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Abstract

We study families of Lagrangian tori that appear in a neighborhood of a resonance
of a near-integrable Hamiltonian system. Such families disappear in the “integrable”
limit € — 0. Dynamics on these tori is oscillatory in the direction of the resonance
phases and rotating with respect to the other (non-resonant) phases.

We also show that, if multiplicity of the resonance equals one, generically these
tori occupy a set of a large relative measure in the resonant domains in the sense that
the relative measure of the remaining “chaotic” set is of order /. Therefore for small
e > 0 a random initial condition in a y/e-neighborhood of a single resonance occurs
inside this set (and therefore generates a quasi-periodic motion) with a probability
much larger than in the “chaotic” set.

We present results of numerical simulations and discuss the form of projection
of such tori to the action space.

At the end of Section 4 we discuss the relationship of our results and a conjecture
that tori (in a near-integrable Hamiltonian systems) occupy all the phase space
except a set of measure ~ ¢.

1 Projection of trajectories to the action space
Consider a symplectic map

(y, z) = (Y4, 24), y € R 1z ¢€T?
yr =y —edV/0x, xy=z+y;, V =V(x). (1.2)

For ¢ = 0 the dynamics is integrable and (y,z) are action-angle variables on the phase
space R? x T2, We choose for definiteness

V = aj cos(x1 + ¢1) + az cos(xe + p2) + az cos(z1 — T2 + ¢3)
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Figure 2: Chaotic trajectories: near KAM-tori (center,right) and near a low order reso-
nance (left)

with constant ay, as, as, 1, 2, p3. We study trajectories numerically having in mind the
idea to observe some interesting images and then find theoretic explanations. To visualize
objects (closures of trajectories) lying in the 4-dimensional phase space, we project them
to the action plane R* = {y}. We fix a; ~ 1, p;, ¢ ~ 1/10, take a random initial
condition and look at the result. The symplectic map (1.1)-(1.2) belongs to the family of
maps introduced by Claude Froeschlé in [6], there is also the numerical simulation.

Typical images are presented on Fig. 1. They can be easily identified with ordinary
KAM-tori. We see typical singularities (folds and pleats) of Lagrangian projections (these
singularities are presented for example, in [3]).

It is also easy to observe chaotic trajectories, Fig. 2. The trajectories presented in
Fig. 2, right and center, are situated near KAM-tori, but chaotic effects create a small
“defocusing” in comparison with tori from Fig. 1.

Trying more initial conditions, it is possible to obtain more interesting objects, Fig.
3, which look like closed ribbons. Further attempts lead to more exotic images, Fig. 4,
looking as finite sequences of spots.

In this paper we discuss a mechanism which generates such structures. In particular
we show that these objects form sets of positive measure in the phase space. Hence
probability to observe them is also positive.

On the end of this section let us give some examples. Fix ¢; = w9 = 1, 3 = 2,
a1 =1,a0=1,0=0,8,e=0,15and y; =1, yo = 3. If z; = 0,74, 2o = 1,685 we obtain
the right picture on Fig. 1, if 1 = 0,74, x5 = 1,684 we obtain the right picture on Fig.
4, if xy = 1,3595, x5 = 1,7 we obtain the right picture on Fig. 2, finally if z; = 0,74,
x9 = 1,707 we obtain the right picture on Fig. 3.



Figure 4: Another type of quasi-periodic trajectories, “sequences of spots”

2 Lower-dimensional tori near resonances

As usual it is more convenient to write formulas for flows although numerics are faster,
simpler and more precise for maps. Consider a real-analytic near-integrable Hamiltonian
system

X =0H/dY, Y =—0H/dX, YeDcRYN, XeTV.
H = Hy(Y)+eH (Y,X)+ O(¢?), e>0.

Below we use the following notation for such a system:
(P,wp, H), P=DxTVN, wp=dY AdX,

where the symplectic manifold (P,wp) is the phase space.

The map (1.1)—(1.2) can be regarded as the Poincaré map for some system (2.1)—(2.2)
with NV = 3 on an energy level M), = {H = h = const} (see for example [13]|). Hence the
dimension of the phase space 6 = 2N drops by 1 because of the reduction to M} and by
another 1 because of the passage to a (hyper) surface ¥ C M), transversal to the flow.
Below N > 3 is arbitrary.

The vector v(Y) = 0Hy/dY is called an unperturbed frequency. For a fixed Y = Y?°
we have a fixed frequency 1° = v(Y?). Any equation

(1K) =0, K ¢ 7"\ {0} (2.3)



is called a resonance. The word “resonance” is also attributed to the integer vector K,
satisfying (2.3).

Given a constant 1° € RY all the corresponding resonances K (together with 0 € Z")
form a resonance Z-module

g(*") = {K € Z" : K is a resonance} U {0}.
If g(v°) = 0, the frequency vector v° is said to be nonresonant. We define
[ =1(0°) = rank(¢(+°)), m=m(") =N -1,

where rank(g(2?)) is the number of generators in g(v"). Informally speaking, [ is the
number of independent resonances for the frequency vector v°. Invariant torus is called
resonant (nonresonant) if the dynamics on the torus is quasi-periodic with a resonant
(nonresonant) frequency vector. Any torus

T, = {(Y.X): Y ="}
is invariant with respect to the unperturbed flow
Y, X) = (Y, X +v(Y)t), te R
Then T%, is foliated by the m-tori
TP xo = closure({(Y, X) : Y =Y°, X = X° + %, t € R}).

Computing frequency vector corresponding to the unperturbed quasi-periodic motion on
T%,XO’ it is easy to show that the tori T%’XO are non-resonant.

Note that in the non-resonant case (I = 0) we have T{, o = Tt for any X° € TV, If
[ > 0 then m # N and the foliation is non-trivial. 7

If [ > 0 then a generic perturbation destroys TV, [11]. However generically some tori
T yo survive a perturbation even if v is resonant. To present the corresponding result,
we fix a Z-module g C Z". Consider the resonance set

g =Y €D:gw(Y)) =g}

Under natural non-degeneracy conditions' ¥, is a real-analytic submanifold, dim 3, = m.
It is convenient to study system (2.1)—(2.2) in a \/z-neighborhood of the torus T5,,
Y? € &, by using the scaling
Y=Y+eY, X=X, HY,X,e)=H(Y’) +VeH(Y,X,e).

