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L2 Harmonic Forms for a Class of
Complete Kähler Metrics

Eugénie Hunsicker

1. Introduction

The Hodge theorem for compact manifolds states that every real cohomology class
of a compact manifoldM is represented by a unique harmonic form. That is, the
space of solutions to the differential equation(d+d ∗)φ = 0 onL2 forms overM,
a space that depends on the metric onM, is canonically isomorphic to the purely
topological real cohomology space ofM. This isomorphism is enormously useful
because it provides a way to transform theorems from geometry into theorems in
topology and vice versa. No such result holds in general for complete noncompact
manifolds, but in many specific cases there are Hodge-type theorems. One of the
oldest is the description, due to Atiyah, Patodi, and Singer [1], of the space ofL2

harmonic forms on a manifold with complete cylindrical ends. By calculating the
solutions to the equation for harmonic forms on the cylindrical ends, they showed
that the space ofL2 harmonic forms is isomorphic to the image of the relative co-
homology of the manifold in the absolute cohomology. Another Hodge-type result
was found by Zucker [14] for a natural class of metrics called Poincaré metrics.
These metrics, first constructed by Cornalba and Griffiths [4], are complete Käh-
ler metrics with hyperbolic cusp-type singularities at isolated points on a Riemann
surface. Zucker showed that the space ofL2 forms on a Riemann surface that are
harmonic with respect one of these metrics is isomorphic to the standard cohomol-
ogy of the surface. This result was extended by Cattani, Kaplan, and Schmid [3]
to analogous metrics on bundles over projective varieties with singularities along
a divisor. These metrics can be thought of as complete Kähler metrics on the non-
compact manifold given by removing the divisor.

There is a larger natural class of complete, noncompact Kähler metrics on the
complement of a divisor in a projective variety. They are of interest both because
of their relation to the Poincaré metrics and because other examples of them have
arisen in papers by Tian and Yau [12; 13] as starting points for the construction of
metrics solving the Kähler–Einstein problem, and the final metrics in these papers
are quasi-isometric to the starting metrics. In this paper, we study the space ofL2

harmonic forms on manifolds with such metrics and its relation to cohomology of
the original projective variety, especially with a view to how the spaces relate to
Hodge diamond structures on subspaces of the cohomology of the original variety.
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Let M̄ be a complete smooth algebraic variety of complex dimensionn, and let
D be an ample divisor with normal crossings in̄M. Let ‖ · ‖ be a norm of [D]
with positive definite curvature form such that‖S‖ < 1 onM̄,whereS is the holo-
morphic section of [D] definingD. Choose a functionf such thatf ′(x) > c1 >

−1 for sufficiently largex andf ′′(x)+ f ′(x)e−2x > c2/x
2 > 0. Then define the

Kähler form

ωf = i

2π
{∂∂̄f(−log(‖S‖2))} +Kω0, (1)

whereω0 is the Kähler form onM̄ andK is a constant chosen sufficiently large
to ensure that the form is positive definite away from the divisor. Then the metric
gf associated toωf will be a complete Kähler metric onM. Examples include the
casef(x) = −ln(x), when these are Poincaré-type metrics as in [3]. Iff(x) =
xa (a > 1), the resulting metrics are quasi-isometric to the metrics constructed in
[12], and iff(x) = ebx (b > 0), then they are quasi-isometric to the metrics con-
structed in [13]. In this paper we consider these three cases, as well as the case
wheref(x) = −xa (0 < a < 1) because it interpolates between the Poincaré
metrics and the metrics in [12]. That is to say, the growth of the functionf(x) =
−xa (0 < a < 1) lies in between the growth off(x) = −ln(x) andf(x) = xa
(a > 1). If we consider the case where the divisorD is smooth and look at the
asymptotic form of the metrics nearD, we can see how the convexity off relates
to the growth of the corresponding metrics near the divisor, given here byx = 0.
The Poincaré metrics look like

x 2

(
dx 2

x4
+ T 2 + gD

x 2

)
,

wheregD is any metric onD andT is any connection 1-form on the spherical nor-
mal bundle ofD in M̄. The metrics in [12] look like

x 2(2−a)
(
dx 2

x6
+ T 2 + gD

x 2

)
,

wherea > 1 is thea in f(x) = xa, and the interpolating metrics have the form

x 2

(
dx 2

x 2(2+ε) + T 2 + gD
x 2

)
,

whereε → 0 asa → 0 in f(x) = −xa and whereε → 1 asa → 1. If f(x) =
x thenf ′′(x) = 0, so this case degenerates and gives not a complete metric but
rather the restriction toM of a Kähler metric onM̄. We focus on these cases be-
cause of their applications, but the results in this paper should extend to metrics
with more general defining functionsf.

