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Abstract

In this article we introduce the notion of fundamental solution in the Colombeau context as an
element of the dual L(Gc(Rn), C̃). After having proved the existence of a fundamental solution for
a large class of partial differential operators with constant Colombeau coefficients, we investigate
the relationships between fundamental solutions in L(Gc(Rn), C̃), Colombeau solvability and G- and
G∞-hypoellipticity respectively.

0 Introduction

The purpose of this paper is to address a main question in the theory of partial differential operators
with constant Colombeau coefficients: what is a good notion of fundamental solution in this setting?
With the adjective good we intend to look for a definition able to provide a successful tool of investigation
for issues as G- and G∞-hypoellipticity and Colombeau solvability. As it is common in the recent research
work within Colombeau theory (see [3, 4, 5, 7, 8, 10, 11]), we aim to develop a new set-up of concepts
and properties by means of which to achieve statements modelled on well-known classical results of
distribution theory. More precisely, given a partial differential operator P (D) =

∑
|α|≤m cαD

α with

coefficients in the ring C̃ of generalized numbers, we want a notion of fundamental solution E such that
the G- and the G∞-hypoellipticity of P (D) may be understood by looking at E outside the origin and
such that a solution u in the Colombeau algebra G(Rn) of the equation P (D)u = v may be found as the
convolution product E ∗ v when v has compact support.

Differently from some previous attempts due to Pilipovic and alii [20, 21] we settle ourselves in the dual of
the Colombeau algebra Gc(Rn) instead than in the usual Colombeau algebra G(Rn). This means to take
the canonical embedding ιd(δ) of the distributional delta into the dual L(Gc(Rn), C̃) and to consider the
equation P (D)E = ιd(δ) in the dual context. It follows that for the first time a fundamental solution E of
the operator P (D) is defined not as a generalized function in G(Rn) but as a functional in L(Gc(Rn), C̃).
The results achieved in the paper prove that this is a good notion of fundamental solution.

In the sequel we describe the contents of the sections in more detail.

Section 1 collects some preliminaries of Colombeau and duality theory. In view of the techniques which
will be employed in the sequel, we focus our attention on the convolution product between Colombeau
∗Supported by FWF (Austria), grants T305-N13 and Y237-N13.
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generalized functions and functionals and on the Fourier-Laplace transform in the algebra Gc(Rn) of
generalized functions with compact support.

Section 2 is the mathematical core of the paper. Making use of some technical results due to Hörmander
[14, Chapter III], [16, Chapter X], we prove an adapted version of the Malgrange-Ehrenpreiss Theorem for
fundamental solutions in the dual L(Gc(Rn), C̃). More precisely, we prove that under a certain assumption

of invertibility in a point of the generalized weight function P̃ (ξ) :=
(∑

α |∂αP (ξ)|2
) 1

2 , the corresponding
operator P (D) admits a fundamental solution E in L(Gc(Rn), C̃) which can be defined by a moderate net
(Eε)ε of distributions. This kind of net cannot be regarded as a representative of a Colombeau generalized
function but becomes meaningful in the dual context as a functional with “basic structure”. The notion
of basic functional has been introduced in [7, Section 1] and turns out to be crucial in many technical
issues concerning regularity theory and microlocal analysis (see [7, 8]). As a straightforward application of
the previous existence theorem we investigate the solvability of the equation P (D)u = v in L(Gc(Rn), C̃)
when the right-hand side is compactly supported. The family of evolution operators with respect to the
halfspace Hn = {x ∈ Rn : xn ≥ 0} is the last topic of Section 2. In Subsection 2.3 we provide a condition
on the generalized polynomial of P (D) which is sufficient to claim that P (D) is an evolution operator
with respect to Hn and we discuss some explanatory examples. Our interest for fundamental solutions
in L(Gc(Rn), C̃) supported in a certain halfspace is motivated by the desire of developing in the future a
theory of generalized hyperbolic operators (with constant Colombeau coefficients) based on the support’s
properties of the corresponding fundamental solutions.

Section 3 shows that the G- and G∞-hypoellipticity of a partial differential operator P (D) with coefficients
in C̃ may be characterized by making use of the fundamental solutions. In analogy with the classical
theory of operators with constant coefficients we obtain that P (D) is G-hypoelliptic if and only if it
admits a fundamental solution E ∈ L(Gc(Rn), C̃) with basic structure which belongs to G outside the
origin. The same assertion holds by replacing G with G∞. After having introduced a notion of G- and
G∞-ellipticity by means of different invertibility conditions on the principal symbol we employ the new
fundamental solution methods in proving that ellipticity implies hypoellipticity in our generalized setting.

The recent investigation of the G- and G∞-regularity properties of generalized differential and pseu-
dodifferential operators in the Colombeau context [3, 10, 11, 12, 17, 18] has provided several sufficient
conditions of G- and G∞-hypoellipticity, i.e. hypotheses on the generalized symbol of the operator P (D)
which allow to conclude that a basic functional T ∈ L(Gc(Rn), C̃) is actually a generalized function in
G(Rn) or G∞(Rn) when P (D)T belongs to G(Rn) or G∞(Rn) respectively. The research of necessary
condition for G- and G∞-hypoellipticity has been a long-standing open problem. A necessary condition
for G∞-hypoellipticity on the symbol of a partial differential operator with generalized constant coeffi-
cients has been obtained for the first time by the author in [8], by means of some functional analytic
methods involving the closed graph theorem for Fréchet C̃-modules. Since these methods cannot be di-
rectly applied to the G-hypoellipticity case this part of the necessary conditions’ problem has been open
so far. In this paper, making use of the characterizations of G- and G∞-hypoellipticity which come from
the existence of a fundamental solution in L(Gc(Rn), C̃) and of the Fourier-Laplace transform defined
on Gc(Rn) we achieve a necessary condition for hypoellipticity in both the G- and G∞-case. This result
involves partial differential operators P (D) whose weight function P̃ is invertible in some point of Rn.
The necessary condition of G∞-hypoellipticity obtained in this paper coincides with the one formulated
in [8] even though the methods employed in the proofs are completely independent.

Some interesting examples of fundamental solutions in L(Gc(Rn), C̃) are collected in Section 4. Among
them we consider a distributional fundamental solution of the operator (∂1...∂n)k and we derive a structure
theorem for basic functionals in the duals L(Gc(Rn), C̃) and L(G(Rn), C̃). For the sake of completeness
and the advantage of the reader the paper ends with an appendix on the solvability of the equation
P (D)u = v when v is a basic functional in L(Gc(Rn), C̃). Inspired by the theory of Bp,k spaces developed
by Hörmander we provide a deeper investigation of the solution u with respect to Section 2, pointing out
some specific moderateness properties.
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1 Preliminaries notions

This section provides some background of Colombeau and duality theory for the techniques employed
in the paper. Particular attention is given to the convolution product between Colombeau generalized
functions and functionals and to the Fourier-Laplace transform of a Colombeau generalized function with
compact support.

1.1 Colombeau generalized functions and duality theory

As pointed out in [4, 5, 6, 9] the most common spaces and algebras of generalized functions of Colombeau
type can be introduced and investigated under a topological point of view by making use of the following
models.

Let E be a locally convex topological vector space topologized through the family of seminorms {pi}i∈I .
The elements of

ME := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃N ∈ N pi(uε) = O(ε−N ) as ε→ 0},
Msc

E := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∃(ωε)ε s.s.n. pi(uε) = O(ωε) as ε→ 0},
M∞

E := {(uε)ε ∈ E(0,1] : ∃N ∈ N ∀i ∈ I pi(uε) = O(ε−N ) as ε→ 0},
NE := {(uε)ε ∈ E(0,1] : ∀i ∈ I ∀q ∈ N pi(uε) = O(εq) as ε→ 0},

are called E-moderate, E-moderate of slow scale type, E-regular and E-negligible, respectively. We define
the space of generalized functions based on E as the factor space GE := ME/NE .

The ring of complex generalized numbers, denoted by C̃, is obtained by taking E = C.

For any locally convex topological vector space E the space GE has the structure of a C̃-module. The
C-module Gsc

E := Msc
E/NE of generalized functions of slow scale type and the C̃-module G∞E := M∞

E /NE
of regular generalized functions are subrings of GE with more refined assumptions of moderateness at the
level of representatives. We use the notation u = [(uε)ε] for the class u of (uε)ε in GE . This is the usual
way adopted in the paper to denote an equivalence class.

The family of seminorms {pi}i∈I on E determines a locally convex C̃-linear topology on GE (see [5,
Definition 1.6]) by means of the valuations

vpi
([(uε)ε]) := vpi

((uε)ε) := sup{b ∈ R : pi(uε) = O(εb) as ε→ 0}

and the corresponding ultra-pseudo-seminorms {Pi}i∈I . The theoretical presentation concerning defini-
tions and properties of valuations and ultra-pseudo-seminorms in the abstract context of C̃-modules is
here omitted for the sake of brevity and can be found in [5, Subsections 1.1, 1.2].

In the current paper the valuation and the ultra-pseudo-norm on C̃ obtained through the absolute value
in C are denoted by v and | · |e respectively. The Colombeau algebra G(Ω) = EM (Ω)/N (Ω) is obtained
as a C̃-module of GE-type by choosing E = E(Ω). The seminorms pK,i(f) = supx∈K,|α|≤i |∂αf(x)|
where K b Ω generate the family of ultra-pseudo-seminorms PK,i(u) = e−vpK,i

(u) and gives to G(Ω)
the topological structure of a Fréchet C̃-module. We recall that Ω → G(Ω) is a fine sheaf of differential
algebras on Rn.

The Colombeau algebra Gc(Ω) of generalized functions with compact support is topologized by means of a
strict inductive limit procedure. More precisely, setting GK(Ω) := {u ∈ Gc(Ω) : suppu ⊆ K} for K b Ω,
Gc(Ω) is the strict inductive limit of the sequence of locally convex topological C̃-modules (GKn(Ω))n∈N,
where (Kn)n∈N is an exhausting sequence of compact subsets of Ω such that Kn ⊆ Kn+1. We recall
that the space GK(Ω) is endowed with the topology induced by GDK′ (Ω) where K ′ is a compact subset
containing K in its interior. In detail we consider on GK(Ω) the ultra-pseudo-seminorms PGK(Ω),n(u) =
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e−vK,n(u). Note that the valuation vK,n(u) := vpK′,n(u) is independent of the choice of K ′ when acts on
GK(Ω).

Regularity theory in the Colombeau context as initiated in [22] is based on the subalgebra G∞(Ω) of G(Ω)
obtained as G∞E -space when E = E(Ω). The intersection of G∞(Ω) with Gc(Ω) defines G∞c (Ω). We finally
consider the algebras G

S
(Rn) and G∞

S
(Rn) of generalized functions based on S (Rn) determined as GE

and G∞E spaces respectively by taking E = S (Rn). From a topological point of view G
S

(Rn) and G∞(Ω)
are Fréchet C̃-modules, G∞c (Ω) is the strict inductive limit of a family of ultra-pseudo-normed C̃-modules
and G∞

S
(Rn) is an ultra-pseudo-normed C̃-module.

A duality theory for C̃-modules had been developed in [4, 5] in the framework of topological and locally
convex topological C̃-modules. Starting from an investigation of L(G, C̃), the C̃-module of all C̃-linear
and continuous functionals on G, it provides the theoretical tools for dealing with the topological duals of
the Colombeau algebras Gc(Ω), G(Ω) and G

S
(Rn). The spaces L(G(Ω), C̃, L(Gc(Ω), C̃) and L(G

S
(Rn), C̃)

are endowed with the topology of uniform convergence on bounded subsets (see [4, Remark 2.11]) and, as
proven in [5, Theorems 3.1, 3.8], the following chains of continuous embeddings hold:

(1.1) G∞(Ω) ⊆ G(Ω) ⊆ L(Gc(Ω), C̃),

G∞c (Ω) ⊆ Gc(Ω) ⊆ L(G(Ω), C̃),

G∞
S

(Rn) ⊆ G
S

(Rn) ⊆ L(G
S

(Rn), C̃).

Since Ω → L(Gc(Ω), C̃) is a sheaf we can define the support of a functional T (denoted by suppT ). In
analogy with distribution theory L(G(Ω), C̃) from Theorem 1.2 in [5] we have that L(G(Ω), C̃) can be
identified with the set of functionals in L(Gc(Ω), C̃) having compact support.

The Colombeau algebra G
S

(Rn) and its dual L(G
S

(Rn), C̃) are the natural setting where to define the
Fourier transform F and its inverse F−1. In detail we employ the classical definition at the level of
representatives in G

S
(Rn) and the definition F(T )(u) = T (F(u)) on the functionals T ∈ L(G

S
(Rn), C̃).

The reader may refer to [7, Subsection 1.4] for further explanation. Since Gc(Ω) ⊆ G
S

(Rn) we are already
able to compute the Fourier transform of a Colombeau generalized function with compact support and
we will extend F : Gc(Ω) → G

S
(Rn) to the Fourier-Laplace transform FL in Subsection 1.3.

