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Abstract. A well-known property of the signature of closed oriented 4n-dimensional
manifolds is Novikov additivity, which states that if a manifold is split into two manifolds
with boundary along an oriented smooth hypersurface, then the signature of the original
manifold equals the sum of the signatures of the resulting manifolds with boundary. Wall
showed that this property is not true of signatures on manifolds with boundary and that
the di¤erence from additivity could be described as a certain Maslov triple index. Perverse
signatures are signatures defined for any oriented stratified pseudomanifold, using the
intersection homology groups of Goresky and MacPherson. In the case of Witt spaces,
the middle perverse signature is the same as the Witt signature. This paper proves a gener-
alization to perverse signatures of Wall’s non-additivity theorem for signatures of mani-
folds with boundary. Under certain topological conditions on the dividing hypersurface,
Novikov additivity for perverse signatures may be deduced as a corollary. In particular,
Siegel’s version of Novikov additivity for Witt signatures is a special case of this corollary.

1. Introduction

The signature of compact 4n-dimensional oriented manifolds is an interesting and
important manifold invariant. It satisfies a number of remarkable properties commonly
referred to as the ‘signature package’. These include cobordism invariance [48], equality
to the index of the signature operator and to the L-genus [33], and Novikov additivity [3].
Signature has been used to prove various obstruction theorems. For instance, Rokhlin’s
theorem ([44]) shows that for a 4n-dimensional smooth compact oriented manifold to carry
a spin-structure, its signature must be divisible by 16. Following on the heels of the
successes in topology and geometric topology of smooth compact manifolds in the 1950s
and 1960s, including this work on the signature package, mathematicians began to explore
which of the results from the smooth compact setting might be generalized to the setting
of singular spaces. In the years since then, there have been a number of interesting develop-
ments, such as the theory of intersection homology signatures on Witt spaces. In [34], the
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second author of this paper defined a family of ‘perverse signatures’, based on the inter-
section homology groups of Goresky and MacPherson, that may be defined for any
oriented 4n-dimensional closed stratified pseudomanifold, though this signature cannot be
a bordism-invariant of all oriented closed pseudomanifolds, as is evident by considering the
cone on a manifold with non-zero signature. In this paper, we identify when a generaliza-
tion of Novikov additivity holds for these signatures, as well as identifying the additivity
defect in the case that it does not. In future papers, we will explore what further aspects
of the signature package hold for perverse signatures.

More details will be given below, but to explain briefly our main results, Theorem 4.1
and Corollary 4.10, recall that for a closed oriented n-dimensional pseudomanifold X and
perversity parameters p, q such that pþ q ¼ t, there is a duality isomorphism of intersec-
tion homology groups1) with rational2) coe‰cients,

I pHiðX ;QÞGHom
�
I qHn�iðX ;QÞ;Q

�
;

determined by the intersection pairing

t̂t : I pHiðX ;QÞn I qHn�iðX ;QÞ ! Q:

In the most well-known case, if X is a 4n-dimensional Witt space, which implies that
I mH�ðX ;QÞG I nH�ðX ;QÞ for the lower-middle and upper-middle perversities m and n,
then one obtains a symmetric middle-dimensional self-pairing

I mH2nðX ;QÞn I mH2nðX ;QÞ ! Q;

and hence a signature invariant. This is the well-known Witt signature. More gener-
ally, though, it is possible to define signatures on any closed oriented 4n-dimensional
pseudomanifold as follows: If pþ q ¼ t and pðkÞe qðkÞ for all k, then there is a
map I pH�ðX ;QÞ ! I qH�ðX ;QÞ, and this induces a non-singular symmetric pairing on
im

�
I pH2nðX ;QÞ ! I qH2nðX ;QÞ

�
(see Section 3.2 for full details). We refer to signatures

of such pairings as perverse signatures sp!qðX Þ and note that the Witt space signature is a
special case. Similarly, in analogy with the case for manifolds, there is also a signature on
compact oriented pseudomanifolds with boundary with notation sp!!qðX Þ.

Our main results are to extend to this setting the famous Novikov additivity and
Wall non-additivity theorems. In particular we have the following (which occurs below as
Theorem 4.1):

1) If X has no codimension one strata and the perversity parameters p and q satisfy the conditions of

Goresky and MacPherson [27], these are the intersection homology groups of Goresky and MacPherson [27],

[28]. For more general perversities or pseudomanifolds with codimension one strata, these are the intersection

homology groups with ‘‘stratified coe‰cients’’ of the first author; see [21], [24], [25]. We shall follow the practice

of [26] and omit the symbol G0 utilized previously. Note, however, that in general these groups will depend on

the stratification of X . Furthermore, if X has codimension one strata, ‘‘closed’’ here really means ‘‘s-closed’’ as

defined below in Section 3.1. We omit that notation here for the sake of simplicity in the Introduction.

2) Throughout the paper, all results stated for Q would also hold for coe‰cients in R.
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Theorem 1.1. Let Z HX be a bicollared codimension one sub-pseudomanifold of

the closed oriented 4n-pseudomanifold X such that X ¼ Y1 WZ Y2 and qY1 ¼ Z ¼ �qY2,
accounting for orientations. Then

sp!qðXÞ ¼ sp!!qðY1Þ þ sp!!qðY2Þ þ sðV ;A;B;CÞ:

Here, the term sðV ;A;B;CÞ is a certain Maslov index that generalizes Wall’s
correction term to Novikov additivity for manifolds with boundary. The vector space V

is a ‘‘relative perversity’’ intersection homology group I q=pH2nðZ;QÞ equipped with an
anti-symmetric linking-type pairing. These are essentially the ‘‘peripheral invariants’’ of
[11], and they will be discussed in more detail in Section 3.3. The subspaces A, B, C are
defined as follows:

A ¼ ker
�
iZHY1

: I q=pH2nðZ;QÞ ! I q=pH2nðY1;QÞ
�
;

C ¼ ker
�
iZHY2

: I q=pH2nðZ;QÞ ! I q=pH2nðY2;QÞ
�
;

both induced by inclusions of subspaces, while

B ¼ ker
�
d : I q=pH2nðZ;QÞ ! I pH2n�1ðZ;QÞ

�
;

where d is the boundary map of a long exact sequence. These details will be explained more
fully below. However, we do note one significant corollary:

Corollary 1.2. With the hypotheses of the preceding theorem, suppose in addition that

I pH2nðZ;QÞ ! I qH2nðZ;QÞ is surjective and I pH2n�1ðZ;QÞ ! I qH2n�1ðZ;QÞ is injective

( for example if I pH�ðZ;QÞG I qH�ðZ;QÞ). Then

sp!qðXÞ ¼ sp!!qðY1Þ þ sp!!qðY2Þ;

as in Novikov’s additivity theorem. In particular, Novikov additivity holds if Z is a manifold

with trivial stratification.

We will also generalize these results to pseudomanifolds glued along partial bounda-
ries in Corollary 4.10, and we will show that Wall’s theorem for manifolds with boundary
follows as a consequence of Theorem 1.1 in Corollary 5.3.

Throughout the paper we will work with PL intersection homology rather than the
sheaf-theoretic versions. While the relevant pairings and signatures could be obtained
through sheaf-theoretic means, the PL category seems to provide the best context for the
most-straightforward adaptation of Wall’s arguments from [50], which were also performed
in the PL setting. As a nice side-benefit to this choice, many of our arguments and for-
mulations can be visualized quite geometrically; in particular, the geometric formulation
of the relationship between the relative perversity intersection homology pairing and the
intersection pairing on the boundary of a manifold is particularly pleasing, as we shall
see in Section 5.

Motivation. There are several motivations for this work, aside from the general
motivation of extending the signature package to singular spaces. One of these motivations
comes from Sen’s conjecture and related conjectures arising in string theory. These are
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conjectures about the signatures of certain 4n-dimensional non-compact manifolds arising
as moduli spaces of particles, such as ðnþ 1Þ-monopoles in the case of Sen’s original con-
jecture. In the 4-dimensional cases, for which the conjecture has been proved, the signature
turns out to be the perverse signature of a compactification of the moduli space as a strati-
fied space [32]. From analytic considerations, it seems likely that this will be true more
generally, which leaves still the question of how to calculate these perverse signatures to
resolve the conjecture. Our additivity and non-additivity results give a tool for this. It
would also be interesting to compare the topological obstruction to additivity for perverse
signatures in this paper to the analytic obstruction to the Mayer–Vietoris techniques for
reduced cohomology, which were also motivated by Sen’s conjecture and are related to
perverse signatures, developed in some of the same settings by Carron in [12], [14], [13].

A second motivation comes from global analysis and PDEs. For manifolds with
boundary, the Maslov triple index term in Wall’s non-additivity formula has been inter-
preted analytically in the context of analytic signature theorems for manifolds with corners
of codimension two in [30] and in terms of a gluing formula for the h-invariant and the
spectral flow for operators with varying boundary conditions in [36]. It seems very likely,
therefore that our non-additivity formula will also turn out to relate to analytic signature
theorems for pseudomanifolds with boundary and signature gluing theorems for pseudo-
manifolds. In particular, although a signature theorem has been proved for manifolds
with cusp-bundle ends in [49], and has been interpreted in terms of perverse signatures for
pseudomanifold compactifications of these spaces in [32], there is as yet no analytic signa-
ture or signature gluing theorem for manifolds with cusp-edge corners. This is an interest-
ing analytic case to tackle, and having a sense of what should arise from the topology is
helpful in doing this.

A third motivation comes from spectral sequences of perverse sheaves. In [16] and
[34], the di¤erence between various perverse signatures in the case of a pseudomanifold
with only two strata was interpreted in terms of a signature on the pages of the Leray spec-
tral sequence of the fibration on the unit normal bundle of the singular stratum. It should
be possible to interpret the di¤erence between perverse signatures for a general pseudo-
manifold in terms of the pages of the hypercohomology spectral sequence for perverse
sheaves near the lower strata.

Finally, a fourth motivation is a Wall-type non-additivity result for Witt spaces and
possibly also for the new more general signature theory introduced by Banagl in [4]. Inter-
section homology of pseudomanifolds was developed in the late 1970s and early 1980s,
through the work of McCrory [41], Cheeger [15], and Goresky and MacPherson [27]. Inter-
section homology groups for a pseudomanifold are parametrized by a function called a
perversity. There is a subclass of stratified spaces, called Witt spaces, for which there is a
Poincaré dual ‘middle perversity’ intersection homology, and for 4n-dimensional Witt
spaces, it is therefore possible to define a ‘middle perversity signature’. Most of the signa-
ture package has been generalized to Witt spaces. In particular, the Witt cobordism group
has been computed and the invariance of signature under Witt cobordism was proved by
Siegel [47] in 1983. In the same paper, he proved a version of Novikov additivity for Witt
spaces where the dividing hypersurface is again Witt. In a very recent paper, [1], progress
has also been made on the analytic side of the signature package for Witt spaces. In partic-
ular, the authors prove that the topological middle perversity signature for Witt spaces is
the signature of the unique extension of the signature operator for the spaces endowed with
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iterated cone metrics. The signature on Witt spaces is a particular case of a perverse signa-
ture, so our theorem generalizes Siegel’s additivity theorem to a Wall-type non-additivity
theorem for these spaces.

Banagl has extended signature theory further to a class of ‘‘non-Witt’’ spaces (despite
the terminology, this class of spaces includes all Witt spaces); these spaces are defined in
terms of certain signature conditions on the neighborhoods of odd codimensional strata.
If a non-Witt space is actually Witt, Banagl’s signature agrees with the Witt space signa-
ture. It seems possible that Banagl’s signature may in fact always be a perverse signature.
Our (non-)additivity results may help determine if this is true, and, if so, give an additivity
and non-additivity result for Banagl’s signatures. Levikov [38], [39] proved a Novikov
additivity theorem for Banagl’s signatures in a certain special case involving a union along
a manifold; this is consistent with our hypothesis via Corollary 1.2.

Outline. In order to generalize Wall’s theorem to perverse signatures, we first need
to review past results and make some new definitions. In the next section, we review signa-
tures for manifolds, and in the following section we review intersection homology and
make some new constructions. In Section 4, we prove our non-additivity result, obtaining
as a corollary our additivity theorem. We prove it first for stratified pseudomanifolds
without boundary, then generalize to those with boundary. In Section 5, we discuss the
relationships of our work to Wall’s original theorem and give two examples of calculations.
Finally, in an appendix we carefully establish some conventions regarding orientation and
intersection numbers that we use in the paper.

Acknowledgement. The authors would like to thank Markus Banagl for several
helpful discussions, as well as the anonymous referees of a previous version of the paper.

2. Background on signatures and (non-)additivity

In this section and the following, we recall known results concerning signatures and
provide a crash course on the relevant version of intersection homology.

2.1. Additivity and non-additivity. Recall that the signature of a closed connected
oriented 4n-manifold is the signature sðMÞ of the non-degenerate symmetric intersection
pairing

t̂t : H2nðM;QÞnH2nðM;QÞ ! Q;

i.e. sðMÞ is the dimension of the largest positive definite subspace of this pairing minus
the dimension of the largest negative definite subspace. Alternatively, this is the same
as the signature of cup product pairing H 2nðM;QÞnH 2nðM;QÞ ! H 4nðM;QÞGQ or
the signature of the pairing given by exterior product of forms in de Rham cohomology
H 2nðM;RÞnH 2nðM;RÞ ! H 4nðM;RÞGR.

If N is a manifold with boundary, we instead have a non-degenerate intersection
pairing

t̂t : H2nðN;QÞnH2nðN; qN;QÞ ! Q:
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This descends to a non-degenerate symmetric pairing on

t : im
�
H2nðN;QÞ ! H2nðN; qN;QÞ

�
;

where the arrow is induced by inclusion. The signature of this pairing is the signature
sðNÞ.

Suppose now that M is a closed, oriented 4n-manifold, and that M ¼M1 WZ M2,
where M1, M2 are manifolds-with-boundary oriented compatibly with M and

Z ¼ qM1 ¼ �qM2:

The Novikov additivity theorem for the signature of compact 4n-manifolds is:

Theorem 2.1 (Novikov).

sðMÞ ¼ sðM1Þ þ sðM2Þ:

Since signature theory of compact manifolds is non-trivial (i.e. there exist manifolds
with non-zero signature), the theory of signatures of manifolds with boundary must also,
by Novikov additivity, be non-trivial. It also turns out to be more subtle. The Atiyah–
Patodi–Singer index theorem, [2], showed that the signature of a manifold with boundary
may be realized as the index of the signature operator with a certain global boundary
condition [5], but that it di¤ers from the L-genus of the manifold by a spectral invariant
of the boundary called the h-invariant. It is also clear that signature for manifolds with
boundary cannot satisfy a general Novikov additivity, as any manifold may be broken
up into pieces that are homeomorphic to a disk, which has trivial signature. In [50], Wall
identified the defect in additivity for signatures of manifolds with boundary in terms of the
Maslov triple index:

Theorem 2.2 (Wall [50]). Suppose M 4n is a compact oriented manifold with boundary

such that M ¼M1 WM2, where M1, M2 are compact oriented manifolds with boundary. Let

N1 ¼ qM XM1 and N2 ¼ qM XM2. Suppose M1 XM2 ¼ qM1 X qM2 is a manifold N0

with boundary such that qM1 ¼ N0 W�N1, qM2 ¼ N2 W�N0, and qN1 ¼ qN2 ¼ qN0 ¼ P

(see Figure 1). Then

sðMÞ ¼ sðM1Þ þ sðM2Þ � sðV ;A;B;CÞ;

Figure 1. A schematic of the hypothesis of Wall’s theorem: The manifold-with-boundary M is split into the

pieces M1 and M2 along the hypersurface N0. The boundary of M is split into N1 and N2 along P.
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where sðV ;A;B;CÞ is the Maslov triple index for the symplectic vector space (under

the intersection pairing) V ¼ H2n�1ðP;QÞ with respect to the three Lagrangian subspaces

A ¼ Kernel
�
H2n�1ðP;QÞ ! H2n�1ðN1;QÞ

�
, B ¼ Kernel

�
H2n�1ðP;QÞ ! H2n�1ðN0;QÞ

�

and C ¼ Kernel
�
H2n�1ðP;QÞ ! H2n�1ðN2;QÞ

�
.

We recall the definition of sðV ;A;B;CÞ in the next subsection.

