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This paper presents the results of a study to evaluate the suitability of two new driving simulator 
motion cueing algorithms for driving in the non-linear region of vehicle behaviour. The new 
algorithms are a Model Predictive Control (MPC)-based algorithm with constraints based on 
actuator states, and an algorithm based around the use of the vehicle sideslip angle as the 
demanded platform yaw angle. The results indicate that the body sideslip algorithm is preferred to 
the MPC and standard filter-based algorithms, with the more experienced participants also 
expressing a liking for the MPC algorithm.   
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1. INTRODUCTION 
  

Motion-based driving simulators generally have a 
motion workspace far smaller than that required for full 
restitution of vehicle motions; this is especially true of 
those based on six degrees-of-freedom (DOF) Stewart 
platforms where maximum translation is of the order of 
0.5m. It is therefore not possible to reproduce the large 
low-frequency motion that is characteristic of road 
vehicle manoeuvres and some transformation from the 
vehicle motion to the desired platform motion is 
required; this transformation is known as the motion 
cueing algorithm. Several approaches to motion cueing 
have been suggested, from high-pass filtering to optimal 
control formulations. Previous work by Newton and 
Best [1] has shown that the presence of motion 
improves the perceived simulator fidelity; Siegler et al 
[2] show that motion prompts drivers to exhibit 
behaviour closer to that in the real vehicle. 

However, there is still a disparity between the way 
people drive the simulator and the way they drive a real 
vehicle; or perhaps more appropriately drivers are 
unable to drive the simulator as they would a real 
vehicle due to differences in sensory feedback. Since 
visual, audio and steering feedback can be provided 
with a high level of fidelity, the platform motion 
remains the major stumbling block in reducing the gap 
between simulation and reality. In particular, the lack of 
information from the platform motion seems to be a 
problem for driving in the non-linear region of vehicle 
behaviour. 

The ongoing research aims to find an improved 
motion cueing algorithm that presents better information 
about the vehicle state to the driver and brings their 

control strategy closer to that in the real vehicle. In 
addition the authors intend to address the lack of 
published results of comprehensive tests with human 
drivers. Previous work by the authors [3] compares the 
effectiveness of different motion cueing algorithms for 
driving in the linear handling regime using a broad 
range of test subjects. This paper presents the results of 
a study comparing three simulator cueing algorithms for 
driving in the non-linear handling regime with more 
focus on experienced drivers. The first cueing algorithm 
is based on the classical linear filter-based method with 
adaptive gains and is the standard cueing supplied with 
the simulator. The other two algorithms have been 
developed as part of the research; one based on Model 
Predictive Control (MPC) which, unlike other MPC 
algorithms, uses actuator states as constraints, and a 
novel algorithm based around using the vehicle sideslip 
angle as the platform yaw demand. 

The cueing algorithms to be evaluated are presented 
in section 2. The details of the experiments are provided 
in section 3, and the results are presented and discussed 
in section 4. 

  
2. CUEING ALGORITHMS 
2.1 Classical algorithm  

The well-established classical cueing algorithm (see 
e.g. Schmidt and Conrad, [4]) attenuates and high-pass 
filters the vehicle accelerations in order to obtain 
suitable platform acceleration commands. Additionally, 
the lateral and longitudinal accelerations are low-pass 
filtered and added to the roll and pitch DOFs, such that 
the orientation of the gravity vector relative to the driver 
gives an illusion of sustained accelerations; this process 
is known as tilt coordination. 
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A variant on the method introduces adaptive gains 
in series with the high-pass filters; these gains are 
adapted on-line to minimise a cost on motion perception 
error and platform excursion (see e.g. Nahon et al, [5]). 
The effect of this is a reduction in the attenuation of low 
magnitude accelerations and also a reduction in false 
cues, i.e. platform accelerations that are of opposite sign 
to the current vehicle acceleration. 

The tuning of the classical algorithm is not a 
straightforward task, as there is no obvious relationship 
between the choice of filter cut-off frequencies and 
damping ratios and the perceived motion quality. The 
addition of adaptive gains makes the problem even 
worse with cost weightings and descent algorithm 
parameters to be chosen as well. 