As already observed in [7, 9], (1.1) makes it meaningful to measure the regularity of a functional in
L(Gc(Ω), C̃) with respect to the algebras G(Ω) and G∞(Ω). We define the G-singular support of T
(singsuppG T ) as the complement of the set of all points x ∈ Ω such that the restriction of T to some
open neighborhood V of x belongs to G(V ). Analogously replacing G with G∞ we introduce the notion
of G∞-singular support of T denoted by singsuppG∞T . A microlocal analysis in the double G- and G∞-
version has been developed in the dual L(Gc(Ω), C̃) by making use of the notions of G- and G∞-wave front
set [7]. In this context a main role is played by the functionals in L(Gc(Ω), C̃) and L(G(Ω), C̃) which have
a “basic” structure. In detail, we say that T ∈ L(Gc(Ω), C̃) is basic if there exists a net (Tε)ε ∈ D′(Ω)(0,1]

fulfilling the following condition: for all K b Ω there exist j ∈ N, c > 0, N ∈ N and η ∈ (0, 1] such that

(1.2) ∀f ∈ C∞K (Ω)∀ε ∈ (0, η] |Tε(f)| ≤ cε−N sup
x∈K,|α|≤j

|∂αf(x)|

and Tu = [(Tεuε)ε] for all u ∈ Gc(Ω). For shortness we denote the set of nets of distributions fulfilling
the property (1.2) by M(C∞c (Ω),C).
In the same way a functional T ∈ L(G(Ω), C̃) is said to be basic if there exists a net (Tε)ε ∈ E ′(Ω)(0,1]

such that there exist K b Ω, j ∈ N, c > 0, N ∈ N and η ∈ (0, 1] with the property

∀f ∈ C∞(Ω)∀ε ∈ (0, η] |Tε(f)| ≤ cε−N sup
x∈K,|α|≤j

|∂αf(x)|

and Tu = [(Tεuε)ε] for all u ∈ G(Ω).
Clearly the sets Lb(Gc(Ω), C̃) and Lb(G(Ω), C̃) of basic functionals are C̃-linear subspaces of L(Gc(Ω), C̃)
and L(G(Ω), C̃) respectively.
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1.2 Convolution between generalized functions and functionals

We recall some of the properties of the convolution product between functionals and Colombeau gener-
alized functions which are employed in the course of the paper. We refer for definitions and proofs to
[7].

Proposition 1.1. The C̃-bilinear map
(S, T ) → S ∗ T

(i) from Gc(Rn)× Lb(Gc(Rn), C̃) into G(Rn),

(ii) from G(Rn)× Lb(G(Rn), C̃) into G(Rn),

(iii) from G
S

(Rn)× Lb(G(Rn), C̃) into G
S

(Rn),

(iv) from G∞c (Rn)× Lb(Gc(Rn), C̃) into G∞(Rn),

(v) from G∞(Rn)× Lb(G(Rn), C̃) into G∞(Rn),

(vi) from G∞
S

(Rn)× Lb(G(Rn), C̃) into G∞
S

(Rn),

(vii) from L(G(Rn), C̃)× Lb(Gc(Rn), C̃) into L(Gc(Rn), C̃),

(viii) from L(Gc(Rn), C̃)× Lb(G(Rn), C̃) into L(Gc(Rn), C̃),

(ix) from L(G(Rn), C̃)× Lb(G(Rn), C̃) into L(G(Rn), C̃)

is separately continuous. Moreover, when at least one of the functionals S and T has compact support
the following inclusions

supp(S ∗ T ) ⊆ suppS + suppT,
sing suppG(S ∗ T ) ⊆ sing suppG S + sing suppG T,

sing suppG∞(S ∗ T ) ⊆ sing suppG∞ S + sing suppG∞ T

hold.

Proof. We only prove the two final inclusions concerning the G- and the G∞-singular supports. Assume
that T has compact support and take ψ ∈ C∞(Rn) identically 1 in a neighborhood of sing suppG T . Then,
we can write T = T1 + T2 with T1 := ψT ∈ Lb(G(Rn), C̃) and T2 := (1 − ψ)T ∈ Gc(Rn). It follows that
S∗T2 ∈ G(Rn) while S∗T1 is a generalized function on the open set {x : x−suppT1 ⊆ Rn\sing suppG S}.
This means that

sing suppG(S ∗ T ) = sing suppG(S ∗ T1) ⊆ sing suppG S + suppT1 ⊆ sing suppG S + suppψ.

Since suppψ can be taken as close to sing suppG T as we wish, we obtain the desired inclusion. The proof
of the assertion with the G∞-singular supports is analogous and left to the reader.

The convolution S ∗ T can be defined in many cases when neither S nor T has compact support. What
we need is the proper map condition.

Proposition 1.2. Let S ∈ L(Gc(Rn), C̃ and T ∈ Lb(Gc(Rn), C̃ such that the map

µ : supp(S)× supp(T ) → Rn : (x, y) → x+ y

is proper. Then the convolution S ∗ T can be defined as a functional in L(Gc(Rn), C̃). Furthermore,
supp(S ∗ T ) ⊆ supp(S) + supp(T ).
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Proof. Let (Vk)k be an open covering of Rn such that Vk−1 ⊆ Vk b Vk+1. By the hypothesis on µ we
know that π1(µ−1(Vk)) and π2(µ−1(Vk)) are compact subsets of Rn. Let φk,1, φk,2 ∈ C∞c (Rn) identically
1 in a neighborhood of π1(µ−1(Vk)) and π2(µ−1(Vk)) respectively. Then we can define the convolution
product φk,1T1 ∗ φk,2T2|Vk

as an element of L(Gc(Vk), C̃). This functional does not depend on the choice
of the cut-off functions φk,1 and φk,2. Indeed, given φk,1 and φk,2 with the same neighborhood-property
we can write φk,1T1 ∗ φk,2T2|Vk

− φ′k,1T1 ∗ φ′k,2T2|Vk
as

(φk,1 − φ′k,1)T1 ∗ φk,2T2|Vk
+ φ′k,1T1 ∗ (φk,2 − φ′k,2)T2|Vk

,

where both the summand are null. So, we can set (T1 ∗T2)k := φk,1T1 ∗φk,2T2|Vk
and since L(Gc(Rn), C̃)

is a sheaf it is enough to prove that the family {(T1 ∗ T2)k}k∈N is coherent in order to conclude that
it uniquely defines a functional T1 ∗ T2 in L(Gc(Rn), C̃). One easily sees that if k < k′ then (T1 ∗
T2)k′ |Vk∩Vk′ = (T1 ∗ T2)k′ |Vk

= φ′k,1T1 ∗ φ′k,2T2|Vk
= φk,1T1 ∗ φk,2T2|Vk

= (T1 ∗ T2)k|Vk∩Vk′ . The inclusion
supp(S ∗T ) ⊆ supp(S)+ supp(T ) easily follows from [7, Proposition 1.14] and the definition of S ∗T .

The following corollary is obtained by combining the previous definition of product of convolution with
Proposition 1.1(ii).

Corollary 1.3. Let S ∈ L(Gc(Rn), C̃ and u ∈ G(Rn) such that the map

µ : supp(S)× supp(u) → Rn : (x, y) → x+ y

is proper. Then, S ∗ u ∈ G(Rn).

Remark 1.4. Let Γ ⊆ Rn be a closed convex cone which is proper in the sense that it does not
contain any straight line. The corresponding map µ : Γ × Γ → Rn : (x, y) → x + y is proper (as it
is proved in [15], p.104). Hence, the convolution makes the set {T ∈ Lb(Gc(Rn), C̃) : suppT ⊆ Γ} an
algebra. Finally, assume that Γ is a closed cone contained in Hn := {x ∈ Rn : xn = 0} such that
Γ ∩ {x : xn = 0} = {0}. Then, the map µ : Γ × Hn → Rn : (x, y) → x + y is proper. Indeed, given
the bounded set {(x, y) : |x + y| ≤ C} if we suppose that there exist sequences (xn), (yn) such that
|xn + yn| ≤ C with |xn| → ∞ passing to subsequences we get that xn/|xn| → x and yn/|yn| → −x for
some x ∈ Γ and some −x ∈ Hn. Hence, x = 0 which contradicts xn/|xn| → x.

We finally consider the action of a partial differential operator with constant Colombeau coefficients on
the convolution of two functionals.

Proposition 1.5. If P (D) is a partial differential operators with coefficients in C̃, S ∈ L(G(Rn), C̃) and
T ∈ Lb(Gc(Rn), C̃) then

P (D)(S ∗ T ) = P (D)S ∗ T = S ∗ P (D)T.

The same equalities hold for S, T ∈ L(Gc(Rn), C̃) as in Proposition 1.2.

Proof. If S has compact support then an inspection at the level of representatives shows that the following
equalities hold for all u ∈ Gc(Rn):

P (D)S ∗ T (u) = (P (D)S)x(Ty(u(x+ y))) = Sx( tP (D)(Tyu(x+ y))) = Sx((P (D)T )y(u)(x+ y))

= S ∗ P (D)T (u) = Sx(Ty( tP (D)u(x+ y))) = (S ∗ T )( tP (D)u) = P (D)(S ∗ T )(u).

We leave to the reader to check that the same result holds for S ∈ L(Gc(Rn), C̃) and T ∈ Lb(Gc(Rn), C̃)
satisfying the proper map assumption of Proposition 1.2.
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1.3 The Fourier-Laplace transform in the Colombeau framework

The purpose of this subsection is to deal with the Fourier-Laplace transform in the Colombeau framework
of generalized functions with compact support. The collected material is a partial elaboration of [19, 26].

Let A(Cn) be the space of all analytic entire functions on Cn and a ≥ 0. We denote the sets of all nets
(uε)ε ∈ A(Cn)(0,1] such that

∀M ∈ N ∃N ∈ N ∃c > 0∃η ∈ (0, 1]∀ε ∈ (0, η], ∀ζ ∈ Cn |uε(ζ)| ≤ c ε−N (1 + |ζ|)−Mea|Im(ζ)|

and

∃N ∈ N∀M ∈ N ∃c > 0∃η ∈ (0, 1]∀ε ∈ (0, η], ∀ζ ∈ Cn |uε(ζ)| ≤ c ε−N (1 + |ζ|)−Mea|Im(ζ)|

by EFL,a(Cn) and E∞FL,a(Cn) respectively.

Let NFL(Cn) be the set of all nets (uε)ε ∈ A(Cn)(0,1] such that

(1.3) ∃a ≥ 0∀M ∈ N∀q ∈ N ∃c > 0∃η ∈ (0, 1]∀ε ∈ (0, η], ∀ζ ∈ Cn |uε(ζ)| ≤ c εq(1+ |ζ|)−Mea|Im(ζ)|.

We set

GFL,a(Cn) :=
EFL,a(Cn)
NFL(Cn)

and

G∞FL,a(Cn) :=
E∞FL,a(Cn)
NFL(Cn)

.

The following proposition shows that the classical Fourier-Laplace transform at the level of representatives
allows to define the Fourier-Laplace transform of a generalized function in Gc(Rn) as an element of some
factor space GFL,a(Cn).

Proposition 1.6. If (uε)ε ∈ C∞(Rn)(0,1] and suppuε ⊆ {x : |x| ≤ a} for all ε ∈ (0, 1] then for all
M ∈ N there exists cM,a > 0 such that

(1.4) |FL(uε)(ζ)| ≤ cM,a (1 + |ζ|)−M sup
|α|≤M,|x|≤a

|∂αuε(x)| sup
|x|≤a

exIm(ζ)

for all ε ∈ (0, 1] and ζ ∈ Cn.

Proof. By iterated integration by parts we have that

(−iζ)αFL(uε)(ζ) = (−1)|α|
∫

Rn

e−ixζuε(x) dx

and therefore
|(−iζ)αFL(uε)(ζ)| ≤ cα,a sup

|x|≤a
|∂αuε(x)| sup

|x|≤a
exIm(ζ).

The estimate (1.4) easily follows.

Definition 1.7. Let u ∈ Gc(Rn) with suppu ⊆ {x : |x| < a}. The Fourier-Laplace transform of
u ∈ Gc(Rn) is the generalized function

FL(u)(ζ) =
∫

Rn

e−ixζu(x) dx

in GFL,a(Cn) obtained by applying the corresponding classical transformation on the representatives of u
having support contained in a compact subset of Rn uniformly with respect to the parameter ε.
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The well-definedness of FL(u) in GFL,a(Cn) is guaranteed by Proposition 1.6.
Indeed, if u ∈ Gc(Rn) has support contained in {x : |x| < a} then it has a representative (uε)ε such that
suppuε ⊆ K b {x : |x| < a} for some compact set K and for all ε ∈ (0, 1]. By Proposition 1.6 we have
that (FL(uε))ε ∈ EFL,a(Cn). Moreover, when (u′ε)ε is another representative of u with suppuε contained
in a certain compact subset K ′ of {x : |x| < a} for all ε, then the difference (uε−u′ε)ε satisfies (1.3) with
a > 0 as above. It follows that (uε − u′ε)ε ∈ NFL,a(Cn) and that FL(u) ∈ GFL,a(Cn).

The following theorem provides a deeper investigation of the properties of FL(u) and the expected
Paley-Wiener type results. For technical reasons we will make use of the subset G FL,a(C

n) of GFL,a(Cn)
obtained by assuming that the estimates which characterize the representatives hold in the whole interval
(0, 1]. In the sequel, Ec,M (Rn) denotes the set of all nets (uε)ε of smooth functions having support
contained in a compact subset of Rn uniformly with respect to the parameter ε.

Theorem 1.8.

(i) If u ∈ G∞c (Rn) and suppu ⊆ {x : |x| < a} then FL(u) ∈ G∞FL,a(Cn).

(ii) If v ∈ G FL,a(C
n) then there exists u ∈ Gc(Rn) with suppu ⊆ {x : |x| ≤ a} such that

(1.5) (FL(uε)− vε)ε ∈ NFL,a′(Cn),

for all representative (uε)ε of u in Ec,M (Rn), for all representative (vε)ε of v and for all a′ > a.

(iii) If v ∈ G∞FL,a(C
n) then (ii) holds with u ∈ G∞c (Rn).

Proof. (i) Assume in addition that u ∈ G∞c (Rn). Taking a representative (uε)ε of u as in the previous
case, from (1.4) we get that FL(uε)ε ∈ E∞FL,a(Cn). This means that FL(u) ∈ G∞FL,a(Cn).

(ii) Let (vε)ε be a representative of v. It has the property

(1.6) ∀M ∈ N∃N ∈ N∃c > 0∀ε ∈ (0, 1]∀ζ ∈ Cn |vε(ζ)| ≤ cε−N (1 + |ζ|)−Mea|Imζ|.

