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1. Introduction

The Hodge theorem for compact manifolds states that every real conomology class
of a compact manifold/ is represented by a unique harmonic form. That is, the
space of solutions to the differential equati@nt-d*)¢ = 0 onL? forms overM,

a space that depends on the metricMnis canonically isomorphic to the purely
topological real cohomology spaceMf. This isomorphism is enormously useful
because it provides a way to transform theorems from geometry into theorems in
topology and vice versa. No such result holds in general for complete noncompact
manifolds, but in many specific cases there are Hodge-type theorems. One of the
oldest is the description, due to Atiyah, Patodi, and Singer [1], of the spatc® of
harmonic forms on a manifold with complete cylindrical ends. By calculating the
solutions to the equation for harmonic forms on the cylindrical ends, they showed
that the space af? harmonic forms is isomorphic to the image of the relative co-
homology of the manifold in the absolute cohomology. Another Hodge-type result
was found by Zucker [14] for a natural class of metrics called Poincaré metrics.
These metrics, first constructed by Cornalba and Griffiths [4], are complete Kah-
ler metrics with hyperbolic cusp-type singularities at isolated points on a Riemann
surface. Zucker showed that the spacé&dforms on a Riemann surface that are
harmonic with respect one of these metrics is isomorphic to the standard cohomol-
ogy of the surface. This result was extended by Cattani, Kaplan, and Schmid [3]
to analogous metrics on bundles over projective varieties with singularities along
a divisor. These metrics can be thought of as complete Kéhler metrics on the non-
compact manifold given by removing the divisor.

There is a larger natural class of complete, noncompact Kéhler metrics on the
complement of a divisor in a projective variety. They are of interest both because
of their relation to the Poincaré metrics and because other examples of them have
arisen in papers by Tian and Yau [12; 13] as starting points for the construction of
metrics solving the K&hler—Einstein problem, and the final metrics in these papers
are quasi-isometric to the starting metrics. In this paper, we study the spaée of
harmonic forms on manifolds with such metrics and its relation to cohomology of
the original projective variety, especially with a view to how the spaces relate to
Hodge diamond structures on subspaces of the cohomology of the original variety.
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Let M be a complete smooth algebraic variety of complex dimensij@md let
D be an ample divisor with normal crossingsif. Let | - | be a norm of P]
with positive definite curvature form such thgit|| < 1 onM, wheres is the holo-
morphic section of P] definingD. Choose a functiorf such thatf’'(x) > ¢; >
—1 for sufficiently largex and f(x) + f'(x)e~?* > c»/x? > 0. Then define the
Kéahler form

w; = 5—{08f (~Iog(IS?)} + Kwo. )

wherew is the Kéhler form on andK is a constant chosen sufficiently large
to ensure that the form is positive definite away from the divisor. Then the metric
gr associated ta; will be a complete Kéhler metric olf. Examples include the
casef(x) = —In(x), when these are Poincaré-type metrics as in [3]f(If) =
x% (a > 1), the resulting metrics are quasi-isometric to the metrics constructed in
[12], and if f(x) = e* (b > 0), then they are quasi-isometric to the metrics con-
structed in [13]. In this paper we consider these three cases, as well as the case
where f(x) = —x* (0 < a < 1) because it interpolates between the Poincaré
metrics and the metrics in [12]. That is to say, the growth of the funcfion =
—x? (0 < a < 1) lies in between the growth of(x) = —In(x) and f(x) = x*
(a > 1). If we consider the case where the dividdris smooth and look at the
asymptotic form of the metrics ne®&, we can see how the convexity gfrelates
to the growth of the corresponding metrics near the divisor, given hereby.
The Poincaré metrics look like
2

xz(‘ii4 + T2+ i—?)
wheregp is any metric orD andT is any connection 1-form on the spherical nor-
mal bundle ofD in M. The metrics in [12] look like

dx?
xz(z—a)<_6 +T24 8_7;>’
X X
wherea > listhea in f(x) = x“, and the interpolating metrics have the form

dx? 8D
xz(m + T2 + F>,
wheree — 0asa — 0in f(x) = —x“ and wheree — lasa — L If f(x) =
x then f”(x) = 0, so this case degenerates and gives not a complete metric but
rather the restriction ta/ of a Kahler metric oM. We focus on these cases be-
cause of their applications, but the results in this paper should extend to metrics
with more general defining functiors

We obtain the following results.