We obtain the following results.

Theorem 1. If M andgf are as previously described, thenHi
(2)(M, gf)

∼= {0}
for i 6= n if f(x) = xa (a > 1) or if f(x) = ebx (b > 0).
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No similar vanishing theorem will hold for metrics withf(x) = xa (0 < a < 1)
or for the Poincaré metrics because they have finite volume; hence constant func-
tions areL2 harmonic 0-forms. Further, if̄M is a 2n-dimensional torus then there
areL2 harmonic forms in all degrees for the finite-volume metrics, regardless of
the divisorD chosen.

For Kähler forms arising from the functionf(x) = ebx when the divisor is
smooth, it is possible to determine the middle-degreeL2 harmonic forms. These
have the following description in terms of a subset of cohomology onM already
known to carry a Hodge structure.

Theorem 2. If M andgf are as above,f(x) = ebx (b > 0), andD is smooth,
thenHn

(2)(M, gf) is isomorphic to the middle-degree primitive cohomology ofM̄.

If the divisor has crossings or iff(x) 6= ebx, then we don’t have a general theo-
rem describing theL2 harmonic forms. However, we can understand an important
subspace of them, theL2 holomorphic and antiholomorphic forms, from the fol-
lowing theorem.

Theorem 3. If M = M̄ −D is a complete Kähler manifold with a metric quasi-
isometric to one of the metricsgf described in equation(1), then theL2 holo-
morphic and antiholomorphic forms onM extend across the divisorD to give
all holomorphic or antiholomorphic forms on̄M, except in the cases and degrees
where(by Theorem 1) there are noL2 harmonic forms.

These theorems, while incomplete in their description ofL2 harmonic forms for
the general class of metrics, give a sense of what those spaces of forms might look
like, which we will discuss in the conclusion to this paper.

Acknowledgments. The author wishes to thank her advisors, Mel Rothenberg
and Kevin Corlette, who gave suggestions throughout this research. Madhav Nori
helped navigate the exact sequences involved in Theorem 2. Rafe Mazzeo was
crucial in helping to prepare the final draft of this paper. The research in this paper
was supported in part by a dissertation fellowship from the American Association
of University Women.

2. Notation, Definitions, and Background

First, let’s briefly review some definitions and background. IfM is a manifold of
real dimensionm with a metricg, let

Li(2)(M, g) =
{
σ ∈0(3iT ∗M) ∣∣ ∫

M

|dσ|2g dvolg <∞
}
.

Then(L∗(2)(M, g), d ) is a complex, so we can define the cohomology

H i
(2)(M, g) =

ker(d : Li(2)(M, g)→ Li+1
(2) (M, g))

d(Li(2)(M, g))
.
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The reducedL2 cohmolology ofM is defined similarly, but with the closure of the
image ofd replacing the image ofd in the preceding fraction. If(M, g) is com-
plete, then the space ofL2 harmonic forms is defined by

Hi
(2)(M, g) = {σ ∈Li(2)(M, g) | dσ = d ∗σ = 0},

whered ∗ = (−1)m(k−1)−1 ∗ d∗. The weak Kodaira decomposition states that

L2�k(M, g) = dC∞0 �k−1(M)⊕ d ∗C∞0 �k+1(M, g)⊕Hk
(2)(M, g).

This implies that the space ofL2 harmonic forms onM is isomorphic to the re-
ducedL2 cohomology and is thus a quasi-isometry invariant of the manifold, up to
isomorphism. This means we need really only study the metrics near the deleted
divisorD, and only up to quasi-isometry.

Therefore, we conclude this section by writing out the local form of the metrics
given by the Kähler formsωf and by constructing quasi-isometric “model met-
rics” near the divisor:

ωf = i

2π
{∂∂̄f(−log(‖S‖2))} +Kω0

= i

2π
{∂[f ′(−log‖S‖2)∂̄(−log‖S‖2)]} +Kω0

= i

2π
{f ′′(−log‖S‖2)∂(−log‖S‖2)∂̄(−log‖S‖2)
+ f ′(−log‖S‖2)∂∂̄(−log‖S‖2)} +Kω0.