2.2. Wall’s Maslov index and some care with signs. Here, we briefly review the alge-
braic version of the Maslov index presented by Wall in [50]. We also make some observa-
tions regarding a couple of sign issues that are not completely clear in Wall’s original
paper. For an expository account containing many viewpoints on the Maslov index, we
refer the reader to [10].

Suppose V is a vector space over Q, F : V � V ! Q is a bilinear map, and
A;B;C HV are such that FðA� AÞ ¼ FðB� BÞ ¼ FðC � CÞ ¼ 0. Wall considers the

space W ¼ AX ðBþ CÞ
AXBþ AXC

(which is isomorphic to the spaces formed by permuting A, B,

and C). Given a; a 0 A A representing elements of W , then a ¼ �b� c and a 0 ¼ �b 0 � c 0 for
some b; b 0 A B and c; c 0 A C. It is easy to show using these relations that we must have

Fðb; a 0Þ ¼ �Fðc; a 0Þ ¼ Fðc; b 0Þ ¼ �Fða; b 0Þ ¼ Fða; c 0Þ ¼ �Fðb; c 0Þ:ð1Þ

From here, one obtains a well-defined pairing C on W by setting Cða; a 0Þ ¼ Fða; b 0Þ. This
pairing is unaltered by even permutation of A, B, C and is altered by a sign for odd permu-
tations. If F is skew-symmetric, C is symmetric, and its signature is denoted sðV ;A;B;CÞ.
In the statement of Wall’s theorem above, V is the vector space H2n�1ðP;QÞ with its inter-
section pairing, and A, B, C are the kernels of the various maps induced by including P

in N1, N0, and N2.

In Wall’s ensuing topological arguments, there are some sign issues with which one
needs to take care. In the proof of his non-additivity theorem, Wall instead uses the formu-

lation W ¼ BX ðC þ AÞ
BXC þ BXA

(for appropriate choices of A, B, C). This cyclic permutation

should not a¤ect signs. However, Wall ultimately encounters an intersection pairing
ðqhÞ t ðqx 0Þ representing Fðqh; qx 0Þ, where qh A B and qx 0 A C. Taking B, C, A in that
order, this is then a pairing between an element from the first subspace and an element
from the second subspace. By definition, this is C (whereas Wall states that this intersection
pairing represents �C). However, the intersection ðqhÞ t ðqx 0Þ is not itself quite correct.
This intersection pairing is in Wall’s space Z (our P), which is the boundary of a space X0

(our N0), which is itself the negative of part of the boundary of Yþ (our M2). By ‘‘negative
of ’’, we mean with the reversed orientation. Wall at first encounters the intersection
h tYþ x 0 and states this is equal to h tX0

qx 0 in X0. However, with the conventions we
establish below in the Appendix, since the degree of h is even, h tYþ x 0 will be the negative
of the intersection h tX0

qx 0 because X0 has its orientation reversed as it appears in the
boundary of Yþ. Then from here, we do have that h tX0

qx 0 ¼ qh tZ qx 0. Putting these
sign issues together, it is correct that Wall arrives at the pairing �C, and the statement of
Wall’s non-additivity theorem is correct in [50].
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3. Background and preliminaries on intersection homology

In this section, we review intersection homology and make the necessary definitions
to allow us to state our generalized non-additivity theorem. We begin with a basic review
of pseudomanifolds and intersection homology; the experts might want to skim this section,
as we use some recent generalizations with which they might not be familiar. Then in the
second subsection below we define perverse signatures. We also will need some symplectic
vector space that plays the role of H2n�1ðP;QÞ from Wall’s theorem. We define this space
in the third subsection.

3.1. Review of intersection homology. We begin with a brief review of basic defini-
tions. For further reference, we refer the reader to [25], [24] as the background resources
most suited to the brand of intersection homology treated here: intersection homology
with general perversities and stratified coe‰cient systems. Other standard sources for
more classical versions of intersection homology include [27], [28], [6], [37], [4], [35],
[21]. Although we will not pursue them in detail here, various analytic approaches to
intersection homology can be found in, e.g., [15], [17], [9], [7]; these are particularly
useful for relating intersection homology to L2-cohomology and harmonic forms, as in
[15], [32], [45], and others, and for relating perverse signatures to L2-signatures, as in
[19], [34].

Stratified pseudomanifolds. We use the definition of stratified pseudomanifold in
[28], except that we allow strata of codimension one. Before recalling the definition we
need some background.

For a space W , we define the open cone cðWÞ by cðW Þ ¼
�
½0; 1Þ �W

�
=ð0�WÞ (we

put the ½0; 1Þ factor first so that our signs will be consistent with the usual definition of the
algebraic mapping cone). Note that cðjÞ is a point.

If Y is a filtered space

Y ¼ Y n MY n�1 M � � �MY 0 MY�1 ¼ j;

we let cðY Þ to be the filtered space with
�
cðYÞ

� i ¼ cðY i�1Þ for if 0 and
�
cðYÞ

��1 ¼ j.

The definition of stratified pseudomanifold is now given by induction on the
dimension.

Definition 3.1. A 0-dimensional stratified pseudomanifold X is a discrete set of
points with the trivial filtration X ¼ X 0 MX�1 ¼ j.

An n-dimensional (topological ) stratified pseudomanifold X is a paracompact Haus-
dor¤ space together with a filtration by closed subsets

X ¼ X n MX n�1 MX n�2 M � � �MX 0 MX �1 ¼ j

such that
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(i) X � X n�1 is dense in X , and

(ii) for each point x A X i � X i�1, there exists a neighborhood U of x for which there
is a compact ðn� i � 1Þ-dimensional stratified pseudomanifold L and a homeomorphism

f : R i � cL! U

that takes R i � cðL j�1Þ onto X iþj XU . A neighborhood U with this property is called
distinguished and L is called a link of x.

The X i are called skeleta. We write Xi for X i � X i�1; this is an i-manifold that may
be empty. We refer to the connected components of the various Xi as strata3). If a stratum
Z is a subset of Xn it is called a regular stratum; otherwise it is called a singular stratum.
The depth of a stratified pseudomanifold is the number of distinct skeleta it possesses minus
one.

We note that this definition of stratified pseudomanifolds is slightly more general
than the one in common usage [27], as it is common to assume that X n�1 ¼ X n�2. We
will not make that assumption here, but when we do assume X n�1 ¼ X n�2, intersection
homology with Goresky–MacPherson perversities is known to be a topological invariant;
in particular, it is invariant under choice of stratification (see [28], [6], [35]). Examples
of pseudomanifolds include irreducible complex algebraic and analytic varieties (see [6],
Section IV).

Pseudomanifolds with boundary. In manifold theory, one considers not just mani-
folds, which are initially defined so that every point has a Euclidean neighborhood, but
also q-manifolds, for which points might have neighborhoods homeomorphic to Euclidean
half-spaces. This is the familiar notion of ‘‘manifolds with boundary’’. Even if one’s ulti-
mate intent is to study closed manifolds (those with empty boundary), boundaries naturally
arise if one attempts to cut a manifold into smaller pieces.

In this section, we provide the definition of q-stratified pseudomanifold developed
in [26]. The notion of ‘‘pseudomanifold with boundary’’ in the context of intersection
homology goes back at least to Siegel’s thesis [47], though it is di‰cult to find technical
formulations in the literature.

Definition 3.2. An n-dimensional q-stratified pseudomanifold (or ‘‘q-pseudomanifold’’
if we do not wish to emphasize the stratification) is a pair ðX ;BÞ together with a filtration
on X such that

(i) X � B, with the induced filtration, is an n-dimensional stratified pseudomanifold
(in the sense of Definition 3.1),

(ii) B, with the induced filtration, is an ðn� 1Þ-dimensional stratified pseudomanifold
(in the sense of Definition 3.1),

3) This terminology agrees with some sources, but is slightly di¤erent from others, including our own past

work, which would refer to Xi as the stratum and what we call strata as ‘‘stratum components’’.
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(iii) B has an open collar neighborhood in X , that is, a neighborhood N with a homeo-
morphism of filtered spaces N ! B� ½0; 1Þ (where ½0; 1Þ is given the trivial filtration) that
takes B to B� f0g.

B is called the boundary of X and denoted qX .

We will often abuse notation by referring to the ‘‘q-stratified pseudomanifold X ’’,
leaving B tacit.

Note that a stratified pseudomanifold X (as defined in Definition 3.1) is a q-stratified
pseudomanifold with qX ¼ j. As in classical manifold theory, if we wish to emphasize the
point that a q-stratified pseudomanifold X is compact with qX ¼ j, we will refer to such a
q-stratified pseudomanifold as s-closed, where the ‘‘s’’ is meant to indicate the dependence
of this property on the stratification; see below for examples.

Definition 3.3. The strata of a q-stratified pseudomanifold X are the components of
the spaces X i � X i�1.

It is shown in [26] that when there are no codimension one strata, the boundary qX is
a topological invariant. However, this is not true if codimension one strata are allowed, as
shown by the following example.

Example 3.4. Let M be a compact n-manifold with boundary (in the classical sense),
and let P be its manifold boundary.

(i) Suppose we filter M trivially so that M itself is the only non-empty stratum. Then
ðM;PÞ is a q-stratified pseudomanifold. Note that all the conditions of Definition 3.2 are
fulfilled: M � P is an n-manifold, P is an ðn� 1Þ-manifold, and P is collared in M by clas-
sical manifold theory (see [31], Proposition 3.42). So in this case, the notion of boundary
for a q-stratified pseudomanifold and for an unfiltered q-manifold agree.

(ii) On the other hand, suppose X is the filtered space M IP. Then it is easy to
check that ðX ; jÞ is a q-stratified pseudomanifold; that is, X is a stratified pseudomanifold
in the sense of Definition 3.1. With this filtration, we cannot have qX ¼ P because condi-
tion (iii) of Definition 3.2 would not be satisfied. Thus with this stratification, X is s-closed.

Throughout this paper, the word ‘‘boundary’’ and the symbol qX will always refer to
the pseudomanifold boundary defined here and the compatible manifold scenario from the
first part of the example. In contexts where we discuss a classical q-manifold M with non-
trivial stratification but still wish to consider the boundary of the trivially stratified M, we
will emphasize this by referring to the manifold boundary of M.

Piecewise linear pseudomanifolds. A piecewise linear (or PL) stratified pseudomani-
fold or q-stratified pseudomanifold is a stratified pseudomanifold or q-stratified pseudo-
manifold with a PL structure compatible with the filtration, meaning that each skeleton is
a PL subspace, and such that each link is a compact PL stratified pseudomanifold and the
distinguished neighborhood homeomorphisms U GRn�k � cL or U GRn�k

þ � cL are PL
homeomorphisms. In this paper, we will restrict ourselves entirely to the PL setting. This
is su‰cient for the purpose of analysts or algebraic geometers wishing to consider Thom–
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Mather or Whitney stratified spaces, which are q-pseudomanifolds. Our results should also
hold for the class of topological q-stratified pseudomanifolds, but we wish to avoid the
technical details we would need to pursue, such as topological general position or, alterna-
tively, some extremely careful sheaf theory.

Intersection homology. We will work mostly with PL chain intersection homology
theory with general perversities and stratified coe‰cient systems. General perversities (those
not necessarily satisfying the axioms of Goresky and MacPherson [27]) are indispensable
for certain results, such as the intersection homology Künneth theorem of [22]. Similarly,
stratified coe‰cients are necessary in order to properly formulate the most useful version of
intersection homology with general perversities. More detailed overviews of this version of
the theory can be found in [25], [24].

General perversities. A general perversity on a q-stratified pseudomanifold X is any
function p : fsingular strata of Xg ! Z. It is technically convenient also to define pðZÞ ¼ 0
if Z is a regular stratum of X .

Stratified coe‰cient systems. In order to formulate the chain version of intersection
homology for general perversities that seems best to fit with the classical sheaf-theoretic
versions of intersection homology, we must use ‘‘stratified coe‰cients’’, as introduced in
[21] (see [25] for an exposition and also [24]). Since the situation simplifies somewhat in
the PL category (and since we will not be working with local coe‰cient systems), we
present a simpler definition here than is found elsewhere. In previous papers, the relevant
chain complexes would have been denoted I pC�ðX ;G0Þ, but we here follow the practice of
[26] and write simply I pC�ðX ;GÞ. However, these should not be confused with the intersec-
tion chain complexes of King [35].

First, recall that the PL chain complex C�ðX ;GÞ of a PL space X is defined to be
lim�!

T AT

C T
� ðX ;GÞ, where each T is a triangulation of X compatible with the PL structure and

C T
� ðX ;GÞ is the corresponding simplicial chain complex with coe‰cients in the abelian

group G. The limit is taken over all triangulations compatible with the PL structure4).
In other words, elements of C�ðX ;GÞ are represented by sums of chains, each of which is
taken from some fixed triangulation of X . In particular, any x A CjðX ;GÞ can be repre-
sented as a finite sum x ¼

P
gisi, where gi A G and si is a j-simplex in some triangulation

of X . Furthermore, qx ¼
P

giqsi.

Now, suppose X is a q-stratified pseudomanifold. We define CjðX ;GÞ0 to be the
subgroup of x A CjðX ;GÞ such that when we write x as

P
gisi, no si is contained in X n�1.

It is easy to check that this is a G-module. In order to define C�ðX ;GÞ0 as a chain complex,
we define qx to be

P
giqsi �

P
siHX n�1

gisi. In other words, to obtain qx A C�ðX ;GÞ0, we

remove from qx A C�ðX ;GÞ those simplices contained in X n�1. This is a chain complex,
and we denote its homology H�ðX ;GÞ. Some readers will notice that C�ðX ;GÞ0 is iso-

4) It is technically necessary to work with such chains in discussing intersection homology, since degenerate

cases can occur if a triangulation is not su‰ciently fine. However, it is also possible to work with any su‰ciently

fine fixed triangulation; see [40].
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morphic to C�ðX ;X n�1;GÞ, but for the upcoming definition of intersection homology,
we require this formulation. We refer to H�ðX ;GÞ as homology with stratified coe‰-

cients G.

Intersection homology. Given a q-stratified pseudomanifold X ¼ X n, a general per-
versity p, and an abelian group G, one defines the intersection chain complex I pC�ðX ;GÞ as
a subcomplex of C�ðX ;GÞ0 as follows: An i-simplex s in X is p-allowable if

dimðsXZÞe i � codimðZÞ þ pðZÞ

for any singular stratum Z of X . The chain x A CiðX ;GÞ0 is p-allowable if each simplex
with non-zero coe‰cient in x or in qx is allowable. Notice that simplices that disappear
from the boundary because of the coe‰cient system G do not need to be checked for
allowability. Notice that this is also why it is not su‰cient to work in C�ðX ;X n�1;GÞ,
where we have no control over simplices that live in X n�1. Let I pC�ðX ;GÞ be the complex
of p-allowable chains. The associated homology theory is denoted I pH�ðX ;GÞ.

Relative intersection homology is defined similarly, in the obvious way, though we
note that the filtration on a subspace will always be that inherited from the larger space
by restriction, i.e., if Y HX , then Y k ¼ Y XX k, regardless of the actual dimensions
involved. We also assume that Y inherits the formal dimension of X , regardless of actual
geometric dimension, so that if Z is a stratum of codimension k in X , then we consider
Z XY to have the same codimension k in Y . Thus a chain in Y is defined to be allowable
if and only if it is allowable in X .

If p is a perversity in the sense of Goresky–MacPherson [27] and X has no strata
of codimension one, then I pH�ðX ;GÞ is isomorphic to the intersection homology groups
of Goresky–MacPherson [27], [28]. If p is not a Goresky–MacPherson perversity, then
we need stratified coe‰cients in order for some of the main properties of intersection
homology, such as duality and the cone formula, to hold; see [24], [25]. General perversities
are useful because, among other things, they allow us to talk about relative and absolute
cohomologies in the same framework as the Goresky–MacPherson intersection homolo-
gies. Suppose that Z HX are smooth manifolds. Then if pðZÞ > codimðZÞ � 2 we get
I pH�ðX ;GÞGH�ðX ;Z;GÞ, and if pðZÞ < 0, we get I pH�ðX ;GÞGH�ðX � Z;GÞ. Note
that if Z is the manifold boundary of X , then also H�ðX � Z;GÞGH�ðX ;GÞ.

