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Abstract. We consider the Jack–Laurent symmetric functions for spe-
cial values of parameters p0 = n+ k−1m, where k is not rational and m
and n are natural numbers. In general, the coefficients of such functions
may have poles at these values of p0. The action of the corresponding
algebra of quantum Calogero-Moser integrals D(k, p0) on the space of
Laurent symmetric functions defines the decomposition into generalised
eigenspaces. We construct a basis in each generalised eigenspace as
certain linear combinations of the Jack–Laurent symmetric functions,
which are regular at p0 = n+ k−1m, and describe the action of D(k, p0)
in these eigenspaces.

1. Introduction

The Jack symmetric functions P (k)
λ can be considered as one-parameter

generalisation of Schur symmetric functions [5, 6] and play an important
role in many areas of mathematics and theoretical physics. They can be
also defined as the eigenfunctions of an infinite-dimensional version of the
Calogero-Moser-Sutherland (CMS) operators [2].

In paper [7] we introduced and studied a Laurent version of Jack symmet-
ric functions - Jack–Laurent symmetric functions P (k,p0)

α as certain elements
of Λ± labelled by bipartitions α = (λ, µ), which are pairs of the usual parti-
tions λ and µ. Here Λ± is freely generated by pa with a ∈ Z\{0} being both
positive and negative. The variable p0 plays a special role and is considered
as an additional parameter. The usual Jack symmetric functions P (k)

λ are
particular cases of P (k,p0)

α corresponding to empty second partition µ. The
simplest example of Jack–Laurent symmetric function corresponding to two
one-box Young diagrams is given by

P
(k,p0)
1,1 = p1p−1 −

p0

1 + k − kp0
.

We proved the existence of P (k,p0)
α for all k /∈ Q and p0 6= n+ k−1m, m, n ∈

Z>0 (see Theorem 4.1 in [7]). The coefficients of P (k,p0)
α as functions of p0

are rational and may have poles at p0 = n + k−1m with natural m,n, so
the corresponding Jack–Laurent symmetric function may not exist (as one
can see in the example above). This is related to the fact that the spectrum
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of the algebra of the corresponding quantum CMS integrals D(k, p0) is not
simple, which leads to the decomposition of Λ± into generalised eigenspaces.

In this paper we fix a non-rational value of k and study the analytic
properties of Jack–Laurent symmetric functions as functions of p0 at the
special values p0 = n+k−1m. The main result is the construction of a basis
in each generalised eigenspace of D(k, p0) as certain linear combinations of
the Jack–Laurent symmetric functions, which are regular at p0 = n+k−1m.

The structure of the paper is as follows. In the next section we introduce
the equivalence relation on the set of bipartitions induced by the action of
the algebra D(k, p0) and study it in detail. In particular, we show that
each equivalence class E consists of 2r elements, which can be explicitly
described in terms of geometry of the corresponding Young diagrams (see
Fig. 1 below).

In the third section we construct the linear combinations of Jack–Laurent
symmetric functions

Q(k,p0)
α =

∑
β∈E, β⊂α

aβα(k, p0)P (k,p0)
β ,

which are regular at p0 = n + k−1m and give a basis in the corresponding
generalised eigenspace. Here E is the equivalence class of bipartition α and
aβα(k, p0) are some rational functions of p0 with poles at p0 = n + k−1m
of known order (see Theorem 3.6 below). As a corollary we describe the
order of the pole of P (k,p0)

α at p0 = n + k−1m in terms of the geometry
of the corresponding bipartition α. We are using the technique similar to
the translation functors in the representation theory [1, 8] and based on the
Pieri formula for Jack–Laurent symmetric functions derived in [7].

In the last section we describe the action of the algebra D(k, p0) with p0 =
n + k−1m in each generalised eigenspace VE . More precisely, we show that
provided k is non-algebraic the image of D(k, p0) in EndVE is isomorphic
to the tensor product of r copies of dual numbers Ar = C[ε]⊗r, ε2 = 0 and
the corresponding action of Ar in VE is the regular representation of Ar.

2. Equivalence relation

We start with the following result from our paper [7] about the quantum
CMS integrals at infinity.

Let us assume at the beginning that k is not rational and p0 6= n +
k−1m, m, n ∈ Z>0 and consider the corresponding Jack-Laurent symmetric
function P

(k,p0)
α indexed by bipartition α = (λ, µ) (see [7] for the precise

definition). We will use the standard representation of the partitions as
Young diagrams [6].

Theorem 2.1. [7] There exist quantum CMS integrals B(r) : Λ± → Λ±

polynomially depending on p0 such that

B(r)P (k,p0)
α = br(α, k, p0)P (k,p0)

α , (1)
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where

br(α, k, p0) =

(∑
x∈λ

c(x, 0)r−1 + (−1)r
∑
x∈µ

c(x, 1 + k − kp0)r−1

)
(2)

and the content c(x, a) of the box x = (ij) is defined by

c(x, a) = (j − 1) + k(i− 1) + a.

The algebra of CMS integrals D(k, p0) is generated by these operators.
Let us introduce the following equivalence relation E on bipartitions, de-

pending on parameters k, p0. We say that α = (λ, µ) is E-equivalent to
α̃ = (λ̃, µ̃) if and only if for all r ≥ 1 we have

br(α, k, p0) = br(α̃, k, p0),

or, more explicitly,∑
x∈λ

c(x, 0)r−1 + (−1)r
∑
y∈µ

c(y, 1 + k − kp0)r−1 (3)

=
∑
x∈λ̃

c(x, 0)r−1 + (−1)r
∑
y∈µ̃

c(y, 1 + k − kp0)r−1.

