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ABSTRACT

In this thesis we will consider two mathematical models on malaria transmission and patho-

genesis. The transmission model is a human-mosquito interaction model that describes the

development of malaria in a human population. It accounts for the various phases of the

disease in humans and mosquitoes, together with treatment of both sick and partially im-

mune humans. The partially immune humans (termed asymptomatic) have recovered from

the worst of the symptoms, but can still transmit the disease. We will present a mathematical

model consisting of a system of ordinary differential equations that describes the evolution of

humans and mosquitoes in a range of malarial states.

A new feature, in what turns out to be a key class, is the consideration of reinfected

asymptomatic humans. The analysis will include establishment of the basic reproduction

number, R0, and asymptotic analysis to draw out the major timescale of events in the process

of malaria becoming non-endemic to endemic in a region following introduction of a few

infected mosquitoes. We will study the model to ascertain possible time scale in which

intervention programmes may yield better results. We will also show through our analysis of

the model some evidence of disease control and possible eradication.

The model on malaria pathogenesis describes the evolution of the disease in the human
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host. We model the effect of immune response on the interaction between malaria parasites

and erythrocytes with a system of delay differential equations in which there is time lag

between the advent of malaria merozoites in the blood and the training of adaptive immune

cells. We will study the model to ascertain whether or not a single successful bite of an infected

mosquito would result in death in the absence of innate and adaptive immune response.

Stability analysis will be carried out on the parasite free state in both the immune and non

immune cases. We will also do numerical simulations on the model to track the development of

adaptive immunity and use asymptotic methods, assuming a small delay to study the evolution

of the disease in a naive individual following the injection of small amount of merozoites into

the blood stream. The effect of different levels of innate immune response to the pathogenesis

of the disease will be considered in the simulations to elicit a possible immune level that can

serve as a guide to producing a vaccine with high efficacy level.
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CHAPTER 1

INTRODUCTION

1.1. The biology of malaria

Malaria is one of the most fatal diseases in the world. The symptoms that characterised

malaria may have been observed as far back as the prehistoric period [89], through the classical

era but it was not until the European renaissance period that the name malaria was derived

from the Medieval Italian word, mal aria meaning “bad air”, thinking that the foul vapours

emanating from the stagnate water and swamps was the cause of fever, a major symptom of

the disease.

A brief historical overview of the disease shows that some descriptions of what seemed

to be the disease symptoms are given in the historical records of some early civilisations.

The Chinese record, Huangdi Neijing describes the disease as repeated fever paroxysm that

causes enlargement of the spleen with the potential of generating an epidemic. Ateminisinin

combination treatment, a front line drug adopted by the World Health Organisation for the

treatment of malaria came from a Chinese plant, Qing-hao. This was discovered about 2300

years ago when it was first used to treat acute intermittent fever episodes. An account of
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the disease is also given in the ancient Egyptian medical Papyri. For instance, the ancient

Hindus of India ascribe the disease to the bite of a certain insect. Ancient Greeks, including

Homer, Empedocles and Hippocrates also referred to the disease as having characteristics of

intermittent fever causing enlarged spleens seen in people living in marshy places. It is believed

by some researchers that malaria must have been responsible for the fall of the Roman Empire

following an archaeological discovery of the presence of malaria in the bones of a Roman child

who died 1500 years ago. The cause of malaria was not known from the down of history

until later part of the 19th century when Charles Laveran discovered the malaria parasite

in human blood in Africa. Few years later, Giovanni Grassi and Raimondo Filetti used the

word plasmodium to name the malaria parasite and in 1897, Ronald Ross demonstrated that

plasmodium parasite can be transmitted from infected human to mosquitoes.

The aim of this chapter is to provide the reader with some of the biological and historical

background of malaria in an attempt to create an insight to the problem that forms the basis of

this study. Malaria is an infectious disease with characteristic symptoms of recurrent episodes

of chills, fever, sweating, and anaemia mostly prevalent in tropical climatic regions caused by

the parasitic infection of red blood cells by a protozoan of the genus Plasmodium, which is

transmitted from human to human by the bite of an infected female anopheles mosquito [3],

which requires a blood meal to nurture its eggs. Plasmodium parasites that cause diseases

in humans are basically of four species namely, plasmodium falciparum, plasmodium vivax,

plasmodium ovale and plasmodium malariae. Falciparum malaria caused by plasmodium

falciparum is far more severe than other types of malaria, which is being described as the

most deadly of all types [48]. The parasite undergoes a series of changes as part of its complex

life cycle.

WHO revealed that malaria kills at least one million people annually in sub-Saharan Africa
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[116] with the potential to significantly increase in response to climate change (due to the

role of temperature and rainfall in the population dynamics of its mosquito vector) [63, 122].

Since malaria increases morbidity and mortality, it continues to inflict major public health

and socio-economic burdens in developing countries, which in Africa, slows economic growth

by up to 1.3 percent each year [115].

Most researches conducted in malaria epidemiology border around disease transmission,

parasite interaction with the human host as well as the mosquito vector. These have resulted

in the generation and advancement of various intervention strategies aimed at control, elim-

ination and total eradication of the disease. Although Malaria elimination has already been

achieved in most of Europe, North America, Australia, North Africa and the Caribbean, and

parts of South America, Asia and Southern Africa [119], the disease still remains endemic

especially, in the tropical and sub tropical regions of the world. Tremendous contributions

are being made by the World Health Organisation with the aim of eradicating the disease

worldwide. This led to the initiation of the Roll-Back Malaria Programme saddled with

responsibilities bordering on two key areas of prevention and treatment. However, this eradi-

cation initiative has been met with some intervening factors reducing it to mere disease control

characterised by high mortality of children and pregnant women, the most vulnerable group.

The way to disease eradication appears to be far fetched since there is evidence of rapid

re-establishment of the disease in areas where it has been eliminated due to mosquitoes and

parasites that are resistant to chemicals to which they were previously susceptible [18, 121].

Other challenges include, use of adulterated drugs instead of the recommended ones, single

dosage medication or ‘quick treatment’ without complete clearance of parasites, the paradox

of partial immunity or asymptomatic parasite carriage. The issue of asymptomatic parasite

carriage is crucial in the the transmission and pathogenesis of malaria. Intermittent Preventive
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Treatment (ITP) is part of the public health programme instituted by the WHO with the aim

of treating and clearing existing malaria parasites and preventing new infections in children

and pregnant women. Due to ongoing debates on whether or not asymptomatic carriers

should be treated, an increased knowledge on the asymptomatic carriage of malaria parasites

is needed to assess the risk-benefit ratio of Intermittent Preventive Treatment [117].

Due to a research carried out on the prevalence of asymptomatic carriage of P. falciparum

in sub-saharan Africa, Ogutu et al. [85] maintains that a large proportion of P. falciparum

infections are asymptomatic or sub-clinical and microscopy-detected levels of asymptomatic

carriage as high as 39% on children under 10 years old have been reported. Based on this

they presented a hypothesis that “if a significant reduction of the malaria parasite pool could

be obtained through treatment of asymptomatic carriers, over a period of time, a reduction

in disease transmission could be obtained across the entire endemic population, even in ar-

eas of high transmission”. Without testing the hypothesis, the paper highlights some of the

implications including the benefits and challenges associated with the treatment of asymp-

tomatic carriers. Therefore, it becomes imperative to understand their role in perpetuating

an endemic malaria, for which mathematical modelling can play a key role.

In this thesis, we present a mathematical modelling framework to explicate the dangers of

partial immunity necessitated by ‘quick treatment’ through intake of single dosage of malaria

medicine leading to inappropriate clearance of parasites in mostly malaria endemic regions.

The discovery of malaria vaccine would be a sure way to disease eradication. Thus, concerted

efforts are required to create adequate understanding of the pathogenesis of the disease in

the human host. The blood stage parasite is the main cause of disease pathology and to

date, efforts to generate an effective blood stage vaccine have not been successful on the

ground that clinical immunity is slow to develop and short lived and one reason for this is the
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extensive antigenic diversity found in plasmodium parasite leading to a poor understanding

of protective host immune responses [25]. We also present a mathematical model to describe

the key processes involved in the interaction of blood stage parasites (merozoites), healthy

erythrocytes and the human immune system. In the remaining subsections we shall discuss

the structure of the thesis, the life history of the malaria parasite and intervention strategies.

1.1.1. The structure of the thesis

This thesis is made up of 6 chapters. In chapter 1 we present the introduction to our work

in which some relevant biological issues leading to the work are discussed. In chapter 2,

we present a review of some infectious disease models including mathematical models in

malaria epidemiology to prepare the background to the transmission model. We present the

derivation and analysis of the transmission model in chapter 3 and round up the chapter

with a brief discussion of the numerical simulations and asymptotic analysis. In chapter 4

we discuss the immune system in relation to malaria infection and a brief review of some

relevant mathematical models as this will create an enabling environment in the derivation

and analysis of the in-host model in chapter five. This is followed by an overall conclusion

and suggestions for future work in chapter 6.

1.2. Life cycle of malaria parasite

In this section we present the life cycle of the plasmodium parasite. Understanding the

various stages in which the parasite exists will provide some useful information to the reader

by creating an understanding of the modelling methodology that we have used in this thesis.

The malaria parasite has a complicated life cycle involving a mosquito and a human, which

can be identified in three phases namely the sporozoite phase, merozoite or erythrocytic phase

and gametocyte phase. The merozoite phase starts and ends within the human host whereas
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Figure 1.1: A figure describing the life cycle of P. falciparum, the most deadly of all Plasmodium species. Other species have

a similar life cycle. However, time of development from one stage to another varies. Following infection from a mosquito bite,

the parasite in the form of sporozoites evade the immune system and evade the liver where they undergo asexual reproduction.

A large number of Merozoites, which are products of the asexual reproduction are released into the blood steam. Each merozoite

invades a red blood cell and reproduces asexually. After approximately 48 hours the erythrocyte ruptures and quickly invades a

fresh erythrocyte to renew the cycle. Some merozoites differentiate into male and female gametes that are later picked up by a

feeding mosquito. Sexual reproduction occurs in the stomach of the mosquito and in addition to some form of asexual replication,

sporozoites are released to complete the cycle. This picture is reproduced, with kind permission, from Alan F. Cowman [25].

the parasite in the first and third stages need both the mosquito and human environments to

strive. The female anopheles mosquito requires blood meal to nurture its eggs and during the

process of blood feeding it injects the malaria parasite in form of sporozoites that preoccupy

its salivary glands into the body of its human host at the site of bite. These sporozoites are

conveyed via the circulatory system to the liver after evading innate immune cells, in which

they invade hepatic cells.

Each of these sporozoites penetrates a liver cell using it to reproduce asexually through
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a process often referred to as exoerythrocytic schizogony culminating in the production of

merozoites, which are released into the bloodstream. During the process of schizogony an

infected hepatic cell or red blood cell passes through four metamorphic stages namely young

ring, old ring, young trophozoite and old trophozoite to become a schizont. However, this pro-

cess may vary depending on the plasmodium species. For instance, for some malaria parasites

such as Plasmodium vivax and Plasmodium ovale, the development of certain trophozoites is

arrested at earlier stages to form some temporarily dormant cells termed hypnozoites, which

may reactivate after some weeks, months, or years being responsible for relapses of the disease

[27]. Once these merozoites are released into the blood stream, each starts another round of

asexual replication using a red blood cell and after approximately 48 hours, except Plasmod-

ium malariae that maintains a 72 hour cycle, each surviving merozoite from any of the other

three species produces a second generation of merozoites. Immediately after the erythrocyte

invasion, the Plasmodium falciparum parasite has the appearance of a ‘ring’ and after about

12 hours it gradually adopts a more solid appearance known as a ‘young trophozoite’, which

continues to grow after 24 hours to become a schizont or segmenta and after about 12 hours

later ruptures to release daughter parasites that infect other erythrocytes [45]. The pro-

duction of second and subsequent generations of merozoites increases the level of parasitemia

creating intermittent fever paroxysms and other disease symptoms due to inflammations from

continuous rupturing of infected erythrocytes. Plasmodium falciparum merozoites attack all

red blood cells, not just the young or old cells, as do other types and a patient with this type

of malaria can die within hours of the first symptoms [71]. Prolonged fever destroys so many

red blood cells causing blockage of the blood vessels in vital organs (especially the kidneys),

which in some cases culminates in the enlargement of the spleen [7]. When malaria infection

is left untreated for a long time, it can lead to many complications including severe anaemia.

7



There may be brain damage, leading to coma and convulsions. The kidneys and liver may

also fail [35].

An infected red blood cell committed to a further generation of merozoites, passes through

a period of schizogony as illustrated in Figure 3.3, with permission from [25]. The period

starts from an immature ring stage, through trophozoite stage to a mature schizont, and

eventually bursts to release merozoites. As an alternative to continuous merozoite replication

cycles, some of these merozoites differentiate into sexual forms of the parasite called game-

tocyte. These gametocytes, made up of the male form (microgametocytes) and the female

form (macrogametocytes) are later picked up by a female anopheles mosquito during blood

feeding. Fertilization occurs in the stomach of the mosquito as a microgamete becomes flag-

ellated and penetrates a macrogamete to form a zygote. The zygote developed into a motile

form oockinete and penetrates the midgut wall of the mosquito for further development into

an asexual form, oocyst. After rounds of multiple replication the oocyst ruptures to release

sporozoites, which migrate to the salivary gland of the mosquito waiting to be injected into

the skin of the human host.

1.3. Intervention strategies and immunity to malaria

The global struggle to combat malaria is being led by the world Health Orgaisation (WHO).

It has been a joint effort by local, national and international governments including some

non governmental organisations. There is no vaccination yet for the disease but certain

measures are being taken to control it. These control measures are being taken under a

Global Partnership programme called Roll Back Malaria (RBM), targeted at reducing the

burden of the disease, in particular for the most vulnerable, namely children and pregnant

women. In order to throw more light on our research we will have a brief survey of the main

control strategies that have been so far adopted in the fight against the disease. The control
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measures include

• Intermitent preventive treatment (IPT) especially, for pregnant women during antinatal

and infants irrespective of disease symptoms.

• The use of Insecticide-treated bed nets (ITN)

• Prompt and effective management of the disease through testing, treating and track-

ing (T3) of every malaria case using antimalarial drug combination (eg. Ateminisinin

combination treatments).

• Reducing mosquito population through the destruction of breeding sites or killing of the

larva stage at breeding sites that cannot be destroyed.

• Use of indoor residual spaying (IRS) in killing infected mosquitoes resting indoors after

feeding and susceptible mosquitoes that may be hiding indoor waiting to feed on humans.

• Introduction of insecticide-treated livestock in treating castles in areas where mosquitoes

feed on domestic animals

• Introduction of genetically modified mosquitoes that would produce single sex young

ones. Although this has not been implemented but researches are ongoing in this area.

• Administration of transmission blocking drugs like gametocydal drugs to reduce the

transition of merozoites to gametocytes.

These control measures have not been able to produce the desired results as they are bound to

face some challenges. For instance one of the greatest challenges in the fight against malaria is

drug resistance which has been on the increase. Similarly, the benefits of intermittent preven-

tive treatment may not be certain since, the effects of repeated treatments on the development

of immunity are the major challenges of intermittent preventive treatment (IPT)[117]. The
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treatment policies are designed to reduce morbidity and mortality by ensuring that rapid and

complete cure of every malaria case is achieved so that fatal and severe disease situations

including cases of chronic anaemia are prevented. Another important objective of effective

treatment is to reduce the human reservoir of infection so that disease transmission can be

minimised.

The World Health Organisation aims at tackling malaria at the community level so as to

reduce the intensity of malaria transmission at the local level by protecting people against

infective mosquito bites reducing the density of mosquitoes as well as their life span. The

application of indoor and outdoor residual spraying, clearing of home surroundings, good

drainage systems, use of treated bed nets, among others are geared towards achieving these

objectives. For instance one of the greatest challenges in the fight against malaria is drug re-

sistance which has been on the increase. Mono-therapies have been identified as contributing

immensely to drug resistance and the recommended use of Ateminisinin combination treat-

ments is a measure to cub this form of drug resistance. This is an indication that single dose

treatments do not always result in complete parasite clearance. Thus, in addition to creating

drug resistance, mono therapy makes the patient temporarily asymptomatic.

Based on the problem we have described so far our objective is to derive a mathematical

model that can specifically characterise the dynamics of the disease in endemic regions with

special interest in its transmission and control. We will employ relevant techniques with the

aid of relevant data characterising intensive malaria transmission to analyse the model with

the aim of determining possibilities of elimination of the disease. In the next chapter we will

discuss some important infectious disease models and their relevance to malaria epidemiology.
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CHAPTER 2

MODELLING BACKGROUND

2.1. Infectious disease models

Since malaria is an infectious disease, its models may share in common some characteristic

features of other infectious disease models. Any investigation of such a model must take into

consideration the mode of infection or transmission, that is whether the disease is contagious

or vector transmitted. This however, would be one of the determining factors as to whether an

epidemic would prevail or the disease is habitually prevalent in the population. A particular

disease could be an epidemic, pandemic or endemic. Contagious diseases sometimes turn out

to be epidemic especially, when new cases in a particular human population within a particular

period exceed peoples expectations based on recent experience. Often, an epidemic can be

pandemic in that it spreads and affects a very high proportion of the population across a large

region within a continent or between continents. On the other hand, an infectious disease

is said to be endemic if it is persistently prevalent in a population. Most of the infectious

disease models reviewed focus on explicating the dynamics of the disease by investigating its

incidence and prevalence through some basic assumptions relating the affected population,

11



the status and spread of the disease, and the mode of recovery. These models are the well

known compartmental models SI, SIS, SIR, SEIR and SEIRS, S=Susceptible, I=Infectious,

E=incubating, R=Recovered [17, 50, 68]. However, Hethcote [50], discusses two additional

models, MSEIR and MSEIRS where M represents child immunity transferred by a mother

in form of antibodies through the placenta. Hence a newborn may have temporary passive

immunity to an infection and after the antibodies disappear from the body the infant moves

to the S class.

The SI model describes a simple epidemic in which a susceptible population is exposed to

infection. The basic foundation of this model can be found in the following assumptions.

• The disease is contagious and can only be transmitted from human to human.

• The rate that susceptible people and infected people interact is proportional to both

the number of susceptible people and the number of infected people with the rate of

proportionality expressed by a contagion parameter.

• A susceptible who gets infected becomes infectious immediately and remains so indefi-

nitely without recovery.

• The duration of the epidemic is relatively short, therefore, the population is always

constant and closed meaning that there are no births and deaths.

The SI model constructed on the basis of the foregoing assumptions is a coupled system of two

ordinary differential equations. The rate of change of the susceptible population with respect

to time would be decreasing and that of the infective would be increasing at a rate proportional

to the contagion parameter or precisely, the infectious contact rate. The implication of this

is that, if a susceptible population is exposed to an infectious disease with some proportion

of the population being infected then the disease would spread exponentially to engulf the

12



entire population. The SI epidemic model does not describe an epidemic realistically since an

infective may die or recover and if in some diseases there is no immunity, then the recovered

becomes susceptible again. The SIS model describes a disease scenario where infected people

have the tendency of recovering from the disease without gaining immunity. Thus, infected

people become susceptible again immediately after recovery. It might be appropriate for some

sexually transmitted diseases like gonorrhoea because after recovery, the host is once again

susceptible to infection [17]. The SIR model describes an infectious disease in which some

infected people recover from the disease and after acquiring immunity cannot be susceptible

again. This model unlike the SI and SIS models may have some practical implications. For

instance it may be suitable for the transmission of a flu epidemic since once a person has had

a particular strain of flu, his immune system prevents him from being reinfected with that

strain. The classical SIR model is of the form

dS

dt
= −βSI,

dI

dt
= βSI − αI,

dR

dt
= αI,

where β is the contagion parameter and α, the recovery rate assumed to be proportional

to the number of infected people. The system is nonlinear and cannot be solved explicitly,

although implicit solutions can be found. In addition to determining equilibrium and stability

of the model, we can obtain by analytical means the final state of the epidemic. We note

that this form of the SIR model does not involve demography but inclusion of some host

demographic factors like birth and death may alter its dynamics by permitting the disease

to persist in the population in a long term. Despite its limitations as entrenched in the

assumptions characterising the SIR model, it is the basis for more involved deterministic

models in epidemiology. The SEIR model is an improvement on the SIR in most disease case
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where incubation is relevant. It involves recovery and immunity without the possibility of

contacting the disease again but differ slightly from the SIR model in that the later, once

being infected, passes through an incubation period E before showing disease symptoms.

The SEIRS models describe the dynamics of endemic diseases where individuals who contact

the disease progress through a period of incubation before showing disease symptoms and

becoming infectious and after recovery from the disease may gain partial immunity and later

become susceptible after loss of immunity. Although, early transmission models in malaria

epidemiology seem to have taken the shape of the SIR model, the SEIRS model appears to

portray a better representation of the dynamics involved. Malaria transmission is a cyclic

relationship between an infectious human population and a susceptible mosquito population

on one hand and an infectious mosquito population and a susceptible human population in

the other hand. Various mathematical models have been constructed to help understand the

dynamics of malaria. We present a review of some of these models in the next section that

are closely related to the work in this thesis.

2.2. A survey of mathematical models in malaria epidemiology

2.2.1. Transmission models

Sir Ronald Ross was the first to construct a mathematical model for malaria [96]. He used

two equations, one representing the rate of change of infected humans with time and the

other that of infected mosquitoes. One important outcome of the analysis of his model is

that of threshold density of the Anopheles mosquito, which according to him, “to counter

malaria anywhere we need not banish Anopheles there entirely but we need only to reduce

their number below a certain figure”. Based on this, Kermack and McKendrick published a

classic paper in 1927 that discovered a threshold condition for the spread of a disease and

gave a means of predicting the ultimate size of an epidemic [17]. In 1957, MacDonald made
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further extensions on the work on the malaria model of Ross [65].

In a systematic historical review of mathematical models in epidemiology, Smith et al.

[103] avers that several mathematicians and scientists contributed to the Ross-Macdonald

model for a period of 70 years. The model plays a crucial role in the development of malaria

transmission model and was first written by Aron and May in 1982 as

dx

dt
= mabz(1− x)− rx, (2.2.1)

dz

dt
= ax(1− z)− gz, (2.2.2)

where x and z are fractions of infectious humans and adult females mosquitoes respectively.

The parameter a represents the number of bites a single female mosquito gives to humans and

b is the probability that a single bite transmits infection to the human. The average number

of female mosquitoes is represented by m. The mortality rates of humans and adult female

mosquitoes are gz and rx respectively. This model has been extensively discussed in Chitnis

[21]. Its assumptions are based on a simplified process-based description of the pathogen life

cycle [103], as represented by the biology in section 1.2. These are described by the following

four events.

• Mosquito transmits pathogen to susceptible human during blood feeding.

• Pathogen infects human and multiplies to a high density.

• Susceptible mosquito ingests pathogen during blood feeding.

• Pathogen developes in the mosquito and migrates to the salivary gland ready to be

injected into a susceptible human.

Further work done on the Ross-Macdonald model by Bailey in 1982, led to the general theory

that describes malaria transmission in form of the classical SIR-SI model and since then
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considerable modifications have been made in the quest for a model that will better describe

the mosquito-human interaction process and pathogen transmission.

A more sophisticated model that incorporates acquired immunity in malaria was con-

structed by Dietz et al. [30], which gave a more realistic description of malaria epidemiology

at the Garki area in Nigeria, given entomological input and provided conditional inputs and

comparative forecasts for several specific intervention.

Many malaria models involving immunity have been reviewed in [20, 22, 81]. The models

proposed by Anderson and May [5] and Aron and May [9] use the assumption that acquired

immunity does not depend on duration of exposure. While the models of Aron [7, 8] and

Bailey [12] are based on the assumption that immunity is boosted by additional infections.

A more comprehensive mathematical model typical of a characteristic endemic malaria is the

one proposed by Ngwa and Shu [82]. A malaria model with periodic mosquito birth and

death rates was proposed in [29]. The paper considers a novel situation where the birth and

death rates of mosquitoes and human death rate are periodic. Although the model does

not include incubating classes of both human and mosquitoes but they established a basic

reproduction number such that the disease will only prevail if this number was greater than

unity, otherwise the disease will die out. Another model involving the effects of seasonality

and immigrations of infected humans was proposed in [76]. The results show that the strength

of seasonality increases the number of infections and it is not possible to achieve a disease

free equilibrium in the presence of infective immigrants, signifying that the disease cannot

be completely eradicated if there is constant inflow of infected immigrants. Most prominent

in the models discussed so far is the concept of the basic reproduction number. The basic

reproduction number of an infectious disease is a very important concept in epidemiology.

This important quantity provides the key to transmission dynamics, indicating the ease by
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which major epidemics may be prevented and prospects for the eradication of an infection

[95]. The symbol R0 is often used to represent it. If a single infectious case is introduced

in a population of susceptibles and assuming the population evolves in a continuum sense,

it is expected to generate a chain of subsequent infections for the disease to fully register

itself (endemic) or die out eventually. The expected number of secondary cases that would

arise from the introduction of a single primary case into a fully susceptible population is

referred to as the basic reproduction number of the disease. R0 is a threshold parameter

which determines whether or not an infectious disease will be endemic, such that

• if R0 < 1 each successive infection generation is smaller than its predecessor, and the

infection cannot persist

• if R0 > 1 successive infection generations are larger than their predecessors, and the

number of cases in the population will initially increase, not necessarily indefinitely, but

the disease remains endemic.

The method of analytical solutions to these models have always been that of defining

a domain where the model is mathematically and epidemiologically well-posed, proving the

existence and stability of a disease-free equilibrium point, defining the basic reproduction

number and describing the existence and stability of the endemic equilibrium points.

2.2.2. Summary from the survey

We have presented a review of some of the known models found to be relevant to our work.

To the best of our knowledge, none of the transition models considers the assumption that

immune humans being bitten by infectious mosquitoes may be constantly incubating and there

is the possibility of some immune humans falling sick immediately after loss of immunity. We

incorporate into our model some of the features found in the SEIRS model of Ngwa and

17



Shu [82]. In the next chapter we will present and analyse the proposed model of malaria

transmission.
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CHAPTER 3

TRANSMISSION MODEL

In this chapter we derive and study an epidemiological model of malaria. This model extends

that of Ngwa and Shu [82] to take into account the various phases of the disease in humans

and mosquitoes. The partially immune humans (termed asymptomatic) have recovered from

the worst of the symptoms, but can still transmit the disease. A new feature, in what turns

out to be a key class, is the consideration of re-infected asymptomatic humans leading to an

additional incubating class. We first derive the model, then we undertake stability analysis to

establish a basic reproduction number and finally employ a time scale analysis to gain insight

into how an epidemic evolves from a small outbreak from a disease free population. The

modelling is relevant for a 0.5 year timescale in which the population is not expected to change

too much in the absence of malaria. The modelling also takes into account a routine treatment

administered to symptomatic individuals. In addition, we consider a putative treatment for

post symptomatic humans, to limit the capacity for asymptomatic human carriers of the

disease.
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3.1. Derivation of the model

A population of humans in a region is susceptible to malaria infection if the environmental

conditions in that region favour the breeding of the anopheles mosquitos. We recall from

Section 1.2, that once an infectious female anopheles mosquito injects malaria parasites into

a human at the site of bite, these parasites undergo some developmental stages within the

host. These stages partition the host into a waiting state to disease manifestation, or disease

state or non-disease state in the presence of parasites. In order to set the necessary framework

for the proposed model, we divide the human population into compartments of susceptible,

latent, latent asymptomatic, symptomatic and asymptomatic carriers, and that of mosquitoes

into susceptible, latent and infectious compartments. State variables in the model are given

in Table 3.1 and the movement between compartments is summarised in Figure 3.1, the

individual pathways to be discussed below.

