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Hodge and signature theorems for a family of manifolds with
fibre bundle boundary

EUGÉNIE HUNSICKER

Over the past fifty years, Hodge and signature theorems have been proved for various
classes of noncompact and incomplete Riemannian manifolds. Two of these classes
are manifolds with incomplete cylindrical ends and manifolds with cone bundle ends,
that is, whose ends have the structure of a fibre bundle over a compact oriented
manifold, where the fibres are cones on a second fixed compact oriented manifold.
In this paper, we prove Hodge and signature theorems for a family of metrics on a
manifold M with fibre bundle boundary that interpolates between the incomplete
cylindrical metric and the cone bundle metric on M . We show that the Hodge and
signature theorems for this family of metrics interpolate naturally between the known
Hodge and signature theorems for the extremal metrics. The Hodge theorem involves
intersection cohomology groups of varying perversities on the conical pseudomanifold
X that completes the cone bundle metric on M . The signature theorem involves the
summands �i of Dai’s � invariant [10] that are defined as signatures on the pages
of the Leray–Serre spectral sequence of the boundary fibre bundle of M . The two
theorems together allow us to interpret the �i in terms of perverse signatures, which
are signatures defined on the intersection cohomology groups of varying perversities
on X .

14F40, 55N33, 14F43; 58J10, 13D22, 32S20

1 Introduction

The Hodge theorem and the Hirzebruch signature theorem form an important bridge
between geometric and topological properties of compact smooth manifolds. As early
as the 1950’s mathematicians started to consider analogues of these theorems in more
general settings. Building on work of Gaffney, Conner proved a Hodge theorem
for manifolds with boundary in 1956 [9]. This theorem identified the spaces of L2

harmonic forms under two different conditions at the boundary of the manifold with
the absolute and relative de Rham cohomologies of the manifold. In the early 70’s,
Atiyah, Patodi and Singer [1] proved a signature theorem for manifolds with cylindrical
metric near a boundary, and related it to Hodge and signature theorems for noncompact
manifolds with cylindrical ends, that is, manifolds that off a compact set are isometric
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to .0;1/�N for some compact manifold N . Denote the original compact manifold
with boundary by SM and denote by yM , the manifold obtained by smoothly gluing
the half cylinder on N D @ SM to SM . The Atiyah–Patodi–Singer noncompact Hodge
result says that the space of L2 harmonic forms on yM is canonically isomorphic to
the image of the relative cohomology of yM in its absolute cohomology, ie

(1) H�.2/. yM ;g/Š Im.H�0 . yM / �!H�. yM //Š Im.H�. SM ;N / �!H�. SM //:

Their signature result says first that the topological signature of SM is equal to the sig-
nature of the pairing on middle degree L2 harmonic forms on yM given by integration,
and secondly that both satisfy

(2) �.M /D

Z
M

L.p.M;N //� �.N /.0/;

where L is the Hirzebruch L–polynomial in the relative Pontrjagin classes on M and
� is a spectral invariant of N .

The connection between L2 Hodge theorems and intersection cohomology was made
first by Cheeger in [5] at the same time as the dual intersection homology theory
was being defined by Goresky and MacPherson [11]. A year later, after defining L2

cohomology and studying its relationship to L2 harmonic forms, Cheeger [6] showed
that for a pseudomanifold X with conical singularities and only even codimensional
strata, the space of L2 harmonic forms on the regular set is isomorphic to the middle
perversity intersection cohomology, the unique intersection cohomology that satisfies
Poincaré duality, that is,

(3) H i
2.X

reg;gcone/Š IH i
m.X /;

where gcone denotes a metric that near the singularities is a recursively defined conical
metric.

In [5], Cheeger also recognized the important fact that in L2 Hodge theorems for
singular manifolds with even dimensional strata, it is necessary to impose “bound-
ary” conditions at the singularity, just as we must consider boundary conditions for
standard manifolds with boundary. Whereas in the complete case, there is a unique
closed extension of the exterior derivative d , in the incomplete or singular, case, there
may be several different closed extensions corresponding to different so-called “ideal
boundary conditions.” These correspond to several different L2 cohomologies and
several different closed self-adjoint extensions of the Laplace operator. For instance, in
the case of a compact manifold with boundary, SM , the exterior derivative may have a
number of closed extensions interpolating between the so-called maximal and minimal
extensions. The cohomology corresponding to the maximal extension of d is the

Geometry & Topology, Volume 11 (2007)



Hodge and signature theorems for a family of manifolds with fibre bundle boundary 1583

absolute cohomology on SM . The first part of the theorem in Conner [9] shows that its
classes are naturally represented by L2 harmonic forms satisfying a version of Neumann
boundary conditions. The complex given by the minimal extension of d generates
cohomology on SM relative to its boundary. The second part of Conner’s theorem shows
that its classes are naturally represented by harmonic L2 forms satisfying Dirichlet
boundary conditions. The even codimension condition in the Hodge theorem for conical
pseudomanifolds in [6] avoids this complication. It also guarantees that the space has
a unique (Poincaré dual) middle perversity intersection cohomology. In [5], Cheeger
discussed cases where even pseudomanifolds with even dimensional strata could satisfy
Poincaré duality if appropriate ideal boundary conditions are chosen.

In the 1990’s, new work was done on the eta invariant defined by Atiyah, Patodi and
Singer. A number of mathematicians began to study its behavior in a family of fibre bun-
dle metrics that become singular. Bismut and Cheeger [3], Melrose and Mazzeo [18]
and Dai [10] all studied the eta invariant under such so-called adiabatic limits. In 1990,
Müller linked his work on signature theorems for manifolds with cusps of rank 1 to
this new work on the eta invariant [20] and interpreted it in terms of middle perversity
intersection cohomology. Dai was able to show from this that the L2 signature for
such a manifold was equal to the L2 signature for the manifold with boundary formed
by cutting off the cusps plus the � invariant of the resulting boundary fibre bundle,
defined in [10].

Recently, Dai and Cheeger followed up Cheeger’s Hodge theorem with a signature
theorem for conical pseudomanifolds. In [7], they consider the case of a conical
pseudomanifold X with one even codimensional smooth singular stratum, B . They
show that the signature of the intersection pairing on middle degree L2 forms on the
smooth stratum of X is given by the formula

(4) �.X /D sgn Im
�
H�.X;B/ �!H�.X reg/

�
C �;

where � is the invariant defined in [10] of the fibre bundle over B that forms the
boundary of the normal neighborhood of the singular stratum. Recently, in [16], the
author and Mazzeo have extended Cheeger and Dai’s results to conical pseudomanifolds
with one singular stratum in the form of a smooth compact manifold that may be odd
dimensional, where the signature theorem turns out to have the same form. The Hodge
theorem in this case, however, depends on the ideal boundary condition chosen.

There are clear relationships among the topological objects arising in L2 Hodge
and signature results for manifolds with boundary and those arising in theorems for
manifolds with conical singularities. Specifically, there is an interpolation between
the objects arising in theorems for manifolds with boundary and for manifolds with
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conical singularities. The interpolation between the relative and absolute cohomologies
of X reg was first studied by Zeeman in [22]. It was given a geometric interpretation
in McCrory’s paper on the Zeeman filtration [19] which was extended by Habegger
and Saper in [14]. McCrory’s work in fact inspired the development of intersection
homology groups by Goresky and MacPherson. The dual intersection cohomology
groups interpolate between relative and absolute cohomologies as a parameter called
the perversity changes.

In the context of Hodge theorems for manifolds with boundary and with conical singu-
larities, these relationships lead to the question of whether the topological interpolation
through intersection cohomology groups is related to a natural interpolation in L2

cohomologies. That is, can we realize each intermediate intersection cohomology
group as we smoothly vary the metric on the end of X reg between a conical metric
and a cone bundle metric? It turns out that we can, which is the content of our first
theorem. A version of this question was also studied by Nagase in [21], and we discuss
its relationship to the present paper below.

We can ask a similar question about the L2 signature theorems for cylindrical and cone
bundle metrics on X reg , which differ by a topological invariant, � . This invariant is
defined as a sum of smaller topological invariants, so partial sums of these interpolate
naturally between 0 and � . Thus we can also ask if this topological interpolation is
related to an interpolation in metrics. In this paper, we generalize the techniques of [7]
to answer this question in the affirmative, as well. This is the content of our second
theorem.

Consider a compact manifold SM with boundary @ SM D Y where Y
�
! B is a fibre

bundle with fibre F . Endow M D SM � @ SM with a metric gc that is quasi-isometric
near the boundary to a metric of the form

(5) ds2
c D dr2

C r2c zhC��ds2
B;

where zh is a two-form that restricts to a metric on each fibre of Y and 0� c � 1. Note
that these metrics interpolate between a cylindrical metric when c D 0 and Cheeger’s
conical metric when c D 1. In this case, the conical metric gives the manifold the form
of a cone bundle over B near the boundary. There is a second natural compactification,
X , for the manifold M , obtained by collapsing the fibres of the boundary fibre bundle
and adding a compactifying copy of the base, or, equivalently, adding the cone points
to each fibre. The resulting space X is then a conical pseudomanifold as considered
by Cheeger.

As mentioned before, on a complete manifold, the exterior derivative d on compactly
supported smooth forms and its formal adjoint ıD˙�d� each has a unique extension
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to L2 forms, and the Hodge Laplacian given by these extensions, xdCxı , is self-adjoint.
On an incomplete manifold, this is not generally true. There may be many closed
extensions of d , and many self-adjoint extensions of the Hodge Laplacian. Perhaps
the most natural of these are the minimal and maximal extensions of d and ı and their
associated self-adjoint Laplacians. Recall that the minimal and maximal extensions
of the exterior derivative, d , on compact smooth forms to L2 forms on .M;gc/ are
defined by:

Definition 1 Let � 2L2�k.M;g/ for any k . If there exists an � 2L2�kC1.M;g/

such that for all � 2 C1
0
�kC1.M;g/ we have

(6) h�; ı�iL2.M / D h�; �iL2.M /;

we say that � 2D.dmax/ and we write dmax� D �.

Definition 2 If � 2 L2�k.M;g/ for any k , and if there is a sequence f�ng �

C1
0
�k.M;g/ such that � D limL2 �n and � D limL2 d�n , we say � 2D.dmin/ and

�D dmin� . In this case, it is always true that � 2D.dmax/ as well, and dmax� D dmin� .

Note that this second extension is the one corresponding to the graph closure of
d W C1

0
��.M;g/ �! C1

0
��.M;g/ in L2��.M;g/. The minimal and maximal

extensions of ı are defined analogously. Both extensions of d define cohomology
groups on M , which we will denote by H�min.M;gc/ and H�max.M;gc/. The latter is
often called simply the L2 cohomology. We define two related self-adjoint extensions
of the Hodge Laplacian D D d C ı :

Drel D dminC ımax(7)

Dabs D dmaxC ımin:(8)

We will denote the corresponding spaces of harmonic forms by H�rel.M;gc/ and
H�abs.M;gc/, respectively, in reference to the Hodge theorem in the case of a manifold
with boundary. Note that in general, however, these spaces of harmonic forms are not
isomorphic to relative and absolute cohomology.