Now considerωf nearD = {z1 = · · · = zr = 0}. By the choice of norm on [D]
we have‖S‖2 = e−β |z1|2 · · · |zr |2, where i

2π ∂∂̄β is positive definite onM̄, so

−log‖S‖2 = β − log|z1|2 − · · · − log|zr |2,
so

∂̄(−log‖S‖2) = ∂̄β −
r∑
i=1

dzi

zi
and ∂∂̄(−log‖S‖2) = ∂∂̄β.

Thus

ωf = i

2π

{
f ′′(−log‖S‖2)

(
∂β −

r∑
i=1

dzi

zi

)
∧
(
∂̄β −

r∑
i=1

dzi

zi

)
+ f ′(−log‖S‖2)∂∂̄β

}
+Kω0.

Up to quasi-isometry, this is equivalent to

ω ′f =
i

2π

{
f ′′(−log‖S‖2)

r∑
i=1

dzi ∧ dzi
‖zi‖2

+ (1+ f ′(−log‖S‖2))
n∑

i=r+1

dzi ∧ dzi
}
. (2)
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On the interior ofM, the form can be written locally around any point as

ωf = (1+ f ′(−log‖S‖2))
n∑
i=1

dzi ∧ dzi.

Away from the divisor, 0< ‖S‖ < 1, so−log‖S‖2 is bounded away from zero
and infinity. Therefore, iff ′(x) > 0 for all x > 0 (which is true for the two
infinite-volume metrics we study), then dropping the 1 from(1+ f ′(−log‖S‖2))
yields a quasi-isometric metric. In particular, the form remains positive definite.
Dropping the 1 corresponds to eliminating theKω0 term from the original defini-
tion ofωf , so in these cases we can drop this term entirely. This is not possible in
the finite-volume cases.

3. Proofs of Theorems

3.1. Proof of Theorem 1

Gromov [5] showed that if a Kähler manifold has a Kähler formω = dη, where
η is a form whose norm was bounded with respect to the metric, then the strong
Lefschetz theorem could be used to prove that the manifold had noL2 forms out-
side the middle dimension. This result has been generalized in [2; 7; 10]. McNeal
[10] considers manifoldsM endowed with Kähler metrics given by formsω =
i∂∂̄λ. If

‖∂λ‖2ω ≤ A+ Bλ
for some constantsA > 0 andB ≥ 0, where‖ · ‖ω is the norm induced by the
Kähler formω, he saysλ dominates its gradient.McNeal shows that ifλ is an ex-
haustion function that dominates its gradient, then there are noL2 harmonic forms
for (M,ω) outside the middle degree. So, in order to prove Theorem 1, we begin
by noting that iff(x) = xa (a > 1) andf(x) = ebx (b > 0), then eliminating the
Kω0 term in the Kähler form construction in equation (1) yields a quasi-isometric
Kähler metric given by the Kähler formω = i∂∂̄(1/2π)f(−log‖S(x)‖2). Since
λ = (1/2π)f(−log‖S(x)‖2) is an exhaustion function, Theorem 1 then follows
from the following claim.

Claim 1. The functionλ = (1/2π)f(−log‖S(x)‖2) dominates its gradient for
f(x) = xa (a > 1) andf(x) = ebx (b > 0).

Proof. We can do these both at once, taking the norms with respect to the quasi-
isometric metricsgf associated to the forms given in equation (2). With respect to
these metrics, which are diagonal in local coordinates near the divisorD = {z1=
· · · = zr = 0}, we have‖dzi‖2gf = f ′′(−log‖S‖2)−1 for i ≤ r and‖dzi‖2gf =
f ′(−log‖S‖2)−1 for i > r. We will supress thegf subscripts in the following cal-
culation. So in either case, near the divisor we have
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‖∂λ‖2gf =
∥∥∥∥ 1

2π
∂f(−log‖S(x)‖2)

∥∥∥∥2

=
∥∥∥∥ 1

2π
f ′(−log‖S‖2)∂(−log‖S‖2)

∥∥∥∥2

=
(

1

2π
f ′(−log‖S‖2)

)2∥∥∥∥− ∂β − r∑
i=1

dzi

zi

∥∥∥∥2

≤ c(f ′(−log‖S‖2))2
( r∑

i=1

‖dzi‖2
‖zi‖2 +

n∑
i=r+1

‖dzi‖2
)