 
2.2 Model Predictive Control (MPC) algorithm 

Optimal control approaches to motion cueing, the 
most popular of which is based on Linear Quadratic 
Regulator (LQR) control as proposed by Sivan et al [6], 
define motion cueing as a tracking problem where the 
motion perceived in the simulator should track the 
motion perceived in the real vehicle. Platform washout 
is achieved by applying a cost to platform excursion. 
Calculation of the perceived accelerations from actual 
accelerations is achieved by including dynamic models 
of the human vestibular system. Although several 
complex vestibular models have been proposed, it is 
possible to simplify these to obtain second- or 
third-order systems that capture the large scale 
behaviour as discussed by Telban and Cardullo [7]. 

Recently, motion cueing using model-based 
predictive control has been proposed. Dagdelen [8] 
proposes an unusual variant on the tracking formulation, 
the result of which is an algorithm that matches vehicle 
acceleration until a platform limit is imminent, then 
returns to centre below the human perception threshold. 
Augusto [9] describes an MPC-based algorithm that 
follows the normal tracking formulation and it is shown 
that the algorithm makes better use of the platform 
workspace than the classical algorithm. Neither present 
results of tests with human drivers. 

Both of the MPC-based algorithms described above 
use Cartesian workspace boundaries (which must 
necessarily be more restrictive than the actual motion 
envelope due to the coupling of Cartesian limits in the 
different DOFs) and make use of commercially 
available MATLAB add-ons to solve the MPC 
optimization problem. The MPC algorithm developed in 
this research is, like Augusto [9], formulated as a 
tracking problem, however the spatial limits are based 
on actuator states instead of Cartesian platform states, 
and thus better use of the workspace is possible. 
Additionally, a solver for the MPC optimization has 
been derived that requires only simple linear algebra 
and can be implemented using standard MATLAB 
functions. 

In order to reduce the computational complexity, 
the MPC control for motion in 6DOF is split into two 

dual-input dual-output controllers for the lateral-roll and 
longitudinal-pitch pairs (these are paired to allow for tilt 
coordination, if required) and two single-input 
single-output controllers for the vertical and yaw DOFs. 
For each of these controllers a linear model containing 
the human motion perception (vestibular system) 
dynamics and the platform kinematics is created; taking 
the lateral (y) and roll (ϕ) controller as an example, the 
model in state-space form is 

 
where xvest and xplat are the vestibular and platform state 
vectors respectively, ϕ,yplat are the control inputs to the 
platform, and ϕ̂, ŷ are the perceived motions. If tilt 
coordination is required then the effect of the roll input 
on perceived lateral motion is included in the vestibular 
dynamics model. Note that the platform dynamics are 
not modelled; in order to ensure real-time operation of 
the algorithm the number of states was kept to a 
minimum, and thus it is assumed that the platform 
demand is met (this is true up to around 20Hz). 

The platform state vector comprises the platform 
velocities and actuator lengths. In order to calculate the 
effect of the control inputs on the actuator lengths, 
expressions for the actuator length derivatives are 
found; these are of the form 

 
The kA…F are functions of the platform position and 
orientation and their derivatives and are therefore 
time-varying, however they are assumed constant over 
the prediction horizon and recalculated at each time 
step. 

The MPC optimization problem is to find, at each 
time step, the optimal control sequence over a horizon 
Hu that minimizes the following cost function over a 
prediction horizon Hp: 
 

 

 

 
where e(t) = ŷcar(t)- ŷsim(t) is the perception error 
(difference between perceived motion in vehicle and 
perceived motion on simulator), xplat(t) are the actuator 
positions and velocities, u(t) is the control input applied 
to the platform, and the Q and R matrices contain 
weightings for the cost terms. Tuning of the cost 
weightings relative to one another determines the 
strategy employed by the controller. 

The solver for this optimization follows the method 
of Boyd and Vandenberghe [10]. Firstly, the MPC 
problem is reformulated as a quadratic programming 
(QP) problem. This is then solved using a primal barrier 
infeasible start method. This can find a step which is 
close to the optimizing step within a small number of 
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iterations – in this case up to five. Testing of the MPC 
algorithm revealed that good performance was possible 
with a control horizon of a single time step and a 
prediction horizon as low as three time steps. 
 