Then the system (P,wp, H) turns to the system (f’,wlg, H),

H=(Y)+ §Ve(llY,Y) + Ve Hi (Y, X) + O(e),
P=RNxTN, wz=dY AdX, Tl=Hly(YO).

Ithe functions (K ), 8/0Y)Hy(Y') are independent in D where K ... K" are generators of g
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The tori T} o which survive the perturbation are generated by fixed points of some
Hamiltonian sys’tem which is obtained from the initial one by using averaging, neglecting
some higher order perturbative terms, and by reduction of the order. Now we turn to
description of these steps.

For any function f =Y pc,n [Xe™%) consider the averaging

(frg =D fletoX, (2.4)

Keg

Hence, (-), is a projector, removing all nonresonant Fourier harmonics.
Now it is natural to perform the following standard coordinate change:

V,X)—~ (V,X), Y=Y+4+e5; X=X,
where S = 5(X) is a solution of the (co)homologic equation
(10, 8%) + Hi (Y, X) =o(Y", X),  o(Y,X) = (Hy(Y, X))y (2.5)

Under standard Diophantine conditions a real-analytic solution of equation (2.5) exists
and unique up to a g-invariant additive term (S),. For example, S can be chosen so that
(S)g = 0.

In the new coordinates we have the system (ﬁ, wp, H),

~

P=RNxTN, ws=dY AndX, H=H+0(@),

H = (°Y) + §<H?, V) +veEu(Y0 X).

Consider the approximate system (ﬁ,wﬁ, H9Y), which is usually called the partially
averaged system. Any critical point X° of the “potential” v(Y?, X) generates an invariant
torus TV, X0 To study linearization of the averaged system on TV, X0 it is convenient to
consider the reduced system. First we recall general invariant construction (see [2]) and
then give a more explicit coordinate form.

The system (P,wp, H?) admits the symmetry group G = T™. The Lie algebra asso-
ciated with G is naturally identified with

g1 ={Q eRY : (Q,K) =0 for any K € g}.

Note that % € g, and rank g, =
Action of G on P is P01sson1an and the corresponding momentum map My : P— g7
is as follows:

Ma(Y,X)Q = (Q.Y) forany Q € g..
Reduction with respect to G means

(a) fixing values of the first integrals (Q,?) = (Q,7) for any Q € g,, where v =
const € RY,
(b) passage to the quotient phase space

P=P,/G, P,={(Y,X)eP:(QY)=(Q,) foralQeg,}.



The reduced phase space has a canonical symplectic structure w, [2] while the Hamil-
tonian HY : P — R is determined by the commutative diagram

B op
Hg\ﬁ,y\l 1/7'[9
R

where pr is the natural projection. The torus Ty, xo turns to a fixed point p in the reduced
system (P,w,, HY). Flow of the system (P, wp, HY) near TV yo is essentially determined
by linear approximation of (P, w,,H?) at p. To obtain this approx1mat10n we turn to the
coordinate form of the above order reduction.

Let © be an N x [ matrix formed by the integer vectors K1), ... K® generators
of g. This matrix is not unique: for any M € SL(l,Z) (an integer [ x [ matrix with
unit determinant) one may take ©M instead of ©. We assume that the quadratic form
determined by II is non-degenerate on gr, where gz C R is the natural extension of
g(¥?) to a linear subspace. Equivalently ©TTIO is a non-degenerate [ X [-matrix.

Then we can take as local coordinates on P the variables n € R!, £ € T! such that

~

Y=0n-1")+ ¢=0"X, ’=(0'16)'e'l.

Here the constant n° is chosen for convenience to remove from HY a term linear in 7).
The form w,, the fixed point p, and the function HY are as follows:

wy =dnAdE, n(p) =0, {(p) =0"X", HI= §<@Tﬂ@n,n> + Ve vpyo(€) + Ry

Here vpyo : T' — R is the unique function, satisfying the identity?
vpyo(OTX) = v(Y?, X).
The constant h, = £ (II(y — ©1"), (v — ©n°)) can be ignored.

Theorem 1 ([8]). Suppose that det11 # 0 in D. Then for any sufficiently small ¢ > 0
there exists a set Ao C 5, such that for each YO € A, and for each nondegenerate critical
point £ of vpyo the perturbed system admits a real-analytic invariant m-torus T, gO( £).
This torus is close to Ty, yo, where X0 is any point satisfying the equation £° = 0T X0,
Moreover, Tyong( g) carries a quasi-periodic motion with the same frequency vector.

The perturbed invariant m-tori constitute a finite number of m-parameter Whitney
smooth families. The relative Lebesque measure of A, on the surface

{Y € ¥, : vp yo has nondegenerate critical points}

tends to 1 as e — 0.

2Explicit formula for vp is as follows. Let the Fourier expansion for v be

(Y, X) = Z (K X) Z O (V)€ (05:X)

Keg JEL!

Then v'p,y(g) = ZjeZ’ v®©7 (Y)€2<Ja§>



Hamiltonian of the linear approximation for (P,w.,H?) at the fixed point p is

Ve Ve Fupyo
= (OO )+ VCQ) V=

Ho =V
lin 9

(O)a C = 5 - 50'
Therefore eigenvalues £y, ..., £, of the fixed point n = { = 0 in the system (P, w., Hj, )
satisfy the equation

det(e0TTIOV + \?) = 0.

If all A\; are purely imaginary, p and the corresponding torus TVo ¢o (¢) are said to be
normally elliptic. The “opposite” case is normally hyperbolic, where no A; is purely
imaginary. In general situation the torus T%,éo (¢) has an associated centre manifold.

For m = 1 Theorem 1 was proven by Poincaré [11]. In this case no small divisors
appear and the proof is based on the ordinary implicit function theorem. The equation
m = N corresponds to the (ordinary) KAM-theorem for Lagrangian tori.

Hyperbolic case with arbitrary m is presented in [18]. In [4] the case of arbitrary m
and arbitrary normal behavior of the perturbed tori is treated. In 8] it is shown that
an additional condition (the so called g-nondegeneracy of Hy), introduced in [4], can be
skipped. A statement analogous to Theorem 1 should be true in infinite dimension but
as far as we know this has not been proven yet.

Since for non-trivial g all the tori T, . (€) are lower-dimensional (m < N), their total
measure in the phase space D x TV vanishes. In other words they are practically invisible
in numerical experiments. This does not mean that they are inessential for dynamics. For
example, hyperbolic lower-dimensional tori and their asymptotic manifolds are known as
elementary links which form transition chains, forming a basis for the Arnold diffusion.