≤ c(f ′(−log‖S‖2))2
( r∑

i=1

(f ′′(−log‖S‖2))−1+
n∑

i=r+1

(f ′(−log‖S‖2))−1

)

≤ c2

[
f ′(−log‖S‖2))−1

f ′′(−log‖S‖2) + f
′(−log‖S‖2)

]
≤ c3

2π
f(−log‖S‖2) = c3λ

for either choice off(x), since

(f ′(x))2

f(x)f ′′(x)
+ f

′(x)
f(x)

is bounded by a constant forx > 1 (i.e., near enough the divisor) for either choice
of f(x). Hence, on the entire manifold we can find some constantsA > 0 and
B ≥ 0 such that‖∂λ‖2ω ≤ A+ Bλ.

3.2. Proof of Theorem 2

Because of the quasi-isometry invariance ofHi
(2)(M, g), it suffices to consider the

metrics in Theorem 2 near the deleted divisor. We can reparametrize as in [13] to
show the metric is quasi-isometric in a neighborhood of the deleted divisor to the
simpler metric:

ds2 = e2bR(dR2 + ds2
P ), (3)

whereP is the unit normal bundle ofD in M̄, ds2
P is any metric onP, and the

divisor is given byR = 0.
For forms of middle degree on a complete manifold, bothL2 andd+d ∗ are con-

formally invariant. This means that the space ofL2 harmonic forms for the metric
gf onM is isomorphic to the space ofL2 harmonic forms for a metric equal to the
product metricdR2 + ds2

P near the end. By the results in [1], we know that this
second space is isomorphic to Im(H i

o(M)→ H i(M)), the image of the compact
cohomology ofM in the full (notL2) cohomology ofM.

In order to get the description in terms of primitive cohomology ofM, we use
the exact sequence for a pair twice. Note thatHn

o (M) can also be thought of as
Hn(M̄,D), so we obtain the exact sequence
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· · · → Hn(M̄,D)→ Hn(M̄ )→ Hn(D)→ · · · ;
we also have the exact sequence

· · · → Hn(M̄,M)→ Hn(M̄ )→ Hn(M)→ · · · .
By Poincaré duality, we know thatHn(D) ∼= Hn−2(D) and thatHn+2(M̄ ) ∼=
Hn−2(M̄ ). Then, by the Lefschetz hyperplane theorem,Hn−2(D) ∼= Hn−2(M̄ ).

Similarly, by the Thom isomorphism,Hn(M̄,M) ∼= Hn−2(D) and, by the Lef-
schetz hyperplane theorem,Hn−2(M̄ ) ∼= Hn−2(D). So the two exact sequences
just displayed become

Hn(M̄,D)
j∗

�� %%K
K

K
K

K

Hn−2(M̄ )

⋃
[D]

// Hn(M̄ )
i∗ //

⋃
[D]

��

Hn(M)

H n+2(M̄ ).

Thus, the image ofj ∗ in Hn(M̄ ) is the kernel of
⋃

[D], whereas the kernel ofi∗
is the image of

⋃
[D]. By the Lefschetz hyperplane theorem, the map⋃

[D]2 : Hn−2(M̄ )→ Hn+2(M̄ )

is an isomorphism, so this means that

Im(H n(M̄,D)→ Hn(M)) ∼= Im(H n(M̄,D)→ Hn(M̄ )),

which consists of the primitive classes inHn(M̄ ) sinceD is ample. This con-
cludes the proof of Theorem 2.

3.3. Proof of Theorem 3

It suffices to prove this result for holomorphic forms, since the result for anti-
holomorphic forms follows by conjugation. We’ll do the proof, which is based
on Hartog’s theorem, by cases. In each case, we will establish estimates locally
around a point on the divisor to show that functions that are holomorphic on a
punctured polydisk around the point are inL2 for the relevant metrics if and only
if they have no singularities. The punctured polydisk, which we will assume to
have radius 1/2, is denoted(1∗)r × (1)n−r , and the divisor is given locally in
holomorphic coordinates byD = {z1 = · · · = zr = 0}. The metric has no effect
on whether forms are holomorphic, and theL2 condition is preserved by quasi-
isometry. Therefore, to simplify calculations, instead of usinggf itself we will
calculate using a quasi-isometric metric,g ′f , on the punctured polydisk. In the case
of the infinite-volume metrics, where we are concerned only with middle-degree
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forms, we will take the metric associated to the formω ′f identified in equation (2).
In the case of the finite-volume metrics, we will further simplify the metric to

g ′f = (−ln(|z1|2 · · · |zr |2))a−2
r∑
j=1

dzj ∧ dz̄j
|zj |2 +

n∑
j=r+1

dzj ∧ dz̄j,

wherea = 0 for the metrics withf(x) = −ln(x).