Replacing ζ with ξ ∈ Rn and taking M = n+1 in (1.6), we easily see that (vε)ε ∈ML1(Rn) and therefore

(1.7) uε(x) = (2π)−n
∫

Rn

eixξvε(ξ) dξ

gives a moderate net of continuous functions on Rn. Analogously the choice of M = n + 1 + |α| in
(1.6) for any α ∈ Nn makes us conclude that (uε)ε is a net of smooth functions and more precisely that
(uε)ε ∈ EM (Rn). Let u be the generalized function in G(Rn) generated by (uε)ε. We want to prove that
u|{x: |x|>a} = 0 and that FLu = v. Since vε is analytic on Cn the Cauchy’s theorem applied to each
variable ζ1, ..., ζn allows to shift the integration in (1.7) into the complex domain and thus to write

uε(x) = (2π)−n
∫

Imζ=ξ0

eixζvε(ζ) dζ,

where ξ0 may be any point in Rn. From (1.6) we have that for some constant C ′ > 0 (independent of ξ0)
the estimate

(1.8) |uε(x)| ≤ Cε−Nea|ξ0|−xξ0
∫

Rn

(1 + |ξ|)−n−1 dξ ≤ C ′ε−Nea|ξ0|−xξ0

is valid for all x ∈ Rn and for all ε ∈ (0, 1]. Assume that |x| > a and choose ξ0 = tx/|x| with t > 0 in
(1.8). This yields

|uε(x)| ≤ C ′ε−Net(a−|x|).

Letting t → +∞ we conclude that uε(x) = 0 for all ε when |x| > a. Hence, suppu ⊆ {x : |x| ≤ a}.
Finally, by construction ûε(ξ) = vε(ξ). Since ûε(ξ) extends to an analytic function on Cn, by the
uniqueness of the analytic continuation one has that FL(uε) = vε on Cn. It follows that the property
(1.5) holds for the generalized function u constructed in this way.

(iii) It is immediate to check that when v ∈ G∞FL,a(C
n) then the generalized function u with representative

(uε)ε defined in (1.7) by means of (vε)ε ∈ E∞FL,a(Cn) belongs to G∞c (Rn).

8



Remark 1.9. The generalized function u ∈ Gc(Rn) with support contained in {x : |x| ≤ a} and
such that the second assertion of Theorem 1.8 is fulfilled is unique. Indeed, assume that there exists
another u′ ∈ Gc(Rn) having the same properties. Then, the fact that (FL(uε)− vε)ε ∈ NFL,a′(Cn) and
(FL(u′ε) − vε)ε ∈ NFL,a′(Cn) leads to (FL(uε − u′ε))ε ∈ NFL,a′(Cn). In particular this means that for
all M, q ∈ N there exists η ∈ (0, 1] such that

(1.9) |ûε(ξ)− û′ε(ξ)| ≤ εq(1 + |ξ|)−M ,

for all ξ ∈ Rn and ε ∈ (0, η]. Since, (ûε − û′ε)ε ∈ ES (Rn), the characterization of the ideal NS (Rn) (see
[5, Proposition 3.4]) allows to conclude from (1.9) that (ûε − û′ε)ε ∈ NS (Rn). By the injectivity of the
Fourier transform on G

S
(Rn) we have that u = u′ in G

S
(Rn) and therefore u = u′ in Gc(Rn).

Let now P (D) be a partial differential operator with coefficients in C̃. We leave to the reader to check
that the equality

(1.10) FL(Pu)(ζ) = FL(u)(ζ)P (ζ)

holds in GFL,a(Cn) for all the partial differential operators P with coefficients in C̃ and for all generalized
functions u ∈ Gc(Rn) with suppu ⊆ {x : |x| < a}. Note that in the right hand-side of (1.10) the
product between elements of GFL,a(Cn) and polynomials with generalized constant coefficients is defined
componentwise at the level of representatives and gives a generalized function in GFL,a(Cn). Since the
Fourier Laplace transform extends the Fourier transform from real variables to complex variables in the
classical distributional context as well as in the generalized Colombeau framework, we give to the three
notations FL(u)(ζ), F(u)(ζ), û(ζ) the same meaning.

We conclude this section of preliminaries notions by considering the Fourier Laplace transform of u ∈
Gc(Rn) computed in the points of Cn of the form (ξ′, ξn + iηn), where ξ′ ∈ Rn−1 and ξn, ηn ∈ R. More
in general we will assume that ηn is a generalized number in R̃ satisfying suitable logarithmic growth’s
conditions as follows.

Definition 1.10. We say that ξ ∈ Rn is of log-type if there exists a representative (ξε)ε of ξ ∈ R̃n such
that |ξε| = O(log(1/ε)).

The previous condition can equivalently stated saying that the net (e|ξε|)ε is moderate. Note that if
(ξε)ε and (ξ′ε)ε are representative of ξ such that the nets (e|ξε|)ε and (e|ξ

′
ε|)ε belong both to EM then

(e|ξε| − e|ξ
′
ε|)ε ∈ N . Indeed, from the equality

e|ξε| − e|ξ
′
ε| = e|ξ

′
ε|(e|ξε|−|ξ′ε| − 1) = e|ξ

′
ε|(eθ(|ξε|−|ξ′ε|)(|ξε| − |ξ′ε|))

and our assumptions it follows that for all q ∈ N

(1.11) |e|ξε| − e|ξ
′
ε|| ≤ ε−N+qe||ξε|−|ξ′ε||

when ε is small enough. Since ||ξε| − |ξ′ε|| ≤ |ξε − ξ′ε| then e||ξε|−|ξ′ε|| = O(1) and by (1.11) we have that
(e|ξε| − e|ξ

′
ε|)ε ∈ N . As a consequence, when ξ ∈ R̃n is of log-type the generalized number

e|ξ| := [(e|ξε|)ε],

where (ξε)ε is any representative of ξ such that (e|ξε|)ε is moderate, is well-defined in R̃. Moreover, when
ξ ∈ R̃n is of log-type then

exξ := [(exξε)ε]

is a generalized function in G(Rn). The moderateness of (exξε)ε is clear from the inequalities

|exξε | ≤ e|x||ξε|,

|∂αexξε | ≤ |ξε||α||exξε |.
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When (|ξε − ξ′ε|)ε ∈ N then we can write the equality

exξε − exξ
′
ε = exξ

′
ε(ex(ξε−ξ′ε) − 1) = exξ

′
εex(ξε−ξ′ε)θx(ξε − ξ′ε).

Hence arguing as above under the hypothesis that both the nets (e|ξε|)ε and (e|ξ
′
ε|)ε are moderate, we

obtain that (exξε − exξ
′
ε)ε ∈ N (Rn).

We are now ready to state the following proposition where we write x ∈ Rn and ξ ∈ Rn as (x′, xn) and
(ξ′, ξn) respectively.

Proposition 1.11.

(i) If u ∈ Gc(Rn) then for all ηn ∈ R̃ of log-type the generalized function

(1.12) (ξ′, ξn) → FL(u)(ξ′, ξn + iηn) :=
[(∫

Rn

e−i(x
′ξ′+xnξn)exnηn,εuε(x′, xn) dx′ dxn

)
ε

]
belongs to G

S
(Rn).

(ii) If u ∈ G∞c (Rn) then (1.12) defines a generalized function in G∞
S

(Rn).

Proof. Let u ∈ Gc(Rn) with suppu ⊆ {x : |x| < a}. Proposition 1.6 proves that the estimate

(1.13)
∣∣∣∣∫

Rn

e−ixζuε(x) dx
∣∣∣∣ ≤ cM,a(1 + |ζ|)−M sup

|x|≤a,|α|≤M
|∂αuε(x)| ea|Im(ζ)|

holds for all (uε)ε ∈ Ec,M (Rn) with suppuε ⊆ {x : |x| < a} and for all ε ∈ (0, 1]. Hence, taking
ζ = (ξ′, ξn + iηn,ε) in (1.13) and computing the derivatives in (ξ′, ξn) of the net in (1.12) it follows that

(1.14)
∣∣∣∣∂βξ′ dhdξhn

∫
Rn

e−i(x
′ξ′+xnξn)exnηn,εuε(x′, xn) dx′ dxn

∣∣∣∣ ≤ cM,a (1 + |ξ|+ |ξn|)−M

sup
|(x′,xn)|≤a,|α|≤M

|∂α(x′βxhnuε(x
′, xn))| ea|ηn,ε|

By the log-type assumption on ηn ∈ R̃ it follows that the net in (1.14) belongs to ES (Rn), E∞S (Rn) and
NS (Rn) when (uε)ε is an element of Ec,M (Rn), E∞c,M (Rn) and Nc(Rn) respectively.

In order to conclude that (1.12) gives a well-defined generalized function in G
S

(Rn) it remains to prove that
its definition does not depend on the representative of log-type of ηn. Let (ηε)ε and (η′ε)ε be representatives
of η such that (e|ηε|)ε) and (e|η

′
ε|)ε) are moderate. Since we already observed that (exnηn,ε − exnη

′
n,ε)ε ∈

N (R) we can assert that for all q ∈ N there exists εq ∈ (0, 1] such that the estimate∣∣∣∣∫
Rn

e−i(x
′ξ′+xnξn)exnηn,ε

(
exnηn,ε − exnη

′
n,ε

)
uε(x′, xn) dx′ dxn

∣∣∣∣ ≤ cεq sup
|(x′,xn)|≤a

|uε(x′, xn))|

holds for all ε ∈ (0, εq]. By the characterization of the ideal NS (Rn) it follows that the net given by
the integral above belongs to NS (Rn). As a consequence (1.12) defines a generalized function in G

S
(Rn)

when u ∈ Gc(Rn) and a generalized function in G∞
S

(Rn) when u ∈ G∞c (Rn).

Remark 1.12. Note that if suppuε ⊆ {x ∈ Rn : xn > 0} for all ε ∈ (0, 1] then

FL(uε)(ξ′, ξn + iηn,ε) =
∫

Rn

e−i(x
′ξ′+xnξn)exnηn,εuε(x′, xn) dx′ dxn

fulfills the following estimate

|FL(uε)(ξ′, ξn + iηn,ε)| ≤ cM,a(1 + |ξ′|+ |ξn|)−M sup
|(x′,xn)|≤a,|α|≤M

|∂αuε(x′, xn)|

for all (ξ′, ξn) ∈ Rn, for all ηn,ε < 0 and for all ε ∈ (0, 1].
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2 Fundamental solutions in the dual of a Colombeau algebra

2.1 Definition

Definition 2.1. Let P (D) be a partial differential operator with constant Colombeau coefficients. We
say that E ∈ L(Gc(Rn), C̃) is a fundamental solution of P (D) if P (D)E = ιd(δ) in L(Gc(Rn), C̃).

2.2 The Malgrange-Ehrenpreiss Theorem for fundamental solutions in the

space Lb(Gc(Rn), C̃)

In this subsection we prove the existence of a fundamental solution in the dual L(Gc(Rn), C̃) for a large
class of partial differential operators with coefficients in C̃. We begin by fixing some language and
notations.

Let P be a partial differential operator of order m with coefficients in C̃. Any net of polynomials (Pε)ε
determinated by a choice of representatives of the coefficients of P is called a representative of P . Consider
the function P̃ : Rn → R̃ defined by

P̃ 2(ξ) =
∑
|α|≤m

|∂αP (ξ)|2.

The arguments in [14, (2.1.10)] yields the following assertion: there exists C > 0 depending only on m
and n such that for all (Pε)ε the inequality

(2.15) P̃ε(ξ + η) ≤ (1 + C|ξ|)mP̃ε(η)

is valid for all ξ, η ∈ Rn and all ε ∈ (0, 1]. When the function P̃ : Rn → R̃ is invertible in some point ξ0
of Rn Lemma 7.5 in [17] proves that for all representative (Pε)ε of P there exist N ∈ N and η ∈ (0, 1]
such that

(2.16) P̃ε(ξ) ≥ εN (1 + C|ξ0 − ξ|)−m,

for all ξ ∈ Rn and ε ∈ (0, η]. Note that the constant C > 0 is the same appearing in (2.15) and εN comes
from the invertibility in R̃ of P̃ (ξ0).

We finally recall that K is the set of tempered weight functions introduced by Hörmander in [14, Definition
2.1.1], i.e., the set of all positive functions k on Rn such that for some constants C > 0 and N ∈ N the
inequality

(2.17) k(ξ + η) ≤ (1 + C|ξ|)Nk(η)

holds for all ξ, η ∈ Rn. From (2.17) it follows that k(ξ + η) ≥ (1 + C|ξ|)−Nk(η) and then k(ξ) ≥
(1 + C|ξ|)−Nk(0) for all ξ ∈ Rn.

Definition 2.2. If k ∈ K and p ∈ [1,+∞] we denote by Bp,k(Rn) the set of all distributions w ∈ S ′(Rn)
such that ŵ is a function and

‖w‖p,k = (2π)−n‖kŵ‖p <∞.

The inequality (2.15) says that P̃ε is a tempered weight function for each ε so it is meaningful to consider
the sets B∞,P̃ε

(Rn) of distributions as we will see in the next theorem.

Theorem 2.3. To every differential operator P (D) with coefficients in C̃ such that P̃ (ξ) is invertible in
some ξ0 ∈ Rn there exists a fundamental solution E ∈ Lb(Gc(Rn), C̃). More precisely, to every c > 0 and
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(Pε)ε representative of P there exists a fundamental solution E given by a net of distributions (Eε)ε such
that Eε/ cosh(c|x|) ∈ B∞,P̃ε

(Rn) and for all ε∥∥∥∥ Eε
cosh(c|x|)

∥∥∥∥
∞,P̃ε

≤ C0,

where the constant C0 depends only on n,m and c.

The proof of Theorem 2.3 requires some technical preparation which consists in recalling and applying
some classical results due to Hörmander [14, Chapter III], [16, Chapter X] to the representing nets (Pε)ε
of polynomials with generalized constant coefficients.