If parameters k, p0 are non-special, then this equivalence relation is trivial.
More precisely, we have the following result [7].

Proposition 2.2. If k is not rational and p0 6= n+k−1m, m, n ∈ Z>0, then
α is E-equivalent to α̃ if and only if α = α̃.

Proof. If (3) is true for all r ≥ 1 then the sequences

(c(x, 0),−c(y, 1 + k − kp0))x∈λ,y∈µ̃, (c(x, 0),−c(y, 1 + k − kp0))x∈λ̃,y∈µ
coincide up to a permutation. Therefore we have for every x ∈ λ two
possibilities: c(x, 0) = c(x̃, 0) for some x̃ ∈ λ̃, or c(x, 0) = −c(ỹ, 1 + k− kp0)
for some ỹ ∈ µ. In the first case we have for x = (ij), x̃ = (̃ij̃) the relation
j − j̃ + k(i− ĩ) = 0, so j = j̃, i = ĩ since k is not rational.

In the second case we have for ỹ = (̃ij̃) that

kp0 = j + j̃ − 1 + k(i+ ĩ− 1), (4)

which contradicts to our assumption, since both j + j̃ − 1 and i+ ĩ− 1 are
positive integers. �

Consider now the case of special values of parameters when

p0 = n+ k−1m

for some n,m ∈ Z>0, still assuming that k is not rational. Denote by π(n,m)
the rectangular Young diagram of size n×m and the corresponding bipar-
tition π = (π(n,m), π(n,m)). Define the central symmetry transformation
θ acting on (ij) ∈ π(n,m) by

θ(ij) = (n− i+ 1,m− j + 1).
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Inclusion of the Young diagrams induces the following partial order on bi-
partitions. We say that α ⊂ α̃ if and only if λ ⊂ λ̃ and µ ⊂ µ̃, where the
Young diagrams are understood as the subsets of the plane. We will use the
same convention for all set-theoretical operations for bipartitions.

Proposition 2.3. Bipartition α = (λ, µ) is E-equivalent to α̃ = (λ̃, µ̃) if
and only if

α \ π = α̃ \ π (5)

and
θ(λ \ λ̃) = µ \ µ̃, θ(λ̃ \ λ) = µ̃ \ µ. (6)

Proof. We will use the notations from the proof of the previous proposition.
If α is equivalent to α̃, then for any x = (ij) ∈ λ \ π(n,m) there is only the
first possibility and therefore x ∈ λ̃\π(n,m). Thus λ\π(n,m) ⊂ λ̃\π(n,m),
and by symmetry λ \π(n,m) = λ̃ \π(n,m). Similarly we have µ \π(n,m) =
µ̃ \ π(n,m) and (5).

From (5) it follows that λ \ λ̃ is contained in π(n,m). For x = (ij) ∈ λ \ λ̃
there exists only second possibility, which means that there exists ỹ = (̃ij̃) ∈
µ such that j + j̃ − 1 + k(i+ ĩ− 1) = kp0 = n+ km. Since k is not rational,
this implies that

j + j̃ − 1 = n, i+ ĩ− 1 = m,

which means that θ(x) ∈ µ \ µ̃. Similarly we have θ(µ \ µ̃) ⊂ λ \ λ̃. Since θ
is an involution, this implies

θ(λ \ λ̃) = µ \ µ̃.

By symmetry we have θ(λ̃ \ λ) = µ̃ \ µ.
Conversely, assume that we have the relations (5), (6). We have to show

that the sequences

(c(x, 0),−c(y, 1 + k − kp0))x∈λ,y∈µ̃, (c(x, 0),−c(y, 1 + k − kp0))x∈λ̃,y∈µ

coincide up to a permutation. We have the disjoint unions

λ = (λ \ π(n,m)) ∪ (λ \ λ̃) ∪ (λ ∩ λ̃ ∩ π(n,m)),

µ̃ = (µ̃ \ π(n,m)) ∪ (µ̃ \ µ) ∪ (µ̃ ∩ µ ∩ π(n,m)),

λ̃ = (λ̃ \ π(n,m)) ∪ (λ̃ \ λ) ∪ (λ ∩ λ̃ ∩ π(n,m)),

µ = (µ \ π(n,m)) ∪ (µ \ µ̃) ∪ (µ ∩ µ̃ ∩ π(n,m)).

Using this, the relations (5), (6) and the identity

c(θ(x), 1 + k − kp0) = (m+ kn− kp0)− c(x, 0), x ∈ π(n,m) (7)

we can identify the corresponding contributions in these sequences and have
the result. �
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Consider the set Pn,m of bipartitions α ⊂ π = (π(n,m), π(n,m)). For such
partitions the equivalence relation can be described in the following simple
way. Introduce the involution ω : Pn,m → Pn,m such that for α = (λ, µ)

ω(α) = (λ, π(n,m) \ θ(µ)). (8)

Introduce now another equivalence relation R on bipartitions. We say
that α = (λ, µ) is R-equivalent α̃ = (λ̃, µ̃) if

λ ∩ µ = λ̃ ∩ µ̃, λ ∪ µ = λ̃ ∪ µ̃. (9)

Theorem 2.4. On the set Pn,m the involution (8) transforms the equiva-
lence relation E into R.

Proof. Let α = (λ, µ) be E-equivalent to α̃ = (λ̃, µ̃). It is enough to prove
that

λ ∪ (π(n,m) \ θ(µ)) = λ̃ ∪ (π(n,m) \ θ(µ̃)) (10)
and

λ ∩ (π(n,m) \ θ(µ)) = λ̃ ∩ (π(n,m) \ θ(µ̃)). (11)
Let’s prove (11). Let x ∈ λ ∩ (π(n,m) \ θ(µ)), then x ∈ λ and x /∈ θ(µ).

