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Abstract 

In this paper a new and simple formula is presented for empirical modelling of tyre force data.  
Based on exponential functions, it is capable of matching single slip data for lateral or 
longitudinal force using three parameters which can be computed in terms of stiffness, peak 
and saturated force values.  Through a factorial study, the three parameters are also 
reformulated into functions of load and slip to provide full mapping of Fx and Fy across the 
range of longitudinal slip, lateral slip and vertical load.  Significantly, the resulting model 
does not rely on a total slip calculation, so it retains a simple structure in force vs slip or load 
derivatives.  The new model is compared with two alternative simple tyre models, and is 
shown to map forces generated from a reference Pacejka model.  It is also used to fit 
measured tyre force data accurately. 
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1 Introduction 

In modern chassis control systems, increasing use is made of the ever expanding 
computational capacity in the vehicle.  As a result there is more use of model based real-time 
controllers (eg Andreasson & Bunte 2006,  Poussot-Vassal et al 2008) and observers (eg 
Doumiati et al 2011).  In both on and off-line applications the vehicle model depends heavily 
on the tyre contact model, which must deliver a suitably accurate force prediction, and 
although processor speed and capacity is increasing, any on-line tyre model must also remain 
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computationally efficient.  A range of more complex models exist, catering eg for camber 
variation, self-aligning moment, but the majority of applications have the core requirement of 
predicting lateral and longitudinal tyre forces as a function of vertical load, lateral slip α and 
longitudinal slip, S.   

Most existing tyre models use a combined slip formulation whereby the forces are calculated 

as an (usually complicated) algebraic function of total slip k, defined as 2 2Sα +  or similar.  
Most applications employ a simple form of Pacejka’s magic tyre formula, but total slip is still 
fundamental to the few that do not (eg the Dugoff model in Doumiati et al 2011 or Burckhardt 
model in Li et al 2008).  The most recent Pacejka tyre model (see Pacejka 2002) does not rely 
on total slip, but still requires formulae with embedded trigonometrical functions of functions.  
This model, along with those that use total slip, present quite a complicated model for the tyre 
forces, but they certainly result in extremely protracted functions for the derivatives of the 
forces, yF α∂ ∂ , xF α∂ ∂  etc; these derivatives are required in some controller designs (eg 

Gordon & Best 2006) and in extended (nonlinear) Kalman filter observers, which have 
attracted a great deal of interest as a key component in model based integrated chassis control 
designs (eg Wenzel et al 2006 and Kim 2009). 

This paper proposes a new tyre model which fills this particular niche application, and will 
also have wider appeal due to its simplicity.  The Exponential tyre model provides consistent, 
accurate longitudinal and lateral force prediction in a simple algebraic form which remains 
simple in all its derivatives, and relies on just 10 parameters.  This is the first full description 
of the model; an embryonic first draft of the concept, which used 20 parameters, was 
introduced in Best (2010). 

The basis of the model, described in Section 2, has two exponential terms and three 
parameters, and is similar to Pacejka’s basic magic formula in that it reconstructs the essential 
1-D force vs slip curve using non-physical parameters.  Section 3 goes on to define three sub-
functions which extend the exponential model to two dimensions and illustrates its fit to a 
reference, Pacejka model.  The paper then illustrates and quantifies the computational 
advantages of the new model before presenting a case study reconstruction of a full combined 
slip model from tyre forces measured at the Calspan tyre test facility. 

 

2 Single Slip Definition and Prescription 

The basis of the Exponential tyre model is the expression : 

 ( )1b b
yF A e B eα αα − −= + −  (1) 

where yF  is lateral force normalised by friction and vertical load, sgn( )y z yF F Fµ α= and α 

refers to lateral slip in the standard form, /v uα = − with v and u lateral and longitudinal 
contact patch velocities respectively. µ is considered a constant throughout this paper, but 



could be expanded as a function of vertical load in future without compromising the 
advantages of the model.  The equivalent equation 

 ( )1b S b S
xF A S e B e− −= + −  (2) 

applies for longitudinal slip ( ) /S r u uω= − with rω as rolling radius multiplied by wheel spin 

speed. 

The form of the model arose from experimentation with simple algebraic functions to achieve 
the appropriate peak and lower constant force at high slip which is seen in experimental tyre 
data. Figure 1 illustrates how the linear and decaying exponential terms combine to form the 
peak, before smooth transition to the second exponential term which defines the terminal 
force.  Lower values for A and b remove the initial peak and deliver the characteristic form of 
tyre model seen when cross slip is non-zero.  Here, and later, ‘cross slip’ refers to S in models 
for Fy and α in models for Fx. 