State variable Description

N Total human population

C Susceptible human population

L Incubating human population

LA Number of latent asymptomatic infectious humans

S Number of symptomatic infectious humans

A Number of asymptomatic infectious humans

M Total mosquito (female anopheles) population

X Number of susceptible mosquitoes

Y Number of incubating (latent) mosquitoes

Z Number of infectious mosquitoes

Table 3.1: The state variables in the model .

The total population of humans and (female) mosquitoes are simply the sum of their
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respective state variables, i.e.

N = C + L+ LA + S + A,

M = X + Y + Z.

We use C to represent the set of susceptible humans who initially do not have malaria

parasites but have natural nonspecific immunity, whilst L represents the collection of humans

who have received infectious bites and are within the liver and early erythrocyte stage infection

(humans will remain in this state, untreated, for about 15 days). The S class involves those in

the erythrocyte stage that have developed both disease symptoms and gametocytes. Unlike

those in the L class, symptomatic infectious humans require treatment as those in the L class

do not know they are infected. Individuals reach a partially immune or asymptomatic status

A when they no longer have symptoms of the disease that would warrant clinical attention but

are still infectious to mosquitoes, which may be caused by improper treatment or reinfection

(individuals in this class can remain so for a mean time of around 165 days, provided they

  Births

Susceptible humans
    

Latent humans Symptomatic infectious

                  S

Asymptomatic infectious

                     A

Latent Asymptomatic

 
   Infectious
   contacts

   Infectious
   contacts

Infectious
contacts

Plasmodium 
    carriage
related deaths

Natural deaths Natural deaths

                   LA

LC

   Infectious mosquitoes    Latent mosquitoes Susceptible mosquitoes

                    Z                   Y                      X

        humans humans

                humans

Natural deaths        Births

Natural deaths Disease deathsNatural deathsNatural deaths

Treatment
  Treatment

Figure 3.1: Schematic representation of mosquito human interraction model. The rectangle indicates the state variables, the

ovals are actions within humans and mosquitoes and the hexagon indicates action between species.
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are not infected again). We use LA for individuals in the A class being bitten by infectious

mosquitoes. Since they carry both gametocytes and asexual parasites, loss of immunity may

cause their immediate transition into the S class instead of the C class. A mosquito is said to

be in the Y class as soon as it ingests gametocytes from an infectious human until the time

(about 12 days) before sporozoites migrate to the salivary gland when the mosquito becomes

infectious and proceed to the Z class. The LA, S and A classes are infectious to X while the

Z class infects C and A.

What is most fascinating about an infectious disease model is its suitability for disease

control, or ideally the eradication of infection. The practical use of such models must rely

heavily on the realism put into the model. As usual, this does not mean inclusion of all

possible effects, but rather the incorporation in the model mechanisms, in as simple a way as

possible, that appear to be the major components [77]. The model explains the dynamics of

both human and mosquito populations as they progress from susceptible noninfectious states

to infectious states. Malaria is transmitted when a susceptible human is bitten by an infected

Anopheline mosquito. The rate at which a susceptible person becomes infected is a function

of contact rate with infective mosquitoes and level of host susceptibility [90]. We assume

that mosquito biting vectors are equally susceptible and human infectiousness to mosquitoes

is determined solely by the gametocyte density or the density of infection in the human host

[55].

Susceptible humans get infected at rate βheZ
C
N

where eZ is the rate at which infected

mosquitoes bite (constant e being the biting rate per human per unit time), C
N

is the prob-

ability that the human bitten is susceptible and βh is the number of human infections per

bite. Likewise the rate of reinfection of an asymptomatic individual is βheZ
A
N

. The rate

at which uninfected mosquitoes obtain the plasmodium parasite from human carriers is
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e (βsS + βaA+ βaLA)
X

N
, noting that humans in class L are in the incubating stage of in-

fection and are not infectious to mosquitoes. Susceptible mosquitoes are recruited into the

mosquito population through a constant birth rate λm. Assuming that each mosquito has the

same biting behaviour, there will be a total of eM bites by mosquitoes on humans. But only

C
N

of these bites will be made on susceptible humans. The probability that a bite is made by

an infectious mosquito is Z
M

. It is important to note here that the parameter βh assumes that

not all bites by an infectious mosquito on a susceptible human can lead to infection. The

parameter βh ∈ [0, 1] is the proportion of bites by an infectious mosquito that passes on the

infection, where βh = 1 means all bites transmits the disease. However, βh = 0.086 in data,

so there is only a 10% chance of an infected mosquito to pass on its infection. The cross

infection rate βhe
Z
N

between the human and mosquito populations depends on the average

number of mosquito bites per unit time and the transmission probability normalised by the

human population [15, 120]. We also assume that the recruitment of humans into the suscep-

tible population occurs at a constant per capita birth rate λh and apart from asymptomatic

individuals no human in the latent and symptomatic infectious classes would be affected by a

bite from an infectious mosquito. This assumption becomes necessary since we are primarily

concerned about how infectious bites from mosquitoes can lead to the disease. Those in the

L class are already in the process of transition into the S class who are entitled to treatment.

Incubating humans become infectious after a mean latency time 1
ηh

.

All human classes “die naturally” at per capita rate µh while some individuals in the S

class die at an additional rate αhS from the disease. The survivors receive treatment and

either recover with complete clearance of parasites to join the susceptible class at a rate

rsS (individuals undergo a 14-day treatment), or only recover from symptoms (after a 3-day

monotherapy) without parasite clearance to join the A class at a rate raS.
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The post symptomatic class, A still carry merozoites and produce gametocytes, so can

infect biting mosquitoes. A human can be in this state for several weeks or months and hence

play an important part in sustaining an epidemic, noting that symptomatic individuals are

in this state for 3-14 days [19, 34, 38]. It seems that if there exists some treatment to target

post infected humans, then the pool of people who infect mosquitoes will be reduced. We

then consider in our model a putative treatment which removes individuals from the A and

LA class down to C and L respectively. The effect of the treatment parameter, φθh (φ are

being treated) in R0 will be an important part of the analysis.

Susceptible mosquitoes get infected through infectious contacts with infectious humans at

a rate e (βsS + βaA+ βaLA) X
N

and proceed to the incubating compartment. Although there

are some conflicting findings on whether or not the plasmodium parasite reduces the life span

of infectious mosquitoes, direct laboratory results of [40, 52, 58, 59] suggest that the malaria

parasite reduces mosquito survival. Since mosquitoes do not recover from infection it follows

that the infectiousness of mosquitoes end in their death [15, 82]. We assume that mosquitoes

in the incubating class die naturally at a rate µmY and the rest get infectious at a rate ηmY

to join the infectious compartment which they remain until their death either naturally, or

through the carriage of infectious parasites in their body [76] at a rate αmZ.

Using the above assumptions, then the system of equations for the human classes are

dC

dt
= λhN + rsS + laA− βhe

Z

N
C − µhC + φθhA, (3.1.1)

dL

dt
= βhe

Z

N
C − ηhL− µhL+ φθhLA, (3.1.2)

dLA
dt

= βhe
Z

N
A− ηhLA − µhLA − φθhLA, (3.1.3)

dS

dt
= ηhL+ ηhLA − αhS − rsS − raS − µhS, (3.1.4)

dA

dt
= raS − βhe

Z

N
A− laA− µhA− φθhA, (3.1.5)

24



and for the mosquito classes are

dX

dt
= λmM − βse

S

N
X − βae

A

N
X − βae

LA
N
X − µmX, (3.1.6)

dY

dt
= βse

S

N
X + βae

A

N
X + βae

LA
N
X − ηmY − µmY , (3.1.7)

dZ

dt
= ηmY − αmZ − µmZ, (3.1.8)

and the total populations are

dN

dt
= λhN − αhS − µhN, (3.1.9)

dM

dt
= λmM − αmZ − µmM, (3.1.10)

where (3.1.9) is derived from adding (3.1.1)−(3.1.5) and (3.1.10) is the sum of (3.1.6)−(3.1.8).

To close this system we need a set of initial conditions for each of the state variables. A

suitable set depends on the context of the study. In section 3.7 we will consider the evolution

of the disease in a disease free human population with a small number of infected mosquitoes.

Nevertheless, we impose

t = 0, N = N0, M = M0

as initial population values for humans and mosquitoes.

3.2. Parameter values

All the model parameters are listed in Table 3.2 together with values taken from various

sources. We note that these parameters are from P. falciparum malaria, the most deadly par-

asite, predominant in Sub-saharan Africa. Some of the data are experimentally measured and

some are values assumed in models. However, we have made some assumptions on parameters

that do not seem to have well defined values. In [21, 82] for instance, βa was considered to be

of lower value than βs as they arbitrarily assume in their model that the probability of trans-

mission of infection from recovered or partially immune humans to susceptible mosquitoes is
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one tenth the probability of transmission from infectious humans to susceptible mosquitoes.

But in this model we obtain the values of βa and βs based on the experimental findings of

[44] which reveals that asymptomatic humans are rather far more infectious than those in the

disease class. Although the mechanism of immunity to malaria is not well understood, Ngwa

and Shu [82] avers that a smaller proportion of humans recover from malaria without gaining

immunity.

3.3. Nondimensionalisation

Since the variables N and M are the sum of the relevant compartment values, it is convenient

to re-express the compartment values as population fractions using

Ĉ =
C

N
, L̂ =

L

N
, L̂A =

LA
N
, Ŝ =

S

N
, Â =

A

N
, X̂ =

X

M
, Ŷ =

Y

M
, Ẑ =

Z

M
,

so that

Ĉ + L̂+ L̂A + Ŝ + Â = 1, (3.3.1)

X̂ + Ŷ + Ẑ = 1. (3.3.2)

The time derivatives for the variables will become, using variable C as an example

dNĈ

dt
= N

dĈ

dt
+ Ĉ

dN

dt
= N

dĈ

dt
+ (λh − αhŜ − µh)NĈ,

There are a number of time scales in the system, mosquito life cycle (weeks), incubation and

symptom (weeks), population turnover (tens of years), asymptomatic clearance (∼ 6 months),

and the most suitable choice for the scaling depends on the context. We are focusing on an

endemic area and year time scale, in which the total population change is negligible in the

absence of the disease, hence we scale time with the asymptomatic susceptible transmission

parameter la, and write

t =
t̂

l̂a

27



so that t̂ = 1 is about 165 days. Recalling that M0 and N0 are the initial populations of

humans and mosquitoes respectively, we write

N = N0N̂ ,M = M0M̂

and define the following dimensionless parameters:

β =
βheM0

laN0

, b =
βse

la
, d =

βae

la
, η =

ηh
la
, µ =

µh
la
, λ =

λh
la
, α =

αh
la
,

γ =
rs
la
, ρ =

ra
la
, θ =

φθh
la
, f =

ηm
la
, q =

λm
la
, g =

µm
la
, h =

αm
la
,

and by substituting these new parameters into (3.1.1)−(3.1.10) and dropping the hats for

clarity we get

dC

dt
= λ+ γS + A− βZCM

N
− λC + αCS + θA, (3.3.3)

dL

dt
= βZC

M

N
− ηL− λL+ αLS + θLA, (3.3.4)

dLA
dt

= βZA
M

N
− ηLA − λLA + αLAS − θLA, (3.3.5)

dS

dt
= ηL+ ηLA − (α + γ + ρ+ λ)S + αS2, (3.3.6)

dA

dt
= ρS − A− βZAM

N
− λA+ αAS − θA, (3.3.7)

dX

dt
= q (1−X)− bSX − dAX − dLAX + hXZ, (3.3.8)

dY

dt
= bSX + dAX + dLAX − (f + q)Y + hY Z, (3.3.9)

dZ

dt
= fY − (h+ q)Z + hZ2, (3.3.10)

dN

dt
= −αSN + (λ− µ)N, (3.3.11)

dM

dt
= −hZM + (q − g)M. (3.3.12)

In solving the problem we can use (3.3.1) and (3.3.2) to reduce the number of ODEs. We

solve the system together with (3.3.1) and (3.3.2).
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Dimensional form Nondimensional parameter Value Value in terms of ε
βheM0

laN0
β 62.43 O( 1

ε2
)

ηh
la

η 11.1 1
ε

µh
la

µ 0.0056 O(ε2)
λh
la

λ 0.017 O(ε2)
αh
la

α 0.01 O(ε2)
rs
la

γ 11.5 O(1
ε
)

ra
la

ρ 54.45 O( 1
ε2

)
βse
la

b 7.2 O(1
ε
)

βae
la

d 38.2 O(1
ε
)

ηm
la

f 14 O(1
ε
)

λm
la

q 21.45 O(1
ε
)

µm
la

g 20.62 O(1
ε
)

αm
la

h 1.45 O(1)
φθh
la

θ

Table 3.3: List of dimensionless parameters and their definitions in terms of

the original parameters, the dimensional values. In the final column we express

the size of the parameter in terms of the small parameter ε = η−1 ≈ 0.09, this

being relevant for section 3.7.

The dimensionless parameter values are shown in Table 3.3 and the parameters in relation

to the small parameter ε (= η−1) are also included. We note from the rescalings that the

population of humans, N0, and mosquitoes, M0, need not be presented but only
M0

N0

. We

do not have data for malaria vectors/human populations, but we assume that the initial

female mosquito population M0 is ten times that of humans N0 due to the claim that in an

endemic area of dengue fever the ratio of female Aedes aegypti (the main vector of the virus)

population to human population is 10 : 1 [10]. Though the main vector in our case is the

female Anopheles mosquito, we expect that in an endemic malaria region, the distribution of

female An. gambiae mosquito will be well compared with that of Aedes aegypti. But the

rescalings are such that
M0

N0

only affects the parameter β. By definition, ε is the ratio of ηh and

la (i.e. the proportion of time for the latency period compared to the mean asymptomatic state
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timescale) and ε� 1, means that asymptomatic humans remain infectious for a longer time

compared to the latency period of humans. Analysing the model using ε as a small parameter

provides a convenient basis for the application of asymptotic methods in understanding the

effect of partial immunity on the spread of malaria.

3.4. Establishing the basic reproduction number of the transition model

The application of approaches like the traditional or intuitive method used in [5, 82] or the

next generation matrix method used in [21, 20] may be used in the determination of the

basic reproduction number, R0. Here we use the next generation operator approach, which

approximates the number of secondary infections due to one infected individual and express

R0 in the traditional form as suggested by van den Driessche and Watmough [31]. As usual

we consider a small perturbation of the disease free state (C = 1, X = 1, L = LA = S = A =

X = Y = Z = 0) and assume that growth and decay is much faster than population change,

i.e. M = N = 1, we consider the linearised system expressed in the form

R′ = FR− V R, (3.4.1)

where, R′ =
dR

dt
and

F =



0 0 0 0 0 β

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 d b d 0 0

0 0 0 0 0 0


, V =



a1 −θ 0 0 0 0

0 a0 0 0 0 0

−η −η a2 0 0 0

0 0 −ρ a3 0 0

0 0 0 0 a4 0

0 0 0 0 −f a5


, R =



L

LA

S

A

Y

Z


;

here, FR represents the emergence of new infections, V R the transition of these infections

between compartments and R the “reservoir of infection”. The constants a′is are expressed

in terms of the model parameters as follows:

a1 = η + λ, a0 = η + λ+ θ, a2 = α + γ + ρ+ λ, (3.4.2)
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a3 = 1 + λ+ θ, a4 = f + q, a5 = h+ q.

This method assumes that there is a non-negative matrix G = FV −1 that guarantees a unique,

positive and real eigenvalue strictly greater than all others. Computing the inverse of V yields

G =
1

b0



0 0 0 0 βb11 βb12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

f1 f2 f3 f4 0 0

0 0 0 0 0 0


(3.4.3)

where,

b0 = a0a1a2a3a4a5, b11 = fa0a1a2a3, b12 = a0a1a2a3a4, f1 = bb2 + db3, f2 = db4 + bb5 + db6,

f3 = bb7 + db8, f4 = db9, b2 = ηa0a3a4a5, b3 = ηρa0a4a5, b4 = a1a2a3a4a5, b5 = ηa1a3a4a5,

b6 = ηρa1a4a5, b7 = a0a1a3a4a5, b8 = ρa0a1a4a5, b9 = a0a1a2a4a5.

The characteristic equation of (3.4.3) in terms of the eigenvalue, σ, shows that four of the

eigenvalues vanish leaving the expression

σ2 =
β (bb2 + db3) b11

b2
0

, (3.4.4)

which expressed in terms of the model parameters gives

σ2 =
βηf (b (1 + λ+ θ) + ρd)

(η + λ) (α + γ + ρ+ λ) (1 + λ+ θ) (f + q) (h+ q)
. (3.4.5)

Although the next generation matrix demands that R0 = σ is the basic reproduction number,

in practice σ2 is often taken as R0 (indeed this was the assumption used in the original work

applying this method). We note from the numerator of (3.4) that the basic reproduction

number is proportional to the square of mosquito biting rate (e2) as expected.
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3.5. Steady state solution and model analysis

Consider the domain

Γ ∈ R10 = {C,L, LA, S, A,X, Y, Z,N,M : C ≥ 0, L ≥ 0, LA ≥ 0, S ≥ 0, A ≥ 0,

X ≥ 0, Y ≥ 0, Z ≥ 0, N > 0,M ≥ 0, C + L+ LA + S + A = 1, X + Y + Z = 1},
(3.5.1)

and suppose at t = 0 all variables are non-negative, then C(0) + L(0) + LA(0) + S(0) +

A(0) = 1 and X(0) + Y (0) + Z(0) = 1. If C = 0, and all other variables are in Γ, then

dC

dt
≥ 0. This is also the case for all other variables in (3.3.3)−(3.3.10). If N = 0, then

dN

dt
= 0 and M = 0 implies

dM

dt
= 0. But if N > 0 and M > 0, assuming λ > µ

and q > g i.e. λh > µh and λm > µm, then with appropriate initial conditions,
dN

dt
> 0

and
dM

dt
> 0 for all values of t > 0. We note that the right-hand side of (3.3.3)−(3.3.12)

is continuous with continuous partial derivatives, so solutions exist and are unique. The

model is therefore mathematically and epidemiologically well posed with solutions in Γ for all

t ∈ [0,∞). The disease free state (C,L, LA, S, A,X, Y, Z) = (1, 0, 0, 0, 0, 1, 0, 0) is locally and

globally asymptotically stable when R0 < 1 and unstable for R0 > 1, where

R0 =
βηf{b (1 + λ+ θ) + ρd}

(η + λ) (α + γ + ρ+ λ) (1 + λ+ θ) (f + q) (h+ q)
, (3.5.2)

is the expected number of secondary infection cases that would arise from the introduction of

a single primary case into a fully susceptible population. We note that R0 = 1 is a bifurcation

surface in which the system changes its stability status, but we will only show proof of

stability for the disease free state. Since R0 � 1 using Table 3.3 and the infectiousness of

asymptomatic humans to mosquitoes is significantly large, a good target for treatment is to

reduce the infectivity of asymptomatic humans (reduce d) and that of symptomatic humans

(reduce b) by increasing the treatment parameters θ and γ. An important task is to determine

an amount of treatment that can bring R0 to a safe level. For instance, for R0 to be brought
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down to unity, we will expect, θ to be

θc =
(η + λ)(α + γ + ρ+ λ)(f + q)(h+ q)(1 + λ)− βηf{b(1 + λ) + ρd}

βηfb− (η + λ)(α + γ + ρ+ λ)(f + q)(h+ q)
, (3.5.3)

in terms of the parameters.

3.6. Stability analysis of the transition model

Here we derive sufficient conditions for global stability of the disease free state from all initial

conditions ∈ Γ. The Jacobian matrix obtained by linearising system (3.3.3)−(3.3.10) about

the disease free equilibrium point, (C,L, LA, S, A,X, Y, Z) = (1, 0, 0, 0, 0, 1, 0, 0) is

Jdf =



−λ 0 0 a6 1 + θ 0 0 −β
0 −a1 θ 0 0 0 0 β

0 0 −a0 0 0 0 0 0

0 η η −a2 0 0 0 0

0 0 0 ρ −a3 0 0 0

0 0 −d −b −d −q 0 h

0 0 d b d 0 −a4 0

0 0 0 0 0 0 f −a5


(3.6.1)

with the a′is as defined above and a6 = α + γ. Its characteristic polynomial equation with

eigenvalues (κ) is

(κ+ λ)(κ+ a0)(κ+ q)(κ5 +H1κ
4 +H2κ

3 +H3κ
2 +H4κ+H5) = 0, (3.6.2)

where

H1 = a1 + a2 + a3 + a4 + a5

H2 = a2a5 + a3a4 + a4a5 + a1a2 + a1a3 + a1a4 + a3a5 + a2a3 + a2a4 + a1a5,

H3 = a1a2a3 + a1a2a4 + a2a3a4 + a2a3a5 + a2a4a5 + a3a4a5 + a1a4a5 + a1a2a5 + a1a3a4 + a1a3a5,

H4 = a1a2a4a5 + a1a3a4a5 + a2a3a4a5 + a1a2a3a4 + a1a2a3a5 − βηfb,

H5 = a1a2a3a4a5 − βηf(ba3 + ρd).
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We note the linear factorisation = (3.6.2) clearly yields negative real eigenvalues, however,

from the quintic equation, no such deduction can immediately be made.

Lemma 3.6.1. The disease-free equilibrium is locally asymptotically stable if R0 < 1 and

unstable if R0 > 1.

Proof. From the definition of ai in (3.4.2), R0 is given by

R0 =
βηf(ba3 + ρd)

a1a2a3a4a5

.

If R0 < 1, then

a1a2a3a4a5 > βηf(ba3 + ρd).

The the coefficients of the quintic polynomial of (3.6.2) are all positive and non zero; so by

the Descartes’ rule of signs there are no positive real eigenvalues, this means there are 1, 3

or 5 negative real eigenvalues with the remaining being complex conjugate pairs. We need to

show that Routh Hurwitz stability conditions for a fifth order polynomial as stated in [2] and

given in this case by

H1H2H3 > H2
3 +H2

1H4,

(H1H4 −H5)
(
H1H2H3 −H2

3 −H2
1H4

)
> H5 (H1H2 −H3)2 +H1H

2
5

are both satisfied. By letting F = H1H2H3 −H2
3 −H2

1H4 we express the above conditions as

F > 0 implies Q > 0 where,

Q = (H1H4 −H5)F −H5 (H1H2 −H3)2 −H1H
2
5 .

We need to express Q as a finite sum of positive terms involving the model parameters. Using

Maple to undertake the tedious algebra, we are able to show that F and Q1 are sums of

positive terms and

Q = Q1 +
{

(a2
3D1 + a1D2 +D3 +D4 +D5 +D6)(C1 + E2) + (3.6.3)
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a2
1(D7 +D8) + a1D9 +D10)

}
(C1 − E2) +

{
a2

3E2 + C2(b4 + E1)
}

(b4 − E1).(3.6.4)

Expressions for the constants, C ′is, D
′
is, E

′
is and b4 are given in Appendix A.1. The Maple

input file used in obtaining the results is not included in the Appendix due to its size but can

be made available on request.

Since b4 > E1 and C1 > E2, it follows that Q > 0. Thus, the disease-free equilibrium

is locally and asymptotically stable if R0 < 1. The coefficients H1, H2, H3 are positive and

we observe that if R0 > 1, a1a2a3a4a5 < βηfρd + βηfba3 wherein H5 is negative. Therefore

the sequence of coefficients, 1, H1, H2, H3, H4, H5 has only one sign change irrespective of

the sign of H4. By using Descartes’ rule of sign there must exist at least one positive real

eigenvalue, we conclude that the disease free state is unstable if R0 > 1.

When R0 = 1, a1a2a3a4a5 = βηfρd + βηfba3 and 3.6.2 has one zero eigenvalue, which

shows that R0 = 1 is a bifurcation surface in (β, η, f, ρ, d, b, λ, θ, γ, α, q, h) parameter space.

Lemma 3.6.2. The disease-free equilibrium is globally asymptotically stable in Γ if

ηβ

η + λ
≤ (h+ q),

fb

f + q
≤ γ + λ and

fd

f + q
≤ λ(η + θ + λ)

η + λ
.

Proof. Consider the function φ : {(C,LA, S, A,X, Y, Z) ∈ Γ : C,X > 0} → R, where

φ =
η

η + λ
(1− C) +

λ

η + λ
(LA + S + A) +

f

f + q
(1−X) +

q

f + q
Z. (3.6.5)

We note that φ ≥ 0 and is continuously differentiable on the interior of Γ. We shall show that

the disease free equilibrium is a global minimum of φ on Γ if (3.6.7) holds. The derivative of

φ computed along solutions of the system is

dφ

dt
=

( ηβ

η + λ
− q
)
Z +

{ fb

f + q
− (γ + λ)

}
S +

{ fd

f + q
− (1 + θ + λ)

}
A

+
{ fd

f + q
− λ(η + θ + λ)

η + λ

}
LA −

ηβ

η + λ

(
LA + S + A

)
ZS
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−α
(
C +

λ

η + λ
L
)
− 1

f + q

{
fbS + fd

(
A+ LA + qhZ

)}
Y S

− 1

f + q

(
fbS + fdA+ fdLA + qhX

)
Z. (3.6.6)

We can see clearly that
dφ

dt
≤ 0 whenever

ηβ

η + λ
≤ (h+ q),

fb

f + q
≤ γ + λ,

fd

f + q
≤ λ(η + θ + λ)

η + λ
. (3.6.7)

In fact, for (LA, S, A, Y, Z) = (0, 0, 0, 0, 0),
dφ

dt
≤ 0 and (LA, S, A, Y, Z) is the largest positively

invariance subset in the interior of Γ and by LaSalle’s invariant principle [60], (LA, S, A, Y, Z)→

(0, 0, 0, 0, 0) as t→∞, while (C,X)→ (1, 1) on the boundary of Γ. Some calculations given

in Appendix A.2, using the inequalities in (3.6.7) show that the basic reproduction number

is less than unity. The disease free state is globally stable if (3.6.7) are true, noting (3.6.7)

⇒ R0 < 1.