Intersection homology with general perversities can also be formulated sheaf theoret-
ically [24], [25] or analytically [46]. In these languages, it is more customary to use cohomo-
logical indexing and refer to intersection cohomology but these are really the same theories
(up to various indexing issues).

Even with general perversities and G coe‰cients, the basic properties of I pH�ðX ;GÞ
established in [35] and [21] hold with little or no change to the proofs, such as stratum-
preserving homotopy equivalence, excision, the Künneth theorem for which one term is
an unstratified manifold, Mayer–Vietoris sequences, etc. For more details of this construc-
tion (and more general cases), see [25], [21], [24].

Intersections and duality. Finally, we recall the intersection homology version
of Poincaré duality, due initially to Goresky and MacPherson [27] and later extended
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to the more general cases considered here [24]. Suppose X is an s-closed oriented
n-pseudomanifold and that F is a field. Suppose that p and q are perversities such that
pþ qe r, i.e. pðZÞ þ qðZÞe rðZÞ for all singular strata Z. Then there is a partially
defined intersection pairing

t : I pCiðX ;FÞ � I qCjðX ;FÞ ! I rCiþj�nðX ;FÞ;

defined on pairs of chains x� y such that x and y are in stratified general position (see [27],
[24]). Since all pairs of homology classes can be represented by pairs of chains in stratified
general position, it can be shown that the intersection pairing induces a fully-defined map
on intersection homology

I pHiðX ;FÞn I qHjðX ;FÞ ! I rHiþj�nðX ;FÞ:

If pþ q ¼ t, i.e. pðZÞ þ qðZÞ ¼ codimðZÞ � 2 for all singular strata Z, and we compose
with the augmentation e : I tH0ðX ;FÞ ! F , then the intersection pairing induces a non-
singular pairing

t̂t : I pHiðX ;FÞn I qHn�iðX ;FÞ ! I tH0ðX ;FÞ ! F ;

whose adjoint is the duality isomorphism I pHiðX ;FÞGHom
�
I qHn�iðX ;FÞ;F

�
. If Y is

a compact q-stratified pseudomanifold, we similarly obtain an analogous Lefschetz-type
duality I pHiðY ;FÞGHom

�
I qHn�iðY ; qY ;FÞ;F

�
from the partially-defined chain intersec-

tion pairing t : I pCiðX ;FÞ � I qCjðX ; qX ;FÞ ! I rCiþj�nðX ;FÞ.

3.2. Perverse signatures. Now we can define perverse signatures.

If X is a PL stratified pseudomanifold and pe q, let

I p!qH�ðX ;QÞ ¼ im
�
I pH�ðX ;QÞ ! I qH�ðX ;QÞ

�
;

where the map is induced by inclusion of chain complexes. If ðY ;ZÞ is a pair of a pseudo-
manifold and any subspace Z, let

I p!!qH�ðY ;Z;QÞ ¼ im
�
I pH�ðY ;QÞ ! I qH�ðY ;Z;QÞ

�
:

The reason for the double arrow in the second notation is to highlight that I p!!qH�ðY ;Z;QÞ
is really the image of a composition of two maps taking the perversity from p to q and the
space from Yi to ðY ;ZÞ.

By duality, if X is s-closed, oriented, and 4n-dimensional, and if Y is a compact, ori-
ented 4n-dimensional q-stratified pseudomanifold, then if pþ q ¼ t, there are non-singular
intersection pairings

t̂t : I pH2nðX ;QÞn I qH2nðX ;QÞ ! Q;

t̂t : I pH2nðY ;QÞn I qH2nðY ; qY ;QÞ ! Q:
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These are each induced by the chain level pairing of chains in stratified general position,
followed by augmentation e : I tH0ðX ;FÞ ! F . If also pe q, this induces pairings

t : I p!qH2nðX ;QÞn I p!qH2nðX ;QÞ ! Q;

t : I p!!qH2nðY ; qY ;QÞn I p!!qH2nðY ; qY ;QÞ ! Q:

Explicitly, if j� : I pH�ðX ;QÞ ! I qH�ðX ;QÞ is induced by the inclusion of chains
j : I pC�ðX ;QÞ ! I qC�ðX ;QÞ, then j�½x� t j�½y� is defined to be ½x� t̂t j�½y�, which itself is
defined to be e½x t jðyÞ� ¼ e½x t y�, assuming x and y are representative chains for their
intersection homology classes in stratified general position (which can always be achieved).
The construction of the pairing on I p!!qH2nðY ; qY ;QÞ is completely analogous.

Lemma 3.5. The pairings

t : I p!qH�ðX ;QÞn I p!qH�ðX ;QÞ ! Q;

t : I p!!qH�ðY ; qY ;QÞn I p!!qH�ðY ; qY ;QÞ ! Q

are well-defined, non-singular, and symmetric.

Proof. We will treat the first pairing in detail. The second is handled similarly.

Now let j�½x�; j�½y� A I p!qH�ðX ;QÞ with j� as above. By definition,

j�½x� t j�½y� ¼ ½x� t̂t j�½y�;

which itself is defined to be the augmentation of x t jðyÞ, assuming x and y are represen-
tative chains for their intersection homology classes in stratified general position (which can
always be achieved). By the arguments in [27], ½x� t̂t j�½y� is independent of the choice of x

and y within their respective intersection homology classes, again assuming stratified gen-
eral position. To establish well-definedness of t, we must show that ½x� t̂t j�½y� ¼ ½z� t̂t j�½y�
if j�½x� ¼ j�½z�.

By the bilinearity of t̂t (arising from that of t), it su‰ces to show that ½u� t̂t j�½y� ¼ 0
if ½u� A I pH2kðX ;QÞ and j�½u� ¼ 0 A I qH2kðX ;QÞ. Since ½u� t̂t j�½y� is independent of the
choice of cycle representing j�½y� in I qH2kðX ;QÞ, we may assume we have chosen a repre-
sentative y that is p-allowable as j�½y� is in the image of I pH2kðX ;QÞ. Further, we may
assume u is a p-allowable representative of ½u� and that u; y are in stratified general position.
Since the chain level intersection pairing of 2k-chains is symmetric [27], u t y ¼ y t u

up to sign. But now by the same reasoning as above, the augmentation of y t u equals
½y� t̂t j�½u�, where now ½y� A I pH2kðX ;QÞ and j�½u� A I qH2kðX ;QÞ. But by assumption,
j�½u� ¼ 0 A I qH2kðX ;QÞ. It follows that ½u� t̂t j�½y� ¼ 0, so t is well-defined.

The symmetry of the pairing t comes from the symmetry of the chain level pair-
ing [27]: if x; y A I pC2kðX ;QÞ are in stratified general position, then

x t y ¼ y t x A I rC0ðX ;QÞ for any rf pþ p:
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In particular, it then follows that for ½x�; ½y� A I pH2kðX ;QÞ, we have

j�½x� t j�½x� ¼ ½x� t̂t j�½y� ¼ e½x t y� ¼ e½y t x� ¼ ½y� t̂t j�½x� ¼ ½y� t ½x�:

Finally, to see that t is non-singular, we simply note that if

j�½y� A I p!qH2nðX ;QÞH I qH2nðX ;QÞ with j�½y�3 0;

then there must be an ½x� in I pH2nðX ;QÞ such that ½x� t̂t j�½y�3 0 by Goresky–
MacPherson–Poincaré duality. But then, up to signs,

½x� t̂t j�½y� ¼ eðx t yÞ ¼ eðy t xÞ ¼ ½y� t̂t j�½x�;

where e is the augmentation and x, y are appropriately chosen representative chains, so the
image j�½x� in I p!qH2nðX ;QÞ must be non-zero. In particular, we see that j�½x� t j�½y�3 0,
so t is non-singular.

Minor modifications of the same argument work for I p!!qH2nðY ; qY ;QÞ, represent-
ing all elements as p-allowable cycles in Y . r

Definition 3.6. Let the p! q perverse signatures of X and Y , denoted sp!qðX Þ and
sp!!qðY Þ, be the respective signatures of t on I p!qH�ðX ;QÞ and I p!!qH�ðY ; qY ;QÞ.

3.3. A relative-perversity intersection homology pairing. In this subsection, we will
study the ‘‘relative perversity’’ intersection homology groups that provide the symplectic
pairing for our non-additivity theorem. The relationship between this pairing and the usual
Goresky–MacPherson intersection pairing is akin to the relationship between the intersec-
tion pairing on the manifold boundary of a manifold and the pairing in its interior. In fact,
this will be made precise in Section 5, where we will show it reduces to the intersection
pairing on the topological boundary of a manifold in the appropriate context.

These groups are essentially the same as the hypercohomology groups of the ‘‘periph-
eral complex’’ defined sheaf-theoretically5) in [11], though there Cappell and Shaneson
work with particular perversities in a much more specific topological context. It is observed
in [11] that the duality pairing of these groups (compare Lemma 3.7, below) follows from
the Verdier duality properties of the Deligne sheaves used to define intersection homology
sheaf theoretically. We have chosen instead to work with these groups from a PL chain
point of view, in keeping with the overall spirit of this paper. The chain theory also allows
us to define our dual pairing using geometric intersections, which both is useful in the work
that follows and makes the (anti-)symmetry properties of the pairing easier to observe. We
will provide full proofs in this context.

5) Despite a close relation between the two papers, the peripheral complex of [11] appears to be some-

what di¤erent from the peripheral complex defined by Goresky and Siegel in [29]. The peripheral complex

of Cappell–Shaneson is defined to be the third term in the distinguished triangle involving sheaf complex

maps of the form IpC� ! IqC� for pe q, while those of Goresky–Siegel are a‰liated to maps of the form

IpC� ! RHomðIqC�;D�½n�Þ.
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Motivation. To motivate the groups we will need, let M be a q-manifold with
qM 3j, let G be an abelian group, and consider the long exact sequence

! HiðM;GÞ ! HiðM; qM;GÞ ! Hi�1ðqM;GÞ !:

By contrast, for a q-stratified pseudomanifold X and pe q, we will compare this with a
long exact sequence

! I pHiðX ;GÞ ! I qHiðX ;GÞ ! I q=pHiðX ;GÞ !;

where I q=pHiðX ;GÞ is defined to be the homology of the quotient I qCiðX ;GÞ=I pCiðX ;GÞ.

But suppose M is a q-manifold with non-empty boundary qM, and let X de-
note the stratified pseudomanifold M I qM. If we choose perversities p, q such that
pðqMÞ < 0 and qðqMÞ > tðqMÞ ¼ �1, then an easy computation (see [24]), shows that
I pH�ðX ;GÞGH�ðM;GÞ and I qH�ðX ;GÞGH�ðM; qM;GÞ. Thus we expect I q=pHiðX ;GÞ
to play a role analogous to that classically played by the manifold boundary of a
q-manifold, though with a dimension shift. We will make this connection with manifold
boundaries even more precise in Section 5.

Two q/p long exact sequences. Let X be an n-dimensional PL q-stratified pseudoma-
nifold. We continue to assume G an abelian group and p, q general perversities such that
pðZÞe qðZÞ for all singular strata Z HX . Let I q=pC�ðX ;GÞ ¼ I qC�ðX ;GÞ=I pC�ðX ;GÞ,
and let I q=pH�ðX ;GÞ denote the corresponding homology groups. These groups first appear
sheaf-theoretically in [28], Section 5.5; we will refer to them as relative perversity intersec-

tion homology groups.

Note that a cycle x in I q=pCiðX ;GÞ is a q-allowable chain such that qx is p-allowable.
A homology between cycles x1 and x2 is provided by a q-allowable chain y such that
qy ¼ x1 � x2 þ p, where p is p-allowable.

Suppose Y HX is a PL subspace (without restrictions) and that we let I rC�ðY ;GÞ
denote the subcomplex of I rC�ðX ;GÞ consisting of chains supported in Y . Note that
I rC�ðY ;GÞ might be 0, for example if Y HX n�1. In all of our later applications, Y will
itself be a q-stratified pseudomanifold and I rC�ðY ;GÞ will be equal to the complex of
intersection chains on Y in the usual sense, so the notation should cause no undue alarm.
Then we have the diagram

0 I pC�ðY ;GÞ
ip!q

I qC�ðY ;GÞ
pq=p

I q=pC�ðY ;GÞ 0

iYHX

 
��
L

iYHX

 
��
L

iYHX

 
��
L

0 I pC�ðX ;GÞ
ip!q

I qC�ðX ;GÞ
pq=p

I q=pC�ðX ;GÞ 0

pX ;Y

???y
??y pX ;Y

???y
??y pX ;Y

???y
??y

0 ��! I pC�ðX ;Y ;GÞ ��!
ip!q

I qC�ðX ;Y ;GÞ ��!
pq=p

I q=pC�ðX ;Y ;GÞ ��! 0;

ð2Þ

���! ����! ����! ���!

���! ����! ����! ���!

where I q=pC�ðY ;GÞ ¼ I qC�ðY ;GÞ=I pC�ðY ;GÞ and I q=pC�ðX ;Y ;GÞ is defined to be the
quotient of I q=pC�ðX ;GÞ by I q=pC�ðY ;GÞ. The right-hand vertical map between the first
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two rows is an injection because any chain supported in Y that is p-allowable in X (and
hence 0 in I q=pC�ðX ;GÞ) will already be in I pC�ðY ;GÞ. Therefore, by the serpent lemma,
the last row is also a short exact sequence. In particular, we have long exact sequences
associated to the third row of this diagram:

���! I pHiðX ;Y ;GÞ ���!
ðip!qÞ�

I qHiðX ;Y ;GÞ ���!
ðpq=pÞ�

I q=pHiðX ;Y ;GÞ

!d I pHi�1ðX ;Y ;GÞ ���!;

and to the third column:

���! I q=pHiðY ;GÞ ���!
ðiYHX Þ�

I q=pHiðX ;GÞ ���!
ðpX ;Y Þ�

I q=pHiðX ;Y ;GÞð3Þ

!d I q=pHi�1ðY ;GÞ ���!:

Observe that the ‘‘connecting maps’’ d can be described as acting on a representative
chain x by taking x to its boundary qx. Meanwhile, an element of I q=pH�ðX ;Y ;GÞ can
be represented by a chain x such that qx ¼ aþ b with b a q-allowable chain in Y and
a a p-allowable chain in X , and dx is represented by b. Note also that a representative x

of a class in I q=pH�ðX ;Y ;GÞ is a q-allowable chain on X such that qx is the sum of a
p-allowable chain on X and a q-allowable chain on Y . We will use this fact in the proof
of our main theorem.

A pairing on relative perversity intersection homology. Now we want to define inter-
section pairings on our relative perversity intersection homology groups. No doubt the
pairing we are about to introduce can be derived from abstract sheaf machinery via the
Verdier duality properties of Deligne sheaves, but it will be useful for us to have a con-
crete geometric description, especially as this will make evident the needed (anti-)symmetry
properties of the pairing.

Suppose pþ qe r and R is a ring. We define a pairing

F : I q=pHiðX ;RÞn I q=pHjðX ; qX ;RÞ ! I rHn�i�jþ1ðX ;RÞ

as follows. Let t denote the Goresky–MacPherson intersection pairing on intersection
chains. If x, y are chains in stratified general position representing respective elements of
I q=pHiðX ;RÞ and I q=pHjðX ; qX ;RÞ, let

~FFðx; yÞ ¼ x t qyþ ð�1Þn�jxjðqxÞ t y A I rCn�i�jþ1ðX ;RÞ;

where jxj denotes the degree of x. We need to see that ~FF makes sense as a map on chains,
and then we want to show it descends to a well-defined pairing F̂Fð½x�; ½y�Þ on homology.

To make sense on chains, we need to know that x t qyþ ð�1Þn�jxjðqxÞ t y is an
r-allowable chain. It follows from the standard stratified general position arguments [42],
[27], [23] that we can choose x and y in stratified general position (which includes bounda-
ries being in stratified general position with respect to x, y, and each other), and we may
also assume that x does not intersect qX . The Goresky–MacPherson intersection pairing
extends to the relevant chains in this setting by [23]. Note that each intersection x t qy or

67Friedman and Hunsicker, Additivity and non-additivity for perverse signatures

Brought to you by | Loughborough University
Authenticated

Download Date | 4/1/15 1:42 PM



ðqxÞ t y is between a p-allowable chain and a q-allowable chain; to see this in the case of
x t qy, we should observe that qy is the sum of a p-allowable chain in X and a q-allowable
chain in qX , but the part in qX does not intersect x, which can be assumed to lie in the
interior of X , so we have the intersection of a q-admissible chain with a p-admissible chain,
which will be r-admissible. Furthermore6),

q~FFðx; yÞ ¼ ðqxÞ t ðqyÞ þ ð�1Þn�jxjþn�jxj�1ðqxÞ t ðqyÞ

¼ ðqxÞ t ðqyÞ � ðqxÞ t ðqyÞ

¼ 0;

so indeed we obtain an admissible r-cycle. It is important to note that, despite appearances,

this cycle is not necessarily the boundary ð�1Þn�jxjqðx t yÞ as x t y is the intersection of
two q admissible chains, thus is not necessarily well-defined in I rC�ðX ;RÞ unless qþ qe r.