** INSERT FIGURE 1 ** 

The principal aim of the model is to map the tyre forces in a computationally efficient way, 
using a minimum number of parameters; as such, A, B and b are non-physical parameters 
which will generally need to be fitted to tyre data, or an alternative tyre model.  However it is 
possible to rearrange eqns (1), (2), in order to prescribe A, B and b in terms of desired 
cornering or slip stiffness, Cα or Cx, peak force Fp and the terminal force Fterm, which Fy 
settles to at high slip.  Adopting the lateral force case with positive α, and normalising the 
known values to ( )zC C Fα α µ= , ( )term term zF F Fµ=  and ( )p p zF F Fµ= , for high slip the 

exponential terms in eqn (1) reduce to zero, so 

 termF B=  (3) 

Differentiating, we can derive expressions for initial slope, 
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and peak slip αp is obtained by solving 0ydF dα =  
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=  (5) 

Substituting in yF , peak force is then 

 ( )1 Bb A
p

AF e B
b

− += +  (6) 

which can be rearranged in the form of the Lambert W function, WWe X=  :   
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Since X is known, W can be found using Matlab, with lambertw(0,X).  Alternatively, by 
Newton’s method, recursive execution of  

 1

j

j j

W
j

j j W W
j

X W e
W W

e W e+

−
= +

+
 (8) 

converges from 0 0W =  in fewer than 10 iterations.  Given that W Bb A= , substitution in eqn 
(4) provides A and b as, 

 ( )1A C Wα= +  (9) 

 b AW B=  (10) 

A general reference model is used for fitting parameters in Section 2, and this is introduced 
here to provide realistic initial single force / slip comparison plots.  The reference is a 
combined slip form of Pacejka’s formula which uses similarity functions from Milliken & 
Milliken, 2005 and Pacejka 2002, and has been used previously in Gordon & Best 2006.  
Arguably it represents the simplest alternative tyre model to the proposed experimental model, 
and is defined 

 ( )2 /
1 1 z zrc F F

zrC c F eα = −
 (11) 

  (12) 

 0 p

C SS
F
α

η
=

             p

C
F
ααα =

 (13) 

  (14) 

  (15) 

 ( ) ( ) ( )1 0 0
1 11 1 cos2 2 2

kη η η= + − −  ,      (16) 

 1 1η =                                                          ,      (17) 

 1

0S
ρ

η α
η

=  (18) 

 

( )
2

sgn

1
r

x
S F

F
ρ

=
+                y xF Fρ=  (19) 

0.15
4min 1.6, z

p z
zr

FF F
F

µ
−  

 =     

2 2k S α= +

1 1sin tan tanr
k k kF C E
C C C

− −    = − −        

2k π<

2k π≥



 x p xF F F=                  y p yF F F=  (20) 

The parameters used here, for a nominal C class passenger car tyre, are given in Table 1. 

** INSERT TABLE 1 ** 

To illustrate the capability of the basic exponential model, Figure 2 shows the results of four 
separate Nelder-Mead optimisations of A, B and b to fit four reference cases of lateral force vs 
slip.  These were generated by evaluating the reference model at two typical vertical load and 
cross slip settings. A high accuracy of fit is achieved in all cases. 

** INSERT FIGURE 2 ** 

 

3 Extension to a Combined Slip Exponential Model 

The fitting process used to match reference data in Figure 2 provides a means of extending the 
Exponential model by considering the variations in A, B and b required to fit a range of load 
and cross-slip cases.  Making the reasonable assumption that the nominal parameters of Table 
1 provide a representative basis to define the structure of the variations, a Nelder-Mead 
optimisation of Fy vs α is repeated over a full grid of Fz, S to provide the surfaces illustrated 
in Figure 3. 

** INSERT FIGURE 3 ** 

By examination of these, and equivalent maps for Fx, a series of candidate functions for A, B 
and b can be explored; Figure 3 also illustrates the quality of fit of two of these candidate 
functions, for A and b – the functions themselves are discussed below.  Significantly, to 
maximise model efficiency, Fx and Fy will both be mapped using a single set of coefficients.  
As with other tyre models, to facilitate this a single additional scaling factor, η is introduced, 
to scale longitudinal slip. 