Lemma 2.4. Let A be a bounded subset of Rn such that no polynomial of degree ≤ m vanishes in A
without vanishing identically. Let set

A′ = {kθ/m; 0 ≤ k ≤ m, θ ∈ A},

where k is an integer. Then there is a constant C > 0 such that

p̃(ξ) ≤ C sup
θ∈A′

inf
|z|=1

|p(ξ + zθ)|

for all polynomials p of degree ≤ m and every complex ξ.

Lemma 2.4 is proved in [14, Chapter III] and applies to nets (Pε)ε of polynomials of degree ≤ m. In
particular, there exists C > 0 such that for all nets (Pε)ε the equality

(2.18) P̃ε(ξ) ≤ C sup
θ∈A′

inf
|z|=1

|Pε(ξ + zθ)|

holds for all ξ ∈ Cn and for all ε ∈ (0, 1]. We are now in the position of stating the following proposition
whose proof is a straightforward application of Theorems 3.1.1 and 3.1.2 in [14] to the net Pε(D).

Proposition 2.5. Let A′ be a finite subset of the sphere |ξ| < c such that (2.18) is valid for every net
(Pε)ε of polynomials of degree ≤ m. Let us fix a net (Pε)ε and let ϕθ,ε, θ ∈ A′, ε ∈ (0, 1] be measurable
functions in Rn such that ϕθ,ε ≥ 0,

∑
θ∈A′ ϕθ,ε = 1 and

(2.19) ϕθ,ε(ξ) > 0 ⇒ P̃ε(ξ) ≤ C inf
|z|=1

|Pε(ξ + zθ)|.

Then the formula

(2.20) Ěε(u) = (2π)−n
∑
θ∈A′

∫
Rn

ϕθ,ε(ξ) dξ
1

2πi

∫
|z|=1

û(ξ + zθ)
Pε(ξ + zθ)

dz

z
u ∈ C∞c (Rn),

defines a fundamental solution Eε(u) := Ěε ∗ u(0) of Pε(D) such that Eε/ cosh(c|x|) ∈ B∞,P̃ε
(Rn).

Moreover, there exists a constant C0 depending only on n, m and c such that∥∥∥∥ Eε
cosh(c|x|)

∥∥∥∥
∞,P̃ε

≤ C0

for all ε ∈ (0, 1].

The proof of Theorem 2.3 is at this point just a matter of combining the invertibility of the generalized
quantity P̃ (ξ) in ξ0 with the nets of fundamental solutions (Eε)ε of (Pε(D))ε provided by Proposition
2.5.
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Proof of Theorem 2.3. Let us fix a representative (Pε)ε of P and consider the corresponding net (Ěε)ε ∈
D′(Rn)(0,1] given by (2.20). It determines a basic functional Ě in L(Gc(Rn), C̃). Indeed, from (2.19) we
have that

|Ěε(u)| ≤ C(2π)−n−1
∑
θ∈A′

∫
|z|=1

∫
Rn

|û(ξ + zθ)|
P̃ε(ξ)

dξ dz

for all u ∈ C∞c (Rn) and all ε ∈ (0, 1]. The invertibility of P̃ in some point ξ0 yields that the estimate

|Ěε(u)| ≤ C(2π)−n−1
∑
θ∈A′

∫
|z|=1

∫
Rn

|û(ξ + zθ)|
εN (1 + C1|ξ0 − ξ|)−m

dξ dz

≤ C ′ε−N
∑
θ∈A′

∫
|z|=1

∫
Rn

(1 + |ξ|)m|û(ξ + zθ)| dξ dz ≤ C ′′ε−N sup
y∈K,|β|≤m+n+1

|∂βu(y)|

is valid for all u ∈ C∞K (Rn) when ε is small enough. It follows that the net (Ěε)ε gives a basic functional
Ě ∈ L(Gc(Rn), C̃). By construction we have that E(u) = Ě(ũ), where ũ(x) = u(−x) is a basic functional
in L(Gc(Rn), C̃) such that P (D)E = ιd(δ). Finally, let (Eε)ε be the net of distributions given by u →
Ěε ∗ u(0) where (Ěε)ε is defined by (Pε)ε as in (2.20). This net generates the basic functional E and by
Proposition 2.5 we know that Eε/ cosh(c|x|) ∈ B∞,P̃ε

(Rn) with ‖Eε/cosh(c|x|)‖∞,P̃ε
≤ C0 for all ε.

Theorem 2.3 entails the following solvability result.

Theorem 2.6. Let P (D) be a partial differential operator with coefficients in C̃ such that P̃ is invertible
in some ξ0 ∈ Rn. Then the equation

(2.21) P (D)u = v

(i) has a solution u ∈ G(Rn) if v ∈ Gc(Rn),

(ii) has a solution u ∈ G∞(Rn) if v ∈ G∞c (Rn),

(iii) has a solution u ∈ L(Gc(Rn), C̃) if v ∈ L(G(Rn), C̃),

(iv) has a solution u ∈ Lb(Gc(Rn), C̃) if v ∈ Lb(G(Rn), C̃).

Proof. Let E ∈ Lb(Gc(Rn), C̃) be a fundamental solution of P (D) whose existence is guaranteed by
Theorem 2.3. Combining Proposition 1.1 with Proposition 1.5 we have that u = v ∗ E is a solution of
equation (2.21). Indeed, P (D)u = P (D)(v ∗ E) = v ∗ ιd(δ) = v. More precisely, u ∈ G(Rn) if v ∈ Gc(Rn)
and u ∈ G∞(Rn) if v ∈ G∞c (Rn). When v is a functional in L(G(Rn), C̃) then u ∈ L(Gc(Rn), C̃) and in
addition u is a basic functional if v is basic itself.

Remark 2.7. The first assertion of Theorem 2.6 was already proven by Hörmann and Oberguggenberger
in [17, Theorem 7.7]. In the course of the proof the authors define a representative (uε)ε of the solution
u as the convolution (Eε ∗ vε)ε, where (vε)ε is a representative of v and (Eε)ε a net of distributional
fundamental solutions of Pε(D). Since the dual L(Gc(Rn), C̃) does not appear in their mathematical
framework, they do not view (Eε)ε as a net defining a generalized object. They immediately consider
the class in G(Rn) generated by (Eε ∗ vε)ε.

A deeper investigation of the solvability of the equation P (D)u = v, when the right-hand side has
compact support, is postponed to the appendix at the end of the paper and modelled on the classical
sources [14, 16].

13



2.3 Application to evolution operators

In the sequel we set Hn = {x ∈ Rn : xn ≥ 0}.

Definition 2.8. A partial differential operator with constant Colombeau coefficients, defined on Rn, is
called an evolution operator with respect to Hn if it has a fundamental solution in Lb(Gc(Rn), C̃) whose
support is contained in Hn.

The definition of evolution operator entails the following solvability results.

Theorem 2.9. Let P (D) be an evolution operator with respect to Hn .

(i) If v ∈ Gc(Rn) then the equation P (D)u = v has a solution u ∈ G(Rn) with

suppu ⊆ {x ∈ Rn : xn ≥ inf{yn : y ∈ supp v}}.

(ii) (i) holds with Gc(Rn) and G(Rn) substituted by L(G(Rn), C̃) and L(Gc(Rn), C̃) respectively.

(iii) If v ∈ L(Gc(Rn), C̃) has support contained in a closed cone Γ ⊆ Hn such that Γ∩{x : xn = 0} = {0}
then the equation P (D)u = v has a solution in L(Gc(Rn), C̃) with suppu ⊆ Hn.

Proof. Let E ∈ Lb(Gc(Rn), C̃) be a fundamental solution of P (D) with suppE ⊆ Hn. From Theorem 2.6
we have that u = v ∗E is a solution of the equation P (D)u = v which belongs to G(Rn) when v ∈ Gc(Rn)
and to L(Gc(Rn), C̃) when v ∈ L(G(Rn), C̃). In particular by the theorem of supports we obtain that
suppu ⊆ suppE + supp v ⊆ Hn + supp v. This means that suppu ⊆ {x ∈ Rn : xn ≥ inf{yn : y ∈
supp v}}. Finally, assume that v ∈ L(Gc(Rn), C̃) has support contained in a closed cone Γ ⊆ Hn such
that Γ ∩ {x : xn = 0} = {0}. Since suppE ⊆ Hn then by Proposition 1.2 and Remark 1.4 we conclude
that v ∗E is a well-defined element of L(Gc(Rn), C̃) with support contained in Hn and clearly a solution
to P (D)u = v.

We provide now a condition on the generalized polynomial of P (D) which is sufficient to claim that P (D)
is an evolution operator with respect to Hn. In the course of the proof of Theorem 2.10 we will use the
fact that if T ∈ L(G

S
(Rn), C̃ and u ∈ G(Rn) then uT (v) := T (uv) defines a functional in L(Gc(Rn), C̃).

Theorem 2.10. Let P (ζ) =
∑

|α|≤m aαζ
α be a polynomial on Cn with coefficients in C̃ fulfilling the

following conditions:

(i) there exists a choice of representatives (aα,ε)ε of aα,

there exist a net (cε)ε ∈ R(0,1] of the form cε = c ωε, c < 0, with the property

∃c0, a0 > 0∀ε ∈ (0, 1] c0ε
a ≤ ωε ≤ log(1/ε) + 1

and there exists a constant ε0 > 0 such that

Pε(ξ′, ζn) :=
∑
|α|≤m

aα,ε(ξ′, ζn)α 6= 0

for all ε ∈ (0, ε0], for all ξ′ ∈ Rn−1, for all ζn = ξn + iηn with ηn < cε;

(ii) the coefficient of the highest power of ζn in P is an invertible element of C̃.

Then P (D) is an evolution operator with respect to Hn.
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Proof of Theorem 2.10. By assumption (ii) we can write the polynomial P (ξ′, ζn) as

A(ζkn + ζk−1
n P1(ξ′) + ...+ Pk(ξ′))

where A ∈ C̃ is invertible, every Pj is a polynomial in ξ′ with complex generalized coefficients and the
integer k does not exceed m. The representing net (Pε(ξ′, ζn))ε satisfying condition (i) is of the form

Aε(ζn − λ1,ε)...(ζn − λk,ε),

where (Aε)ε is a representative of A and the (λj,ε)ε are nets of functions of ξ′. In addition from (i) we
have that Imλj,ε(ξ′) ≥ cε for all j = 1, ..., k, for all ξ′ ∈ Rn−1 and for all ε ∈ (0, ε0]. Combining the
invertibility of A with the properties of (Pε(ξ′, ζn))ε we obtain that there exist r1 ∈ R and ε1 ∈ (0, 1]
such that

(2.22) |Pε(ξ′, ζn)| ≥ εr1(cε − Im ζn)k

for all ξ′ ∈ Rn−1, for all ζn with Im ζn < cε and for all ε ∈ (0, ε1]. It follows that for fixed ηn,ε = c′ωε
with c′ < c we have

|Pε(ξ′, ξn + iηn,ε)| ≥ εr1(cε − ηn,ε)k = εr1(cωε − c′ωε)k ≥ εr1(c− c′)kck0ε
ak

for all ξ′ ∈ Rn, ξn ∈ R and ε ∈ (0, ε1]. Hence, the net

Sε(ξ′, ξn) :=

{
(Pε(ξ′, ξn + iηn,ε))−1 ε ∈ (0, η1]
0 ε ∈ (ε1, 1]

defines a basic functional S in L(G
S

(Rn), C̃).

Let ηn be the real generalized number defined by ηn,ε = c′ωε. As proved in Section 1 the logarithmic
growth’s condition on ηn yields the well-definedness of eηn

:= [(e−xnηn,ε)ε] as a generalized function in
G(Rn). We can now compute the inverse Fourier transform of S and define the basic functional

E = eηn · F−1S

of L(Gc(Rn), C̃). Let u ∈ Gc(Rn) and ũ(x) := u(−x). By Proposition 1.11 we know that FL(u)(·, ·+ iηn)
is a generalized function in G

S
(Rn). Moreover, F−1(eηn ũ) = (2π)−nFL(u)(·, ·+ iηn) and the definitions

of S and E entails the equalities

(2.23) E(ũ) = F−1S(eηn ũ) = S(F−1(eηn ũ)) = S((2π)−nFL(u)(·, ·+ iηn))

=
[(

(2π)−n
∫

Rn

FL(uε)(ξ′, ξn + iηn,ε)
Pε(ξ′, ξn + iηn,ε)

dξ′ dξn

)
ε

]
.

Note that (2.22) combined with Proposition 1.11(i) allows to write the integral in (2.23) for all ε ∈ (0, ε1].
By Cauchy’s theorem this integral does not depend on the constant c′ < c which appears in the definition
of (ηn,ε)ε.

We now prove that E is a fundamental solution of P (D). From (2.23) and the equality (1.10) we have
that

(2.24) P (D)(E)(ũ) = E( tP (D)ũ) = E((P (D)u)̃ ) =
[(

(2π)−n
∫

Rn

FL(Pεuε)(ξ′, ξn + iηn,ε)
Pε(ξ′, ξn + iηn,ε)

dξ′ dξn

)
ε

]
=
[(

(2π)−n
∫

Rn

FL(uε)(ξ′, ξn + iηn,ε) dξ′ dξn

)
ε

]
= (2π)−n

∫
Rn

FL(u)(ξ′, ξn + iηn) dξ′ dξn.

Applying again Cauchy’s theorem at the level of representatives we conclude that
(2.25)

(2π)−n
∫

Rn

FL(u)(ξ′, ξn + iηn) dξ′ dξn = (2π)−n
∫

Rn

FL(u)(ξ′, ξn) dξ′ dξn =
∫

Rn

F(u)(ξ) d−ξ = u(0).
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Finally, a combination of (2.24) with (2.25) leads to

P (D)(E)(ũ) = u(0) = ũ(0) = ιd(δ)(ũ).

It remains to show that the support of E is contained in the region Hn. Let u ∈ Gc(Rn) with suppu ⊆
{x ∈ Rn : xn > 0}. By Remark (1.12) we know that there exist ε2 ∈ (0, 1] and N ∈ N such that

∀(ξ′, ξn) ∈ Rn ∀ε ∈ (0, ε2]∀c′ < c∀ηε = c′ωε |FL(uε)(ξ′, ξn + iηn,ε)| ≤ ε−N (1 + |ξ′|+ |ξn|)−n−1.