THeoreM 1. If M and g, are as previously described, thét(2>(M, gr) = {0}
fori #nif f(x) =x (a > 1 orif f(x)=e" (b > 0).
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No similar vanishing theorem will hold for metrics with(x) = x* 0O <a < 1

or for the Poincaré metrics because they have finite volume; hence constant func-
tions areL? harmonic 0-forms. Further, i#/ is a 2:-dimensional torus then there
are L2 harmonic forms in all degrees for the finite-volume metrics, regardless of
the divisorD chosen.

For Kahler forms arising from the functiofi(x) = ¢”* when the divisor is
smooth, it is possible to determine the middle-dedié&darmonic forms. These
have the following description in terms of a subset of cohomologyoalready
known to carry a Hodge structure.

THEOREM 2. If M andg, are as abovef(x) = e’ (b > 0),andDis smoo_th,
then?{, (M, gs) is isomorphic to the middle-degree primitive cohomology/of

If the divisor has crossings or if(x) # ¢%*, then we don’t have a general theo-
rem describing thé? harmonic forms. However, we can understand an important
subspace of them, the? holomorphic and antiholomorphic forms, from the fol-
lowing theorem.

Tueorem 3. If M = M — D is a complete K&hler manifold with a metric quasi-
isometric to one of the metrigg; described in equatioifl), then theL? holo-
morphic and antiholomorphic forms o extend across the divisdP to give

all holomorphic or antiholomorphic forms a#, except in the cases and degrees
where(by Theorem JLthere are nal? harmonic forms.

These theorems, while incomplete in their descriptiod. ®harmonic forms for
the general class of metrics, give a sense of what those spaces of forms might look
like, which we will discuss in the conclusion to this paper.
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2. Notation, Definitions, and Background

First, let’s briefly review some definitions and backgroundvlis a manifold of
real dimensiom: with a metricg, let

Lip(M, g) = {o eT(A'T*M) | /M|do|§dvolg < oo}.
Then(L{, (M, g), d) is a complex, so we can define the cohomology
ker(d: L, (M, g) — LY (M, g))

(2) ’ (2)
d(Lip(M, g))

Hb (M, g) =
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The reduced.? cohmolology ofM is defined similarly, but with the closure of the
image ofd replacing the image af in the preceding fraction. IfM, g) is com-
plete, then the space &f harmonic forms is defined by

Hip(M, g) = {0 € Lip (M, g) | do = d*o = 0},
whered* = (—1)"*=Y-14 4« The weak Kodaira decomposition states that

L*QN(M, g) = dCFQF1(M) @ d*C&QMHM, g) @ Hip (M, g).

This implies that the space @ harmonic forms onV is isomorphic to the re-
ducedL? cohomology and is thus a quasi-isometry invariant of the manifold, up to
isomorphism. This means we need really only study the metrics near the deleted
divisor D, and only up to quasi-isometry.

Therefore, we conclude this section by writing out the local form of the metrics
given by the Kéhler forms&, and by constructing quasi-isometric “model met-
rics” near the divisor:

wf = i{aéf(—log(llSllz))} + Kwo
_ é{3[f/(_|og||S||2)5(—|Og||Sllz)]} + Kwo

= é{f”(—log||S||2>a(—lognS||2)é(—log||S||2)

+ f'(~log||S11?)33(—logllS|I*)} + Kwo.

Now considerwy nearD = {z; = =2zr= 0}. By the choice of norm onp]
we have|S||? = e #|z4)% - - |z, where " 90 is positive definite o, so
—log||S||? = B —log|za|* — - -- —loglz, |,
o)
- - " dz; - -
d(—log|s|2) =36 — Y =" and 0d(—log|S|I?) = dp.
i-1
Thus

_l_ "e__ 2 _r& d _r @
wf_zjr{ﬂ logl | )(8/3 ZZ,)A(‘” ;z)

i=1
+ f’(—logllSllz)Béﬂ} + Kwo.

Up to quasi-isometry, this is equivalent to

dz; Ndz;
{f”( Iog||S||2)Z LT

llzil12

i
@y

+ A+ fi—loglsI?) 3 dziAcE}. @

i=r+l1
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On the interior ofM, the form can be written locally around any point as

wp = L+ f(=loglISI%) D dzi A dz;.
i=1

Away from the divisor, O< ||S|| < 1, so—log| S|/ is bounded away from zero
and infinity. Therefore, iff’(x) > 0 for all x > 0 (which is true for the two
infinite-volume metrics we study), then dropping the 1 fréi- f/(—log||S||?))
yields a quasi-isometric metric. In particular, the form remains positive definite.
Dropping the 1 corresponds to eliminating tkieo term from the original defini-

tion of vy, so in these cases we can drop this term entirely. This is not possible in
the finite-volume cases.