3.7. Time scale analysis

In this section we present the time scale analysis of the model. Asymptotic analysis on the

M and N equations show that M changes on the time scale t = O(ε), while N changes on

t = O( 1
ε2

). Thus we assume M
N

to be constant over the time scale of our analysis. By letting

θ = 0, we present the time scale analysis of the dimensionless system

ε2
dC

dt
= ε4λ̂+ εγ̂S + ε2A− β̂ZC − ε4λ̂C + ε4α̂CS, (3.7.1)

ε2
dL

dt
= β̂ZC − εη̂L− ε4λ̂L+ ε4α̂LS, (3.7.2)

ε2
dLA
dt

= β̂ZA− εη̂LA − ε4λ̂LA + ε4α̂LAS, (3.7.3)

ε2
dS

dt
= εη̂L+ εη̂LA −

(
ρ̂+ εγ̂ + ε4α̂ + ε4λ̂

)
S + ε4α̂S2, (3.7.4)

ε2
dA

dt
= ρ̂S −

(
ε2 + ε4λ̂

)
A− β̂ZA+ ε4α̂AS, (3.7.5)

ε
dX

dt
= q̂ (1−X)− b̂SX − d̂AX − d̂LAX + εĥXZ, (3.7.6)

ε
dY

dt
= b̂SX + d̂AX + d̂LAX −

(
f̂ + q̂

)
Y + εĥY Z, (3.7.7)
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ε
dZ

dt
= f̂Y −

(
εĥ+ q̂

)
Z + εĥZ2, (3.7.8)

subject to

C(0) = 1, L(0) = 0, LA(0) = 0, S(0) = 0, A(0) = 0,

Y (0) = y0, X(0) = 1− y0, Z(0) = 0.

The definitions of the parameters with hats are given as

β =
1

ε2
β̂, η =

1

ε
η̂, µ = ε2µ̂, λ = ε2λ̂, α = ε2α̂, γ =

1

ε
γ̂, ρ =

1

ε2
ρ̂, (3.7.9)

b =
1

ε
b̂, d =

1

ε
d̂, f =

1

ε
f̂ , g =

1

ε
ĝ, h = ĥ. q =

1

ε
q̂,

where we have assumed for simplicity all parameters to be equal (not proportional) to the

powers of ε as indicated in Table 3.3. We will carry out the analysis in the limit, ε → 0,

y0 → 0 and y0 � ε. We note R0 ∼
1

ε
in this limit so endemic outbreak is guaranteed. The

time scale analysis reveals the endemic equilibrium for the human population as

C ∼ ε2
γ̂η̂
(
q̂ + d̂

)(
q̂ + f̂

)
ρ̂β̂f̂ d̂

,

LA ∼ 1,

S ∼ ε
η̂

ρ̂
,

A ∼ ε
η̂
(
q̂ + d̂

)(
q̂ + f̂

)
β̂f̂ d̂

,

L ∼ ε
γ̂

ρ̂
,

and for mosquitoes

X ∼ q̂

q̂ + d̂
,

Y ∼ d̂q̂(
q̂ + d̂

)(
q̂ + f̂

) ,
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Z ∼ f̂ d̂(
q̂ + d̂

)(
q̂ + f̂

) .
Details of the analysis are presented below in which there is evolution from an introduction

of infected mosquitoes (population fraction y(0) = y0) to an uninfected area.

The left-hand side of equations (3.7.1)−(3.7.8) seem to provide an initial guess of two

time scales (i.e t = O(ε2) and t = O(ε)) but quite interestingly it happens to be a multi-scale

problem. The method we use is that of formal asymptotics, namely singular perturbation

methods whose application to problems in mathematical biology and classical mechanics is

well established. The report does not include all the technical details involved as we are only

interested in the leading-order behaviour of the system. There are a number of timescales but

the six main timescales as predicted by the model are

t = O(ε2), ≈ 1-3 days: A small amount of infected mosquitoes introduced into the system

become infectious after passing through the incubation period. Susceptible humans bit-

ten by these mosquitoes get infected. The early infection registers itself in the human

compartments. However the effect of this early infection remains unnoticeable ( O(εy0))

in the latent asymptomatic class. The amount of susceptible mosquitoes increases lin-

early due to natural birth.

t = O(ε
4
3 ), ≈ 7-8 days: In this time scale susceptible mosquitoes get infected by biting

asymptomatic infectious humans. The amount of mosquitoes converting to the infec-

tious class is also balanced by the amount of mosquitoes becoming infected by biting

people in the asymptomatic infectious class. This behaviour is expected because indi-

viduals with clinical malaria have low level of gametocytes. Thus the early infection of

susceptible mosquitoes is likely to come through contact with asymptomatic infectious

humans since they have high gametocyte density. Infected humans are still “negligible”,
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O(ε1/3y0).

t = O(ε
5
4 ), ≈ 9-10 days: As more mosquitoes get infected through contact with asymp-

tomatic infectious humans, the amount of susceptible mosquitoes reaches its maximum

and starts decreasing. Whereas the feedback from infectious humans offsets the linear

growth effect of the initial small amount of infected mosquitoes introduced, eventually

causing the amount of latent mosquitoes to grow exponentially. Human infected =

O(ε−1/2y0).

t = ε
5
4 ln(ε1/2/y0)/K0 + O(ε

5
4 ), K0 = (β̂η̂f̂ d̂)

1
4 , ≈ 2 weeks: Asymptomatic humans be-

come infected with new asexual parasites due to contact with infectious mosquitoes.

The amount of sick people converting to asymptomatic status is being balanced by the

amount of asymptomatic humans converting to the latent asymptomatic class due to a

boost in their partial immunity level. Thus , more mosquitoes become infected and the

overall flow of infection culminates in a fast transition of susceptible humans into the

latent class.

t = O(ε), ≈ 2-3 weeks: Disease has become noticeable with infected humans = O(1). La-

tent asymptomatic humans are still infectious to mosquitoes as C, S and A adjust to

their equilibrium values. L decays exponentially.

t = ε ln(1/ε)/η̂ + O(ε), ≈ 2 months: In this time scale all the human compartments equi-

libriate, notably C = O(ε2), and latent individuals are becoming symptomatic and

converting to LA rapidly. While the mosquito compartments adjust to assume their

equilibrium state.
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3.7.1. t = O(ε2)

Using “ˆ” to denote the variables in this time scale we write

t = ε2t̂,

and with appropriate balancing of terms in each of the equations exploring the idea that out

of a small amount y0 of infected mosquitoes introduced into the population only a smaller

proportion εy0 becomes infectious, we seek leading order solution of the form,

C ∼ 1 + εy0Ĉ1, L ∼ εy0L̂0, LA ∼ ε3y2
0L̂A0 , S ∼ ε2y0Ŝ0,

A ∼ ε2y0Â0, X ∼ 1− y0 + εy0X̂1, Y ∼ y0 + εy0Ŷ1, Z ∼ εy0Ẑ0.

On substitution of these rescalings into (3.7.1)-(3.7.8), we obtain the leading order system

dĈ1

dt̂
= −β̂Ẑ0,

dL̂0

dt̂
= β̂Ẑ0,

dL̂A0

dt̂
= β̂Â0Ẑ0, (3.7.10)

dŜ0

dt̂
= η̂L̂0 − ρ̂Ŝ0,

dÂ0

dt̂
= ρ̂S0,

dX̂1

dt̂
= q̂, (3.7.11)

dŶ1

dt̂
= −

(
f̂ + q̂

)
,
dẐ0

dt̂
= f̂ , (3.7.12)

recalling y0 � ε� 1, satisfying the initial conditions

Ĉ1(0) = 0, L̂0(0) = 0, L̂A0(0) = 0, Ŝ0(0) = 0,

Â0(0) = 0, Ŷ1(0) = 0, X̂1(0) = 0, Ẑ0(0) = 0.

By doing direct integration we get the following leading order solutions

Ĉ1 ∼ −1

2
β̂f̂ t̂2, L̂0 ∼

1

2
β̂f̂ t̂2, L̂A0 ∼

1

30
β̂2η̂f̂ 2t̂5, Ŝ0 ∼

β̂η̂f̂

2ρ̂
t̂2,

Â0 ∼
1

6
β̂η̂f̂ t̂3, X̂1 ∼ q̂t̂, Ŷ1 ∼ (−f̂ − q̂)t̂, Ẑ0 ∼ f̂ t̂.

We observe that susceptible humans (C) and latent mosquitoes (Y ) are decaying linearly in

time from their initial values due to latent mosquitoes converting to the infectious class and
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susceptible humans becoming infected as a consequence of infectious contact with mosquitoes

in the Z class. With Â0 = O(t3) there is a balance shift in (3.7.7), when Â0 = O(ε−2) i.e. at

a timescale t = O(ε−
2
3 ), as susceptible mosquitoes become infected by biting asymptomatic

humans. It is interesting to note that L and S equilibrate such that
S

L
∼ εη

ρ
in this time scale

and remain so as we will see in all the following timescales.

3.7.2. t = O(ε4/3)

Denoting variables with over-bars in this time scale we write

t = ε4/3t̄,

and obtain the variable rescalings

C ∼ 1 + ε−1/3y0C̄1, L ∼ ε−1/3y0L̄0, LA ∼ ε−1/3y2
0L̄A0 , S ∼ ε2/3y0S̄0,

A ∼ y0Ā0, X ∼ 1− y0 + ε1/3y0X̄1, Y ∼ y0 + ε1/3y0Ȳ1, Z ∼ ε1/3y0Z̄0.

On substitution of these rescalings into (3.7.1)−(3.7.8), and considering the leading order

terms we found that all the other equations remain the same as (3.7.10)−(3.7.12) in the

previous time scale but the X and the Y equations both have an additional term, d̂Ā0, given

by

dX̄1

dt̄
= q̂ − d̂Ā0,

dȲ1

dt̄
= d̂Ā0 −

(
f̂ + q̂

)
,

marking the advent of feedback of infection from asymptomatic individuals to susceptible

mosquitoes due to the initial small amount of infected mosquitoes introduced into the to-

tally susceptible human population. This creates a balancing effect between the amount of

mosquitoes converting to the infectious class and the amount becoming infected by biting

people in the asymptomatic infectious class. We use the initial conditions

C̄1(0) = 0, L̄0(0) = 0, L̄A0(0) = 0, S̄0(0) = 0,
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Ā0(0) = 0, Ȳ1(0) = 0, X̄1(0) = 0, Z̄0(0) = 0,

to obtain the following solutions.

C̄1 ∼ −1

2
β̂f̂ t̄2, L̄0 ∼

1

2
β̂f̂ t̄2, L̂A0 ∼

1

30
β̂2η̂f̂ 2t̄5, S̄0 ∼

β̂η̂f̂

2ρ̂
t̄2,

Ā0 ∼
1

6
β̂η̂f̂ t̄3, X̄1 ∼ −

1

24
β̂η̂f̂ d̂t̄4, Ȳ1 ∼

1

24
β̂η̂f̂ d̂t̄4, Z̄0 ∼ f̂ t̄.

The only notable difference between these and the earlier time scale is in X and Y with an

accelerated rate of mosquito infection from asymptomatic infectious humans. The implication

of this is that the flow of the solution may change direction especially when the amount of

mosquitoes getting infected becomes more than the inflow of new born mosquitoes. This

happens at the point of breakdown

t̄ = O(ε−1/12),

where Ȳ1 becomes O(y0). The dynamics of the system in the next time scale is a consequence

of the change in the order of Ȳ1.

3.7.3. t = O(ε5/4)

We use “ ∼ ” to denote variables in this time scale where,

t = ε5/4t̃,

and the appropriate rescalings of the variables are

C ∼ 1 + ε−1/2y0C̃1, L ∼ ε−1/2y0L̃0, LA ∼ ε−3/4y2
0L̃A0 , S ∼ ε1/2y0S̃0,

A ∼ ε−1/4y0Ã0, X ∼ 1 + y0X̃1, Y ∼ y0Ỹ1, Z ∼ ε1/4y0Z̃0.

On substitution of these into (3.7.1)−(3.7.8) we find (at leading order) that the equations

representing the human compartments are unchanged, but due to the dominant contribution
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of asymptomatic infectious humans on the infection of mosquitoes, the rate of change of Ỹ1

and X̃1 are proportional to the amount of asymptomatic humans with that of Z̃0 proportional

to Ỹ1. The system in full is

dC̃1

dt̃
= −β̂Z̃0,

dL̃0

dt̃
= β̂Z̃0,

dL̃A0

dt̃
= β̂Ã0Z̃0, η̂L̃0 = ρ̂S̃0,

dÃ0

dt̃
= ρ̂S̃0,

dX̃1

dt̃
= −d̂Ã0,

dỸ1

dt̃
= d̂Ã0,

dZ̃0

dt̃
= f̂ Ỹ1.

Through successive differentiation of
dZ̃0

dt̃
we find that

d4Z̃0

dt̃4
= KZ̃0, and by matching with

the solution of section 3.7.2 as t̄→∞ we have as initial conditions

C̃1(0) = L̃0(0) = L̃A0(0) = S̃0(0) = Ã0(0) = Z̃0(0) = 0, X̃1(0) = −1,

Ỹ1(0) = 1,
dZ̃0

dt̃
(0) = f̂ ,

d2Z̃0

dt̃2
(0) = 0,

d3Z̃0

dt̃3
(0) = 0, Z̃0(0) = 0,

where K = β̂η̂f̂ d̂. The large time solution of the system given by

C̃1 ∼ − β̂f̂

4K1/2
eK

1/4 t̃, L̃0 ∼
β̂f̂

4K1/2
eK

1/4 t̃, LA0 ∼
β̂f̂

32d̂K1/4
e2K1/4 t̃, S̃0 ∼

β̂η̂f̂

4ρ̂K1/2
eK

1/4 t̃,

Ã0 ∼
β̂η̂f̂

4K3/4
eK

1/4 t̃, X̃1 ∼ −
1

4
eK

1/4 t̃, Ỹ1 ∼
1

4
eK

1/4 t̃, Z̃0 ∼
f̂

4K1/4
eK

1/4 t̃,

shows that both the mosquito and human compartments are growing exponentially. For K0 =

K
1
4 , the approximations for this timescale become poor when C̃1 = O(eK0 t̃) = O(ε1/2/y0), i.e.

t̃ = ln(ε1/2/y0)/K0 when asymptomatic humans become infected with new asexual parasites

due to contact with infectious mosquitoes.

3.7.4. t = ε
5
4 ln(ε1/2/y0)/K0 + O(ε

5
4 )

In order to describe events captured on this time scale we translate in time from the former

time scale and write

t = ε
5
4 ln(ε1/2/y0)/K0 + ε

5
4 ť,

where “ˇ” is the symbol for variable representation. The initial small amount of infection has

been totally distributed and whose effect has developed into the beginnings of a full blown
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epidemic with C and L becoming O(1) and no dependence on y0, to leading order as we can

see in the following rescalings

C ∼ Č0, L ∼ Ľ0, LA ∼ ε1/4ĽA0 , S ∼ εŠ0, A ∼ ε1/4Ǎ0,

X ∼ 1 + ε1/2X̌1, Y ∼ ε1/2Y̌1, Z ∼ ε3/4Ž0.

Following the usual substitution procedure we find that at leading order, some equations

remain the same as in the preceding time scale whereas the C, L, A, X and Y equations are

now being expressed as

dČ0

dť
= −β̂Č0Ž0,

dĽ0

dť
= β̂ČŽ0,

dĽA0

dť
= β̂Ž0A0, (3.7.13)

S0 =
η̂

ρ̂
Ľ0,

dǍ0

dť
= ρ̂S0 − β̂Ž0Ǎ0,

dX̌1

dť
= −d̂Ǎ0 − d̂ĽA0 , (3.7.14)

dY̌1

dť
= d̂Ǎ0 + d̂ĽA0 ,

dŽ0

dť
= f̂ Y̌1

where by matching with the long time solution of section 3.7.3

ť→ −∞,

Č0 → 1−, Ľ0 → 0+, ĽA0 → 0+, Š0 → 0+, Ǎ0 → 0+, X̌1 → 0+, Y̌1 → 0+, Ž0 → 0+,

the situation where asymptomatic humans become infected with new asexual parasites due

to their contact with infectious mosquitoes, which eventually reduces the size of A as asymp-

tomatic humans leave for the LA class. Consequently, more susceptible mosquitoes get infected

as latent asymptomatic humans transfer infection. In order to obtain a solution of the system,

we note

dČ0

dť
+
dĽ0

dť
= 0,

d(ĽA0 + Ǎ0)

dť
= η̂Ľ0,

d3Ž0

dť3
= η̂f̂ d̂Ľ0.

The first equation yeilds, Č0 + Ľ0 = 1. Substituting this into the differential equation for Č0,

leads to the fourth-order nonlinear ode, which is the main equation that drives the dynamics
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of the system on this time scale given by

d4F̌

dť4
= −K

(
1− eF̌

)
where, K is as defined above and F̌ = ln(Č0). This equation does not seem to have an

analytical solution but we can extract some key information by investigating its behaviour.

It is straightforward to show that F = 0(Č0 = 1) is an unstable steady state. Considering

g(F ) = −K
(

1− eF̌
)

, F = 0 ⇒ g = 0, F < 0 ⇒ g < 0 and F > 0 ⇒ g > 0. Thus, F = 0

is unstable. By matching we have F → 0− , or Č0 → 1−, as ť → −∞ hence
dF̌

dť
< 0 as ť

increases, i.e. a non-negligible amount of humans are becoming infected. For large, negative

F̌ we have

d4F̌

dť4
∼ −K,

as the homogenous ODE whose general solution is,

F̌ = − 1

24
Kť4 +

1

6
α1ť

3 +
1

2
α2ť

2 + α3ť+ α4,

as ť → +∞, where α1, α2, α3 and α4 are unresolved constants depending on solution as

ť→ −∞. The solutions for the susceptible and latent human compartments are

Č0 ∼ B0 exp
(a1

6
ť3 +

a2

2
ť2 + a3ť

)
e−

K
24
ť4 , Ľ0 ∼ 1−B0 exp

(a1

6
ť3 +

a2

2
ť2 + a3ť

)
e−

K
24
ť4 ,

indicating a very rapid exchange from the C to the L class describe how the force of infection

generated by infectious mosquitoes, Z drastically reduces the size of C and increases that of

L. As Č0 → 0 and by applying dominant balancing of terms we obtain large time behaviour

of other variables as

L̂A0 ∼ η̂ť, Š0 ∼
η̂

ρ̂
, Ǎ0 ∼

6η̂

k
ť−3, X̌1 ∼ −

1

2
d̂η̂ť2, Y̌1 ∼

1

2
d̂η̂ť2, Ž0 ∼

k

6β̂
ť3.

as ť→∞. Due to the rapid drop in the C class, there are series of minor transition timescales

in which C = O(1) falls to C = O(ε2), in several very small timescale stages. We shall omit
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the details and move on to the next major rebalance of the system, at ť = O(ε−
1
4 ), where the

infected mosquito classes become non-negligible and the latent classes dominate the human

population.

3.7.5. t = O(ε)

We use the symbol “ ? ” to denote variables on this time scale. By expressing time as

t = εt?,

we state the rescalings of the variables as follows:

C ∼ ε2C?
0 , L ∼ L?0, LA ∼ LA

?
0, S ∼ εS?0 , A ∼ εA?0, X ∼ X?

0 , Y ∼ Y ?
0 , Z ∼ Z?

0 ,

noting that susceptible class is now O(ε2) and that most of human population are in the

latent classes. On substitution of these into the full system as usual, yields a situation where

some of the variables have assumed quasi-steady states, i.e. they are expressed in terms of

the other variables, especially,

C?
0 =

γ̂

ρ̂
A?0, S?0 =

η̂

ρ̂
(L?0 + LA

?
0) , A?0 =

ρ̂S?0

β̂Z?
0

.

The remaining variables are described by the system

dL?0
dt?

= −ηL?0,
dLA

?
0

dt?
= ηL?0,

dX?
0

dt?
= q̂ −

(
q̂ + d̂LA

?
0

)
X?

0 ,

dY ?
0

dt?
= dLA

?
0X

?
0 − (f̂ + q̂)Y ?

0 ,
dZ?

0

dt?
= f̂Y ?

0 − q̂Z?
0

subject to

L?0(0) = 1, LA
?
0(0) = 0, Y ?

0 (0) = 0, X?
0 (0) = 1, Z?

0(0) = 0.

The straightforward solutions are

L?0 ∼ e−ηt
?

, LA
?
0 ∼ 1− e−ηt? ,
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and consequently, S?0 =
η̂

ρ̂
. We cannot solve for the other variables, but it is useful to note

that the leading behaviour as t? →∞, are the steady states

C?
0 ∼ ε2

γ̂η̂
(
q̂ + d̂

)(
q̂ + f̂

)
ρ̂β̂f̂ d̂

, A?0 ∼ ε
η̂
(
q̂ + d̂

)(
q̂ + f̂

)
β̂f̂ d̂

,

X?
0 ∼ q̂

q̂ + d̂
, Y ?

0 ∼
d̂q̂(

q̂ + d̂
)(

q̂ + f̂
) , Z?

0 ∼
f̂ d̂(

q̂ + d̂
)(

q̂ + f̂
) .

We note that while other variables are in their steady states, the amount of latent humans

decays rapidly causing the amount of latent asymptomatic humans to grow due to massive

inflow of asymptomatic humans being infected with asexual parasites. Although not apparent

from the solutions we can show that approximation to L will no longer be O(1) when

t? =
1

η̂
ln (1/ε) +O(1)

which leads us to the final time scale.

3.7.6. t = ε ln(1/ε)/η̂ + O(ε)

Variables on this time scale are described using “´” so that;

t =
ε

η̂
ln(1/ε) + εt́

and

C ∼ ε2Ć0, L ∼ εĹ0, LA ∼ 1, S ∼ εŚ0, A ∼ εÁ0, X ∼ X́0, Y ∼ Ý0, Z ∼ Ź0.

On substitution of these into (3.7.1)−(3.7.8) we find that the variables in their steady states

remain unchanged and LA ∼ 1. Only Ĺ is evolving at leading order according to,

dĹ0

dt́
=
γ̂η̂

ρ̂
− η̂Ĺ0.
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Figure 3.2 shows that the rapid drop of susceptible humans as shown in the fourth

timescale of the analysis follows immediately after a sharp increase in the number of in-

fectious mosquitoes. The fraction of Latent humans, L increases as C drops. The number
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Figure 3.2: Solutions of dimensionless system (3.7.1)-(3.7.8) using ε = 0.001 and all other dimensionless parameters set to

unity. The top graph represents the various compartments in the human population and the bottom graph shows the fractions

of mosquito population. Note the time axes are the log10 values for time and that the human and mosquito fractions are also

been logged. The vertical dotted lines indicate different timescales, marking conspicuous events. The six timescales are t = ε2,

t = O(ε
4
3 ), t = O(ε

5
4 ), t = ε

5
4 ln(ε1/2/y0)/K +O(ε

5
4 ), t = O(ε) and t = ε ln(1/ε)/η̂ +O(ε). We only present the fourth and the

sixth timescales for the human population whilst the third timescale is omitted from the mosquito classes.
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of latent asymptomatic humans had been of low order from the beginning of the analysis

and L had always dominated the infection classes. But immediately after the disease fully

established itself, we observe that in the fifth timescale, L is no longer O(1) as LA grows to

overtake L, which culminates in the final state of the disease showing about 90% of the human

population in the Latent asymptomatic class as predicted by the analysis. Different stages of

events in the mosquito population as predicted by the analysis are also well represented by

the simulations.

By matching with the previous timescale we have Ĺ0 ∼ e−ηt́ as t́→ −∞, hence the solution

Ĺ0 =
γ̂

ρ̂
− e−η̂t́,

which decays to
γ̂

ρ̂
as t́→∞. Thus we reach the complete equilibrium state at leading order,

namely

C ∼ ε2
γ̂η̂
(
q̂ + d̂

)(
q̂ + f̂

)
ρ̂β̂f̂ d̂

, L ∼ ε
γ̂

ρ̂
, LA ∼ 1, S ∼ ε

η̂

ρ̂
, A ∼ ε

η̂
(
q̂ + d̂

)(
q̂ + f̂

)
β̂f̂ d̂

,

X ∼ q̂

q̂ + d̂
, Y ∼ d̂q̂(

q̂ + d̂
)(

q̂ + f̂
) , Z ∼ f̂ d̂(

q̂ + d̂
)(

q̂ + f̂
) .

3.7.7. Conclusion from the analysis

Through our timescale analysis we have provided insight into the transmission of the disease

as shown by the numerical simulations. Six main time scales as predicted by the model are

used with appropriate rescalings to explicate the dynamics of the disease in relation to events

as they evolve from early incidence to endemic state. There are important concluding remarks

about the spread of the disease:

• Throughout the analysis, S has been proportional to L showing that the level of the

disease depends very much on non-immune individuals becoming infected. We also find
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that C remained at O(1) from the first timescale until the fourth time scale,

t = ε
5
4 ln(ε1/2/y0)/K0 + O(ε

5
4 ),

when it suddenly dropped to O(ε2), which suggests that intervention programs may yield

better results if implemented before this time scale, preferably by the time t = O(ε
5
4 ),

during which the feedback from infectious humans offsets the linear growth effect of the

initial small amount of infected mosquitoes. This equates to about 2-3 weeks from the

initial infection.

• The contribution of asymptomatic infectious humans has a significant effect on the

dynamics of the disease. This becomes evident in the time scale t = O(ε4/3) and

influences the mode of infection throughout the period of analysis. This is due to our

choice of the values of the model parameters, which we have assumed that asymptomatic

humans are far more infectious than symptomatic humans. We recall that disease

symptoms are associated with the erythroctye cycle, a period characterised by incursion

and invasion of the red blood cells by asexual parasites.

• The noticeable build-up of latent asymptomatic humans at steady state is a clear char-

acteristic of the dynamics of malaria in an endemic region. This portends a dangerous

scenario and creates adverse effect on public policies aimed at control or eradication

of the disease. It appears adults get partial immunity at the expense of children and

women (who may likely loose immunity) during pregnancy. The condition ε � 1, or

precisely la � ηh, on which our analysis is based, represents a situation where humans

spend a very long time in the asymptomatic class potentially, but they get infected

almost immediately harbouring infection without remarkable symptom of the disease

and from known results, this is reinforced through continuous infection as shown in our
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analysis.

• In order to use our model to achieve effective control or eradication of the disease we will

perform some more simulations in the future to ascertain if it is worth considering an

option of reducing the time humans spend in the asymptomatic class through treatment

so that we can recommend and promote the simple slogan, check your ‘Malaria Infection

Status’ (MIS) and get treated. Another option is to ascertain whether or not prompt

treatment of sick people would guarantee a disease free state by considering γ as a

treatment parameter.

• The scenario in which the analysis is based has R0 > 1 so an endemic situation is guar-

anteed. It is intresting to note that the dominant human class is the LA class who are

both latent and infectious to mosquitoes. This class is absent in all other models to our

knowledge, yet, this model suggests, it is by far the most important class in sustaining

the disease. Throughout this analysis, S = O(ε) which means that the amount of death

due to the disease is negligibly small, and, together with a negligible natural birth and

death rate, N ≈ 1 throughout this analysis. The scalings for mosquitoes suggest that

death by the disease is negligible compared to natural death, and hence dM
dt
∼ (q̂−ĝ)M/ε

so that M will change in a t = O(ε) timescale. In reality there will be limitation to

population growth, but is not expected that the main conclusion of the analysis are not

too affected by this.