Hence, from (2.23) and (2.22) we conclude that E(ũ) has a representative (E(ũ))ε satisfying the estimate

(2.26) |(E(ũ))ε| ≤ ε−N−r
1

(2π)n(c− c′)kck0εak

∫
Rn

1
(1 + |ξ′|+ |ξn|)n+1

dξ′ dξn ≤ Cε−N−r−ak
1

(c− c′)k

for all ε ∈ (0, ε2] and c′ < c. Since the left hand-side of (2.26) does not depend on c′ < c, letting c′

tends to −∞ we conclude that the net (E(ũ))ε)ε is identically 0 when ε belongs to the interval (0, ε2].
This proves that E(u) = 0 for all u ∈ Gc(Rn) with suppu ⊆ {x ∈ Rn : xn < 0} or in other words that
suppE ⊆ Hn.

Example 2.11. We give few examples of nets (Pε)ε and corresponding generalized operators P (D) which
satisfy the assumptions of the previous theorem.

Let (ωε)ε ∈ C(0,1] and

(2.27) Pε(ξ′, ξn + iηn) = iξn − ηn + ωε|ξ′|2.

Condition (ii) is trivially fulfilled. If Reωε ≥ 0 for all ε and ηn < c < 0 then Pε(ξ′, ξn + iηn) satisfies
condition (i). Indeed,

Re(Pε(ξ′, ξn + iηn)) = ωε|ξ′|2 − ηn > 0

for all ε ∈ (0, 1]. Note that (2.27) gives the heat operator for ωε = 1 and the Schrödinger operator for
ωε = i.

The previous example can be easily generalized without loosing the evolution operator’s property. It
suffices to take an invertible real generalized number a ∈ R̃ in the coefficients ia of ξn. More precisely, let

(2.28) Pε(ξ′, ξn + iηn) = iaεξn − aεηn + ωε|ξ′|2,

where (aε)ε ∈ R(0,1] has the property aε ≥ εs for all ε ∈ (0, 1]. Again, if Reωε ≥ 0 for all ε and ηn < c < 0
we obtain that Re(Pε(ξ′, ξn + iηn)) > 0. Note that due to the simple structure of the examples (2.27)
and (2.28) one find a net (cε)ε which is constant. This does not happen in the following case.

Let P (D) = ∂t + a∂x + b, with a, b ∈ R̃. Fixing a choice of representatives (aε)ε, (bε)ε we can write

Pε(ξ1, ξ2 + iη2) = i(ξ1 + aεξ2)− aεη2 + bε.

It is clear that in order to fulfill the second condition of Theorem 2.10 we have to assume that a is
invertible in R̃. Moreover, we easily see that Pε(ξ1, ξ2 + iη2) 6= 0 for all (ξ1, ξ2) in R2 and for all ε if and
only if −aεη2 + bε 6= 0. Hence, we can assume −aεη2 + bε > 0. This defines the net cε = −bε/aε which
satisfies the hypotheses of the theorem if there exist c0, a0 > 0 such that c0εa ≤ bε/aε ≤ log(1/ε) + 1.
For instance, one can take 0 < c1 ≤ aε ≤ c2 and 0 < bε ≤ log(1/ε) + 1.

3 G- and G∞-hypoellipticity and ellipticity

Definition 3.1. Let P (x,D) be a partial differential operator with coefficients in G(Ω). P (x,D) is said
to be G-hypoelliptic in the open set Ω if

(3.29) sing suppG P (x,D)T = sing suppG T
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for all basic functional T ∈ L(Gc(Ω), C̃). Analogously, P (x,D) is said to be G∞-hypoelliptic in the open
set Ω if

(3.30) sing suppG∞ P (x,D)T = sing suppG∞ T

for all basic functional T ∈ L(Gc(Ω), C̃)

3.1 Fundamental solutions of G- and G∞-hypoelliptic operators

For operators with constant Colombeau coefficients the G-hypoellipticity as well as the G∞-hypoellipticity
may be characterized making use of the fundamental solutions. We say that F ∈ Lb(Gc(Rn), C̃) is a G-
parametrix of P (D) if

P (D)F − ιd(δ) ∈ G(Rn)

and that F ∈ Lb(Gc(Rn), C̃) is a G∞-parametrix of P (D) if

P (D)F − ιd(δ) ∈ G∞(Rn).

Theorem 3.2. Let P (D) be a partial differential operator with constant Colombeau coefficients such that
the function P̃ is invertible in some point of Rn. The following assertions are equivalent:

(i) the operator P (D) is G-hypoelliptic in Rn,

(ii) the operator P (D) admits a fundamental solution E ∈ Lb(Gc(Rn), C̃) with sing suppG E ⊆ {0},

(iii) the operator P (D) admits a G-parametrix F ∈ Lb(Gc(Rn), C̃) with sing suppG F ⊆ {0}.

The same kind of equivalence holds with G∞-hypoelliptic, sing suppG∞ and G∞-parametrix in place of
G-hypoelliptic, sing suppG and G-parametrix respectively.

Proof. We begin by considering the G-case. Since suppG ιd(δ) = {0} from Theorem 2.3 we have that
(i) ⇒ (ii) ⇒ (iii). We now want to prove that (iii) implies (i). Let F ∈ Lb(Gc(Rn), C̃) be a G-
parametrix of P (D) with sing suppG F ⊆ {0} and ψ ∈ C∞c (Rn) be a cut-off function identically 1 in a
neighborhood of the origin. Then, (1− ψ)F ∈ G(Rn) and ψF ∈ Lb(G(Rn), C̃). It follows that

P (D)F = P (D)(1− ψ)F + P (D)ψF = ιd(δ) + v,

where P (D)(1− ψ)F and v belong to G(Rn).
We have to prove that for all open subsets X of Rn and all basic functionals T of L(Gc(Rn), C̃) if
P (D)T |X ∈ G(X) then T |X ∈ G(X). Equivalently we shall show that T |X1 ∈ G(X1) for any relatively
compact open subset X1 of X. Let α ∈ C∞c (X) be a cut-off function identically 1 in a neighborhood of
X1. By construction P (D)αT ∈ Lb(G(Rn), C̃) and (P (D)αT )|X1 ∈ G(X1). Computing the convolution
between P (D)αT and F we have that

P (D)αT ∗ F = αT ∗ P (D)F = αT ∗ (ιd(δ) + v) = αT + αT ∗ v

and therefore
αT = P (D)αT ∗ F + w

for some w ∈ G(Rn). The assertion in Proposition 1.1 concerning the G-singular support of the product
of convolution and the properties of F lead to

(3.31) sing suppG αT ⊆ sing suppG P (D)αT + 0 = sing suppG P (D)αT.

Since (P (D)αT )|X1 ∈ G(X1) the inclusion (3.31) entails sing suppG αT ⊆ Rn \ X1. This shows that
T |X1 ∈ G(X1).
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The chain of implications (i) ⇒ (ii) ⇒ (iii) is also clear in the G∞-case. Let now F be a basic functional
in L(Gc(Rn), C̃) which is a G∞-parametrix of P (D) with sing suppG∞ F ⊆ {0}. Then P (D)F = ιd(δ)+ v,
where v ∈ G∞(Rn). We have to prove that for all open subsets X of Rn and all basic functionals T of
L(Gc(Rn), C̃ if P (D)T |X ∈ G∞(X) then T |X ∈ G∞(X). Taking X1 and α as above we conclude that
αT = P (D)αT ∗ F + w for some w ∈ G∞(Rn). Hence

sing suppG∞ αT ⊆ sing suppG∞ P (D)αT ⊆ Rn \X1

which implies that T |X1 ∈ G∞(X1).

In the statement of the previous theorem we actually know that sing suppG E = {0} and sing suppG F =
{0}. Moreover, all the fundamental solutions of a G− or G∞-hypoelliptic operator have the same support’s
property.

Corollary 3.3. Let P (D) be a partial differential operator with constant Colombeau coefficients such
that the function P̃ is invertible in some point of Rn.

(i) If P (D) is G-hypoelliptic in Rn then all its fundamental solutions in Lb(Gc(Rn), C̃) has the set {0}
as G-singular support.

(ii) If P (D) is G∞-hypoelliptic in Rn then all its fundamental solutions in Lb(Gc(Rn), C̃) has the set
{0} as G∞-singular support.

Proof. By Theorem 3.2(ii) we know that when P (D) is G-hypoelliptic then it admits a fundamental
solution E ∈ Lb(Gc(Rn), C̃) with sing suppG E = {0}. Let T ∈ Lb(Gc(Rn), C̃) be another fundamental
solution of P (D). The difference E − T is a solution of the homogeneous equation given by P (D) then
sing suppG(E − T ) = ∅. This means that T = E + v, where v ∈ G(Rn) and therefore sing suppG T =
sing suppG E = {0}. The proof of the second assertion consists in replacing G- with G∞-.

3.2 G- and G∞-elliptic operators

We now deal with the important class of G-elliptic and G∞-elliptic operators. Before stating the definition
we recall that r ∈ C̃ is slow scale-invertible if there exists a slow scale net (ωε)ε and a representative (rε)ε
of r such that |rε| ≥ ω−1

ε for ε small enough.

Definition 3.4. A partial differential operator P (D) of order m with coefficients in C̃ is said to be
G-elliptic if the generalized number

(3.32)
[(

inf
ξ∈Rn,|ξ|=1

|Pm,ε(ξ)|
)
ε

]
is invertible.
It is said to be G∞-elliptic if the generalized number in (3.32) is slow scale-invertible.

Note that Definition 3.4 means that for any choice of representatives of the coefficients of P (ξ) the net
(Pm,ε)ε satisfies the estimate

(3.33) |Pm,ε(ξ)| ≥ εr, |ξ| = 1, ε ∈ (0, η]

when P (D) is G-elliptic and the estimate

(3.34) |Pm,ε(ξ)| ≥ c−1
ε , |ξ| = 1, ε ∈ (0, η],

with some slow scale net (cε)ε, when P (D) is G∞-elliptic. Note that it is not restrictive to assume that
infε cε ≥ 2.
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Theorem 3.5.

(i) If P (D) is a G-elliptic operator with coefficients in C̃ then it is G-hypoelliptic in Rn.

(ii) If P (D) is a G∞-elliptic operator with coefficients in Gsc
C then it is G∞-hypoelliptic in Rn.

The proof of Theorem 3.5 makes use of the following two lemmas.

Lemma 3.6.

(i) Let P (D) be a G-elliptic operator of order m with coefficients in C̃. Then there exist M ∈ N, a ∈ R
and η ∈ (0, 1] such that

|Pε(ξ)| ≥ εa|ξ|m

for all ξ ∈ Rn with |ξ| ≥ ε−M and for all ε ∈ (0, η].

(ii) If P (D) is a G∞-elliptic operator of order m with coefficients in Gsc
C then there exist two slow scale

nets (ωε)ε and (sε)ε and a constant η > 0 such that

|Pε(ξ)| ≥ ω−1
ε |ξ|m

for all ξ ∈ Rn with |ξ| ≥ sε and for all ε ∈ (0, η].

Proof.

(i) Combining (3.33) with the homogeneity of Pm,ε(ξ) we have that |Pm,ε(ξ)| ≥ εr|ξ|m for all ε ∈ (0, η1]
with η1 small enough and for all ξ ∈ Rn. Pε(ξ) can be written as Pm,ε(ξ)+Pm−1,ε(ξ) where Pm−1,ε(ξ) =∑

|α|≤m−1 cα,εξ
α. The moderateness properties of the nets (cα,ε)ε yield |Pm−1,ε(ξ)| ≤ ε−N |ξ|m−1 for all

ξ ∈ Rn with |ξ| ≥ 1, for some N ∈ N and for all ε ∈ (0, η2]. Hence for |ξ| ≥ ε−N−r−1,

|Pm−1,ε(ξ)| ≤ ε−NεN+r+1|ξ|m = εr+1|ξ|m.

It follows that for |ξ| ≥ ε−N−r−1 and ε ∈ (0, η] with η = min(η1, η2, 1/2) the estimate

|Pε(ξ)| ≥ |Pm,ε| − |Pm−1,ε| ≥ εr|ξ|m − εr+1|ξ|m ≥ εr(1− ε)|ξ|m ≥ εr

2
|ξ|m ≥ εr+1|ξ|m

holds.

(ii) Analogously when P (D) is G∞-elliptic from (3.34) we have that

|Pm,ε(ξ)| ≥ c−1
ε |ξ|m, ξ ∈ Rn, ε ∈ (0, η1],

and by definition of slow scale coefficient we obtain the estimate

|Pm−1,ε(ξ)| ≤ dε|ξ|−1|ξ|m ≤ c−2
ε |ξ|m,

valid for |ξ| ≥ dεc
2
ε and for ε ∈ (0, η2] with η2 small enough. Thus, we conclude that

|Pε(ξ)| ≥ |Pm,ε| − |Pm−1,ε| ≥ c−1
ε |ξ|m − c−2

ε |ξ|m = c−1
ε (1− c−1

ε )|ξ|m ≥ c−1
ε

2
|ξ|m

for all ξ with |ξ| ≥ dεc
2
ε and for all ε ∈ (0, η] with η = min(η1, η2).

Lemma 3.7. Let ϕ ∈ C∞(Rn) such that ϕ(ξ) = 0 for |ξ| ≤ 1 and ϕ(ξ) = 1 for |ξ| ≥ 2 and let (sε)ε be
net of positive real numbers different from zero.
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(i) If (sε)ε, (s−1
ε )ε ∈ EM then (ϕ(ξ/sε)− 1)ε ∈ ES (Rn);

(ii) If (sε)ε is a slow scale net with infε sε > 0 then (ϕ(ξ/sε)− 1)ε ∈ E∞S (Rn).