Assume that x /∈ λ̃, then from (6) it follows that θ(x) ∈ µ and thus
x ∈ θ(µ). Contradiction means that x ∈ λ̃.

Assume now that x /∈ π(n,m) \ θ(µ̃), which means that x ∈ θ(µ̃). Since
x /∈ θ(µ) we have x ∈ θ(µ̃ \ µ). Using the second part of (6) we see that
x ∈ λ̃ \ λ and hence x /∈ λ, which is a contradiction. Now (11) follows from
the symmetry between α and α̃. The proof of (10) is similar.

This proves that E-equivalence implies R-equivalence for ω-transformed
bipartitions. The converse claim can be proved in a similar way. �

This can be used to describe the structure of E-equivalence classes of
bipartitions from Pn,m.

Theorem 2.5. Let α ∈ Pn,m and E be its E-equivalence class. Then the
following holds true:

1) E ⊂ Pn,m.
2) E contains the minimal and maximal bipartitions αm, αM such that

αm ⊂ α ⊂ αM
for any bipartition α ∈ E. They can be characterised by the properties
λ ∩ θ(µ) = ∅ and by λ ∪ θ(µ) = π(n,m) respectively.

3) Let αm = (λm, µm), αM = (λM , µM ) and

λM \ λm = ν1 ∪ ν2 ∪ · · · ∪ νr, µM \ µm = τ1 ∪ τ2 ∪ · · · ∪ τs (12)

be the decomposition of the corresponding skew diagrams into connected com-
ponents. Then νi, τj ⊂ π(n,m), r = s and, after a reordering,

θ(νi) = τi, i = 1, 2, . . . , r.

4) Every element α from E can be represented uniquely in the form

α = αm ∪ (νa1 , τa1) ∪ (νa2 , τa2) ∪ · · · ∪ (νal
, τal

), (13)
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λ

θ(µ)

ν2

ν4

ν3

ν1

ν5

1

Figure 1. Intersection of λ and θ(µ) (shaded) in the rectan-
gle π((n,m) and the corresponding connected components νi.
The boundary of θ(µ) is shown in bold.

where {a1, a2, . . . , al} is a subset of {1, 2, . . . , r}. Any set of this form is a
bipartition from E, so the equivalence class E contains 2r elements.

Proof. The first part follows immediately from (5). Applying the involution
ω and the previous theorem we have the remaining claims using simple
geometric analysis of the corresponding Young diagrams (see Fig. 1). �

To describe E-equivalence class for general bipartition α = (λ, µ) denote
by απ the bipartition απ = α ∩ π = (λπ, µπ) :

(λπ, µπ) = (λ ∩ π(n,m), µ ∩ π(n,m)).

Corollary 2.6. Let E(απ) be the E-equivalence class of απ. Then E-equivalence
class of α can be described as

E(α) = {γ = β ∪ (α \ π) ∈ P × P | β ∈ E(απ)}.

E(α) contains the minimal and maximal bipartitions αm, αM such that

αm ⊂ α ⊂ αM

with parts 3) and 4) of theorem 2.5 remaining valid for any bipartition α.

Note that E(α)∩Pn,m ⊂ E(απ) in general does not coincide with E(απ).
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3. Translation functors and regular basis

In [7] we have introduced the Jack-Laurent symmetric functions Pα =
P

(k,p0)
α ∈ Λ± indexed by bipartition α = (λ, µ). As we have shown they are

well defined provided k is not rational and p0 6= n+ k−1m with n,m ∈ Z>0.
Equivalently, we can consider Pα as elements of Λ±p0 = Λ± ⊗ C(p0), where
C(p0) is the field of rational functions of p0.

Now we are going to study what happens when p0 = n+ k−1m assuming
that k, n,m are fixed with k not rational and n,m ∈ Z>0. Then P

(k,p0)
α as

functions of p0 may have pole at p0 = n+ k−1m depending on the choice of
bipartition α.

The aim of this section is to construct a basis in Λ± which is regular
at p0 = n + k−1m. More precisely, we will define the Laurent symmetric
functions Qα = Q

(k,p0)
α ∈ Λ±, which are regular at p0 = n+k−1m, such that

for any α

Qα =
∑

β∈E(α), β⊂α

aβαPβ

with some coefficients aβα = aβα(k, p0) which are rational functions of p0.
In order to do this we are going to produce some family of linear trans-

formations FE,F acting on Λ±p0 which are similar to the translation functors
in the representation theory [1, 8].

Let E be an E-equivalence class of bipartitions and VE ⊂ Λ±p0 be the linear
span over C(p0) of Pα with α ∈ E. We have the decomposition of vector
spaces over C(p0)

Λ±p0 =
⊕
E

VE ,

where the sum is taken over all E-equivalence classes of bipartitions.
Denote by PrE the projector onto the subspace VE with respect to this

decomposition and define for any E-equivalence classes E and F the linear
map

FE,F (f) := PrF (p1f), f ∈ VE . (14)

The next result is quite simple but very important.

Proposition 3.1. Let f ∈ VE and suppose that f has no pole at p0 =
n + k−1m. Then for any E-equivalence class F the function FE,F (f) also
has no pole at p0 = n+ k−1m.