Our first theorem is a Hodge theorem for these spaces:

Theorem 1 Let SM be a compact manifold with boundary @ SM D Y where Y
�
!B is

a fibre bundle with f –dimensional fibre F . Endow M D SM � @ SM with a metric gc

that is quasi-isometric near the boundary to a metric of the form

ds2
c D dr2

C r2c zhC��ds2
B
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where zh is a two-form that restricts to a metric on each fibre of Y . Let X be the
compactification of M obtained by collapsing the fibres of the boundary fibre bundle.
Then

H�min.M;gc/ŠH�rel.M;gc/Š

8<: IH�
m�J 1

2c
K
.X;B/ f is even

IH�
m�J 1

2
C 1

2c
K
.X;B/ f is odd

H�max.M;gc/ŠH�abs.M;gc/Š

8<: IH�
SmCJ 1

2c
K
.X;B/ f is even

IH�
SmCJ 1

2
C 1

2c
K
.X;B/ f is odd

where JxK denotes the greatest integer strictly less than x and m and Sm are the two
middle perversities for intersection cohomology on X .

Here we use the notation IH�p .X;B/ instead of IH�p .X / in order to indicate a slightly
more general definition of intersection cohomology than is standard. In particular, it
allows us to include the case where F , the fibre of the boundary fibre bundle, is trivial,
so X is our original manifold with boundary, SM . Also, in this paper, we use the
standard definition of intersection cohomology, rather than the dual definition used in
[16] and [15]. Thus in particular, the notations m and Sm are not the same as in those
papers, but their meaning is swapped. We discuss intersection cohomology further in
Section 2.1.

Note that when c D 1, we get J1
2
C

1
2c

K D 0, so this result reduces to the result
for manifolds with cone bundle ends (called incomplete edges in [16]), and in the
case that the fibre is even dimensional, it reduces to Cheeger’s result in [6]. In the
extended definition of intersection cohomology, for c sufficiently close to 0, the
minimal and maximal L2 cohomologies for .M;gc/ become relative and absolute
cohomologies of M , respectively, thus reducing to Conner’s results [9] for manifolds
with boundary. As c goes from 0 to 1, the intersection cohomology groups isomorphic
to the maximal cohomology interpolate between upper middle perversity and absolute
cohomology, while the intersection cohomology groups isomorphic to the minimal
cohomology interpolate between lower middle perversity and relative cohomology.
There is substantial overlap between this result in the case of maximal cohomology and
the work of Nagase in [21], in which he constructs metrics to realize various perversity
intersection cohomologies of Witt spaces as (maximal) L2 –cohomologies. Certainly
the maximal cohomology result in the case that f is odd is contained in Nagase’s work,
and it seems likely that with attention to the question of ideal boundary conditions, his
paper could generalize to give the entire Hodge theorem above, and, indeed, a more
general one.
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Using our Hodge theorem, we can also obtain a signature theorem for the manifolds
.M;gc/ through a signature theorem for intersection cohomology. If p and q are dual
perversities with p � q , then we can define an intersection form on spaces of the form

Im
�
IH n=2

p .X;B/ �! IH n=2
q .X;B/

�
as we will discuss in Section 4.1. We will call the signature of such an intersection
form a perverse signature, and denote it by �p.X /.

The � –invariant defined by Dai in [10] is given by a sum � D
P1

iD2 �i , where �i is
the signature of a form defined on the Ei term of the Leray–Serre spectral sequence
for the boundary fibre bundle of M . Our signature theorem for metrics interpolating
between finite cylindrical and conical is:

Theorem 2 If p DmC k , then the signature of the intersection form on these spaces
is given by

�p.X /D sgn Im
�
H�.M; @M / �!H�.M /

�
C

1X
iD2C2k

�i :

Thus as the metric becomes less and less cylindrical and more and more conical, the
signature theorem picks up more and more of the �i terms, until, when the metric is
close to conical, the signature includes all of � . This theorem allows us to interpret the
summands, �i , as differences between perverse signatures for adjacent perversities.

It seems likely that the theorems in this paper should generalize. For instance, by
relying more on strictly topological methods and using the basic definitions and results
about intersection cohomology, it should be possible to define a signature pairing
for any perversity intersection cohomology on any pseudomanifold and to obtain a
more general version of Novikov additivity for their perverse signatures. In a different
direction, the author is currently working with Daniel Grieser on similar interpolating
Hodge and signature theorems for a family of complete metrics on M that interpolates
between the fibred cusp metric results in [15] and the noncompact cylindrical metric
results of [1].

The remainder of this paper is organized as follows. In Section 2, we give definitions and
background on intersection cohomology, the Leray–Serre spectral sequence and Hilbert
complexes, all of which are used in the proofs of the main theorems. In Section 3 we
prove the Hodge theorem by reducing to a local calculation near the singular stratum
as in [6] and [16]. In Section 4 we define all of the versions of perverse signatures
we will use and prove a version of Novikov additivity for them. Finally we prove the
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signature theorem through a careful analysis of the Leray–Serre spectral sequence of the
boundary fibre bundle. Our techniques throughout the paper are direct generalizations
of the techniques of [7].

The author acknowledges partial support by the NSF through an ROA supplement to
grant DMS-0204730. The author would also like to thank Tamás Hausel, Rafe Mazzeo
and especially Xianzhe Dai for useful conversations relating to this paper, and the
referee, whose careful comments greatly improved its exposition.

2 Background

Before we begin the proof of Theorem 1, we will briefly review some definitions and
theorems we will use in our proofs.

2.1 Intersection cohomology

Intersection cohomologies are topological invariants defined on pseudomanifolds. An n–
dimensional pseudomanifold is a paracompact Hausdorff space X with a stratification,

X0 �X1 � � � � �Xn�1 �Xn DX

such that for any point x on the codimension ` stratum, Xn�` nXn�`�1 , there is a
neighborhood of x in X homeomorphic to the product of a ball �� Rn�` with the
cone, C.L`/, on a lower dimensional pseudomanifold, L` , called the link. In the
standard definition, a pseudomanifold is also required to have no n� 1 stratum, that is,
the codimension two stratum must be dense in X . We will relax that requirement in
this paper as we discuss below.

Intersection cohomologies for a given pseudomanifold are parametrized by a function
called the perversity function, p W f1; 2; :::; ng �! Z, that assigns to the stratum of
codimension ` the integer p.`/. The perversity function must satisfy the properties
that p.0/D p.1/D p.2/D 0 and p.`/� p.`C 1/� p.`/C 1. We will also relax these
conditions in this paper.

We will prove H�max.M;gc/ is isomorphic to an intersection cohomology group via
a sheaf argument. For a complex of sheaves .L�; d/ on a pseudomanifold W , let
H�.W;L/ denote the cohomology of its global sections. Then we have the following
theorem of Goresky and MacPherson:

Proposition 1 [12] Let X be a pseudomanifold and let .L�; d/ be a complex of fine
sheaves on X . Assume that there is a map from the constant sheaf to L� that induces
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local isomorphisms on cohomology over the top (smooth) stratum of X . Assume
also that for any point x on the codimension ` stratum, S , of X with neighborhood
U Š��C.L`/, the local cohomology H i.U;L/D 0 for i > p.`/. Finally, assume
that H i.U;L/Š H i.U n .U \S/;L/ for i � p.`/ under the natural attaching map.
Then H�.X;L/Š IH�p .X /, the intersection cohomology of X of perversity p.

In the case of L2 cohomology, the natural attaching map is given by restriction. This
means that to show that L2 cohomology is isomorphic to intersection cohomology of
some perversity, we need to construct a fine sheaf of L2 forms and show that, in the
neighborhood U Š��C.Ll/ of a point x on the codimension ` stratum, it satisfies
the recursive local calculation for intersection cohomology:

(9) H i.U ;L/Š IH i
p.U/D

�
IH i

p.L/ i � p.`/;

0 i > p.`/:

In this paper, the singular space we will associate to a manifold with fibre bundle
boundary is the space X formed by coning off the fibres at the boundary. This will be
a stratified space with one singular stratum that is smooth and homeomorphic to the
base, B , of the boundary fibre bundle. If the fibre F is nontrivial, then it will be the
link of this stratum, and X will be a pseudomanifold as described above. In this case,
the local calculation for intersection cohomology in a neighborhood of a point b on
the singular stratum U Š��C.F / for b 2� a disk in B is

(10) H i.U ;L/Š IH i
p.U/D

�
H i.F / i � p;

0 i > p

where the perversity function p takes the value, p D p.f C 1/, on the only relevant
stratum, namely the singular one.

Note that for larger values of p, the truncation in H i.F / occurs at a higher degree.
Thus if p< q, then IH i

p.U / vanishes for more degrees than IH i
q.U /. In the extremes,

if H i.U ;L/ŠH i.F / for all i , this is the local calculation for absolute cohomology of
X reg . If H i.U ;L/D f0g for all i , then this is the local calculation for the cohomology
of X relative to its singular stratum. Thus we can generalize this definition slightly as
follows:

(11) IH�p .X;B/D

8<:
H�.X;B/ p � �1;

IH�p .X / 0� p � f � 1;

H�.X nB/ p � f:

By doing this, we are also able to include the case where F is a point, and X is simply
a manifold with boundary. Since our proofs will use only the local calculations, we
are thus able to treat both cases simultaneously. The only property of intersection
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cohomology that is lost by this generalization is the invariance of the definition under a
change of stratification. As we use a specific stratification of X in our theorems, this
does not cause any ambiguity.

Importantly, the Poincaré duality property still does hold under this extension of the
definition. It can be stated in terms of two particular perversities on a pseudomanifold,
called the middle perversities: Sm.`/Dd.`�2/=2e and m.`/Dd.`�3/=2e, where dxe
denotes the least integer greater than or equal to x . In the case of a pseudomanifold with
a single smooth singular stratum, the local calculations near a point on the compactifying
layer B for the two middle perversities are

H i.U ;L/Š IH i
m.U/

D

(
H i.F / i � f

2
� 1 if f is even and i � f�1

2
if f is odd

0 i � f
2

if f is even and i � fC1
2

if f is odd

(12)

for the lower middle perversity and

H i.U ;L/Š IH i
Sm.U/

D

(
H i.F / i � f

2
if f is even and i � f�1

2
if f is odd

0 i � f
2
C 1 if f is even and i � fC1

2
if f is odd

(13)

for the upper middle perversity. Note that in the simplest case, where the fibre is a
point, these local calculations correspond to H�

0
.M / and H�.M /, respectively.

In the case that the strata of X are all even dimensional, X is a particular kind of
pseudomanifold called a Witt space. In this case, the two middle perversity intersection
cohomologies are identical, and this single middle perversity intersection cohomology
satisfies Poincaré duality. If the strata are not all even dimensional, the two middle
perversities are not generally the same. In this case, they are Poincaré duals of each
other. That is to say, there is a nondegenerate pairing between the spaces. In general,
every perversity p has a dual perversity qD t�p where t.`/D `�2 is called the total
perversity. That is, the intersection cohomologies for perversities p and q are Poincaré
duals. In the case of our stratified spaces with only one singular stratum, this means
perversities that lie at equal distances from the two middle perversities, SmC k and
m� k , are also dual perversities. Note that in the case of a trivial fibre, this duality is
then the well known duality between relative and absolute cohomologies.

