
space for an unallocated task. t4 is unallocated and given the maximum
significance 200. v3 can feasibly reach t4 in place of t3 so t3’s significance
in v3’s task list is 200 * 0.5 = 100. v2 can reach t3 in place of t2 so t2’s
significance becomes half that of t3’s significance = 50. v1 could reach t3
or t2 while still meeting the deadline for the task already in its task list. v1
chooses to include t3 as it has the higher significance value and therefore
its inclusion results in the greatest improvement to the global objective.

that can feasibly fit into vi’s task list ai when task tk is
removed. If a task in ai can be swapped for two or more
tasks with different significance values, the highest value is
recorded.

Algorithm 1 describes the process of computing the sig-
nificance of tasks in a vehicle vi’s task list, for optimising
allocated tasks. The algorithm runs following the Consensus,
Task Removal and Task Inclusion phases. Task candidates
include unallocated tasks and tasks assigned to other vehicles
with a significance value higher than 0. A candidate task is
considered to fit into a task list if each task’s deadline can
be respected given its inclusion.

Algorithm 1 Computing Task Swap significance values for
tasks in vi’s task list

1: TaskList = vi’s task list
2: Set significance of tasks in TaskList to 0
3: TaskCandidates = tasks not in TaskList with a

significance > 0
4: r = 0.5
5: for each task L in TaskList do
6: for each task C in TaskCandidates do
7: if significance(C) * r > significance(L) then
8: TempTaskList = TaskList
9: Remove task L from TemptTaskList

10: Adjust Task Times in TempTaskList
11: for each position p in TempTaskList do
12: if C fits in TempTaskList at p then
13: significance(L) = r * significance(C)
14: break
15: end if
16: end for
17: end if
18: end for
19: end for

A maximum number of swaps, expressed as “swap dis-
tance” SDmax and designed to limit the number of moves
in a swap sequence and thus the number of iterations and
communications, can be defined to limit the number of
changes allowed to make space for an unallocated task. A
lower limit

LL = Usig ∗ rSDmax , 0 < r < 1. (10)

is applied to the significance of a task. If the significance
falls below this limit, it is set to zero, thereby preventing it
from being considered for reallocation.

The proposed TSA using the significance defined in Equa-
tion (9) runs after the SM solution is reached. The TSA
steps illustrated by the flowchart in Fig. 3 follow those of
the SM with two adjustments. Tasks considered for inclusion
are those with a significance value greater than zero. If such
a task can be included in the vehicle’s current task list,
the task’s marginal significance is set to zero. This ensures
that the task with the greatest significance is selected for
inclusion, thereby minimizing the number of changes as

Task Inclusion Phase

Consensus and Task Removal Phase

Receive the significance list +j
 and vehicle list *j from vehicle vj,
where a communication link exists.

Send the significance list +i
 and vehicle list *i to vehicle vj,

where a communication link exists.

Carry out the consensus
procedure to update +i and *i
according to all received lists

Find tasks to be removed by
checking the current task list ai

against the updated vehicle list *i

Remove task providing the
greatest objective

improvement and update
corresponding list values

Start

Are there tasks to be
removed?

Retain remaining tasks to be
removed and set the

corresponding values in the
vehicle list *i to vi

Find tasks not currently in
task list that can feasibly
fit and set their marginal

significance to 0

Are there task
inclusions that would

improve the global
objective?

Find the task tg
 that provides the greatest
improvement, satisfying

(8), and the position in the
task list that minimises

time cost

insert tg into the ordered
list ai and update +i and *i

Update significance list
+i according to (9)

Stopping criterion
reached?

Stop

Yes

Yes

Yes

No

No

No

Fig. 3: Flowchart of the proposed TSA running at vehicle vi. The high-
lighted steps are those that differ compared to the SM algorithm. The
principle difference is that in TSA significance is computed to maximize task
allocations, while SM computes significance to optimize average waiting
time.

depicted in Fig. 2. Additionally, the number of tasks removed
during the task removal phase is limited to one. A vehicle
may have two or more tasks in its list able to swap with
the same unallocated task. If one is removed to make space,
the others need not be removed. If the two tasks are able to
swap for different unallocated tasks, they will be removed
in the following rounds. This strategy further preserves the
positive synergies attained with the SM solution. The three
steps that differ in the proposed approach from the SM are
highlighted in Fig. 3.

