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Abstract—In this study, the validity of the effective-medium
model approach to model the ultrasonic response of porosity is
investigated with the help of time-domain Finite Element Method
simulations. The effective-medium model is based on a single
scattering approach i.e. by neglecting the rescattering of the
waves and assuming a complex wave number to account for
the frequency-dependent attenuation of the elastic waves. The
numerical model, on the other hand, allows the study of the
scattering of the elastic waves on randomly distributed spherical
cavities and also accounts for the multiple scattering effects.

I. INTRODUCTION

Fibre-metal laminates such as GLARE (Glass Laminate
Aluminium Reinforced Epoxy) provide enhanced fatigue re-
sistance compared with unreinforced metals. The composite
layers, however, frequently suffer from air inclusions, or
porosity, which reduces the overall strength and performance
of the laminate. During the propagation of ultrasonic waves
through such a porous material the waves are scattered at
the randomly distributed voids. This scattering leads to a
frequency-dependent attenuation as previously demonstrated
[1]. Measurement of this attenuation allows the evaluation
of the bulk-averaged porosity. The measurement principle is
in general independent of the investigated material and has
been successfully applied in composites [2] and in aluminum
castings [3], [4], [5] but does not provide any information
about the depth distribution of the porosity. For this, a pulse-
echo method is required but the reflected waveform is complex
for GLARE due to the high reflection coefficients at each
interface. Small changes in the glass-fibre layer thicknesses
cause large changes in the reflected response, making it
impossible to distinguish signals from porosity.

In the applied effective-medium model a complex wave
number is used to match the response of a homogenous
medium to the frequency-dependent response of a random
distribution of cavities, calculated from the scattering from
a single cavity [7], [8], [9]. As well as effective-medium
models, also numerical simulation can be used to study
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wave-propagation problems in inhomogeneous media, such
as periodic structures [10] or random media [11]. In the
presented work, both techniques are applied to model porosity.
In particular, three-dimensional time-domain FEM simulations
are carried out to model the scattering of the elastic waves
on randomly distributed cavities. The range of validity of
the effective-medium model is investigated by comparing
calculated transmission spectra for various porosity levels and
distributions to the numerical simulations.

II. ANALYTICAL AND NUMERICAL MODELING OF WAVE
PROPAGATION IN RANDOM MEDIUM

Within an effective-medium model the ultrasonic scattering
from porosity is taken into account by using a complex
wave number. The 3D time-domain FEM simulations, on the
other hand, are carried out by modeling the scattering of the
ultrasonic waves at a random arrangement of spherical voids.
The results of the two models are compared to verify and to
investigate the limitations of the frequency-domain effective-
medium model.

A. Effective-medium model
For a particular volume fraction ¢ of cavities the complex
wave number K of the effective medium [7], [8] is given as:

25(0), m

where k is the real wave number and f(0) is the backscattered
amplitude. For simplicity it is assumed that the pores are
spherical scatterers with radius R. For longitudinal waves the
backscattered amplitude can be obtained as [8]:

K2 =K+

£(0) = % > (20 +1)A,, 2)
n=0

with A, being the scattering coefficients of order n for a
spherical cavity. For transverse waves, the definition of the
scattering cross-section in Eq.(2) is slightly different due to the
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Fig. 1. Attenuation coefficients from cavities with radius R = 10 yum and
volume fraction ¢ = 5% with n = 15 terms. (a) Longitudinal waves and (b)
shear waves. The insets show the convergence of the attenuation coefficients
with up to 5 terms.

presence of two transverse waves with different polarizations
[13]:

FO0) = 2 S (@n 1) (By +C), 3)
n=1

where B,,, C,, are the scattering coefficients for the transverse
waves. The scattering of plane waves from spherical obstacles,
such as cavities or inhomogeneities, is a well-known problem.
The scattering coefficients (A4, B,,, C;,) can be found in the
literature for longitudinal waves [14] and also for transverse
waves [13]. The infinite sum in Eq.(2) can be truncated; in the
current work 15 terms were used, which provides sufficient
accuracy up to 250 MHz for the current system. Calculated
attenuation coefficients for cavities with radius R = 10 pm,
volume fraction ¢ = 5%, and longitudinal (¢;) and shear (c;)
wave velocities of ¢; = 3330 ms~! and ¢, = 1870 ms—*
are shown in Fig.l with n = 15 terms. The insets of the
Figure show the convergence for a low-frequency range, below
~ 25 MHz where approximately 5 terms are sufficient.