3.8. Numerical Simulations

In section 3.6 we analysed the transition model by adducing sufficient conditions to show

that the diseases free state is locally and asymptotically stable if R0 < 1 and unstable for

R0 > 1. We also conducted a timescale analysis in section 3.7 to study the evolution of the
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disease based on R0 > 1 to demonstrate the existence of an endemic state. In this section we

will use numerical simulations to verify the results of our analysis. We will also demonstrate

numerically that the endemic state is globally and asymptotically stable if R0 > 1 using a set

of initial conditions described in Γ defined by (3.5.1).

Due to the findings in the asymptotic analysis, we assume that M
N

is constant throughout

the simulations. The numerical solution is obtained by using MATLAB’s ode45, a variable

order Runge-Kutta method with a relative tolerance of 10−7 and absolute tolerance of 10−6.

The parameters used for the simulations as defined in Table 3.3 are β = 62.43, η = 11.1

(i.e. ε = 0.09), µ = 0.0056, λ = 0.017, α = 0.01, γ = 11.5, ρ = 54.45, θ = 0, b = 7.2,

d = 38.2, f = 14, g = 21.12, h = 1.45, q = 21.45. At time t = 0 we have the following

initial conditions in the proportions: C = 1, L = 0, LA = 0, S = 0, A = 0, X = 0.9999,

Y = y0 = 0.0001, Z = 0, N = 1, M = 1. This is a situation where the entire susceptible

human population is exposed to a small fraction of infected mosquitoes. The program was

run in MATLAB with different sets of initial conditions, a check was also conducted using

MAPLE’s ode45 in all cases and the qualitative form of the steady state solutions were the

same, although the system gets to a steady state faster as y0 increases. In Figure 3.3a,c, the

proportion of susceptible human population drops. This is more pronounced in Figure 3.3a,

in which we have used θ = 0 to represent non-treatment of asymptomatic humans leading

to more infection of susceptible humans. The latent human fraction peaks and later drops

to a steady state. There is a high proportion of latent asymptomatic humans showing that

asymptomatic state is being preserved in continuous infection. In Figure 3.3b, more than half

of the mosquito population are infected indicating high level of disease prevalence. However

a smaller proportion of mosquitoes become infected when θ = 20 as shown in Figure 3.3d.

In Figure 3.4a,b, the population of humans and mosquitoes are gradually increasing. Figure
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3.4c,d,e,f show the effect of different values of y0 on the various fractions of human population.

We investigate each of the human sub-populations as y0 varies from 0.00001 to 0.1 and the

results show that there is a unique steady state for each human compartment irrespective of

the value of y0 except that it takes a longer time to reach the steady state with a smaller y0.

We note that the delay increases linearly as y0 decreases exponentially as predicted by the
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Figure 3.3: Results showing the effect of the initial infected mosquito population on evolution of endemic infection where

t = 1, represents 165 days in real time. The initial conditions used are C = 1, L = 0, LA = 0, S = 0, A = 0, X = 0.9999,

Y = 0.0001, Z = 0, N = 1, M = 1 and the parameter values are given in Table 3.3. In Figure 3.3c,d, there is some level of post

disease treatment (θ = 20), whilst we have used θ = 0 in Figure 3.3a,b to explicate the dynamics of endemic malaria in which

asymptomatic humans are not treated
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analysis of section 3.7.4

The results demonstrate the typical behaviour of rapid infection of susceptible individuals
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Figure 3.4: Results showing the human and mosquito populations (Figure 3.4a,b) and the effect of introducing different

amount of infected mosquitoes on the various fractions of human population (Figure 3.4c,d,e,f). The values used for the simula-

tions are the same as those in (Figure 3.3c,d) except that for Figure 3.4a,b we used g = 21.02 and for (Figure 3.4c,d,e,f) we have

used the initial conditions, C = 1, L = 0, LA = 0, S = 0, A = 0, X = 1− y0, Y = y0, Z = 0, N = 1,M = 1 with different values of

y0 as shown in the graphs.
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Figure 3.5: Results showing the disease free state when R0 < 1 and the endemic state for R0 > 1 by varying the value of R0

from 0 to 5. The parameter values used to obtain these results are given in Table 3.3 except θ = 4.13. We used the parameter,

β to change R0 where R0 = 5 corresponds to β = 9.35.
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Figure 3.6: Basic reproduction number (R0) bifurcation diagram. The curve shows a transcrital bifurcation obtained by

drawing the steady states of symptomatic humans against different values of R0 ranging from 0 to 3. Parameter values are the

same as those in Figure 3.5

in a malaria endemic region. Figure 3.5a, b shows the relationship between the basic repro-

duction number and the disease profile as it affects both mosquito and human populations.

The disease establishes itself for values of R0 > 1 and dies out if R0 < 1. The values of R0

were obtained by varying β and R0 = 1 corresponds to β = 1.87. Figure 3.6 is a bifurcation

diagram showing a switch from a disease free state to an endemic state. The result is obtained

by drawing the steady states of symptomatic humans against different values of R0.

Each curve in Figure 3.7a represents the effect of θ on S for a given γ. The red curve in

particular shows that for a certain level of symptomatic treatment, γ = 60 it requires a post

disease treatment, θ = 21 to drive the disease to extinction. Treatment of both symptomatic

and asymptomatic humans can easily lead to a disease free state. Figure 3.7b gives the

variation of the amount of symptomatic humans as γ gradually increases from zero in the

absence of post disease treatment.
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In order to demonstrate the impact of the basic reproduction number on the dynamics

of the system, we plot the steady states of the various human and mosquito compartments

against the basic reproduction number (R0). Figures 3.5a,b show the disease free state when

R0 is less than unity and for R0 > 1 the disease invades both the human and mosquito

populations. The plot shows a transcritical bifurcation in the vicinity of R0 = 1, as is

expected from the analysis. Although some uncertainty still surrounds our quest on whether

or not the disease invades at R0 = 1 the disease free state is stable for values of R0 < 1, but

becomes unstable when R0 > 1 whereas, the endemic state becomes stable as expected.

The disease free state assumes that the entire mosquito and human populations are free

from the disease. Any simulation leading to S = 0, by varying the model parameters will not

be valid if it does not target C = 1 and X = 1. Hence we also demonstrate the effect of θ

and γ on C and X in Figure 3.8. The results show that as S → 0, there is the indication
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Figure 3.7: Plot of symptomatic humans against drug strength showing impact of clinical and post disease treatment on

malaria control. In Figure 3.7b, θ = 0, Whilst each curve in Figure 3.7a represents a plot of symptomatic humans with a given

level of treatment against different values of θ. Initial conditions and parameter values are the same as those in Figure 3.3
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that with various combinations of symptomatic and asymptomatic treatment, humans and

mosquitoes will likely become free from the disease.

3.9. Discussion

Our model describes a typical situation of an endemic malaria. This is supported by the value

of R0 for θ = 0, given as 33.4, obtained from data using (3.5.2). There is a high proportion

of latent asymptomatic humans since they require a longer time to loose infection before

experiencing disease symptoms. The numerical solution (Figure 3.3) shows that about 90%

of the entire population will be engulfed by the disease within a period of one year out of

which about 8% will be sick and would require medical attention in the hospital resulting

in loss of man-hours. Although those mostly affected by the disease are usually children

and pregnant women [83], the economic cost of the disease to households and government is
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Figure 3.8: Plot of susceptible humans and mosquitoes against drug strength. Parameter values and initial conditions are

the same as those in Figure 3.7. The disease dies out for different combined values of γ and θ.
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enormous. The results also show that about 38% of the population would be carrying a greater

number of gametocytes without showing symptoms of the disease within the period whilst

approximately 32% of the population is asymptomatic and equally harbouring some levels of

asexual parasites due to their being infected from infectious mosquitoes despite their partial

immunity. We assume an equal transmission rate ηh into the symptomatic compartment for

both latent and latent asymptomatic classes but the latter keeps on building up instead of

flowing into the symptomatic class. Although, the asymptotic analysis shows approximately

90% of humans in the Latent asymptomatic class, this does not in any way show that the

results are not correct. The reason for this disparity is that the analysis is based on the

assumption that ε� 1 and we have presented a simulation in this regard in section 3.7.6 that

agrees well with the results of the analysis.

The model prediction seems plausible since immunity to malaria has always been asso-

ciated with continuous exposure to infection. In particular, [91] has shown that the rate of

development of clinical immunity to malaria correlates with the length of infection and that

asymptomatic status is reached sooner when the infections are longer. Although we expect

this behaviour since latent asymptomatic individuals have partial immunity and are not ex-

pected to show disease symptoms until they loose immunity, it rather portends a dangerous

scenario which could pose serious threats to the control of the disease especially if there hap-

pens to be a sudden upsurge of the disease in the population if more of these individuals loose

immunity within a short interval of time. This is expected since, asymptomatic carriage may

represent a mode of entry to symptomatic malaria especially in young children [101] and in

regions of high malaria transmission, every member of the community might be chronically

infected and as such there could be a high prevalence of sub-clinical malaria [109]

A good mathematical model of epidemiology(apart from being mathematically tractable)
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can be assessed on its application to disease control. We consider γ as a treatment parameter

due to the results of our time scale analysis. The non-dimensional parameter, γ is the ratio

of rh and la where rh is the recovery rate of symptomatic humans due to treatment and la

is the loss of asymptomatic infection or simply, the recovery rate of asymptomatic humans.

The duration of untreated or inadequately treated P. falciparum infection ranges from 197

to 480 days [36] and due to epidemiological observation of populations under treatment, the

average duration of infection reduces from 270 days to 14 days [38]. From results obtained by

Tumwiine et al. [111], early, prompt and proper treatment of symptomatic humans reduces

the duration of infection to as low as 3 days.

In order to determine the effect of γ we consider an ideal situation where the duration of

infection can be reduced to zero through effective administration of treatment to symptomatic

infectious human on the first day of the observation of the disease symptoms such that the

gametocytes are destroyed or made inactive to the extent that they would not infect suscepti-

ble mosquitoes, i.e, rh ∈ [0,∞). We deduce that increasing the duration of partial immunity

increases R0. Acquisition of partial immunity is beneficial to the individual who has it but

could be detrimental to the entire population because it increases the reservoir of infection. A

strict suggestion by [22] demands that in order to bring a disease under control in a population

of varying size, we need to reduce the reservoir of infection to zero with increasing time. We

note that a faster way of reducing R0 is by reducing β, η or f . The only way of reducing η is

by increasing la, the rate of immunity loss or the duration of asymptomatic infection. We de-

duce that reducing the duration of asymptomatic infection reduces R0, which agrees with the

findings of [22]. We also introduce a post disease parameter θ ∈ [0,∞) aimed at reducing the

time partially immune humans spend in the asymptomatic and latent asymptomatic classes.

An asymptotic analysis on the model with the treatment parameters shows that for θ = 0,
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the model can only predict a disease free state when γ is of O(ε−3). In order to assess

treatment success we consider the distinguished limit case

γ =
γ0

ε
, ε→ 0, γ →∞ (3.9.1)

with an assumption that for successful treatment to take place, S ∼ O(small), C ∼ 1 +

O(small) and X ∼ 1+O(small). The results suggest that treatment of symptomatic humans

alone cannot lead to the eradication of malaria but could only help in the management and

control of the disease. We deduce from our analysis that at leading order

R0 =
1

γ0

β̂f̂ ρ̂d̂

q̂(f̂ + q̂)
, (3.9.2)

where γ0 = O(ε2) compares well with the one obtained using the next generation matrix. We

also consider the cases γ = 0 with treatment of asymptomatic humans and treatment of both

sick and partially immune individuals. The results show that there is the possibility of erad-

icating the disease by treating both symptomatic and asymptomatic infectious humans. The

key information we derive from the treatment analysis is that if for instance, a particular drug

of reasonable efficacy administered on sick people requires O(ε−3) to bring the disease under

control, then less effort of O(ε−1) is required to achieve the same objective when combined

with asymptomatic treatment effort of O(ε−1).

Malaria transmission is a cyclic process of parasite transfer between human and mosquito

populations. While there is the likelihood of humans avoiding the irritating bites from

mosquitos, there seems to be a natural or ecological demand from the female anopheles

mosquito to feed on humans in order to reproduce. Although the origin of the parasite is

yet to be known, considering the process in one direction, it seems the mosquito deposits

young parasites during blood meal and later comes back to ingest the matured form of the

parasite and provide a conducive environment for its reproduction, since it lacks the ability
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to reproduce sexually in the human host. The parasite spends a longer time in the human

host than in the vector and its within-host occupation apart from causing disease pathology

and mortality, also sets the pace for transmission to another host. If the host has a hash

environment inimical to the survival of the parasite then disease morbidity, mortality and

transmission will be greatly reduced. The immune system plays a great role in defending

the host’s system against foreign pathogens. In the next chapter we will study the human

immune system and its mechanism in relation to malaria pathogenesis.

62



CHAPTER 4

PATHOGENESIS OF MALARIA

4.1. In-host pathogenesis

In a single bite an estimated average of 15 sporozoites are injected into the human body by

a feeding mosquito infected with plasmodium falciparum [97]. A sporozoite travels in the

blood stream to the liver where it invades hepatic cells, matures into schizonts and produces

30000 to 40000 merozoites within 6 days [87]. Each merozoite tries to invade a red blood cell

where it reproduces asexually, and after approximately 48 hours the erythrocyte ruptures,

releasing a number of merozoites to renew the cycle. Some merozoites differentiate into

gametocytes which are later picked up by a female anopheles mosquito during her blood

meal. The interaction between merozoites and red blood cells is well represented in the

malaria parasite life cycle diagram (bottom-right) in section 1.2.

Malaria infection in humans by Plasmodium species is associated with a reduction in

haemoglobin levels, frequently leading to anaemia [72]. This happens especially when the

destruction of red blood cells is followed by a decreased production of red blood cells from

the bone marrow. During the pre-antibiotic era for treating neurosyphilis, patients were
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treated with malariotherapy, in which they were inoculated with the asexual form of the

malaria parasite in order to raise their body temperature. Data from such patients will help

to explain the interaction between merozoites and red blood cells during a malaria episode.

Patient data

Here, we present data of two previously uninfected neurosyphilis patients undergoing malaria

therapy inoculated with two different strains of P. falciparum malaria parasites, namely El

Limon and McLendon strains. These data were extracted from Jakeman et al. [54] and
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Figure 4.1: Malaria data of neurosiphilis patients inoculated with El Limon and McLendon strains of Plasmodium falciprum

malaria parasite marked as patient S1301 and S1288 respectively in [54].
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are part of the data set obtained from the South Carolina and Milledgeville State hospitals.

Haemoglobin values were converted to red blood cell counts using 5× 106 erythrocytes/µl in

a person with 15g/dl haemoglobin. The data demonstrate how red blood cell count drops

and peaks in both patients during the period of the disease. Since these individuals had no

previous malaria at the time of inoculation, we assume they did not have malaria specific

immune cells prior to inoculation apart from the normal level of innate immune cells.

The evolution of malaria parasites like any other pathogen can instigate an immune re-

sponse in the host and depending on the effectiveness of the immune system the parasites

are either eliminated with little or no trace of disease symptoms or the parasites establish

themselves with life threatening symptoms if left untreated.

4.2. The immune system

Malaria is caused by the interaction between the plasmodium parasite and red blood cells in

the human host. The immune system is known to be the defender of the body against antigenic

substances. It exhibits a complex system of specialised network of cells, organs and tissues in

which their molecular and cellular interactions generate protection against foreign invaders.

The entire process of immunity consists of the innate and adaptive immune responses. The

former is nonspecific as to the type of infection and is ready to be mobilised as a first line

of action against the invading organism without recourse to previous infection, whereas the

latter, which takes some time to develop displays some immunological memory by reacting

more rapidly on subsequent exposure to the same pathogen.

All cells of the immune system are produced in the bone marrow and they include myeloid

(neutrophils, basophils, eosinpophils, macrophages and dendritic cells) and lymphoid (B lym-

phocyte, T lymphocyte and Natural Killer) cells [69]. The significance of these two varieties

of immune cells is that myeloid induces red blood cells and platelets in addition to controlling
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the innate immune mechanism. Whilst lymphoid, comprising T cells, B cells and natural

killer(NK) cells plays a crucial role in adaptive immune response. T cells produced in the

bone marrow undergo a process of maturation in the thymus differentiating into naive CD8+

cells and CD4+ T helper cells(Th1 and Th2). These helper cells later prime CD8+ cells to

kill pathogens directly by cytotoxicity and indirectly by inducing B cells to produce antigen

specific antibodies.

The immune response to malaria is greatly determined by the activities of antigen pre-

senting cells (APCs), namely dendritic cells(DCs), macrophages and B lymphocytes. APCs

capture and process antigens for presentation to T cells (CD4+ and CD8+ T cells). During

phagocytosis, bacteria are usually altered through a process called opsonization, such that

they are more readily and more efficiently engulfed. Although macrophages contribute im-

mensely to opsonisation and phagocytosis of malaria pathogens it is still unclear as to how

tissue macrophages interact with blood stage merozoites. Due to the inherent connectivity of

the organs of the immune system with one another and with other organs and tissues by the

network of lymphatic vessels, it becomes possible for lymphocytes to travel through blood

vessels and cells through the lymphatic vessels thereby, creating an exchange of fluid and

cells through blood and lymphatic vessels, enabling the lymphatic system to track evading

pathogens. There are likely two possibilities in which tissue macrophages can encounter blood

stage merozoites. The lymph node could be a meeting point since antibodies are known to

mill around a lymph node waiting for a macrophage to bring an antigen [79], or a macrophage

stationed in the tissue might catch a merozoite or infected erythrocyte since these could be

found in the blood transported to the tissues. Furthermore, given that the erythrocyte stages

of plasmodium circulates in the blood and do not enter tissues, the most likely location for

such innate mechanism to take place is the spleen [104]. Figure 4.2 illustrates the working of
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the immune system starting from antigen presentation by the innate immune cells to the de-

velopment of specific immune response. With the aid of toll-like receptors (TLRs) expressed

on their membrane, dendritic cells recognise and capture malaria parasites and infected red

blood cells most likely at the Marginal Zone for presentation to CD4+ and CD8+ T cells.

Initial preparations involves coating the pathogens with antigens especially in association with

MHC class II and other costimulatory molecules for proper recognition by the T cells. This

initiates differentiation of CD4+ T cells into helper cells, namely T helper 1(Th1) and T helper

2 (Th2) cells and Regulatory T cells (Treg). Mature dendritic cells produce IL-12 inducing
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Figure 4.2: Pathway diagram of immune response in relation to malaria infection. Dendritic cells capture parasites and
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Th1 cell to produce inflammatory cytokine Interferon gamma (IFN -γ), which makes CD8+

T cells to become cytotoxic, hence having the capacity to phagocytose. Th2 cells help B cells

to differentiate into plasma cells and secret antibodies. IL-12 activates natural Killer (NK)

cells, which further enhances the production of (IFN -γ). Macrophages activated by (IFN -γ)

produce inflammatory cytokines such as Tumour Necrosis Factor−α (TNF -α), IL-1, IL-6.

In the majority of patients with severe and uncomplicated malaria, TNF -α and IL-1 regulate

intercellular adhesion molecule 1 (ICAM -1) [88], which in addition to CD36, bind infected

erythrocytes [88, 13]. We note that binding of uninfected red blood cells is also possible. The

binding of uninfected and parasite infected erythrocytes to endothelial cells through CD36

has been examined in vitro by [75] with the binding of parasite infected erythrocytes being

significantly higher than that of uninfected erythrocytes, which may have been bound inadver-

tently since uninfected erythrocyte binding is independent of IFN -γ. Through phagocytosis,

macrophages and dendritic cells become heavily loaded with indigestive particles, haemozoin

due to uptake of haemoglobin, retarding their functional capacity as antigen-presenting cells

and resulting in a situation where large amounts of pro-inflammatory cytokines, precisely

(IFN -γ) and (TNF -α).

The pathogenic manifestations of malaria are mainly due to these pro-inflammatory cy-

tokines released by macrophages in response to malaria parasites and their products [102].

However, these unpleasant inflammatory responses do not continue indefinitely as they are

often regulated by some immunosuppressive anti-inflammatory cytokines. For instance, the

immunomodulatory cytokines IL-10 and Transforming growth factor β (TGF -β) play a key

role in limiting the pathology of malaria [86]. High ratios of IFN -γ, TNF -α and IL-12 to

TGF -β, or IL-10 are associated with decreased risk of malaria infection but increased risk of

clinical disease in those who do become infected [33]. TGF -α particularly plays an important
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role in controlling the transition between proinflammatory and anti-inflammatory responses

during the acute and resolving phases of the disease by mediating through a dose-depended

effect, the activation of macrophages, inhibiting both IFN -γ and TNF -α production, while

at the same time upregulating IL-10 and downregulating the expression of adhesion molecules

[78]. The immune system plays a key role in disease pathogenesis in the human host. Many

epidemiological modellers have used mathematical models to describe in-host interaction of

blood stage malaria parasites with red blood cells and the immune system. We present a brief

review of some of these models in the next section.

4.2.1. Review of within host models

We learnt from the life history of the malaria parasite that the female anopheles mosquito

deposits sporozoites, the assexual form of the parasite into the human system and later

picks up gametocyte, the sexual form of the parasite from the human blood. Out of the

three phases of the malaria parasite development, it is only the sporozoite formation phase

that takes place inside the mosquito. The other two phases namely, the merozoite and the

gametocyte formation stages occur in the human host. The blood stage merozoite replication

process is the main cause of malaria morbidity and mortality. Like most, all other infectious

diseases, malaria infection triggers both the innate and adaptive immune responses [11]. Thus,

understanding the dynamics of the parasite in the human host is crucial to the quest for

malaria elimination and eradication.

The first model describing malaria parasite interaction with the human host seems to

be that of Anderson et al. [4] where they used several mathematical models to examine

nonlinear dynamical phenomena in host parasite interaction. One of these models was used

to investigate the effects of immunological responses that target different stages in a parasite

life cycle. In a more detailed consideration, they made particular reference to the malaria
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parasite life cycle in which their findings suggest that the effectiveness of a given immunological

response is inversely proportional to the life expectancy of the target stage of the parasite

development cycle.

In a related work, a single strain mathematical model was proposed by Hetzel and An-

derson [51] to investigate blood-stage malaria infection. The model is a slight modification

of that of Anderson et al. [4] in which an additional loss term was included based on the

assumption that merozoites are equally likely to be absorbed into already infected erythro-

cytes. In analysing the model they consider the parasite and host red blood cell population

dynamics in the absence of immunity. They find that certain conditions determined by the

model parameters will favour persistent invasion of red blood cells by parasites, leading to the

identification of some important parameters like the rates of merozoite production and death

and those of erythrocyte production, death and invasion. Numerical results show oscillatory

behaviour in which they aver that the basic force behind the rise and fall in parasitaemia

in the model without immunity is the density of susceptible erythrocytes, suggesting that

availability of red blood cells is crucial in the determination of the initial pattern of infection

during malaria. On analysing the model with simple immune response, they find that the

destruction of infected red blood cells by immune cells is much more effective in controlling

parasite density than the destruction of merozoites by immune cells.

Considering antigenic variation and multiple strain biology, Anderson [6] presented a math-

ematical framework to interpret the interaction between parasite population growth and the

host immune system with special attention to the effect of antigenic variation and parasite

evolution in response to immunological attack through the use of a chemotherapeutic agents.

The concept of multiple strain presence in the parasite population was integrated in a simple

mathematical model and the results show a build-up of non-specific immunological responses
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leading to reduction of total parasite abundance. Prior to this reduction, the periods of the

oscillations in the abundances of each strain are set by the proliferation rate of each parasite

strain and the magnitude of the specific immunological responses induced death rate of the

parasites.

Since 1988, when the first work on within-host modelling was initiated, a considerable

work has been done in this area and a review of some of them is given by Molineaux and

Dietz [74]. Most of the works range from modelling the dynamics of the densities of healthy

erythrocytes, infected erythrocites and free merozoites without the immune system to those

involving immune effectors. Prominent in the characteristics of the results is the periodicity

and synchronisation of events during parasite invasion of red blood cells. For instance, Hoshen

et al. [53] used an in-host mathematical model with and without immune response to study

the blood stage development of P. falciparum asexual parasite and they find that synchronicity

of the infection followed by periodic symptoms seems to be an inherent feature of infection,

irrespective of the duration of merozoite released from the liver. It will, therefore, cause

fever and other uncomfortable symptoms as known in malaria patients. They also simulate

the effects of an induced host immune response and show how the level of immunity affects

the development of the disease. Using an age-structured model, Rouzine and McKenzie

[98] also show that Periodic fever experienced by the host during malaria attack is due to

synchronisation between the replication cycles of parasites in red blood cells initiated by innate

immune responses. Although the mechanism of synchronisation is yet to be well understood,

periodic oscillations characterising intra-host models with immunity has been widely reported.

During malaria infection interaction between red blood cells, merozoites and the immune

effectors lead to erythrocyte destruction. Thus anaemia appears to be an inevitable conse-

quence of malaria infection. Gravenor et al. [46], proposed an in-host model with immune
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response aimed at regulating malaria parasitemia. They fitted their model to data from

Kitchen [57] representing percentage of uninfected erythrocytes over 4 weeks of an artificially

induced infection in a malaria therapy patient. In a concluding remark they state that the

interaction between parasites and erythrocytes when combined with immune mechanisms in-

dicates that in the long term, parasite replication at low parasite densities can contribute

significantly to the high degree of anaemia observed in natural infection. However, Jakeman

et al. [54] contend that it is the destruction of uninfected red blood cells that primarily results

in anaemia in non-immune patients. They fitted their discrete model result to parasitemia

and anaemia data from neurosiphilis patients undergoing malaria therapy and find that for

each red blood cell that is observed to become parasitised, an additional 8.5 red blood cells

are destroyed through phagocytosis of erythrocytes bound to merozoites.

However in a new treatment model of within host dynamics proposed by Chiyaka et al.

[23], non-oscillatory solutions are observed. Their model is aimed at correcting two key areas

they identified as lacking in previous models. That is, inability to show the effect of immune

effectors on merozoite invasion of red blood cells including suppression of parasite production

by antibodies and the inability to account for the accelerated supply rate of red blood cell

from the bone marrow during a malaria infection and the loss of infected erythrocytes. The

model is a system of five ordinary differential equations in which the contributions of red

blood cells, infected red blood cells, merozoites, B cells and antibodies are well represented.

In analysing the model, they derived the basic reproduction number for parasite invasion

in the presence or absence of immune response and a critical drug efficacy that is required

for parasite clearance in case the immune system fails to clear the parasites. The numerical

results show that without treatment, the most effective role the immune system plays to clear

parasite is its ability in inhibiting parasite growth in erythrocytes. Increasing the death rate
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of infected red blood cells is more effective than the death rate of merozoites by immune cells.