Table 2 details sets of candidate functions, chosen for their potential to map the vertical load 
and cross slip variations in A, B and b as simply as possible using a small number of 
parameters (f,g,h,p,q,r as required). γ is the cross slip (γ = ηS in the model for Fy and γ = α in 
the model for Fx). zF  = Fz /1000 is used so that parameter magnitudes are of similar order.  
With six candidate functions in set 1, each using any of four functions for ZA (set 2), there are 
24 possible candidates for the model of A.  In a similar way, sets 3 and 4 are coupled to 
provide six possible models for B, and sets 5 and 6 provide 9 possibilities for b. 

** INSERT TABLE 2 ** 

Unfortunately, directly fitting each pair of sets of the candidate functions to the surfaces for A, 
B and b is not successful when the final model is tested in combination.  This is because, 
while the quality of fit to Fx ,Fy is directly sensitive to most of the variations, there is a 
problem with poor conditioning in the model at high cross-slip values, which makes the high 
negative B values at high γ irrelevant (Figure 3).  Considering Figure 2,  it is clear that higher 



cross-slip cases result in force curves with ever slower exponential rise rate (lower b at higher 
cross slip, are seen in Figure 3).  This extends to the point where a constant Fy or Fx value is 
not attained within the useful range of slip.  In these cases the second term in eqns (1), (2) 
becomes redundant, and the model could effectively collapse to b

yF A e αα −= .  The large 

change in B at higher γ is thus a result of worsening conditioning of the parameter fit, so it 
should not be necessary for the model for B to match the illustrated figure at these high cross 
slip values.  

To establish the best combination of subfunctions without excessive reliance on the shapes of 
Figure 3, a factorial experiment was conducted to correlate quality of fit in the final Fx ,Fy 
model with all possible combinations of the subfunctions (24x6x9 = 1296 in all).  A weighted 
cost J is applied, 

 ( ) ( )2 2

x xref x y yref y
grid

J W F F W F F= − + −∑  (21) 

With  ( )10 2 11 2
S

x z zrW e e F Fα e− −= − − +    

 ( )10 2 11 2
S

y z zrW e e F Fα e− −= − − +  (22) 

over a 3D grid of values spanning 1 5zF< < , 0 1α< < , 0 1S< < .  The weighting functions 
Wx and Wy are nominal in structure, designed to maximise quality of fit in the most critical 
lower slip and lower cross slip regions of the grid. zrF = 3 increases the weighting around the 
rated tyre load of 3000N, and e = 0.01 ensures all grid positions have some influence.  Precise 
setting of the weighting coefficients is not critical, but it is essential to provide significant bias 
to the fit around low (and hence also peak) slip regions, since the fitted grid necessarily 
covers a wide range of slip and load. 

 

The resulting 1296 cost values were regressed against a set of 15 factors, coded at levels -1, 0 
or 1 according to the subfunctions selected.  Table 3 summarises the coding of these factors. 

** INSERT TABLE 3 ** 

All possible single factors and combinations of factors are then mapped to the normalised cost 
values by 

 
15

1 1 2 2 15 15 16 1 2 17 1 3 1295
1 max

f f f f f f f f 100i
i

J Ja a a a a a
J=

−
+ + + + + = ×∏3 3  (23)  

where J  is the mean cost and ( )max maxJ J J= − .  The coefficients [ ]1 2 1295
Ta a aθ = 3  

are found by ordinary least squares solution of the problem U yθ = , with y the vector of 

normalised cost values, and U the matrix of factors for each model setting, with each row set 
according to eqn (23).  In this way, the coefficients a1 – a1295 provide significance values 
which quantify the importance of each factor across the variation of costs recorded.   



Figure 4 shows a normal score plot (see Kasperski & Schneider, 1996)  of the sorted ai values 
(scores); factors (or their combinations) which are insignificant are aligned with the straight 
line.  Those outliers that have a significant positive or negative influence can be used to make 
a judgement on the best and worst choices.  By examining the results in this way we do not 
simply select the combination of subfunctions which gives the lowest cost; we consider the 
average effect of each subfunction choice across all possible combinations, and can also 
determine which combinations of choices work best together.  The final choice will then also 
need to take into account the relative complexity of the functions and number of parameter 
each subfunction requires. 

** INSERT FIGURE 4 ** 

A selection of the scores with largest magnitude is annotated in Figure 4, and decoded in 
Table 4 to illustrate the process.  Note that positive score values denote positive results 
(reduction in cost). 