Fig. 4 illustrates the effect of the the proposed TSA
algorithm as an extended scenario of that shown in Fig. 1.
Fig. 4(a) shows a solution following the time optimization
SM with one unallocated task t4. Given the locations and
time restrictions, the only feasible solution with all tasks
allocated is determined to be that shown in Fig. 4(c).
The steps to reach it through reallocation are illustrated in

2000 400 600 800 1000 1200 1400 1600

t1V1

2000 400 600 800 1000 1200 1400 1600

t2V2

2000 400 600 800 1000 1200 1400 1600
Time (s)

t4Unallocated

t1 deadline

t2 deadline

t4 deadline

2000 400 600 800 1000 1200 1400 1600

t3V3 t3 deadline

(a)

2000 400 600 800 1000 1200 1400 1600

t1V1

2000 400 600 800 1000 1200 1400 1600

t2V2

2000 400 600 800 1000 1200 1400 1600
Time (s)

t4Unallocated

t1 deadline

t2 deadline

t4 deadline

2000 400 600 800 1000 1200 1400 1600

t3V3 t3 deadline1

3

2

1

(b)

2000 400 600 800 1000 1200 1400 1600

t1

V1

2000 400 600 800 1000 1200 1400 1600

t2

V2

2000 400 600 800 1000 1200 1400 1600
Time (s)

t4

Unallocated

t1 deadline

t2 deadline

t4 deadline

2000 400 600 800 1000 1200 1400 1600

t3V3 t3 deadline

(c)

Fig. 4: Vehicles’ schedules generated by SM, t4 is unallocated. A task must
be started before the deadline in order to rescue that survivor. (a) t1, t2 and
t3 are optimized to minimize waiting time but t4 is unallocated. v1 is the
only vehicle close enough to reach t4 in time, but cannot feasibly include it
into its schedule given t1. (b) The reallocation steps taken with the proposed
TSA to create a feasible space for t4. v3 first includes t2, moving back t3’s
start time. v2 then includes t1, allowing space for v1 to include t4. (c) The
maximal allocation solution generated by the proposed TSA.

Fig. 4(b). v3 first includes t2, moving back t3’s start time.
v2 then includes t1, allowing space for v1 to include t4.

V. NUMERICAL RESULTS

This section presents the results of numerical simulations
conducted to test the performance of the proposed TSA. The
improvement in terms of number of tasks allocated compared
with the SM is assessed, followed by a comparison with
CBBA and SM in terms of average waiting time. Finally an
overall analysis of its average performance is given.

A. Scenario and Simulation Setup

To test the system, a rescue team equally split into two
vehicle types is considered. The first provides medicine,
while the second supplies food. Their speed is assumed to

be constant and is set to 30m/s and 50m/s respectively. The
survivors are likewise equally split into those requiring food
and those requiring medicine. The medicine tasks last for
a duration of 300 seconds, while the food tasks last 350
seconds. The deadlines for starting each rescue are uniformly
randomly distributed on a timeline between 0 and 2000
seconds. The mission takes place in a 3D space spanning
10000m x 10000m x 1000m. The tasks are uniformly po-
sitioned within this 3D space, while the vehicles’ starting
positions are uniformly placed on the 2D ground space. A
row formation is used for these experiments, where each
vehicle has a constant communication link with exactly one
other vehicle.

B. Simulation Results

Ten different scenarios were tested involving a different
number of tasks and vehicles, each conducted 50 times. The
numbers of vehicles tested were 6, 8, 10, 12 and 14. Two
task-to-vehicle ratios, 4.6 and 2, were tested to assess the
performance of the system under high and medium demand
respectively. The 4.6 task-to-vehicle ratio was experimentally
set to test the system under high demand, i.e., approaching
maximum capacity. It is worth noting that given the random
initialization of task and vehicle locations and deadlines, it
is sometimes impossible for some tasks to be started by any
vehicle before its deadline.

The obtained results are given in Table I which shows, for
each scenario, the percentage of the 50 simulations in which
the proposed TSA altered the solution generated by the SM,
as well as the best, mean, and worst percentage changes to
the number of tasks allocated when reallocations occurred.
For a ratio of 2, only a minority of solutions were improved,
with the 6 vehicles 12 tasks scenario only allocating one
extra task overall. This indicates that when there are fewer
tasks per vehicle, there is less room for improvement as the
SM is more likely to find a maximal allocation solution.
The difference between the best, mean and worst percentage
change is relatively small. For the ratio of 4.6, the majority of
solutions were improved by the proposed TSA. As the num-
ber of tasks and vehicles increases, the proportion becomes
greater with the last scenario having nearly all solutions
improved. The greatest difference was a 20% increase in
survivors rescued for the 10 vehicles 46 tasks scenario. In
this case, 7 extra survivors were rescued as a result of the
proposed TSA. In the worst case for these scenarios, there is
a small percentage improvement as at least one extra survivor
is rescued. The mean change demonstrates that there is a
consistent improvement over the 50 simulations.