This model appears to improve on previous models by integrating some of the known

biology. However, it does not account for the natural death rate of infected red blood cells

that may occur within the period of schizogony, but rather considers the bursting rate as the

death rate, a trend that has followed other previous in-host models. This gives an incorrect

expression for the basic reproduction number as expressed in their work. Although, their basic

reproduction number contains the infected red blood cell death rate constant, it can be shown

through the same method they have used that this constant will vanish when determining the

largest eigenvalue of the matrix describing the secondary infections arising from the initial

infection. A later work by Tuwiine et. al [112] improved on this limitation, but omitted

some important aspect of the biology since other parts of the model replicate the structure

of previous in-host models. Another in-host model with immune response describing the

dynamics of malaria infection was proposed by Li et al. [61] in which they generalise the

ideas in some known models including those in Anderson [6] and Chiyaka et al. [23]. A more

general class of within host malaria model has been given by Tewa et al. [107] in which they

carry out local and global stability analysis on the disease free equilibrium.

4.2.2. Summary from the survey

In-host malaria models describe the interaction of host red blood cells with blood stage

parasites. Throughout our survey, we find that none of the in-host models show explicitly the

effect of innate immune response on the pathology of the disease or account for the natural

death rate of infected red blood cells during the period of schizogony.

In the next chapter, we present the derivation, and analysis of an in-host model. We

will model the post-liver stage of malaria development and immune response with time delay

between first contact of innate immune cells and antigen presenting cells, and the emergence
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of trained adaptive immune cells aimed at describing the interaction between red blood cells

in a naive human host after a single infectious mosquito bite. Some of the features of the

model proposed in Chiyaka et al. [23] will be adopted and we show explicitly, the activities

of innate immune cells in respect of antigen presentation, describing their role in activating

specific immune response. For mathematical tractability we will be making considerable

simplifications, however the separate and common role of innate and adaptive response will

be preserved.
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CHAPTER 5

DESCRIPTION AND ANALYSIS OF

WITHIN-HOST MATHEMATICAL MODELS

5.1. Model development

In the previous chapter, the human pathogenesis and immune response was discussed. In

this chapter we derive and study a mathematical model that describes the infiltration of red

blood cells by merozoites and the immune activity that aims to interfere and destroy the

infection. The health of the infected individual is dependent on the red blood cell count of

the host, denoted as density X. We assume that a population of merozoites, of density M ,

are introduced at t = 0 say, representing release from the liver. Red blood cells infected by

merozoites react with healthy cells to move to an infected state, (density Y ). The maturation

of infected red blood cells results in the production of subsequent generations of merozoites

with some differentiating into gametocytes being the asexual form of the parasites. We use

G to represent the concentration of gametocytes.

The working of the immune system in response to the plasmodium parasite ensures sev-

eral immune cells working in unison to protect the host against severe pathology. Due to
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mathematical tractability and simplicity, coupled with a reasonable consideration of biologi-

cal relevance, we use one variable P to represent the blood-borne phagocytic innate immune

cell density (NK cells, macrophages and dendritic cells) that also serve as antigen presenting

cells. Antibodies are produced in large amount by B cells induced through T cells activation

in response to signals from P , and since antibody-mediated immunity is more effective than

cell-mediated immunity [28], we denote the activities of antibodies, trained T cells and B cells

by the variable A designating it as concentration of adaptive immune cells. Although It is

quite unusual, but for the purpose of this work we will also be referring to A as concentration

of antibodies. Cytokine output by adaptive immune cells is assumed to be rapid, and in

quasi-equilibrium with immune cell density. The state variables and their descriptions are

summarised in Table 5.1

State variable Description

X Concentration of red blood cells

Y Concentration of infected red blood cells

M Concentration of merozoites

G Concentration of gametocytes

P Concentration of innate immune cells

A Concentration of antibodies

Table 5.1: The state variables in the model .

Merozoites infect red blood cells on contact but the presence of antibodies restricts this

process. Adopting a single mass action kinetic form for the interaction between merozoites

and blood cells, we assume infection rate is given by βxXM/(1 + c0A), where βx and c0

are constants. The factor 1/(1 + c0A) is the role of antibodies in blocking invasion and c0,

the efficiency of antibodies in reducing erythrocytic invasion. Since red blood cells develop

continuously from stem cells in the bone marrow through reticuloctyes to mature in about

76



7 days and live a total of about 120 days [93], we assume a rate of recruitment, λx, of

fresh erythrocytes from the bone marrow and a natural death rate, µxX. Combining these

assumptions, we have for infected red blood cells

dX

dt
= λx −

βxXM

1 + c0A
− µxX. (5.1.1)

The removal of Infected red blood cells through phagocytosis by the innate immune cells

occurs on contact, and is enhanced by the presence of antibodies [123]. A single expression to

describe this process is kyPY (1+kaA), where ky and ka are constants. We assume that during

the 2−day period of parasitised erythrocyte schizogony, which occurs in 5 stages, first and

subsequent generation infected red blood cells die at rates µnY [14], or survive to experience

a per capita death rate µy due to parasite induced rupture. Combining these assumptions

gives

dY

dt
=

βxXM

1 + c0A
− (µy + µn)Y − kyPY (1 + kaA) , (5.1.2)

where the source term assumes that there is no loss of blood cells on infection.

The rupturing of an infected red blood cell produces an average of r merozoites such that

the net rate of merozoites production is rµyY (1 − θ)/(1 + c1A), where θ is the fraction of

merozoites committed to gametocytogenesis, r is the the number of merozoites per bursting

schizont and c1 is the efficiency of antibodies in blocking the release of new merozoites. Ga-

metocytes and merozoites die naturally at rates µgG and µmM or are killed by innate and

adaptive immune cells. Merozoites last only about 30 minutes if they fail to infect red blood

cells [70]. Whilst the lifespan of gametocyte is about 16 days [49]. As with infected red

blood cells, the immune system will attack merozoites directly on encounter, this too being

enhanced by antibodies presence. Unlike [23] that considers antibodies that block invasion

only, we assume that antibodies assist phagocytic cells in killing merozoites [67] and also

inhibit gametocyte development in the human host by binding to young gametocytes during
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their developmental stages [108]. An antibody binding to the surface of a merozoite, could

neutralise parasites, or lead to Fc-dependent mechanisms of parasite killing by macrophages

[67, 100]. The rate of merozoites and gametocytes killing through binding are expressed as

kmkbPAM and kgkcPAG in (5.1.3) and (5.1.4) respectively with rate constants km and kg.

Hence,

dM

dt
=

rµy (1− θ)Y
1 + c1A

− βxMX

1 + c0A
− µmM − kmPM (1 + kbA) , (5.1.3)

dG

dt
=

rµyθY

1 + c1A
− µgG− kgPG (1 + kcA) . (5.1.4)

It is assumed that immune cells are partly supplied from stem cells in the bone marrow at

a constant net rate bm and partly stimulated by the presence of infected red blood cells and

merozoites [23] at a constant per capita rate. We assume that immune cells die at a rate µpP .

The induced rate of innate immune cell production by parasites presence is represented by

η1(Y + φM) where φ is some constant indicating the phagocyte growth differences between

merozoites and infected red blood cells. The production of malaria specific antibodies is most

likely associated with the presence of sporozoites or merozoites and their ability to infect

host cells triggering immune response. Antibodies A are recruited at rates proportional to

merozoites and parasites presence at a rate η2{Y (t− d1) + g2M(t− d1)} with a constant, g2,

representing adaptive immune cell production difference between merozoites and parasitized

red blood cells, and a time delay, d1, being the lag between the time of contact of parasites

and antigen presenting cells and the time when adaptive cells are produced. The terms

P (kyY + kmM) and A(η3Y + η4M) describe the deterioration rates of innate immune cells

and antibodies, respectively, due to their interaction with the parasites. We assume that

antibodies die at a rate µt(A0−A), where, A0 is some non-zero starting density and assuming

the number of memory cells does not change much over the course of a single malaria cycle,

then the number of memory cells decline as the merozoites are removed. Combining these
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assumptions we have for the innate immune cells and antibodies

dP

dt
= bm + η1 (Y + φM)− µpP − P (kdY + knM) , (5.1.5)

dA

dt
= η2{Y (t− d1) + g2M(t− d1)}+ µa (A0 − A)− A (η3Y + η4M) . (5.1.6)

5.1.1. Initial and history conditions

Our primary aim is to study infection in a previously uninfected human caused by a single

mosquito infectious bite. Thus the initial condition forX is the concentration of red blood cells

describing the healthy state of the individual. This is represented by the healthy steady state

rate, λx/µx. Similarly, we will use the immune cell steady state bm/µp as the initial density

of innate immune cells in the individual. We recall from 4.1 that a successful infectious bite

of a mosquito can produce an average of 525000 merozoites giving the initial concentration

of merozoites released into the blood stream as 0.105 cells/µl. The concentration of infected

red blood cells as well as that of gametocytes is zero at the release of hepatic merozoite

since it is the blood stage merozoites that penetrate red blood cells and eventually convert to

gametocytes.

As mentioned in the equation describing the concentration of antibodies we want to em-

phasize that the choice of A0 as a non-zero initial density of antibodies is important in that

instead of restricting the model to only a single contact it makes provision for subsequent

contacts which will lead to accumulated immunity from previous infections. For first contact,

A0 = 0 and since the number of memory cells does not change much over the course of a

single infection, then A → 0 as the parasites are cleared. However, if a second infection is

initiated before antibodies completely decline to zero, after the first set of parasites have been

removed, then A → A0 indicates some additional amount of immunity after one infection.
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Hence, we will study the system subject to the initial conditions

X(0) = λx/µx, Y (0) = 0, M(0) = 0.105, G(0) = 0, P (0) = βm/µp, A(0) = 0

In a delay differential equation, the time derivative at the current time depends on the solution

and possibly its derivative at previous times. The derivative in (5.1.6) depends on the solution

at the previous time t− d1, it is necessary to provide an initial history function to specify the

value of the solution before time t = 0. Hence we state the following history condition.

X(t) = λx/µx, Y (t) = 0, M(t) = 0, G(t) = 0, P (t) = βm/µp, A(0) = 0, ∀t < 0.

The model has lots of parameters and we need to determine their values in order to carry

out a proper study of the dynamics. However, we will first derive the dimensionless form of

the model in the next section as this will provide a basis for determining the dimensional

parameter values.

5.2. Nondimensionalisation

The dynamics in this system works on a number of time scales, e.g. natural red blood cell

turnover (∼ 120 days), blood infiltrated merozoite maturation in blood cells (∼ 2 days), non-

infiltrated merozoite survival (∼ 30 minutes), adaptive immune response (∼ 2 days), etc. We

scale time with the maturation of merozoites and write

t =
t̂

µy
,

where, more precisely,
1

µy
is the duration of schizogony leading to cell induced death of infected

red blood cells and subsequent release of new generation merozoites. The dimensionless time,

t̂ = 1 represents a time scale of about 2 days, which is a relatively longer time compared

with the longevity of merozoites and their invasion capacity. The choice of this scaling will

enable us to study the system in relation to the replication rate of blood stage parasites. We
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normalise the red blood cell variable using the healthy steady state rate, λx/µx. We also

rescale the infected red blood cell, merozoite and gametocyte using the same parameter, so,

it is easier to ascertain directly the ratio between blood cells and merozoites. We rescale the

innate immune density with the healthy state bm/µp and antibodies with activation level 1/c0.

We thus make the following scalings,

X =
λx
µx
X̂, Y =

λx
µx
Ŷ , M =

λx
µx
M̂, G =

λx
µx
Ĝ, P =

bm
µp
P̂ , A =

1

c0

Â.

We define the following non-dimensional parameters

σ =
µx
µy
, β =

βxλx
µxµy

, µ =
µn
µy
, d =

µm
µy
, k1 =

ka
c0

, k2 =
kb
c0

, k3 =
kc
c0

, k =
kybm
µpµy

,

e =
µg
µy
, b =

µp
µy
, α =

kmbm
µpµy

, f =
kgbm
µpµy

, ω =
λxµpη1

bmµxµy
, h1 =

η3λx
µxµy

, h2 =
η4λx
µxµy

,

φ0 = c0A0, g1 =
η2c0λx
µxµy

, g3 =
µa
µy
, k4 =

kdλx
µxµy

, k5 =
knλx
µxµy

, τ = d1µy, k6 =
c1

c0

.

which leads to the dimensionless form of the system

dX

dt
= σ (1−X)− βXM

1 + A
, (5.2.1)

dY

dt
=

βXM

1 + A
− (1 + µ)Y − kPY (1 + k1A), (5.2.2)

dM

dt
=

r (1− θ)Y
1 + k6A

− βMX

1 + A
− dM − αPM (1 + k2A) , (5.2.3)

dG

dt
=

rθY

1 + k6A
− eG− fPG(1 + k3A). (5.2.4)

dP

dt
= b(1− P ) + ω (Y + φM)− P (k4Y + k5M) , (5.2.5)

dA

dt
= g1{Y (t− τ) + g2M (t− τ)}+ g3 (φ0 − A)− A (h1Y + h2M) . (5.2.6)

subject to the following history and initial conditions

(X(t), Y (t),M(t), G(t), P (t), A(t)) =

(1, 0, 0, 0, 1, 0) for t < 0,

(1, 0, 1.05× 10−7, 0, 1, 0) for t = 0.
(5.2.7)

We note that (5.2.4) is redundant since it is decoupled from the other equations. However,

we include it in order to determine the concentration of gametocytes in a single malaria cycle.
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We solve the system using the dimensionless parameter values shown in Table 5.2, where

parameter values are expressed in terms of a small parameter, ε to enable the application of

asymptotic analysis in describing timescales of events in the human host as parasites interact

with red blood cells. We define ε as the ratio of µn and µm so that ε � 1 describes a

situation where the death rate of merozoites is large compared to the death rate of infected

red blood cells making merozoite survival a direct consequence of parasite replication and

disease pathology. Following our remarks in the last part of section 5.1.1, we will now discuss

the estimation of the model parameter values in the next section.

5.3. Parameter values

The definitions of the various dimensionless and dimensional parameters are given in Table 5.2

and Table 5.3 respectively. The values of the parameters used for the simulations are derived

from different sources including experimental data, estimates from other mathematical models

and estimates from our model. Parameter values obtained from experimental sources or other

mathematical models are indicated in Table 5.3 using asterisk or bullet with a description

provided at the bottom. The choices of the remaining parameter values are made based on

fitting the model to the malaria data of neurosiphilis patients in section 4.1.

Firstly we determine the dimensionless parameter values in the third column of Table 5.2

by fitting the model equations (5.2.1)−(5.2.6) to the malaria data of the patient infected with

the El Limon strain. The solution is obtained using dde23, a MATLAB routine solver, with

the initial and history conditions stated in (5.2.7). We show results in Figure 5.1 whilst details

of the solver will be provided in section 5.8. The choice of parameter values is motivated by the

qualitative behaviour of the solution. We note that there is evidence of secondary outbreak of

the disease as shown in Figure 5.2. However, we have used a continuum approximation such

that we ignore the concentration of merozoites when it is reasonably small, i.e. if M < Mmin,
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then M ≡ 0, Y ≡ 0 so, dX/dt = σ(1−X). We consider sensible time scales for these processes,

which will be discussed later in section 5.7, and we will only focus on the case where M < Mmin

in section 5.7.6. Secondly we determine the values of the remaining dimensional parameters

in Table 5.3 using the combinations of parameters expressed in the first column of Table 5.2

Dimensional form Nondimensional parameter Value Value in terms of ε
µx
µy

σ 0.02 ε
βxλx
µxµy

β 49 O(1
ε
)

µn
µy

µ 0.11 O(1)
µm
µy

d 96 O(1
ε
)

ka
c0

k1 2.3 O(1)
kb
c0

k2 20 O(1)
kc
c0

k3 2.1 O(1)
c1
c0

k6 15.2 O(1)
kybm
µpµy

k 0.23 O(1)
µg
µy

e 0.034 O(ε)
µp
µy

b 0.6 O(1)

kmbm
µpµy

α 30 O(1
ε
)

kgbm
µpµy

f 0.35 O(1)
λxµpη1
bmµxµy

ω 10 O(1)
η3λx
µxµy

h1 0.45 O(1)
η4λx
µxµy

h2 0.34 O(1)
η2c0λx
µxµy

g1 1.8 O(1)
µa
µy

g3 0.6 O(1)
kdλx
µxµy

k4 0.028 O(ε)

knλx
µxµy

k5 0.031 O(ε)

r r 16 O(1)

θ θ 0.0064 O(ε)

φ φ 2 O(1)

g2 g2 1.86 O(1)

m0 m0 0.000000105 O(ε2)

Table 5.2: Dimensionless parameter values of Inhost model defined in terms

of the small parameter ε = µn
µm
≈ 0.001, this being relevant for section 5.7.
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Figure 5.1: Results showing pathogenesis of malaria in the human host in which initially introduced merozoites invade red

blood cells to reproduce and in the process form sexual parasites. Innate immune cells proliferate as they respond to pathogens.

This culminates in the production of specific immune response that leads to parasite clearance. We note that t = 1, represents 2

days in real time corresponding to the the period of each erythrocytic schizogony. The initial conditions used are as stated above

whereas the parameter values are σ = 0.02, β = 49, µ = 0.11, d = 96, k1 = 2.3, k2 = 20, k3 = 2.1, k6 = 15.2, k = 0.23, e = 0.034,

b = 0.6, α = 30, f = 0.35, ω = 10, h1 = 0.45, h2 = 0.34, g1 = 1.8, g3 = 0.6, k4 = 0.028, k5 = 0.031, r = 16, θ = 0.0064, φ = 2,

φ0 = 0, g2 = 1.86. The data represent those of a malaria patient infected with El Limon strain marked as patient S1301 in [54]

In Figure 5.1, the concentration of infected red blood cells drops to its minimum level

due to invasion by merozoites and starts growing at the time of recovery when the immune

system gains control. The minimum level of X, 0.55 occurs around t = 5.4. At the begin-

ning of infection, the red blood cells seem to maintain their normal level until perhaps the
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Figure 5.2: Results showing secondary outbreak of the disease. The concentration of red blood cells drops after the initial

attack and recovery is initiated as immune response gains control. However, the immune cells relax after the concentration of

merozoites drops creationg room for merozoites growth and re-invasion of the red blood cells. The initial conditions and the

parameter values are the same as those in Figure 5.1

concentration of merozoites is large enough to offset the erythropoietic

function of red blood cells. In Figure 5.1b, c, d, the concentrations of infected red blood

cells, merozoites and gametocytes peak, round about the same period when X drops to its

minimum with M and Y having similar shapes an indication of some form of proportionality.

This is an expected behaviour since a merozoite convert to an infected red blood cell on

successfully penetrating a red blood cell. Although the peak value of M is less than that of

Y , it may not be unconnected with the high death rate of merozoites.

Figure 5.1e describes how innate immune cells respond to the presence of malaria pathogens

by proliferating to a peak value and finally tail off. At the initial stage of infection, P main-

tained its normal level and shortly after concentrations of parasites attain their maximum

levels by dragging the concentration of red blood cells to its minimum, P grows to its peak.
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This facilitates rapid production of specific immune cells as shown in Figure 5.1f. Although

not very clear from the graph, quite a negligible amount of A emerge after the time lag t = 1

during which innate immune cells initiates the training of naive T cells and B cells. The peak

of innate immune cells marks a massive destruction of gametocytes, merozoites and infected

red blood cells and as M and Y die out there is no more feed back from Y to G. Hence,

the concentration of gametocytes decays and since there is no more infection to boost the

production of antibodies, A dies out whilst P returns to its normal level.

In Figure 5.3 we show the effect of φ0 on the dynamics of the disease. Up to now we have

shown only the first contact case of φ0 = 0. After each contact the value of φ0 in the context

of the model will increment upwards a small amount, ∆φ0 say, though we have assumed

that ∆φ0 � 1 in the analysis. The graph shows increasing φ0, and hence the readiness of the
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Figure 5.3: Results showing the effect of changing φ0 on minimum level of red blood cells. The initial conditions and

parameter values used are the same as those in Figure 5.1 except that φ0 = 0 was varied from 0 to 0.08 at interval of 0.001
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innate immune response to respond, the amount of damage caused to red blood cells decreases

until φ0 ≥ 0.071 when the immune system is completely effective and interestingly, φ0 = 0.71

corresponds to R0 = 1.

5.4. Existence and uniqueness of solution

The rescaling means that the uninfected state has X = 1, P = 1 and all other variables being

zero. We note that since ω > k4 and ωφ > k5 then P ≥ 1. The scaling on Y and M being

the same as that of X means that the RHSs are continuous. The solution of (5.2.1)−(5.2.6)

belongs to the set Ω, where Ω is defined on the set

Ω = {X, Y,M,G, P,A : 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤M ≤ 1, 0 ≤ G ≤ 1, P ≥ 1, A ≥ 0}.

It is straightforward to deduce positivity, as in each case dZ/dt ≥ 0 when Z = 0, where

Z ∈ S = {X, Y,M,G, P,A} and all variables in S/Z are non-negative. We can easily show

from (5.2.1) that 0 ≤ X ≤ 1. Assuming there are times t1 and t2 such that X(t1) < 0 and

X(t2) > 1. If we start with initial conditions, X(0) > 0, M(0) > 0 and A(0) > 0, then

the trajectories of X(t) for 0 < t < t1, t2 will either tend towards 0, 1 or oscillate between 0

and 1. Suppose X(t) = 0, then dX/dt > 0 meaning X(t) is increasing and cannot cross the

line X = 0. Similarly, X(t) = 1 implies dX/dt < 0 and X(t) cannot cross the line X = 1.

Both cases contradict our initial assumptions X(t1) < 0 and X(t2) > 1 and we conclude that

0 ≤ X(t) ≤ 1. Theorem A in (Driver, 1977, P259) states that a system

dX

dt
= F (t,X,X (t− τ1) , ...,X (t− τj)) , (5.4.1)

subject to the history condition

X(t) = X0(t), for − max
i=1,..,j

(τi) ≤ t ≤ 0,
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where F and X0 are Lipschitz continuous and the positivity condition

∂Fi

∂Xi

≥ 0, when Xi = 0 and Xk ≥ 0 for k 6= i, holds, (5.4.2)

then there exists a solution and it is unique. Although the theorem is hinged on “local

Lipschitz” conditions, it suffices for uniqueness and F is locally Lipschitzian if it has first

partial derivatives with respect to all the X ′is [32]. In our case, j = 1, the history condition

in 5.2.7 is continuous and F is the right hand side of system (5.2.1)−(5.2.6). Certainly F

is continuous, and so too are the partial derivatives. The system meets the criteria of this

theorem, hence there exists a solution and it is unique.

5.5. The basic reproduction number

Using the same next generation matrix as in our previous analysis in Chapter 3, we consider

the system

R′h = FhRh − VhRh, (5.5.1)

where,

Fh =


0 q6 0

0 0 0

0 0 0

 , Vh =


q1 0 0

−q2 q3 0

−q4 0 q5

 , Rh =


Y

M

G

 .
It can be shown that the linearisation of (5.2.1)−(5.2.6) at the disease-free equilibrium is a

two dimensional system without delay, which justifies the use of the next generation matrix

approach. We note that whenever a merozoite penetrates a healthy red blood cell, a new

infection or precisely, a new infected red blood cell emerges. The matrix FhRh describes

the emergence of these new infections. Every surviving infected red blood cell undergoes a

process of schizogony or transition back to the merozoite compartment or differentiates into

gametocytes. These pathogenic processes together with the immune response is represented
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by VhRh where Rh denotes the erythrocytic stages of the plasmodium life cycle. The constants

q′is are expressed in terms of the model parameters as follows:

q1 = 1 + µ+ k(1 + k1φ0), q2 =
r(1− θ)
1 + k6φ0

, q3 =
β

1 + φ0

+ d+ α(1 + k2φ0),

q4 =
rθ

1 + k6φ0

, q5 = e+ f(1 + k3φ0), q6 =
β

1 + φ0

.

The non-negative matrix Gh = FhV
−1
h is expressed in the form

Gh =


q7 q8 0

0 0 0

0 0 0

 , (5.5.2)

where,

q7 =
q2q6

q1q3

, q8 =
q6

q3

.

The square of the largest eigenvalue of Gh gives the inhost basic reproduction number

R01 =
βr(1− θ)

(1 + k6φ0)(kk1φ0 + 1 + µ+ k)(αk2φ2
0 + αk2φ0 + αφ0 + dφ0 + β + d+ α)

, (5.5.3)

which approximates the number of secondary red blood cell infections due to one hepatic

merozoite released into the blood stream of a disease free human. Although the largest

eigenvalue of Gh is R0
1/2
1 the square root arises on the ground that it takes two generations

for infected hosts to produce new infected hosts [31]. But in practise, the square root is left

off the reproduction number.

We recall that one of the objectives of this work is to investigate whether or not a naive

individual who contacts malaria through a single infectious bite will survive without treat-

ment. The innate immune response and the development of adaptive immunity to contain

the disease is imperative. Thus we will present three forms (R01, R02 and R03) of the ba-

sic reproduction number. The form presented in (5.5.3) contains φ0, an initial amount of

antibodies. This represents a situation in which an individual has a second or subsequent
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contact after going through the first malaria episode and the time interval between contacts

is short enough to guarantee the existence of some antibodies before the next contact. For

first malaria infection, φ0 = 0 and the basic reproduction number will be

R02 =
βr(1− θ)

(1 + µ+ k)(β + d+ α)
. (5.5.4)

A mere view of R02 suggests that the contribution of immunity to the control of infection is

dominated by the innate immunity parameters k and α since the adaptive immunity profile

parameters k1, k2, k6 and φ0 are absent. However, we note that φ0 = 0 is only an initial state

of the level of specific immune cells in an individual without malaria antibodies at the time of

infectious contact with a mosquito and as we can see clearly from (5.5.3), φ0 = 0 nullifies the

specific contributions of k1, k2 and k6 to the clearance of parasites but during infection some

amount of antibodies are created and these parameters will become effective. The ability of

innate immune cells in training naive T cells and B cells to create antibodies and complement

the activities of phagocytic and natural killer cells, depends on the efficiencies of k and α.

However, this may vary from human to human but lacking in HIV/AIDS patients. We can

easily show that in the worst scenario where both innate and specific immune responses are

absent, the basic reproduction number is

R03 =
βr(1− θ)

(1 + µ)(β + d)
. (5.5.5)

5.6. Steady state solution and stability analysis

It is worth noting that using the values in Table 5.2, R03 ≈ 3. Since β is significantly

smaller than d, then viable therapeutic strategies targeting merozoite invasion of red blood

cells (reducing β) and enhancing merozoite death (increasing d) could potentially be effective.
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This assumes that the values are reliable.