** INSERT TABLE 4 ** 

Considering these results, and with reference also to Table 3, the first result, for f9 shows that 
cost is reduced by choosing the simplest model in set 3.  This reduces B to dependence on 
load alone, and is pertinent to the earlier discussion of conditioning; by using this simple 
function we prevent the final model from suffering from poor conditioning.  The remaining 
advice in Table 5 can be followed to further narrow the field of choices to : 

set 1 : (iii)   set 2 : (ii), (iii) or (iv)  set 3 : (i) 
set 4 : (ii) or (iii)  set 5 : (i)   set 6 : choice not significant 

It is interesting that a relatively complex load model is required in set 4.  Separate 
experiments confirm significantly poorer results when this load dependence is simplified, and 
further examination of other factor scores leads to the choice of function (ii) rather than (iii) 
here. 

Finally, taking the complexity of subfunctions and the number of coefficients each needs into 
account, it is clear that set 6 should use subfunction (i), since this introduces no additional 
coefficients and reduces the model for b to dependence on cross slip alone.  For set 2, 
subfunction (iii) can be ignored, as this requires more coefficients than the alternatives.  This 
leaves 2 possible variants for set 2, which can not be decided using normal scoring and model 
complexity, so a final choice of set 2 = (iv) was decided purely on the basis of lowest cost. 

Given the six subfunction choices, and making some straightforward parameter name 
substitutions, the final model is  

 S Sη=                           α α=  (24) 

 32
1 4

z AA F
xA A e e Aα α−= +         32

1 4
z A SA F

yA A e e A S−= +  (25) 

 3
1 2

zB FB B B e−= +  (26) 
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1

b
xb b e α−=                            2

1
b S

yb b e−=  (27) 

 ( )1x xb S b S
x xF A Se B e− −= + −        ( )1y yb b

y yF A e B eα αα − −= + −  (28) 

 ( )sgnx z xF F F Sµ=                    ( )sgny z yF F Fµ α=  (29) 

Which employs 10 parameters; A1–A4, B1–B3, b1, b2, η.   

With the full model structure now defined, parameter sets can be identified to match tyre data 
whenever a new tyre is required.  This can be done by Nelder Mead (Matlab fminsearch) 
optimisation on Fx, Fy data at varying slip, cross slip and vertical load conditions, either 
measured or from a reference model.  Figure 5 shows how the new model performs when 
fitted to the reference model (Table 1) across the full range of Fx and Fy for varying slip and 
cross-slip, at three vertical loads spanning the most relevant range.  There is some 
compromise in the solution, most notably in peak force at zero cross-slip, but considered 
across the whole map, the accuracy is very good. 

 

** INSERT FIGURE 5 ** 

 

4 Computational Advantage 

The significant appeal of the new model is its computational advantage and simplicity in force 
calculations, and more particularly in the computation of derivatives. The full model Jacobian 
is required in applications such as the extended Kalman Filter, or any gradient-based control 
optimisation, so yF α∂ ∂ , yF S∂ ∂ , y zF F∂ ∂ , xF α∂ ∂ , xF S∂ ∂ , x zF F∂ ∂ may all be required.  

With the Pacejka model, the combination of the magic formula itself and the total slip 

makes all these derivatives prohibitively complicated.  One would not attempt 
to compute them by hand, but even using an algebraic tool such as Maple or Matlab’s 
symbolic toolbox, the expressions for the Pacejka derivatives are so long that they cannot 
even be cut and pasted into other codes.  The chain rule can be used; eg 

 
( )y y y rr

r

F F F FF k
F kα α α

∂ ∂ ∂∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 (30) 

but even with this short cut, Table 5 shows the scale of the problem for the typical example 

yF α∂ ∂ ; here the derivative has been computed and simplified using the Matlab symbolic 

toolbox, and the number of characters in the resulting expression is given. 

** INSERT TABLE 5 ** 

Unlike the alternatives, all six of the Exponential model’s derivatives can be written 
algebraically.  For this example : 

2 2k S α= +
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For further comparison, a Dugoff model is also compared here.  Another alternative and 
simple combined slip model, this has been taken from Ding and Taheri, 2010; it generates 
more manageable derivative expressions, and relies on just four parameters.  Unfortunately, in 
a free optimisation to the reference model, it is not sufficiently accurate; this is illustrated in 
Figure 6, which is directly comparable to Figure 5. 