To show that this pairing is well-defined on homology, suppose that z is another
chain representing the same class as x and in stratified general position with respect to y.
Then from the definitions, z� x ¼ qQþ P, where Q is another q-allowable chain whose
boundary is p-allowable and P is p-allowable. Again, we can assume everything in strati-
fied general position and that P and Q do not intersect qX . Then

~FFðz; yÞ ¼ z t qyþ ð�1Þn�jzjðqzÞ t y

¼ ðxþ qQþ PÞ t qyþ ð�1Þn�jzj
�
qðxþ qQþ PÞ

�
t y

¼ x t qyþ ð�1Þn�jzjðqxÞ t yþ ðqQþ PÞ t qyþ ð�1Þn�jzjðqPÞ t y

¼ x t qyþ ð�1Þn�jzjðqxÞ t yþ P t qyþ ð�1Þn�jzjðqPÞ t yþ qQ t qy:

Note that each intersection is of a p-allowable chain with a q-allowable chain since
p-allowable chains are also q-allowable. Now, since jzj ¼ jPj, we see that

P t qyþ ð�1Þn�jzjðqPÞ t y ¼ ð�1Þn�jzjqðP t yÞ;

which is well defined because P is p-allowable and y is q-allowable.

Similarly, qQ t qy ¼ qðQ t qyÞ, using again that only the p-allowable part of qy

can intersect Q. Thus ~FFðz; yÞ ¼ ~FFðx; yÞ. A similar argument shows that the pairing is
independent of the choice of chain representing ½y�, so F̂Fð½x�; ½y�Þ is well-defined in
I rHn�i�jþ1ðX ;RÞ.

Now, let Z be a compact oriented 4n� 1 PL q-stratified pseudomanifold. Suppose
pþ q ¼ t. Then the composition of F̂F : I q=pHiðZ;QÞn I q=pH4n�iðZ; qZ;QÞ ! I tH0ðZ;QÞ
with the augmentation e : I tH0ðZ;QÞ ! Q gives us a bilinear form

F : I q=pHiðZ;QÞn I q=pH4n�iðZ; qZ;QÞ ! Q:

6) We use the sign conventions of Dold [20] or Goresky–MacPherson [27] so that we have the equality

qða t bÞ ¼ ðqaÞ t bþ ð�1Þn�jaj
a t ðqbÞ.

68 Friedman and Hunsicker, Additivity and non-additivity for perverse signatures

Brought to you by | Loughborough University
Authenticated

Download Date | 4/1/15 1:42 PM



Lemma 3.7. F : I q=pHiðZ;QÞn I q=pH4n�iðZ; qZ;QÞ ! Q is non-singular, and if

qZ ¼ j, it is skew-symmetric on I q=pH2nðZ;QÞ.

Proof. Consider the following diagram with coe‰cients in Q:

I qHiðZÞ I q=pHiðZÞ I pHi�1ðZÞ???y
???y

???y

��! Hom
�
I pH4n�1�iðZ; qZÞ;Q

�
��! Hom

�
I q=pH4n�iðZ; qZÞ;Q

�
��! Hom

�
I qH4n�iðZ; qZÞ;Q

�
��!:

�������! �������������! �����������! ������!

The top is the long exact sequence induced by the short exact sequence

0 ���! I pC�ðZ;QÞ ! I qC�ðZ;QÞ ! I q=pC�ðZ;QÞ ! 0:

The bottom is the Homð�;QÞ dual of the same long exact sequence for ðZ; qZÞ; it is also
exact because Q is a field. The first and third vertical morphisms take a class ½x� to ½x�t̂t�.
By Goresky–MacPherson [27], [28] (and [24] for general perversities and q-stratified pseu-
domanifolds), these are isomorphisms. The second vertical map takes ½x� to Fð½x�; �Þ.

We claim that the diagram commutes up to sign. It is standard that the square with
top corners I pHiðZÞ and I qHiðZÞ (not shown as a square on the diagram) commutes. To
see that the first square commutes, let ½x� A I qHiðZÞ, ½z� be the image of ½x� in I p=qHiðZÞ,
and ½y� A I q=pH4n�iðZ; qZÞ. Then

Fð½z�; ½y�Þ ¼ e½z t qyþ ð�1Þ4n�1�jxjqz t y� ¼ e½z t qy� ¼ e½x t qy� ¼ ½x� t̂t ½y�

because qx ¼ qz ¼ 0 and ½z� and ½x� are represented by the same chain. On the other hand,
going down then right takes ½x� to a map that acts on ½y� by first applying the map to the
left on homology that gives ½qy� and then applying ½x�t̂t�. So this square also commutes.

To see that the second square commutes up to sign, suppose ½x� A I q=pHiðZÞ.
Then going right then down takes ½x� first to ½qx�, then to the map that acts on
½y� A I qH4n�iþ1ðZ; qZÞ by ½qx� t̂t ½y� (note that qy is supported in qZ and cannot inter-
sect x, which can be assumed to have support in the interior of Z). On the other
hand, going down then right takes ½x� to the map that acts on ½y� A I qH4n�iþ1ðZ; qZÞ
by first taking it to ½y� A I q=pH4n�iðZ; qZÞ and then applying Fð½x�; �Þ to obtain
e½x t qyþ ð�1Þ4n�1�jxjðqxÞ t y�. But again qy must lie in qZ, so this is just

e½ð�1Þ4n�1�jxjðqxÞ t y� ¼ ð�1Þ4n�1�jxj½qx� t̂t ½y�.

We can now apply the five-lemma to conclude that F determines a non-singular
pairing. Even though the diagram does not commute on the nose, commuting up to sign
implies that it is possible to change signs of some of the maps to obtain a commuting
diagram. Changing signs does not a¤ect exactness of the horizontal sequences.

To show F is anti-symmetric when i ¼ 2n and qZ ¼ j, we calculate7)

7) Recall that on an m-dimensional q-stratified pseudomanifold a t b ¼ ð�1Þðm�jajÞðm�jbjÞb t a; see [20],

[27].
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F̂Fð½x�; ½y�Þ ¼ ½x t ðqyÞ þ ð�1Þ4n�1�jxjðqxÞ t y�

¼ ½x t ðqyÞ � ðqxÞ t y�

¼ ½ð�1Þð4n�1�jxjÞð4n�1�ðjyj�1ÞÞðqyÞ t x� ð�1Þð4n�1�jyjÞð4n�1�ðjxj�1ÞÞ
y t ðqxÞ�

¼ ½ð�1Þð4n�1�2nÞð4n�1�ð2n�1ÞÞðqyÞ t x� ð�1Þð4n�1�2nÞð4n�1�ð2n�1ÞÞ
y t ðqxÞ�

¼ ½ðqyÞ t x� y t ðqxÞ�

¼ �F̂Fð½y�; ½x�Þ: r

In Section 5, we will show that if X is a ð4n� 1Þ-manifold with non-empty manifold
boundary, appropriately stratified and with an appropriate choice of perversities, then F
becomes the classical intersection pairing on qX .

4. Non-additivity of perverse signatures

This section contains our non-additivity theorems. We prove our first main result, on
non-additivity of perverse signatures for pseudomanifolds, in the first subsection, then
obtain our second main result, for q-stratified pseudomanifolds, as a corollary in the second
subsection.

4.1. Non-additivity of perverse signatures for pseudomanifolds. In this section, we
prove a generalization of the Wall non-additivity theorem for the perverse pairings of inter-
section homology theory. The general outline of the proof is the same as that in [50], but
there are some subtleties and generalizations that need to be addressed.

Throughout this section, let X be a Q-oriented s-closed stratified 4n-pseudomanifold
(it may possess codimension one strata). Let Z HX be a bicollared codimension one sub-
pseudomanifold such that X ¼ Y1 WZ Y2 and qY1 ¼ Z ¼ �qY2, accounting for orienta-
tions.

Let V ¼ I q=pH2nðZ;QÞ equipped with the anti-symmetric pairing F defined in
Section 3.3. Let

A ¼ ker
�
iZHY1

: I q=pH2nðZ;QÞ ! I q=pH2nðY1;QÞ
�
;

C ¼ ker
�
iZHY2

: I q=pH2nðZ;QÞ ! I q=pH2nðY2;QÞ
�
;

B ¼ ker
�
d : I q=pH2nðZ;QÞ ! I pH2n�1ðZ;QÞ

�
:

Theorem 4.1. With the assumptions and definitions considered above,

sp!qðXÞ ¼ sp!!qðY1Þ þ sp!!qðY2Þ þ sðV ;A;B;CÞ;

where s is Wall’s Maslov triple index.

Proof. First we show that I p!qH2nðX ;QÞ decomposes as a direct sum of
I p!!qH2nðY1;Z;QÞ, I p!!qH2nðY2;Z;QÞ, and a third piece, and that the signature pairing
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is diagonal with respect to this decomposition. Consider the morphisms (induced by
inclusion)

I pH2nðY1;QÞl I pH2nðY2;QÞ ! I pH2nðX ;QÞ

!! I p!qH2nðX ;QÞ

,! I qH2nðX ;QÞ

! I qH2nðX ;Z;QÞ

G I qH2nðY1;Z;QÞl I qH2nðY2;Z;QÞ:

The image of the composition is I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ, so we have an
induced surjection

im
�
I pH2nðY1;QÞl I pH2nðY2;QÞ ! I p!qH2nðX ;QÞ

�

! I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ:

Since all groups are really Q-vector spaces, there is a (non-unique) splitting of this
map. We claim that this splitting is isometric in that it preserves the intersection pair-
ing (where the intersection pairing on I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ is given
by the orthogonal sum). Indeed, suppose that ½x� ¼ ½x1� þ ½x2� and ½y� ¼ ½y1� þ ½y2�
are elements of I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ and that ½~xx� ¼ ½~xx1� þ ½~xx2� and
½~yy� ¼ ½~yy1� þ ½~yy2� A im

�
I pH2nðY1;QÞl I pH2nðY2;QÞ ! I p!qH2nðX ;QÞ

�
are their images

under a given splitting. Each ½~xxi� and ½~yyi� may be represented by p-allowable cycles
with support in the interior of Yi, and the same cycles represent the ½xi� and ½yi�. Fur-
thermore, we can always assume that the representing cycles are in stratified general
position. Then, by definition, (the augmentations of) both intersection pairings are given
by counting the intersection numbers of the representative chains, and it is clear that
chains in Y1 do not intersect those in Y2. So

x t y ¼ x1 t y1 þ x2 t y2 ¼ ~xx1 t ~yy1 þ ~xx2 t ~yy2 ¼ ~xx t ~yy;

and the pairing is preserved. Notice that if we choose a di¤erent splitting that, say, takes ½x�
to ½~xx 0�, then ½~xx� ~xx 0� must map to 0 in I qH2nðX ;Z;QÞ, i.e., it is q-homologous in X to a
chain in Z. Such a chain clearly does not intersect any p-allowable chain in the interior of
either Yi, and this explains why the choice of splitting does not a¤ect the isometry type
of the pairing.

Now, continuing with the proof of Theorem 4.1, we fix a splitting, and by an abuse of
notation, let I p!!qH2nðYi;Z;QÞ also denote its image under the splitting in I p!qH2nðX ;QÞ.
It is geometrically clear that a chain from I p!!qH2nðY1;Z;QÞ does not intersect a chain from
I p!!qH2nðY2;Z;QÞ in I p!qH2nðX ;QÞ. Thus I p!!qH2nðY1;Z;QÞ and I p!!qH2nðY2;Z;QÞ are
orthogonal in I p!qH2nðX ;QÞ. We also know that the restriction of the intersection pairing
to each subspace is non-singular, and it follows that they must intersect trivially (e.g. any
½x� A I p!!qH2nðY1;Z;QÞ annihilates I p!!qH2nðY2;Z;QÞ, so if also ½x� A I p!!qH2nðY2;Z;QÞ,
then ½x� must be 0 or the non-singularity of the restriction of the form to I p!!qH2nðY2;Z;QÞ
would be violated). Together, the subspace J ¼ I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ is
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thus an orthogonal sum, i.e. J ¼ I p!!qH2nðY1;Z;QÞ ? I p!!qH2nðY2;Z;QÞ, and the restric-
tion of the pairing t to this subspace of I p!qH2nðX ;QÞ is also non-singular.

Let K be the annihilator of J in I p!qH2nðX ;QÞ, i.e. K ¼ J?. Once again, the non-
singularity of the pairing on J implies J XK ¼ 0, and in fact, it follows from basic linear
algebra (see, e.g., [43], Theorem 3.1) that I p!qH2nðX ;QÞG J ? J? ¼ J ? K . Thus, choos-
ing an appropriate basis, we can write I p!qH2nðX ;QÞ as a direct sum with respect to which
the intersection pairing is block diagonal, as desired:

I p!qH2nðX ;QÞG I p!!qH2nðY1;Z;QÞ ? I p!!qH2nðY2;Z;QÞ ? K:ð4Þ

It follows that

sp!qðX Þ ¼ sp!!qðY1Þ þ sp!!qðY2Þ þ sðKÞ;

so we must show that sðKÞ ¼ sðV ;A;B;CÞ. To do this, we will first decompose K as a
direct sum LlS lM and show that sðKÞ ¼ sðLÞ. Then we will show that we can identify
sðLÞ with the desired Maslov triple index.

Let

S ¼ K X im
�
I pH2nðY1;QÞl I pH2nðY2;QÞ ! I p!qH2nðX ;QÞ

�
;

and let S? denote the annihilator of S in K under t.

Remark 4.2. Note that S? is therefore also the annihilator of

I p!!qH2nðY1;Z;QÞ ? I p!!qH2nðY2;Z;QÞ ? S

in I p!qH2nðX ;QÞ.

Lemma 4.3. Under the non-singular pairing t̂t : I pH2nðX ;QÞn I qH2nðX ;QÞ ! Q,
the annihilator of

im
�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I pH2nðX ;QÞ

�

is

im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
:

Proof. The orthogonality of the two spaces is geometrically evident as p-allowable
chains in Y1 or Y2 can be assumed to have support in the interior of the space (i.e. away
from the stratified boundary Z), due to the bicollar on Z.

On the other hand, suppose ½x� is in I qH2nðX ;QÞ but not in

im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
:

Then, by the long exact sequence of the pair, ½x� has a non-trivial image in
I qH2nðX ;Z;QÞG I qH2nðY1;Z;QÞl I qH2nðY2;Z;QÞ. But since I qH2nðYi;Z;QÞ is dual
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to I pH2nðYi;QÞ, this implies there must be some ½y� A I pH2nðYi;QÞ for i ¼ 0 or i ¼ 1 such
that y and x intersect with non-zero intersection number. Therefore ½x� cannot be orthog-
onal to im

�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I pH2nðX ;QÞ

�
.

Thus the annihilator of im
�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I pH2nðX ;QÞ

�
must be

exactly im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
. r

Corollary 4.4. S? ¼ I p!qH2nðX ;QÞX im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
.