3 Visible objects

In this paper we are interested in visible objects. More precisely, in invariant tori of
dimension N. Geometry of their projections to the action space depends on the order of
a resonance at which these tori appear.

No resonance. For example, such objects are ordinary (N-dimensional) KAM-tori.
If ¢ > 0 is small, KAM tori form a large Cantorian set: the measure of the complement
C(e) to this set in D x TV does not exceed a quantity of order /¢, [2, 7, 10, 12, 17|, in the
case N = 2 the measure of C(¢) is exponentially small in € [10]. The measure estimates
of C(e) for degenerate systems are contained in [1, 9, 19, 14, 15].

In the first /¢ approximation the projection of a KAM-torus to the action space D
has the form ¥ = 0 under the condition | = rank g = 0. In the original coordinates we

have: L B
{YeD: Y =Y"+e5:(X), XeT"},

where S satisfies (2.5).
The discrete system (1.1)—(1.2) can be obtained from a Hamiltonian system (2.1)—(2.2)
with N = 3 degrees of freedom on an energy level H = const by passing to the Poincaré



map on the section {X3 = 0}. Hence, the first in /¢ approximation the objects presented
in Fig. 1 are sets of the form

{(,Y2) V) =Y + VeSg (X1, X,5,0), §=1,2, (X;,X5) €T} (3.1)

For a random initial condition the probability to occur on one of such torus is greater
than 1 — Cy/e for some Cy > 0.

The “resonance” set C(g) contains other families of quasi-periodic motions. Here it is
reasonable to distinguish the case of a single resonance (rankg = 1) and the case of a
multiple resonance (rank g > 1).

Single resonance. In this case dimension of the commutative symmetry group G is
N — 1. Therefore the system (P,wp, H?) is completely integrable. Informally speaking,
it is a product of N — 1 “rotators” and a “pendulum” (such representation in a small
neighborhood of a single resonance is discussed in [3]), where the pendulum is determined
by the reduced system with one degree of freedom (P, w.,H9). The variables n and & are
1-dimensional while vector © = (©4,...,0x)7T is integer.

Solutions on which the pendulum motions are rotations are ordinary KAM-tori while
solutions on which the pendulum oscillates, lie in C(¢). When we say that the pendulum
oscillates, we mean that in the system (P,w,, 1Y) the angular variable { changes period-
ically in an interval J C T', J # T'. In the first approximation in /¢ the corresponding
trajectory of (1.1)—(1.2) fills the set

{(}/1,}/2) 3}/}:}/;0+\/ESXJ_(X1,X2,O), j:1,2, @1X1+@2X26J, (Xl,XQ)ETQ}.
This is a “ribbon-like” subset of (3.1). This explains the structure of sets in Fig. 3.

Since the system (P, wp, HY) is integrable, the set of phase points in a y/e-neighborhood
of the torus Tgo lying outside invariant N-tori of the original system (P,wp, H), has a
small relative measure. Precise statement, Theorem 2, is given in Section 4. Hence if
an initial condition is taken randomly the probability to obtain a quasi-periodic orbit
like Fig. 3 is not less than Ci+/z, C7 > 0, because the width of a resonance domain
corresponding to a single resonance is ~ y/e. Pictures analogous to Fig. 3 can be found
in [16]. Similar tori considered in context of Arnold diffusion in [5].

Multiple resonance. If rankg > 1, the systems (ﬁ,wﬁ,Hg) and (P,w.,H?) are
generically non-integrable. Therefore existence of invariant [-tori in the latter one is not
straightforward provided the energy HY is not very big or not very small. A standard
source for such tori is a neighborhood of a totally elliptic fixed point. However, a totally
elliptic fixed point may not exist if the “kinetic energy” $1/(©711On,n) is indefinite: a
simple example is

HY = /e (mmna + cos &y + cos&y).

System (1.1)—(1.2) corresponds to a positive definite kinetic energy and trajectories
presented in Fig. 4 present nonlinear versions of small oscillations near a totally elliptic
periodic orbit in the corresponding system with 3 degrees of freedom. A random initial
condition lies on one of such tori with probability of order e, because the measure of a
resonant domain corresponding to a double resonance is of order . Unlike the case of a
single resonance only a small portion of this domain is filled with tori, in general.



4 Invariant N-tori at a single resonance

Putting N = n+ 1, consider the Hamiltonian system (2.1)—(2.2) in a neighborhood of the
resonance %, X T where g is generated by the vector K° € Z"*!\ {0} with relatively
prime components. Hence, we plan to study invariant tori, located in the vicinity of a
single resonance

S =39, ={YV eD: (K°v(Y)) = 0}. (4.1)

We assume that the unperturbed system is non-degenerate and K° is not a light-like
vector:

det Hly # 0, Y eD, (4.2)
A(Y) = (K° Hiyy K°) # 0.

Note that (4.3) means that for any Y satisfying (4.1) the function A — Hy(Y — AK?) has
a non-degenerate critical point A = 0.

Now our aim is to give a defenition of the oscillatory part of the resonance domain
and to introduce convenient notation for the main KAM theorem.

By (4.3) the resonant set ¥ C D is a smooth hypersurface transversal to the constant
vector field K°. The equation

%HO(Y —AK®) = (K° u(Y — AK®)) =0 (4.4)

has a real-analytic solution A = A\(Y) in D near .

We have a smooth map x : U(X) — 3, where U(X) is a neighborhood of the resonance
Yand x(Y)=Y — A(Y)K".

Let (-)X” = (-), be the operator of resonant averaging

o0

=) RN ()= N PR g = (K0, X).

Kezntl j=—o00

Consider the Hamiltonian system (P,wp, Ho),
KO
Hio(Y,X) = Ho(Y) +eu(Y,q), u,q) =(H (x(Y), X)) . (4.5)
The function u is 2m-periodic in the resonant phase ¢ and
u(Y + AK" q) =u(Y,q) for any ) in a neighborhood of 0 € R.

In fact, below the quantity AM(Y)K? =Y — x(Y) (some sort of distance to the resonant
surface) will be of order /e.