Proof. We have
p1VE ⊂ VF ⊕ VE1 ⊕ · · · ⊕ VEL

(15)

where F, E1, . . . , EL are different classes of equivalence. First we will con-
struct linear operator C1 which polynomially depends on CMS integrals B(r)

with coefficients having no poles at p0 = n+ k−1m and such that

C1(VE1) = 0, C1(v) = v, v ∈ VF
7



Let α1, . . . , αN be all bipartitions in F and β1, . . . , βM all bipartitions in E1.
Then by definition of the equivalence classes there is r1 ∈ Z>0 such that

br1(α1, k, p0) 6= br1(βj , k, p0), j = 1, . . . ,M

when p0 = n+ k−1m. Let

f1(t) =
M∏
j=1

(t− br1(βj , k, p0)),

then operator D1 = f1(B(r1)), where B(r) are the CMS integrals from Theo-
rem 2.1, acts as zero in VE1 and in VF as a diagonal operator

D1Pαi = g1(αi, k, p0)Pαi , i = 1, . . . , N,

where g1(αi, k, p0) = f1(br1(αi, k, p0)). Now having in mind Cayley-Hamilton
theorem we can define

C1 = (−1)N+1 1
σN

(
DN1 − σ1DN−1

1 + · · ·+ (−1)N−1σN−1D1

)
where σ1, . . . , σN stand for the elementary symmetric polynomials in

g1(α1, k, p0), . . . , g1(αN , k, p0).

From our assumptions we see that σN = g1(α1, k, p0) . . . g1(αN , k, p0) 6= 0
when p0 = k−1n+m. We see that C1(VE1) = 0 and by the Cayley-Hamilton
theorem C1 acts as the identity in VF .

In the same way we can construct operators C2, . . . CL and define

C = C1C2 . . . CL.
Let p1f = g+g1+ · · ·+gL be the decomposition according to (15). Applying
to both sides of this equality the operator C we get

C(p1f) = g = PrF (p1f).

But, since B(r) are polynomial in p0, C is a differential operator with coeffi-
cients that have no poles at p0 = n + k−1m, so both sides must be regular
at this point. �

The following definition is motivated by the Pieri formula for Jack–Laurent
symmetric functions [7]. Let α = (λ, µ) ∈ Pn,m be a bipartition inside π.

For any box x ∈ π(n,m) define the set of bipartitions Sx(α) as

Sx(α) = {(λ ∪ x, µ), (λ, µ \ θ(x))}
assuming that x /∈ λ and λ ∪ x is a Young diagram, and that θ(x) ∈ µ and
µ\θ(x) is a Young diagram (otherwise the corresponding element is dropped
from the set).

Let us denote by X(α) the set of all bipartitions in the right hand side of
the Pieri formula (see formula (56) from [7]): X(α) is the set of all bipartions
β = (λ̃, µ̃) such that α can be obtained from β by deleting a box from λ̃ or
adding a box to µ̃.

8



Proposition 3.2. Let E be an E-equivalence class and suppose that there
is α ∈ E such that Sx(α) is not empty. Then there exists a unique E-
equivalence class Ex different from E such that for any α ∈ E

X(α) ∩ Ex = Sx(α).

Proof. Let us prove first that if α is E-equivalent to α̃ then Sx(α) and Sx(α̃)
belong to the same E-equivalence class. Applying the involution ω we reduce
this to the following statement. Let ω(α) = (λ, µ), ω(α̃) = (λ̃, µ̃) and

λ ∪ µ = λ̃ ∪ µ̃, λ ∩ µ = λ̃ ∩ µ̃.

Without loss of generality we can assume that the box x can be added to λ
and λ̃. We need to prove that

(λ ∪ x) ∪ µ = (λ̃ ∪ x) ∪ µ̃, (λ ∪ x) ∩ µ = (λ̃ ∪ x) ∩ µ̃.

The first equality is obvious. To prove the second consider two cases: x /∈ µ
and x ∈ µ.

If x /∈ µ then x /∈ λ ∪ µ = λ̃ ∪ µ̃, hence x /∈ µ̃, which implies that
(λ ∪ x) ∩ µ = (λ̃ ∪ x) ∩ µ̃.

If x ∈ µ then x ∈ λ ∪ µ = λ̃ ∪ µ̃, and hence x ∈ µ̃. Therefore

(λ ∪ x) ∩ µ = λ ∩ µ = λ̃ ∩ µ̃ = (λ̃ ∪ x) ∩ µ̃.

Hence there exists a unique equivalence class Ex containing the union of
Sx(α), α ∈ E. The relation X(α) ∩ Ex = Sx(α) is easy to check.

We only left to prove that these equivalence classes E and E(x) are dif-
ferent. Suppose that (λ, µ) and (λ ∪ x, µ) are R-equivalent. Then we have

λ ∪ µ = λ ∪ x ∪ µ, λ ∩ µ = (λ ∪ x) ∩ µ,

implying that x ∈ λ, which is a contradiction. �

For any box x ∈ π(n,m) define now the set of bipartitions Sx(α) as

Sx(α) = {(λ \ x, µ), (λ, µ ∪ θ(x))}.

In the same way as in proposition 3.2 it can be proven that there exists a
unique E-equivalence class Ex, which contains Sx(α) for any α ∈ E.

Let x ∈ π(n,m). Denote by Fx the linear transformation defined by

Fx = FE,Ex .