2.2 The Leray–Serre spectral sequence and the geometry of fibre bundles

We will use a careful analysis of the Leray–Serre spectral sequence of the boundary
fibre bundle to prove the signature theorem for our family of metrics. For this analysis,
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it is useful to think of elements arising in the Leray–Serre spectral sequence of a
fibre bundle in terms of bidegree. Recall from geometry of fibre bundles that we can
define the bidegree of a form on the total space of a fibre bundle as follows. Let
�W Y ! B be a fibre bundle with fibre F , and suppose that it is endowed with a
metric G of the form ��.h/C k , where h is a metric on B . Assume further that
�W .Y;G/! .B; h/ is a Riemannian submersion. The tangent bundle T Y splits into
a vertical and horizontal subbundle, T V Y ˚ T H Y , where T V Y D ker.d�/ and
T H Y is its orthogonal complement (and is also the subbundle annihilated by k ). This
induces a splitting of the form bundles on Y , and thus every differential form has a
(horizontal,vertical) bidegree, ie

(14) �p;q.Y /D�p.B/ b̋ �q.Y;T V Y /:

We will refer to the horizontal and vertical degrees as base and fibre degrees, respectively,
as in the product bundle case, although strictly speaking this is not accurate more
generally. In terms of this decomposition of forms, we can also decompose the exterior
derivative operator. For a full treatment of this decomposition, see Hausel, Hunsicker
and Mazzeo [15]. For this paper, it is relevant only to note that the exterior derivative
operator on Y always preserves or increases the base degree of a form, and the part of
the operator that does not increase the base degree is exactly the exterior derivative
operator on the fibres, dF . Thus the complex of forms on the boundary, Y , forms a
filtered differential graded module (vector space, in fact) with grading by form degree
and filtration by minimum base degree. This is precisely the grading and filtration
used to construct the Leray–Serre spectral sequence for the cohomology of Y . On
the 0–th page of this spectral sequence, E

p;q
0
Š �p;q.Y /. A representative of a

class is a .p; q/ bidegree form plus any form of higher base and lower fibre degree.
The differential d0 is given by dF on the .p; q/ part of the form. On the first page,
E

p;q
1
Š�p.B;H�.F //, so a representative of a class is a fibre harmonic .p; q/ form

plus any fibre exact .p; q/ form plus any form of higher base and lower fibre degree. On
the second page, E

p;q
2
ŠH p.B;H q.F //. Because the overall differential, d , respects

the filtration, note that on all pages, E
�;�
r of the spectral sequence, a representative of

a class in E
p;q
r will be the sum of a “leading” term of bidegree .p; q/ and additional

terms of strictly higher base and lower fibre degree. When we consider the intersection
pairing in terms of this spectral sequence, we will see that only the leading terms
contribute in the end to the signature.

2.3 The �–invariant

The � –invariant was introduced by Dai in [10]. It can be interpreted as characterizing
the nonmultiplicativity of signature for manifolds with fibration boundary. It is defined
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in terms of the Leray–Serre spectral sequence of the boundary fibration. We repeat
the definition from [10] here for reference. Let Y be the total space of a fibre bundle
with oriented fibre of dimension f and oriented base of dimension b . Assume that
dim.Y /D f C b D 4k � 1 for some integer k . Let

.Ei;j
r ; dr / iD1;:::;b

jD1;:::;f

;

r � 2, denote the r –th page of the Leray–Serre spectral sequence for Y . Let Es
r DP

iCjDs E
i;j
r . There is a basis ˇr for each E4k�1

r induced from the orientation on
Y . For each pCqD 4k�2, define a pairing on each page of the spectral sequence by

�r W E
p
r ˝E

q
r �! R;

�˝ �! .� � dr ; ˇr /:

When p D q D 2k � 1, this pairing is symmetric. We then denote its signature by �r ,
and we define � D

P
r�2 �r .

On each page of the Leray–Serre spectral sequence, we can decompose the pairing
above in terms of bidegree. In terms of this decomposition, it turns out that only one
term contributes to the signature, �r , namely, the one corresponding to the pairing
E
.b�r/=2;.fCr�1/=2
r ˝E

.b�r/=2;.fCr�1/=2
r . This is proved in [7], and we recap the

proof in the context of the proof of Lemma 5 in Section 4 of this paper. One consequence
is that only �r for even r contribute to � when the fibre is odd dimensional, and only
�r for odd r contribute to � when the fibre is even dimensional.

2.4 Hilbert complexes

There are a number of basic results we will use in the proof of our Hodge theorem that
are true in great generality. They have been proved for objects called Hilbert complexes
in [4], and we summarize them here for reference.

A Hilbert complex is a complex, .L�;D�/, of the form

(15) 0!L0

D0
�!L1

D1
�!L2 : : :

Dn�1
�! Ln! 0;

where each Li is a separable Hilbert space, the differentials Di W Li!LiC1 are closed
operators with dense domain D.Di/ such that ran .Di/�D.DiC1/ and DiC1ıDiD 0

for all i . Given such a complex there is a dual Hilbert complex

0 �L0

D�
0
 �L1

D�
1
 �L2 : : :

D�
n�1
 � Ln � 0
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defined using the Hilbert space adjoints of the differentials, D�i W LiC1! Li , and a
Laplacian �i DD�i DiCDi�1D�

i�1
. This is a self-adjoint operator on Li with domain

D.�i/D fu 2D.Di/\D.D�i�1/ WDiu 2D.D�i /;D
�
i�1u 2D.Di�1/g

and nullspace ker�i WDHi.L�;D�/D ker Di \ ker D�i�1:

We get many of the standard results for these operators. First, there is a weak Kodaira
decomposition:

Lemma 1 [4, Lemma 2.1] If .L�;D�/ is a Hilbert complex and .L�;D��/ is its
adjoint, then

Li DHi
˚ ran Di�1˚ ran D�i :

Second, the cohomology of the complex, defined by

H i.L�;D�/D ker Di=ran Di�1

and cohomology of the dual complex are either both finite dimensional or both infinite
dimensional [4, Corollary 2.6]. In the finite dimensional case, we have:

Lemma 2 [4, Corollary 2.5] If the cohomology of the complex is finite dimensional,
then ran .Di�1/ is closed and H i.L�;D�/DHi.L�;D�/.

There is a Künneth theorem:

Proposition 2 [4, Corollary 2.15] Let .L0;D0/ and .L00;D00/ be two Hilbert com-
plexes. Form the completed tensor product Hilbert complex .L;D/ where

Lj D

M
iC`Dj

L0i y̋ L00` ;

Dj D

M
iC`Dj

.D0i ˝ idL00
`
C.�1/i idL0

i
˝D00` /:

Suppose that D00 has closed range in all degrees. Then

H j .L;D/D
M

iC`Dj

H i.L0;D0/˝H `.L00;D00/:
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Finally, we may compute these cohomology groups using a “core subcomplex”

D1Li �Li

for all i consisting of all elements ! that are in the domain of �`i for all `� 0.

Proposition 3 [4, Theorem 2.12] The cohomology of the complex .L�;D�/ is equal
to the cohomology of the complex .D1L�;D�/.

In the case of the maximal and minimal L2 cohomologies for a manifold with boundary
(or with singularities), this implies that H�max.M;g/ and H�min.M;g/ can be computed
using the complex of forms that are smooth on the interior (or smooth set) of .M;g/.

3 Proof of Hodge theorem

As mentioned before, we will prove this theorem using Proposition 1. The proof will
have three steps. In the first step, we reduce the proof to establishing a Poincaré lemma,
in the second step we prove some preliminary results, and in the third step we prove
the Poincaré lemma.

3.1 Reduction to Poincaré lemma

The two complexes .D.dmax/; dmax/ and .D.dmin/; dmin/ form Hilbert complexes
as defined in Brüning and Lesch [4], so we can use the theory developed in that
paper to prove Theorem 1. First we note that it suffices to prove the theorem for
.D.dmax/; dmax/. The Hodge star operator gives a isomorphism of complexes between
this complex and the dual complex .D.dmin/; dmin/, so the maximal complex has
finite dimensional cohomology if and only if the minimal complex does. Furthermore,
these two are Poincaré dual spaces, so if H�max Š IH�p .X;B/, then we must also have
H�min Š IH�q .X;B/, where p and q are dual perversities.

Finally, if these cohomologies are finite dimensional, for instance, if they are isomorphic
to intersection cohomologies, then by [4, Corollary 2.5], we immediately get the
isomorphisms

H�min.M;gc/ŠH�rel.M;gc/

H�max.M;gc/ŠH�abs.M;gc/:and

Thus it suffices to show that H�max.M;gc/Š IHmCk.X;B/, where k D J 1
2c

K if f is
even and ŒŒ1

2
C

1
2c
�� if f is odd.
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We can create a complex of fine sheaves of L2 forms on X in the same manner as
in the proofs of [15, Proposition 2] and [23, Proposition 1.18]. By Proposition 1, we
need only then prove a local Poincaré lemma to establish the isomorphism between
H�max.M;gc/ and intersection cohomology of some perversity. The local Poincaré
lemma for points on the stratum M �X is identical to the standard Poincaré lemma
for compact manifolds. Near a point on the singular stratum, we need to establish a
Poincaré lemma for neighborhoods of the form U D ��C.F /, where � is a disk
in the singular stratum. By the Künneth Theorem [4, Corollary 2.15] this calculation
reduces to the calculation on a simple cone by

H�max.U;gc/ŠH�max.�/˝H�max.C.F /;gc/ŠH�max.C.F /;gc/;

so the necessary Poincaré lemma is one for the cone on F with respect to the metric
gc D dr2C r2cds2

F
.

3.2 Preliminary propositions

The proof of the necessary Poincaré lemma is based on the techniques in Cheeger
[6]. Before proceeding to the proof, we’ll lay out a few facts we will use. First, by
[4, Theorem 2.12], we know that the natural inclusion of smooth L2 forms into the
space of L2 forms induces an isomorphism on cohomology for both the maximal and
minimal complexes, so we may always assume a maximal cohomology class has a
smooth representative. This is true for any smooth manifold. Next we prove some
propositions specific to the metrics gc on cones.

Proposition 4 Let � ¤ 0 be an i –form on F . Then the pullback of � to C.F / is
in L2�i.C.F /;gc/ if and only if i < f

2
C

1
2c

, and in this case, the pullback map is
bounded.

Proof If � is an i –form on F , thenZ
C.F /

k�k2c dvolc D k�k2L2.F /

Z 1

0

r c.f�2i/ dr <1

if and only if c.f � 2i/ > �1, which is true if and only if i < f
2
C

1
2c

. Since the
integral on the right is independent of � , the pullback map is bounded.

Proposition 5 There exists a K>0 such that for all ˛D�Cdr^!2L2�i.C.F /;gc/

and for any null set S � .1=2; 1/ there is an a 2 .1=2; 1/�S such that

k�.a/k2
L2.F /

�Kk�k2
L2.C.F /;gc/

�Kk˛k2
L2.C.F /;gc/

:
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Proof Suppose not. Then for any K > 0, there is a form, � 2L2�i.C.F /;gc/ such
that

k�k2
L2.C.F /;gc/

�

Z 1

1=2

Z
F

k�.r/k2F r�2ic dvolF r cf dr

D

Z 1

1=2

k�.r/k2
L2.F /

r c.f�2i/ dr >Kk�k2
L2.C.F /;gc/

Z
.1=2;1/�S

r c.f�2i/ dr

DKk�k2
L2.C.F /;gc/

Z 1

1=2

r c.f�2i/ dr:

So choose K >
� R 1

1=2 r c.f�2i/ dr
��1

and we have a contradiction.

Proposition 6 If i < f
2
C

1
2c
C 1 and ˛ D �C dr ^! 2 L2�i.C.F /;gc/, then for

any a 2 .1=2; 1/,

Ka.˛/D

Z r

a

!.s/ ds 2L2�i�1.C.F /;gc/;

and Ka is a bounded operator, uniformly in a 2 .1=2; 1/.