Since Hy(Y) = Ho(x(Y)) + 3 A (Y)) A(Y) + O(N*(Y)), Hamiltonian (4.5) can be
presented in the form

Hiao(Y, X) = Ho(x(¥)) + JANX(Y) X(V) +2u(Y,q) + O(V)). (46)



For any vector J € R"™! such that (K% J) = 0 the function (Y, J) is a first inte-
gral. Therefore the system (P,wp, Hyo) is completely integrable. It is responsible for the
dynamics of the original system near the resonance (4.1). Below we only deal with the
oscillatory part D, of the resonance domain, where D,, C D x T is defined as follows.
Let gmin(Y) and gmax(Y') be points of global minimum and maximum of u(Y,¢q) for fixed
Y e

u(Y, ¢min(Y)) = minu(Y,q), u(Y,gmax(Y)) = maxu(Y,q). (4.7)

qeT q€eT

Then we define
D,s = {(Y,X)eDx T :
(Y, (V) < SAKY) M (Y) + (Y, ) < culY, guas(V))}. (48)

If u(Y,q) is not a constant as a function of ¢, the domain D,, belongs to an O(,/¢)-
neighborhood of the resonance ¥ x T"". On almost any orbit of this flow located in
D,s the resonant phase g oscillates between two quantities ¢; and ¢s, depending on initial
conditions and such that

g2 — QI‘ < 2m, q|q:q1 = q|q:q2 =0.

These orbits lie on (n + 1)-dimensional Lagrangian tori. Below we prove that for small
values of ¢ all these tori except a set of a small measure survive the perturbation.

To formulate the result, for any Y in a neighborhood of ¥ consider the Hamiltonian
system

i=veh,(x(Y),p,q), p=—Vehi(x(Y),pq). (4.9)

with one degree of freedom, the Hamiltonian

~

h(x(Y),p,q) = %A(X(Y))p2 +u(Y,q)

and the symplectic structure \/%dp A dq. The point Y is regarded as a parameter. Recall

that by (4.3) A # 0. This system coincides with (P,w,, H9) from Section 3 written in
slightly other terms.

Proposition 4.1 The point x(Y) is a constant of motion in the system (P,wp, Hyo).
The variables N(Y) = \/ep and q in the averaged system satisfy equations (4.9) up to
O(e + \?).

Indeed, the first statement of Proposition 4.1 follows from the relation Y | Ko.
Applying the operator (K°,0/9Y) to (4.4) we get: (K° A\y(Y)) =1+ O()). Then by
(4.6) in system (P,wp, Hyo)

A= MY = —eu (Y, q) + O(eN) = —511; + O(eN),
i = (K° Hyoy) = AX(Y)) A+ O\ + O(e) = e h + O( + \?).

10



o v
/ #K//\

Figure 5: Phase portrait of system (4.9). Section of the oscillatory domain Dy by {x(Y") =
const} is marked grey.

The projection 7 : U(X x T"™) - ¥ x R x T,
(Y, X) = (x(Y),p.0),  p=ePAY), q=(K°X)

maps the domain D, to D,, = 7(Dys), see Fig. 5.
Let the closed curve (Y, p, q) be the connected component of the set

~

{(,7) : h(x(Y),,d) = h(x(Y),p,q)}

containing the point (p, q). We define the action variable I and the Hamiltonian function

h:
1

2r /(y )M‘j’ h(x(Y), 1) = h(x(Y),p,q)- (4.10)

IZI(Y,p?q)ZQW

Note that if the energy levels h(x(Y),p,q) = const are not connected (i.e., consist of
several curves ), the function h is not single-valued.
If v =~(Y,p,q) is a closed smooth curve, the torus

Tys' () = {(V, X) : x(Y) = Y°, (7/2A(Y), q) € 7} (4.11)

is invariant for the system (P,wp, Hgo) up to terms of order O(e + A?). For small £ > 0
majority of tori (4.11) survive the perturbation and exist in the original system. Any
surviving torus has to satisfy several additional conditions.

Tn-i—l

(1) The frequency vector vyo ., associated with YO - is Diophantine, i.e. for some

7>0and C; >0

C,

[(K, vyo )| > (K[

K € 7"\ {0} (4.12)

This is a standard assumption which holds on almost all tori.

(2) The system (P,wp, Hgo) is nondegenerate on T2§*
This condition essentially means that
W) <c, |hW,|<e || '<e |BTt<e (4.13)
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Therefore we have to replace D, by a smaller domain Dy by throwing out a small neigh-
borhood of asymptotic manifolds (where the tori degenerate) and a small neighborhood
of tori on which the twist conditions (4.13) is violated. Let u be the measure in the phase
space D x T"*! generated by the symplectic structure wp. Then the measures (D) and
(Do) are both of order O(1/¢).

Theorem 2 Suppose that the system (P,wp, H) is real-analytic. If g > 0 is sufficiently
small, then for all positive ¢ < g9 any Diophantine torus ']T;‘,ngv(e) C Dy survives the
perturbation. For some constant C' > 0 independent of €, measure of union of such tori
in Dy is not less than u(Dy) — Ce.

The measure of invariant tori in a near-integrable Hamiltonian system. It is
well known that measure of the complement to the KAM tori does not exceed a quantity
of order /¢ ([2, 7, 10, 12, 17]). In order to prove this one has to construct some KAM
procedure and at each step of the procedure remove from the phase space a small resonant
strip (the measure of this strip is ~ /). The total measure of all strips is of order /e.

In Theorem 2 we consider a resonant strip of width ~ /. We remove from this
strip the set where the system degenerates and prove that the remaining part of the
strip has a lot of tori (the relative measure of "chaotic" set is of order y/£). It would
be interesting to modify the proof, considering weaker non-degeneracy conditions (4.13)
to improve estimates of the measure of the complement to the tori of a near-integrable
Hamiltonian systems. Here it is natural to remind a conjecture (see [2]) that tori occupy
all the phase space except a set of measure ~ €.

5 Preliminaries

Beginning from this place till the end of the paper we prove Theorem 2.

e All vectors by default are regarded as columns. For any v € R™ and any m X m-
matrix A we use the notation

|u| = max |u;|, |A|= max —-.
1<j<m

The brackets (,) denote the standard Euclidean scalar product: (u,v) =37 ujv;.
e 1 denotes the standard Lebesgue measure on R™.

e Prime denotes a partial derivative e.g., f; = df/0y,. If y € R™ and f:R™ - R

then f; is regarded as a vector and f, as a matrix.

e For any function f: T™ — R we define its average

1

= i

fa)de, (5.1)

The same notation is used if f depends on other variables. In this case to avoid
misunderstanding we use for (5.1) the notation ( ),.
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e Below ¢y, ¢y, ... denote positive constants. If ¢; depends on another constant, say,
a, we write ¢j(a). Dependence on the dimension n is not indicated.