The following proposition is based on the Pieri formula for Jack-Laurent
symmetric functions [7]. Introduce the following functions for bipartition
α = (λ, µ) and box x = (ij):

U(x, α; p0) = U1(x, α)U2(x, α; p0)U3(x, α; p0), (16)

U1(x, α) =
l(µ)∏
r=i+1

cµ(jr, 1 + k)cµ(jr,−k)
cµ(jr, 1)cµ(jr, 0)

, (17)
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U2(x, α; p0) =
l(λ)∏
r=1

cα(jr,−1− k(p0 + 2))cα(jr,−kp0)
cα(jr,−1− k(p0 + 1))cα(jr,−k(p0 + 1))

, (18)

U3(x, α; p0) =
(j − 1 + k(l(λ) + µ′j − p0 − 1))(j + k(µ′j − l(µ)))
(j + k(l(λ) + µ′j − p0))(j − 1 + k(µ′j − l(µ)− 1))

, (19)

where
cλ(jr, a) = λr − j − k(λ′j − r) + a,

cα(jr, a) = λr + j + k(µ′j + r) + a,

and λ′ as before is the Young diagram conjugated (transposed) to λ.

Proposition 3.3. The action of Fx on Jack-Laurent symmetric functions
can be described by

Fx(Pλ,µ) = V (x, λ, µ)Pλ∪x,µ + U(θ(x), λ, µ; p0)Pλ,µ\θ(x), (20)

where

V (x, λ, µ) =
l(µ)∏
r=i+1

cµ(jr, 1 + k)cµ(jr,−k)
cµ(jr, 1)cµ(jr, 0)

, x = (ij) (21)

and U(x, λ, µ; p0) is defined by (16).

Proof. This follows immediately from proposition 3.2 and Pieri formula for
Jack–Laurent symmetric functions [7]. �

Lemma 3.4. Let us assume that the box θ(x) = (n−i+1, m−j+1), x = (ij)
can be removed from µ, then the following hold true:

1) If λi−1 = j − 1, or λi+1 = j then the numerator of the function
U(θ(x), λ, µ; p0) has zero of the first order at p0 = n+ k−1m;

2) If λi = j, or λi = j − 1, or j = 1, i = l(λ) + 1, then the denominator
of the function U(θ(x), λ, µ; p0) has zero of the first order at p0 = k−1n+m.

In all other cases neither numerator nor denominator of U(θ(x), λ, µ; p0)
has zero at p0 = k−1n+m.

Proof. Note that U1 does not depend on p0. Introduce the new variable
δ = n + km − kp0. Since the box θ(x) = (i′j′) can be removed from µ we
have µ′j′ = i′ = n− i+ 1 and

cα(j′r, a−kp0) = λr+j′+k(µ′j′+r)+a−kp0 = λr−j−k(i−1−r)+δ+1+a.

The second factor cα(jr,−kp0) in the numerator of U2 corresponds to a = 0
and thus equals to λr−j−k(i−1−r)+δ+1. Since k is assumed not rational
the condition δ = 0 gives r = i − 1 and λr = j − 1 and thus λi−1 = j − 1,
which is the first condition in case 1). Similarly one can check the rest. �

Let E be an E-equivalence class consisting of more than one element and
(λM , µM ), (λm, µm) be the maximal and the minimal bipartitions in it. Let
us choose x ∈ λM \ λm such that λM \ x is a partition and let ν be the
connected component containing x. Let α = (λ, µ) ∈ E then it is easy to
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check that µ∪ θ(x) is a partition if and only if λ∩ ν = ∅. Therefore for any
α ∈ E we can define a map ψ : E → Ex by

ψ(α) =

{
(λ \ x, µ), ν ⊂ λ
(λ, µ ∪ θ(x)), ν ∩ λ = ∅.

(22)

It is easy to see that ψ preserves the inclusions of bipartitions.

Lemma 3.5. The following statements hold true:
(1) If ν \ x is nonempty and connected then ψ is a bijection and for any

α ∈ E
Fx(Pψ(α)) = d(x, p0, α)Pα,

where d(x, p0, α) is nonzero rational function in p0 which has neither zero
nor pole at p0 = n+ k−1m.

(2) If ν \ x = ν1 ∪ ν2 is nonempty and not connected then ψ is injective
and for any α ∈ E

Fx(Pψ(α)) = d(x, p0, α)Pα,

where d(x, p0α) has zero of the first order at p0 = n+k−1m if λ∩ν = ∅ and
d(x, p0, α) has neither zero nor pole at p0 = n + k−1m if λ ⊃ ν. If γ ∈ Ex
and γ /∈ Imψ then Fx(Pγ) = 0.

(3) If ν \ x = ∅ is empty then ψ is surjective such that for any γ ∈ Ex

ψ−1(γ) = {α, α ∪ (x, θ(x))}

and
Fx(Pγ) = d(x, p0, α ∪ x)Pα∪(x,θ(x)) + d(x, p0, α)Pα,

where d(x, p0, α ∪ x) has neither zero nor pole and d(x, p0, α) has a pole of
the first order at p0 = n+ k−1m.

Proof. Let x = (ij). Consider the case (1). If ψ(α) = (λ\x, µ) then d(x, p0) =
V (x, ψ(α)) and the claim follows. If ψ(α) = (λ, µ ∪ θ(x)) then d(x, p0) =
U(θ(x), ψ(α); p0). We claim that U(θ(x), ψ(α); p0) has no zero or pole at
p0 = k−1n+m. Indeed, according to lemma (3.4) we should show that none of
the relations in the lemma are satisfied. The last relation j = 1, i = l(λ) + 1
is impossible since ν \ x is nonempty. To check the rest note that since
ν ∩ λ = ∅ we have j = λi + νi. If λi = j then νi = 0 which is impossible.
If λi+1 = j we have λi ≥ λi+1 = j, which implies νi ≤ 0, which is also
impossible. If λi = j − 1 and λi−1 = j − 1 simultaneously then the zero in
the denominator cancels the zero in the numerator and we have the claim.
If at the least one of these relations are not valid then we have the strict
inequality λi−1 > λi. Let λi−1 = j − 1, then λi−1 = λi + νi − 1, which
implies that νi > 1. It is easy to see that this contradicts to the connectivity
assumption of ν \ x. The last case to check is when λi = j − 1, λi−1 > λi.
This case contradicts to the connectivity of ν. This proves the lemma in case
(1). The remaining cases can be proved in the same way. �
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Theorem 3.6. Let α ∈ Pn,m and E be the E-equivalence class containing α,
k /∈ Q be fixed. Then there are rational functions aβα(p0) with β ∈ E, β ⊂ α
such that aαα = 1 and aβα(p0) has a pole at p0 = n+ k−1m of order, which
is equal to the number of connected components in α \ β, and such that the
linear combination of Jack-Laurent symmetric functions