Fig 5 illustrates the performance of the proposed TSA
with regards to average waiting time. When TSA increases
the number of task allocations following the SM, the average
time cost will increase as well. This increased waiting time
is a logical consequence of an increased number of rescued
survivors. The deadlines are respected in both cases, thereby
proving that TSA exploits resources to a greater extent. Three
TSA runs with the greatest improvement were selected and
analyzed to understand dynamics behind such a boost in

TABLE I: TSA’S PERFORMANCE MEASURED AS PERCENTAGE CHANGE
IN TASK ALLOCATIONS OVER 50 SIMULATIONS. SHOWN ARE THE PER-
CENTAGE OF SIMULATIONS WHERE THE PROPOSED METHOD CHANGED
THE TASK ALLOCATION SOLUTION GENERATED BY THE SM ALGORITHM,
AND THE BEST, MEAN, AND WORST PERCENTAGE CHANGE TO THE TOTAL
NUMBER OF ALLOCATED TASKS.

Ratio Scenario modified best mean worst

1/2

v6 t12 2% +9.09% +9.09% +9.09%
v8 t16 8% +7.69% +6.97% +6.67%

v10 t20 12% +5.88% +5.72% +5.26%
v12 t24 14% +5.00% +4.53% +4.35%
v14 t28 8% +4.00% +3.85% +3.96%

1/4.6

v6 t28 74% +14.29% +6.45% +3.85%
v8 t36 78% +14.81% +6.04% +3.03%

v10 t46 84% +20.00% +4.88% +2.38%
v12 t56 88% +11.36% +4.69% +1.92%
v14 t64 94% +10.42% +4.78% +1.67%

performance. Performances are analyzed by vehicle type.
To appreciate the gain in performance of TSA, the analysis
also includes the performance of the CBBA algorithm. For
these results, an additional round of the SM was added
following the proposed TSA to optimize the time cost of
tasks added during the TSA. The graphs illustrate a steady
rate of increase in average time cost between the three
algorithms. In the third example, SM allocates 3 more tasks
than CBBA, and TSA allocates an additional 3 tasks. The
increase in average time is approximately 40s and 42.7s per
task respectively.

Table II shows the average performance of the TSA over
50 simulations compared with the SM and the CBBA for
each of the ten scenarios with regards to task allocations
and iterations. The total of iterations for one simulation
is determined by the last time an allocation change was
made, either through inclusion or removal. As expected,
TSA provides the highest average allocation in all scenarios.
The improvement is marginal compared to the difference
between CBBA and SM. In part, this is because the TSA does
not make allocation changes in every instance; its average
impact is therefore lessened when considering simulation

TABLE II: AVERAGE TASK ALLOCATIONS AND ITERATIONS PERFOR-
MANCE OF TSA COMPARED WITH SM AND CBBA OVER 50 SIMULA-
TIONS.

Task Allocations (Avg) Iterations (Avg)
SM w/ TSA

Ratio Scenario CBBA SM TSA CBBA SM (only)

1/2

v6 t12 10.40 11.38 11.40 3.82 7.20 0.06
v8 t16 13.80 15.22 15.30 5.58 11.30 0.34

v10 t20 17.36 19.22 19.34 7.26 15.42 0.78
v12 t24 20.92 22.92 23.06 8.56 21.96 1.98
v14 t28 24.44 26.86 26.94 12.08 28.42 3.36

1/4.6

v6 t28 19.28 21.92 22.96 4.82 6.78 3.08
v8 t36 25.18 29.48 30.80 6.86 11.84 4.70

v10 t46 32.32 38.22 39.76 10.20 16.70 7.08
v12 t56 39.12 46.68 48.60 13.30 19.46 8.40
v14 t64 45.26 54.32 56.80 15.62 25.58 14.56

CBBA
444.9

22

SM
537.1

25

TSA
686.9

29

19

21

23

25

27

29

31

400 500 600 700 800

R
es

cu
ed

 su
rv

iv
or

s

Average Time Cost (s)

V7 T32 Food

(a)

CBBA
499.1

20

SM
580.1

22

TSA
721.5

25

19

21

23

25

27

400 500 600 700 800

R
es

cu
ed

 su
rv

iv
or

s

Average Time Cost (s)

V6 T28 Medicine

(b)