To present the system (P,wp, H?) in a form convenient for application of KAM pro-
cedure, we have to perform several preliminary coordinate changes.
(a). Consider a matrix M € GL(n+ 1,Z) such that K" is its last column. In the new
coordinates
Y=M1'Y, X=M'X

resonance (4.1) takes the form

D (V)= Hyp (V) =0, Hy(Y) = Hy(Y). (5.2)
To have more convenient coordinates in a neighborhood of this resonance, we solve
the first equation (5.2) with respect to Y, 1. This can be done locally because by (4.3)

771
H P # 0. We denote the result

~

V=G, ..., Y,), D (Yiy oo Yo, G(Y1, .., Y,)) = 0.

(b). Consider the change of the variables

Yy = (yb cee 7yn) = ({/17 cee 7Yn)7 b= 8_1/2<}>n+1 - G(y)>7
= (T1,...,Ty) = (X1 + G X+ G;nq), q= X1

We are interested in motions which are oscillatory in the coordinate q. Therefore it is
not necessary to assume periodicity of this change with respect to ¢. Below ¢ lies in an
interval while the variables = are still angular: z € T".

The resonance ¥ in the new coordinates locally takes the form {p = 0} while y are
local coordinates on 3.

Then symplectic structure and the Hamiltonian take the form

w=dy Ndr++/edpA\dq,
Ay) +e(3AW)P* + uly, @) +eUi(y, x,q) + 2Us(y, p, x, ¢, VE), (5.3)

where

Aly) = Holy. G(y)), Aly) = H! (y,G(y)),

u, Uy, Uy are real-analytic, and average of U; with respect to = vanishes: (U), = 0.
By (4.3),(4.5)

Ynt+1Ynt1

Aly) = Ax(Y)), uly,q) =u(x(Y),q). (5.4)

Neglecting the terms eU; +¢%2U,, we obtain an integrable system which can be regarded as
a skew-product of an n-dimensional rotator in variables y, x and a (generalized) pendulum
in variables p, q.

We put (see (4.7))

Gumin(¥) = Gmin(X(Y)),  Gmax(¥) = Gmax(x(Y")).
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Then the domain D, (see (4.8)) takes the form

Dow = {(5:9,0) * 0y, ) < SAWP +u(y.0) <y, Gu) ). (55)

(c). Let W(y,I,q) be a generating function which introduces action-angle variables
I, ¢ in domain (5.5) for the system with one degree of freedom, the symplectic structure
dp N dq and the Hamiltonian %A(y)p2 + u(y, q), variables y are parameters y:

p=W, w=W; hylI) = %A(y)p2 +u(y, q).
Then the canonical change with the generating function gz + /eW (9, I,q)
y=19, T=x+W;,, p=W, =W
transforms the symplectic structure to dg A di + /edI A dp and Hamiltonian (5.3) to
A@) +eh(§, 1) + eV (5,13, 0,77, (V) =O0(V3), (5.6)
where the functions h, A, V are real-analytic. The function h satisfies the equation
hy,I) =h(x(Y),I), Y eUX),

where h is defined in (4.10). Below we skip hats for brevity.

6 Initial KAM Hamiltonian
For any set D C R"! let U,(D) C C"™! be the following neighborhood:

UsD)={(y+nIT+C): (1) €D, n <+Vea|(|<a}, neC" ¢eC.

For any function f: D — R which admits a real-analytic extension to U, (D) we put

[fla="sup [f(2)]

z€U,(D)

This norm is anisotropic in y and [ directions.
Let Uy(T™™!) be a complex neighborhood of T

Upy(T") = {(z + &0+ k) : (z,0) € T €] < b, |K| < b}, EeC" kel

For any function f: T"*' — R which admits a real-analytic extension to U,(T"™!) we
put
[flo=sup [f(z)]-
2€U,(Tn+1)
For functions, real analytic on D x T™"! we define |f],; as the corresponding double
supremums over

Uap(D x T = U, (D) x Uyp(T™).

14



Consider the Hamiltonian system with the symplectic structure
dy Adx +edl Ndp (6.1)

and the real-analytic Hamiltonian (see (5.6))

HO - A(y) +8h0(y7 ])+8U0(y7 ]7 2 \/E)+5U0(ya ]7 T, e, \/E), UO(% -[7 2 0) = 07 <u0>w = 07
where vy = (V),, ug =V — (V), and the points (y, I, x, ¢) lie in a complex neighborhood
U,

aog,

bo (DO % Tn+l>7 DO C RnJrl

for some ag, by > 0.
The above analyticity assumptions mean that there exist g, 59, Sg > 0 such that for
any 0 <e < ¢

‘A‘ao < 505 ’ho‘ao < Ch ’uo‘ambo < 5o, |Uo‘a07b0 < \/EC' (62)
Assumptions of Theorem 2 imply the following non-degeneracy conditions:

CA < |det Agy| < Ca, |Agy|ao < ¢a, |Agg;1|ao < Ca, |h6l|ao < Clh? ’h6[|;01 < C?ﬁ (63)

W6 1rla0 < ¢y PG rrlay < chy IVE o1yla0 < ks ey lae < - (6.4)

Let € be sufficiently small, then we can assume that ¢} is small because ¢} ~ /c. Below
we assume that ¢ < ¢ ,(cy,ca, ).