Proof. By begin by observing that ϕ− 1 has compact support. Hence, for all α, β ∈ Nn we get

(3.35) sup
ξ∈Rn

|ξα∂β(ϕ(ξ/sε)− 1)| ≤ (sε)−|β| sup
sε≤|ξ|≤2sε

|ξα∂β(ϕ(ξ/sε)− 1)| ≤ c s−|β|ε (2sε)|α|.

The assertions (i) and (ii) follow easily from (3.35).

In the proof of Theorem 3.5 we will refer to Lemma 3.7 and in particular to the fact that the net
(ϕ(ξ/sε)−1)ε can define a generalized function in G(Rn) or G∞(Rn) with an S -moderate representative.

Proof of Theorem 3.5. (i) We begin by assuming that P (D) is a G-elliptic operator of order m with
coefficients in C̃. By Lemma 3.6(i) we know that there exist M ∈ N, a ∈ R and η ∈ (0, 1] such that

|Pε(ξ)| ≥ εa|ξ|m

for |ξ| ≥ ε−M and ε ∈ (0, η]. It follows that taking ϕ ∈ C∞(Rn) as in Lemma 3.7 the net

Sε(ξ) :=

{
ϕ(εMξ)
Pε(ξ) ε ∈ (0, η]

0 ε ∈ (η, 1]

determines a basic functional in L(G
S

(Rn), C̃). Therefore, F−1S ∈ Lb(G
S

(Rn), C̃) and F (u) := F−1S(u),
u ∈ Gc(Rn), is a basic functional in L(Gc(Rn), C̃). This is a G-parametrix of P (D). Indeed, the functional

P (D)F (u)− ιd(δ)u = S(F−1( tP (D)u))− ιd(F−11)(u)

on Gc(Rn) can be represented by the integral∫
Rn

F−1
ξ→x(ϕ(εMξ)− 1)(x)uε(x) dx.

Since Lemma 3.7(i) implies that v := (F−1
ξ→x(ϕ(εMξ)− 1))ε +N (Rn) is a well-defined element of G(Rn),

we conclude that P (D)F − ιd(δ) ∈ G(Rn). In order to complete the proof by Theorem 3.2(iii) it suffices
to prove that sing suppGF ⊆ {0}. An application of [1, Lemma 6.8] shows that the net of distributions
(Fε)ε := (F−1Sε)ε in S ′(Rn)(0,1] which determines F satisfies the following properties: for every α ∈ Nn
and every ε ∈ (0, 1]

xαFε ∈ Cq(Rn),

with q = m+ |α| −n− 1 and for all K b Rn and every β ∈ Nn with |β| ≤ q there exists N ∈ N such that

sup
x∈K

|∂β(xαFε)(x)| = O(ε−N ).

This means that away from 0 the net (Fε)ε is moderate, i.e, (Fε|Rn\0)ε ∈ EM (Rn \ 0). As a consequence
sing suppG F ⊆ {0}.

(ii) When P (D) is G∞-elliptic and has slow scale coefficients, we can substitute εM with the inverse of a
slow scale net (sε)ε with infε sε > 0 in the definition of the net (Sε)ε. By Lemma 3.7(ii) we deduce that
v := (F−1

ξ→x(ϕ(s−1
ε ξ)− 1))ε +N (Rn) belongs to G∞(Rn) and then P (D)F − ιd(δ) ∈ G∞(Rn). Finally an

inspection of the proof of Lemma 6.8 in [1] shows that there exists a slow scale net (ωε)ε such that

sup
x∈K

|∂β(xαFε)(x)| = O(ωε),

with α and β fulfilling the same assumptions as above. Hence, (Fε|Rn\0)ε ∈ E∞M (Rn \ 0) and we conclude
that sing suppG∞ F ⊆ {0}.
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3.3 Necessary condition for G- and G∞-hypoellipticity

We present now a necessary condition for G- and G∞-hypoellipticity. We employ an analytic method
based on th estimates for the Fourier Laplace transform of a Colombeau generalized function worked out
in the first section of the paper. Note that the necessary condition for G∞-hypoellipticity formulated in
Theorem 3.8 is independently obtained in [8, Theorem 5.5] via a functional analytic method.

For technical reasons we will make use of the set of generalized points of log-type. We recall that when
ζ ∈ C̃n then Imζ = (Imζ1, ..., Imζn) ∈ R̃n and one can define the map C̃n → R̃n : ζ → Imζ. In particular
from the section of preliminaries of this paper we have that if Imζ ∈ R̃n is of log-type then e|Imζ| ∈ R̃ and

e−ixζ := [(e−ixζε)ε]

is a well-defined generalized function in G(Rn).

Theorem 3.8. Let P (D) be a partial differential operator of order m with coefficients in C̃ such that
P̃ is invertible in some point of Rn and let N(P ) the set of all zeros of P in C̃n with imaginary part of
log-type.

(i) If P (D) is G-hypoelliptic then there exist c ∈ R and a > 0 such that

v(|Reζ|) ≥ c+ v
(
ea|Imζ|

)
for all ζ ∈ N(P ).

(ii) If P (D) is G∞-hypoelliptic then
v(|Reζ|) ≥ 0

for all ζ ∈ N(P ).

Proof. (i) By Theorem 3.2 we know that if P (D) is G-hypoelliptic then it admits a G-parametrix in
Lb(Gc(Rn), C̃) which belongs to G outside the origin. Making use of a cut-off function ψ identically 1 in a
neighborhood of the origin we can assume that there exists F ∈ Lb(G(Rn), C̃) and v ∈ Gc(Rn) such that

P (D)F = ιd(δ) + v

in L(G(Rn), C̃). Let now ζ ∈ N(P ). As observed above e−ixζ ∈ G(Rnx) and therefore

P (D)F (e−i·ζ) = 1 + v(e−i·ζ).

At the level of representatives this means that

Pε(ζε)F̂ε(ζε) = 1 + v̂ε(ζε) + nε,

where (ζε) is a representative of ζ such that (e|Imζε|)ε ∈ EM , (nε)ε ∈ N and̂denotes the Laplace-Fourier
transform. The net of distributions (Fε)ε ∈ E ′(Rn)(0,1] fulfills the following condition:

∃K b Rn ∃j ∈ N ∃N ∈ N ∃η ∈ (0, 1]∀u ∈ C∞(Rn) |Fε(u)| ≤ ε−N sup
|α|≤j,x∈K

|∂αu(x)|.

Hence for all ε ∈ (0, η] we obtain

|F̂ε(ζε)| ≤ ε−N (1 + |ζε|)jeb|Im(ζε)|,

where b depends only on the compact set K. It follows that the net (F̂ε(ζε))ε is moderate and since
P (ζ) = 0 in C̃ we conclude that

(3.36) v̂ε(ζε) = −1 + n′ε,
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where (n′ε)ε ∈ N . Assuming that the generalized function v has supp v ⊆ {x : |x| < a} from Proposition
1.6 we have that

∀M ∈ N∃N ∈ N ∃η ∈ (0, 1]∀ε ∈ (0, η]∀ζ ∈ Cn |v̂ε(ζ)| ≤ ε−N (1 + |ζ|)−Mea|Imζ|.

This combined with (3.36) leads to

| − 1 + n′ε| ≤ ε−N (1 + |ζε|)−1ea|Imζε|,

where N does not depend on ζ = [(ζε)ε] ∈ N(P ). Choosing η small enough such that | − 1 + n′ε| ≥ 1/2
for all ε ∈ (0, η] we can write

(3.37) |ζε| ≤ 2ε−Nea|Imζε|.

(3.37) proves that there exist c ∈ R and a > 0 such that

v(|Reζ|) ≥ c+ v
(
ea|Imζ|

)
for all ζ ∈ N(P ).

(ii) If the operator P (D) is G∞-hypoellptic then by Theorem 3.2 we find F ∈ Lb(G(Rn), C̃) and v ∈
G∞c (Rn) such that P (D)F = ιd(δ) + v in L(G(Rn), C̃). Moreover, since v is G∞-regular from Proposition
1.6 and Theorem 1.8 we obtain that

∃N ∈ N ∀M ∈ N ∃η ∈ (0, 1]∀ε ∈ (0, η]∀ζ ∈ Cn |v̂ε(ζ)| ≤ ε−N (1 + |ζ|)−Mea|Imζ|,

with supp v ⊆ {x : |x| < a}. Arguments analogous to the ones adopted in the first case yields that the
assertion

∃N ∈ N∀M ∈ N∃η ∈ (0, 1]∀ε ∈ (0, η] (1 + |ζε|)M ≤ 2ε−Nea|Imζε|,

holds for all ζ ∈ N(P ) with N and a independent of ζ. Therefore for all M ∈ N

v(|Reζ|) ≥
−N + v

(
ea|Imζ|

)
M

or in other words v(|Reζ|) ≥ 0.

In the sequel we collect some remarks and examples concerning the previous statements.

Remark 3.9.

(i) The assumption of log-type on Imζ cannot be dropped in the definition of the set N(P ). As a first
example consider the operator P (D) = −i[(εr)ε]∂x1 + ∂x2 where r > 0. Its symbol is P (ξ1, ξ2) =
[(εr)ε]ξ1 + iξ2. By Theorem 3.5(i) we know that this operator is G-elliptic and therefore G-hypoelliptic.
For any real number c it is possible to find a zero ζ = (ζ1, ζ2) ∈ C̃2 of P with Imζ not of log-type and
such that v(|Reζ|) < c. Indeed, for ζ1 = [(εc

′
+ iεc

′−r)ε] and ζ2 = [(−εc′ + iεc
′+r)ε], where c′ < min{c, r},

the corresponding ζ ∈ C̃2 satisfies P (ζ) = 0, has Imζ = [(εc
′−r)ε, (εc

′+r)ε] which is not of log-type and

v(|Reζ|) = c′ < c.

(ii) Take now P (D) = −i[(aε)ε]∂x1 + ∂x2 , where aε ≤ a−1
ε and (a−1

ε )ε is a slow scale net. From Theorem
3.5(ii) we have that P (D) is G∞-elliptic and therefore G∞-hypoelliptic. We can find a zero ζ ∈ C̃2

of the polynomial P such that Imζ is not of log-type and v(|Reζ|) < 0. In detail, ζ = (ζ1, ζ2), ζ1 =
[(a−1

ε ε−1 + iε−1)ε], ζ2 = [(−aεε−1 + iε−1)ε] and v(|Reζ|) = −1.

(iii) The existence of a zero ζ of P with classical imaginary part such that v(|Reζ|) < 0 it is sufficient for
deducing that the corresponding operator is not G∞-hypoelliptic. As an example take again the operator
P (D) = −i[(εr)ε]∂x1 + ∂x2 with r > 0. The point ζ = (ζ1, ζ2) with ζ1 = [(ε−r + i)ε] and ζ2 = [(−εr + i)ε]
has v(|Reζ|) = −r and the operator P (D) is not G∞-hypoelliptic. Indeed, the generalized function
u = [(e(ix1ε

−r−x2))ε] satisfies P (D)u = 0 but u 6∈ G∞(R2).
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(iv) Finally, let us study the operator P (D) = Dx1−Dx2 . It is not G-hypoelliptic since the basic functional

T (u) =
∫

R
u(x,−x)dx

in L(Gc(R2), C̃) solves the equation P (D)u = 0. We easily see that we can not control the valuation of
the real part of the zeros of P . This is due to the fact that every ζ = (ζ1, ζ2) with Reζ1 = Reζ2 and
Imζ1 = Imζ2 has the property P (ζ) = 0.

4 Examples of fundamental solutions and a structure theorem
for basic functionals in the duals L(Gc(Rn), C̃) and L(G(Rn), C̃)

This section is devoted to collect some interesting examples of fundamental solutions and to discuss their
properties and applications.

4.1 Examples of fundamental solutions

4.1.1 Ordinary differential operators with Colombeau coefficients

The simplest nontrivial ordinary differential operators (with Colombeau coefficients) are the first-order
ones of the kind

L =
d

dx
− a,

where a ∈ C̃. We look for the fundamental solutions of L that is for all functionals T ∈ L(Gc(R), C̃) such
that

d

dx
T − aT = ιd(δ).

We begin with the following proposition on the equation d
dxT = 0 in L(Gc(R), C̃).

Proposition 4.1. Let T ∈ L(Gc(R), C̃). If d
dxT = 0 then T = λ ∈ C̃.

Proof. Let φ0 ∈ C∞c (R) such that
∫
φ0 = 1. Every u ∈ Gc(R) can be written as follows:

(4.38) u =
(
u−

∫
u(x)dxφ0

)
+
∫
u(x)dxφ0

We denote the first and the second summand of the right-hand side of (4.38) by u1 and u2 respectively.
Note that u1 is the first derivative of the Colombeau generalized function

v(x) = −
∫ +∞

x

u(t)−
(∫

u(y) dy
)
φ0(t) dt,

element of Gc(R). Hence,

T (u) = T (u1 + u2) = T (v′) + T (u2) =
∫
u(x)dxT (φ0).

This completes the proof.

Proposition 4.2.

(i) All the fundamental solutions of the operator L = d
dx are of the form

E = ιd(H) + λ,

with λ ∈ C̃ and H being the Heaviside function.
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(ii) Let a ∈ C̃ with real part of log-type. All the fundamental solutions of the operator La = d
dx − a are

of the form
E = ιd(H)eax + λeax,

with λ ∈ C̃.

Proof. (i) It is clear that d
dx ιd(H) = ιd(δ). Let F ∈ L(Gc(R), C̃) another fundamental solution of the

operator L = d
dx . Then d

dx (F − ιd(H)) = 0. From Proposition 4.1 we have that F − ιd(H) ∈ C̃.

(ii) Since the real part of a is of log-type, eax is a well-defined generalized function in G(R). If E is a
fundamental solution of La = d

dx − a then e−axE is a fundamental solution of L = d
dx . Indeed,

d

dx
(e−axE)(u) = −E(e−axu′) = −E((e−axu)′ + ae−axu) = ιd(δ).