3. Proofs of Theorems

3.1. Proof of Theorem 1

Gromov [5] showed that if a Kéhler manifold has a Kahler fava= dn, where
n is a form whose norm was bounded with respect to the metric, then the strong
Lefschetz theorem could be used to prove that the manifold hdd farms out-
side the middle dimension. This result has been generalized in [2; 7; 10]. McNeal
[10] considers manifoldd/ endowed with K&hler metrics given by forms =
i90n. If

19A12 < A + BA

for some constantd > 0 andB > 0, where| - |, is the norm induced by the
Kéhler formw, he says. dominates its gradientMcNeal shows that if is an ex-
haustion function that dominates its gradient, then there afe& harmonic forms

for (M, w) outside the middle degree. So, in order to prove Theorem 1, we begin
by noting that iff(x) = x¢ (a > 1) andf(x) = e** (b > 0), then eliminating the
Kwq term in the Kahler form construction in equation (1) yields a quasi-isometric
Kéahler metric given by the Kéahler form = i9d(1/2x) f(—log|S(x)||%). Since

L = (1/27) f(—log| S(x)||?) is an exhaustion function, Theorem 1 then follows
from the following claim.

Cram 1. The functiom. = (1/27) f(—log||S(x)||?) dominates its gradient for
f(x) =x%(a > 1 and f(x) = e (b > 0).

Proof. We can do these both at once, taking the norms with respect to the quasi-
isometric metricg; associated to the forms given in equation (2). With respect to
these metrics, which are diagonal in local coordinates near the diRisor{z; =

- =z, = 0}, we have|ldz|2, = f"(~log|| S| fori < r and|ldz;l|2, =
f'(—log||S||1?)"tfor i > r. We will supress thg subscripts in the following cal-
culation. So in either case, near the divisor we have
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2 1 2 2
[9Ally, = Zaf(—mgllS(X)II )

1 2
_ H_2 £'(~log|| S1») a(~log]|S11%)
T

_3ﬁ_i%
i=1

-1

2

1 2
= (—2 f’(—l09||S||2)>
T

r dz; 2 n
< c(f’(—log||S||2))2<Z ””;””2 Y ||dz,-||2>

i=1 i=r+1

< c(f’(—logIISllz))2<Z(f”(—logllSllz))‘1+ > (f’(—logllSllz))‘l)
i=1 i=r+1
- [f%—lognsnzn—l
6 v Sary T
f"(=loglIS1?)
< 5> f(=logS|?) = ca
T
for either choice off (x), since
(f'(x))? RAC)
FOf"x)  fx)
is bounded by a constant fer> 1 (i.e., near enough the divisor) for either choice

of f(x). Hence, on the entire manifold we can find some constants 0 and
B > 0such that|ar||2 < A + Ba. O

+ f’(—log||S||2)]

3.2. Proof of Theorem 2

Because of the quasi-isometry invariancé-lq'g(M, g), it suffices to consider the
metrics in Theorem 2 near the deleted divisor. We can reparametrize as in [13] to
show the metric is quasi-isometric in a neighborhood of the deleted divisor to the

simpler metric:
ds? = e®*R(dR? + ds?), )

where P is the unit normal bundle P in M, ds2 is any metric onP, and the
divisor is given byR = 0.

For forms of middle degree on a complete manifold, biotlandd +d* are con-
formally invariant. This means that the spacd.éharmonic forms for the metric
gr on M is isomorphic to the space &f harmonic forms for a metric equal to the
product metricdR? + dsf, near the end. By the results in [1], we know that this
second space is isomorphic to(Hy (M) — H'(M)), the image of the compact
cohomology ofM in the full (not L) cohomology ofM.

In order to get the description in terms of primitive cohomologyhfwe use
the exact sequence for a pair twice. Note tHgi(M) can also be thought of as
H"(M, D), so we obtain the exact sequence
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.o — H"(M,D) - H" (M) — H"(D) — --- ;
we also have the exact sequence
coo > H'"(M, M) - H"(M) —> H" M) —> --- .

By Poincaré duality, we know tha{"(D) = H,_,(D) and thatH"*2(M) =
H,_>(M). Then, by the Lefschetz hyperplane theordi), »(D) = H,_»(M).
Similarly, by the Thom isomorphisn (M, M) = H"~2(D) and, by the Lef-
schetz hyperplane theoretl;*~2(M) = H"~?(D). So the two exact sequences
just displayed become

H"(M, D)
TN
~N
S

o, UlD] _ i* n
H"2(M) —— H"(M) —— H"(M)

J/U[D]

H"+2(M).