CBBA
416.5

18

SM
536.5

21

TSA
664.7

24

17

19

21

23

25

400 500 600 700

R
es

cu
ed

 su
rv

iv
or

s

Average Time Cost (s)

V6 T28 Food

(c)

Fig. 5: TSA’s performance in terms of average waiting time compared with SM and CBBA in a search and rescue scenario. The graphs illustrate three runs
where TSA provided the greatest improvement to the number of survivors rescued. The increase in average waiting time from SM to TSA is proportional
to the increase in waiting time from CBBA to SM.

solutions that cannot be improved. For the average iterations
comparison, the proposed TSA is considered in isolation as
opposed to combined with the SM. The results shows that
for the 2 ratio, the small proportional change in allocations
is accompanied by a similarly small average number of
iterations. For the 4.6 ratio, the TSA consistently runs for
approximately half the cycles need by the SM.

VI. CONCLUSIONS

In a search and rescue mission, optimal task allocation
for available vehicles is crucial. In this paper, an effective
algorithm that allows for easy and efficient swap of allocated
tasks is proposed to improve a previous method for task
allocation. The employed strategy allows vehicles to re-
allocate tasks to create a feasible space for unallocated tasks
by taking advantage of existing schedule space. Distributed
vehicles can negotiate task allocations by exchanging a
single significance value. Simulations showed a noteworthy
increase in performance, measured as the total number of
survivors rescued, making the method appealing when this
objective is a priority. A marginal increment in the number of
iterations appeared proportionate to the gain in performance.
This efficiency derives from the fact that changes are made
to a task list only once a suitable space in a schedule
has been identified. Experimental results confirmed that the
proposed algorithm can beneficially be applied to an existing
scheduling method [14], thus opening the possibility of
integration to other implementations.

ACKNOWLEDGMENT

This work was supported by EPSRC (grant number
EP/J011525/1) with BAE Systems as the leading industrial
partner.

REFERENCES

[1] Y. Liu and G. Nejat, “Robotic Urban Search and Rescue: A Survey
from the Control Perspective,” Journal of Intelligent & Robotic Sys-
tems, vol. 72, no. 2, pp. 147–165, 2013.

[2] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent
progress in the study of distributed multi-agent coordination,” IEEE
Transactions on Industrial Informatics, vol. 9, no. 1, pp. 427–438,
2013.

[3] M. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[4] B. Gerkey and M. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research 2004, vol. 23, no. 9, pp. 939–954, 2004.

[5] A. Page, T. Keane, and T. Naughton, “Multi-heuristic dynamic task
allocation using genetic algorithms in a heterogeneous distributed
system,” Journal of parallel and distributed computing, vol. 70, no. 7,
pp. 758–766, 2010.

[6] H. Choi, L. Brunet, and J. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[7] S. Hunt, Q. Meng, and C. Hinde, “An Extension of the Consensus-
Based Bundle Algorithm for Multi-agent Tasks with Task Based
Requirements,” 11th International Conference on Machine Learning
and Applications, pp. 451–456, 2012.

[8] H. Choi, A. Whitten, and J. How, “Decentralized task allocation for
heterogeneous teams with cooperation constraints,” 2010 American
Control Conference, pp. 3057–3062, 2010.

[9] S. Ponda, J. Redding, and H. Choi, “Decentralized planning for
complex missions with dynamic communication constraints,” 2010
American Control Conference, pp. 3998–4003, 2010.

[10] L. Johnson, S. Ponda, H. Choi, and J. How, “Improving the efficiency
of a decentralized tasking algorithm for UAV teams with asynchronous
communications,” American Institute of Aeronautics and Astronautics,
2010.

[11] G. Binetti, D. Naso, and B. Turchiano, “Decentralized task allocation
for heterogeneous agent systems with constraints on agent capacity and
critical tasks,” Proceedings of the 2012 IEEE International Conference
on Robotics and Biomimetics, pp. 1627–1632, 2012.

[12] D. D. Paola, D. Naso, and B. Turchiano, “Consensus-based robust
decentralized task assignment for heterogeneous robot networks,” 2011
American Control Conference, pp. 4711–4716, 2011.

[13] R. Cui, J. Guo, and B. Gao, “Game theory-based negotiation for
multiple robots task allocation,” Robotica, vol. 31, no. 06, pp. 923–
934, 2013.

[14] W. Zhao, Q. Meng, and P. W. H. Chung, “A Novel Distributed
Task Allocation Method for Multi-vehicle Multi-task Problem and its
Application to Search and Rescue Scenario,” Submitted, 2014.