Cavities of unequal radii, i.e. with a distribution of radii,
can be evaluated by using an effective attenuation cyy [5].
For the corresponding average void volume fraction of ¢ the
effective attenuation is the sum of the imaginary parts of the
effective wave numbers for each of the ith pore sizes within
a discretised distribution:

Qeff = Z K™, 4)

where the complex wave numbers K; are calculated for the

ith discrete range of radii (with R;) and the corresponding
volume fractions ¢; is given as:

R}
3
> B
These relatively simple relationships are used to assign a
complex wave number to the propagating waves. The influence
of the porosity on the ultrasound propagation is investigated

in the following by using this model, and compared to 3D
time-domain FEM simulations.

¢i=¢ (&)

B. Wave propagation through a porous layer

The scattering of the ultrasonic waves at a random dis-
tribution of cavities is simulated using a time-domain FEM
model. For this purpose the commercial FEM package PZFlex
(Weidlinger A., Inc.) was used. The applied model is shown
in Fig. 2. The FEM model consists of two aluminium layers
with 400 pym thicknesses each and a porous composite layer
with 250 um thickness whereby the pores are modeled as
randomly-distributed spherical voids. The spherical voids were
arranged around the centre of a cell in a 3D cuboid lattice
3D cuboid lattice (87.5 pmx87.5 pmx50 pm). The distance
from the center of the cuboid cell was randomly chosen within
twice of the lattice constant in each direction. In the y,z
directions symmetric boundary conditions (BCs) were used;
along the x direction, at both ends, absorbing BCs were
applied. The time-domain results of the 3D FEM simulations
were converted into frequency-domain responses by evaluating
the frequency-dependent attenuation of the waves, represented
by the transmitted spectrum. This is demonstrated in Fig. 3(a)
showing the normalized input and transmitted frequencies
from an incident plane wave generated along the x direction
with a Gaussian envelope with a full-width at half maximum
of 20 ns. The transmission spectrum is obtained by dividing

250 pm
Composite

Fig. 2. 3D FEM model of the scattering problem. The model is consisting
of two aluminum layer and a porous composite layer. For improved visibility
of the pores, the image shows the pores as red inclusions in a transparent
material; in the simulations the shown spherical particles are voids in the
composite material.
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Fig. 3. (a) Input and transmitted time-domain pulses for the FEM. (b) Trans-
mission spectra from two FEM simulations with identical volume fractions but
different scatterer diameter distributions, compared to the effective-medium
model (EMM).

the transmitted spectrum by the input spectrum. Since the
description of the random scattering problem requires the
determination of mean values of the wave propagation, the
captured responses were averaged across the cross-section of
the models in the y — 2z plane (Fig.2). The transmission spectra
from the effective medium model was calculated by inserting
the complex wave number K“™?9 into a harmonic function
(e~ A=Ky with Az = 250 pm.

III. RESULTS AND DISCUSSION

In the FEM simulation the modeled cross section was
0.975 mmx0.975 mm with element dimensions of Az = 2 um
and Ay = Az = 2.6 um. The total number of elements
was 181 x 10% (corresponding to a discretisation with
542x10° DOF). Within the composite layer 726 spherical
scatterers with a radius of 16 ym were randomly distributed
whereby the total volume fraction of the pores was 4.7%. To
verify the FEM model, simulations with different geometrical
configurations were performed and the averaged transmission
spectra compared.' The comparison has shown, that the aver-
aged response of the model is independent of the geometrical

"Three simulations were performed, each with 726 randomly arranged
spherical scatterer with radii R = 16 pm. The arrangements were different
in all cases. The intersection of the spheres was allowed leading to the total
volume fraction of 4.662%, 4.403% and 4.537% respectively. The models
consisted of 180.6 x 10° elements corresponding to 541.8x10% DOF.

configuration.