Thus, the image of* in H"(M) is the kernel of J[D], whereas the kernel of
is the image of J[D]. By the Lefschetz hyperplane theorem, the map

U[D]Z: H”_Z(M) - H”+2(M)
is an isomorphism, so this means that
IM(H"(M, D) - H"(M)) = Im(H"(M, D) — H"(M)),

which consists of the primitive classes Hy'(M) sinceD is ample. This con-
cludes the proof of Theorem 2. O

3.3. Proof of Theorem 3

It suffices to prove this result for holomorphic forms, since the result for anti-
holomorphic forms follows by conjugation. We’ll do the proof, which is based
on Hartog’s theorem, by cases. In each case, we will establish estimates locally
around a point on the divisor to show that functions that are holomorphic on a
punctured polydisk around the point arelif for the relevant metrics if and only

if they have no singularities. The punctured polydisk, which we will assume to
have radius A2, is denoted A*)" x (A)"~", and the divisor is given locally in
holomorphic coordinates B = {z; = - -- = z, = 0}. The metric has no effect

on whether forms are holomorphic, and thé condition is preserved by quasi-
isometry. Therefore, to simplify calculations, instead of usgngtself we will
calculate using a quasi-isometric metgg, on the punctured polydisk. Inthe case

of the infinite-volume metrics, where we are concerned only with middle-degree
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forms, we will take the metric associated to the favinidentified in equation (2).
In the case of the finite-volume metrics, we will further simplify the metric to

/ dzj ANdz; . _
gf = (=In(zal?--- 12,13 22 j| P L+ Y dzyadzg,
j=1 j=r+1

wherea = 0 for the metrics withf (x) = —In(x).

Case 1: Infinite-volume metricsf f(x) = x¢ (a > 1) or f(x) = e®* (b > 0)
then, by the vanishing in Theorem 1, we need only consider holomorphic forms of
degreen. The volume element fog; is given in terms of the local holomorphic
coordinates by
dzAdz

ldzall?- - dza %’

wheredz A dzis the Euclidean volume element in the polydigky A dza A -+ - A

dz, A dz,. Any holomorphicn-form on the punctured polydisk is given by=
o(2)dz, whereo (2) is a holomorphic function on the punctured polydisk. This
form is L? with respect to the metrig; if and only if o(z) has no poles along the
divisor, since ‘

dvol =

2 2 2 dzndz
llo]I*dvol = lo@IIldzl* ——F——7
(A) x (AT (A x (AT ldzall“ - - - lldz, |l

=/ lo(2)|?dz A dz,
(A*)I‘X(A)nfr

which is finite if and only ifo(z) has no poles. Thus, every holomorphic form on
the punctured polydisk that &% with respect tog, extends to the whole poly-
disk, and every holomorphic form on the whole polydisk restricts to a form on
the punctured polydisk that i with respect tgg;. This completes the proof in
Case 1.

Case 2: Finite-volume metricdf f(x) = —In(x) or f(x) = —x* 0O < a <
1), then we must prove the theorem for holomorphic forms of any degreé G<
n. On the punctured polydisgA*)” x (A)"~" we derive that, for the metrig:},

ldz; I = (=In(lzal?- - - 1z, [%)* ] 717
for j < r and|ldz;||? = 1for j > r, and the volume form is

dzAdz
ldzall?- - - ldz, %

A holomorphick-form ¢ on the punctured polydisk can be written in the lo-
cal holomorphic coordinates as= Zm:k o1(2)dz;, wherel = {I, ..., I;}is
a set of distinct indicies between 1 amddz; = dz;, A - - - A dzy,, and the func-
tionso; (z) are all holomorphic. The form extends to a holomorphic form on the
entire disk if and only if thes; (z) have no poles along the divisor.

dvol =
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Consider the.? norm with respect tg; of o

2
lol? = /
./ (A*)l' X(A))l*"

- f Z 01(2)a,(2)(dz;, dz;) dvol.
(

AN 1=k, | 1=k

2
o1(2)dz;|| dvol

=k

Since the 1-formdz; are orthogonal, so are tiheformsdz;. Hence the preceding

equals
Z/ lor(2)|?|ldz;||? dvol.
1=k Y (

) (A)TT

We can therefore consider one indeat a time:

2 2 2

lor(@dz; |, =/ lo1(2)|%|ldz; || dvol
f (A x (AT

2 2

2lldzpll” - - - lldzy, |

= lor(2)]
/(A*)rx(A)'H ldzall?- - - lldz, |1

Assume that; of the indices forl are indices corresponding to punctured disks
and that the others are indices corresponding to entire disks. Without loss of gen-
erality, by reordering the holomorphic coordinates we can even assume that the
firstg indices ardl, 2, ..., ¢g}. Then this integral becomes

dz Adz.

