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Abstract

A finite volume Conditional Moment Closure (CMC) formulation has been

developed as an LES sub-grid combustion model. This allows unstructured

meshes to be used for both LES and CMC grids making the method more

applicable to complex geometry. The method has been applied to an oxy-fuel

jet flame. This flame offers new challenges to combustion modelling due to

a high CO2 content in the oxidiser stream and significant H2 content in the

fuel stream. The density ratio of the two streams is of the order 5 and the

viscosity of the two streams will also differ. All the flames simulated showed

localised extinction in the region around 3-5 jet diameters downstream of the

nozzle, which is in very good agreement with the experiment. Trends for con-

ditional and unconditional statistics with changing levels of H2 in the fuel

are correctly captured by the LES-CMC method, although different levels

of agreement are observed for different species and temperature and possi-

ble reasons for this are discussed. The degree of extinction is also correctly
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predicted to increase as the H2 content of the jet is reduced, showing the abil-

ity of the CMC method to predict complex turbulence-chemistry interaction

phenomenon in the presence of changing fuel composition.
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1. Introduction

As a means of mitigating the environmental effects of combustion there

is currently much interest in developing carbon capture and storage (CCS)

technologies. To facilitate the separation and hence removal of CO2 from

combustion products it is desirable that the only products should be CO2

and water vapour. This also has the advantage of removing NOx emissions.

Removing the nitrogen from the oxidiser is one method to achieve this; how-

ever it has been found that the very high flame temperature in this pure

oxygen arrangement is undesirable [1]. Therefore there is interest in diluting

the oxider stream with carbon dioxide so as to reduce the flame tempera-

ture. Due to the different properties of N2 and CO2, a CO2 diluted oxy-fuel

flame will behave in a different manner to an air-fuel flame; becoming more

prone to extinction [2] with the consequence that extra stabilisation mech-

anisms such as enriching the fuel stream with hydrogen may be necessary.

The changed operating conditions present new challenges to computational

modelling. Here we have applied the Conditional Moment Closure (CMC)

combustion model to an oxy-fuel jet which was the subject of a recent in

depth experimental investigation into the behaviour of the early part of the

jet [3]. The flame has a different composition to a standard methane-air flame
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and the ‘A-series’ of flames were observed to exhibit an increasing degree of

extinction as the level of H2 in the fuel stream was reduced. Our aim is to

assess the ability of the LES-CMC method to capture this trend.

Much effort has been focussed in recent years on the development of

Large Eddy Simulation (LES) for both pre and non-premixed combustion.

This development has been successful in capturing unsteady behaviour, such

as transient localised extinctions. The Eulerian Stochastic Fields [4] and

Flamelet/Progress Variable (FPV) [5] methods have been used to predict

extinction in the Sandia piloted jet flames. The Multiple Mapping Closure

(MMC) method, which can be thought of as combining elements of PDF and

CMC modelling and is able to predict partial extinctions, has also been suc-

cessfully applied to the Sandia flames [6]. A hybrid mesh-particle LES/PDF

formulation has been successful in reproducing the extinction and reignition

behaviour seen in a DNS calculation of a CO/H2 planar jet [7].

The LES-CMC model has also been successfully applied to the Sandia

piloted flames [8], giving similar predictions of extinction to the Stochastic

Fields [4] and MMC [6] methods. It has also been successfully applied to

other gaseous [9] and spray [10] flames. It has been seen that the combination

of transport and scalar dissipation rate terms are able to capture transient

extinction and reignition. These results have shown the ability of the CMC

method to capture complex phenomenon such as extinction or iginition with

complex chemistry at a relatively low computational cost. A drawback of

the existing CMC formulation is that the finite difference scheme used does

not lend itself to complex geometries or to localised grid refinement. This

paper, therefore, presents results using a new finite volume implementation
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of the CMC equations which allows for an unstructured CMC grid to be used

offering greater potential as a CFD tool.