2.4 Body Sideslip Algorithm 

The various cueing algorithms currently in use all 
follow the same basic idea, namely to get the platform 
accelerations as close to the vehicle accelerations as 
possible within the available workspace. However, it 
seems sensible instead to concentrate on the information 
given to the driver by the motion. As with all the 
driver’s sensory inputs, the motion provides information 
about the vehicle state; this is particularly true in the 
non-linear region of vehicle response, where the driver’s 
control strategy will involve more closed-loop 
behaviour than in the linear region. 

When evaluating vehicle stability the body sideslip 
angle β is of interest; it was therefore proposed that the 
vehicle sideslip angle be used to directly drive the 
platform yaw angle. As the velocity and acceleration are 
also required, the first and second derivatives β must be 
found – in terms of the body reference longitudinal and 
lateral velocities u and v, and using the small angle 
approximation β = v/u, these are 
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The first derivative is straightforward as all the 
quantities are available in the vehicle dynamics. 
However, the second derivative contains jerk terms u  
and v  which are not available. This is overcome by 
considering the derivatives of the expressions for 
longitudinal and lateral accelerations ax and ay; 
considering ay, this gives 

 
where the Fy are the lateral tyre forces, m is the vehicle 
mass, w is the vertical velocity and p and r are the roll 
and yaw velocities. All the terms in the expression for 
v  are available apart from the tyre force derivatives. 
However, the tyre model contains an expression for 
relaxation lag with time constant τ, 

)ˆ(ˆ
,,

1
, yixiyixiyixi FFF −= −τ , so the tyre force 

derivatives are in fact available. The derivation of the 
expression for u  follows in the same way from ax. 

To complement the sideslip-based yaw motion, the 
lateral and longitudinal platform motion is calculated to 
provide an instantaneous centre (IC) on the platform 
related to the IC of the vehicle, the idea being that this 
provides some more information about the vehicle state. 
The distance of the IC from the vehicle centre of mass 
would generally result in unachievable 
longitudinal/lateral platform motion, so in order to avoid 
saturation and maintain fidelity of the cue, the IC is 
calculated in polar coordinates and a limiting non-linear 

gain is applied to the magnitude. 
The platform roll angle is driven by the vehicle roll 

angle, attenuated to avoid the perception of excessive 
roll (one-to-one restitution is perceived as being 
excessive; this is perhaps due to the mismatch in 
magnitude between full restitution and low restitution in 
different DOFs). 

 
3. EXPERIMENTAL METHOD  
  

The Loughborough simulator, produced by Cruden 
[11], works with vehicle models in MATLAB/Simulink 
that run with a fixed integrator time step of 1ms. The 
vehicle model used here has 6 body DOFs and uses a 
Pacejka combined-slip tyre model. Motion cueing is 
also done within the Simulink model, and the operator 
can switch between cueing algorithms whilst the 
simulation is running. 

In order to focus on the effect of motion related to 
vehicle lateral stability, the standard classical algorithm 
provided motion in the longitudinal, pitch and vertical 
DOFs during all test cases; only the lateral, roll and yaw 
motion was modified. Note that the longitudinal motion 
used to place the rotation centre in the body sideslip 
algorithm was added to the that demanded by the 
classical algorithm. 

Two vehicle parameter sets were used in the tests; 
the first is based on a mid-sized front wheel drive saloon 
car, with parameters from the manufacturer and tyre 
parameters based on vehicle test data. This vehicle was 
chosen to be quite easy to drive with a tendency towards 
limit understeer. The second test vehicle is intended to 
be one which is difficult to control, particularly near the 
limit of grip with a tendency towards limit oversteer; the 
vehicle parameters are based on those of a small 
single-seater rear wheel drive racing car. The tyre 
parameters are based on those used in the first model 
with increased road-tyre friction coefficient µ, a shorter 
relaxation length, and tyre curves modified to give the 
desired limit behavior. 