Proof. First, observe that any

½x� A I p!qH2nðX ;QÞX im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�

is in K because any cycle that has a q-allowable representative with support in Z must have
trivial intersection with any p-allowable chain with support in the interior of Y1 or Y2, and
any chain in either I p!!qH2nðYi;Z;QÞ can be so represented. For the same reason, ½x� A S?

because any element of S can be so represented. Thus

I p!qH2nðX ;QÞX im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
HS?:

On the other hand, anything in S? lies in K H I p!qH2nðX ;QÞ by definition, and so
by the preceding lemma, to complete the proof we only need to show that S? annihilates
im

�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I pH2nðX ;QÞ

�
under the pairing

t̂t : I pH2nðX ;QÞn I qH2nðX ;QÞ ! Q:

Suppose

½x� A S?H I qH2nðX ;Q0Þ;

½y� A im
�
I pH2nðY1;QÞl I pH2nðY2;QÞ ! I pH2nðX ;QÞ

�
;

and ½y� t̂t ½x�3 0. Since ½x� A I p!qH2nðX ;QÞ, we can choose a p-allowable representative
for ½x�, and we can think of y as q-allowable, obtaining the well-defined equalities

½x� t̂t ½y� ¼ e½x t y� ¼Ge½y t x� ¼G½y� t̂t ½x�3 0:

But now in the expression ½x� t̂t ½y�, the cycle ½y� is representing an element of

im
�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I p!qH2nðX ;QÞ

�
;

which we claim is a subset of I p!!qH2nðY1;Z;QÞ ? I p!!qH2nðY2;Z;QÞ ? S. This would
contradict the assumption that ½x� A S? by Remark 4.2, and so S? would indeed annihilate
im

�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I pH2nðX ;QÞ

�
.

To verify the claim, suppose

½y� A im
�
I pH2nðY1;QÞl I pH2nðY1;QÞ ! I p!qH2nðX ;QÞ

�
:
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We can write ½y� ¼ ½y1 þ y2�, where yi is a p-allowable cycle in Yi. Furthermore, using
the decomposition formula (4), we can write ½y� ¼ ½z1 þ z2 þ z3�, where zi is a p-allowable
cycle in Yi and ½z3� A K. But then ½z3� ¼ ½y1 � z1 þ y2 � z2�, and since each yi � zi is a
p-allowable cycle in Yi, it follows that ½z3� A S by the definition of S. Thus the decompo-
sition ½y� ¼ ½z1� þ ½z2� þ ½z3� provides the desired conclusion. r

Lemma 4.5. S HS?.

Proof. S HK H I p!qH2nðX ;QÞ by definition, so it su‰ces, by the preceding corol-
lary, to show that

S H im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
:

Recall that S is the intersection of the image of I pH2nðY1;QÞl I pH2nðY2;QÞ
in I p!qH2nðX ;QÞ with K, which is the annihilator and additive complement of
I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ. Thus if ½x� A S, then x can be written as
the sum of two p-allowable cycles, one each in Y1 and Y2. These cycles have well-
defined images respectively in I p!!qH2nðY1;Z;QÞH I qH2nðY1;Z;QÞG I qH2nðX ;Y2;QÞ
and I p!!qH2nðY2;Z;QÞH I qH2nðY2;Z;QÞG I qH2nðX ;Y1;QÞ. But each of these images
must be 0 since the pairing on each I p!!qH2nðYi;Z;QÞ is non-singular and ½x� is orthogonal
to everything in these spaces. Thus ½x� must be 0 in

I qH2nðY1;Z;QÞl I qH2nðY2;Z;QÞG I qH2nðX ;Z;QÞ:

Therefore by the relative sequence, ½x� must be in the image of I qH2nðZ;QÞ. r

We can now proceed as in Wall [50]:

Since the intersection form restricted to K is non-singular, we have8) ðS?Þ? ¼ S.
Therefore the radical of the restriction of the intersection form to S? is S. This implies
that the form is non-singular when restricted to any additive complement L of S in S?.
We can thus complete the multiplication table for the intersection pairing on K as follows:

L S M

L A 0 0

S 0 0 B

M 0 B t D

Here LlS ¼ S?, M is an additive complement of S?, chosen so that L and M are
mutually annihilating under t. This can be done by an appropriate change of basis if nec-
essary, because the pairing is non-singular on L. The letters A, B, D represent matrices of
intersection numbers, and B t is the transpose of B. It appears because the intersection
pairing is symmetric. Furthermore, the form on S lM must be non-singular, because
the entire pairing on K is non-singular, and the annihilator of S in S lM must be

8) Clearly S H ðS?Þ?, and then we can apply dimension counting (dimðS?Þ ¼ dimðKÞ � dimðSÞ) since K

is finite dimensional.
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ðS lMÞXS? ¼ S. So S is self-annihilating on S lM, which implies that the signature of
the pairing on S lM is9) 0. It readily follows that sðKÞ ¼ sðLÞ.

Finally, we want to identify sðLÞ with the indicated Maslov triple index. To do this,
we first will identify L with a space W defined using the spaces A, B, and C that occur in
the Maslov index. For this part of the proof, we will refer to the following commutative
diagram of long exact sequences derived from the diagram (2).

I pH2nþ1ðX ;Z;QÞ d
I pH2nðZ;QÞ

ðiZHX Þ�
I pH2nðX ;QÞ

ðip!qÞ�

???y ðip!qÞ�

???y ðip!qÞ�

???y
I qH2nþ1ðX ;Z;QÞ d

I qH2nðZ;QÞ
ðiZHX Þ�

I qH2nðX ;QÞ

ðpq=pÞ�

???y ðpq=pÞ�

???y ðpq=pÞ�

???y
���! I q=pH2nþ1ðX ;Z;QÞ ���!d I q=pH2nðZ;QÞ ���!

ðiZHX Þ�
I q=pH2nðX ;QÞ ���!

d

???y d

???y d

???y
I pH2nðX ;Z;QÞ d

I pH2n�1ðZ;QÞ ���!
ðiZHX Þ�

I pH2n�1ðX ;QÞ ���!

����! ����! �����! ����!

����! ����! �����! ����!

�����! ����!

Recall again that the ‘‘connecting map’’ d can be described as acting on a representa-
tive chain x by taking x to its boundary qx, that an element of I q=pH�ðX ;Y ;GÞ can
be represented by a chain x such that qx ¼ aþ b with b a q-allowable chain in Y and a a
p-allowable chain in X , and, in this case, dx is represented by b.

As above, let

A ¼ ker
�
ðiZHY1

Þ� : I q=pH2nðZ;QÞ ! I q=pH2nðY1;QÞ
�
;

C ¼ ker
�
ðiZHY2

Þ� : I q=pH2nðZ;QÞ ! I q=pH2nðY2;QÞ
�
;

B ¼ ker
�
d : I q=pH2nðZ;QÞ ! I pH2n�1ðZ;QÞ

�
;

9) It is a standard fact about non-singular bilinear forms that their signatures are 0 if they possess a sub-

space U such that U ¼ U?, but it is harder than expected to find a clear, concise proof in the expository topology

literature. Thus we include a brief proof here, owing largely to the treatment in [8].

Suppose we have a non-singular symmetric form ð� ; �Þ on the finite dimensional vector space V . Let

Vþ, V� be the maximal positive definite, respectively negative definite, subspaces of V . Then by definition,

the signature of the form is s ¼ dimðVþÞ � dimðV�Þ. Let U be a subspace such that U? ¼ U . Since

dimðUÞ þ dimðU?Þ ¼ dimðVÞ, we have dimðUÞ ¼ 1
2

dimðVÞ. Clearly also U XVþ ¼ U XV� ¼ 0. But then

dimðVÞf dimðUÞ þ dimðVþÞ � dimðU XVþÞ ¼ dimðUÞ þ dimðVþÞ

and

dimðVÞf dimðUÞ þ dimðV�Þ � dimðU XV�Þ ¼ dimðUÞ þ dimðV�Þ

by the inclusion/exclusion formula. Thus 1
2

dimðVÞf dimðVþÞ and 1
2

dimðVÞf dimðV�Þ. But by diago-

nalizing the form, it follows easily from non-singularity that dimðVþÞ þ dimðV�Þ ¼ dimðVÞ. This forces

dimðVþÞ ¼ dimðV�Þ ¼ 1
2

dimðVÞ. Thus the signature must be 0.
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and define

W ¼ BX ðC þ AÞ
BXC þ BXA

:

The reader may want to refer back to Section 2.2 to recall how W comes into Wall’s
Maslov index.

We seek to define a map f : S? !W . To begin, for ½z1� A S?, define an element
~ff ð½z1�Þ A I q=pH2nðZ;QÞ as follows. If

½z1� A S?G I p!qH2nðX ;QÞX im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
;

then ½z1� is an element of I qH2nðX ;QÞ, and we can lift ½z1� (non-uniquely) to
½z2� A I qH2nðZ;QÞ. Let ~ff ð½z1�Þ ¼ ðpq=pÞ�ð½z2�Þ A I q=pH2nðZ;QÞ.

Proposition 4.6. For every ½z1� A S?, ~ff ð½z1�Þ A BX ðC þ AÞ. Further, up to elements

of BXAþ BXC, ~ff ð½z1�Þ is independent of the choice of ½z2� made in the definition, so ~ff
defines a map f : S? !W. The map f is a homomorphism.

Proof. We begin by demonstrating that ~ff ð½z1�Þ A BX ðC þ AÞ. First, ~ff ð½z1�Þ is by
construction in im

�
ðpq=pÞ�

�
, so by exactness of the q=p sequence, it lies in B. To see that

~ff ð½z1�Þ also lies in Aþ C, we note that

AG im
�
d : I q=pH2nþ1ðY1;Z;QÞ ! I q=pH2nðZ;QÞ

�

and

C G im
�
d : I q=pH2nþ1ðY2;Z;QÞ ! I q=pH2nðZ;QÞ

�

by the long exact sequence (3). So

Aþ C ¼ im
�
dþ d : I q=pH2nþ1ðY1;Z;QÞl I q=pH2nþ1ðY2;Z;QÞ ! I q=pH2nðZ;QÞ

�

G im
�
d : I q=pH2nþ1ðX ;Z;QÞ ! I q=pH2nðZ;QÞ

�
:

Now let us go through the definition of ~ff again carefully, referring to the diagram above. If
½z1� A S?, then by Corollary 4.4, z1 can be represented by a p-allowable cycle, a, in X (rep-
resenting a class in I pH2nðX ;QÞ) that is q-homologous to a q-allowable cycle, b, in Z which
represents the class ½z2� in the definition of ~ff . So ðiq=pÞ�ð½a�Þ ¼ ðiZHX Þ�ð½b�Þ in I qH2nðX ;QÞ.
Let x be a q-allowable ð2nþ 1Þ-chain in X realizing such a homology, i.e. qx ¼ b� a.
Since a is p-allowable in X and b is q-allowable in Z, x represents an element of
I q=pH2nþ1ðX ;Z;QÞ. By definition of d, the image dðxÞ in I q=pH2nðZ;QÞ is also represented
by b, and so is ðpq=pÞ�½b� ¼ ~ff ð½z1�Þ. Thus ~ff ð½z1�Þ A imðdÞ ¼ Aþ C.

Next, suppose that ½z2�; ½z 02� A I qH2nðZ;QÞ are two choices of lifts for the same

½z1� A S?H im
�
I qH2nðZ;QÞ ! I qH2nðX ;QÞ

�
;
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i.e., ðiZHX Þ�ð½z2�Þ ¼ ðiZHX Þ�ð½z 02�Þ ¼ ½z1�. Let

~ff ð½z1�Þ :¼ ðpq=pÞð½z2�Þ and ~ff 0ð½z1�Þ :¼ ðpq=pÞð½z 02�Þ:

We need to show that ~ff ð½z1�Þ � ~ff 0ð½z1�Þ A BXAþ BXC.

We have

½z2� � ½z 02� A im
�
d : I qH2nþ1ðX ;Z;QÞ ! I qH2nðZ;QÞ

�

G im
�
dþ d : I qH2nþ1ðY1;Z;QÞl I qH2nþ1ðY2;Z;QÞ ! I qH2nðZ;QÞ

�
:

Let ½x1�, ½x2� be elements, respectively, of I qH2nþ1ðY1;Z;QÞ, I qH2nþ1ðY2;Z;QÞ such that
d½x1� þ d½x2� ¼ ½z2� � ½z 02�. Then d � ðpq=pÞ�ð½x1�Þ A BXA and d � ðpq=pÞ�ð½x2�Þ A BXC. So
ðpq=pÞð½z2� � ½z 02�Þ ¼ ðpq=pÞ � dð½x1� þ ½x2�Þ A BXAþ BXC as required.

Putting our arguments so far together, we see that f is well-defined as a function from
S? to W . But f is then also a homomorphism since for a sum ½z1� þ ½z 01�, we can certainly
find a lift of the form ½z2� þ ½z 02�, we have just shown that this choice is acceptable and does
not a¤ect the image, and the other maps are all homomorphisms. r

Now we can let f ð½z1�Þ ¼ ½z3�, where by an abuse of notation, ½z3� is also taken to be
the class that z3 represents in W as ~ff ð½z1�Þ.

Proposition 4.7. The map f surjects onto W with kernel S, hence LGW.

Proof. First we show that f : S? !W is surjective. Suppose ½x� is a class
in BX ðAþ CÞ. Since ½x� A B, there exists an ½x2� A I qH2nðZ;QÞ with ðpq=pÞ�½x2� ¼ ½x�.
To get surjectivity of f , we need to show there is a ½v� A I pH2nðX ;QÞ such that
ðip!qÞ�½v� ¼ ðiZHX Þ�½x2� :¼ ½x1�. Then f ½x1� ¼ ½x�.

It might aid the reader to refer to the schematic in Figure 2 during the following
argument.

Figure 2. A schematic for the argument that f is surjective.

Since ½x� A Aþ C, we can write ½x� ¼ ½a� þ ½c�, where ½a� A A and ½c� A C. Since
½a� A A, it is the image under d of some ½y1�, which may be represented by a q-allowable
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chain y1 with support in Y1 such that qy1 ¼ aþ w1 and w1 is a p-allowable relative
2n-chain in Y1. Similarly, there is a q-allowable chain y2 with support in Y2 such that
qy2 ¼ cþ w2 and w2 is a p-allowable 2n-chain in Y2. Then d½y1� ¼ ½w1� and d½y2� ¼ ½w2�.
Since x is also in B, d½x� ¼ ½qx� ¼ ½0� A I pH2n�1ðZ;QÞ, so there is a p-allowable chain u in
Z such that qu ¼ qx ¼ qaþ qc. Now consider the p-allowable 2n-chain v ¼ w1 þ uþ w2.
We have

qðw1 þ uþ w2Þ ¼ qw1 þ quþ qw2

¼ �qaþ qaþ qc� qc

¼ 0;

so v represents a class ½v� A I pH2nðX ;QÞ, and

qðy1 þ y2Þ ¼ qy1 þ qy2

¼ aþ w1 þ cþ w2

¼ aþ c� uþ w1 þ uþ w2:

In other words, y1 þ y2 provides a q-allowable homology from the p-allowable
cycle �ðw1 þ uþ w2Þ in X to the q-allowable cycle aþ c� u in Z. This means
that ðip!qÞ�½v� ¼ ðiZHX Þ�½aþ c� u�, so we can set ½x2� ¼ ½aþ c� u� and we get that
½x1� ¼ ðiZHX Þ�½aþ c� u� A S? by Corollary 4.4. Finally, since u is p-allowable, we have
that ðpq=pÞ�½x2� ¼ ðpq=pÞ�½aþ c� u� ¼ ½aþ c� ¼ ½x� as desired.

Lastly, we must show that ker f ¼ S, which will su‰ce, as L is an additive comple-
ment of S in S?. Suppose

½x� A S ¼ K X im
�
I pH2nðY1;QÞl I pH2nðY2;QÞ ! I p!qH2nðX ;QÞ

�
:

Then we can write ½x� ¼ ðip!qÞ�½x1 þ x2�, where each xi is a p-allowable cycle with support
in Yi. Since ½x� A K , we get

ðpX ;ZÞ�½x� ¼ ½0� A I qH2nðY1;Z;QÞl I qH2nðY2;Z;QÞG I qH2nðX ;Z;QÞ

(or else its image would be non-trivial in I p!!qH2nðY1;Z;QÞl I p!!qH2nðY2;Z;QÞ and thus
it could not be orthogonal to this group, on which the intersection pairing is non-singular).
So the cycle x1 þ x2 which we can take to represent ½x� is q-homologous to a cycle in Z. But
using that I qH2nðX ;Z;QÞG I qH2nðY1;Z;QÞl I qH2nðY2;Z;QÞ, it follows that each of x1

and x2 is individually q-homologous to a q-allowable cycle in Z. Thus ½x1� and ½x2� are
each individually elements of K and so are individually elements of S. We claim that
f ð½x1�Þ A BXA and f ð½x2�Þ A BXC; the proofs are the same so we will just show the first.
Let y1 be a q-homology in Y1 from x1 to a q-chain x 01 with support in Z. Then x 01 represents
f ð½x1�Þ, and it is clear that f ð½x1�Þ A B since x 01 is a cycle. But it is also clear that ½x 01� A A,
since qy1 ¼ x 01 � x1, which is the sum of a q-allowable chain on Z and a p-allowable
chain on Y1, thus y1 is a cycle in I q=pH2nþ1ðX ;Z;QÞ and d½y1� ¼ ½x 01�. It follows now that
f ðSÞ ¼ 0 A W .
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Conversely, suppose ½x� A S? and that f ð½x�Þ ¼ 0 A W , i.e. f ð½x�Þ A BXAþ BXC.
We will show that ½x� A S; the reader may want to refer to Figure 3 for a schematic of the
construction.