Proof This proposition follows essentially from Schwartz’s inequality. By definition,

(16) kKa.˛/k
2
L2.C.F /;gc/

D

Z 1

0

Z
F

 Z r

a

!.s/ ds
2

F
r c.f�2iC2/ dvolF dr;

since ! is a family of i � 1 forms on F . Consider just the inside of the right hand
side of (16):  Z r

a

!.s/ ds
2

F
�

� Z r

a

k!.s/kF

�2

For any j , by the Schwartz inequality, the right side of this is� Z r

a

s�j
ksj!.s/kF ds

�2
�

Z r

a

s�2j ds

Z r

a

ksj!.s/k2F ds

D

(
r1�2j�a1�2j

1�2j

R r
a ks

j!.s/k2
F

ds j ¤ 1=2;

.ln.r/� ln.a//
R r

a ks
j!.s/k2

F
ds j D 1=2:
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Choose 2j D c.f � 2i C 2/ and replace this expression in equation (16) to get:

kKa.˛/k
2
L2.C.F /;gc/

�

8̂̂̂̂
<̂̂
ˆ̂̂̂:

R 1
0

r�a.r=a/c.f�2iC2/

1�c.f�2iC2/

R r
a k!.s/k

2
F

sc.f�2iC2/ ds dvolF dr

i ¤ f
2
C 1� 1

2cR 1
0 r.ln.r/� ln.a//

R r
a k!.s/k

2
F

sc.f�2iC2/ ds dvolF dr

i D f
2
C 1� 1

2c

�

8<:
R 1

0
r�a.r=a/c.f�2iC2/

1�c.f�2iC2/
drk!k2

L2.C.F /;gc/
i ¤ f

2
C 1� 1

2cR 1
0 r.ln.r/� ln.a// drk!k2

L2.C.F /;gc/
i D f

2
C 1� 1

2c

Since a 2 .1=2; 1/, the first integral is uniformly bounded in a for i < f
2
C

1
2c
C1 and

the second integral is also bounded uniformly in a. Thus Ka is a bounded operator.

Proposition 7 Let � > 0, and endow .�; 1/�F with the metric gc restricted from
C.F /. Let ˛ D � C dr ^ ! 2 L2�i.C.F /;gc/. If i � f

2
C

1
2c

, then there exists a
sequence �s! 0 such that

lim
�s!0

k�.�s/k
2
L2..�;1/�F;gc/

D 0:

Proof Since ˛ 2L2�i.C.F /;gc/, so is � , so we know thatZ 1

0

Z
F

k�.r/k2F dvolF r c.f�2i/ dr <1:

That is,
Z

F

k�.r/k2F dvolF r c.f�2i/
2L1Œ.0; 1/�:

Thus by [6, Lemma 1.2], there is a sequence �s! 0 for whichˇ̌̌ Z
F

k�.�s/k
2
F dvolF �c.f�2i/

s

ˇ̌̌
<

C

�sj ln.�s/j

for some constant C > 0. So we haveˇ̌̌ Z
F

k�.�s/k
2
F dvolF

ˇ̌̌
<

C�
c.2i�f /�1
s

j ln.�s/j
:
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Since i � f
2
C

1
2c

, the right hand side tends to zero as �s! 0. Thus

k�.�s/k
2
L2..�;1/�F;gc/

D

Z 1

�

Z
F

k�.�s/k
2
F r c.f�2i/ dvolF dr

D k�.�s/k
2
L2.F /

Z 1

�

r c.f�2i/ dr �! 0

also as �s! 0.

3.3 Poincaré lemma

The Poincaré lemma we need to prove for Theorem 1 is the following:

Lemma 3 Let .F;g/ be an f –dimensional compact manifold and consider the family
of metrics on the cone over F , C.F /, given by ds2

c D dr2C r2cds2
F

for 0 < c < 1.
Then

H i
max.C.F /;gc/Š

(
H i.F / i < f

2
C

1
2c
;

0 i � f
2
C

1
2c
:

Proof Consider first the case where i < f
2
C

1
2c

. We want to create a bijective bounded
linear map

RW H i
max.C.F /;gc/ �!H i.F /:

If ˛D�Cdr^! 2L2�i.C.F /;gc/, then for all but a null set of points in .1=2; 1/, we
get � 2L2.F /. So let Œ˛�2H i

max.C.F /;gc/ and for any such value, a, define R.Œ˛�/D

Œ�.a/�. We need to check that this map makes sense as a map to cohomology rather
than just to the space of i forms, that it is independent of our choice of cohomology
representative and of a, that it is linear, bijective, and that it is bounded with respect to
the natural norm on cohomology:

kŒ˛�kL2H D min
2Œ˛�

kkL2 :

First, the map clearly makes sense, since if ˛ is closed, then d˛ D dF�C dr ^ .�0�

dN!/D 0, thus dF� D 0 for all a. To show that the map is well-defined, suppose that
˛ D �C dr ^! is a smooth representative of Œ˛� and ˇ D  C dr ^ � is any other
representative. Then there is some form �D �Cdr^� 2L2�i�1.C.F /;gc/ such that
ˇD ˛Cdmax�, so  D �CdF� for almost all a. We know �.a/ 2L2�i.F / for any
a, so choose any a 2 .1=2; 1/ where dF� is defined and such that  .a/ 2L2�i.F /.
Since L2 cohomology on a compact manifold is the same as absolute cohomology, this
means that even if �.a/ is not in L2.F /, there must be some L2 form z�a that is and
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for which  .a/D�.a/CdF z�a . Thus Œ .a/�D Œ�.a/�, so the map R is independent of
the choice of cohomology representatives. To show that it is independent of the choice
of a, it suffices therefore to consider smooth representatives. For ˛ a representative as
before, since �.a/ 2 L2�i.F / for any a, we need to show that Œ�.a/�D Œ�.b/� for
any a; b 2 .1=2; 1/. Since ˛ is smooth,

R b
a !.s/ ds 2L2�i�1.F / and

d

Z b

a

!.s/ ds D

Z b

a

dF!.s/ ds D

Z b

a

�0.s/ ds D �.b/��.a/:

Thus Œ�.a/�D Œ�.b/�, so the map R is well-defined.

To show the map is linear, let a be a value in .1=2; 1/ such that ˛.a/, ˇ.a/ and
.˛Cˇ/.a/ are all in L2�i.F /. Then R.Œ˛�/CR.Œˇ�/D Œ˛.a/�CŒˇ.a/�D Œ.˛Cˇ/.a/�D

R.Œ˛ C ˇ�/. The map is bounded by Proposition 5 and surjective by Proposition 4.
So we have left to show only that it is injective. So suppose that R.Œ˛�/ D Œ0� and
let ˛ D � C dr ^ ! be a smooth representative. Then �.a/ D dF� for some � 2
L2�i�1.F /. By Proposition 4, we can consider � as a form in L2�i�1.C.F /;gc/,
and by Proposition 6,

R r
a !.s/ ds 2L2�i�1.C.F /;gc/. Then

d
�
�C

Z r

a

!.s/ ds
�
D dF�C dr ^!.r/C

Z r

a

dF!.s/ ds

D �.a/C dr ^!.r/C

Z r

a

�0.s/ ds D ˛:

Thus ˛ is exact and Œ˛�D Œ0�.

Now consider the case where i� f
2
C

1
2c

. Since c<1, this implies that c.f �2iC2/<1.
We want to show that any class Œ˛� 2H i

max.C.F /;gc/ is trivial. First we know again
that any such class can be represented by a smooth form. Let ˛ D � C dr ^ ! 2

L2�i.C.F /;gc/ be a smooth representative of Œ˛�. We need to show that ˛ D dmax�

for some � 2L2�i�1.C.F /;gc/. Consider K0.˛/D
R r

0 !.s/ ds . Then

kK0.˛/k
2
L2.C.F /;gc/

D

Z 1

0

Z
F

 Z r

0

!.s/ ds
2

F
r c.f�2iC2/ dvolF dr:

�

Z 1

0

Z
F

r c.f�2iC2/
� Z r

0

s�2j ds

Z r

0

ksj!.s/k2F ds
�

dvolF dr

where the inequality holds for all j by the same steps as in the proof of Proposition 6.
For 2j < 1, the right-hand side of the equality equals

1

�2j C 1

Z 1

0

Z
F

r c.f�2iC2/r�2jC1
� Z r

0

ksj!.s/k2F ds
�

dvolF dr:

Geometry & Topology, Volume 11 (2007)



1600 Eugénie Hunsicker

Let 2j D c.f � 2i C 2/. Then this becomes

1

�c.f � 2i C 2/C 1

Z 1

0

Z
F

r

Z r

0

k!.s/k2F sc.f�2iC2/ ds dvolF dr

�
1

�c.f � 2i C 2/C 1

Z 1

0

rk!k2
L2.C.F /;gc/

dr

�
1

�2c.f � 2i C 2/C 2
k˛k2

L2.C.F /;gc/
:

Thus K0W L
2�i.C.F /;gc/ �!L2�i�1.C.F /;gc/ is a bounded map, so it extends

to L2 forms. We want to show that if ˛ is closed, then dmax.K0.˛//D ˛ . This means
that we need to show that for any ˇ 2 C1

0
�i�1.C.F //, we have

(17) hK0.˛/; ıˇiL2.C.F /;gc/
D h˛; ˇiL2.C.F /;gc/

:

So let ˇ 2 C1
0
�i�1.C.F //. Then for some � > 0, ˇ is supported in .�; 1/�F . So

equation (17) becomes

(18) hK0.˛/; ıˇiL2..�;1/�F;gc/
D h˛; ˇiL2..�;1/�F;gc/

:

We’d like to use the fundamental theorem of calculus as in the proof for i < f
2
C

1
2c

,
but since we don’t know that ˛ is continuous at 0, we can’t do this directly. So to get
around this we use the following claim:

Claim 1 Define

K�.˛/D

Z r

�

!.s/ ds:

Then on .�; 1/�F with the restricted gc metric,

K�.˛/
L2..�;1/�F;gc/
�����������!K0.˛/:

Proof We have

kK�.˛/�K0.˛/k
2
L2..�;1/�F;gc/

D

Z 1

�

Z
F

 Z �

0

!.s/ ds
2

F
r c.f�2iC2/ dvolF dr:

As in the proof of Proposition 6, the right side is at most

��c.f�2iC2/C1

�c.f � 2i C 2/C 1

� Z 1

�

r c.f�2iC2/ dr
�
k!.s/k2

L2.C.F /;gc/
:

Since c.f � 2i C 2/ < 1, the first integral in this product converges, and the whole
expression tends to 0 as �! 0.
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So now we can consider for a closed smooth ˛ ,

dK�.˛/D d

Z r

�

!.s/ ds D dr ^!.r/C

Z r

�

dF!.s/ ds

D dr ^!.r/C

Z r

�

�0.s/ ds D dr ^!.r/C�.r/��.�/D ˛��.�/:

By Proposition 7, there is some sequence �s! 0 such that

lim
�s!0

k�.�s/k
2
L2..�;1/�F;gc/

D 0:

So our equation (18) can be proved as follows:

hK0.˛/; ıˇiL2..�;1/�F;gc/
D lim
�!0
hK�.˛/; ıˇiL2..�;1/�F;gc/

D lim
�!0
hdK�.˛/; ˇiL2..�;1/�F;gc/

D h˛; ˇiL2..�;1/�F;gc/
� lim
�!0
h�.�/; ˇiL2..�;1/�F;gc/

:

Thus the limit lim
�!0
h�.�/; ˇiL2..�;1/�F;gc/

must exist. This means we can calculate it from any subsequence, such as the subse-
quence �s given in Proposition 7. So we get

lim
�!0
h�.�/; ˇiL2..�;1/�F;gc/

D lim
�s!0
h�.�s/; ˇiL2..�;1/�F;gc/

� lim
�s!0

k�.�s/kL2..�;1/�F;gc/
kˇkL2..�;1/�F;gc/

D 0:

So hK0.˛/; ıˇiL2..�;1/�F;gc/
D h˛; ˇiL2..�;1/�F;gc/

;

and we have that dmaxK0.˛/D ˛ as required.