2. Formulation

2.1. Unstructured LES-CMC Formulation

The principle behind the LES-CMC method for non-premixed combus-

tion is that if the local filtered density function, P̃(η), of mixture fraction

is known and the conditional average Qφ = φ̃|η is known for a scalar φ

then the unconditional local filtered value of the scalar can be found from

φ̃ =
∫ 1

0
φ̃|η P̃(η) dη. A transport equation for Q can then be derived with the

advantage that for much of the flow the gradients of Q can be expected to

be much less steep than φ̃ and so a far coarser grid can be used. By solving

a transport equation for Q the conditional average in a cell can take values

which will give an extinguished composition at stoichiometry, therefore pre-

dicting a localised extinction. The size of the extinction is determined by the

CMC cell size, so if the CMC grid can be refined in a region where localised

extinctions are expected then this will lead to more accurate prediction of

localised extinction. As such an unstructured CMC grid capable of local

refinement would be advantageous.

In this work we have used a conservative finite-volume formulation of the

CMC equation. A conservative form of the CMC equation has been previ-

ously derived in the RANS context [11], however this requires the flux of

ρP̃(η) to be calculated in all transport terms. This can be numerically dif-

ficult to implement and so we have started from the finite difference CMC

equation that has previously been used in LES. The CMC equation as used
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with LES can be derived by filtering the transport equations for the reac-

tive scalars [12]. Using the primary closure assumption, the CMC equation

becomes
∂Q

∂t
+ ũi|η

∂Q

∂xi

= Ñ |η
∂2Q

∂η2
+ ω̃|η + ef (1)

where ũi|η is the conditionally filtered velocity, Ñ |η is the conditionally fil-

tered scalar dissipation rate, ω̃|η is the conditionally filtered reaction rate,

while the term ef represents the sub-grid scale conditional transport. To

produce an unstructured CMC formulation it is necessary to recast Eq. (1)

into finite volume form. The first stage in doing this gives

∂Q

∂t
+∇ · (Qũ|η) = Q∇ · (ũ|η) + Ñ |η

∂2Q

∂η2
+ ω̃|η + ef (2)

Two terms are worthy of further note here. An extra convection term, Q∇ ·

(ũ|η), appears. If ũ|η is solenoidal this term will disappear but, as the

conditional velocity does not have to satisfy this requirement, it will be left

here. The term ef representing the sub-grid conditional flux needs to be

modelled. The model used in finite difference implementations [13] is not

conservative and hence not suitable for the finite volume formulation. Here

we choose to model the term with a simple turbulent diffusion term, ∇ ·

(Dt∇Q). The influence of this term is a subject for further research. However

we note that previous work [14] has shown the influence of the ef term to

be minor compared to the other terms. The final form of the CMC equation

used in this work in integral form is
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∂Q

∂t
+

1

V

∮
(Qũ|η) · dA =

1

V

∮
(Dt∇Q) · dA (3)

+
Q

V

∮
(ũ|η) · dA+ Ñ |η

∂2Q

∂η2
+ ˜̇w|η

In the extra convection term Q has been taken as constant throughout the

CMC control volume, V , and so can be taken outside the integral.

2.2. Unstructured LES-CMC Coupling Strategy

In order to implement Eq. (3) in an LES calculation the momentum and

mixture fraction field need to be calculated on a fine LES grid while the con-

ditional averages are calculated on a coarser CMC grid. During one timestep

both LES and CMC need to be updated with information being exchanged

between the two grids to enable this. As in previous implementations, each

LES cell must be associated with a CMC cell such that if P̃(η) is known for

the LES cell then the resolved temperature and density for that LES cell

can be found from the CMC cell conditional averages. The Ñ |η term can be

calculated by averaging over the LES cells associated with one CMC cell.

Previously the same method was used to find an averaged conditional

velocity for each CMC cell. However, in the new unstructured formulation

a different method is employed. A list of CMC cell ‘centres’ (which can be

generated by widely available unstructured meshing packages) are read in to

the LES-CMC solver and the LES cells are allocated to their nearest CMC

centre. We then go a step further by saying that the collection of LES cells

mapped to a CMC cell become the CMC cell so that the faces of the CMC

cell are the faces of the LES cells at the edge of the CMC cell. We follow the

6



successful previous practice in LES-CMC [14] of modelling the conditional

velocity as equal to the unconditional velocity, ũ|η = ũ.