/ 0,22 dzndz
o
() (AT ||qu+1||2 ce ||er||2

/ 0122 dzndz
= oy .
(&) x (D)= |Zg+1l? - - |z, [2(—log(|za]? - - - |2, |2) =D =)

In polar coordinates, whetg = p;e™, this becomes

1/2 2 p2n 27 2 ,Olpndpl/\/\dpn
lor(p, )" — > > ) do.
0 o Jo 0 Poia e pE(=log(pg -+ p2) e

The integrals irg are all finite, so we are left with
/1/2 f1/2|& (p)|2 plpndpl/\/\dpn
e , .
0 0 Par1 - pE(=l0g(pF -+ - p2))r- @

If o; has any poles, then the integral in the direction of the pole is infinite; If
has no poles, then the integral is

<c/l/2..-/l/2 dpgsi A -+ Ndp,
~Jo 0 pg+1e-pr(=log(p - p2) 0@

As we construct each of these integrals, the exponent on the log term is reduced by
1. Each iterated integral is finite as long as the exponent is greater than 1. Hence,
since there are — ¢ integrals to do and since2 a > 1, the overall integral is
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finite. Therefore, holomorphic forms restricted from the entire polydisk are the
same as holomorphic forms i? with respect tag, for the punctured polydisk.
This finishes Case 2. O

4. Conclusion

These theorems suggest what fireharmonic forms might look like in general

for the metrics discussed in this paper. In the case where the divisor is smooth,
for example, the description of the spaceldfharmonic forms for thef(x) =

e’ (b > 0) metrics in terms of primitive cohomology still makes sense in the case
of more general divisors, and it still explains the Hodge substructure. This sug-
gests that it may still be correct in the more general case. We also have a general
sense that metrics whose asymptotic behavior lies between the two extremes of the
f(x) = —In(x)andf(x) = e (b > 0) should have spaces bf harmonic forms

that also lie in between the spacesidfharmonic forms for these metrics. This,
together with the strong condition that the spaces carry a pure Hodge structure,
suggests more concretely that, for the metrics with) = —x“ (0 < a < 1), the

space ofL.? harmonic forms is isomorphic in all degrees to the standard cohomol-
ogy of the compact manifold/, something we already know (by Theorem 3) to

be true for the holomorphic and antiholomorphic forms and their Poincaré duals.
Finally, the missing metric (wherg(x) = x) corresponds in the smooth divisor
case to a cylindrical metric, so the metrics whgfe) = x* (a > 1) lie in between

the cylindrical case and the generalized Poincaré metric case, which have the same
middle-degree spaces bf harmonic forms, as described in Theorem 2. It seems
likely, therefore, that this is also the correct description of the middle-degtee
harmonic forms in the casf(x) = x¢ (a > 1).

The complete results about Poincaré metrics in [3; 14] are obtained using the
fact that, for these metrics, the spaceldfharmonic forms is isomorphic to the
standard.? cohomology, which has a nice description in terms of sheaves. There-
fore, in the Poincaré case, the spacd.6harmonic forms can be understood by
finding a quasi-isomorphism from the? sheaf to one o/. The other metrics
considered in this paper do not in general have such an isomorphism. In these
cases, the spectrum of the Laplacian comes down to zero, as can be seen in the
n = 1 case as a consequence of results in [15] about warped product metrics; it is
thus impossible to apply the sheaf-theoretic arguments of [3] and [15].

The proofs of Theorems 2 and 3 in this paper ultimately rely on the fact that
we understand the asymptotic struture of harmonic forms near the deleted divisor.
It seems possible, then, that techniques of geometric microlocal analysis could
shed light on our conjectures. This approach was developed by Melrose [11] as
a new philosophy for understanding the results in [1]. It gives a rough road map
for turning information about the asymptotic structure of a singular metric near
the boundary of a manifold into information about the asymptotics of solutions to
elliptic differential equations on the manifold. The general idea has been applied
in many subsequent papers (see e.g. [6, 9; 11]) to metrics similar in asymptotic
structure to the metrics considered here.
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