4 Proof of signature theorem

The proof of the signature theorem also comes in three parts. In the first part, we prove
that the various signature pairings we will invoke make sense. In the second part, we
will prove a version of Novikov additivity, which allows us to calculate the signature
near the singular stratum of X separately from the signature of the smooth stratum.
Finally, in the third part, we calculate the signature near the singular stratum of X by
a close examination of the Leray–Serre spectral sequence of the boundary fibre bundle.
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4.1 Intersection pairings

In order to prove Theorem 2, we first need to check that it makes sense to talk about a
signature on Im.IH

n=2
p .X /! IH

n=2
q .X //, where p < q are dual perversities for X .

Lemma 4 Let p < q be dual perversities for intersection cohomology on the compact-
ification X of a manifold with fibre bundle boundary M described in the introduction.
There is a well-defined (degenerate) bilinear pairing

IH n=2
p .X /˝ IH n=2

p .X /! R

given by the map
IH n=2

p .X /! IH n=2
q .X /

and the nondegenerate bilinear pairing

IH n=2
p .X /˝ IH n=2

q .X /! R:

It descends to a well-defined nondegenerate bilinear pairing BX

Im.IH n=2
p .X /! IH n=2

q .X //˝ Im.IH n=2
p .X /! IH n=2

q .X //! R:

We denote the signature of this pairing by �p.X / and call it the perverse signature for
X with perversity p .

Proof By Theorem 1, IH�p .X / and IH�q .X / can be identified with H�min.M;gc/

and H�max.M;gc/, respectively, for some 0 � c � 1. To show that the pairing is
well-defined and descends to one that is well-defined on Im.IH

n=2
p .X /! IH

n=2
q .X //,

let �; ; � 2 D.dmin/ be closed and assume that Œ�� D Œ � 2 H�max.M;gc/. Then
ımin � � D˙� dmin� D 0 and � D  C dmax� for some � 2D.dmax/. SoZ

M

� ^ � D

Z
M

. C dmax�/^ � D

Z
M

 ^ � C

Z
M

dmax�^ �

D

Z
M

 ^ � ˙

Z
M

dmax�^�
2� D

Z
M

 ^ � ˙hdmax�;��i

D

Z
M

 ^ � ˙h�; ımin � �i D

Z
M

 ^ �:

Thus the pairing is well-defined and descends to one that is also well-defined. To show
it descends to a nondegenerate pairing, we need to show that the subspace

W D
˚
Œ�� 2H

n=2
min .M;gc/ j

R
M � ^ D 0 for all Œ � 2H

n=2
min .M;gc/
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is the same as the kernel of �W H n=2
min .M;gc/!H

n=2
max .M;gc/. Let Œ�� 2 ker.�/. Then

� D dmax� for some � 2D.dmax/, and for  in D.dmin/ closed, we haveZ
M

� ^ D

Z
M

dmax�^ D˙

Z
M

dmax�^�
2 

D˙hdmax�;� i D ˙h�; ımin � i D 0:

Thus Œ�� 2 W . Now suppose that Œ�� is not in ker.�/. Then Œ�� D �.Œ��/ ¤ Œ0� 2

H
n=2
max .M;gc/. Thus by Poincaré duality, there is some Œ � 2 H

n=2
min .M;gc/ withR

M � ^ ¤ 0. Thus Œ�� is not in W . So W is exactly ker.�/, and we are done.

We also need to define a signature on the cone-bundle neighborhood of the singular
stratum of X . Let Z be a compact pseudomanifold with boundary, Y , that does
not intersect the singular part of Z . Define IH i

p.Z/ to be the cohomology of the
cochain complex IC �.Z/, which has p–perversity intersection cohomology conditions
near the singular set of Z and with absolute cohomology conditions at the boundary,
Y . That is to say, define it as the cohomology of global sections for a complex
of fine sheaves for which the local calculation near the boundary is the standard
one, and the local calculation near the singular stratum is as in the definition of
standard intersection cohomology of perversity p . Define IH i

p;0
.Z;Y / to be the

cohomology of the cochain complex IC �.Z/=IC �.Y /. The standard arguments
from regular cohomology show that this satisfies a relative long exact sequence (see
Goresky and MacPherson [13, p 209] or King [17]). Here we are still considering the
generalized definition of intersection cohomology near the singular stratum of X as in
equation (11), but for simplicity of notation, we will suppress the B .

Define a (degenerate) pairing on

IH i
p;0.Z;Y /˝ IH n�i

p;0 .Z;Y /

via the map
IH i

p;0.Z;Y / �! IH i
q;0.Z;Y / �! IH i

q.Z/

and the nondegenerate pairing, zBZ Y

IH i
p;0.Z;Y /˝ IH n�i

q .Z/ �! R:

When i D n=2, this descends to a well-defined, nondegenerate pairing BZ Y :

Im.IH
n=2

p;0
.Z;Y /! IH n=2

q .Z//˝ Im.IH
n=2

p;0
.Z;Y /! IH n=2

q .Z//! R:

Call its signature y�p.Z/. In the special case that Z has no singular stratum other than its
boundary, Y , we suppress the p , since the signature will be the same for any perversity,
and will simply be the signature of the intersection pairing on Im.H n=2.Z; @Z/!
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H n=2.Z//. The proof that this pairing is well-defined and nondegenerate is similar to
the proof of Lemma 4.

4.2 Novikov additivity

Next we need a theorem that allows us to study the signature of a neighborhood of
the boundary separately from that of the interior of M . We use a version of Novikov
additivity for this.

Theorem 3 If X is a compact pseudomanifold with a single compact smooth singular
stratum and if Y �X is a compact codimension 1 submanifold such that X DZ

S
Y Z0

where Z ��X reg , then

�p.X /D y�.Z/C y�p.Z
0/:

Proof The proof is a modification of the original Novikov additivity theorem in Atiyah
and Singer [2]. Assume that X is n dimensional, and let

yH n=2.Z/D Im.H n=2.Z;Y /!H n=2.Z//

yIH
n=2

p .Z0/D Im.IH
n=2

p;0
.Z0;Y /! IH n=2

q .Z0//:and

Using the exact relative cohomology sequences for IH�p .X / and IH�q .X /, we have:

� � � // IH
n=2
p;0

.X;Z/
˛0p // IH

n=2
p .X /

ˇp // IH
n=2
p .Z/ // � � �

� � � // IH
n=2
q;0

.X;Z/
˛0q // IH

n=2
q .X /

ˇq // IH
n=2
q .Z/ // � � �

� � � IH
n=2
q .Z0/oo IH

n=2
q .X /

ˇ0qoo IH
n=2
q;0

.X;Z0/
˛qoo � � �oo

� � � IH
n=2
p .Z0/oo IH

n=2
p .X /

ˇ0poo IH
n=2
p;0

.X;Z0/
˛poo � � �oo
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Because Z is smooth, these sequences are the same as:

� � � // IH
n=2
p;0

.Z0;Y /
˛0p //

�Z0Y
��

IH
n=2
p .X /

ˇp //

�X

��

H n=2.Z/ //

D

��

� � �

� � � // IH
n=2
q;0

.Z0;Y /
˛0q // IH

n=2
q .X /

ˇq // H n=2.Z/ // � � �

� � � IH
n=2
q .Z0/oo IH

n=2
q .X /

ˇ0qoo H n=2.Z;Y /
˛qoo � � �oo

� � � IH
n=2
p .Z0/oo

�Z0

OO

IH
n=2
p .X /

ˇ0poo

�X

OO

H n=2.Z;Y /
˛poo

D

OO

� � �oo

The maps �Z 0Y , �Z 0 and �X are induced from the natural inclusion maps on the
complexes of forms, and this entire diagram commutes. Further, the maps are natural
with respect to the intersection pairings.

A0 D Im.�X ı˛0p/� ker.ˇq/Define

AD Im.˛q/D ker.ˇ0q/D Im.�X ı p̨/:

Proposition 8 The spaces A and A0 are mutual annihilators in Im.IH
n=2

p .X / !

IH
n=2
q .X // under the intersection pairing BX .

Proof Suppose that �X ı˛0p Œa� 2A0 and ˛q Œb� 2A. Then

BX .�X ı˛
0
p Œa�; ˛q Œb�/D zBZ 0Y .Œa�; ˇ

0
q ı˛q Œb�/D 0:

So A and A0 are contained in each other’s annihilators.

Now suppose that Œe� 2 Im.IH
n=2

p .X /! IH
n=2
q .X // annihilates A0 under BX . Then

for every Œc0� 2 IH
n=2

p;0
.Z0;Y /,

0D BX .�X ı˛
0
p Œc
0�; Œe�/D zBZ 0Y .Œc

0�; ˇ0q Œe�/:

Since the pairing zBZ 0Y is nondegenerate, this can happen only if ˇ0q Œe�D 0. But then
by exactness of the IHq sequence we have Œe� 2 Im.˛q/DA. So A is the annihilator
of A0 under BZ .

Finally, suppose that �X Œe0� 2 Im.IH
n=2

p .X /! IH
n=2
q .X // annihilates A under BX .

Then for all Œc� 2H n=2.Z;Y /,

0D BX .˛q Œc�; �X Œe
0�/D zBZ Y .Œc�; ˇq ı �X Œe

0�/D zBZ Y .Œc�; p̌ Œe
0�/:
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This implies that p̌ Œe
0�D 0, so by exactness of the IHp sequence, Œe0� 2 Im.˛0p/. So

�X Œe
0� 2A0 , and we get that A0 is also the annihilator of A.

Since the pairing BX is nondegenerate, we get as in the original Novikov additivity
proof that

.A\A0/� Š
Im.IH

n=2
p .X /! IH

n=2
q .X //

ACA0
:

We also have

ACA0

A\A0
D

A

A\A0
˚

A0

A\A0
Š

Im.˛q/

Im.˛q/\ Im.�X ı˛0p/
˚

Im.�X ı˛0p/

Im.˛q/\ Im.�X ı˛0p/
:

From the exact sequences, we know that

Im.�X ı˛0p/

Im.˛q/\ Im.�X ı˛0p/
Š

Im.�X ı˛0p/

ker.ˇ0q/\ Im.�X ı˛0p/
Š Im.ˇ0q ı �X ı˛

0
p/Š

yIH
n=2

p .Z0/

Im.˛q/

Im.˛q/\ Im.�X ı˛0p/
Š

Im.�X ı p̨/

Im.�X ı p̨/\ �X .ker. p̌//
and also that

Š
Im.�X ı p̨/

Im.�X ı p̨/\ Im.�X /\ ker.ˇq/
:

Since Im.�X ı p̨/� Im.�X /, we can eliminate the Im.�X / term in the denominator to
get

Im.�X ı p̨/

Im.�X ı p̨/\ ker.ˇq/
Š

Im.˛q/

Im.˛q/\ ker.ˇq/
Š yH n=2.Z/:

So altogether, we have

ACA0

A\A0
Š yH n=2.Z/˚ yIH

n=2

p .Z0/:

By splitting the maps

A\A0!ACA0! Im.IH n=2
p .X /! IH n=2

q .X //

we get that

Im.IH n=2
p .X /! IH n=2

q .X //Š yH n=2.Z/˚ yIH
n=2

p .Z0/˚
�
.A\A0/˚ .A\A0/�

�
:

As in the proof of the original Novikov additivity, by choosing a good splitting, we can
arrange for the form BX to be given with respect to this splitting by the block matrix0@ BZ Y 0 0

0 BZ 0Y 0

0 0 C

1A ;
Geometry & Topology, Volume 11 (2007)
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where C is the natural form on
�
.A\A0/˚ .A\A0/�

�
. The signature of such a form

is always 0 [2, p 209], so we obtain

�p.X /D y�p.Z/C y�p.Z
0/

as we wanted.