Case 1: Infinite-volume metrics.If f(x) = xa (a > 1) or f(x) = ebx (b > 0)
then, by the vanishing in Theorem 1, we need only consider holomorphic forms of
degreen. The volume element forg ′f is given in terms of the local holomorphic
coordinates by

dvol = dz∧ dz̄
‖dz1‖2 · · · ‖dzn‖2 ,

wheredz∧ dz̄ is the Euclidean volume element in the polydisk,dz1∧ dz̄1∧ · · · ∧
dzn ∧ dz̄n. Any holomorphicn-form on the punctured polydisk is given byσ =
σ(z)dz, whereσ(z) is a holomorphic function on the punctured polydisk. This
form isL2 with respect to the metricg ′f if and only if σ(z) has no poles along the
divisor, since∫

(1∗ )r×(1)n−r
‖σ‖2 dvol =

∫
(1∗ )r×(1)n−r

|σ(z)|2‖dz‖2 dz∧ dz̄
‖dz1‖2 · · · ‖dzn‖2

=
∫
(1∗ )r×(1)n−r

|σ(z)|2 dz∧ dz̄,

which is finite if and only ifσ(z) has no poles. Thus, every holomorphic form on
the punctured polydisk that isL2 with respect togf extends to the whole poly-
disk, and every holomorphic form on the whole polydisk restricts to a form on
the punctured polydisk that isL2 with respect togf . This completes the proof in
Case 1.

Case 2: Finite-volume metrics.If f(x) = −ln(x) or f(x) = −xa (0 < a <

1), then we must prove the theorem for holomorphic forms of any degree 0≤ k ≤
n. On the punctured polydisk(1∗)r × (1)n−r we derive that, for the metricg ′f ,

‖dzj‖2 = (−ln(|z1|2 · · · |zr |2))2−a|zj |2

for j ≤ r and‖dzj‖2 = 1 for j > r, and the volume form is

dvol = dz∧ dz̄
‖dz1‖2 · · · ‖dzr‖2 .

A holomorphick-form σ on the punctured polydisk can be written in the lo-
cal holomorphic coordinates asσ = ∑|I |=k σI (z)dzI , whereI = {I1, . . . , Ik} is
a set of distinct indicies between 1 andn, dzI = dzI1 ∧ · · · ∧ dzIk , and the func-
tionsσI (z) are all holomorphic. The formσ extends to a holomorphic form on the
entire disk if and only if theσI (z) have no poles along the divisor.
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Consider theL2 norm with respect tog ′f of σ :

‖σ‖2
g ′
f

=
∫
(1∗ )r×(1)n−r

∥∥∥∥ ∑
|I |=k

σI (z)dzI

∥∥∥∥2

dvol

=
∫
(1∗ )r×(1)n−r

∑
|I |=k,|J |=k

σI (z)σJ(z)〈dzI , dzJ 〉 dvol.

Since the 1-formsdzj are orthogonal, so are thek-formsdzI . Hence the preceding
equals ∑

I=k

∫
(1∗ )r×(1)n−r

|σI (z)|2‖dzI‖2 dvol.

We can therefore consider one indexI at a time:

‖σI (z)dzI‖2g ′
f

=
∫
(1∗ )r×(1)n−r

|σI (z)|2‖dzI‖2 dvol

=
∫
(1∗ )r×(1)n−r

|σI (z)|2‖dzI1‖2 · · · ‖dzIk‖2
‖dz1‖2 · · · ‖dzr‖2 dz∧ dz̄.

Assume thatq of the indices forI are indices corresponding to punctured disks
and that the others are indices corresponding to entire disks. Without loss of gen-
erality, by reordering the holomorphic coordinates we can even assume that the
first q indices are{1,2, . . . , q}. Then this integral becomes∫

(1∗ )r×(1)n−r
|σI (z)|2 dz∧ dz̄

‖dzq+1‖2 · · · ‖dzr‖2

=
∫
(1∗ )r×(1)n−r

|σI (z)|2 dz∧ dz̄
|zq+1|2 · · · |zr |2(−log(|z1|2 · · · |zr |2)(r−q)(2−a) .