7 The Hamiltonian H,,

Below all functions depend smoothly on . For brevity we do not write ¢ in their argu-
ments.
As usual KAM procedure includes a converging sequence JFy, Fi,... of coordinate
changes and a converging sequence of Hamiltonians Hy, Hy, . ..
Fon : Uap i bnss (D X T = U,

am

7bm(Dm X Tn+1)a Hm+1 = Hm ofm-

Consider an increasing sequence {N; € Z} (N; is the maximal order of a resonance
essential on the j-th step), a decreasing sequence {\; > 0} (y/e \; determines the width
of resonance strips on the j-th step, N_; = 0) and the function j : N — N defined by the
inequality

Njry—1 <1 < Ny forall r > 0. (7.1)

Then j(r) is the number of the first step on which the resonance of order r is essential.
Consider two positive decreasing sequences ., , by,

Am = Q1 + 60'7,17 bm = bm+1 -+ 3(5m (72)
Suppose that on the m-th step we have the Hamiltonian

H,, = Ay) +chn(y,I) +cvon(y, I, 0) + cun(y, I, z,0), (Upm)z = 0. (7.3)

15



The function H,, is defined in a complex neighborhood U, 4, (D, x T™*)

Dm+1 - Dm\ U Uam(QK,m)a K = < ]fO ) S Zn+17 ke Z’na

| K|<Nm, k#0

(7.4)

where the resonant strips ()i, are defined with the help of the sequences N; and \;:

Qrm = {(W, 1) € Ua,, (D) : [{vm(y, 1), K)| < Njrp(1+ 27" 1)/},

A;( )+€h;ny( )
oy )= ()

Remark 7.1 Further we show that for any K € Z""', |K| < N,,_1
Qrm = Q.
FEquation (7.4) which defines the domains D,, can be represented as
D1 = Dy \ Un,, 1 <K <N Uar (Qim)-
Proposition 7.1 For anym=1,2,...
(Do \ Dy,) < /e,
where ¢, > 0 is independent of €.

Inductive assumptions. For (y,I) € U, (D,,) the following estimates hold:

|Um’am,bm < Sm, |um|am,bm < Sm,
mlam < (2=2")en, |l ot <2 =27")ch, Rl lat < (2—27™)d,

it < (2= 27")ch, Wehmplan < (2=27")ch, el yyla, < (2=27")c,

mly myy

8 The KAM-step

For any natural N and a periodic function

FoTH SR, Fla, ) = Z FH gilka)tikow

K=(k,ko)eZn+1

we define the cut off ' .
Dyflag)= Y flebortior,

| K|<N, k0

(7.5)

(7.6)

(7:8)

(7.9)

(8.1)

Then by Lemma 12.1 for any real-analytic f such that |f|, < co and for any § € (0, b)

C n
T R e

16
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By using Hamiltonian (7.3), we introduce the canonical® change of variables (y, I, z, ) —
(9,1,%,$), determined by the generating function jx + \/_(Igo + 5,1, RENE

y=9+ves, I=I1+8, i=r+VeS, ¢=p+8;
where the arguments (¢, 1) are supposed to lie in Uy, _, (Dpy1).

Remark 8.1 |- |4, b5 (Tesp. |-
(resp. Uay—o(Dimt1))-

o) denotes the norm in Uy, s p, —5(Dpmi1 X T")

am m m

By definition the function S is a solution of the homologic equation

" /

<ym(g,l), <§i>@,f,x,gp)> N V(G 1, 0), Vi =t + . (8.3)

Proposition 8.1 For any m = 0,1,... there exists a solution of (8.3) where
m n+1
Slambm—6m < LinSm, 29— e~ (n+1omN, 8.4
| | m7bm 67"/ _— 8 jzo A] ( )

The Hamiltonian (7.3) takes the form
Hyp = NG)+ehom (i, 1) +e0m(§, 1, @) +0m (9, 1, @) +etim(§, 1, 2, ), (li)z = 0. (8.5)
Remark 8.2 Below we show that that

|S;|am_a'm,bm—25m S Jm7 ‘S:D|(lm_0'm,abm—25m S O-m7 (86)

’\/ES:tljlam70'Mybm*26m S 5m7 ’S}‘amfo'maan*Z(Sm S 5m (87)

Estimates (8.6)—(8.7) imply that the coordinate change is well-defined for (§,1,z,p) €
Uam—am,bm—Q(Sm (Dm—i—l X Tn+1)-

Proposition 8.2 For m > 1 estimates (8.6)—(8.7) imply the inequalities

"ﬁm + am‘amfam,bmf26m S §m7 (88)

L. s \2 L, s2 C 1\n
mom 2)=m 4 = (N, +—) e Nmdmg .
5 )+t >Um5m+5m( m+5m) e Nubn s (8.9)

S = (en + ) (

9 An additional step

Consider the symplectic transformation (I,3) — (I, ) with generating function I +
VES(9,1,¢) which introduces action-angle variables in the system with one degree of
freedom and Hamiltonian

A

(9, 1) 4 0 (9, 1, @) = hmyr (3, 1). (9.1)

i.e., preserving symplectic structure (6.1)

3
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The variables §y = 7 are regarded as parameters. We extend this map to a canonical
transformation of the whole phase space:

j=9, I=1+85, z=i+eS, ¢=¢+5 (9.2)

Hm+1 = A(:g) + 5hm+1(y7 ]> + 8Um-i—l (g j @) + 5um+1<g’ j7 [f;, @)7 <um+1>i - O

Proposition 9.1 Suppose that

OO,
|U0’a0 < \/_ < / 9 |/Um a7vz_0'nr,7bm_26m S SmJ Sm S Z,m7 m > ]‘ (93)
Ch Ch
Then for any m > 0
|§:5|am*40m,bm*26m S SC/hS;n? |S’am*4<77717bm725m S ]‘67‘-6?18;717 (94)
&cpch 8!
|1 — Pl an, — 40 b —26m < %, [Umt1 + Vs lam o1 bmss < Sins (9.5)
m
where sy = \/ec and s, = S, for all m > 1.
Remark 9.1 Below we show that
|S}‘am+lybm+1 < O |\/gSg,;‘am+1,bm+1 < 5m> (96)
‘S/ arn+17 m—+1 < Um' (97)

Estimates (9.6),(9.7) imply that the coordinate change (9.2) is well-defined for (y,I,%,p) €
Uam+17bm+1 (Dm+1 X Tn+1)

10 The sequences o,,, 0., S, Ly Noyy A

We define o, and 6,, by (7.2) and put

7m =% » m =g 9= g5 1 '
Sm = Soe @2 N, =cn 22", Ay, = ) 27 GntTm (10.2)

where 7 € (0,1). The constants ag, by, so are a priori fixed. We can choose only cy, ¢, ¢\
and . First we fix ¢4, then we define ¢y = cy(c5) and ¢y = ex(en, ¢s). Below we explain
how to do this.