Three groups of drivers were used as participants – 
‘expert’ drivers experienced in driving consistently near 
the performance limits of a vehicle and with some 
knowledge of vehicle dynamics; ‘advanced’ drivers 
with some experience of driving a vehicle near the limit; 
and ‘normal’ drivers, those who have only driven on the 
public road and have little or no experience of vehicle 
behaviour beyond the linear region. The expert group 
(and to a lesser extent the advanced group) are key to 
these tests as experience of non-linear vehicle behaviour 
is necessary in order to evaluate how realistic the 
various cueing algorithms are in these tests. The group 
of normal drivers was included to see how they rate the 
motion when spending an extended period of time in the 
non-linear regime for the first time, and to compare the 
results of expert drivers with those from a wider range 
of people. 

The course chosen was a 2.1km race circuit with a 
mixture of low- and high-speed corners, figure 1. A race 



AVEC ’12 

circuit was chosen in order to prompt drivers to push the 
vehicle towards the limits of its capabilities. 

 
Fig. 1 Circuit layout 

 
The initial intention was for the drivers to spend 

some time getting used to the vehicle behavior and track 
layout, before proceeding to do pair-wise comparison 
tests between the three algorithms. However, pre-tests 
indicated that the choice of algorithm in the 
acclimatization laps had a significant effect on the 
driver’s learning process. It was therefore decided to 
modify the experimental process such that, after 3 laps 
to become accustomed to the general vehicle behaviour 
and track layout, a set of pair-wise comparison tests was 
carried out (i.e. while the learning process was ongoing). 
After this the subjects were asked to drive 3 further laps 
to give them more time to learn the vehicle’s handling 
characteristics and then another paired comparison test 
was carried out, with the intention that this would take 
place after most learning had been completed. This 
process was done for both vehicle models; the more 
easily-controlled saloon car was used first as it was 
judged that this was easier to learn and therefore gave 
the driver time to learn the track at the same time. 

Each set of pair-wise comparisons comprised seven 
laps; this is the minimum number of laps required to 
evaluate all possible algorithm pairings in both 
directions. The pair order was varied for each of the 
four pair-wise sets that each participant carried out and 
also varied between participants, in order to eliminate 
order effects as far as possible. The participants were 
not aware of which cueing algorithm they were driving 
at any point, nor in fact were they told how many cueing 
algorithms were being compared. 

After each lap in the set of seven (except the first), 
the participants were asked to evaluate how realistic the 
simulator was on the lap just completed compared to the 
one before; they were asked for responses on a Likert 
scale, table 1. 

Much 
worse 

Worse About 
the same 

Better Much 
better 

-2 -1 0 +1 +2 
Table 1 Likert scale for paired comparisons 

 

If the participants had any additional comments these 
were also recorded. 
  
4. RESULTS  
  

The first analysis of the pairwise results calculates a 
total score for each algorithm based on the Likert scale 
values for each paired comparison. First, each 
participant’s results are normalized by the mean 
absolute value of their non-zero scores; this is done to 
eliminate the effect of the participants’ differing 
interpretation of the Likert scale levels. For example, if 
a participant scores mostly ±1 but on a few occasions 
scores ±2 then, after normalizing, these will have a 
greater significance than they would for a participant 
who consistently scores ±2. Once the results have been 
normalized, the total scores for the three algorithms are 
calculated; for each paired comparison result, the 
winning algorithm’s score is increased by the 
normalized rating and the losing algorithm’s score is 
decreased by the same amount. These total scores are 
calculated for the two vehicles separately; the scores for 
the complete set of participants are shown in figure 2. 
 

 
Fig. 2 Total normalized scores (top: saloon, bottom: 

race car) for all participants 
 
For both vehicles the body sideslip algorithm is the 
clear ‘winner’; for the saloon car the MPC algorithm 
comes in second and the classical algorithm is worst, 
although both have a negative overall score. For the race 
car the MPC algorithm comes out worst, again with 
both it and the classical algorithm having a negative 
score. 