As a further demonstration of computational advantage, all three models were used to 
evaluate Fx, Fy and separately, yF α∂ ∂ for 10,000 randomly chosen input values.  The time 

taken to complete those computations, averaged over 10 trials, on an Intel 6700 2.66GHz 
processor with 4GB RAM, is given in Table 6.  In both force and derivative cases the 
exponential model is very much faster, and in derivative calculations it is two orders of 
magnitude faster than the reference.  

** INSERT TABLE 6 ** 

** INSERT FIGURE 6 ** 

 

5 Fitting to Measured Tyre Data 

As a further confirmation of the Exponential model’s suitability and accuracy, measured tyre 
data is mapped.  Such data is notoriously difficult to acquire, and a full combined slip 
mapping was not available here.  However, single slip characteristics for Fx vs S and Fy vs α 
for the same tyre, at three different vertical loads were sourced from the Formula SAE Tire 
Test Consortium, and with thanks to this consortium and the Calspan Tire Research Facility, 
these are illustrated in Figure 7. 

** INSERT FIGURE 7 ** 

In the absence of cross-slip data, eqn (25) reduces to 

 2
1

zA F
xA A e=         2

1
zA F

yA A e=  (32) 

and eqn (27) reduces to 

  1x yb b b= =  (33) 

The fit is very good, although some loss of accuracy is seen in longitudinal stiffness at the 
higher loads.  Here, an equal weighting, Wx = Wy = 1 has been applied at all slip values; it is 
easy to alter the quality of fit at higher vs lower slip values by adjusting the weightings in an 
obvious way. 

Given the Exponential model structure, a fully combined slip version of this tyre data can be 
constructed by carrying over the cross-slip variation parameters, A3, A4 and b2 from another fit.  
Figure 8 shows the resulting model of Fx, using cross-slip variations from the fit to the 



reference model carried out earlier; the result is demonstrably accurate for both Fx and Fy 
under pure slip conditions, while also providing an appropriate, if nominal variation over all 
combined slip combinations. 

** INSERT FIGURE 8 ** 

 

Conclusion 

In its simplest form the Exponential tyre model describes single slip tyre data effectively 
using just three parameters; these can be matched to required stiffness, peak and saturated 
force criteria.  The combined slip variant has been developed through rigorous statistical 
analysis of candidate functions, and can accurately map the results of a proven reference 
model.  The model structure is simple, being fully described by four short functions using 10 
parameters.  It can be fitted to measured tyre data, and is also a useful complement to existing 
tyre models; after fitting the Exponential model to an existing more complicated model, the 
Exponential model can replace its complex counterpart in computationally exhaustive or real-
time applications.  The simple model structure can also be adapted to fit available data if the 
full map of force variation across slips and load is not available.  This has been demonstrated, 
with good fits to measured data resulting in a case where only single slip data was available.  
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Tables 

c1 = 4 
c2 = 5 

Fzr = 11750 (rated total vehicle load) 

0
x

C
C

αη ≡ = 0.67 

E = -0.2 
C = 1.4 
µ = 1 

Table 1 : Reference Model Tyre Parameters 

 

set 1: functions for A set 3: functions for B set 5: functions for b 
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AZ e γ−
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bZ e γ−

 

(ii)   
f

AZ e gγ− +  (ii)   ( )( )g h
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(iii)  
f

AZ e gγ γ− +  
 

(iii)  ( )2
bZ f g hγ γ− +  

(iv)   
2f

AZ e gγ γ− +    

(v)   ( )/AZ f g γ+    

(vi)  ( )2
AZ f g hγ γ− +  

  