Qα =
∑

β∈E, β⊂α
aβα(p0)Pβ

is regular at p0 = n+ k−1m.

Proof. Let us prove theorem by induction on |λ \ λm|.
If |λ \ λm| = 0 then α = αm = (λ, µ) and in this case the theorem states

that Pαm is regular at p0 = k−1n + m. By part 2) of theorem 2.5 we have
λ ∩ θ(µ) = ∅. Let x1, . . . , xN be all boxes of the diagram λ beginning from
the first box of the first row and ending by the last box of the last row.
Consider the following function

Q = FxN . . .Fx1(P∅,µ).

We have P∅,µ = P ∗µ is dual to Jack symmetric function and thus does not
depend on p0. Therefore by proposition 3.1 Q has no poles at p0 = n+k−1m.
Moreover, since λ ∩ θ(µ) = ∅ by proposition 3.3 and lemma 3.4 we have

Q = VN . . . V1Pαm ,

where Vi, i = 1, . . . , N do not depend on p0, and thus Pαm is regular at
p0 = n+ k−1m.

Now suppose that α ∈ E and α 6= αm. Therefore there exists a connected
component ν ⊂ λM \λm, ν ⊂ λ. Let us pick x ∈ ν such that λ\x is a Young
diagram. It is easy to see that λM \ x is also a Young diagram.

Consider three different possibilities as in lemma 3.5. In all three cases

ψ(α) = (λ \ x, µ), ψ(αm) = (λm, µ ∪ θ(x))

and λm∩ (θ(µ)∪x) = ∅. Therefore ψ(αm) is the minimal element in Ex and
| (λ \ x) \ λm |=| λ \ λm | −1 and we can apply inductive assumption. After
applying Fx to Qψ(α) and using lemma 3.5 we get

Fx(Qψ(α)) =
∑

β∈E, β⊂α
ãβα(p0)Pβ

with some coefficients aβα(p0) which are rational functions in p0. By propo-
sition 3.1 Fx(Qψ(α)) is non-singular at p0 = n+ k−1m and d(x, p0, α) is also
non-singular and non-vanishing by lemma 3.5 in all three cases. Define

Qα =
1

d(x, p0, α)
Fx(Qψ(α)) =

∑
β∈E, β⊂α

aβα(p0)Pβ

with aβα(p0) = ãβα(p0)/d(x, p0, α).
12



Now let us prove that the coefficients aβα(p0) have the analytic properties
stated in the theorem. We have in all cases

aαα =
ãαα

d(x, p0, α)
=
d(x, p0, α)
d(x, p0, α)

= 1.

Let β 6= α. Then again in all three cases from lemma 3.5 one can see that

aβα =
d(x, p0, β)
d(x, p0, α)

aψ(β)ψ(α).

Now consider three different cases separately.
1) If ν\x is non empty and connected then by the first statement of lemma

3.5 d(x, p0, β) is regular at p0 = n + k−1m and the number of connected
components α \ β is the same as the number of connected components of
ψ(α) \ ψ(β). This implies the theorem in this case.

2) Let ν \ x = ν1 ∪ ν2 be a disjoint union of two non empty components.
Consider two cases: β ⊃ ρ and β ∩ ρ = ∅, where ρ = (ν, θ(ν)). In the first
case the number of connected components α \ β is the same as the number
of connected components of ψ(α) \ψ(β) , d(x, p0, β) is regular and theorem
follows. In the second case the number of connected components α\β is less
by 1 than the number of connected components of ψ(α) \ ψ(β) , d(x, p0, β)
has zero of the first order and the theorem again follows.

3) Let ν = x and (x, θ(x)) ∈ β then the number of connected components
α \ β is the same as the number of connected components of ψ(α) \ ψ(β) ,
d(x, p0, β) is regular and the theorem follows.

If (x, θ(x)) /∈ β then the number of connected components α\β is greater
by 1 than the number of connected components of ψ(α) \ ψ(β), d(x, p0, β)
has a pole of the first order and theorem again follows. This completes the
proof. �

Corollary 3.7. The Jack–Laurent symmetric function P k,p0α as a function
of p0 has a pole at p0 = n+ k−1m of order l, where l is defined by (13) and
Corollary 2.6.

For bipartitions α ∈ Pn,m the order l of the pole at p0 = n + k−1m can
be described geometrically as the number of connected components in the
intersection λ and θ(µ) (which are shaded parts in Fig. 1).

From Corollary 2.6 using the same technique one can show that the as-
sumption α ∈ Pn,m in the theorem can be omitted.

Proposition 3.8. Theorem 3.6 is true without assumption α ∈ Pn,m.

4. Algebra of integrals in generalised eigenspaces

Assume now that k is non-algebraic and that p0 = n + k−1m for some
n,m ∈ Z>0 as before.