In further simulations the effect of varying the pore diameter
was studied. In these simulations two ranges of pore diameters
were used R = 7.5—22.5 pm and R = 0—30 pm both with a
uniform distribution of the diameters and with the same total
void volume fraction. In the first case (R = 7.5 — 22.5 um)
726, in the second case (R = 0 — 30 um) 486 spheres
were randomly arranged leading to total volume fractions
of 4.62% and 4.59% respectively. Similarly to the previous
simulations the intersection of the spheres was allowed and
the models consisted of 181 x 10° elements correspond-
ing to 542x10% DOF. The attenuation coefficients for the
effective-medium model were calculated by using Eq.4 and
a comparison with the FEM models in Fig. 3(b) shows that
the effective-medium model is a good approximation of the
FEM solution. In addition, by comparing the curves, it is
clearly-visible that the broader void-size distribution leads to a
stronger attenuation for lower frequencies but the curve flattens
out with a higher transmission coefficient. This property might
allow a unique determination of the volume fraction or the
void-size distribution from an inverse problem if one of these
properties is known and measurement data is available for
sufficiently high frequencies.

Next, different cavity diameters and different volume frac-
tions were studied. Three simulations were performed, each
with 726 randomly arranged spherical scatterer with radii
R = 10/16/20 pm. The geometric arrangements remained
identical in all cases - i.e. the location of the pores remained
the same only the diameter was increased - leading to total
volume fractions of 1.1%, 4.7% and 9.4% respectively. Simi-
larly to the previous simulations the intersection of the spheres
was allowed and the models consisted of 180.6x 10% elements
corresponding to 541.8x10° DOF.

The transmission spectra in Fig. 4(a) of the three systems
with radii R = 10/16/20 pm were evaluated from the
FEM simulation similarly to the previous cases using the
spatially averaged time-domain responses. The comparison
with the effective-medium model shows that this model is
a good approximation of the numerical simulation for the
cases with radii R = 10/16 pm (total volume fractions
of 1.1%, 4.7%). For the largest diameter R = 20 pm
with a total volume fraction of 9.4% deviations starts to
become visible as the effective medium-model underestimates
the attenuation. Finally, a simulation with high void volume
fraction (¢ = 25.86%, R = 16 um) was also carried out
and compared to the prediction of the effective medium-
model. The transmission spectrum in Fig. 4(b) shows that the
approximation using a complex wave number and neglecting
multiple scattering leads to a significant error.

IV. CONCLUSION

In the presented paper an effective-medium model was
compared to a 3D FEM numerical model. Calculations were
carried out by assuming identical spherical scatterers with
diameters up to 60 pm and by assuming different size distribu-
tions. The comparison of the models included different pore
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Fig. 4. (a) Analytical and numerical transmission spectra for three different
scatterer diameters and volume fractions. The effective medium model shows
a good agreement with the FEM simulations. (b) Transmission spectra from a
simulation with large volume fraction (25.9%) compared to the transmission
spectrum of the effective medium-model. In this case the effective medium
model fails to predict the transmission spectrum.

diameters, volume fractions and pore-diameter distributions.
The transmissibility of the porous layer was evaluated from
simulations and the results compared to the prediction of the
analytical model.

The calculated transmission spectra from the two models
show a good agreement for porosity values below 10%. Hence,
the frequency-dependent attenuation of the ultrasonic waves
is well-estimated by the single-scattering approximation of
the effective medium model for reasonable levels of volume
fractions - below and around 10%.
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