Proposition 10.1 Suppose that the sequences 0y, Ny, and Ay, are defined by (10.1) and
(10.2). Then the sequence L, defined by (8.4) satisfies the estimate
CnJrl
L < N 2(4n+5)(m+2) (103)
Cx
To show that our choice of the sequences a,,, b, Ty Omy Sms Liny Nony A makes the
procedure converging, we have to check that assumptions (7.7)-(7.9), (8.6), (8.7) and
(9.6), (9.7) hold. The remaining part of this section contains this check.
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10.1 Several estimates

By using (10.1)—(10.3) we obtain:

?Zifj < 18210n+lﬁc§;§;in+11)m80SOe‘QCS’”‘Q’"“ e e
where ¢z, = max (948n+12§§;+1)80, 210";1;;:11“50). For the third term of (8.9) we have
< %(CN n %)"6(2n+1)m+cs—(bocN/ﬁ—Q)zm—QmSmH_

10.2 Inequalities (7.7)

Rewrite (8.9) in terms of ,,11

5, < (CA +C%)CL52(8n+12)mefcs(mfl)8m+1 + (n_i_Q)CLSQ(8n+12)me—c5(mfl)SmJrl

+@ <CN + E>ne(zmrl)ercS—(boczv/6—2)2m_2m
bo bO

Sm+1-
If ¢s > ¢5y = 16n + 24 and ¢y > cyo(ao, bo, So, Cs, CN, ), then for all m > 0 we have

1
cp 28 H12memes(m=1) < 3 max((cy +¢,) 7t (n+2)7h).

For sufficently large ¢y for all ¢y > cno(bo, ¢s) we obtain

_CN+_ —

6C ( 6 >n€(2n+1)m+cs*(bOCN/6*2)2m72m < 1.
b() bO 3

This implies s, < $p,+1. From Proposition 9.1 and the last inequality follow estimates
(7.7).
10.3 Inequalities (7.8),(7.9)

By (9.5) hy — hg = O(y/€). Hence it is sufficient to check (7.8) and (7.9) only for m > 1.
For large ¢s > ¢51 = ¢51(c),, ag, So):

8¢ s 2250 g
hom ho0 —(cs—2n—5)m—2™ —m—1
|hm+1 - hm|am+1+20m ~ S 48Ch 7 € (ca ) S Ch2 ’
Om ag

/ 6n+15 /

IR R < 8CncySm < 17282 ChChS0 _(co—6n—15)m—2m
m+111 mlllamyr = 77 53T = a? €
m 0
< 27t
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Note, that for ¢; > c59 = c5a(cp, ¢}, ag, So) we have

‘h:n—i-ll‘am+1+0m > ‘h;nl‘am+1+0m - ’h;n—&-ll - h;nlyam-HJrUm

> L 8C’lC;hSm > L 28824n+10/02hclh'90e—(cs—4n—10)m—2m
(2—-2"m)q, Tin (2-27")q), g
1 om 1

> .
- (2=2"m)¢ om+l _ 1)(2m+2 _ 1)¢/ 2 — 2—m=1)¢
h h h

Consider the first inequality (7.9). For ¢5 > ¢53 = ¢53(cn, ¢}, ag, So)

" " /" 1
|hm+111|am+1 Z |hmII|am+1+0'm - |hm+lll - hm[[|am+1
S 1 B 8¢hC),Sm 1 B 172826n+150hc;180 o—(cs—tn—15)m—2"
= _ o— / 3 = _ o= / 2
(2—-2"m)q, T (2—27)q, ag
1 2m 1

> .
= @2-2m)d  (@no1)@emz—1)d,  (2—2m ),

For the last two inequalities (7.9) let ¢; > 54 = cs4(ch, ¢}, €1, ap). Then

8NCpC) Sm 26n+15ncnch s
h°0 —(cs—6n—15)m—2m 1y—m—1
VR sty = VR o € VEm < y7ag 7 S0 (et < gt
\/ggm aO
necpch s
" " hom No—m—1
’6 m+1yy - 6h‘myy|am+1 S 3 S Ch2 .
eos
— — _ _om — — — _—_om
For sufficently large ¢, > max(c, 1, Cs2, Cs3, Cs4) the exponents e~ (cs—2n=9)m=2" " =(cs—dn—10)m=2""

e~ (cs=0n=15)m=2" are small and all inequalities (7.8),(7.9) hold.

10.4 Inequalities (8.6),(8.7)

Note, that for ¢y > ex1(cn, ¢s, bo, ag, So):

8n+11 .n+19(4n+6 —csm—2"
L,.Sm 98n+ C% 9(4n+ )msoe Csm < 1@’2_(2n+5)(m+1) =0,
6m - C)\bo -6 0 7
L. s 210n+15cn+12(6n+10)m8 e—Csm—2" 1
mom < 6 N / 0 < _b02—(m+1) — 5m
Om N 3

This implies (8.6) and (8.7).

10.5 Inequalities (9.3), (9.6),(9.7)

The first inequality in (9.3) holds for small . Note, that for ¢ > c¢s5(s0, ¢}, a0, by) we
obtain .
—csm=2" - O-m(sm _ aObO 2—(2n+6)(m+1) m> 1.

~ 4d, 72¢, ’ -

Sm = Sp€
By Proposition 9.1:

|§|am_40'm7bm_26m S 1671—6;18;7’1,7 |§:ﬁ|am_4amabm_26m S 86;7,8271
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For m = 0 inequalities (9.3), (9.6), (9.7) hold if ¢ is sufficently small. Consider m > 1.
For ¢ > ¢56(s0, ¢}, @0, bo)

_ S So 2n+5 bo
[ am—50mbm—20, < 16m¢, =" < 96me), =——e (TR < Zpmlmtl) — 5,
Om ag 3

~ S
’\/Esé‘am—5am,bm—2§m S \/5167‘-6%\/_5—72},1 S 5m7

—csm—2m < a_62—(2n+5)(m+1)

Qo / /
|S¢‘am_40'm7bm_25m S 8Ch3m S 80}1806 — 6

= Opm.

We choose the constants in the following way. Fix ¢; > max(cs1,...Cs6), ¢y > cn(cs)
and ¢y = cy(en, ¢s) > max(cyg, ca1), we obtain for m > 0 inequalities (7.7), (8.6), (8.7)
and for m > 1 we obtain (7.8), (7.9), (9.3),(9.6),(9.7). Finally, for sufficently small ¢
inequalities (7.8), (7.9), (9.3),(9.6),(9.7) hold for m = 0.