Our preliminary investigation centres on analysing the model, (5.2.1)−(5.2.6) to ascertain

whether a naive individual without immune response can survive a single infectious mosquito

bite with the aim of determining the total number of gametocytes produced at the end of

the infection or at death. The disease-free equilibrium point of system (5.2.1)−(5.2.6) is

(X, Y,M,G, P,A) = (1, 0, 0, 0, 1, φ0). We commence the stability analysis by assuming a little

perturbation away from the disease-free state. For instance, if we let for t ≥ 0

X = 1 + ερ1e
λt, Y = ερ2e

λt, M = ερ3e
λt,

G = ερ4e
λt, P = 1 + ερ5e

λt, A = φ0 + ερ6e
λt,

where the pis are constants and ε is a small parameter given the size of the perturbation, and

(X, Y,M,G, P,A) = (1, 0, 0, 0, 1, 0) for t < 0. The task is to find the eigenvalues, λ = λi, i =

1, ..., 6, such that (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) 6= (0, 0, 0, 0, 0, 0).

By substituting the perturbations of X, Y , M , G, P and A in system (5.2.1)−(5.2.6),

which after rearranging and ignoring terms of O(ε2) leads to

r1 0 β 0 0 0

0 r2 −β 0 0 0

0 −r4 r3 0 0 0

0 −r6 0 r5 0 0

0 r7 r8 0 r9 0

0 r10 r11 0 0 r12





ρ1

ρ2

ρ3

ρ4

ρ5

ρ6


=



0

0

0

0

0

0



where the ris are expressed as

r1 = (φ0 + 1)(λ+ σ), r2 = (φ0 + 1)(kk1φ0 + k + λ+ µ+ 1),

r3 = αk2φ
2
0 + αk2φ0 + αφ0 + dφ0 + λφ0 + β + d+ α + λ,

r4 = r(1− θ)(φ0 + 1), r5 = (k6φ0 + 1)(fk3φ0 + e+ f + λ), (5.6.1)
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r6 = rθ, r7 = k4 − ω, r8 = k5 − ωφ, r9 = b+ λ,

r10 = eλτh1φ0 − g1, r11 = eλτh2φ0 − g1g2, r12 = eλτ (g3 + λ).

Since (ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) 6= (0, 0, 0, 0, 0, 0), the determinant of the coefficient matrix must be

zero. Thus the eigenvalues satisfy the characteristic equation

r1r12r9r5 (r2r3 − βr4) = 0. (5.6.2)

We observe that four of the eigenvalues are trivially negative and the remaining two are

expressed in the following equation.

λ2 +

(
r13 +

r14

φ0 + 1

)
λ+

r13r14

φ0 + 1

(
1− βr(1− θ)

(k6φ0 + 1)r13r14

)
= 0. (5.6.3)

where, r13, r14 are defined as

r13 = kk1φ0 + k + µ+ 1, r14 = αk2φ
2
0 + αk2φ0 + αφ0 + dφ0 + β + d+ α,

and the ratio in the second bracket is an expression for R01 in 5.5.3.

Sum of roots = −
(
r13 +

r14

φ0 + 1

)
and Product of roots =

r13r14

φ0 + 1
(1−R01) .

Since all the parameters are positive, there will be at most one positive root if R01 > 1. Thus

the disease free state is locally asymptotically stable if R01 < 1 and unstable for R01 > 1. We

note that the delay term in (5.2.6) for dA/dt makes no contribution to this analysis.

5.7. Asymptotic analysis of in-host model

In this section, we will present the timescale analysis of the in-host model, which we have

used to describe the progression of the disease from the release of merozoites from a rupturing

hepatic schizont into the blood stream to the time of parasite clearance assuming a single

infectious mosquito bite. The analysis shows that following a single infectious bite of a
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mosquito, blood stage parasites proliferate causing a reduction in red blood cell level and

depending on the intervention and efficiency of the immune response, parasites will be cleared.

We have assumed that ε � 1 and all parameters are equal to the fractional powers of ε as

given in Table 5.2. It is a common practice in timescale analysis to use different notations in

describing variables in different timescales but due to the numerous time scales involved in

this analysis and for the sake of brevity, we have resorted to using an “over-bar” for each time

scale noting that the solutions and discussions only apply to the particular time scale being

considered. There are 7 major timescales as predicted by our model describing the trend of

events on malaria pathogenesis in the human host. These include:

t = O(ε) : Initial concentration of merozoites decays as meroziotes infect red blood cells

initiating the processes involved in the training of T cells and B cells with no significant

effect on the order of X and P . Due to short term viability, meroziotes that could not

penetrate red blood cells die out.

t = ε
b0

ln
(
1
ε

)
+ O(ε)(b0 = β̂ + d̂+ α̂) : In this timescale, the fast decaying density of mero-

zoites drops by an order of magnitude due to infiltration into red blood cells.

t = O (1) : A non-negligible amount of infected red blood cells convert to merozoites causing

M and Y to equilibriate. Immature gametocytes emerge in low concentration as infected

red blood cells mature to release subsequent generation merozoites some of which are

committed to gametocytogenesis

t = τ + O(ε) : This timescale marks the emergence of an initially negligible concentration

of specific immune response in the form of trained T cells, B cells and antibodies after

the initial lag time of antigen presentation.

t = τ + O(1) : increased density of parasites and infected red blood cells in this timescale
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stimulates more production of trained T cells and B cells. Break down in this timescale

occurs when the concentration of infected red blood cells become O(1), a period pre-

ceding the development of innate immune response capable of reducing the level of

infection.

t = τ + 2
R
ln(1

ε
) + O(1)

(
R = β̂r̂

β̂+d̂+α̂
− (1 + µ̂+ k̂)

)
: This is the major timescale that

describes the in-host dynamics. Infected red blood cell density, X decreases to its

minimum. The immune system gains control as parasite levels peak and after reducing

Y , M and G to negligible levels, P and A return to their normal states.

t = O (ε−1) : In this time scale, red blood cells recover and return to normal level.

In this analysis, we will consider a case of first malaria infection caused by a single mosquito

bite in which we have assumed φ0 = 0, signifying absence of initial concentration of malaria

specific immune cells. Using the size of parameters indicated in Table 5.2 in terms of ε we

rescale the parameters as follows.

σ = εσ̂, β =
1

ε
β̂, µ = µ̂, d =

1

ε
d̂, k1 = k̂1, k2 = k̂2, k3 = k̂3,

k6 = k̂6, k = k̂, e = εê, b = b̂, α =
1

ε
α̂, f = f̂ , ω = ω̂, (5.7.1)

h1 = ĥ1, h2 = ĥ2, g1 = ĝ1, g3 = ĝ3, k4 = εk̂4, k5 = εk̂5,

r = r̂, θ = εθ̂, φ = φ̂, g2 = ĝ2, m0 = ε2m̂0,

where the quantities with hats are assumed O(1) in size. These rescalings lead to the following

system

ε
dX

dt
= ε2σ̂ (1−X)− β̂XM

1 + A
, (5.7.2)

ε
dY

dt
=

β̂XM

1 + A
− ε (1 + µ̂)Y − εk̂PY (1 + k̂1A), (5.7.3)

ε
dM

dt
= ε

r̂
(

1− εθ̂
)
Y

1 + k6A
− β̂XM

1 + A
− d̂M − α̂PM

(
1 + k̂2A

)
, (5.7.4)
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dG

dt
= ε

r̂θ̂Y

1 + k6A
− εêG− f̂PG(1 + k̂3A). (5.7.5)

dP

dt
= b̂(1− P ) + ω̂

(
Y + φ̂M

)
− εP

(
k̂4Y + k̂5M

)
, (5.7.6)

dA

dt
= ĝ1Y (t− τ) + ĝ1ĝ2M (t− τ)− ĝ3A− ĥ1AY − ĥ2AM, (5.7.7)

subject to

t = 0, X = 1, Y = 0, M = ε2m̂0, G = 0, P = 1, A = 0,

t < 0, X = 1, Y = 0, M = 0, G = 0, P = 1, A = 0.

We summarise the analysis for each timescale with full details in Appendix C.1.

5.7.1. t = O(ε)

We scale time using

t = εt̄

and relevant scalings for the dependent variables are

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε2M̄, G ∼ ε4Ḡ, P ∼ P̄ , A = 0. (5.7.8)

To leading order we obtain

dX̄

dt̄
∼ 0,

dȲ

dt̄
∼ β̂M̄ ,

dM̄

dt̄
∼ −

(
d̂+ β̂ + α̂

)
M̄,

dḠ

dt̄
∼ rθȲ ,

dP̄

dt̄
∼ 0, (5.7.9)

describing the initial state of the disease. These are subject to

t̄ = 0, X̄ = 1, Ȳ = 0, M̄ = m̂0, Ḡ = 0, P̄ = 1, Ā = 0.

Solving this system leads to the leading order solution

X̄ ∼ 1, P̄ ∼ 1, Ȳ ∼ β̂m̂0

b0

(
1− e−b0 t̄

)
, M̄ ∼ m̂0e

−b0 t̄,

Ḡ ∼ r̂θ̂β̂m̂0

b0

t̄− r̂θ̂β̂m̂0

b2
0

(
1− e−b0 t̄

)
, Ā = 0, (5.7.10)
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where

b0 = β̂ + d̂+ α̂.

We observe that the initial concentration of merozoites released from hepatic schizont is

decaying as meroziotes infect red blood cells. However, this does not have any significant

effect on the order of X and P . The contact between innate immune cells and merozoites

initiates the processes involved in the training of T cells and B cells, and due to the short

term viability of merozoites the parasites that could not penetrate red blood cells die out. A

rebalance of the system occurs when M̄ = O(ε), i.e. on a time scale of t̄ =
1

b0

ln

(
1

ε

)
+O(1).

5.7.2. t = ε
b0

ln(1
ε
) + O(ε)

In order to describe events in this time scale, we write

t =
ε

b0

ln

(
1

ε

)
+ εt̄

and rescale the dependent variables as

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄, G ∼ ε4
r̂θ̂β̂

b2
0

ln

(
1

ε

)
+ ε4Ḡ, P ∼ P̄ , A = 0.

Substituting these into the non dimensional system gives the leading order system

dX̄

dt̄
∼ 0,

dȲ

dt̄
∼ 0,

dM̄

dt̄
∼ β̂rm0

b0

− b0M̄,
dḠ

dt̄
∼ r̂θ̂β̂m̂0

b0

,
dP̄

dt̄
∼ 0, (5.7.11)

subject to, by matching with t = O(ε) timescale solution

X̄ ∼ 1, Ȳ ∼ β̂m̂0

b0

, M̄ ∼ m̂0e
−b0 t̄, Ḡ ∼ r̂θ̂β̂m̂0

b0

t̄, P̄ ∼ 1, (5.7.12)

as t→ −∞, to leading order. The solutions are

X̄ ∼ 1, Ȳ ∼ β̂m̂0

b0

, M̄ ∼ β̂m̂0

b2
0

+ m̂0e
−b0 t̄, Ḡ ∼ r̂θ̂β̂m̂0

b0

t̄− r̂θ̂β̂m̂0

b2
0

, P̄ ∼ 1, Ā = 0,

The merozoites that have successfully penetrated red blood cells are undergoing the first

round of erythrocytic schizogony. We note this is an artefact of the continuum assumption
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and the time scale of t =
ε

b0

ln

(
1

ε

)
(about 2 hours) is too short for the likely release of new

merozoites. However, the contribution at this stage is negligible at leading order so we argue

that is sound to this order. Concentrations of red blood cells and innate immune cells still

remain at normal levels whilst gametocytes and adaptive immune cells are yet to emerge.

There is a rebalance in the system in the gametocyte equation at t = O

(
1

ε

)
.

5.7.3. t = O(1), t < τ

In this timescale, we scale time as

t = t̄.

The scalings of the variables are

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄, G ∼ ε3Ḡ, P ∼ P̄ , A = 0.

Following our usual substitution of the rescalings into (5.7.2)−(5.7.7), we found that other

equations are similar to those in the preceding time scale except

dȲ

dt̄
∼

(
βr

b0

− (1 + µ+ k)

)
Ȳ , M̄ ∼ r̂Ȳ

b0

,
dḠ

dt̄
∼ r̂θ̂Ȳ − f̂ Ḡ, dP̄

dt̄
∼ b̂(1− P̄ ),

subject to, by matching,

Ȳ =
β̂m̂0

b0

, M̄ =
β̂r̂m̂0

b2
0

, P̄ = 1, Ḡ = 0, at t̄ = 0.

Solving the system yields

X̄ ∼ 1, P̄ ∼ 1, Ȳ ∼ β̂m0

b0

e+Rt̄, M̄ ∼ r̂β̂m0

b2
0

e+Rt̄, Ā = 0,

Ḡ =
r̂θ̂β̂m0(
f̂ +R

)
b0

e+Rt̄, R = a0 (Rc − 1) ,

where

R = a0(Rc − 1),
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and where a0 = 1 + µ̂+ k̂, and in particular,

Rc =
β̂r̂

a0b0

=
β̂r̂

(1 + µ̂+ k̂)(β̂ + d̂+ α̂)
,

is the leading order basic reproduction number approximating that of the system for θ � 1, is

a necessary and sufficient condition for the disease to die out. We observe that Rc < 1 means

R < 0 so that merozoites and infected red blood cells decay to zero, such that Y never exceeds

O(ε2); this is to be expected on (M̄, Ȳ ) = (0, 0) as a steady state when Rc < 1. However, if

Rc > 1, M̄ and Ȳ grow exponentially indicating the disease is beginning to establish itself as

the first set of merozoites start producing subsequent merozoites and immature gametocytes.

The results suggest that chemotherapy may yield optimum result if implemented in this time

scale to keep the basic reproduction number less than unity as it would help to eliminate

second generation merozoites during their release. In the case of Rc < 1 the disease will die

off without impacting significantly on red blood cells (presumably there will be no symptoms),

we will then not discuss this case further and concentrate on Rc > 1. The adaptive immune

system begins to activate at t = τ , indicating the next time scale.

5.7.4. t = τ + O(ε), Rc > 1

This time scale corresponds to the initial t = O(ε) time scale of merozoite emergence from the

liver, and the initial phase of merozoite presentation to naive T and B cells by dendritic cells.

After a delay of t = τ , the adaptive immune response and, consequently, antibody production

is starting. For this timescale we write

t = τ + εt̄.

Due to this being a rapid time scale the variables X, Y , M , G and P are “frozen” at leading

order, namely

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε2M̄, G ∼ ε4Ḡ, P ∼ P̄ . (5.7.13)
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Since Y (t− τ) = O(ε2) and M(t− τ) = O(ε2) then

A = ε3Ā.

and substituting the t = O(ε) solution for Y and M yields

dĀ

dt̄
= ĝ1

β̂m̂0

b0

(
1− e−b0 t̂

)
+ ĝ1ĝ2m0e

−b0 t̄,

subject to Ā(0) = 0, which has the solution

Ā =
ĝ1β̂m̂0

b0

{t̄+ ĝ2− 1 + (1− ĝ1)e−b0 t̄}.

We observe that in large time A will grow linearly. As indicated by the first two timescales,

the output of antibodies/T cells is through infected red blood cell stimulation as merozoites

momentarily decline at
ε

b0

ln

(
1

ε

)
+ O(ε) timescale. The next balance shift at leading order

occurs at t̄ = O

(
1

ε

)
, i.e. Ā = O

(
1

ε

)
.

5.7.5. t = τ + O(1), Rc > 1

In this timescale we scale time as

t = τ + t̄.

The scalings of other variables are given as

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄, G ∼ ε3Ḡ, P ∼ P̄ , A ∼ ε2Ā.

Substituting these rescalings into (5.7.2)−(5.7.7) yields a system in which X and P still

maintain their normal levels. Other variables are expressed by the following equations

dȲ

dt̄
= β̂M̄ −

(
1 + µ̂+ k̂

)
Ȳ , M̄ =

r̂Ȳ(
d̂+ β̂ + α̂

) ,
dḠ

dt̄
= r̂θ̂Ȳ − f̂ Ḡ, dP̄

dt̄
= b̂(1− P̄ ),

dĀ

dt̄
= ĝ1Ȳ (t− τ)− ĝ3Ā,
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subject to

Ȳ (0) ∼ β̂m̂0

b0

, Ḡ(0) ∼ 0, P̄ (0) = 1, Ā(0) ∼ 0, by matching.

The solutions are

Ȳ ∼ β̂m̂0

b0

eRt̄, Ā ∼ ĝ1β̂m̂0

b0(g3 +R)
eR(t−τ), Ḡ ∼ r̂θ̂β̂m̂0

b0(f̂ +R)
eRt̄, M̄ ∼ β̂m̂0e

Rt̄

b2
0

, P ∼ 1.

The solution indicates that densities of the various parasite stages are growing exponentially

and there is possibility of full blown malaria with consequences of anaemia. There is also

rapid production of antibodies, however their contribution to controlling the disease is still

negligible. There is a shift in balance in the system at leading order when the infected cells

Ȳ = O(1), corresponding to a time scale
2

R
ln

(
1

ε

)
+O(1)

5.7.6. t = τ + 2
R
ln(1

ε
) + O(1), R > 0

This is a significant timescale in which the effect of malaria reaches its peak and the adaptive

immune response begins to take effect. We translate in time from the previous time scale and

write

t = τ +
2

R
ln(

1

ε
) + t̄,

though we note here that formerly the τ term is superfluous, however, since the large term is

logarithmic, in practise τ will not be that much smaller. The variable rescalings in this time

scale are

X ∼ X̄, Y ∼ Ȳ , M ∼ εM̄, G ∼ εḠ, P ∼ P̄ , A ∼ Ā,

subject to

X̄ ∼ 1, Ȳ ∼ β̂m0

b0

eRt̄, M̄ ∼ β̂m0e
Rt̄

b2
0

, Ḡ ∼ r̂θ̂β̂m0

b0(f̂ +R)
eRt̄, P̄ ∼ 1, Ā ∼ ĝ1β̂m0

b0(ĝ3 +R)
e−RτeRt̄,
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as t̄→∞, from matching. On substitution of these variables into (5.7.2)−(5.7.7) followed by

appropriate balancing of terms we have the following leading order system,

dX̄

dt̄
= − β̂X̄M̄

1 + Ā
, (5.7.14)

dȲ

dt̄
=

β̂X̄M̄

1 + Ā
− (1 + µ̂) Ȳ − k̂P̄ Ȳ

(
1 + k̂1Â)

)
, (5.7.15)

M̄ =
r̂Ȳ

β̂X̄ +
(
α̂P̄ + d̂

) (
1 + k6Ā

)
+ α̂k̂2P̄ Ā

(
1 + Ā

) , (5.7.16)

dḠ

dt̄
=

r̂θ̂Ȳ

1 + k6Ā
− f̂ P̄ Ḡ− f̂ k̂3P̄ ḠĀ, (5.7.17)

dP̄

dt̄
= b̂(1− P̄ ) + ω̂Ȳ , (5.7.18)

dĀ

dt̄
= ĝ1Ȳ (t− τ)− ĥ1ĀȲ − ĝ3Ā. (5.7.19)

This system is considerably more difficult than those in the previous timescales, and full

solutions cannot be found. A key observation of the equation is that
dX̄

dt̄
< 0, so there will be

a noticeable decline in red blood cells. Furthermore,
dP̄

dt̄
> 0 so innate cells are increasing and

inflammatory response is expected. We thus expect, it is this timescale in which the malaria

symptoms will be experienced.

Numerical simulations suggest that Ȳ → 0 as t̄→∞ and X̄ → X∞ > 0. We derive lower

and upper bounds for X∞ in the following section, and in particular, X∞ = O(1). We present

a numerical solution to demonstrate this behaviour.

5.7.6.1. Numerical simulations

The numerical simulations describing events in this timescale are presented in Figure 5.4a,

b,c,d and Figure 5.5a, b. The results suggest rapid exponential decay in Y and M after

attaining their maximum levels whilst Red blood cell density, X decays to its minimum level.

Gametocytes, innate immune cells and antibodies are also decaying after an initial peak.
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5.7.6.2. Lower bound

The leading order system appears not to have a closed form solution but considering a worse

scenario characterising absence of adaptive immune response with the following assumptions

ω � 1, b� ω, g1 � 1, h1 � 1, Ā = O

(
max(ĝ1, ĥ1)

)
,
dP̄

dt̄
= O (ω) ,

then P̄ ∼ 1 and we obtain the first two equations of the SIR model

dX̄

dt̄
= − β̂r̂X̄Ȳ

β̂X̄ + α̂ + d̂
,

dȲ

dt̄
=

(
β̂r̂X̄

β̂X̄ + α̂ + d̂
− a0

)
Ȳ ,
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Figure 5.4: Result showing the behaviour of X, Y , M and G. The variable X decays while Y , M and G initially grow

but later decay. The initial conditions are X = 1, Y = Rt + ln(β̂m0/b0), G = r̂θ̂β̂m0 exp(Rt̄)/
(
f̂ b0 +Rb0

)
, P = 1, A =

g1βm0 exp
(
R(t− τ)

)
/(ĝ3b0 + Rb0), with the parameter values σ̂ = 20, β̂ = 0.049, µ̂ = 0.11, d̂ = 0.096, r̂ = 16, θ̂ = 6.4, ê = 34,

f̂ = 0.35, φ̂ = 2, α̂ = 0.03, k̂ = 0.28, k̂1 = 2.3, k̂2 = 0.038, k̂3 = 2.1, k̂4 = 28, k̂5 = 31, k̂6 = 15.2, b̂ = 0.6, ω̂ = 10, φ̂0 = 0,

ĝ1 = 1.8, ĝ2 = 1.86, ĝ3 = 0.6, ĥ1 = 0.45, ĥ2 = 0.34, m̂0 = 0.0105.
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Figure 5.5: Result showing the behaviour of P and A. The variables P and A decay after an initial growth. Parameter

values and initial conditions are the same as those in Figure 5.4.

.

This is a special form of the classic SIR model where the infection rate is bounded by healthy

red blood cells. The term a0Ȳ describes the rate at which infected red blood cells are removed

through natural deaths and immune response. The first approximation to the system in this

time scale is obtained by analysing the the ordinary differential equation

dȲ

dX̄
= −

(
1− a0

r̂

)
+
a0

(
α̂ + d̂

)
β̂r̂X̄

,

describing the rate of change of concentration of infected red blood cells with respect to the

concentration of healthy red blood cells. The solution of the equation is given by

Ȳ − Ȳ0 =
(

1− a0

r̂

) (
1− X̄

)
+
a0

(
α̂ + d̂

)
β̂r̂

ln
(
X̄
)
,
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since Ȳ → 0 and X̄ → 1 as t̄ → −∞. As with SIR model, Ȳ0 → 0 as t̄ → −∞, then we can

deduce X̄ → X∞, where

(
1− a0

r̂

)
(1−X∞) +

a0

(
α̂ + d̂

)
β̂r̂

ln (X∞) ≈ 0. (5.7.20)

This is the first approximation to X, a long term behaviour of the concentration of red blood

cells guaranteeing possible recovery from the disease, a case where Rc < 1. By definition, a

requirement for primary invasion is that the basic reproduction number must exceed unity

[51]. Considering the case of a large Rc > 1, then X∞ � 1 and (5.7.20) reduces to

a0

(
α̂ + d̂

)
β̂r̂

ln (X∞) ≈ −
(

1− a0

r̂

)
,

with solution

XSIR
∞ ≈ exp

(
− β̂(r̂ − a0)

a0(α̂ + d̂)

)
.

An improved approximation to X∞ may be obtained by considering the contribution of innate

immune cells (P ), to the dynamics of the disease. Assuming, g1 � 1, b� 1 and A� 1, then

we analyse the system

dX̄

dt̄
= − β̂r̂X̄Ȳ

β̂X̄ + α̂P̄ + d̂
, (5.7.21)

dȲ

dt̄
=

(
β̂r̂X̄

β̂X̄ + α̂P̄ + d̂
− (1 + µ̂+ k̂P̄ )

)
Ȳ , (5.7.22)

dP̄

dt̄
= ω̂Ȳ . (5.7.23)

We consider as a first case, the equation

dP̄

dX̄
= − ω̂

r̂
− α̂ω̂

β̂r̂

P̄

X̄
− ω̂d̂

β̂r̂X̄
. (5.7.24)

Multiplying through by X̄
α̂ω̂

β̂r̂

(
assumming

α̂ω̂

β̂r̂
6= 1
)

, we get

d

dX̂

(
P̄ X̄

α̂ω̂

β̂r̂

)
= − ω̂

r̂
X

α̂ω̂

β̂r̂ − ω̂d̂

β̂r̂
X̄

α̂ω̂

β̂r̂
−1
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By integrating and matching the solution with that of the previous timescale (P = 1, X = 1

as t̄→ −∞), we have

P =

(
1 +

ω̂β̂

α̂ω̂ + β̂r̂
+
d̂

α̂

)
X̄
− α̂ω̂
β̂r̂ − ω̂β̂

α̂ω̂ + β̂r̂
X̄ − d̂

α̂
(5.7.25)

describing P in terms of X. Also, by considering the second case we integrate the equation

dȲ

dt̂
= −dX̄

dt̂
− (1 + µ̂)

ω̂

dP̄

dt̂
− k̂

2ω̂

dP̄ 2

dt̂

to get

Ȳ = 1− X̄ +
(1 + µ̂)

ω̂
(1− P̄ ) +

k̂

2ω̂
(1− P 2).

We have as t̄→∞,

0 = 1− X̄∞ +
(1 + µ̂)

ω̂
(1− P̄∞) +

k̂

2ω̂
(1− P 2

∞), (5.7.26)

and by substituting (5.7.25) in (5.7.26) we have

f(X̄∞) = 0,

where

f(X̄) = 1− X̄ +
(1 + µ̂)

ω̂
(1− P̄ (X̄) +

k̂

2ω̂
(1− P (X̄)2), (5.7.27)

and as ω̂ →∞, f(X̄)→ 1− X̄. By considering real solution for P∞ in (5.7.26) we obtain the

expression,

X̄XY P
∞ ≤ (1 + µ̂)2

2ω̂k̂
+

(1 + µ̂)

ω̂
+

k̂

2ω̂
+ 1. (5.7.28)

We expect XXY P
∞ > XSIR

∞ , signifying a reduction of red blood cell invasion by merozoites due

to innate immune cell activation. Thus

exp

(
− β̂(r̂ − a0)

a0(α̂ + d̂)

)
≤ X̄∞ ≤

(1 + µ̂)2

2ω̂k̂
+

(1 + µ̂)

ω̂
+

k̂

2ω̂
+ 1.

We note from section 5.3 that we only consider first outbreak and hence as Y → ε we assume

that infection is finished. In Figure 5.4 and Figure 5.5 infected red blood cells, merozoites and
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gametocytes die out whilst innate immune cells and antibodies return to their normal state,

after clearing the infection. The remaining equation describes the recovery of uninfected red

blood cells at time t̄ = O
(

1
ε

)
.

5.7.7. t = O (ε−1)

In this timescale, red blood cells return to normal level. The scalings are

t =
1

ε
t̄, X ∼ X̄.

On substitution of these into (5.7.2), we obtain the leading order equation

dX̄

dt̄
= σ̂

(
1− X̄

)
.

The initial condition X̄(0) = X∞ solves the equation to give

X̄ ∼ 1− (1−X∞) e−σ̂t̂,

and as t̂→∞, X ∼ 1 as expected.