Figure 3. A schematic for the argument that kerð f ÞHS.

Since ½x� A S?, we can assume by Corollary 4.4 that ½x� is represented by a
q-allowable cycle x supported in Z, and this same chain represents f ð½x�Þ. Since

f ð½x�Þ A BXAþ BXC H I q=pH2nðZ;QÞ;

there is a q-allowable chain z supported in Z such that qz ¼ x� ðx1 þ x2Þ � u, where
½x1� A BXA, ½x2� A BXC, and u is p-allowable in Z. Note that x1 and x1 þ u represent
the same element of BXA, so we can represent f ð½x�Þ as ½x1 þ u� þ ½x2� in BXAþ BXC.
Since ½x1 þ u� A B, 0 ¼ d½x1 þ u� ¼ ½qðx1 þ uÞ� A I pH2n�1ðZ;QÞ, so there is a 2n-dimensional
p-chain w in Z such that qw ¼ qðx1 þ uÞ, which are both p-allowable. Notice also
that x1 þ u� w is a cycle in the usual sense (its boundary is identically 0), and u� w

is p-allowable, so ½x1 þ u� w� ¼ ½x1� A BXA. Because this class is also in A, there is
a (2nþ 1)-dimensional q-chain y1 in Y1 such that qy1 ¼ x1 þ u� w� p1, where p1 is
p-allowable. Notice that 0 ¼ qqy1 ¼ qðx1 þ u� wÞ þ qp1 ¼ qp1, so qp1 ¼ 0, and p1 is a
cycle in Y1. But now we observe that ½p1� is in S: it is represented by a p-cycle in Y1,
and since it is q-homologous by y1 to a cycle supported in Z, it is orthogonal to
I p!!qH2nðY1;ZÞl I p!!qH2nðY2;ZÞ. Now observe that qqz ¼ 0 and qx ¼ 0, so that
qðx1 þ uÞ ¼ �qx2. Thus by a similar argument, there is a ½p2� A S represented by a cycle
p2 in Y2 that is q-homologous by some y2 to the cycle x2 þ w. Putting these together,
p1 þ p2 is q-homologous to x1 þ u� wþ x2 þ w ¼ x1 þ uþ x2. But we have already
seen that x1 þ uþ x2 is q-homologous to x, and so ½p1 þ p2� ¼ ½x� A I qH2nðX ;QÞ. Thus
½x� A S. r

Finally, we must show that, under our isomorphism LGW , the signature of L be-
comes the Maslov index sðV ;A;B;CÞ associated with the pairing F on

V ¼ I q=pH2nðZ;QÞ:

For this Maslov triple index to make sense, we need the spaces A, B, and C to be self-
annihilating subspaces of V under the pairing Fð½x�; ½y�Þ :¼ e½x t qyþ ð�1Þn�jxjðqxÞ t y�,
so we need the following lemma.
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Lemma 4.8. FðA� AÞ ¼ FðB� BÞ ¼ FðC � CÞ ¼ 0.

Proof. It is clear that FðB� BÞ ¼ 0, for if ½x� A B, then

½x� A im
�
I qHiðZ;QÞ ! I q=pHiðZ;QÞ

�
:

So ½x� can be represented as a q-cycle, i.e. qx ¼ 0. Thus if ½x�; ½y� A B, certainly
Fð½x�; ½y�Þ ¼ 0 from the definition.

Now suppose ½x�; ½y� A A are represented by q-allowable chains x, y in stratified gen-
eral position in Z. The fact that ½x�; ½y� A A means that there exist q-allowable ð2nþ 1Þ-
chains x, h in Y1 such that qx ¼ xþ u, qh ¼ yþ v, and u, v are p-allowable chains in Y1.
We can assume that x and h are in stratified general position rel Z and that in a collared
neighborhood of Z, x looks like ½0; 1� � x and h looks like ½0; 1� � y. Consider the chain
x t v� u t h in Y1. Since u and v are p-allowable and h and x are q-allowable, this is a
well-defined t-allowable 1-chain. Next we compute, using tY1

to denote intersection num-
bers in Y1 and tZ to denote those in Z,

qðx tY1
v� u tY1

hÞ ¼ ðqxÞ tY1
vþ ð�1Þ4n�jxjx tY1

qv� ðquÞ tY1
h� ð�1Þ4n�juj

u tY1
qh

¼ ðqxÞ tY1
v� x tY1

qv� ðquÞ tY1
h� u tY1

qh

¼ ðxþ uÞ tY1
vþ x tY1

qyþ qx tY1
h� u tY1

ðyþ vÞ

¼ x tY1
vþ u tY1

vþ x tY1
qyþ qx tY1

h� u tY1
y� u tY1

v

¼ x tY1
qyþ qx tY1

h

¼ x tZ qyþ ð�1Þjqxjqx tZ y

¼ x tZ qy� qx tZ y

¼ F̂Fð½x�; ½y�Þ:

Here we have used that Z is ð4n� 1Þ-dimensional, Y1 is 4n-dimensional, x, y, u, v are
2n-dimensional, and x, h are ð2nþ 1Þ-dimensional. We have also used the geometrically
clear fact that x does not intersect v and y does not intersect u, which follows from x

and y being in stratified general position and our collar assumptions on x and h. For
the sign conventions relating intersection numbers in Y1 with those in Z, see the Appendix.
We conclude from this argument that the intersection number Fð½x�; ½y�Þ must be 0, as
F̂Fð½x�; ½y�Þ represents the boundary of a 1-chain in Y1. Thus FðA� AÞ ¼ 0. An analogous
argument shows that FðC � CÞ ¼ 0. r

Now we can relate the intersection pairing on LH I p!qH2nðX ;QÞ to the pairing F on
V ¼ I q=pH2nðZ;QÞ. Suppose that ½x�; ½y� A LHS?. Then ½x� and ½y� can be represented by
q-allowable cycles x and y in Z that are homologous via q-allowable chains w and g in X to
p-allowable cycles ~xx and ~yy in X . By definition, ½x� t ½y� ¼ e½~xx tX y�.

The representatives x and y descend also to represent classes ½x� and ½y� in
BX ðAþ CÞH I q=pH2nðZ;QÞ, which in turn represent f ð½x�Þ and f ð½y�Þ in W . Since
½y� A Aþ C, we can write ½y� ¼ ½a� þ ½c� A I q=pH2nðZ;QÞ, where ½a� A A, ½c� A C are
represented by q-allowable chains in Z, and y is q homologous to aþ cþ w for some
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p-allowable chain w on Z. Since ½a� A A and ½c� ¼ ½cþ w� A C, there exist q-allowable
chains x A Y1 and h A Y2 such that qx ¼ aþ u, qh ¼ cþ vþ w, and u, v are p-allowable
chains in Y1 and Y2, respectively with boundaries in Z. We can further assume that in
the collar neighborhood of Z, x and h have a product structure ½�1; 0� � a and
½0; 1� � �v� w and that all chains are in stratified general position. Observe that
aþ wþ c is q-homologous to the p-cycle �u� v via xþ h.

Now again consider the pairing ½x� t ½y� in I p!qH2nðX ;QÞ. We have

~xx tX y ¼ ~xx tX ðaþ cþ wÞ ¼ ~xx tX ð�u� vÞ:

Now we have a p-allowable chain on the right, so we can replace ~xx with the q-allowable
chain xHZ to which it is q-homologous to obtain x tX ð�u� vÞ. By pushing x into Y1

along the collar and using the product structure of u near Z, we get this is equal to the
intersection x tX ð�uÞ ¼ x tZ ð�quÞ ¼ x tZ qa. But after augmentation, this is precisely
the pairing F on I q=pH2nðZ;QÞ, Fð½x�; ½a�Þ :¼ e½x tZ qaþ ð�1Þn�jxjðqxÞ tZ a� because x is
a cycle, and by definition this is in turn equal to C

�
f ð½x�Þ; f ð½y�Þ

�
on W . Thus the intersec-

tion pairing on L may be identified with the pairing C on W as desired.

To check the sign in this last equality, we must be careful about which roles A and C

are playing. Certainly we have

BX ðAþ CÞ
BXAþ BXC

G
BX ðC þ AÞ

BXC þ BXA

as spaces, but A and C play di¤erent roles in the pairing. In Wall [50], the choice of which
plays which role is determined so that A is associated to the half of the space whose bound-
ary orientation agrees with the orientation of the intersection and C is associated with the
space whose boundary has the opposite orientation of that assigned to the intersection.
Thus we can let Wall’s A correspond to ours and Wall’s C corresponds to ours, and we
can also use the order B, C, A for these subspaces. So, since ½x� represents an element of
B, our Fð½x�; ½a�Þ corresponds to Wall’s

�Fðelement of first subspace; element of last subspaceÞ;

where the negative sign comes from our choice of y ¼ aþ c rather than the yþ aþ c ¼ 0
that Wall uses. So, using (1), this is Cð½x�; ½y�Þ. Thus the intersection pairing restricted
to S? is taken to Wall’s pairing C determined from F on W , and we conclude by Wall’s
definition that sðLÞ ¼ sðW ;A;B;CÞ.

This completes the proof of Theorem 4.1. r

4.2. q-stratified pseudomanifolds. If we start with an s-closed pseudomanifold X and
decompose it as Y1 WZ Y2 along a pseudomanifold Z which is not a stratum of X , then Y1

and Y2 with the subspace stratification induced from X are q-stratified pseudomanifolds.
We would like to be able to further decompose X by cutting the Yi into pieces, but to do
this, we need a version of our non-additivity theorem for a q-stratified pseudomanifold. To
get this result as a corollary of Theorem 4.1, we use the restratification trick we discussed in
Section 3.1.
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For intuition, consider Figure 4, where X 4k is a compact oriented q-stratified pseu-
domanifold with boundary qX ¼W such that X ¼ Y1 WZ Y2. Assume that Y1, Y2 are
compact oriented q-stratified pseudomanifolds such that Y1 XY2 ¼ qY1 X qY2 ¼ Z is a
bicollared (in X ) q-stratified pseudomanifold such that qY1 ¼ Z W�W1, qY2 ¼W2 W�Z,
and qW1 ¼ qW2 ¼ qZ. Also assume that ðW1; qW1ÞH ðY1;ZÞ and ðW2; qW2ÞH ðY2;ZÞ,
ðZ; qZÞH ðY1;W1Þ, and ðZ; qZÞH ðY2;W2Þ are collared as pairs. Note that
qX ¼W2 W�W1. The orientations are chosen to agree with Wall’s conventions in [50]
(see also Section 5, below).

Figure 4. A schematic of a splitting of a q-stratified pseudomanifold (left) and a flatter schematic of the relative

orientations (right).

Note that since X is a q-stratified pseudomanifold with boundary W , W is not a
union of strata of X . We begin by restratifying X so that W becomes a union of strata,
and we obtain a stratified pseudomanifold which we will denote by X̂X (remember, though,
that X ¼ X̂X as topological spaces). The strata of X̂X are defined as follows:

(i) S XX �W is a stratum of X̂X for each stratum S of X .

(ii) S XW is a stratum of X̂X for each stratum S of X such that S XW 3j.

It is not hard to see that X̂X is a PL stratified pseudomanifold. In fact, certainly X

and X̂X agree o¤ W , and if N GW � ½0; 1�H X̂X is a collared neighborhood of W with
W ¼W � f1g, then under the subspace stratification from X̂X , N is stratified as the product
of W , with its stratification inherited from X , and ½0; 1� with the stratification ½0; 1�I f1g.
Let ŶY i, ẐZ and ŴW i be the restratifications of Yi, Z and Wi as subspaces of X̂X . Note that,
with these stratifications, X̂X and ẐZ are PL stratified pseudomanifolds in particular without

boundary, while qŶY 1 ¼ ẐZ and qŶY 2 ¼ �ẐZ.

Suppose p, q are perversities on X , and induced also on the subspaces Yi. Let p̂p be the

perversity on ŶY i that agrees with p on Yi �Wi and is such that p̂pðSÞ < 0 for all S H ŴW i.
Let q ¼ t� p. Note that then q̂qðSÞ > tðSÞ for all S H ŴW i. Then we get the following
isomorphisms of intersection homology groups.

Lemma 4.9. (i) I p̂pH�ðX̂X ;GÞG I pH�ðX ;GÞ and I q̂qH�ðX̂X ;GÞG I qH�ðX ; qX ;GÞ.

(ii) I p̂pH�ðẐZ;GÞG I pH�ðZ;GÞ and I q̂qH�ðẐZ;GÞG I qH�ðZ; qZ;GÞ.

(iii) I p̂pH�ðŶY i;GÞG I pH�ðYi;GÞ and I q̂qH�ðŶY i; ẐZ;GÞG I qH�ðYi; qYi;GÞ.
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Therefore:

(iv) I p̂p!q̂qH�ðX̂X ;GÞG I p!!qH�ðX ; qX ;GÞ.

(v) I p̂p!q̂qH�ðẐZ;GÞG I p!!qH�ðZ; qZ;GÞ.

(vi) I p̂p!!q̂qH�ðŶY i; ẐZ;GÞG I p!!qH�ðYi; qYi;GÞ.

Furthermore, these last isomorphisms preserve the intersection pairing when G is a ring.

Proof. We will show the proof for ŶY i; the others are the same (though easier with-
out the extra stratified boundary component).

By [24], Lemma 2.4, we may assume p̂p to be arbitrarily negative on ŴW i. Therefore, it
follows from the definition that no p̂p-allowable simplex can intersect ŴW i. Thus

I p̂pH�ðŶY i;GÞG I p̂pH�ðŶY i � ŴW i;GÞG I pH�ðYi �Wi;GÞG I pH�ðYi;GÞ;

the last isomorphism by stratum-preserving homotopy equivalence.

Next, by [24], Lemma 2.4, we might assume q̂q to be arbitrarily large on ŴW i. Thus
there is no impediment to chains intersecting Wi. Thus in the neighborhood N of ŴW i

that is the product of Wi with ð0; 1�I f1g, all allowable chains are homologous by
product homologies to chains in ŴW i. But as ŴW i consists entirely of singular strata, the
coe‰cient system is 0 there, and so I q̂qH�ðN;GÞ ¼ 0 and similarly I q̂qH�ðN;N XZ0;GÞ ¼ 0.
The isomorphism I q̂qH�ðŶY i; ẐZ;GÞG I qH�ðYi; qYi;GÞ now follows by some easy argu-
ments from the Mayer–Vietoris sequence for the pair consisting of ðN;N XZ0Þ and
ðŶY i � ŴW i; ẐZ � ŴW i X ẐZÞ.

The rest of the lemma follows easily. r

Let V̂V ¼ I q̂q=p̂pH2nðẐZ;QÞ equipped with the anti-symmetric pairing F. Let

ÂA ¼ ker
�
I q̂q=p̂pH2nðẐZ;QÞ ! I q̂q=p̂pH2nðŶY 1;QÞ

�
;

ĈC ¼ ker
�
I q̂q=p̂pH2nðẐZ;QÞ ! I q̂q=p̂pH2nðŶY 2;QÞ

�
;

B̂B ¼ ker
�
d : I q̂q=p̂pH2nðẐZ;QÞ ! I p̂pH2n�1ðẐZ;QÞ

�
:

Corollary 4.10. sp!!qðXÞ ¼ sp!!qðY1Þ þ sp!!qðY2Þ þ sðV̂V ; ÂA; B̂B; ĈCÞ.