4.3 Signature of the end

Now return to our original situation, where SM is a compact n dimensional manifold
with boundary Y

�
!B with fibre F , and X is the pseudomanifold formed by coning

off the fibres of Y . As before, let f be the dimension of F and b be the dimension of
B so that f C bC 1D n. Decompose X as M [Y C�Y , where

C�Y D Y � Œ0; 1�=f.y; 0/� .y0; 0/ if �.y/D �.y0/g

is the pseudomanifold with boundary formed by coning off the fibres of Y on one end
of a finite cylinder. Assume that p Dm� k and q D SmC k . By Theorem 3, to prove
Theorem 2, it suffices to prove the following:

Lemma 5 The signature on C�Y is

y�p.C�Y /D�

1X
rD2C2k

�r :

Once we have this, reversing orientation to glue, we get

�p.X /D y�.M /C y�p.C�Y /D sgn Im.H n=2.M; @M /!H n=2.M //C

1X
rD2C2k

�r

as required.

The proof of Lemma 5 generalizes the techniques of Cheeger and Dai [7].

Proof The first step is to identify the image Im .IH�
p;0
.C�Y;Y /! IH�

q;0
.C�Y;Y //

and IH�q .C�Y / and in terms of the Leray–Serre spectral sequence for the fibre bundle
on Y .
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Proposition 9 With respect to the E
i;j
1 .H

�.Y // terms of the Leray–Serre spectral
sequence for Y and its differentials d

i;j
s W E

i;j
s .H�.Y //!E

iCs;j�sC1
s .H�.Y //, we

get the isomorphisms:

IH n=2
q .C�Y /

Š

M
max.0;b�n=2/�a
�min.b;.b�1/=2Ck/

E
b�a;.n=2/�bCa
1 .H�.Y //˚

X
max.0;b�n=2/�l
�b=2�k�1

Im.�d
l;n=2�1�l

b�a�l
/

Im.IH
n=2

p;0
.C�Y;Y /! IH

n=2
q;0

.C�Y;Y //

Š

M
max.0;b�n=2/�a
�min.b;b=2�1�k/

E
a;n=2�a�1
1 .H�.Y //˚

X
0�l

�.b�1/=2�k

Im.�d
a;n=2�a�1

b�a�l
/�

Proof Recall that by Theorem 1, IH�q .C�Y /ŠH�max.C�Y;gc/ and IH�p .C�Y /Š

H�min.C�Y;gc/ for some metric gc , 0� c � 1, where H�min.C�Y;gc/ means cohomol-
ogy that is minimal with respect to the metric gc near the singular stratum of C�Y and
absolute near the boundary Y �f1g. The same proofs as in the case of regular cohomol-
ogy show that relative intersection cohomology may in this case be calculated either
from the cochain complex of forms in L2��.C�Y;g/ that vanish in a neighborhood
of the boundary, Y �f1g, or from the cochain complex �i�1.Y /˚L2�i.M;g/ with
the relative differential drel.�; ˇ/ D .�dY � � ˇ.1/; dMˇ/. We will use this second
formulation to prove the proposition. The short exact sequence

0!���1.Y /

!���1.Y /˚��min.C�Y;gc/

ˇ
!��min.C�Y;gc/! 0

induces a long exact sequence on cohomologies. Similarly, for perversity q coho-
mologies, we get a long exact sequence arising from the short exact sequence on
forms:

0!���1.Y /

!���1.Y /˚��max.C�Y /

ˇ
!��max.C�Y /! 0

Using the metric gc , each of these spaces of forms can be filtered by (conic) fibre and
base bi-degree as in Section 2.2. Consider the cohomologies with maximal boundary
condition near the singularity first. For any base degree, i , we get the following
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commutative diagram relating maximal, ie q–perversity, complexes:

(19)

:::
:::

:::

0 // �i;1.Y /

�dF

OO

 // �i;1.Y /˚�
i;2
max.C�Y;gc/

drel

OO

ˇ // �i;2
max.C�Y;gc/

dc

OO

// 0

0 // �i;0.Y /

�dF

OO

 // �i;0.Y /˚�
i;1
max.C�Y;gc/

drel

OO

ˇ // �i;1
max.C�Y;gc/

dc

OO

// 0

0

OO

// 0˚�i;0
max.C�Y;gc/

drel

OO

ˇ // �i;0
max.C�Y;gc/

dc

OO

// 0

Here the first column gives E
i;��1
0

.H�.Y // terms, the second column gives

E
i;�
0
.IH�

q;0
.C�Y;Y // terms and the third column gives E

i;�
0
.IH�q .C�Y // terms. Tak-

ing vertical differentials gives E1 for each of these spectral sequences. Thus the E1

terms of the spectral sequences for each base degree i fit into the long exact sequence:

� � � !E
i;j�1
1

.IH�q .C�Y //!E
i;j�1
1

.H�.Y //!E
i;j
1
.IH�q;0.C�Y;Y //

!E
i;j
1
.IH�q .C�Y //!E

i;j
1
.H�.Y //! � � � :

By the Poincaré lemma for the maximal complex, Lemma 3, we get that for j � f�1
2
Ck

if f is odd and j � f
2
C k if f is even, this is

!�i.B;H j�1.F //!�i.B;H j�1.F //!E
i;j
1
.IH�q;0.C�Y;Y //!

!�i.B;H j .F //!�i.B;H j .F //! :

So for these values of j , we find E
i;j
1
.IH�

q;0
.C�Y;Y //D 0. For j � f�1

2
CkC 2 if

f is odd and j � f
2
C kC 2 if f is even, the long exact sequence is

� � �! 0!�i.B;H j�1.F //!E
i;j
1
.IH�q;0.C�Y;Y //! 0!�i.B;H j .F //!� � � :

So for j � f�1
2
C k C 2 if f is odd and j � f

2
C k C 2 if f is even, we find

E
i;j
1
.IH�

q;0
.C�Y;Y //Š�i.B;H j�1.F //. Thus for the boundary degree j D f�1

2
C

kC 1 if f is odd, we have (dropping the last term and adding one previous term in
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the long exact sequence):

! 0!�i.B;H .f�1/=2Ck.F //!�i.B;H .f�1/=2Ck.F //!

!E
i;.f�1/=2CkC1
1

.IH�q;0.C�Y;Y //! 0!

So if f is odd,

E
i;.f�1/=2CkC1
1

.IH�q;0.C�Y;Y //D 0:

If f is even we get similarly that

E
i;f=2CkC1
1

.IH�q;0.C�Y;Y //D 0:

The differential d1 is horizontal, so it does not see the truncations. Thus the E2 pages
of the relative and absolute q–perversity spectral sequences are for f odd:

Relative q sequence (Ei;j
2
.IH�

q;0
.C�Y;Y //):

j D f C 1 H 0.B;H f .F // H 1.B;H f .F // H 1.B;H f .F // � � �

:::
:::

:::
::: � � �

j D fC3
2
C k H 0.B;H

fC1
2
Ck.F // H 1.B;H

fC1
2
Ck.F // H 2.B;H

fC1
2
Ck.F // � � �

j D fC1
2
C k 0 0 0 � � �

:::
:::

:::
::: � � �

j D 0 0 0 0 � � �

i D 0 i D 1 i D 2 � � �

Absolute q sequence (Ei;j
2
.IH�q .C�Y //):

:::
:::

:::
:::

j D fC1
2
C k 0 0 0 � � �

j D f�1
2
C k H 0.B;H

f�1
2
Ck.F // H 1.B;H

f�1
2
Ck.F // H 2.B;H

f�1
2
Ck.F // � � �

:::
:::

:::
::: � � �

j D 0 H 0.B;H 0.F // H 1.B;H 0.F // H 2.B;H 0.F // � � �

i D 0 i D 1 i D 2 � � �
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And using an analogous argument for the minimal complex, we get that the E2 term
of the relative p–perversity spectral sequence (Ei;j

2
.IH�

p;0
.C�Y;Y //) is:

j D f C 1 H 0.B;H f .F // H 1.B;H f .F // H 1.B;H f .F // � � �

:::
:::

:::
::: � � �

j D fC3
2
� k H 0.B;H

fC1
2
�k.F // H 1.B;H

fC1
2
�k.F // H 2.B;H

fC1
2
�k.F // � � �

j D fC1
2
� k 0 0 0 � � �

:::
:::

:::
::: � � �

j D 0 0 0 0 � � �

i D 0 i D 1 i D 2 � � �

In the case that f is even, these diagrams are similar, but for the relative q spectral
sequence, one has E

i;j
2
.IH�

q;0
.C�Y;Y // D 0 for j < f=2C 2C k and otherwise

E
i;j
2
.IH�

q;0
.C�Y;Y // D H i.B;H j�1.F //, as in the odd case. For the absolute q

spectral sequence, we have E
i;j
2
.IH�

q;0
.C�Y //D 0 for j > f=2C k and otherwise

E
i;j
2
.IH�

q;0
.C�Y //DH i.B;H j .F //. For the relative p spectral sequence, for j <

f=2C1�k one has E
i;j
2
.IH�

p;0
.C�Y;Y //D0 and otherwise E

i;j
2
.IH�

p;0
.C�Y;Y //D

H i.B;H j�1.F //. The terms of E
i;j
2
.IH�

p;0
.C�Y;Y // are all equal to 0 for j >f C1

and for i > b . The terms of E
i;j
2
.IH�q .C�Y // are all equal to 0 for j > f and for

i > b .

These are all truncated (and in the relative case, shifted) copies of the Leray–Serre
spectral sequence for the fibre bundle on Y , although with the negatives of the differ-
entials. So, the higher pages of these spectral sequences will be the same as the higher
pages of the spectral sequence for Y , but with terms added because of the truncation.
We need to understand what the extra terms in all of these various related spectral
sequences look like. On page r of one of the absolute intersection cohomology spectral
sequences, we will pick a term of the form Im.d i;j

r / that come from cases where there
is no longer any image to quotient by because of the truncation above. By definition,
elements in E

�;�
rC1

have representatives in E
�;�
r which are in the kernel of dr , so this

extra term is simply carried through on page r C 1 and each subsequent page. Thus all
of the extra terms in E1.IH�q .C�Y // will have the form of Im.d i;j

s / and will come
from cases where there is no longer any image to quotient by because of the truncation
above. Similarly, in the cases of E1.IH�

q;0
.C�Y;Y // and E1.IH�

p;0
.C�Y;Y //, the

extra terms will have the form Im.d i;j
r /� and will come from the cases where, because

of the truncation below, the kernel of the differential in the truncated sequence contains
the image of the adjoint of the differential in the spectral sequence for Y .
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It is easiest to understand this in an example. Take the case when the base dimension
b D 6, the fibre dimension f D 5, and k D 1, so the perversities are p Dm� 1 and
q D SmC 1. Recall that d

i;j
r W E

i;j
r �!E

iCr;j�rC1
r . For compactness of notation, in

these diagrams, we will denote Im.�d
i;j
r / simply by .d i;j

r / and Im.�d
i;j
r /� simply

by .d i;j
r /� . In Proposition 10, we will see that the negatives before the differentials

do not in fact make a difference in the final calculations, but we will preserve them
except in the diagrams below. Also, from this point forward we will use the notation
E

i;j
1 and d

i;j
r to refer to the underlying spectral sequence for Y rather than for the

various relative and absolute intersection cohomologies it spawns. We get the following
diagrams.