For the convection term on the LHS of Eq. (3) the flux Qu · A needs

to be evaluated over the surface of the CMC cell. This surface is made up

of LES cell surfaces and hence a Qf face value and a volume flux is needed

for each LES/CMC face. Qf is found by a suitable discretisation scheme for

each LES/CMC face. The scheme used for this work is first-order upwind

although higher order schemes could be used to find Qf . The unstructured

grid formulation allows for greater grid refinement where required, which will

reduce the discretisation error. In any unstructured LES code the volume

flux, u ·A, across each LES face must already be calculated and hence it is

logical to use this to calculate the conditional flux between CMC cells. The

advantages of this method are that not only does it eliminate the need to

average the LES velocity field, but that more detail from the LES velocity

field can be included in the CMC transport. Flow structures smaller than

the CMC grid but larger than the LES resolution are no longer filtered out

of the CMC transport in the same way.

The extra convection term on the RHS of Eq. (3) is evaluated by using

the LES face fluxes u·A weighted by the cell value of Q for the cell which the

rate of change is being evaluated for. This is equivalent to taking the value

of Q as being constant over the control volume when converting from Eq. (1)

to Eq. (2), which is an assumption also used when finding the unconditional

values on the LES grid using the conditional values for the larger CMC cell.

The conditional diffusion term is calculated in a similar manner; DtA

is taken from the LES solver and the gradient of Q is calculated for each
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LES/CMC face using the CMC grid values. Here we have chosen to take the

value of Dt based on the LES scale using the argument that the sub-LES grid

motion will be responsible for the transport not included in the convection

term. This is a modelling choice, but as noted earlier previous work [14] has

shown the influence of the diffusion term to be minor compared to the other

terms.

The unstructured CMC formulation developed here is designed so that it

can be called as subroutines from a generic ‘host’ finite volume CFD code.

These subroutines can be placed where required to initialise the mapping of

CMC and LES cells and then in the main timestepping loop to pass flow field

information to the CMC and unconditional values back to the LES solver.

An extra CMC mesh is required which can be created by existing meshing

packages and converted into a suitable cell centre position text file. There is

no restriction on the CMC cell shape as they will be made up of a collection

of LES cells. The CMC cell centres are initially partitioned using the same

domain decomposition as for the LES grid allowing parallisation of the CMC

calculation. Note that a CMC cell is located entirely on one processor. As

the grid refinement for the LES and CMC cells will not necessarily be needed

in same place, the integration of chemistry for the cells is redistributed over

the processors for load balancing.

2.3. Simulation Details

The oxy-fuel jet of [3] consists of a d = 5 mm CH4/H2 jet surrounded

by a CO2/O2 co-flow. This computational domain representing this for both

LES and CMC is conical in shape being 10d in diameter at the jet inlet plane

and 24d at the outlet plane which is 80d downstream. The base and sides of
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the cone are set as inlets and the outlet plane is set as a pressure outlet where

the pressure is set to atmospheric and all other variables have a zero gradient

boundary condition. The size and shape of the domain should ensure that

the effect of the boundaries on the early part of the jet is minimised. The

LES mesh has 2.3M hexahedral elements in an O-ring arrangement using

60 cells across the jet nozzle. The CMC grid has been designed using the

same O-ring arrangement but with a reduced number of cells, 29k, using 15

CMC cells across the jet nozzle. The highest density of CMC cells is found

in the shear layers in the early part of the jet. Far downstream and away

from the jet axis the conditional values will not have steep gradients and

so large CMC cells can be used here. Both LES and CMC grids are shown

in supplementary material. This o-ring mesh with localised refinement has

been made possible with the new unstructured formulation.

The LES equations are solved using the OpenFOAM [15] code. The

velocity field is solved using a ‘Pimple’ pressure correction algorithm. This

is a hybrid SIMPLE/PISO scheme used in the standard OpenFOAM release

combustion solvers [15]. At the end of the timestep the CMC solver is called

with scalar dissipation rate and LES/CMC face flux data to allow the Q

values to be updated. A second routine is then used to return the local

LES density and molecular viscosity given the mean and variance of mixture

fraction for that cell. The constant Smagorinsky model [16], with constant

equal to 0.14 using the standard settings of the OpenFOAM implemenatation

of the model, has been applied for the sub-grid stress. The FDF of mixture

fraction is found from the resolved and estimated sub-grid variance assuming

a β function. The mean resolved mixture fraction ξ̃ is calculated by the LES
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solver with molecular and turbulent Schmidt numbers equal to 0.7. The

variance is calculated from ξ̃′′2 = Cv∆
2( ∂ξ̃

∂xi

) where ∆ is the filter width. The

constant Cv is set to 0.1 following [17].