Let E be an E-equivalence class of bipartitions, consisting of 2r elements
and consider 2r-dimensional subspace VE(p0) ⊂ Λ± defined as the linear
span of Jack–Laurent symmetric functions P (k,p0)

α , α ∈ E for non-special
13



p0, and as the linear span of Q(k,p0)
α , α ∈ E for all p0 in a neighbourhood of

p0 = n+ k−1m.
The action of the algebra of CMS integrals D(k, p0) is diagonalisable for

non-special p0, but at p0 = n + k−1m it has a generalised eigenspace VE =
VE(n+ k−1m) spanned by Q(k,n+k−1m)

α , α ∈ E. We are going to study now
the action of the algebra in this invariant subspace.

Consider the natural homomorphism

ϕ : D(k, n+ k−1m) −→ End (VE).

Theorem 4.1. If k is non-algebraic then the image of the homomorphism
ϕ is isomorphic to the tensor product of r copies of dual numbers

Ar = C[ε1, ε2, . . . , εr]/(ε21, ε
2
2, . . . , ε

2
r).

VE is the regular representation of Ar with respect to this action.

Proof. Let ν1, . . . , νr be the corresponding sets from Theorem 2.5 and Corol-
lary 2.6, describing the equivalence class E and define

gs(ν) =
∑
x∈ν

c(x, 0)s−1,

where c(x, a) = (j − 1) + k(i− 1) + a as before.

Lemma 4.2. If k is non-algebraic then the determinant

∆ =

∣∣∣∣∣∣∣∣∣
g1(ν1) g1(ν2) . . . g1(νr)
g2(ν1) g2(ν2) . . . g2(νr)

...
...

...
...

gr(ν1) gr(ν2) . . . gr(νr)

∣∣∣∣∣∣∣∣∣
is non zero.

Proof. Indeed, we can represent this determinant as a sum over all sequences
of boxes x1 ∈ ν1, . . . , xr ∈ νr

∆ =
∑

(x1,...,xr)

∆(x1, . . . , xr),

where

∆(x1, . . . , xr) =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

c(x1, 0) c(x2, 0) . . . c(xr, 0)
...

...
...

...
c(x1, 0)r−1 c(x2, 0)r−1 . . . c(xr, 0)r−1.

∣∣∣∣∣∣∣∣∣
But ∆(x1, . . . , xr) is Vandermonde determinant, so

∆(x1, . . . , xr) =
∏
u<v

(c(xu, 0)− c(xv, 0)) =
∏
u<v

(ju − jv + k(iu − iv)),

where the product is taken over all boxes xu ∈ νu, xv ∈ νv. We can suppose
that if u < v then the connected component νu is located higher and more
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to the right than νv, so we have for u < v that ju − jv > 0 and iu − iv < 0.
Therefore if we consider ∆(x1, . . . , xr) as a polynomial in k then its constant
term is strictly negative and thus the same is true for ∆. In the same way
we can see that the coefficient at the highest degree of k is strictly positive.
Since k is not algebraic number we see that ∆ 6= 0. �

Let B(r) be the CMS integrals (1) and consider the following system of
linear equations

g1(ν1)M1 + g1(ν2)M2 + · · ·+ g1(νr)Mr = B(2) − b2I
g2(ν1)M1 + g2(ν2)M2 + · · ·+ g2(νr)Mr = 1

2(B(3) − b3I)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gr(ν1)M1 + gr(ν2)M2 + · · ·+ gr(νr)Mr = 1
r (B(r+1) − br+1I)

(23)

where the eigenvalue bs = bs(α, k, n + k−1m) does not depend on α ∈ E.
Since the determinant of this system is nonzero, the system has a unique
solution M1, . . . ,Mr, which are certain CMS integrals. We claim that the
image of Mi of under ϕ give us required εi.

To show this consider the transition matrix A = (aβα), β, α ∈ E from the
basis P to Q in VE(p0) :

Qk,p0α =
∑
β⊂α

aβαP
k,p0
β .

Let A−1 = (ãβα) be the inverse matrix. It is easy to see that ãβα can be
different from 0 only if β ⊂ α. Now let ν be one of ν1, . . . , νr and define
2r × 2r matrix

ε̃ν =
∑
β,γ,α

ãβγaγαEβα, (24)

where the sum is taken over all triples β ⊂ γ ⊂ α from E such that γ \ β ⊃
ρ, ρ = (ν, θ(ν)) and Eβα, α, β ∈ E are standard matrices with only one
non-zero matrix element (βα) equal to 1.

Let D(s) = D(s)(p0) be the matrix of the operator B(s) in the basis P k,p0α ,
which is a diagonal matrix with the diagonal elements d(s)

αα = bs(α, k, p0).
Then the matrix of the operator B(s) in the basis Qk,p0α is D̃(s) = A−1D(s)A.
Consider the matrix

B(s) = D̃(s) −D(s) = A−1D(s)A−D(s)

with matrix elements

b
(s)
βα =

∑
β⊂γ⊂α

ãβγd
(s)
γγ aγα − d

(s)
βα =

∑
β⊂γ⊂α

ãβγ(d(s)
γγ − d

(s)
ββ)aγα,

where we have used that A−1A = I. It is easy to see from the form of
d

(s)
ββ = bs(β, k, p0) that

d(s)
γγ − d

(s)
ββ =

∑
ν⊂γ\β

g̃s(ν),
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where

g̃s(ν) =
∑
x∈ν

c(x, 0)s−1 + (−1)s
∑
x∈θ(ν)

c(x, 1 + k − kp0)s−1.