Example (Ei;j
1 .IH�

SmC1;0
.C�Y;Y //: Relative cohomology spectral sequence)

j D 6 E
0;5
1 C .d

0;5
3
/� E

1;5
1 C .d

1;5
3
/� E

2;5
1 C .d

2;5
3
/� E

3;5
1 C .d

3;5
3
/� E

4;5
1 E

5;5
1 E

6;5
1

C � � �C .d
0;5
6
/� C � � �C .d

1;5
5
/� C.d

2;5
4
/�

j D 5 E
0;4
1 C .d

0;4
2
/� E

1;4
1 C .d

1;4
2
/� E

2;4
1 C .d

2;4
2
/� E

3;4
1 C .d

3;4
2
/� E

4;4
1 E

5;4
1 E

6;4
1

C � � �C .d
0;4
5
/� C � � �C .d

1;4
5
/� C � � �C .d

2;4
4
/� C.d

3;4
3
/� C.d

4;4
2
/�

j D 4 0 0 0 0 0 0 0
:::

:::
:::

:::
:::

:::
:::

:::

j D 0 0 0 0 0 0 0 0

i D 0 i D 1 i D 2 i D 3 i D 4 i D 5 i D 6

Example (Ei;j
1 .IH�

SmC1
.C�Y //: Absolute cohomology spectral sequence)

j D 5 0 0 0 0 0 0 0

j D 4 0 0 0 0 0 0 0

j D 3 E
0;3
1 E

1;3
1 E

2;3
1 C .d

0;4
2
/ E

3;3
1 C .d

1;4
2
/ E

4;3
1 C .d

2;4
2
/ E

5;3
1 C .d

3;4
2
/ E

6;3
1 C .d

4;4
2
/

C.d
0;5
3
/ C.d

1;5
3
/ C.d

2;5
3
/ C.d

3;5
3
/

j D 2 E
0;2
1 E

1;2
1 E

2;2
1 E

3;2
1 C .d

0;4
3
/ E

4;2
1 C .d

1;4
3
/ E

5;2
1 C .d

2;4
3
/ E

6;2
1 C .d

3;4
3
/

C.d
0;5
4
/ C.d

1;5
4
/ C.d

2;5
4
/

j D 1 E
0;1
1 E

1;1
1 E

2;1
1 E

3;1
1 E

4;1
1 C .d

0;4
4
/ E

5;1
1 C .d

1;4
4
/ E

6;1
1 C .d

2;4
4
/

C.d
0;5
5
/ C.d

1;5
5
/

j D 0 E
0;0
1 E

1;0
1 E

2;0
1 E

3;0
1 E

4;0
1 E

5;0
1 C .d

0;4
5
/ E

6;0
1 C .d

1;4
5
/

C.d
0;5
6
/

i D 0 i D 1 i D 2 i D 3 i D 4 i D 5 i D 6
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Example (Ei;j
1 .IH�m�1;0

.C�Y;Y //: Relative cohomology spectral sequence)

j D 6 E
0;5
1 C .d

0;5
5
/� E

1;5
1 C .d

1;5
5
/� E

2;5
1 E

3;5
1 E

4;5
1 E

5;5
1 E

6;5
1

C.d
0;5
6
/�

j D 5 E
0;4
1 C .d

0;4
4
/� E

1;4
1 C .d

1;4
4
/� E

2;4
1 C .d

2;4
4
/� E

3;4
1 E

4;4
1 E

5;4
1 E

6;4
1

C.d
0;4
5
/� C.d

1;4
5
/�

j D 4 E
0;3
1 C .d

0;3
3
/� E

1;3
1 C .d

1;3
3
/� E

2;3
1 C .d

2;3
3
/� E

3;3
1 C .d

3;3
3
/� E

4;3
1 E

5;3
1 E

6;3
1

C.d
0;3
4
/� C.d

1;3
4
/� C.d

2;3
4
/�

j D 3 E
0;2
1 C .d

0;2
2
/� E

1;2
1 C .d

1;2
2
/� E

2;2
1 C .d

2;2
2
/� E

3;2
1 C .d

3;2
2
/� E

4;2
1 E

5;2
1 E

6;2
1

C.d
0;2
3
/� C.d

1;2
3
/� C.d

2;2
3
/� C.d

3;2
3
/� C.d

4;2
2
/�

j D 2 0 0 0 0 0 0 0

j D 1 0 0 0 0 0 0 0

j D 0 0 0 0 0 0 0 0

i D 0 i D 1 i D 2 i D 3 i D 4 i D 5 i D 6

In this example, we get for instance:

E2;5
1 .IH�

SmC1;0.C�Y;Y //DE2;4
1 C Im.�d

2;4
2
/�C Im.�d

2;4
3
/�C Im.�d

2;4
4
/�;

E3;3
1 .IH�

SmC1.C�Y //DE3;3
1 C Im.�d

1;4
2
/C Im.�d

0;5
3
/;

E2;5
1 .IH�m�1;0.C�Y;Y //DE2;4

1 C Im.�d
2;4
4
/�:

In general we get that:

E
i;j
1 .IH�q;0.C�Y;Y //Š

8̂̂̂̂
<̂̂
ˆ̂̂̂:

0 j < .f C 3/=2C k

E
i;j�1
1 C

X
j�f=2�k
�s�b�i

Im.�d i;j�1
s /� j � .f C 3/=2C k;

i C j < .f C 1/=2

C bC k

E
i;j�1
1 otherwise,

E
i;j
1 .IH�q .C�Y //Š

8̂̂̂̂
<̂
ˆ̂̂:

0 j > f=2C k

E
i;j
1 C

X
.fC3/=2�jCk

�s�i

Im.�d
i�s;jCs�1
s / j � f=2C k;

i C j > .f C 1/=2C k

E
i;j
1 otherwise,
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and

E
i;j
1 .IH�p;0.C�Y;Y //Š

8̂̂̂̂
<̂
ˆ̂̂:

0 j < f=2C 1� k

E
i;j�1
1 C

X
j�f=2Ck
�s�b�i

Im.�d
i;j�1
s /� j � f=2C 1� k;

i C j < f=2C b� k

E
i;j�1
1 otherwise.

When we map IH�
p;0
.C�Y;Y / to IH�

q;0
.C�Y;Y / we simply truncate the bottom 2k

rows of E
i;j
1 .IH�p .C�Y;Y // if f is odd, and the bottom 2kC 1 rows if f is even.

Summing over i C j D n=2D .bCf C 1/=2, we get:

IH n=2
q .C�Y /Š

8̂̂̂̂
<̂
ˆ̂̂:

L
iCjDn=2
j�f=2Ck

E
i;j
1 .H

�.Y // b=2� k > 0

˚
Pi

s�.fC3/=2Ck�j Im.�d
i�s;jCs�1
s /L

iCjDn=2
j�f=2Ck

E
i;j
1 .H

�.Y // b=2� k � 0

Im.IH
n=2

p;0
.C�Y;Y /! IH

n=2
q;0

.C�Y;Y //

Š

8̂̂̂̂
<̂
ˆ̂̂:

L
iCjDn=2

j�.fC3/=2Ck

E
i;j�1
1 .H�.Y // b=2� k > 0

˚
Pb�i

s�j�f=2Ck Im.�d
i;j�1
s /�L

iCjDn=2
j�.fC3/=2Ck

E
i;j�1
1 .H�.Y // b=2� k � 0:

The result of the proposition then follows by reindexing.

Now we want to understand the signature pairing on

Im.IH
n=2

p;0
.C�Y;Y /! IH

n=2
q;0

.C�Y //

in terms of this decomposition. To do this, first return to our example where f D 5,
b D 6 and k D 1. We have

IH 6
SmC1

.C�Y /ŠE
6;0
1 .IH�q .C�Y //CE

5;1
1 .IH�q .C�Y //

CE
4;2
1 .IH�q .C�Y //CE

3;3
1 .IH�q .C�Y //

Im.IH 6
m�1;0.C�Y;Y /! IH 6

SmC1;0.C�Y;Y //and

Š Im.E0;6
1 .IH�p .C�Y;Y //!E0;6

1 .IH�q .C�Y;Y ///

C Im.E1;5
1 .IH�p .C�Y;Y //!E1;5

1 .IH�q .C�Y;Y ///;

where these sums are the outside sums in the proposition. Only forms with complemen-
tary bi-degrees for the cone bundle C�Y can have nontrivial pairing. By Serre’s filtration
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on Leray spectral sequences (see Chern, Hirzebruch and Serre [8]), we can always repre-
sent a class in E

i;j
r .IH�q .C�Y // or E

i;j
r .IH�

p;0
.C�Y;Y // by a form � that is a sum of

forms of bidegree .iCh; j�h/ for h�0 and for which d� is a sum of forms whose base
degree is at least iCr . A pair of terms whose i indices add to more than the dimension
of the base will have trivial intersection. Therefore in our example, we can represent the
intersection form on IH 6

SmC1
.C�Y /˝Im.IH 6

m�1;0
.C�Y;Y /! IH 6

SmC1;0
.C�Y;Y // by

a 2 by 4 block lower-triangular matrix�
A0 0 0 0

� A1 0 0

�
;

where A0 is the pairing between

Im.E0;6
1 .IH�p;0.C�Y;Y //!E0;6

1 .IH�q;0.C�Y;Y ///

and E
6;0
1 .IH�q .C�Y // and A1 is the pairing between

Im.E1;5
1 .IH�p;0.C�Y;Y //!E1;5

1 .IH�q;0.C�Y;Y ///

and E
5;1
1 .IH�q .C�Y //.

In general, by this argument, A will be a block lower triangular matrix with blocks
Aa , max.0; b�n=2/� a� b=2�k�1, along the diagonal that represent the pairings
between

Im.Ea;n=2�a
1 .IH�m�k;0.C�Y;Y //!E

a;n=2�a
1 .IH�

SmCk;0.C�Y;Y ///

and E
b�a;n=2�bCa
1 .IH�

SmCk.C�Y //:

Note that this same argument allows us to simplify �r . By definition, �r corresponds
to the signature of the pairing E

.bCf�1/=2
r ˝E

.bCf�1/=2
r �! R. Decomposing by

bidegree, we can consider it as the signature of the block matrix whose blocks come
from the decomposition of E

.bCf�1/=2
r . By the argument above, this must be a block

lower triangular matrix with blocks T
j
r along the diagonal corresponding to the pairings

E
p;.bCf�1/=2�p
r ˝E

b�p�r;.f�b�1/=2CpCr
r �! R.

Now we have to understand the pieces Aa . First consider A0 in our example. We can
further decompose A0 into a 3 by 3 block matrix corresponding to the decompositions:

E6;0
1 .IH�q .C�Y //ŠE6;0

1 C Im.�d
0;5
6
/C Im.�d

1;4
5
/

Im.E0;6
1 .IH�p;0.C�Y;Y //!E0;6

1 .IH�q;0.C�Y;Y ///

ŠE0;5
1 C Im.�d

0;5
6
/�C Im.�d

0;5
5
/�
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where recall that as before, by E
i;j
1 and �d

i;j
r we refer to the spectral sequence for

Y . In general, Aa will decompose into a block matrix whose block rows and block
columns correspond to the inside sums in Proposition 9:

E
b�a;.n=2/�bCa
1 .H�.Y //˚

X
max.0;b�n=2/�l
�b=2�k�1

Im.�d
l;n=2�1�l

b�a�l
/

and E
a;n=2�a�1
1 .H�.Y //˚

X
0�l�.b�1/=2�k

Im.�d
a;n=2�a�1

b�a�l
/�:

In the case that f is odd, Aa is a b=2�k by b=2�k�max.0; b�n=2/ block matrix.
In the case that f is even, it is a .bC 1/=2� k by .b� 1/=2� k �max.0; b� n=2/

block matrix. In either case, the diagonal will consist of one block matrix representing
the pairing of E1 terms, and further matrices Aa

l
representing the pairings between

Im.�d
a;n=2�a�1

b�a�l
/� and Im.�d

l;n=2�1�l

b�a�l
/;

for max.0; b� n=2/� l � b=2� k � 1. Note that l has exactly the same range as a.