For the CMC code the conditional scalar dissipation rate is found from

the resolved and sub-grid variance of mixture fraction in the CMC cell and

the averaged scalar dissipation rate of the LES cells within one CMC cell.

The Amplitude Mapping Closure (AMC) model [18] is then applied to find

Ñ |η. The scalar dissipation rate in each LES cell is made up of the resolved

component Ñres = D( ∂ξ̃

∂xi

)2 and the unresolved component Ñsgs =
1
2
CN

νt
∆2 ξ̃

′′2.

The constant CN is set to a value of 42, which was tuned to match exper-

imental data in [8] and has given good agreement with experimental data

in several other cases [9, 10]. As there is no nitrogen present in this flame,

the 16 species ARM1 chemistry was used [19]. A total of 51 points were

used to discretise η-space. The mass fractions at η = 0 were set to 0.255

O2 and 0.745 CO2. The mass fractions at η = 1 were set to match the jet

composition of the flame being studied.

The composition of the fuel and oxider streams give density fields very

different to those found in methane-air flames for example. The density ratio

of the coflow and jet for flame A1 is around 5. The viscosity of the two streams

will also be different so the local viscosity will be a function of temperature

and mixture fraction. To try and capture this we have used Sutherland’s law

to find the viscosity as a function of temperature for the major species, CO2,

CO, H2, H2O and O2 [20]. The mixture viscosity is then found from species

viscosities and mole fractions using Wilke’s equation [21]. This calculation is

done in the CMC solver to give the local conditional viscosity from which the
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unconditional viscosity can be found as µ̃ =
∫ 1

0
µ̃|η P̃(η) dη. The timestep was

set to ∆t = 2µs. To initialise the flames a ‘burning’ flamelet was generated by

solving Eq. (3) with transport terms switched off and a fixed low conditional

scalar dissipation rate (Ñ |ηmax = 5s−1). This flamelet was held constant

across the CMC grid while a solution was established for the hot flow field.

The full 3D CMC solver was then switched on and run for 15 ms which is

equivalent to approximately 15 flow through times for the region z < 10d

based on a velocity of 50 m/s, which took approximately 72 hours. Averages

were taken using the last 5 ms of data.

3. Results and Discussion

3.1. Preliminary Observations

The experimental observations of Sevault et al [3] revealed that for all the

flames studied the flame stayed attached to the nozzle with extinction not

observed until around z/d = 3. With the CMC method there is a choice to be

made as to the CMC boundary conditions at the inlet, i.e. what conditional

averages should be specified. This is further discussed in [14]. Both fully

burning flamelets and inert distributions were tried for flame A1 and with

either method it was seen that the flame was predicted to lift by around 0.5d.

As this lifting was observed even with fully burning flamelets introduced at

the inlet it can be concluded that extinction is being predicted due to the

very high conditional scalar dissipation rate in the CMC cells close to the

nozzle. While it is possible that the model for Ñsgs is not accurate this close

to the nozzle, it was also observed that Ñres was predicted to be sufficiently

high to cause extinction by itself. From this we conclude that there must
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be some element of the fluid mechanics close to the nozzle, which leads to

low scalar dissipation rate in this region, that we are not capturing. This is

supported by [3] who state that the squared off end of the nozzle helped to

stabilise the flame. As it is unclear how to model this, we have chosen to set

burning flamelets as the inlet CMC condition. We also limit Ñ |η < 30s−1

for the region z/d < 1 in order to account for a low scalar dissipation rate

region around the nozzle.

All flames were initialised using the procedure outlined in Section 2.3

using jet composition and velocity details correct for the flame of interest

before the full 3D CMC solver was started. Evidence of extinction in the

form of low OH values in regions with stoichiometric mixture fraction was

clear in the resolved LES results for all flames. Experimental evidence of the

instantaneous pattern of extinction is presented in [3] by images of the flame

which have been binarized according to a threshold to reveal local extinctions.

We have attempted to present our LES results in a similar manner in Fig. 1.