Proof. The corollary follows from Theorem 4.1 and the preceding lemma. r

It is reasonable to ask the following question: Is it possible to identify sðV̂V ; ÂA; B̂B; ĈCÞ as
an invariant of a pairing involving only subspaces of intersection homology groups associ-
ated with Z? Unfortunately, the obvious choices do not seem to be correct. For example,
sðV̂V ; ÂA; B̂B; ĈCÞ cannot be the signature of the pairing F on

im
�
I q=pH2nðZÞ ! I q=pH2nðZ; qZÞ

�
;
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which would be a natural guess. To see this, suppose all spaces are manifolds with
boundary as in Wall’s original non-additivity theorem. In this case, Z is a manifold and
I q=pH2nðZÞ ¼ 0. Thus this term would always have to be 0, which is certainly not true.
Another natural guess would be that sðV̂V ; ÂA; B̂B; ĈCÞ would be expressible in terms of a pair-
ing on the intersection homology of qZ. However, this cannot be, as Theorem 4.1 should
be a special case of Corollary 4.10 in which all stratified boundaries (except for the inter-
section Z itself) are empty. In such a case, any groups associated with qZ would vanish,
and this would violate the existence of the Maslov index term in Theorem 4.1.

Remark 4.11. Rather than restratifying as we have done, it is tempting to do
‘‘the usual thing’’ and treat q-stratified pseudomanifolds by simply adding a cone on the
boundary and working with the resulting space. However, that will not quite do here, as
Z WqZ cðqZÞ will not generally be bicollared in X WqX cðqXÞ.

One alternative would be the following construction. Beginning with the bicollared
Z � ½0; 1�HX , consider X 0 ¼ X WqZ�½0;1�

�
cðqZÞ � ½0; 1�

�
. Then X 0 has stratified bound-

aries homeomorphic to W1 WqZ cðqZÞ and W2 WqZ cðqZÞ. By separately coning o¤ these
stratified boundary components we get a space X 00 that possesses strata ½0; 1�I f0; 1g and
such that X 00 � ½0; 1� is homeomorphic to the interior of X . If the perversities p and q are
extended so that p takes values < 0 on the new strata and q takes values > t on the new
strata, then the intersection homology of X 00 with these perversities is homeomorphic to
that of X̂X with respect to p̂p and q̂q.

5. Relation to Wall’s non-additivity theorem

If we take our q-stratified pseudomanifolds to be q-manifolds, then, as expected, we
recover Wall’s non-additivity theorem. The relationship between our Maslov index and
Wall’s is not completely obvious, as the pairing F requires interpretation from the manifold
point of view. We will show that, in fact, if M is a q-manifold with non-empty manifold
boundary and X is the pseudomanifold obtained by coning o¤ qM, then I q=pH�ðX Þ is just
H��1ðqMÞ and the pairing F is the intersection pairing on qM, up to sign.

Suppose M m is a compact q-manifold with non-empty manifold boundary, qM. Let
X denote M WqM cðqMÞ. We suppose X is stratified as X I v, where v is the cone vertex.
Let p, q be perversities for which pðvÞ < 0 and qðvÞ > m� 2. Then I pH�ðX ;GÞGH�ðM;GÞ
and I qH�ðX ;GÞGH�ðM; qM;GÞ. We would then expect from the long exact sequences of
the pairs that I q=pH�ðX ;GÞGH��1ðqM;GÞ. We will make this isomorphism explicit.

Suppose x is an j-chain in qM. Let cx denote the chain obtained by coning o¤ x in
cðqMÞHX . In other words, if x ¼

P
aisi, then cx ¼

P
aicðsiÞ, where for a simplex s,

cðsÞ : D jþ1 ! X is the cone on the map s : D j ! qM obtained by extending s linearly
to the cone vertex. We take the convention that the new vertex is the first vertex in cs.
With this convention, qðcxÞ ¼ xþ cðqxÞ. This coning c determines a homomorphism
c : C��1ðqM;GÞ ! I q=pC�ðX ;GÞ, since every cx is q-allowable, as can be confirmed from
the definition of allowability as

�
cðsÞ

��1ðvÞH the 0-skeleton of D jþ1 for every singular sim-
plex s in qM. Furthermore, c is a chain map, as qðcxÞ ¼ xþ cðqxÞ ¼ cqx A I q=pC�ðX ;GÞ,
since x is p-allowable. As a chain map, c induces a homomorphism on homology, which we
claim is an isomorphism.

84 Friedman and Hunsicker, Additivity and non-additivity for perverse signatures

Brought to you by | Loughborough University
Authenticated

Download Date | 4/1/15 1:42 PM



Lemma 5.1. The homomorphism c induces an isomorphism

H��1ðqM;GÞ ! I q=pH�ðX ;GÞ:

Proof. Consider the diagram (with coe‰cients suppressed)

���! Hiþ1ðM; qMÞ HiðqMÞ HiðMÞ HiðM; qMÞ ���!???y
???y

???y
???y

I qHiþ1ðX Þ I q=pHiþ1ðX Þ ���! I pHiðX Þ I qHiðXÞ

����! �����! ���!

����! ����! ����! ����!:

It will su‰ce to show this diagram commutes (up to sign). The map from HiðMÞ to
I pHiðXÞ is given by inclusion, the map HiðM; qMÞ to I qHiðXÞ is given by taking a repre-
sentative x to x� cðqxÞ.

It is easy to check the squares on the right and in the middle commute. For the square
on the left, note that if x is a chain representing an element of Hiþ1ðM; qMÞ, then the image
of x� cðqxÞ in I q=pHiþ1ðXÞ is simply �cðqxÞ as x is p-allowable. This is enough to establish
that the left square commutes up to sign. Thus the diagram commutes up to sign and has
exact rows, which is enough to establish the isomorphism via the five-lemma. r

Proposition 5.2. If R is a ring and M is a 4n� 1 q-manifold, the isomorphism c of the

preceding lemma takes the intersection pairing H2n�1ðqM;RÞnH2n�1ðqM;RÞ ! R to the

pairing �F : I q=pH2nðX ;RÞn I q=pH2nðX ;RÞ ! R, i.e. ½x� t̂tqM ½y� ¼ �Fðc½x�; c½y�Þ.

Proof. Suppose x A CiðqM;RÞ, y A CjðqM;RÞ, represented by cycles in general
position. Let cx be the cone on x as described above, and let cy be the cone on y

except assuming that y has first been pushed outward slightly into cqM HX along
the cone line so that x does not intersect cy. In fact, we observe geometrically that
x tX cy ¼

�
qðcxÞ

�
tX cy ¼ 0, while ðcxÞ tX y ¼ ðcxÞ tX qðcyÞ must equal x tqM y up to

sign. This will establish the claim once we work out the sign.

We write out the argument in simplicial notation, which of course is not quite the
actual situation, but it provides the correct intuition and reasoning. With this abuse of
notation, simplices of cx have the form ½v; s� ¼ ½v; v0; . . . ; vi�, where v is the singular point
of X and the vi are the vertices of s, a simplex of x. The orientation here corresponds to a
basis of vectors ½v; v0�; . . . ; ½v; vi�. To compare with the orientation of s, though, it is best to
note that ½v; v0; . . . ; vi� ¼ �½v0; v; v1; . . . ; vi�. Here ½v0; v; v1; . . . ; vi� has an orientation corre-
sponding to a basis of vectors ½v0; v�; ½v0; v1�; . . . ; ½v; vi�, which is a basis for s with a vector
from v0 to v, which corresponds to an outward pointing normal from M, adjoined at the
beginning. Thus, using our conventions from the Appendix,

Fðc½x�; c½y�Þ ¼ e½cx tX qðcyÞ� ¼ e½cx tX y� ¼ e½�x tqM y�: r

There is an alternative way to formulate the above correspondences using codi-
mension one strata. In particular, instead of forming X , we can stratify M as M I qM,
where qM is treated as a codimension one stratum of the stratified space M. If we
then choose perversities p, q such that pðqMÞ < 0, qðqMÞf 0, then we will again have
I pH�ðM;GÞ ¼ H�ðM;GÞ and I qH�ðM;GÞ ¼ H�ðM; qM;GÞ. This follows from [24],
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Lemma 2.4, which says that this is equivalent to choosing pðqMÞ arbitrarily negative and
qðqMÞ arbitrarily large, and then simple arguments taking into account with the stratified
coe‰cient system.

Using this alternative correspondence, we can recover Wall’s non-additivity theorem
[50]. In Wall’s situation, we suppose M 4n is a compact oriented q-manifold with manifold
boundary W such that M ¼M1 WM2, where M1, M2 are compact oriented q-manifolds
and M1 XM2 ¼ qM1 X qM2 is a q-manifold N such that qM1 ¼ N �W1, qM2 ¼ B2 �N,
and qN1 ¼ qN2 ¼ qN ¼ P.

Let V ¼ H2n�1ðP;QÞ, and let A, B, C be the respective kernels of the maps induced
by inclusion from V to H2n�1ðW1;QÞ, H2n�1ðN;QÞ, H2n�1ðW2;QÞ. For a 4n q-manifold,
sðMÞ denotes the signature of the pairing on im

�
H2nðM;QÞ ! H2nðM; qM;QÞ

�
.

Corollary 5.3 (Wall). sðMÞ ¼ sðM1Þ þ sðM2Þ � sðV ;A;B;CÞ.

Proof. Wall’s theorem follows from our Theorem 4.1 as follows. Restratify M as
M I qM and choose pðqMÞ arbitrarily negative and

qðqMÞ ¼ tðqMÞ � pðqMÞ ¼ �1� pðqMÞ:

Then,

I pH�ðM;GÞ ¼ H�ðM;GÞ; I qH�ðM;GÞ ¼ H�ðM; qM;GÞ;

I pH�ðMi;GÞ ¼ H�ðMi;GÞ; I qH�ðMi;N;GÞ ¼ H�ðMi; qMi;GÞ:

In particular,

I p!qH�ðM;QÞG im
�
H�ðM;QÞ ! H�ðM; qM;QÞ

�
;

I p!!qH�ðMi;N;QÞG im
�
H�ðMi;QÞ ! H�ðMi; qMi;QÞ

�
:

Furthermore, by Lemma 5.1 and Proposition 5.2, I q=pH�ðN;QÞGH��1ðP;RÞ with F cor-
responding to the negative of the intersection pairing on P. The corollary thus follows from
Theorem 4.1. r

6. Calculational tools and examples

In this section, we provide some calculational tools for perverse signatures by apply-
ing our (non-)additivity theorem and use these to calculate some examples of perverse
signatures. Some of our tools are versions of standard results in the signature package for
manifolds.

The first tool is a version of Novikov additivity for perverse signatures.

Corollary 6.1. With the hypotheses of Theorem 4.1, suppose

I pH2nðZ;QÞ ! I qH2nðZ;QÞ
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is surjective and I pH2n�1ðZ;QÞ ! I qH2n�1ðZ;QÞ is injective. Then

sp!qðXÞ ¼ sp!!qðY1Þ þ sp!!qðY2Þ;

as in Novikov’s additivity theorem. In particular, Novikov additivity holds if Z is a closed

oriented manifold with trivial stratification.

Proof. In this case, I q=pH2nðZ;QÞ ¼ 0 by the long exact sequence relating p and q

intersection homology. Thus V and hence sðV ;A;B;CÞ are trivial. r

From this, we can recover Siegel’s theorem regarding Novikov additivity of Witt
spaces [47]. Indeed, when X , Yi, Z are all Witt-spaces, I mH�G I nH� for each, and thus
sm!nðXÞ ¼ sm!!nðY1Þ þ sm!!nðY2Þ. These signatures sm!nðX Þ and sm!nðY1Þ are just the
signatures of the middle-perversity middle-dimension intersection pairings on these Witt
spaces [47].

A weak form of the cobordism invariance also follows from Corollary 6.1. Let SX

denote the union of singular strata of the stratified pseudomanifold X , and let NðSX Þ
denote the (closed) regular neighborhood of SX in X . Let W be a compact q-stratified
pseudomanifold whose stratified boundary is the disjoint union X q�Y . Suppose further
that NðSX ÞGNðSY Þ and that NðSW ÞGNðSX Þ � I with NðSX Þ � 1 identified with NðSX Þ
and NðSX Þ � 0 identified with NðSY Þ. We will refer to such a W as a bordism relS from X

to Y and say that X and Y are cobordant relS.

Proposition 6.2. If X and Y are s-closed 4n-dimensional stratified pseudomanifolds

that are cobordant relS, then sp!qðX Þ ¼ sp!qðYÞ.

Proof. The pseudomanifolds X and Y can be decomposed, respectively, as
M WqM NðSX Þ and M 0WqM 0 NðSY Þ, where M and M 0 are manifolds. Thus by Corol-
lary 6.1,

sp!qðXÞ ¼ sðMÞ þ sp!!q

�
NðSX Þ

�
;

sp!qðYÞ ¼ sðM 0Þ þ sp!!q

�
NðSY Þ

�
¼ sðM 0Þ þ sp!!q

�
NðSX Þ

�
:

Thus is su‰ces to show sðMÞ ¼ sðM 0Þ. But

q
�
W � int

�
NðSW Þ

��
¼M WqM ðqM � IÞW�qM 0 �M 0GM WqM �M 0:

Thus 0 ¼ sðM WqM �M 0Þ ¼ sðMÞ � sðM 0Þ, by ordinary Novikov additivity and the bord-
ism invariance of manifold signatures. r

The resulting cobordism group is infinite dimensional since each possible boundary
neighborhood yields at least one distinct cobordism class. Because it does not permit
cobordisms that change a neighborhood of the singular stratum, it is not really in the
same vein as the cobordism invariants known for manifolds, Witt spaces, and Banagl
non-Witt spaces, which play important roles in the signature packages in those settings.
We are hopeful, however, that it may be possible in the future to define a set of spaces for
which various perverse signatures satisfy a better cobordism invariance.
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The next tool is a version of the standard multiplicativity of signatures.

Lemma 6.3. Suppose Y is an s-closed oriented 4k-dimensional pseudomanifold and

that N is a closed oriented 4n-dimensional manifold. Then for perversities pe q, pþ q ¼ t,
we have sp!qðN � YÞ ¼ sðNÞsp!qðYÞ.

Proof. By the Künneth theorem for intersection homology in which one term is a
manifold (see [35], which extends to more general perversities and stratified coe‰cients),
I pH�ðN � Y ;QÞGH�ðM;QÞn I pH�ðY ;QÞ, and similarly for q. Thus, by the naturality
of the Künneth theorem, I p!qH�ðN � Y ;QÞGH�ðN;QÞn I p!qH�ðY ;QÞ. The lemma
now follows just as it does for manifolds (e.g. [33], [18]), using stratified general position
arguments to see that the intersection pairing of the product behaves as one expects. r

This allows us to construct a non-trivial example of a perverse signature that is
neither a Witt signature nor an example of one of Banagl’s non-Witt signatures.

Example 6.4 (non-trivial perverse signature of a space that is neither Witt nor non-
Witt). Suppose W is a compact oriented 4k-dimensional Q-Witt space with non-zero
Witt signature. Let M be a 4m-dimensional connected compact oriented PL q-manifold
with non-empty boundary qM. Consider the space X ¼M �W WqM�W qM � cW , i.e.
the space obtained from M �W by coning o¤ the stratified boundary fiberwise. Then X

is not a Witt space, as W is the link of the stratum qM � v, where v is the cone point
of the closed cone cW , and by assumption, W has non-vanishing middle-dimensional
middle-perversity intersection homology. Furthermore, because the signature of W

does not vanish, X cannot be a Banagl ‘‘non-Witt’’ space. Nonetheless, the signature
sm!nðXÞ is defined, and we will show that if qM is PL homeomorphic to S4m�1,
then sm!nðXÞ ¼ sðMÞsðW Þ, where sðMÞ is the usual manifold signature of M and
sðW Þ ¼ sm!nðW Þ is the Witt signature of W . By choosing appropriate M and W , we
can of course arrange for this to be non-trivial.

Let M̂M be the closed manifold M WS 4m�1 D4m. By Lemma 6.3,

sm!nðM̂M �WÞ ¼ sðMÞsm!nðWÞ ¼ sðMÞsðWÞ;

and the last equality holds because W is Witt. Notice that S4m�1 �W is also a Witt space
and so I mH�ðW ;QÞG I nH�ðW ;QÞ. Thus, by Corollary 6.1,

sm!nðM̂M �WÞ ¼ sm!!nðM �WÞ þ sm!!nðD4m �WÞ:

But D4m �W possesses an orientation-reversing self-homeomorphism, so

sm!!nðD4m �W Þ ¼ 0;

and sm!!nðM �WÞ is the Witt signature sm!!nðM �WÞ ¼ sðM �WÞ. Thus

sðM �WÞ ¼ sðMÞsðWÞ:

Returning now to our space X , obtained by coning o¤ the stratified boundary of
M �W fiberwise, we see by a second application of Corollary 6.1 that

sm!nðX Þ ¼ sðM �WÞ þ sm!nðS4n�1 � cWÞ:
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But S4n�1 � cW again possesses an orientation-reversing self-homeomorphism, so its per-
verse signature is 0. Putting the preceding arguments together, we obtain

sm!nðX Þ ¼ sðM �WÞ ¼ sðMÞsðWÞ:

The next examples are similar to results for standard signatures.