The first assertion of this proposition implies that e−axE = ιd(H) + λ for some λ ∈ C̃ and therefore
E = ιd(H)eax + λeax.

Corollary 4.3. Let a ∈ C̃ with real part of log-type. U = eax is the unique solution of the problem

U ′ − aU = 0, U |x=0 = 1

in L(Gc(R), C̃).

Proof. Clearly eax is a solution of the problem. Assume that T ∈ L(Gc(R), C̃) is a solution as well and
take a fundamental solution E of the operator La = d

dx − a. It follows that E + T is a fundamental
solution of La. Proposition 4.2(ii) yields the equality T = λeax for some λ ∈ C̃. Finally, since T |x=0 = 1
we obtain that λ = 1 and that T = eax.

Remark 4.4. The assumption of log-type behavior on a gives a specific form to all the fundamental
solutions of the differential operator La. This means that when Re a ∈ R̃ is not of log-type we cannot
exclude of finding a fundamental solution in Lb(G(R), C̃) but we surely loose the freedom of generating
any fundamental solutions by making λ varying in C̃ as in Proposition 4.2(ii). As an explanatory example
let us consider a ∈ R̃ which is not of log-type. The net of distributions Eε = eaεxH(x)−H(aε)eaεx solves
the equation Laε

Eε = δ for all ε and generates a basic functional in L(Gc(R), C̃). Indeed for every
f ∈ C∞c (R) with supp f ⊆ {x : |x| ≤ r} we have that if aε ≤ 0 then

|Eε(f)| =
∣∣∣∣∫ +∞

0

eaεxf(x) dx
∣∣∣∣ ≤ r sup

|x|≤r
|f(x)|

and if aε > 0 then

|Eε(f)| =
∣∣∣∣−∫ 0

−∞
eaεxf(x) dx

∣∣∣∣ ≤ r sup
|x|≤r

|f(x)|.

Note that (H(aε))ε defines a generalized number in R̃ and makes us deal with the exponential eaεx only
when aεx is negative.

Proposition 4.2 can be extended to differential operators of higher order. As an explanatory example we
consider the fundamental solutions in L(Gc(R), C̃) of the operator of second order

L =
d2

dx2
+ b

d

dx
+ c,

where b, c ∈ R̃. This requires the notions of exponential of a matrix, in particular of the matrix M =(
0 1
−c −b

)
, where the entries are generalized real numbers. We say that a ∈ R̃ is strictly positive if

and only if there exists some representative (aε)ε and some r > 0 such that aε ≥ εr for all ε small enough.
a is strictly negative if and only if −a is strictly positive. We can now state the following proposition.
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Proposition 4.5. Let b, c be generalized real numbers of log-type and ∆ = b2 − 4c. The formula

(4.39) exM :=
[( ∞∑

k=0

xk

k!

(
0 1
−cε −bε

)k)
ε

]
gives a well-defined matrix of generalized functions in G∞(R) in the following three cases:

(i) ∆ > 0;

(ii) ∆ = 0;

(iii) ∆ < 0.

Moreover,

(iii)’ when ∆ < 0 and the log-type assumption on c is dropped,

the formula (4.39) defines a matrix exM of generalized functions in G(R).

Proof. The proof of Proposition 4.5 is essentially done by arguing at the level of representatives and
applying the well-known classical results on exponentials of operators (see [13, Chapter 3]). In detail,
one can write exM as

(i) (
1 1
λ1 λ2

) (
exλ1 0
0 exλ2

) ( λ2
λ2−λ1

−1
λ2−λ1

−λ1
λ2−λ1

1
λ2−λ1

)
, λ1,2 :=

−b±
√

∆
2

,

(ii) (
e−x

b
2 0

0 e−x
b
2

) (
I + x

( b
2 1
−b2
4

−b
2

))
,

(iii) (
0 1
β α

)
exα

(
cos(βx) − sin(βx)
sin(βx) cos(βx)

)
−1
β

(
α −1
β 0

)
, α = − b

2
, β =

√
−∆
2

.

It is clear that if b is of log-type and c is an arbitrary element of R̃ then exα ∈ G∞(R) and cos(βx), sin(βx) ∈
G(R).

Under the hypotheses of Proposition 4.5 the equalities d
dxexM = MexM = exMM and (exM )−1 = e−xM

hold in the Colombeau context since they hold at the representatives’ level.

Remark 4.6. A direct application of Proposition 4.1 entails that if R is a n× p matrix with entries in
L(Gc(R), C̃) and d

dxR = 0 then R is a matrix with entries in C̃. In addition, a combination of Proposition

4.1 with Proposition 4.2(i) proves that if R =
(
R1

R2

)
, R1, R2 ∈ L(Gc(R), C̃) is a solution of the equation

d
dxR =

(
0

ιd(δ)

)
then R1 = c1 and R2 = ιd(H) + c2 with c1, c2 ∈ C̃.

It is now immediate to state Proposition 4.7 whose proof is left to the reader.
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Proposition 4.7. Let M =
(

0 1
−c −b

)
as in Proposition 4.5. All the solutions U =

(
u1

u2

)
, u1, u2 ∈

L(Gc(R), C̃) of

(4.40)
d

dx
U = MU +

(
0

ιd(δ)

)
are of the form

(4.41) U = ιd(H)exM
(

0
1

)
+ exM

(
c1
c2

)
,

with c1, c2 ∈ C̃.

We finally come back to the second order operator

L =
d2

dx2
+ b

d

dx
+ c,

where b, c ∈ R̃. E ∈ L(Gc(R), C̃) is a fundamental solution of L if and only if U =
(

E
E′

)
satisfies

(4.40). Under the assumption of Proposition 4.5 concerning the corresponding matrix M , we conclude
that all the fundamental solutions E of L can be generated as the first entry of the product of matrices
in (4.41) with c1, c2 varying in C̃.

4.1.2 Partial differential operators with Colombeau coefficients

We provide some interesting example of partial differential operators with Colombeau coefficients and we
investigate the G- and G∞-hypoellipticity starting from a fundamental solution.

Example 4.8. Let us consider the operator

P (D) =
1
a
iDx −

1
b
Dy,

where a, b ∈ R̃ are strictly positive. The basic functional E given by

u→
[(

1
2π

∫
R2

aεbε
aεx+ ibεy

uε(x, y) dx dy =
1
2π

∫ 2π

0

∫ +∞

0

(cos θ−i sin θ)uε(a−1
ε ρ cos θ, b−1

ε ρ sin θ) dρ dθ
)
ε

]
is a fundamental solution of P (D). Indeed, for f ∈ C∞K (R2), K b R2, we can write

1
2π

∫
R2

aεbε
aεx+ ibεy

f(x, y) dx dy

= lim
R→0

1
2π

∫ 2π

0

∫ C(K) max{aε,bε}

R

(cos θ − i sin θ)uε(a−1
ε ρ cos θ, b−1

ε ρ sin θ) dρ dθ,

where the constant C depends only on the compact set K and then for some N ∈ N and for all ε small
enough we obtain the estimate∣∣∣∣ 1

2π

∫
R2

aεbε
aεx+ ibεy

f(x, y) dx dy
∣∣∣∣ ≤ C(K) max{aε, bε} sup

(x,y)∈K
|f(x, y)| ≤ ε−N sup

(x,y)∈K
|f(x, y)|.

Working at the level of representatives the action of P (D) on E is the following:

lim
R→0

1
2π

∫ 2π

0

∫ +∞

R

−∂ρuε(a−1
ε ρ cos θ, b−1

ε ρ sin θ) dρ dθ − i

2π

∫ 2π

0

∫ +∞

R

1
ρ
∂θuε(a−1

ε ρ cos θ, b−1
ε ρ sin θ) dρ dθ

= lim
R→0

1
2π

∫ 2π

0

uε(a−1
ε R cos θ, b−1

ε R sin θ) dθ = uε(0, 0).
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Outside the origin the functional E belongs to G. Indeed E|R2\0 = ab
2π(ax+iby) . Since P̃ 2(ξ1, ξ2) =

1
a2 ξ

2
1 + 1

b2 ξ
2
2 + 1

a2 + 1
b2 is invertible in every point of R2, by Theorem 3.2 we conclude that P (D) is

G-hypoelliptic. Hence, every fundamental solution of P (D) in Lb(Gc(R2), C̃) is of the form

T = E + v,

where v ∈ G(R2) is a solution of the homogeneous equation. More precisely, since the holomorphic
generalized functions of GH(R2) are defined as the solutions in G(R2) of the equation

∂u

∂x
+ i

∂u

∂y
= 0,

it follows that v = w(a·, b·) with w ∈ GH(R2).

If, in addition to the previous hypotheses, a and b are of slow scale type then E|R2\0 ∈ G∞(R2 \ 0).
Hence, P (D) is G∞-hypoelliptic and every fundamental solution of P (D) in Lb(Gc(R2), C̃) is of the form
T = E + w(a·, b·), with w ∈ GH(R2).

Example 4.9. We study the perturbation of the Laplace operator in R2 given by

P (D) = −a1D
2
x1
− a2D

2
x2
,

where a1, a2 ∈ R̃ are strictly positive. The basic functional E generated by the net of distributions

Eε =
1
2π

log
(√

x2
1

a1,ε
+

x2
2

a2,ε

)
1

√
a1,ε

1
√
a2,ε

.

is a fundamental solution in L(Gc(R2), C̃) of P (D). We can easily check that (Eε)ε defines a basic
functional. Indeed, for f ∈ C∞K (R2), K b R2, we can write the previous integral as

lim
R→0

1
2π

∫ 2π

0

∫ C(K) max{ 1√
a1,ε

, 1√
a2,ε

}

R

ρ log ρ f(
√
a1,ερ cos θ,

√
a2,ερ sin θ) dρ dθ,

where the constant C depends only on the compact set K. Hence, denoting C(K) max{ 1√
a1,ε

, 1√
a2,ε

} by
Cε(K) we obtain the following estimate

|Eε(f)| ≤
(
2C2

ε (K) logCε(K) +
1
4
C2
ε (K)

)
sup

(x,y)∈K
|f(x, y)| ≤ ε−N sup

(x,y)∈K
|f(x, y)|,

valid for some N ∈ N and for all ε small enough.

The polynomial P̃ 2(ξ1, ξ2) = (a1ξ
2
1 + a2ξ

2
2)2 + 4a1ξ

2
1 + 4a2ξ

2
2 + 4a2

1 + 4a2
2 is invertible in any point (ξ1, ξ2)

of R2 and it is clear that outside the origin E belongs to G. Hence by Theorem 3.2 the operator P (D)
is G-hypoelliptic. Moreover, if the coefficients a1 and a2 are of slow scale type then E|R2\0 ∈ G∞(R2 \ 0)
and P (D) is G∞-hypoelliptic.

4.2 Structure theorems for Lb(Gc(Rn), C̃) and Lb(G(Rn), C̃)

It is clear that a distributional fundamental solution w of a classical partial differential operator P (D)
(regarded as a generalized operator) is a fundamental solution in the dual L(Gc(Rn), C̃) in the sense that
P (D)ιd(w) = ιd(δ). In this subsection we investigate the structural properties of the spaces Lb(Gc(Rn), C̃)
and Lb(G(Rn), C̃) my making use of the distributional fundamental solution

Ek :=
(x1)k−1

+ ...(xn)k−1
+

(k − 1)!)n
, x ∈ Rn, x+ := xH(x)

27



of the operator (∂1...∂n)k. From what said above it follows that

(∂1...∂n)kιd(Ek) = ιd(δ)

in L(Gc(Rn), C̃).

As a preliminary step to our structure investigation we introduce the notion of finite order in the dual
L(Gc(Ω), C̃). This employs the following spaces of generalized functions obtained by equipping G(Ω) and
Gc(Ω) with different topologies where we fix the order of derivatives. In detail, let us fix m ∈ N. We
denote by Gm(Ω) the algebra G(Ω) equipped with the family of ultra-pseudo-seminorms {PK,m}KbΩ

and by GmK (Ω) the space GK(Ω) endowed with the topology of the ultra-pseudo-seminorm PGK(Ω),m. Fi-
nally Gmc (Ω) is the strict inductive limit of the locally convex topological C̃-modules {GmK (Ω)}KbΩ. By
construction it is clear that any of the previous spaces of orderm+1 is continuously embedded in the corre-
sponding of order m. It follows that L(Gmc (Ω), C̃) ⊆ L(Gm+1

c (Ω), C̃) and L(Gm(Ω), C̃) ⊆ L(Gm+1(Ω), C̃).
In particular, since Gc(Ω) ⊆ Gmc (Ω) and G(Ω) ⊆ Gm(Ω) for all m we have that L(Gmc (Ω), C̃) ⊆ L(Gc(Ω), C̃)
and L(Gm(Ω), C̃) ⊆ L(G(Ω), C̃). This means that the duals of Gmc (Ω) and Gm(Ω) can be regarded as
subspaces of L(Gc(Ω), C̃) and L(G(Ω), C̃) respectively.

Definition 4.10. We call the elements of ∪m∈NL(Gmc (Ω), C̃) ⊆ L(Gc(Ω), C̃) functionals of finite order.

By the definition of L(Gmc (Ω), C̃) we easily see that if T ∈ L(Gmc (Ω), C̃) then ∂αT ∈ L(Gm+|α|
c (Ω), C̃).

Proposition 4.11.

(i) Every functional in L(Gc(Ω), C̃) with compact support is of finite order.

(ii) If T is a basic functional in L(Gc(Ω), C̃) defined by a net distributions (Tε)ε ∈ D′m(Ω) such that

(4.42) ∀K b Ω ∃N ∈ N ∃c > 0∃η ∈ (0, 1]∀f ∈ C∞K (Ω)∀ε ∈ (0, η]

|Tε(f)| ≤ cε−N sup
x∈K, |α|≤m

|∂αf(x)|

then T ∈ L(Gmc (Ω), C̃).