5.7.7.1. Comparing asymptotic solutions with numerical solution

In this section we compare the solution of the full system with the asymptotic approximation.

Figure 5.6a, b, c, d gives approximations for red blood cells, infected red blood cells merozoites

and gametocytes whilst the approximations for innate immune cells and antibodies are given

in Figure 5.7a, b. The minimum of x and the peaks of Y , G, P and A appear reasonable. The

choice of the comparison parameters, σ, b and g3, does not need the implementation of the

continuum approximation assumption. The reduced system is a reasonable approximation of

the biology described by the full system and we note from 5.7.18 and 5.7.19 that what drives

the immune system is mainly infected red blood cells. Parameters for comparison are σ̂, b

and g3. For σ̂ = 30, recovery is noticeably moderate t. Also, b̂ = ĝ3 = 0.1, so P and A relax

slowly leading to a negligible bounce back of Y and M in t ∈ [0, 40]
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Figure 5.6: Results showing the numerical solutions of the full system and approximations from the asymptotic analysis.

Solid lines represent the full model whilst dotted lines are used for the approximations. We used the same initial conditions as

those in Figure 5.4 and parameter values are ε = 0.001, σ̂ = 30, b = 0.1, g3 = 0.1 with every other dimensionless parameter set

to unity.

5.7.8. Conclusion from this analysis

In this section we have used asymptotic analysis to describe the interaction of the malaria

parasite, human erythrocytes and the immune cells. The analysis explains a situation in

which a individual who contacts malaria for the first time through a single infectious bite of

a mosquito progresses with the disease from the initial release of erythrocytic merozoites into

the blood stream. There are seven major time scales predicted by the model in which following

a single infectious mosquito bite, blood stage parasites proliferate causing a reduction in red

blood cell level and depending on the effectiveness of the immune system, both sexual and

asexual parasites are eliminated. We note the following concluding remarks from the analysis

about the progression of the disease in the human host:
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Figure 5.7: Results comparing numerical solutions and asymptotic approximations of P and A. Initial conditions and

parameter values are the same as those in Figure 5.6

• Upon release from the liver, initial population of merozoites decline rapidly as they

invade red blood cells. However it has negligible impact on the red blood cells and

innate immune system, as X and P remained at their normal concentrations from the

first time scale until the sixth time scale, i.e. approximately 5 days; a period within

which the concentration of merozoites is not large enough to cause a significant reduction

in red blood cell level.

• Although the activities of antigen presentation and phagocytosis leading to the training

of naive B cells and T cells were initiated in the early time scales, it was not until the

time scale, t > τ that specific immune response emerged into the system. It appears the

initial stimulation comes from immune cell interaction with merozoites only. However
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this stimulation has an additional boost as shown in the analysis when innate immune

cells started interacting with infected red blood cells generated by subsequent generation

merozoites leading to substantial increase in A.

• Throughout the analysis, we have demonstrated that the development of specific immu-

nity depends on the presence of malaria parasites. The concentration of red blood cells

drops to its minimum as evident in time scale

t = τ +
2

R
ln
(1

ε

)
+O(1). (5.7.29)

Events in this timescale demonstrate that it is infected red blood cells that contribute

most to the development of adaptive immune response. It is during this timescale when

the adaptive and innate immune response takes control of the infection and eventually

drives down merozoite level as infected red blood cells are being removed.

• One important result from our analysis in t = O(1) time scale is that the parasite

will invade if the leading order basic reproduction number is greater than unity, which

suggest that chemotherapy may yield optimum result if implemented in this time scale to

keep the basic reproduction number less than unity as it would help to eliminate second

generation merozoites during their release. We expect perpetual presence of parasite in

the human host as in the case of the endemic state of the transmission model but it is

quite interesting from our findings that emergence of the immune profile, which may be

individual specific, will lead to parasite clearance.

• We note that if we allowed secondary outbreak in section 5.7.6, then after first outbreak

as Y → O(ε), P and A relax to pre-illness levels which can then allow Y → O(1) and

cause a secondary outbreak ultimately leading to a steady state where 1 −X = O(1).

Other factors absent in the model may become important in these circumstances.
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5.8. Numerical simulations of in-host model

In this section we present more numerical simulations of our model to corroborate the findings

in the asymptotic analysis. We will also make reference to some of the simulations presented

in section 5.3. The system under consideration is that of delay differential equations in which

there is a single constant delay, τ in the A equation that expresses the time lag before the

emergence of adaptive immune response. The numerical routine solver, MATLAB dde23,

which we have used here, deals with the solution of delay differential equations with con-

stant delays. Note in some cases some of the variables are presented in a logged axis. The

dimensionless parameters used for the simulations are defined in Table 5.2 and the initial

conditions are X = 1, Y = 0, M = 0.000000105, G = 0, P = 1, A = 0. These conditions

describe a situation where a naive human, i.e. A(0) = φ0, where φ0 = 0, is exposed to

malaria infection for the first time in which hepatic merozoites from a single infectious bite

of a mosquito are released into the blood stream to undergo the first phase of erythrocytic

schizogony. An individual having normal concentration of red blood cells (X = 1) and nor-

mal concentration of innate immune cells(P = 1) is infected with an initial concentration

of merozoites (M = 0.000000105 representing 35000 merozoites [87]). The program was run

in MATLAB using a relative and absolute tolerance of 10−7 with a delay of two days. The

history conditions are the same as the initial conditions for t ≥ 0, but if t < 0, except that

we set M to zero.

In Figure 5.8, merozoites invade red blood cells and immune cells respond by attacking

and eliminating pathogens, leading to red blood cell recovery and subsequent drop down of

immune cells. Although different sets of parameter values are used, the form of the solution

is similar to the one in Figure 5.1. However, the minimum red blood cell levels and the times

it takes to reach such levels in both cases are different. This is expected because different
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Figure 5.8: Results showing model fitting to data. The blue dots are data of the McLendon strain malaria infected patient

in Figure 4.1b with t = 1, representing 2 days in real time corresponding to the the period of each erythrocytic schizogony. The

initial and history conditions used are stated in section 5.2.7 and our choice of parameter values are the same as those in Figure

5.1 except k2 = 28, k6 = 4.2, k = 0.13, e = 0.0012, α = 35, f = 0.25, ω = 9, h1 = 0.45, h2 = 0.34, g1 = 0.8, g2 = 1.26.

112



0 5 10 15 20 25 30 35 40

0

0.2

0.4

0.6

0.8

1

t

X

 

 

Adaptive immunity only

innate immunity only

Death

Innate and adaptive immunity

No immunity
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concentration of red blood cells when the individual has both innate and adaptive immune response. The curves with the cyan

and blue colours indicate red blood cell concentrations due to innate immunity only and adaptive immunity only, respectively.

The initial conditions and parameter values used are the same as those in Figure 5.1. Death is assumed to occur at red blood cell

levels below the dotted horizontal line and red blood cell level reduces to as low as the magenta curve in the absence of immunity.

individuals respond differently to disease pathology and may have different immune response

statuses due to several individual specific factors. For instance, a good feeding habit of an

individual can promote a strong immune system that can even reduce the infection rate of

red blood cells.

The blue dots in Figure 5.8a represent data on the concentration of red blood cells of a

malaria patient infected with a different (McLendon) strain from that of Figure 5.1a. These

data were extracted from Jakeman [54] and are part of the data set obtained from the South

Carolina and Milledgeville State hospitals in which previously uninfected neurosyphilis pa-

tients were inoculated with P. falciparum malaria parasites as a means of malaria therapy for

neurosyphilis. In Figure 5.9 we demonstrate the effect of different immune profiles on disease

pathology using a death threshold defined by a third of the normal red blood cell level. The
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results suggest with both innate and adaptive immune response the minimum level of red

blood cell tend to be above the threshold level. But in the absence of one or both of the im-

mune types the minimum blood level will be below the threshold. As the disease progresses,

gametocytes are produced from infected red blood cells. The rate of production is higher in

the absence of immunity. Figure 5.10 shows the total amount of gametocyte produced at any

point in time from the start of the disease until death.

5.8.1. Discussion

We formulated a mathematical model for the in-host dynamics of malaria parasites focusing

on the erythrocytic blood-stage asexual parasite and gametocyte formation. This is of im-

portance as it is this stage in which clinical symptoms and mortality is relevant, as well as

the stage by which humans can transmit the disease to the mosquito vector. At the begin-

ning of first contact with the malaria parasite, innate immune cells first swing into action
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through antigen presentation mechanism leading to the training of naive T cells and B cells

and subsequent production of antibodies. This informed us of the inclusion of the delay pa-

rameter τ that provides for the time lag between contact and emergence of specific immune

response. Throughout our simulations we assumed a delay of 2 days, which seems realistic as

it is within the range of specific immune cells development for other infectious diseases. In

our numerical simulations we have been able to demonstrate some of the dynamic processes,

describing in-host interaction of the malaria parasite with red blood cells and host immunity.

A major feature in this interaction is the depletion or reduction of the concentration of red

blood cells eventually resulting to anaemia. Although several factors may seem to influence

the development of anaemia, the primary influence appears to be parasite density especially,

maintenance of high or moderately high density [57].

After the release of merozoites into the blood stream from the liver, there is rapid invasion

by parasites but this does not immediately cause the concentration of red blood cells to fall.

This could be partly due to recruitment of red blood cells and the intervention of innate

immune cells providing a first line of defence to thwart the growth of parasites. During

malaria infection like in many other infections, the innate immune system plays a dual role.

On one hand it acts as a first line of defence to limit rapid parasite growth and to initiate an

adaptive immune response and avoid re-infections [62], and on the other hand, its excessive

activation can drive over-production of pro-inflamatory cytokines leading to inflammation and

pathology [105]. Another reason could be that since there are only 1.05 × 10−7 of them at

t = 0, immune response is low key until M and Y have reached sufficient levels.

We note that our model is a continuum model and does not guarantee complete clearance

of parasites. It is constructed in such a way that the presence of malaria pathogens stimulates

the innate immune response to activate the adaptive immune responses. Thus a rise in parasite
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level will be followed by a corresponding rise in the concentration of both humoral and T cell

and B cell mediated immune response. We observed that the parasite invades red blood cells,

causing a fall in the concentration of uninfected red blood cells and a corresponding rise in

the concentrations of infected red blood cells, merozoites and gametocytes. Consequently,

the concentrations of both the innate and adaptive immune cells rise to force down the

concentrations of merozoites, infected red blood cells and gametocytes to a negligible level

incapable of invading, leading to red blood cell recovery and eventual return of the immune

cells to their normal levels.

Considering the case of the patient infected with McLendon strain, we determine from

the numerical solution an estimate of the total amount of gametocytes at death as 6.9 ×

104cells/µl. For survival purposes, it is not in the interest for malaria plasmodium to kill the

human host, as this would deny a mosquito’s access to gametocytes; in order to maximise

mosquito uptake of gametocyte it is best for the host to survive the disease, producing ga-

metocytes for as long as possible. Our primary aim of this model is to investigate whether

or not parasites deposited in the human host through a single infectious bite could lead to

death. It is actually a difficult thing to determine at what stage death would occur during

malaria attack, but since red blood cell concentration is crucial in the survival of the human

host, we assume that death occurs when the concentration of red blood cells has dropped

to its fatal level, specifically, around third of the normal blood level. Using this definition,

our results show that a non-immune deficiency human, though depending on the values of

the model parameters which are individual specific may likely survive a single bite malaria

infection. This is illustrated in Figure 5.1a and Figure 5.8a where we have fitted the model

to neurosyphilis data extracted from [54], part of the data set obtained from the South Car-

olina and Milledgeville State hospitals in which previously uninfected neurosyphilis patients
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were inoculated with P. falciparum malaria parasites as a means of malaria therapy for neu-

rosyphilis. In both cases the minimum level of red blood cells is a little above the estimated

fatal level.

The behaviour of the solution follows the pattern described in Kitchen, [57], in which he

avers that in the naturally evolving disease, the greatest loss of erythrocyte occurs during that

period subsequent to attainment of the maximum parasite density and prior to the appearance

of definite evidence that the host defence mechanism has gained control over the situation.

In a related development, he asserts that if a moderate parasite density is maintained for a

period of three or four weeks in P. falciparum or P. vivax attack then this might reduce the

initial normal level of red blood cells to 1.5 × 106cells/µl or less. Although our numerical

result in Figure 5.1a shows that it takes 14 days after the realease of merozoites into the

blood stream for the blood level to drop to its minimum of 2.7×106cells/µl, we note that the

likely time duration from the period of infectious bite to attainment of minimum blood level is

about 3 weeks since it takes about 6 days from the time of bite to the release of merozoites. In

dimensional terms, the concentration of merozoites reached its maximum of 5.5×105cells/µl,

two days prior to the attainment of the minimum level of red blood cells, whilst maximum

concentration of adaptive immune cells or evidence of sufficient immune defence was attained

three days after.

We seek an understanding of the effect of immune response on the control of parasitemia

and also the role innate immune response play in protecting the individual against malaria

in first infection. By switching off the specific immune response mechanism we find that

an individual without adaptive immunity is likely to die after 18 days of infectious bite.

This is shown in Figure 5.9 in which the the horizontal line intersects with the red blood

cell curve at (6.2, 0.3) where we have assumed death to occur when the individual attains
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a fatal haemoglobin or red blood cell level. We find from the simulations that the initial

level of adaptive immune cells or antibodies, φ0, plays a crucial role in the elimination of

parasites. This explains how continuous malaria contacts especially in endemic areas can lead

to acquisition of partial immunity. Increasing φ0 reduces the rate at which red blood cells

are invaded thus improving the minimum level. Figure 5.3 shows a plot of φ0 against various

minimum levels of red blood cells. An important aspect of this result is that given a particular

concentration of antibodies, we can determine the strength of parasite invasion of red blood

cells noting that the strength of invasion is determined by the extent to which the parasite

can reduce the red blood cell level.

An optimum concentration of antibodies is one that will be capable of protecting the

individual from invasion. We find from the simulations that by boosting the specific immune

response up to a concentration of 0.071 in dimensionless form will prevent the parasite from

invading, thus ensuring parasite/disease free situation. A mathematical model structured to

create a good understanding of the immune effector mechanisms of parasite regulation, control

and elimination will facilitate the production of a malaria vaccine of relatively high efficacy.

The global effort in malaria control especially, the contributions of the World Health

Organisation is commendable in many areas including that of vaccine production. Following

the emergence of RTS, S, the only malaria vaccine that has entered the phase 3 trial, there

are indications of some rising hope that a malaria vaccine will soon be in use. It is a pre-

erythrocytic vaccine aimed at stopping the release of merozoites from the liver into the blood

stream. Although some successes have been recorded in terms of severe disease reduction

in young children within the age group of 6-12 weeks and older children of the age range

5-17 months, the drug is still within an efficacy level of about 36.6%-50% [99] including the

tendency of the individual becoming reinfected. Thus, more work is required to identify the
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optimum vaccination age and dosing schedule for RTS, S, more immediate issues are to define

an acceptable level of protection and determine the true rate at which vaccine efficacy declines

below this level, as this will help determine the optimal boosting strategy [94].

The significance of φ0 in our model as it relates to subsequent contacts seems to provide

an insight into a boosting strategy in which the immune system can be conditioned to a level

that the individual will be capable of avoiding reinfection.
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CHAPTER 6

CONCLUSION

6.1. Concluding remarks

Malaria is an infectious disease with a dangerous global burden in which the quest for regional

elimination and entire global eradication cannot be over emphasized. In this work we have

constructed and analysed two mathematical models describing two major areas involving the

transmission of the disease between human and mosquito populations, and its dynamics as the

parasites within the human host interact with red blood cells and the immune system. Our

transmission model describes human-mosquito interaction on malaria epidemiology. Suscep-

tible and asymptomatic humans get infected when they are bitten by an infectious mosquito.

They then progress through the latent, symptomatic and asymptomatic classes, before re-

entering the susceptible class. Susceptible mosquitoes can become infected when they bite

symptomatic, asymptomatic or latent asymptomatic humans, and once infected they move

through the latent and infectious mosquito classes. We used both numerical simulations and

analytical methods to obtain solutions to the system. The numerical results show the model

can predict an endemic malaria situation but for some values of the model parameters a
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disease free state can be realised.

Single dose malaria drugs do not completely clear parasites but temporarily create asymp-

tomatic malaria and this has not been considered in previous models. Another area of novelty

is the second class of incubating humans resulting from the reinfection of asymptomatic hu-

mans. We have proposed and analysed a new transmission model incorporating these ideas.

The methods of analysis employed in previous malaria models have mainly focused on stabil-

ity analysis. In our case we have used in addition, asymptotic analysis to track the dynamics

of disease transmission starting from an initial introduction of a small amount of infected

mosquitos into a malaria free human population. Through our asymptotic analysis we have

provided insight into the transmission of the disease as shown by the numerical simulations.

There are important remarks about the transmission of the disease, which we have highlighted.

The noticeable build-up of latent asymptomatic humans at steady state confirms previous

experimental results that asymptomatic status is maintained through continuous infection.

This is a clear characteristic of the dynamics of malaria in an endemic region. It portends a

dangerous scenario and creates adverse effect on public policies aimed at control or eradication

of the disease. Although Ross [96] posits that to remove malaria in a region, the number of

mosquitos needs to be reduced below a particular threshold, Ngwa et al. [82] contend that this

approach would only be a temporary measure, especially in a malaria endemic region claiming

that the disease will resurface as the mosquito population recovers. However, our findings

suggest that Ngwa’s claim may hold in a situation of high proportion of asymptomatic carriers.

But if they are treated then the disease will not resurface despite recovery of the mosquito

population. If the attainment of asymptomatic status is an advantage then it appears adults

are gaining at the expense of children and women (who may likely loose immunity during

pregnancy). This gain may not be sustained for a long time as the analysis demonstrates that
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asymptomatic individuals will rapidly become latent when the epidemic takes hold.

During the treatment analysis we considered options of transmitting treated latent asymp-

tomatic humans to either the susceptible or latent class but the basic reproduction number

remains unchanged in both cases. This suggests that partially immune individuals may be

treated by gametocyte destroying drugs only, or by drugs that act on both asexual para-

sites and gametocytes. We recall from our previous discussion in chapter 2 that the basic

reproduction number R0 plays a crucial role in disease dynamics. It is a threshold value

that determines whether or not a disease will fully establish itself. Comparing the R0 of our

transmission model with that obtained in [29], we found that there are additional parameters

in our R0, namely η, α, ρ, f , h, d, which is due to the additional classes found in our model.

When the putative drug parameter, θ 6= 0, the term 1 + λ + θ replaces 1 + λ and taking the

limit as θ →∞ does not drive R0 to 0 but only reduces it to less than unity depending on the

values of the model parameters. This suggest that treating only asymptomatic individuals,

apart from being a mere epidemiological paradox would not guarantee disease eradication

except it is done with some form of vector control keeping the parameter β at a reasonable

level.

Our result is a deterministic approach to the hypothesis given in [85]. Past and present

policies of the WHO for the elimination and eradication of malaria have been geared towards

vector control and treatment of symptomatic humans and despite the huge amount of money

spent there are still reports of greater part of the world population affected by the disease.

The recent Global Malaria Programme’s new initiative, T3, urges malaria-endemic countries

to ensure that every suspected malaria case is tested, that every confirmed case is treated

with a quality-assured antimalarial medicine, and that the disease is tracked through timely

and accurate surveillance systems to guide policy and operational decisions [118].
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Our results suggest that testing, treating and tracking of suspected symptomatic cases

without considering the asymptomatic group that forms a greater part of the reservoir of

infection will thwart the global effort on the elimination and eradication of malaria. Although

the issue of treating asymptomatic humans may be difficult to control in that it would take a

lot of sensitisation and enlightenment campaigns to be able to persuade people who are not

having the symptoms of a disease to take treatment. However, we suggest that ‘Check Your

Malaria Status’ (CYMS) be introduced along side T3.

In this work, we have also proposed and analysed a within-host malaria model in which

the interaction between parasites, red blood cells and the immune system are well represented

based on a simplified form of the known biology. The novelty in the model comprises inclusion

of terms describing the mechanism of antigen presentation of innate immune cells at the start

of infection in preparation to triggerring adaptive immune response after a time delay and

an Fc-dependent mechanism of parasite killing. We used the model to study the dynamics of

disease pathology, parasite evolution from the young asexual erythrocyte stage to the mature

sexual exo-erythrocytic stage in a naive host. Both numerical simulations and asymptotic

analysis were employed in our study and the numerical results show that a naive human that

cannot develop specific immunity to malaria may not be able to survive a single mosquito

bite but in the presence of adaptive immunity there is possibility of parasite clearance even

though some levels of anaemia could be experienced.

6.1.1. Limitations of the models

Models are generally simplifications of reality and therefore subject to limitations. For in-

stance in an attempt to construct models to curb the shortcomings of previous models, we

end up having models with other limitations. Our in-host model does not account for the

accelerated production of red blood cells during malaria infection and the additional killing
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of erythrocytes by phagocytosis of nonviable merozoites attached to them. This is considered

in the model of Chiyaka et al. [23] by including additional two terms. The exclusion in our

model is based on the assumption that the two terms might cancel out. But in a situation

where the net contributions of these terms is large it may affect the results. The issue of

parasite clearance is another limitation. Another factor we have not considered in our model

is the inhibition of immune cell growth. Inhibitory cytokines reduce the secretion of IL-10, a

major cytokine that induces B cell proliferation and immunoglobulin production [67], thereby

reducing the production of antibodies. Our model is a continuum model and we find out

from the simulations that the immune system drives the concentration of parasite to a very

low level which we assumed to be negligible in terms of number of parasites present in the

blood stream. Similarly, during the asymptotic analysis, gametocytes are seen to emerge in

the third time scale, less than two days after infection and before the end of the first cycle of

schizogony, which may not be a good representation of reality. However, since ε = 0.001, the

density of gametocytes, being O(ε4) is assumed to be zero. It was not until the sixth time

scale when a non negligible amount of O(ε) was produced.

6.1.2. Suggestion for future work.

The two models we have developed in this study are aimed at describing the dynamics of

malaria transmission and pathogenesis with the aim of assessing possible elimination strate-

gies. The models can be relevant in areas where malaria has been persistently prevalent and

regions that have achieved malaria elimination. However, the models are mere simplifications

of reality and some modifications are required for improvement, which will provide directions

for further studies. The following areas are included for consideration.

• Numerical simulations of the transmission model suggest that combined treatment of

both symptomatic and asymptomatic individuals will lead to malaria elimination. We
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propose pilot studies in malaria endemic regions using this model as a theoretical frame-

work.

• Environmental factors favourable to mosquito breeding also contribute to the pattern

of disease transmission. These factors may vary seasonally within a region or between

regions. We propose a model modification that will incorporate temperature and rainfall

so as to ensure regional specific results.

• An asymptotic expansion of R0 shows that the putative drug, θ, used for the treatment

of asymptomatic humans is not as effective as γ, the full treatment parameter. Whilst in

the numerical simulations, θ appears to be much more effective in killing off the disease.

The mechanism for this behaviour is not yet known, and hence the need for further

investigation.

• Antibodies production: Though it is assumed that the production of antibodies comes

from activation of naive T cells and B cells through interaction between innate immune

cells and pathogens, it is not fully represented in the in-host model. The delay term ap-

pears to cover this limitation but in strict sense we do not expect antibodies production

whenever innate immune cells are absent. Thus we propose a modification in which the

antibodies equation is multiplied by P − 1.

• Subsequent contact: The in-host model is studied by assuming only a first contact in

the analysis whereas results from our simulations indicate a good prospect of reducing

disease pathology on consideration of boosting the immune response, and hence we

propose inclusion of subsequent contact in future work on the model.

• During malaria infection certain mechanisms operate to inhibit the production of an-

tibodies especially when the effect of proinflamatory activities is high and phagocytic
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cells become heavily laden with haemozoin particles. Regulatory T cells produce in-

hibitory cytokines to reduce the secretion of IL-10, a major cytokine that induces B

cell proliferation and immunoglobulin production[67]. Consideration of this may create

a major extension of the model as it will require two additional equations for T cells

and B cells.

• Through the asymptotic analysis of the in-host model we found that the immune system

is mostly driven by infected red blood cells. Further investigation is recommended

to ascertain the validity of this result. The genetic constituent of red blood cells as

different from that of merozoite should be determined. This may create an insight into

manufacturing a vaccine that will boost the immune system to the extent of stopping

merozoite invasion of red blood cells.

This list is not exhaustive and it has not in any way invalidated the results of our work but we

hope that these suggestions will help to extend the frontier of knowledge and create a better

direction in the quest for malaria eradication.
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APPENDIX A

APPENDIX

A.1. Expressions for important constants in the stability analysis of transition model
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2 + 4a2a3,

D3 = a1(6a2a4 + 6a2a5 + 4a3a4 + 4a3a5 + 3a2
4), D4 = 6a1a4a5 + 3a1a

2
5 + a3

2 + 2a2
2a3 + 3a2

2a4,

D5 = a4(a2
4 + 3a2a4 + 3a4a5 + 2a3a4 + 3a2

5 + 4a3a5 + 6a2a5,
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D6 = 4a2a3a4 + a3
5 + 2a3a

2
5 + 3a2a

2
5 + 3a2

2a5 + 4a2a3a5,

D7 = C2
1(a2a4 + a4

5)(a2 + a4) + C2
1a5(a2

2 + a2a4 + a2
4) + C8,

D8 = 2C1a2a4a
4
5(a2 + a4) + C1a2a4a

3
5(5a2a4 + 4a2

2 + 4a2
4) + C3,

D9 = a2
2a

2
4(a4 + a2)2 + a1a

2
4a5(8a2

2 + 5a2a4 + a2
4) + C4 + C5,

D10 = a2
2C1 + C6C7, D11 = a2a4a5(a3

4 + 2a2
4a5 + a4a

2
5 + 4a2a4a5 + a2a

2
5),

E1 = βηfρd, E2 = βηfb.

A.2. Demonstrating the effect of inequalities obtained in 3.6.7 on R0

R0 =
βηf{b (1 + λ+ θ) + ρd}

(η + λ) (α + γ + ρ+ λ) (1 + λ+ θ) (f + q) (h+ q)
. (A.2.1)

ηβ

η + λ
≤ q, (A.2.2)

fb

f + q
≤ γ + λ, (A.2.3)

fd

f + q
≤ λ(η + θ + λ)

η + λ
. (A.2.4)

We show that if (A.2.2)−(A.2.4) hold, then R0 ≤ 1.

Numerator of (A.2.1) = βηf{b (1 + λ+ θ) + ρd}.