In polar coordinates, wherezj = ρje iθj, this becomes∫ 1/2

0
· · ·
∫ 1/2

0

∫ 2π

0
· · ·
∫ 2π

0
|σI (ρ, θ)|2 ρ1 · · · ρn dρ1∧ · · · ∧ dρn

ρ2
q+1 · · · ρ2

r (−log(ρ2
1 · · · ρ2

r ))
(r−q)(2−a) dθ.

The integrals inθ are all finite, so we are left with∫ 1/2

0
· · ·
∫ 1/2

0
|σ̃I (ρ)|2 ρ1 · · · ρn dρ1∧ · · · ∧ dρn

ρ2
q+1 · · · ρ2

r (−log(ρ2
1 · · · ρ2

r ))
(r−q)(2−a) .

If σI has any poles, then the integral in the direction of the pole is infinite. IfσI
has no poles, then the integral is

≤ c
∫ 1/2

0
· · ·
∫ 1/2

0

dρq+1∧ · · · ∧ dρr
ρq+1 · · · ρr(−log(ρ2

1 · · · ρ2
r ))

(r−q)(2−a) .

As we construct each of these integrals, the exponent on the log term is reduced by
1. Each iterated integral is finite as long as the exponent is greater than 1. Hence,
since there arer − q integrals to do and since 2− a > 1, the overall integral is
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finite. Therefore, holomorphic forms restricted from the entire polydisk are the
same as holomorphic forms inL2 with respect togf for the punctured polydisk.
This finishes Case 2.

4. Conclusion

These theorems suggest what theL2 harmonic forms might look like in general
for the metrics discussed in this paper. In the case where the divisor is smooth,
for example, the description of the space ofL2 harmonic forms for thef(x) =
ebx (b > 0)metrics in terms of primitive cohomology still makes sense in the case
of more general divisors, and it still explains the Hodge substructure. This sug-
gests that it may still be correct in the more general case. We also have a general
sense that metrics whose asymptotic behavior lies between the two extremes of the
f(x) = −ln(x) andf(x) = ebx (b > 0) should have spaces ofL2 harmonic forms
that also lie in between the spaces ofL2 harmonic forms for these metrics. This,
together with the strong condition that the spaces carry a pure Hodge structure,
suggests more concretely that, for the metrics withf(x) = −xa (0< a < 1), the
space ofL2 harmonic forms is isomorphic in all degrees to the standard cohomol-
ogy of the compact manifold̄M, something we already know (by Theorem 3) to
be true for the holomorphic and antiholomorphic forms and their Poincaré duals.
Finally, the missing metric (wheref(x) = x) corresponds in the smooth divisor
case to a cylindrical metric, so the metrics wheref(x) = xa (a > 1) lie in between
the cylindrical case and the generalized Poincaré metric case, which have the same
middle-degree spaces ofL2 harmonic forms, as described in Theorem 2. It seems
likely, therefore, that this is also the correct description of the middle-degreeL2

harmonic forms in the casef(x) = xa (a > 1).
The complete results about Poincaré metrics in [3; 14] are obtained using the

fact that, for these metrics, the space ofL2 harmonic forms is isomorphic to the
standardL2 cohomology, which has a nice description in terms of sheaves. There-
fore, in the Poincaré case, the space ofL2 harmonic forms can be understood by
finding a quasi-isomorphism from theL2 sheaf to one onM. The other metrics
considered in this paper do not in general have such an isomorphism. In these
cases, the spectrum of the Laplacian comes down to zero, as can be seen in the
n = 1 case as a consequence of results in [15] about warped product metrics; it is
thus impossible to apply the sheaf-theoretic arguments of [3] and [15].

The proofs of Theorems 2 and 3 in this paper ultimately rely on the fact that
we understand the asymptotic struture of harmonic forms near the deleted divisor.
It seems possible, then, that techniques of geometric microlocal analysis could
shed light on our conjectures. This approach was developed by Melrose [11] as
a new philosophy for understanding the results in [1]. It gives a rough road map
for turning information about the asymptotic structure of a singular metric near
the boundary of a manifold into information about the asymptotics of solutions to
elliptic differential equations on the manifold. The general idea has been applied
in many subsequent papers (see e.g. [6, 9; 11]) to metrics similar in asymptotic
structure to the metrics considered here.
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