Isosurfaces of OH mass fraction at some threshold value were plotted with

shading removed to produce flattened images as from the experiment. The

actual value of the threshold is somewhat arbitrary but we have employed

YOH = 0.00075. As in the experiment note that the image is a line-of-sight

image through the flame and so any dark areas in the image indicate that

YOH is less than the threshold value on both sides of the flame so there is

an extinction on both sides. The images shown are instantaneous snapshots

but are representative of the results for the flames. It can be seen in Fig. 1

that the location of the extinction region is correctly predicted in the region

around z/d = 4. Note that the extinction does not occur until around two to
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three diameters from the jet which is beyond the region where the conditional

scalar dissipation rate has been limited. We also see that the correct trend of

increasing extinction from A1 to A3 as H2 is reduced is correctly captured.

3.2. Conditional Statistics

To consider the degree of extinction predicted qualitatively we will first

consider the conditional averages of species. Experimental data is available

for conditional averages taken at z/d = 3, 5, and 10. These averages were

compiled from statistics taken across the flame at these locations. In order

to compare with these the CMC results have been processed to give a single

conditional for each of the three axial locations. This has been done by

averaging data from all CMC cells with the desired axial position in a PDF

weighted manner such that

φ̃|η
∗

=

∫
φ̃|ηP̃(η)dV
∫
P̃(η)dV

(4)

The averages were taken over 26 points in time each separated by 0.2 ms.

This is equivalent to approximately five flow through times for the region

z < 10d based on a velocity of 50 m/s. Conditional temperature is available

for comparison at z/d = 5 which is just downstream of the main extinction

region. This is plotted in Fig. 2 and the effect of increased extinction from

flame A1 to A3 can clearly be seen in both experiment and simulation with

very good agreement for conditional temperature for both flames.

The conditionally averaged O2 mass fraction is presented in Fig. 3. The

agreement for both flames at z/d = 5 is again very good. At z/d = 3 it can

be seen that, while the CMC is correctly predicting the trend of increasing
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extinction (and therefore increased O2 at stoichiometry) from A1 to A3,

there is in fact more extinction predicted with the CMC than is observed

experimentally. By z/d = 10 there is relatively little extinction but at rich

mixture fractions the O2 level is higher in A3 than A1 which is correctly

predicted by the CMC calculation. The overprediction of extinction at z/d =

3 can be observed also in the conditional averages of H2O shown in Fig.

4, where the level is seen to be lower in the CMC prediction at z/d = 3.

However the conditional average is predicted to be lower than experiment,

particularly at z/d = 5, and still to some extent by z/d = 10. (A similar

trend is seen for CO, and this is shown in supplementary material.) As we

have already seen very good agreement for temperature andO2 at z/d = 5 the

discrepancy in H2O values at this position indicates that the the H2O level

is being underpredicted at a given temperature, this suggests that details of

the chemistry are not being completely captured here.

There are several possible reasons why there is an overprediction of the

amount of extinction close to the nozzle and a difference in the level of

agreement between T and H2O. We have already discussed in the previous

section that the conditional scalar dissipation rate might be too high close

to the nozzle. The unresolved scalar dissipation rate constant was obtained

using data for a range of axial locations [8] and it may not be accurate very

close to a nozzle. Also as discussed in the next section the flow field is not

accurately predicted in this region which will have an effect on the extinction.

The modelled conditional diffusion term used here may also be a possible

source of error. Sevault et al [3] discuss the likely influence of differential

diffusion in this flame due to its high H2 content. This phenomenon is not
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included in the CMC formulation here which may be responsible for the

differences observed from experiment. It is possible to include differential

diffusion in CMC [22] and so its influence could be investigated in future

work.

3.3. Radial Averages

Radial averages of resolved H2O are presented in Fig. 5. These radial

averages have been produced by averaing the results from LES cells with

a given axial and radial position using the same points in time used for

the conditional averages. Hence radial averaging is done in both space and

time. As expected, given the underprediction of the conditional values ,

the peak resolved values are also underpredicted although the trend with

decreasing jet H2 content is correctly reproduced. (Again, the trend for

CO is similar, but omitted here to save space.) At z/d = 5 and z/d =

10 it can be seen that the mixing of the jet is overpredicted, in the sense

that the spreading in the radial direction is too fast, and it is possible that

this excess mixing is responsible for some of the excess localised extinction

observed in the calculation. Predicting the early part of a jet with LES

is difficult and it it is likely that the unusual composition seen in this jet

makes this more difficult. Calculating the viscosity at a given temperature

for each species and then using Wilke’s equation to give a mixture viscosity

has made it possible to make viscosity a function of both mixture fraction

and temperature. However the accuracy of applying Sutherland’s law with

constants for pure gases to mixture components is doubtful and this could

lead to errors in the calculation of viscosity and hence to the rate at which

the jet mixes out.
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The radial average of O2 is shown in Fig. 6. The difference in the level