Example 6.5 (pseudomanifolds with involutions). If ðY1;ZÞ is homeomorphic to
ð�Y2;�ZÞ rel Z (i.e. by an isomorphism that fixes Z pointwise), then sp!qðXÞ ¼ 0. We
can see this as follows. Since Y1 G�Y2, their signatures are the negatives of each other.
In addition, with the hypotheses, it is clear that the inclusions

I q=pH2nðZ;QÞ ! I q=pH2nðY1;QÞ and I q=pH2nð�Z;QÞ ! I q=pH2nðY2;QÞ

are isomorphic maps with identical kernels (this is why we require Z to be fixed by the
homeomorphism). Therefore A ¼ C. But an odd permutation of the subspaces of A, B, C

alters sðV ;A;B;CÞ by a sign. Hence sðV ;A;B;CÞ ¼ 0.

Example 6.6 (suspensions). If X is the suspension of the s-closed stratified pseudo-
manifold Z, then sp!qðX Þ ¼ 0. This follows from the preceding example by taking Y1

and Y2 to be the two cones on Z.

This example can also be obtained with less machinery by observing that if pe q and
pþ q ¼ t, then in fact peme ne q, where m; n are the lower- and upper-middle perver-
sities. Thus I pH�ðX ;QÞ ! I pH�ðX ;QÞ factors through I mH�ðX ;QÞ and I nH�ðX ;QÞ. But
for a 4k-dimensional suspension X , I mH2kðX ;QÞ ¼ I nH2kðX ;QÞ ¼ 0.

The next lemma is a vanishing theorem for perverse signatures of cones.

Lemma 6.7 (perverse signatures of cones). Let pe q, pþ q ¼ t, and suppose Y

is an s-closed, oriented ð4n� 1Þ-dimensional pseudomanifold with closed cone cY. Then

sp!!qðcY Þ ¼ 0.

Proof. Notice that cY is a q-stratified pseudomanifold with qðcY Þ ¼ Y . By the stan-
dard cone formula for intersection homology, for any perversity r, I rH�ðcY ;QÞ is either 0
or isomorphic to I rH2nðY ;QÞ, with the isomorphism determined by inclusion Y ,! cY .
Thus I p!!qH2nðcY ;Y ;QÞ ¼ 0, because any possible non-zero element ½x� A I pH2nðcY ;QÞ
can be written with the support of x in Y , and so the image of ½x� is 0 in I qH2nðcY ;Y ;QÞ.
Thus certainly sp!!qðcY Þ ¼ 0. r

We use this lemma in the next example together with an explicit computation of
the Maslov index term of Theorem 4.1 to show that coning o¤ a stratified boundary does
not change perverse signatures, i.e. that sp!q

�
X WqX cðqXÞ

�
¼ sp!!qðX Þ. Here, X may be

neither Witt nor Banagl non-Witt.

Example 6.8 (coning boundaries). Suppose X̂X is an s-closed oriented
4n-pseudomanifold of the form X̂X ¼ X WqX cðqXÞ. Let pe q, pþ q ¼ t be two perversities
on X̂X . Then sp!qðX̂X Þ ¼ sp!!qðX Þ.
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To show this, we apply Theorem 4.1. By the preceding lemma, we have the equality
sp!!q

�
cðqX Þ

�
¼ 0, so we only need to show that the Maslov index term vanishes. Consider

ker
�
d : I q=pH2nðqX ;QÞ ! I pH2n�1ðqX ;QÞ

�
, which is the group B in the index term. By the

exact sequence (3),

B ¼ im
�
I qH2nðqX ;QÞ ! I q=pH2nðqX ;QÞ

�
;

and so every class ½x� A B can be represented by a q-allowable 2n-cycle in qX . Consider
now ðiqXHcðqX ÞÞ�½x� A I q=pH2n

�
cðqXÞ;Q

�
. This is also represented by the same chain x.

In cðqXÞ, we have that qðcxÞ ¼Gx, so if we can show cx is q-allowable, then we have
ðiqXHcðqXÞÞ�½x� ¼ 0, which implies BHA, where

A ¼ ker
�
ðiqXHcðqXÞÞ� : I q=pH2nðqX ;QÞ ! I q=pH2n

�
cðqX Þ;Q

��
:

Thus BX ðAþ CÞ ¼ BXA, and so

W ¼ BX ðAþ CÞ
BXAþ BXC

¼ 0;

which implies that the Maslov index term must vanish.

To show cx is q-allowable, first note that the conditions on p, q imply that qf n,
where n is the upper middle perversity. For any simplex of cx, we only need to check
allowability at the cone vertex v (the allowability of cx otherwise comes for free; see the
arguments in [21]). For simplices s of cx that intersect the cone vertex, we know that
s�1ðvÞ is in the 0-skeleton of the model D2nþ1. So by definition of allowability, we only
need to check that 0e 2nþ 1� 4nþ qðvÞ ¼ 1� 2nþ qðvÞ. But qðvÞf nðvÞ ¼ 2n� 1. So
1� 2nþ qðvÞf 0, and q-allowability is confirmed.

It is somewhat unsatisfying that the Maslov index in the previous example is trivial,
so we would also like to show that it is not always. The following example does this.

Example 6.9 (non-trivial Maslov index). Let D be the unit tangent disk bundle over
S2n. Let N ¼ ½�1; 1� � S2n�1 be a neighborhood of the equator of S2n. The restriction of D
over N is a trivial disk bundle ½�1; 1� � S2n�1 � B2n, where B2n is the 2n-disk. Now, for
each t A ½�1; 1�, to t� S n�1 � B2n we adjoin the cone on t� S n�1 � qB2n. In other words,
we form W ¼ DW½�1;1��S2n�1�qB2n

�
½�1; 1� � cðS2n�1 � qB2nÞ

�
. Another way to say this is

that W is the union of two spaces, one of which is the product of ½�1; 1� with the Thom
space of the trivial R2n-bundle over S2n�1 and the other of which consists of the tangent
disk bundles over the caps S2n � ð½�1; 1� � S2n�1Þ. Next, we note that W has a boundary
consisting of two pieces. One boundary piece is the union of the boundary of the tangent
disk bundle over the top cap of S2n�1 with the cone on 1� S2n�1 � qB2n, and the other
consists of the union of the tangent disk bundle over the bottom cap with the cone over
�1� S2n�1 � qB2n. Let X be the union of W with two cones, one on each boundary piece.
Then X is a normal compact pseudomanifold of dimension 4n. It can be stratified by
X 2n IX 1 IX 0. The 0-stratum X 0 consists of the cone vertices of the last two cones
adjoined in the formation of X . The 1-stratum X 1 consists of the union of ½�1; 1� � v,
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where v is the cone vertex of the cone on S2n�1 � qB2n, with its extension into the capping
cones. X can be oriented with an orientation consistent with one chosen on D. In fact, for
n > 1, X and X � X 1 will be simply connected.

Let p be the 0 perversity, and let q be the top perversity. To compute I pH2nðXÞ, we
recall that a PL i-chain will be p-allowable with respect to the stratum X 4n�k only if its in-
tersection with that stratum has dimensione i � k þ pðkÞ (and similarly for the boundary).
In this case, the relevant i will be 2n or 2nþ 1 and k will be 4n or 4n� 1. With p being
the 0 perversity, the implication is that, if n is su‰ciently large, no chains of dimension
near 2n will be able to intersect the singular strata. Thus I pH2nðXÞGH2nðX � X 1Þ. But
X � X 1 is easily seen from the construction to retract back to D, which retracts to S2n

itself. So I pH2nðXÞGQ. On the other hand, to compute I qH2nðXÞ, we recall that
qð4n� 1Þ ¼ tð4n� 1Þ ¼ 4n� 3 and qð4nÞ ¼ 4n� 2. For large n, we see that all chains in
degrees near 2n will be completely allowable (since the dimensions of their intersection
with X 1 and X 0 cannot exceed 1), and so I qH2nðXÞ ¼ H2nðXÞ. Since X 1 is contractible,
this is isomorphic to H2nðX ;X 1Þ, which, furthermore, by homotopy equivalence and exci-
sion, is isomorphic to H2nðX ;X � S2nÞGH2nðD;D� S2nÞ. This is just the homology of
the Thom space. So, the inclusion I pH2nðX Þ ! I qH2nðXÞ corresponds to the inclusion of
H2nðS2nÞ into the Thom space of its tangent bundle. Here it is well known that the intersec-
tion of the generator of H2nðS2nÞ with its image in the homology of the Thom space will be
represented by the Euler number of S2n in H0ðS2nÞ ¼ Q. For an even dimensional sphere
this number is 2. Hence the perverse p, q signature of X is 1.

Now, let us decompose X into two pieces along the codimension 1 sub-
pseudomanifold Y ¼ 0� ðS2n�1 � B2nÞW0�S 2n�1�qB2n cðS2n�1 � qB2nÞ. This decomposes X

into two identical pieces, say Z and Z 0, each constructed over one hemisphere of S2n. We
let Z, Z 0, Y inherit their stratifications (and perversities) from X . Now, consider I pH2nðZÞ.
By the same arguments as above, I pH2nðZÞGH2nðZ � Z XX 1Þ. But Z � Z XX 1 retracts
to the piece of D over the hemisphere of S2n, which retracts to that hemisphere, itself. So
I pH2nðZÞ ¼ 0, and the perverse signature of each piece must vanish.

We thus see that the Maslov index term for the given decomposition of X must be
non-zero. (Alternatively, it would have been su‰cient to note that the signature of X is 1,
which is odd, but that by symmetry Z and Z 0 must have identical signatures mod 2.)

Our final example relates the Maslov index terms in the non-additivity formula to
the t and ti invariants defined for fiber bundles in [19] and [34]. These measure what Dai
calls non-multiplicativity of the signature, and they relate in analysis to the pairings on
certain non-compact manifolds of harmonic L2 forms that are exact but that are not d of
any L2 form.

Example 6.10 (bundles and t invariants). Let Y be the total space of a compact fiber
bundle F ,! Y ! B. Assume that Y is ð4k � 1Þ-dimensional. Form X by coning o¤ the
fibers of Y . Then X is a stratified pseudomanifold with one singular stratum homeomor-
phic to B and of codimension f þ 1, where dimðFÞ ¼ f . Thus only the values of perver-
sities at codimension f þ 1 are relevant. Assume p ¼ pð f þ 1Þ ¼ mð f þ 1Þ � j for some
non-negative integer j, where m denotes the lower middle perversity. Let q be the dual
perversity to p.
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In the language of [34], which uses cohomological indexing and notation, our per-
verse signature defined on im

�
I pH2kðX ;RÞ ! I qH2kðX ; qX ;RÞ

�
instead appears as a signa-

ture of a pairing on im
�
IH 2k

p;0ðX ;YÞ ! IH 2k
q ðXÞ

�
. The groups IH 2k

p;0ðX ;Y Þ and IH 2k
q ðX Þ

are computed10) as hypercohomology groups of complexes of appropriately defined L2

forms on the regular part of X , and the pairing is defined by integrating the exterior prod-
uct of forms over the regular part of X .

Then from [34], we know that the perverse signatures of X are calculated by

sp!!qðXÞ ¼
Py

i¼2þ2j

ti;

where ti is calculated from the ith pages of the p and q truncated Leray spectral sequences
for the cohomology of the fiber bundle Y as the signature of the form:

si : E
p
i nE

q
i ! R;

fnc! ðf � dic; biÞ;

where bi is the volume element on the ith page.

On the other hand, we can decompose B into an arbitrary number of contractible
polygons, Pj, and lift this decomposition to a decomposition of X as an arbitrary number
of pieces of the form cF � Pj. But the perverse signatures on such pieces are trivial:

Lemma 6.11. Let B be a closed Euclidean ball, F a compact pseudomanifold, and

W ¼ B� cF. Then sp!!qðWÞ ¼ 0.

Proof. By stratum-preserving homotopy equivalence, I pH�ðW ;RÞG I pH�ðcF ;RÞ,
which is either 0 or I pH�ðF ;RÞ, with any non-zero elements represented by chains on F .
Such chains clearly represent trivial elements in

I qH�ðW ; qW ;RÞG I qH�
�
W ; ðB� FÞW ðqB� cFÞ;R

�
.

Thus im
�
I pH�ðF ;RÞ ! I qH�ðW ; qW ;RÞ

�
¼ 0 in all degrees. r

Thus either the Maslov indices that arise in decomposing X in this fashion are non-
trivial, or we get a remarkable vanishing of the ti for fiber bundles. In the case that the fiber
is a sphere, this comes back to Wall non-additivity of the signature for manifolds with
boundary, which is of course generally non-trivial. For example, in the case of the Hopf
fibration of S3, one can directly calculate that t2 ¼ �1; see, e.g., [32]. It would be surprising
if the ti were only non-trivial for fiber bundles with spherical fibers, so we expect rather that
the Maslov terms are generally non-trivial.

10) For the purposes of comparison, we note that if X̂X GX WY cY and v denotes the cone vertex, then

IH 2k
p; 0ðX ;YÞ corresponds to the hypercohomology of the Deligne sheaf on X̂X with perversity value p on B

and �1 on v, while IH 2k
q ðXÞ corresponds to the hypercohomology of the Deligne sheaf on X̂X with the dual

perversity values.
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A. Orientations and intersection numbers

In this appendix we establish conventions for orientation and intersection numbers.
This is not meant to be a thorough treatise on every possible case that can occur in the
stratified world, but rather the working through of the simplest manifold cases in order to
establish compatibility of convention choices.

Let M be an m-dimensional oriented q-manifold. We choose the orientation of qM by
adjoining an outward-pointing normal in the first component, i.e., if x A qM, e1; . . . ; em�1 is
a basis for TxqM, and n A TxM is an ‘‘outward pointing’’ vector, then the ordered collec-
tion he1; . . . ; em�1i agrees with the orientation for qM if and only if hn; e1; . . . ; em�1i agrees
with the orientation for M. This convention seems to agree with the standard conventions
for simplices.

Suppose x, h are cycles of complementary dimension in qM in general position and
intersecting generically at the point x. Then the contribution to the intersection number
e½x t h� of the intersection at x isG1 according to whether a local basis for x concatenated
with a local basis for h agrees or disagrees with the orientation at TxqM. It makes sense
to talk about local bases for x and h as generic intersections will occur in the interiors of
oriented simplices.

Suppose now that there is a chain X in M with qX ¼ x contained in qM. We may
assume that in a neighborhood of qM, X looks like the chain ½0; 1� � x with the ‘‘1’’ end
of the cylinder on the boundary (suitably simplicialized). Note that this gives the proper
boundary qð½0; 1� � xÞ ¼ 1� x� 0� x with 1� x ¼ xH qM. Note also that the ½0; 1� com-
ponent points in the direction of an outward pointing normal. Thus if x and h intersect at x,
the intersection number contribution at x of e½x t h� in qM is equal to the intersection num-
ber contribution at x of X and h in M. This is because the intersection number of X with h
in M is determined by using the basis of ½0; 1� � x (i.e. the outward normal and then the
basis of x) and then the basis for h. Since the normal comes at the beginning, there is agree-
ment with how we expect to compare orientations in M with those in qM. On the other
hand, suppose H is a chain in M with qH ¼ h and that H looks like ½0; 1� � h in a neigh-
borhood of qM. Then the intersection at x of x with H is determined by comparing with
the basis for TxM the basis obtained from x then from the outward normal then from h. So
to compare properly with the intersection number of x and h in qM, we must move the
normal to the front. This changes the orientation number by ð�1Þjxj. So the intersection
number of x with h in qM is ð�1Þjxj times the intersection number of x with H in M.

Summarizing, we have:

qX tqM h ¼ X tM h; x tqM qH ¼ ð�1Þjxjx tM h:
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