Modifying slightly the argument from [7] we have the following:

Proposition 10 In terms of the spectral sequence, the map

IH�q;0.C�Y;Y /! IH�q .C�Y /

is zero on the terms of the form E
i;j
1 .H

�.Y // and is given on the other factors by
applying the appropriate �dr ’s.

Proof First consider a form Œ� � in the Im.�d
i;j�1
r /� piece of IH�

q;0
.C�Y;Y /. In

terms of the construction of the relative cohomology spectral sequence, this is re-
ally a representative Œ�; 0� on page r . This is not necessarily a class in the limiting
cohomology, so we would like to find an equivalent class that is. By definition of
the spectral sequence, we can alter our representative Œ�; 0� by anything of the form
drel. 1;  2/C.�1; �2/, where  1 and  2 have base degree � iC1�r , the components
of drel. 1;  2/ have base degree � i , �1 and �2 have base degree � i C 1, and
drel.�1; �2/ has base degree � i C s .

A piece of the form Im.�d
i;j�1
r /� appears in IH�

q;0
.C�Y;Y / exactly when its elements

Œ� � are mapped by �dr to E
iCr;j�r
r , where j � r is below the level of truncation for

the spectral sequence on Y . That is, if j � r � .f � 1/=2C k when f is odd and if
j � r � f=2C k when f is even. So we can choose � so that �dY � will have fibre
degree � .f � 1/=2C k if f is odd and � f=2C k if f is even. From Theorem 1,
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we know that in terms of maximal cohomology on .C�Y;gc/, k D J1=2cK if f is
even and k D ŒŒ1=2C 1=2c�� if f is odd, where JxK is the greatest integer strictly
less than x . So in either case, the fibre degree of �dY � is less than f=2C 1=2c . By
Proposition 4, this guarantees that �dY � extends to an L2 form on C�Y with base
degree � i C r . Also, dc.�dY �/ D 0, so we may alter our representative Œ�; 0� in
IH�

q;0
.C�Y;Y / by Œ0;�dY ��.

We thus obtain a new representative Œ�;�d�� that is closed under drel and so represents
a class in IH�q .C�Y;Y /. Under the map to absolute cohomology, this goes to Œ�d�� 2

IH�q .C�Y /. The map from ��.C�Y;gc/ to ��.Y / that induces the identification
of IH�q .C�Y / with spectral sequence terms for Y is given by restriction. Since � is
the lift to C�Y of a form on Y , we have �d� D �dY � , which in terms of spectral
sequence classes is just �ds Œ� �.

Now suppose that Œ� � 2E
i;j�1
1 .H�.Y //. Then �dY � D 0, so by the same argument

as above, we get that Œ� � goes to Œ0� under the map IH�
q;0
.C�Y;Y /! IH�q .C�Y /.

We know that the entire intersection pairing descends to a nondegenerate pairing on

Im.IH
n=2

p;0
.C�Y;Y /! IH n=2

q .C�Y //

which by the proposition contains no terms of the form E
i;j
1 . Thus such terms must

pair trivially with everything. So the first row and the first column of block matrices in
A are trivial. The rest of the terms pair according to the following proposition. In this
proposition only, we change the notation for the page of the spectral sequence from r

to s since here, as in Section 3, r will denote the radial variable in C�Y .

Proposition 11 If Œ� � 2 Im.�d
i;j
s /� and Œ˛� 2 Im.�d

i;j
s /, then their intersection

pairing is given by

hŒ� �; Œ˛�i D �

Z
Y

� ^˛:

Before proving this, we note that this proposition together with the previous one
implies that the pairing between classes Œ� � and Œ˛�D ds Œˇ� in Im.�d

.bCf�1/=2
s /�˝

Im.d .bCf�1/=2
s / is

hŒ� �; ds Œˇ�i D .� ^ dsˇ; �s/;

which corresponds exactly to the pairing of classes in E
.bCf�1/=2
s ˝E

.bCf�1/=2
s ,

whose signature defines �s .
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Proof From the exact sequences in (19), under the identifications above, an element
Œ� � 2E

i;j
1 C

P
Im.�d

i;j
s /� lifts to Œ�;�d�� 2 IH

iCjC1
p;0

.C�Y;Y /, which is constant
in the r –direction on C�Y , and an element Œ˛� 2 E

i;j
1 C

P
Im.�d

i;j
s / lifts to Œ˛� 2

IH
iCj
q .C�Y /. Now we want to determine the intersection pairing for lifts in the

middle degree, Œ�;�d�� 2 IH
n=2

p;0
.C�Y;Y / and Œ˛� 2 IH

n=2
q .C�Y /. For forms on

C�Y , the pairing is given by integration, so we need to use the map of complexes from
���1.Y /˚��.C�Y / to ��.C�Y;Y / that induces the isomorphism on cohomology
to turn our class Œ�;�d�� into a class on C�Y . Call this map �.

We will derive the pairing first for general Œ; ˇ� and Œ˛�, not necessarily arising
from the spectral sequence identification. The pair Œ; ˇ� goes under �� to the class
Œ.1� �/ˇC �0dr ^  �, where as before, � is a smooth cutoff function equal to 1 near
Y � f1g and equal to 0 near the singular stratum of C�Y . So the pairing of Œ; ˇ� and
Œ˛� is given by Z

C�Y

..1� �/ˇC �0dr ^  /^˛:

Integrating this by parts, it becomesZ
C�Y

.1� �/ˇ^˛�

Z
C�Y

�d. ^˛/�

Z
Y

 ^˛.1/:

D

Z
C�Y

.1� �/ˇ^˛�

Z
C�Y

�d ^˛˙

Z
C�Y

� ^ d˛�

Z
Y

 ^˛.1/:

We know that .; ˇ/ and .˛/ are closed under their respective differentials, and  is
constant in the r direction, so this equalsZ

C�Y

.1� �/ˇ ^ ˛ �

Z
C�Y

�.�ˇ/^ ˛ �

Z
Y

 ^ ˛.1/ D

Z
C�Y

ˇ ^ ˛ �

Z
Y

 ^ ˛.1/:

Now returning to the lifts in question, Œ� � 2E
i;j
1 C

P
Im.�d

i;j
s /� and Œ˛� 2E

i;j
1 CP

Im.�d
i;j
s /, we know that ˛ is constant in r , so we get that the pairing between

Œ�;�d�� and Œ˛� is given by

�

Z
C�Y

d� ^˛�

Z
Y

� ^˛:

Since neither d� nor ˛ contains a dr , the first integral vanishes, and we are left with
the pairing on our original classes given by the proposition.

We claim that the submatrices Aa are also lower block triangular. To see this, consider a
pairing above the diagonal. This corresponds to hŒ� �; Œ˛�i, where Œ� � is in on a later page
of the spectral sequence for Y than Œ˛� is. For instance, in our example we have the

Geometry & Topology, Volume 11 (2007)



Hodge and signature theorems for a family of manifolds with fibre bundle boundary 1619

pairing of Œ� � 2 Im.�d
0;5
6
/� and Œ˛� 2 Im.�d

1;4
5
/. More generally the superdiagonal

corresponds to pairings

Œ� � 2 Im.�d
a;n=2�a�1

b�a�.l�t/
/� and Œ˛� 2 Im.�d

l;n=2�1�l

b�a�l
/:

Then we can choose � to be a sum of forms with base degree greater than or equal to a

and such that d� has base degree greater than or equal to i C r D b� l C t . Similarly,
we can choose ˛ to have base degree greater than or equal to lC.b�a�l/D b�a and
Œ˛�D db�a�l Œ�� for a form � of base degree greater than or equal to l . Then ˛D d�C

terms of higher base degree. Only the lowest base degree parts of these forms will pair
nondegenerately on Y , so

hŒ� �; Œ˛�i D �

Z
Y

� ^˛ D�

Z
Y

� ^ d�D

Z
Y

d� ^ �D 0;

since d� has base degree � b� lC t and � has base degree � l . Thus the block matrix
for Aa is also of lower triangular form:

Aa
D

0BBBBB@
0 0 0 � � � 0

0 Aa
0

0 � � � 0

0 � Aa
1
� � � 0

0 � �
: : : 0

0 � � � Aa
Œb=2�k�1�

1CCCCCA ;

where Aa
l

is the intersection matrix for Im.da;n=2�1�a

b�a�l
/�˝ Im.d l;n=2�1�l

b�a�l
/.

Now we turn our attention back to the matrix whose signature is �r , recalling an
argument originally from [10], and also appearing in [7]. Recall that this must be a
block lower triangular matrix with blocks T

p
r along the diagonal corresponding to the

pairings
Ep;.bCf�1/=2�p

r ˝Eb�p�r;.f�b�1/=2CpCr
r �! R:

There is a natural inner product on E2 Š˚H p.B;Hq.F //. With respect to this inner
product, we can decompose E2 DE3˚ Im.d2/˚ Im.d2/

� . This in turn induces an
inner product on E3 . Continuing inductively we get inner products on all Er . Denote
these by .�; �/r . Now define the operator ?r by

h� � ; �r i D .�; ?r /r :

In terms of this operator, we find that the signature of �r is equal to the signature of
the self-adjoint operator ?r dr . Note that

?r dr W E
p;q
r �!Eb�p�r;f�qCr�1

r :
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When we restrict to the spaces appearing in the matrices along the block diagonal, we
get that p D b�p� r exactly when

q D .bCf � 1/=2�p D f � ..bCf � 1/=2�p/C r � 1D f � qC r � 1:

Thus ?r dr descends to an operator on E
.b�r/=2;.fCr�1/=2
r . On the complement of

this space, X
p>.b�r/=2

Ep;.bCf�1/=2�p
r ˚

X
p<.b�r/=2

Ep;.bCf�1/=2�p
r ;

the operator ?r dr takes the form:

(20)
�

0 S

S� 0

�
This implies that the eigenvalues on this piece cancel, and �r is the sum of eigenvalues
of ?r dr on E

.b�r/=2;.fCr�1/=2
r . Back in terms of the pairing h�^dr �; �r i, this means

that only the pairings of forms on

Im.d
b�r

2
; fCr�1

2
r /˝ Im.d

b�r
2
; fCr�1

2
r /

contribute to the signature, �r . Note in particular that when f and r are both odd or
both even, �r D 0.

Finally, we can see by this same argument that only the terms Aa
a where max.0; b�

n=2/ � a � b=2 � k � 1 contribute to the signature of the end. This is because
?b�a�ldb�a�l takes

E
a;n=2�1�a

b�a�l
to E

l;n=2�1�l

b�a�l
;

so the contributions coming from the matrices Aa
l

correspond to the contribution from
a submatrix of matrix (20) of the form:�

0 zS
zS� 0

�
The signature of Aa

a equals �b�2a by the above, so we obtain finally that

y�p.C�Y /D�

1X
rD2C2k

�r

and we are done.

Geometry & Topology, Volume 11 (2007)



Hodge and signature theorems for a family of manifolds with fibre bundle boundary 1621

References
[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry.

I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43–69 MR0397797

[2] M F Atiyah, I M Singer, The index of elliptic operators. III, Ann. of Math. .2/ 87
(1968) 546–604 MR0236952

[3] J-M Bismut, J Cheeger, �-invariants and their adiabatic limits, J. Amer. Math. Soc.
2 (1989) 33–70 MR966608
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