Numerator of (A.2.1) = βη{fb (1 + λ+ θ) + fρd}. (A.2.5)

Denominator of (A.2.1) = (η + λ) (h+ q) {(λ+ γ) (f + q) (1 + λ+ θ)

+ (α + ρ) (1 + λ+ θ) (f + q)},

Denominator of (A.2.1) = (η + λ) (h+ q)
{

(λ+ γ) (1 + λ+ θ) (f + q) (A.2.6)

+{ρ (1 + λ+ θ) (f + q) + α (1 + λ+ θ) (f + q)}
}

Comparing (A.2.5) and (A.2.6) we observe from (A.2.2) that

βη ≤ (η + λ)q ≤ (η + λ)(h+ q), (A.2.7)
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and from (A.2.3) that

fb ≤ (γ + λ)(f + q), (A.2.8)

and hence

fb(1 + θ + λ) ≤ (γ + λ)(f + q)(1 + θ + λ). (A.2.9)

Also, from (A.2.4),

fd ≤ (f + q)λ(η + λ+ θ)

η + λ
⇒ fd ≤ (f+q)(1+λ+θ), since 1+θ+λ >

λ(η + λ+ θ)

η + λ
. (A.2.10)

Thus, the numerator of (A.2.1) is less than the denominator, meaning, R0 < 1.
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APPENDIX B

APPENDIX

B.1. Time-scale analysis (transition model)

By letting θ = 0, we present the time scale analysis of the dimensionless system

ε2
dC

dt
= ε4λ̂+ εγ̂S + ε2A− β̂ZC − ε4λ̂C + ε4α̂CS, (B.1.1)

ε2
dL

dt
= β̂ZC − εη̂L− ε4λ̂L+ ε4α̂LS, (B.1.2)

ε2
dLA
dt

= β̂ZA− εη̂LA − ε4λ̂LA + ε4α̂LAS, (B.1.3)

ε2
dS

dt
= εη̂L+ εη̂LA −

(
ρ̂+ εγ̂ + ε4α̂ + ε4λ̂

)
S + ε4α̂S2, (B.1.4)

ε2
dA

dt
= ρ̂S −

(
ε2 + ε4λ̂

)
A− β̂ZA+ ε4α̂AS, (B.1.5)

ε
dX

dt
= q̂ (1−X)− b̂SX − d̂AX − d̂LAX + εĥXZ, (B.1.6)

ε
dY

dt
= b̂SX + d̂AX + d̂LAX −

(
f̂ + q̂

)
Y + εĥY Z, (B.1.7)

ε
dZ

dt
= f̂Y −

(
εĥ+ q̂

)
Z + εĥZ2, (B.1.8)

subject to

C(0) = 1, L(0) = 0, LA(0) = 0, S(0) = 0, A(0) = 0,

Y (0) = y0, X(0) = 1− y0, Z(0) = 0, ε� 1, y0 � ε,
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in which all parameters are expressed in terms of their size as a power of ε indicated in table

3.3, namely

β =
1

ε2
β̂, η =

1

ε
η̂, µ = ε2µ̂, λ = ε2λ̂, α = ε2α̂, γ =

1

ε
γ̂, ρ =

1

ε2
ρ̂, (B.1.9)

b =
1

ε
b̂, d =

1

ε
d̂, f =

1

ε
f̂ , g =

1

ε
ĝ, h = ĥ, q =

1

ε
q̂.

We analyse this system for the case of newly introduced infected mosquitoes to a previously

uninfected region.

B.1.1. Time scale 1: t = O(ε2)

• Scalings: t = ε2t̂,

C ∼ 1 + εy0Ĉ1, L ∼ εy0L̂0, LA ∼ ε3y2
0L̂A0 , S ∼ ε2y0Ŝ0,

A ∼ ε2y0Â0, X ∼ 1− y0 + εy0X̂1, Y ∼ y0 + εy0Ŷ1, Z ∼ εy0Ẑ0.

Substituting these scalings into the dimensionless system leads to the following

• Equations

dĈ1

dt̂
= −β̂Ẑ0(1 + εy0Ĉ1) + ε2(γ̂Ŝ0 + Â0)− ε4λ̂Ĉ1 + ε5α̂(1 + εy0Ĉ1)Ŝ0,

dL̂0

dt̂
= β̂Ẑ0(1 + εy0Ĉ1)− εη̂L̂0 − ε4λ̂L̂0 + ε6y0α̂L̂0Ŝ0,

dL̂A0

dt̂
= β̂Â0Ẑ0 − εη̂L̂A0 − ε4λ̂L̂A0 + ε6y0α̂L̂A0Ŝ0,

dŜ0

dt̂
= η̂L0 − ρ̂Ŝ0 + ε2y0η̂L̂A0 − (εγ̂ + ε4α̂ + ε4λ̂)Ŝ0 + ε6y0α̂Ŝ

2
0 ,

dÂ0

dt̂
= ρ̂S0 − (ε2 + ε4λ̂)Â0 − εy0β̂Ẑ0Â0 + ε6y0α̂Â0Ŝ0,

dX̂1

dt̂
= q̂(1− εX̂1)− ε2b̂Ŝ0(1− y0 + εy0X1)− ε2d̂Â0(1− y0 + εy0X̂1)

+ ε2ĥ(1− y0 + εy0X̂1)Ẑ0)− ε3y0d̂L̂A0(1− y0 + εy0X̂1),

dȲ1

dt̂
= −

(
f̂ + q̂

)
(1 + εŶ1) + ε2b̂Ŝ0(1− y0 + εy0X1) + ε2d̂Â0(1− y0 + εy0X1)
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+ ε2ĥ(1− y0 + εy0Ŷ1)Ẑ0) + ε3y0d̂L̂A0(1− y0 + εy0X̂1),

dẐ0

dt̂
= f̂(1 + εY1)− ε(q̂ + εĥ)Ẑ0 + ε3y0ĥẐ

2
0 ,

— The system changes balance at t̂ = O(ε−2/3). This happens in the Y equation as

the lower order term ε2d̂Â0 catches up with the O(1) term f̂ + q̂. We observe from the

solution in this timescale that Â0 = O(t3). Thus ε2t̂3 = O(1) implies t̂ = O(ε−
2
3 ). We

note that y0 � ε and t̂ = O(ε−
2
3 ) is the smallest time in which the asymptotic expansion

will no longer be valid.

B.1.2. Time scale 2: t = O(ε4/3)

• Scalings: t = ε4/3t̄,

C ∼ 1 + ε−1/3y0C̄1, L ∼ ε−1/3y0L̄0, LA ∼ ε−1/3y2
0L̄A0 ,

S ∼ ε2/3y0S̄0, A ∼ y0Ā0, X ∼ 1− y0 + ε1/3y0X̄1,

Y ∼ y0 + ε1/3y0Ȳ1, Z ∼ ε1/3y0Z̄0.

On substitution of these scalings into the dimensionless system we have

• Equations

dC̄1

dt̄
= −β̂Z̄0(1 + ε−

1
3y0C̄1) + ε

4
3 (γ̂S̄0 + ε

1
3 Ā0)− ε4λ̂C̄1) + ε

13
3 α̂(1 + ε−

1
3y0C̄1)S̄0,

dL̄0

dt̄
= β̂Z̄0(1 + ε−

1
3y0C̄1)− ε

1
3 η̂L̄0 − ε

10
3 λ̂L̄0 + ε4y0α̂L̄0S̄0,

dL̄A0

dt̄
= β̂Ā0Z̄0 − ε

1
3 η̂L̄A0 − ε

10
3 λ̂L̄A0 + ε4y0α̂L̄A0S̄0,

ε
2
3
dS̄0

dt̄
= η̂L̄0 − ρ̂S̄0 + y0η̂L̄A0 − (εγ̂ + ε4α̂ + ε4λ̂)S̄0 + ε−

14
3 y0α̂S̄

2
0 ,

dĀ0

dt̄
= ρ̂S̄0 −

y0

ε
1
3

β̂Z̄0Ā0 − (ε
4
3 + ε

10
3 λ̂)Ā0 + ε4y0α̂Ā0S̄0,

dX̄1

dt̄
= q̂(1− ε

1
3 X̄1)− d̂Ā0(1− y0 + ε

1
3y0X̄1)− ε

2
3 b̂S̄0(1− y0 + ε

1
3y0X̄1)

− y0

ε
1
3

d̂L̄A0(1− y0 + ε
1
3y0X1) + ε

4
3 ĥ(̄1− y0 + ε

1
3y0X̄1)Z̄0,

132



dȲ1

dt̄
= −

(
f̂ + q̂

)
(1 + ε

1
3 Ȳ1) + d̂Ā0(1− y0 + ε

1
3y0X̄1) + ε

2
3 b̂S̄0(1− y0 + ε

1
3y0X̄1)

+
y0

ε
1
3

d̂L̄A0(1− y0 + ε
1
3y0X̄1) + ε

4
3y0ĥ(1 + ε

1
3 Ȳ1)Z̄0,

dZ̄0

dt̄
= f̂(1 + ε

1
3 Ȳ1)− ε

1
3 (εĥ+ q̂)Z̄0 + ε

5
3y0ĥZ̄

2
0 ,

— Solutions in this timescale suggest that X1 = O(t̄4) and the approximations

become poor when the second term ε
1
3 t̄4 becomes O(1), i.e. t̄4 = O(ε−

1
3 ). This leads to

a break down in the X equation when t̄ = O(ε−1/12).

B.1.3. Time scale 3: t = O(ε5/4)

• Scalings: t = ε5/4t̃,

C ∼ 1 + ε−1/2y0C̃1, L ∼ ε−1/2y0L̃0, LA ∼ ε−3/4y2
0L̃A0 ,

S ∼ ε1/2y0S̃0, A ∼ ε−1/4y0Ã0, X ∼ 1 + y0X̃1,

Y ∼ y0Ỹ1, Z ∼ ε1/4y0Z̃0.

By substituting the scalings into the dimensionless system and carrying out some simplifica-

tions we get the following

• Equations

dC̃1

dt̃
= −β̂Z̃0(1 + ε−

1
2y0C̃1) + ε

3
2 (Ã0 + ε

1
4 γ̂S̃0)− ε

13
4 λ̂C̃1 + ε

9
2 α̂(1 + ε−

1
2y0C̃1)S̃0,

dL̃0

dt̃
= β̂Z̃0(1 + ε−

1
2y0C̃1)− ε

1
2 η̂L̃0 − ε

10
4 λ̂L̃0 + ε

15
4 y0α̂L̃0S̃0,

dL̃A0

dt̃
= β̂Ã0Z̃0 − ε

1
4 η̂L̃A0 − ε

13
4 λ̂L̃A0 + ε

15
4 y0α̂L̃A0S̃0,

ε
1
2
dS̃0

dt̃
= η̂L̃0 − ρ̂S̃0 +

y0

ε
1
4

η̂L̃A0 − (εγ̂ + ε4α̂ + ε4λ̂)S̃0 + ε4y0α̂S̃
2
0 ,

dÃ0

dt̃
= ρ̂S̃0 −

y0

ε
1
3

β̂Z̃0Ã0 − (ε
5
4 + ε

13
4 λ̂)Ã0 + ε

15
4 y0α̂Ã0S̃0,

dX̃1

dt̃
= −d̂Ã0(1 + y0X̃1)− ε

1
4 q̂X̃1 − ε

3
4 b̂S̃0(1 + y0X̃1)− ε

1
2y0d̂L̃A0(1 + y0X̃1)

+ ε
3
2 ĥ(1 + y0X̃1)Z̃0,
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dỸ1

dt̃
= d̂Ã0(1 + y0X̃1)− ε

1
4 (f̂ + q̂)Ỹ1 + ε

3
4 b̂S̃0(1 + y0X̃1) + ε

1
2y0d̂L̃A0(1 + y0X̃1)

+ ε
3
2y0ĥỸ1Z̃0,

dZ̃0

dt̃
= f̂ Ỹ1 − ε

1
4 (q̂ + εĥ)Z̃0 + ε

3
2y0ĥZ̃

2
0 ,

— The governing equation of the system is
d4Z̃0

dt̃4
= KZ̃0, obtained by successive

differentiation of
dZ̃0

dt̃
, where K = β̂η̂f̂ d̂ and For K0 = K

1
4 , change in balance occurs in

the C solution when t̃ = ln(ε1/2/y0)/K0.

B.1.4. Time scale 4: t = ε
5
4 ln(ε1/2/y0)/K + O(ε

5
4 )

• Scalings: t = ε
5
4 ln(ε1/2/y0)/K + ε

5
4 ť,

C ∼ Č0, L ∼ Ľ0, LA ∼ ε1/4ĽA0 , S ∼ εŠ0, A ∼ ε1/4Ǎ0,

X ∼ 1 + ε1/2X̌1, Y ∼ ε1/2Y̌1, Z ∼ ε3/4Ž0.

• Equations

dČ0

dť
= −β̂Č0Ž0 + ε

3
2 (Ǎ0 + ε

1
4 γ̂Š0)− ε

13
4 λ̂(1− Č0) + ε

17
4 α̂Č0Š0,

dĽ0

dť
= β̂Č0Z̃0 − ε

1
4 η̂Ľ− ε

13
4 λ̂Ľ0 + ε

17
4 α̂Ľ0Š0,

dĽA0

dť
= β̂Ǎ0Ž0 − ε

1
4 η̂ĽA0 − ε

13
4 λ̂ĽA0 + ε

17
4 y0α̂ĽA0Š0,

ε
3
4
dŠ0

dť
= η̂Ľ0 − ρ̂Š0 + ε

1
4 η̂ĽA0 − (εγ̂ + ε4α̂ + ε4λ̂)Š0 + ε5α̂Š2

0 ,

dǍ0

dť
= ρ̂Š0 − β̂Ž0Ǎ0 − (ε

5
4 + ε

13
4 λ̂)Ǎ0 + ε

17
4 α̂Ǎ0Š0,

dX̌1

dť
= −d̂Ǎ0(1 + ε

1
2 X̌1)− d̂ĽA0(1 + ε

1
2 X̌1)− ε

1
2 q̂X̌1 − ε

3
4 b̂Š0(1 + ε

1
2 X̌1)

+ ε
3
2 ĥ(1 + ε

1
2 X̌1)Ž0,

dY̌1

dť
= d̂Ǎ0(1 + ε

1
2 X̌1) + d̂ĽA0(1 + ε

1
2 X̌1) + ε

3
4 b̂Š0(1 + ε

1
2 X̌1)− ε

1
2 (f̂ + q̂)Y̌1

+ ε2ĥY̌1Ž0,

dŽ0

dť
= f̂ Y̌1 − ε

1
4 (q̂ + εĥ)Ž0 + ε2ĥŽ2

0 .
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— Some simplification leads to the following fourth order nonlinear ordinary dif-

ferential equation that determines the dynamics of the system

d4F̌

dť4
= −K

(
1− eF̌

)
,

F̌ = ln(Č0).

— Major break down of the solutions occur in the X equation where the X1 term

becomes O(1), i.e when ť = O
(
ε−1/4

)
.

B.1.5. Time scale 5: t = O(ε)

• Scalings: t = εt?,

C ∼ ε2C?
0 , L ∼ L?0, LA ∼ L?A0

, S ∼ εS?0 ,

A ∼ εA?0, X ∼ X?
0 , Y ∼ Y ?

0 , Z ∼ Z?
0 .

Substituting these scalings into the dimensionless system leads to

• Equations

ε
dC?

0

dt?
= −β̂C?

0Z
?
0 + γ̂S?0 + εA?0 − ε2λ̂(1− ε2C?

0) + ε4α̂C?
0S

?
0 ,

dL?0
dt?

= −η̂L?0 + εβ̂Z?
0C

?
0 − ε3λ̂L?0 + ε4α̂L?0S

?
0 ,

dL?A0

dt?
= β̂Z?

0A
?
0 − η̂L?A0

− ε3λ̂L?A0
+ ε4α̂L?A0

S?0 ,

ε
dS?0
dt?

= η̂(L?0 + LA0

?)− ρ̂S?0 − (εγ̂ + ε4α̂ + ε4λ̂)S?0 + ε5α̂S2
0
?
,

ε
dA?0
dt?

= ρ̂S?0 − β̂Z?
0A

?
0 − (ε2 + ε4λ̂)A?0 + ε4α̂A?0S

?
0 ,

dX?
0

dt?
= q̂(1−X?

0 )− d̂L?A0
X?

0 − ε(b̂S?0X?
0 + d̂A?0X

?
0 − ĥX?

0Z
?
0),

dY ?
0

dt?
= +d̂L?A0

X?
0 − (f̂ + q̂)Y ?

0 + ε(b̂S?0X
?
0 + d̂A?0X

?
0 − ĥY ?

0 Z
?
0),

dZ?
0

dt?
= f̂Y ?

0 − q̂Z?
0 − εĥ(1− Z?

0
2).

— Approximation to L will no longer be O(1) when t = ln (1/ε) /η.
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B.1.6. Time scale 6: t = ε ln(1/ε)/η + O(ε)

• Scalings: ε ln(1/ε)/η + εt́,

C ∼ ε2Ć0, L ∼ εĹ0, LA ∼ 1, S ∼ εŚ0,

A ∼ εÁ0, X ∼ X́0, Y ∼ Ý0, Z ∼ Ź0.

On substitution of these into the dimensionless system we obtain the following

• Equations

ε
dĆ0

dt́
= −β̂Ć0Ź0 + γ̂Ś0 + εÁ0 − ε2λ̂(1− ε2Ć0) + ε4α̂Ć0Ś0,

dĹ0

dt́
= −η̂Ĺ0 + β̂Ź0Ć0 − ε3λ̂Ĺ0 + ε4α̂Ĺ0Ś0,

dĹA0

dt́
= β̂Ź0Á0 − η̂ĹA0 − ε3λ̂ĹA0 + ε4α̂ĹA0Ś0,

ε
dŚ0

dt́
= η̂ĹA0 − ρ̂Ś0 + εη̂Ĺ0 − (εγ̂ + ε4α̂ + ε4λ̂)Ś0 + ε5α̂Ś2

0 ,

ε
dÁ0

dt́
= ρ̂Ś0 − β̂Ź0Á0 − (ε2 + ε4λ̂)Á0 + ε4α̂Á0Ś0,

dX́0

dt́
= q̂(1− X́0)− d̂ĹA0X́0 − ε(b̂Ś0X́0 + d̂ÁX́0 − ĥX́0Ź0),

dÝ0

dt́
= d̂ĹA0X́0 − (f̂ + q̂)Ý0 + ε(b̂Ś0X́0 + d̂Á0X́0 − ĥÝ0Ź0),

dŹ0

dt́
= f̂ Ý0 − q̂Ź0 − εĥ(1− Ź2

0).

— Other variables maintain their steady status and LA0 ∼ 1,

— and the only remaining equation is

dĹ0

dt́
=
γ̂η̂

ρ̂
− η̂Ĺ0.
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APPENDIX C

APPENDIX

C.1. Asymptotic analysis (in-host model)

For the Inhost dynamics we seek asymptotic analysis of The dimensionless system

ε
dX

dt
= ε2σ̂ (1−X)− β̂XM

1 + A
, (C.1.1)

ε
dY

dt
=

β̂XM

1 + A
− ε (1 + µ̂)Y − εk̂PY (1 + k̂1A), (C.1.2)

ε
dM

dt
= ε

r̂
(

1− εθ̂
)
Y

1 + k6A
− β̂XM

1 + A
− d̂M − α̂PM

(
1 + k̂2A

)
, (C.1.3)

dG

dt
= ε

r̂θ̂Y

1 + k6A
− εêG− f̂PG(1 + k̂3A). (C.1.4)

dP

dt
= b̂(1− P ) + ω̂

(
Y + φ̂M

)
− εP

(
k̂4Y + k̂5M

)
, (C.1.5)

dA

dt
= ĝ1Y (t− τ) + ĝ1ĝ2M (t− τ)− ĝ3A− ĥ1AY − ĥ2AM, (C.1.6)

subject to

t = 0, X = 1, Y = 0, M = ε2m̂0, G = 0, P = 1, A = 0,

t < 0, X = 1, Y = 0, M = 0, G = 0, P = 1, A = 0.

We want our readers to note that for the purpose of brevity, we have used an “over-bar”

to identify the rescaled variables in each time scale instead of the usual practice of different
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variables for different timescales.

C.1.1. Time scale 1: t = O(ε)

• Scalings: t = εt̄,

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε2M̄, G ∼ ε4Ḡ, P ∼ P̄ , A = 0

Substituting these into the dimensionless system leads to

• Equations

dX̄

dt̄
= ε2σ̂

(
1− X̄

)
− ε2β̂X̄M̄ ,

dȲ

dt̄
= β̂X̄M̄ − ε (1 + µ̂) Ȳ − εk̂P̄ Ȳ ,

dM̄

dt̄
=

(
d̂+ β̂ + α̂P̄

)
M̄ + εr̂Ȳ − ε2rθ̂Ȳ ,

dḠ

dt̄
= r̂θ̂Ȳ − εf̂ P̄ Ḡ− ε2êḠ,

dP̄

dt̄
= εb̂

(
1− P̄

)
+ ε3ω̂

(
Ȳ + φ̂M̄

)
− ε3k̂4P̄ Ȳ − ε3k̂5P̄ M̄ ,

• There is a change in balance when M̄ = O(ε). i.e at t̄ = 1
b0

ln(1
ε
) +O(1)

C.1.2. Time scale 2: t = ε
b0

ln(1
ε
) + O(ε)

• Scalings: t =
ε

b0

ln(
1

ε
) + εt̄,

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄, G ∼ ε4
r̂θ̂β̂

b2
0

ln

(
1

ε

)
+ ε4Ḡ, P ∼ P̄ , A = 0

On substitution of these into (C.1.1)-(C.1.6) we have the following

• Equations

dX̄

dt̄
= ε2σ̂

(
1− X̄

)
− ε3β̂X̄M̄ ,

dȲ

dt̄
= εβ̂X̄M̄ − ε (1 + µ̂) Ȳ − εk̂P̄ Ȳ ,
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dM̄

dt̄
= r̂Ȳ +

(
d̂+ β̂ + α̂P̄

)
M̄ − εrθ̂Ȳ ,

dḠ

dt̄
= r̂θ̂Ȳ − εf̂ P̄ Ḡ− ε2êḠ,

dP̄

dt̄
= εb̂

(
1− P̄

)
+ ε3ω̂Y + ε4

(
ω̂φ̂M − k̂4P̄ Ȳ

)
− ε5k̂5P̄ Ȳ ,

• The Solution breaks down at t̄ = O(1/ε)

C.1.3. Time scale 3: t = O(1), t < τ

• Scalings: t = t̄,

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄, G ∼ ε3Ḡ, P ∼ P̄ , A = 0

Substituting these scalings into the dimensionless system yeilds

• Equations

dX̄

dt̄
= εσ̂

(
1− X̂

)
− ε2β̂X̄M̄ ,

dȲ

dt̄
= β̂X̄M̄ − (1 + µ̂) Ȳ − εk̂P̄ Ȳ ,

ε
dM̄

dt̄
= r̂Ȳ −

(
d̂+ β̂ + α̂P̄

)
M̄ − εrθ̂Ȳ ,

dĜ

dt̂
= r̂θ̂Y − f̂ P̄ Ḡ− εêḠ,

dP̄

dt̄
= b̂

(
1− P̄

)
+ ε2

(
ω̂ − k̂4P̄

)
Ȳ + ε3

(
ω̂φ̂− k̂5P̄

)
M̄,

C.1.4. Time scale 4: t = τ + O(ε), Rc > 1

• Scalings: t = τ + εt̄,

— In this time scale, all other variables become frozen but

A ∼ ε3Ā

By substituting this together with the scalings of Y and M for the first time scale into (C.1.6)

we have the
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• Equation

dĀ

dt̄
= ĝ1Ȳ (t− τ) + ĝ1ĝ2M̄ (t− τ)− εĝ3A− ε3ĥ1ĀȲ − ε3ĥ2ĀM̄ .

• The solution to this equation breaks down at t̂ =
ln( 1

ε
)

b0
+O(1)

C.1.5. Time scale 5: t = τ + O(1), Rc > 1

• Scalings: t = τ + t̄,

X ∼ X̄, Y ∼ ε2Ȳ , M ∼ ε3M̄,

G ∼ ε3Ḡ, P ∼ P̄ , A ∼ ε2Ā,

Substituting these scalings into the dimensionless system leads to the following

• Equations

dX̄

dt̄
= εσ̂

(
1− X̂

)
− ε2β̂X̄M̄ ,

dȲ

dt̄
= β̂X̄M̄ − (1 + µ̂) Ȳ − k̂P̄ Ȳ ,

ε
dM̄

dt̄
= r̂Ȳ +

(
d̂+ β̂ + α̂P̄

)
M̄ − rθ̂Ȳ ,

dĜ

dt̂
= r̂θ̂Y − f̂ P̂G− εêĜ,

dP̂

dt̂
= b̂

(
1− P̄

)
+ ε2

(
ω̂ − k̂4P̄

)
Ȳ + ε3

(
ω̂φ̂− k̂5P̄

)
M̄,

dĀ

dt̄
= ĝ1Ȳ (t− τ)− g3Ā+ εĝ1ĝ2M̄ (t− τ)− ε2ĥ1ĀȲ − ε3ĥ2ĀM̄ ..

• The approximations will become poor in the P equation, when Y = O(1/ε2), i.e. t =

2
R

ln( 1
ε
)

b0
+O(1).

C.1.6. Time scale 6: t = τ + 2
R
ln(1

ε
) + O(1), R > 0

• Scalings: t = τ + 2
R

ln(1
ε
) + t̄,

X ∼ X̄, Y ∼ Ȳ , M ∼ εM̄,
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G ∼ εḠ, P ∼ P̄ , A ∼ Ā,

• Equations

dX̄

dt̄
= − β̂X̄M̄

1 + Ā
− εσ̂(1− X̄), (C.1.7)

dȲ

dt̄
=

β̂X̄M̄

1 + Ā
− (1 + µ̂) Ȳ − k̂P̄ Ȳ

(
1 + k̂1Ā)

)
, (C.1.8)

ε
dM

dt
=

r̂Ȳ

1 + k6Ā
− β̂X̄M̄

1 + Ā
− d̂M̄ − α̂P̄ M̄(1 + k̂2Ā)− εθ̂Y

1 + k6A
, (C.1.9)

dḠ

dt̄
=

r̂θ̂Ȳ

1 + k6Ā
− f̂ P̄ Ḡ(1 + k̂3Ā)− εêḠ, (C.1.10)

.
dP̄

dt̄
= b̂(1− P̄ ) + ω̂Ȳ + ε(ω̂φ̂M̄ − k̂4P̄ Ȳ )− ε2k̂5P̄ M̄ , (C.1.11)

dĀ

dt̄
= ĝ1Ȳ (t− τ)− ĥ1ĀȲ − g3Ā+ ε(ĝ1ĝ2M̄(t− τ)− ĥ2ĀM̄).. (C.1.12)

• The system does not seem to have a closed form solution but we have made some

important approximations for the variables in this time scale in which details are given

in section 5.7.6 of the main text. Numerical solution in this timescale shows that Y , M ,

G and A are exponentially small and P ∼ 1.

• The X equation changes balance at the commencement of recovery when t = O(1/ε)

C.1.7. Time scale 7: t = O (ε−1)

• Scalings: t =
1

ε
t̂,

X ∼ X̄,

Substituting these into (C.1.1) we get,

• Equation

dX̄

dt̄
= σ̂

(
1− X̄

)
,
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