Proof. (i) If T ∈ L(Gc(Ω), C̃) has compact support then taking a cut-off function ψ identically 1 on a
neighborhood of suppT we can write T (u) = ψT (u) for all u ∈ Gc(Ω). Since suppψu ⊆ suppψ = K by
the continuity of T it follows that there exist m ∈ N and C > 0 such that the inequality

(4.43) |T (u)|e ≤ CPGK(Ω),m(u)

holds for all u ∈ Gc(Ω). Hence, T ∈ L(Gmc (Ω), C̃).

(ii) The assertion (4.42) implies
|T (u)|e ≤ CPGK(Ω),m(u)

for all u ∈ GK(Ω) and for all K b Ω. This means that T |Gm
K (Ω) is continuous for all K b Ω. Therefore, by

the notion of strict inductive limit topology we conclude that T is a continuous functional on Gmc (Ω).

As a special example of functional of finite order defined as in Proposition 4.11(ii) we have the functionals
T ∈ L(Gc(Ω, C̃) determinated by a moderate net (Tε)ε of continuous functions, which are therefore
elements of L(G0

c (Ω), C̃).

We are now ready to prove the following structure theorems for basic functionals.

Theorem 4.12.
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(i) The restriction of a basic functional in L(Gc(Rn), C̃) to a bounded open set Ω ⊆ Rn is a derivative
of finite order of a functional in L(G0

c (Ω), C̃) defined by a net in MC(Ω).

(ii) If T ∈ Lb(G(Rn), C̃) then there is an integer m ≥ 0 and a set of functional Tα ∈ L(G0
c (Rn), C̃)

defined by nets in MC(Rn) for |α| ≤ m such that

T =
∑
|α|≤m

∂αTα.

Proof. (i) If Ω is bounded one can find a cut-off function ψ ∈ C∞c (Rn) identically one on Ω. Then,
ψT |Ω = T |Ω and ψT ∈ Lb(Gc(Rn), C̃). Let (Tε)ε ∈M(C∞c (Rn),C) be a defining net of T . It follows that
(ψTε)ε is a net of distributions of finite order and more precisely
(4.44)
∃N,M ∈ N∃C > 0∃η ∈ (0, 1]∀f ∈ C∞(Rn)∀ε ∈ (0, η] |(ψTε)(f)| ≤ Cε−M sup

x∈suppψ,|α|≤N
|∂αf(x)|.

By the previous considerations we have that

(4.45) ψTε = (∂1...∂n)N+2EN+2 ∗ ψTε

for all ε ∈ (0, 1]. By [2, Theorem 5.4.1] we already know that the (EN+2 ∗ ψTε)ε in (4.45) is a net of
continuous functions. So, the theorem will follow once it is shown that EN+2 ∗ ψTε is C(Rn)-moderate.
This is clear by the fact that EN+2 ∈ CN (Rn) and that (4.44) holds for all f ∈ CN (Rn). Hence, for all ε
small enough we can write

sup
x∈KbRn

|(EN+2 ∗ ψTε)(x)| = sup
x∈K

|ψTε(EN+2(x− ·))| ≤ Cε−M sup
x∈K, y∈suppψ, |α|≤N

|∂αyEN+2(x− y)|.

Concluding, EN+2 ∗ ψT is a functional in L(G0
c (Ω), C̃) and is defined by a net in MC(Ω).

(ii) If T has compact support then it can be written as ψT with ψ ∈ C∞c (Ω) identically 1 in a neighborhood
of suppT and Ω bounded subset of Rn. For all u ∈ G(Rn) we can write T (u) = ψT (u) = T (ψu) =
T |Ω(ψu). By the previous assertion we know that T |Ω = ∂αF where F ∈ L(G0

c (Ω), C̃) is defined by a net
in MC0(Ω). Assume that |α| = m. By Leibniz’s theorem we get

T (u) = ∂αF (ψu) =
∑
α′≤α

∂α
′
((−1)|α−α

′|F∂α−α
′
ψ)(u),

where every F∂α−α
′
ψ is a functional in L(G0

c (Rn), C̃) determined by a net in MC(Rn).

Remark 4.13. It is clear that the first two assertions of Theorem 4.12 hold for basic functionals in
L(Gc(Ω), C̃). More precisely we have that the restriction of a basic functional in L(Gc(Ω), C̃) to a relatively
compact open subset Ω′ of Ω is a derivative of finite order of a functional in L(G0

c (Ω′), C̃) defined by a net
in MC(Ω′). From this result it follows that the statement concerning functionals with compact support
is valid with Rn substituted by Ω.

5 Appendix:
solvability of the equation P (D)u = v when v is a basic func-
tional in L(G(Rn), C̃)

The problem of the solvability of the equation

(A.1) P (D)u = v
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when v is a basic functional with compact support has been already approached in Section 2 (Theorem
2.6) as a straightforward application of the existence of a fundamental solution in Lb(Gc(Rn), C̃) for
the operator P (D) =

∑
|α|≤m cαD

α with constant Colombeau coefficients. In this appendix we provide
a deeper investigation of the equation (A.1) which will involve estimate of Bp,k-type. Our results are
modelled on the classical theory of Bp,k spaces developed by Hörmander in [14, Chapters II, III], [16,
Chapter X] and will give more precise analytic information on the basic functionals which solve (A.1) in
the dual L(Gc(Rn), C̃).

We recall that K is the set of tempered weight functions defined in [14, Definition 2.1.1]. We begin by
introducing the following notion of moderateness for nets of tempered distributions.

Definition A.1. Let k ∈ K, 1 ≤ p ≤ ∞ and (Pε)ε be a net of polynomials of degree m. We say that
(Tε)ε ∈ S ′(Rn)(0,1] is (B

p,kP̃ε
)ε-moderate if (T̂ε)ε is a net of functions and there exists b ∈ R such that

‖kP̃εT̂ε‖p = O(εb) as ε→ 0.

It is clear that when P̃ε is identically 1 then we have the notion of Bp,k-moderateness, i.e., (Tε)ε is an
element of MBp,k(Rn). We collect now some properties of (B

p,kP̃ε
)ε-moderate nets which will be useful

in the sequel.

Proposition A.2. Let P be a polynomial with coefficients in C̃ such that P̃ (ξ) is invertible in some point
ξ0 and let (Pε)ε be a representative of P .

(i) If (Tε)ε ∈ S ′(Rn)(0,1] is (B
p,kP̃ε

)ε-moderate and ϕ ∈ S (Rn) then (ϕTε)ε)ε is (B
p,kP̃ε

)ε-moderate.

(ii) If (T1,ε)ε ∈ E ′(Rn)(0,1], with suppT1,ε ⊆ K b Rn for all ε, is (B
p,k1P̃ε

)ε-moderate and (T2,ε)ε ∈
S ′(Rn)(0,1] is B∞,k2-moderate then (T1,ε ∗ T2,ε)ε is (B

p,k1k2P̃ε
)ε-moderate.

(iii) Assertion (i) holds when (T1,ε)ε is (Bp,k1)ε-moderate and (T2,ε)ε is (B∞,k2P̃ε
)ε-moderate.

(iv) If (Tε)ε is (B
p,kP̃ε

)ε-moderate then (Pε(D)Tε)ε is Bp,k-moderate.

Proof. (i) Applying Theorem 2.2.5 in [14] and in particular the inequality (2.2.9) to (Tε)ε and ϕ for fixed
ε we obtain that (uεTε)ε is a net of distributions in B

p,kP̃ε
(Rn) such that

(A.2) ‖ϕTε‖p,kP̃ε
≤ (2π)−n‖ϕ‖1,M

kP̃ε
‖Tε‖p,kP̃ε

,

where

M
k,P̃ε

(ξ) := sup
η∈Rn

kP̃ε(ξ + η)

kP̃ε(η)
.

The estimates (2.17) and (2.15) imply for M
k,P̃ε

the bound M
k,P̃ε

(ξ) ≤ (1 + C1|ξ|)m1 valid for some
constants C1 and m1, for all values of ξ and for ε small enough. Making use of this result we conclude
that there exist ε0 ∈ (0, 1] such that the estimate

‖ϕ‖1,M
k,P̃ε

= ‖M
kP̃ε

(ξ)ϕ̂(ξ)‖1 ≤
∫

Rn

(1 + C1|ξ|)m1(1 + |ξ|)−n−1−m1dξ sup
ξ∈Rn

(1 + |ξ|)n+1+m1 |ϕ̂(ξ)| ≤ C2

holds for all ε ∈ (0, ε0]. As a consequence, since by assumption ‖Tε‖p,kP̃ε
= O(ε−b) for some b ∈ R by

(A.2) we are lead to ‖ϕTε‖p,kP̃ε
= O(ε−b). This proves that (ϕTε)ε)ε is (B

p,kP̃ε
)ε-moderate.

(ii) We begin by observing that if the net (T1,ε)ε ∈ E ′(Rn)(0,1] fulfills the property suppT1,ε ⊆ K b Rn for
all ε, then it coincides with ϕT1,ε when ϕ ∈ C∞c (Rn) is a cut-off function identically 1 in a neighborhood of
K. Since (T1,ε)ε is (B

p,k1P̃ε
)ε-moderate from the first assertion of this proposition we have that (ϕT1,ε)ε is

(B
p,k1P̃ε

)ε-moderate as well. Since (ϕT1,ε)ε is a net of distributions with compact support which belongs
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to B
p,k1P̃ε

(Rn) and (T2,ε)ε ∈ S ′(Rn)(0,1] is B∞,k2-moderate, from Theorem 2.2.6 in [14] and in particular
the inequality (2.2.11) we have that (ϕT1,ε ∗ T2,ε)ε ∈ (B

p,k1k2P̃ε
(Rn))(0,1] and

(A.3) ‖ϕT1,ε ∗ T2,ε‖p,k1k2P̃ε
≤ ‖ϕT1,ε‖p,k1P̃ε

‖T2,ε‖∞,k2

for all ε ∈ (0, 1]. It follows that (T1,ε ∗T2,ε)ε is (B
p,k1k2P̃ε

)ε-moderate. (iv) If (Tε)ε is (B
p,kP̃ε

)ε-moderate

then ‖kP̃εT̂ε‖p = O(εb) for some b ∈ R. Take now the net of tempered distributions (Pε(D)Tε)ε. Since
̂Pε(D)Tε = PεT̂ε and

‖k ̂Pε(D)Tε‖p = ‖kPεT̂ε‖p ≤ ‖kP̃εT̂ε‖p

for all ε ∈ (0, 1], we conclude that (k ̂Pε(D)Tε)ε is Bp,k-moderate.

The notion of moderateness with respect to the net (B
p,kP̃ε

) can be expressed locally as follows.

Definition A.3. Let k ∈ K, 1 ≤ p ≤ ∞ and (Pε)ε be a net of polynomials of degree m. We say that
(Tε)ε ∈ D′(Rn)(0,1] is locally (B

p,kP̃ε
)ε-moderate (or (Tε)ε is (Bloc

p,kP̃ε
)ε-moderate) if for all ϕ ∈ C∞c (Rn)

the net (ϕTε)ε is (B
p,kP̃ε

)ε-moderate.

The results on the convolution product of Proposition A.2 can be extended to locally (B
p,kP̃ε

)ε-moderate
nets.

Proposition A.4. Under the assumption of Proposition A.2, if (T1,ε)ε ∈ E ′(Rn)(0,1], with suppT1,ε ⊆
K b Rn for all ε, is (Bp,k1)ε-moderate and (T2,ε)ε ∈ D′(Rn)(0,1] is (Bloc

p,k2P̃ε
)ε-moderate then (T1,ε ∗T2,ε)ε

is (Bloc
p,k1k2P̃ε

)ε-moderate.

Proof. Let ϕ ∈ C∞c (Rn). We choose ψ1 ∈ C∞c (Rn) identically 1 in a neighborhood of the compact set K
and ψ2 ∈ C∞c (Rn) identically 1 in a neighborhood of suppϕ − suppψ1. We can write ϕ(T1,ε ∗ T2,ε) as
ϕ(ψ1T1,ε ∗ ψ2T2,ε). Hence from Proposition A.2 we have that (ψ1T1,ε)ε is Bp,k1-moderate, (ψ2T2,ε)ε is
B∞,k2P̃ε

-moderate and finally (ϕ(ψ1T1,ε ∗ ψ2T2,ε))ε is B
p,k1k2P̃ε

-moderate.

Remark A.5. We are now able to give a more precise description of the fundamental solution E of
P (D) provided by Theorem 2.3. Let P (D) be a partial differential operator with coefficients in C̃ such
that P̃ (ξ) is invertible in some ξ0 ∈ Rn. For every representative (Pε)ε of P and every c > 0 there
exists a fundamental solution E ∈ Lb(Gc(Rn), C̃) of P (D) which is defined by a Bloc

∞,P̃ε
)ε-moderate net of

distributions (Eε)ε and such that (Eε/ cosh(c|x|))ε is B∞,P̃ε
-moderate.

The existence of a fundamental solution with the previous moderateness properties ensures the following
result of solvability.

Theorem A.6. Let P (D) be a differential operator P (D) with coefficients in C̃ such that P̃ (ξ) is invertible
in some ξ0 ∈ Rn and let v ∈ Lb(G(Rn), C̃). If v is defined by a Bp,k-moderate net (vε)ε, then the equation

P (D)u = v

has a solution u ∈ Lb(Gc(Rn), C̃) which is given by a Bloc
p,kP̃ε

-moderate net (uε)ε.

Proof. By Remark A.5 we know that the operator P (D) admits a fundamental solution E ∈ Lb(Gc(Rn), C̃)
which is determined by a Bloc

∞,P̃ε
-moderate net (Eε)ε. Since (vε)ε is Bp,k-moderate and by Proposition

A.2(i) it is not restrictive to assume that supp vε ⊆ K b Rn for all ε, by Proposition A.4 we conclude
that (uε)ε := (vε ∗ Eε)ε is Bloc

p,kP̃ε
-moderate and defines a solution u ∈ Lb(Gc(Rn), C̃) of the equation

P (D)u = v.
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