set 2: load functions in A set 4: load functions in B set 6: load functions in b 

(i)  AZ p=  (i)  BZ p=  (i)  bZ p=  

(ii)  A zZ p qF= −  (ii)  
zrF

BZ p qe−= +  (ii)  
zqF

bZ pe−=  

(iii)  
2

A z zZ pF qF r= − +  (iii) B zZ p qF= −  (iii)  b zZ p qF= −  

(iv)  
zqF

AZ pe−=  
  

Table 2 : Candidate cross slip and load dependence functions for A, B and b  
 

factor setting 
f1 =1 if set 1 fn = (i) =0 otherwise 
f2 =1 if set 1 fn = (ii) =0 otherwise 
f3 =1 if set 1 fn = (iii) =0 otherwise 
f4 =1 if set 1 fn = (iv) =0 otherwise 
f5 =1 if set 1 fn = (v) = -1 if set 1 fn = (vi) =0 otherwise 
f6 =1 if set 2 fn = (i) =0 otherwise 
f7 =1 if set 2 fn = (ii) =0 otherwise 
f8 =1 if set 2 fn = (iii) = -1 if set 2 fn = (iv) =0 otherwise 
f9 =1 if set 3 fn = (i) = -1 if set 3 fn = (ii) 
f10 =1 if set 4 fn = (i) =0 otherwise 
f11 =1 if set 4 fn = (ii) = -1 if set 4 fn = (iii) =0 otherwise 
f12 =1 if set 5 fn = (i) =0 otherwise 
f13 =1 if set 5 fn = (ii) = -1 if set 5 fn = (iii) =0 otherwise 
f14 =1 if set 6 fn = (i) =0 otherwise 
f15 =1 if set 6 fn = (ii) = -1 if set 6 fn = (iii) =0 otherwise 

Table 3 : Relationship between factors and subfunction selection 



annotn a factor combn interpretation from factor definitions 
I +9.9 f9 do use set 3 = (i) rather than set 3 = (ii) 
II +9.3 f3f12 do use set 1 = (iii) in combination with set 5 = (i) 
III +8.3 f12 do use set 5 = (i) 
IV +6.2 f3 do use set 1 = (iii) 
V +5.6 f4 do use set 1 = (iv) 
I -17.6 f6f10 don’t use set 2 = (i) in combination with set 4 = (i) 
II -9.8 f10 don’t use set 4 = (i) 
III -6.7 f2 don’t use set 1 = (ii) 
IV -6.5 f6 don’t use set 2 = (i) 
V -6.1 f13 don’t use set 5 = (ii) and / or do use set 5 = (iii) 

Table 4 : Selected information decoded from the normal score plot 

yF
α

∂
∂  

Number of 
characters 

Reference model; direct derivative expression 5904 

Reference model; evaluation using eqn (28) 4068 

Dugoff model 833 

Exponential model 218 

Table 5 : Size of derivative functions 

Time for 10,000 executions (seconds) Fy & Fx yF
α

∂
∂  

Reference model 0.127 2.140 

Dugoff model 0.077 0.118 

Exponential model 0.038 0.028 

Table 6 : Speed of execution of tyre models 

 

Figure Captions 

Figure 1 : Components of the Single Slip Exponential Tyre Model 

Figure 2 : Single slip Exponential tyre model fitted to the reference model 

Figure 3 : Fy model coefficient variation with load and cross-slip, with fitted potential 
candidate models for A and b 

Figure 4 : Normal score plot of factors affecting Exponential model fit quality 

Figure 5 : Combined slip Exponential tyre model fitted to the reference model 

Figure 6 : Combined slip Dugoff tyre model fitted to the reference model 

Figure 7 : Exponential model fitted to the raw measured tyre forces 

Figure 8 : Expanding the Exponential model to provide an appropriate combined slip map 



Figures 

Figure 1 : Components of the Single Slip Exponential Tyre Model 

 

Figure 2 : Single slip Exponential tyre model fitted to the reference model 
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 A B b 
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Figure 3 : Fy model coefficient variation 
with load and cross-slip, with fitted 

potential candidate models for A and b 

 

 

 

 

Figure 4 : Normal score plot of factors affecting Exponential model fit quality 
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Figure 5 : Combined slip Exponential tyre model fitted to the reference model 
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Left hand plots show F vs slip 
solid = reference, dashed = Exponential 

 

Right hand plots show F vs cross slip 
solid = reference, dashed = Exponential 

 
 

Exponential model parameters :  
A1=12.828    A2=0.118   A3=8.057   A4=0.329    B1=0.811    B2=0.292    B3=0.486    b1=9.164    b2=2.746    η=1.129 



 

 

 

Figure 6 : Combined slip Dugoff tyre model fitted to the reference model 

 

 

 

Figure 7 : Exponential model fitted to the raw measured tyre forces 
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Figure 8 : Expanding the Exponential model to provide an appropriate combined slip map 

 

Exponential model parameters :  
A1=32.10    A2=0.051   A3=7.711   A4=0.290    B1=2.507    B2=-0.025    B3=-2.008    b1=13.428    b2=2.485    η=1.170 
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