The results for the five expert drivers are shown in 



AVEC ’12 

figure 3. As with the combined results the body sideslip 
algorithm performs well with a positive score and the 
classical algorithm has a large negative score; the main 
difference is in the MPC results. Here, the MPC 
algorithm has a score close to that of the sideslip 
algorithm for both vehicles and, for the saloon car, there 
is even a slight preference for the MPC algorithm. In 
general, the expert drivers commented that the MPC 
algorithm gave good feedback about the behaviour of 
the vehicle up to a point near the limit of grip, whereas 
the body sideslip algorithm gave very good yaw 
feedback on turn-in and on the transition into limit 
oversteer. This appeared to be particularly true in the 
race car; a few of the expert drivers commented that the 
body sideslip algorithm gave them fast enough feedback 
to maintain good control of the race car with its 
higher-frequency dynamics. Some also said they felt 
like the body sideslip algorithm allowed them to drive 
in a closed-loop manner, rather than relying on 
open-loop inputs based on experience from previous 
laps. Note that all these comments were made during the 
paired comparisons, i.e. the participants were unaware 
of how many algorithms there were and which they had 
just driven. These results suggest that a composite MPC 
and body sideslip cue (with the MPC cue providing 
feedback away from the limit and body sideslip 
providing extra information near/beyond the limit) 
would perhaps be a good all-round solution and it is 
intended that this be investigated in future work. 

 
Fig. 3 Total normalized scores (top: saloon, bottom: 

race car) for expert drivers 
 
An alternative analysis uses a least squares (LS) 

regression to fit a model to the data. The problem is 
formulated as Uθ = y where the matrix U describes the 

permutations of the various tests (for example the row 
for the first algorithm followed by the second algorithm 
is [-1 1 0]), the vector y contains the results of the tests, 
and the vector θ is calculated as the scores for the three 
algorithms that fit the data best. The results, again 
calculated for all participants and separately for the 
expert group, are shown in figures 4 and 5 (note that in 
each case the classical algorithm is set as the baseline 
with a score of zero). 

 
Fig. 4 LS regression results (top:saloon, bottom: race 

car) for all participants 
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Fig. 5 LS regression results (top:saloon, bottom: race 
car) for expert drivers 

 
The regression results largely agree with the results 

of figures 2 and 3, the body sideslip algorithm appearing 
to be the best algorithm overall with the MPC algorithm 
being a close second for the expert drivers but 
performing badly in the combined results. 

Applying the Friedman test (see e.g. David [12]) to 
the results gives an indication of whether the null 
hypothesis (in this case that the cueing algorithm has no 
effect on the results) is true; in other words it is a 
statistical measure of how likely it is that the 
observations are due to significant differences in the 
effectiveness of the three algorithms and not just a result 
of noise in the results. The test was carried out on two 
permutations of the normalized score data; one with the 
results grouped into blocks by participant, and the other 
with the grouping done by run. The p-values calculated 
for the two cases are, respectively, 0.0008 and 0.0011 
and thus the null hypothesis can be rejected with some 
confidence (a threshold of 0.05 is often quoted as a 
reasonable cut-off for rejection of the null hypothesis, 
see e.g. Noether [13]). 
 
5. CONCLUSION  
  

Two new cueing algorithms have been compared 
with a commercially-supplied algorithm for driving in 
the non-linear region of vehicle behaviour. The two 
algorithms represent, in the form of the MPC algorithm, 
the best possible algorithm that follows the ‘standard’ 
motion-tracking approach to cueing and, in the body 
sideslip algorithm, a new approach to cueing that is 
designed to give the best information about the vehicle 
state to the driver. 

The results of the bidirectional pair-wise 
comparisons indicate that the body sideslip algorithm is 
best, with the MPC algorithm a close second for the 
expert drivers. Many drivers made comments along the 
lines that the body sideslip angle provided them with the 
feedback necessary to pick up the current vehicle state 
quickly enough to maintain control of the vehicle near 
its limits. 

It is anticipated that a composite algorithm that 
combines the MPC and body sideslip algorithm would 
provide good feedback for all driving scenarios; it is 
intended that such an algorithm be developed and tested 
in future. 
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