of extinction seen in Fig. 3 is again seen in the radial results, particularly at

z/d = 3 where the greatest extinction takes place. The radial extent of the

region at z/d = 5 and 3 where an increased O2 level is seen in flame A3 is

smaller in the LES results than in the experiment. This is likely to be due

to the incorrect level of mixing seen in the LES results. The increased level

of O2 in the centre of the A3 jet at z/d = 10 is correctly predicted by the

CMC and this corresponds with the increased conditional O2 seen in Fig. 3

at this position.

3.4. Fully Burning Probability

In order to quantify the extent of extinction seen in the flames Sevault et

al [3] defined a fully burning probability or FBP. This was defined as being

the probability of finding a burning compostion in a narrow band of mixture

fraction centred on the mixture fraction giving highest temperature. Fully

burning was defined as having T > 1700K. To compare with this we have

calculated FBP from the CMC results. This is based on T̃ |ηmax where ηmax

is the mixture fraction giving maximum temperature. A ’burning’ function

λ is defined which takes a value of 1 if T̃ |ηmax > 1700 and 0 otherwise. The

CMC FBP is then found by averaging

FBP =

∫
λP̃(ηmax)dV∫
P̃(ηmax)dV

(5)

The integration is taken over all CMC cells with a given axial position from

all time intervals. The results from this are compared with the experimental

data in Fig. 7. We see further confirmation that the degree of extinction
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is overpredicted but that the axial location of extinction and the trend of

increasing extinction with decreasing H2 content is correctly predicted. It

appears that for weak extinctions the CMC underestimates the extinction,

whereas for stronger extinctions the CMC flamelet is predicted to become

almost fully extinct and thus overestimates the extinctions.

4. Conclusions

An unstructured formulation of the LES-CMC method has been applied

to the Oxy-fuel jet flames of [3]. The unstructured CMC allows grid reso-

lution to be concentrated where required around the stoichiometric mixture

fraction contour in the early part of the jet. By using the volume flux at

the LES resolution to calculate the CMC transport terms more information

about the flow field can be included in the CMC calculation. The LES-CMC

calculations have been successful in capturing both the physical location of

localised extinction in the flame and the trend of increasing extinction as the

H2 content in the jet is reduced.

The results here also highlight the challenges of simulating flames with

the different compositions of both fuel and oxidiser streams encountered in

oxy-fuel flames. The extent of the extinction, as seen in conditional and

unconditional mass fractions and in the fully burning probability, is seen to be

higher in the simulations than in the experiment. It is also seen that there are

different levels of agreement for different chemical species, suggesting that the

full details of the chemistry are not being captured. One possible explanation

for the disagreement with experiment is that the current formulation neglects

differential diffusion and including this would be an interesting avenue for
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future research into this flame.
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Figure 1: Predicted LES instantaneous isosurfaces of threshold OH mass fraction for

flames A1 and A3. Dark areas represent extinction on both sides of the flame.
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Figure 2: Mean conditional temperature at z/d = 5 for flames A1 and A3 from experiment

[3] and CMC calculation.
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Figure 3: Mean conditional O2 mass fraction at z/d = 3 (left), z/d = 5 (middle) and

z/d = 10 (right) for flames A1 and A3 from experiment [3] and CMC calculation.
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Figure 4: Mean conditional H2O mass fraction at z/d = 3 (left), z/d = 5 (middle) and

z/d = 10 (right) for flames A1 and A3 from experiment [3] and CMC calculation.
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Figure 5: Radially averaged H2O mass fraction at z/d = 3 (left), z/d = 5 (middle) and

z/d = 10 (right) for flames A1 and A3 from experiment [3] and LES calculation.
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Figure 6: Radially averaged O2 mass fraction at z/d = 3 (left), z/d = 5 (middle) and

z/d = 10 (right) for flames A1 and A3 from experiment [3] and LES calculation.
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Figure 7: Fully Burning Probability against axial position from experiment [3] and CMC

results
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