Therefore the matrix B(s) can be represented in the form

B(s) =
∑
β⊂α

b
(s)
βαEβα =

∑
ν

g̃s(ν)ε̃ν . (25)

From this we see that the matrices ε̃ν satisfy the following system of linear
relations

g̃2(ν1)ε̃1 + g̃2(ν2)ε̃2 + · · ·+ g̃2(νr)ε̃r = D̃(2) −D(2)

g̃3(ν1)ε̃1 + g̃3(ν2)ε̃2 + · · ·+ g̃3(νr)ε̃r = D̃(3) −D(3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g̃r+1(ν1)ε̃1 + g̃r+1(ν2)ε̃2 + · · ·+ g̃r+1(νr)ε̃r = D̃(r+1) −D(r+1).

(26)

It will be convenient now to use instead of p0 the local parameter

h = m+ kn− kp0,

such that h = 0 when p0 = n+ k−1m. From the identity (7) we have

g̃s(ν) =
∑
x∈ν

c(x, 0)s−1 −
∑
x∈ν

(c(x, 0)− h)s−1,

which implies that

lim
h→0

g̃s
h

= (s− 1)gs−1(τ).

From lemma 4.2 the determinant

∆̃ =

∣∣∣∣∣∣∣∣∣
g̃2(ν1)/h g̃2(ν2)/h . . . g̃2(νr)/h
g̃3(ν1)/h g̃3(ν2)/h . . . g̃3(νr)/h

...
...

...
...

g̃r+1(ν1)/h g̃r+1(ν2)/h . . . g̃r+1(νr)/h

∣∣∣∣∣∣∣∣∣
is not zero and since the right hand side is regular at h = 0 we can define

εν = lim
h→0

hε̃ν . (27)

Taking limit h→ 0 in (26) and comparing the result with the system (23)
we see that εi = ενi satisfy the same linear system as (and hence coincide
with) ϕ(Mi) in the basis Qk,n+k−1m

α .
Thus we have shown that εi belong to the image of ϕ. We claim now that

ε2i = 0, i = 1, . . . , r and that the products εi1 . . . εis are linearly independent
for all subsets {i1, . . . , is} ⊂ {1, . . . , r}.

The relations ε2i = 0 follows from the equality ε̃2i = 0, which is a simple
consequence of the formula (24). Indeed, it is easy to see that for any two
terms Eβα and Eβ̃α̃ entering (24) we have α 6= β̃ since ν is a subset of α,
but not of β̃.
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Define ciβα =
∑
ãβγaγα, where the sum is taken over all γ ∈ E such that

β ⊂ γ ⊂ α and γ \ β ⊃ ρi, ρi = (νi, θ(νi)). Then

ε̃i =
∑

ciβαEβα,

where the sum is taken over α, β ∈ E such that β ⊂ α and α \β contains ρi.
We have

ε̃i1 . . . ε̃is =
∑
β⊂α

ci1,...,isβ,α Eβ,α,

where
ci1,...,irβ,α =

∑
β⊂γ1⊂···⊂γs−1⊂α

ci1βγ1 . . . c
is
γs−1α

and sum is taken for all possible chains such that ρi1 ⊂ γ1 \ β, . . . , ρis ⊂
α \ γs−1.

If β = αm is minimal in the sense of Theorem 2.5 and Corollary 2.6 and
α = β ∪ ρi1 ∪ · · · ∪ ρis then there is the only chain

β ⊂ β ∪ ρi1 ⊂ β ∪ ρi1 ∪ ρi2 ⊂ · · · ⊂ α

and ci1,...,isβ,α = ci1βγ1 . . . c
is
γs−1α. Now look at the coefficient ciβα, where α =

β ∪ ρi. In that case ciβα = ãβαaαα = ãβα = −aβα. From theorem 3.6 this
coefficient has a pole of order 1, so the limit hciβα when h → 0 is non-zero.
Hence the product εi1 . . . εis has a nonzero coefficient at Eαmαm∪ρi1

∪···∪ρis
.

One can check that Eαmαm∪ρi1
∪···∪ρis

does not enter in any other product of
εi. This proves linear independence of εi1 . . . εis .

The fact that εi, i = 1, . . . , r generate the whole image of ϕ follows from
the formula (25) and from the fact that the operators B(l) generate the
algebra of CMS integrals.

Note that the commutativity of εi (which follows from the commutativity
of CMS integrals) imply some relations for the coefficients aβα.

To prove that the corresponding action of Ar in VE is the regular represen-
tation consider the socle 1 of Ar generated by the product S = ε1 . . . εr ∈ Ar.
The action of Ar in VE is faithful, so there is a vector v ∈ VE such that
Sv 6= 0. Since S belongs to all non-zero ideals of Ar the subspace Arv ⊆ VE
is the regular representation of Ar. Now the claim follows since Arv and VE
have the same dimension 2r and thus must coincide. �

5. Concluding remarks

The behaviour of Jack symmetric functions for special (namely, positive
rational) values of parameter k are known to be quite tricky and is still
to be properly understood. As it was shown by B. Feigin et al [3] this
question turned out to be closely related with the classical coincident root
loci problem going back to Sylvester and Cayley (see [4]).

1We are grateful to Pavel Etingof for this idea.

17



We have shown that the Jack–Laurent case turns out to be much simpler
in this respect and the analytic properties of the coefficients can be described
in a satisfactory manner (see section 3 above). The reason is that in this
case we have two parameters k and p0, and we can fix k to be generic and
consider the analytic properties in p0 instead.

Our main motivation to study Jack-Laurent symmetric functions came
from the representation theory of Lie superalgebras, where the case of special
parameters is particularly important. We will discuss this in a separate
publication.
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