11 Proofs

11.1 Diophantine conditions (4.12)
Using (10.2) we obtain

n+147
—(2n T)j(K CXC OT n T
(v, K)| > \/EAJ'(K) = 327 BT N%[r{l;rr - | K[t Cr = exey™ .
J

11.2 Proof of Proposition 7.1
Proposition 11.1 For any K € Z"™!, |[K| < N,,

Qrm+1 = .
Consider the scaled frequency map
oo (9 1) = (A (0) 4+l (3 1), 1 (9. ) ).

In comparison with (7.6) we remove the multiplier /¢ at h], ;. It’s Jacobi matrix equals

A// _|_ 8h// h//
— vy myy mly
Ju(y, 1) = ( e h;;m) . (11.1)

Proposition 11.2 For some positive constants C; and C;
|det i (y, D)o, < Cy,  |detdn(y, I)],} < C. (11.2)
Estimates (11.2) imply the following inequality for measure of the domain ,,(D,,):
1 ((D) ) < Ty (D).
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Consider the vector (wy, vewr), w, € R", w; € R and set
Q5 = { Wy, wr) € Dn(Dn) : [{wy, k) + vewrko| < Njqxp(1+27"71)y/E}. (11.3)
The set Q%,, C R*™ is a strip between two planes
(wp. k) ek VEARp( 27

k) +ek2 /() +ekd (k, k) + ek?

Using (8.1) we have, that (k, k) > 1 and the the distance between the planes is not more
than 4X;jk))v/e. The measure estimates are

#(Q%m) < D) VETH Co,
M(QK,mﬂDm> < M(ﬁ;zl( ?(,m)) §4/\J'(\KD\/EQJ6JCD7

where Cp depends on diameter and dimension of D,.
Consider estimates for the measure of D,, N U,, (Qx.m). Let V| < veom, |I'| < om.
Then

|<Vm(y + y,7I + I/) - Vm(yvl)a K>| S n’AngK|\/EO'm + n|€hgy||K|\/go-m
+nlVehy [|KIVeom + nlvehy || K|Veon
+n|\/thIHK|\/EO—m < \/ECwNmama

where Cy, = Cy(ca, ¢}, cp,n).
Consider the extension of Q% ,,

o = {(wy, wr) € Im(Dim) = |{wy, k) + VEwrko| < 250k + CypNimom) /2 }.(11.4)
Note that (Dm N Uam(QK,m)> C 7, 1(Q%4,)- Finally
M(Dm N Uam(QK,m) < (i, Q) < 4Ny + CyNimowm)ve €y CyCp. (11.5)

We have (D, \ Dig1) C Un,, _ <|K|<Nn (Dm N Uam(QKm)). Using (11.5) we obtain

NE

M(Do \ Dm+1> < M( UNi_1<|K|<N; (Di N Uai@m)))

=0
< 4VeC,;C,Cp Y NI (Ai+ CylNioy).
=0

The proposition holds for ¢, = 4C; C,Cp Yo N O+ CyN,o;). To finish the
proof we need to check

+o00
D> NN+ CyNioi) < 4o (11.6)
=0
Using (10.1) and (10.2) we obtain
+00 +oo
n+1 n+1 —T1 1 n+20—1
ZNZ (/\Z+O¢NZO'Z) = Z (CN C)\Q + EGOC¢CN 2 ) < 4o00.
=0 =0
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11.3 Proof of Proposition 8.1
Solution of equation (8.3) has the form

Koo
S = Z SK ei(k,x)—i—ikocp’ SK Z\/_V ( I) (117)
|K|< N, k#£0 (vm (9 I) K>
where v, (4, I) is determined by (7.6).
The first inequality (7.7) means that
|vaei(k,m>+z’ko<p’am’bm_a < ZSme—ﬂkl\+\k2|+.‘.+|k0\)57 0<6<hb,,

Then
Sl <3 Y B emena oo

J=0 N; _1<|K|<Nj, k0

11.4 Proof of Proposition 8.2

In this section for brevity we write V, h instead of V,,, h,, and a,b,0,d, N, L, s, § instead
Of am; bm? 0—m7 5mijm7 Lm? Sm? §’m~
The function V,,, = v,, + 4,, can be presented in the form

Viu(§.1,&,4) = Ri+ Ry + Ry + Ry + Rs, (11.8)
R = 2 (M) - AG) - ), \/ES’>)

Ry = h(y.I)—h(g, 1) — (K (9.1),veS,) — Ry(9.1) S,
Ry = V(y,Iz,0) V(i1 w)

Ry = V(j,1,x 20) = (V)a(§:1,0) = NV (5,1, , ),
Rs = (V)u(@.1,0) = (V)a(9, 1, 9).

By Proposition (8.1) the first term in (11.8) satisfies the estimate

1 , Ls
Rlacososs < 51N Lo 1S4 ppas < 2 (22)

To estimate the second one we use (7.8),(7.9):

1
Balacoszs < 5 (100 la1S2Rmas + 201/ERL L 1SS hamo25 + [rla 1SR g5
Ls\2 Ls\2 L Ls\2
< n(F) +20d (F) + 4 (5) = o) (3)

The third term is estimated by (7.7):

’R3‘a—a,b—25 S \/gn“/;y/’a—a,b—&“g;‘a—a,b—Q&+“/[/‘a—a,b—5|s:p|a—a,b—26
Ls?
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By (8.2)

C 1\n
|Rila—op—25 < E<N+ 5) e N g,
Finally
Ls?
‘R5’a o,b—26 > < |V/’a o,b— 5’S,‘a o,b—0 > < —
od
Note, that 3ncy < %. Therefore
|ﬁ'm + ﬁm|a—a,b—25 S ga
where L2 e O )
~ S S n
§= (cA+c§1)(7> + (n +2)E+ 5 <N+5> e Ns.

11.5 Proof of Proposition 9.1
By (6.2), (6.3), (7.7), (7.8), and (8.8), for any m > 1 we have:

|h0‘a0 < Cn, |h61‘;01 < C;w |'U0’ao,bo < \/EC’ |hM‘am < 20}1’ |h’ml‘a1 < QChv (11'9)

|Um|am_0'm7bm_25m S Sm, |/Ijm + am|am_0'm,bm_26m S Sm' (]‘110)

Applying Lemma 12.2 to equation (9.1), we obtain:

|§({0|am_40m7bm_25m S 8C?l|vm|am_0'm7bm_25m’ |§|am—40'm,bm—2(5m S 167TC?1|/Um|am —Om,bm—20m > (1111)
SZ; = 07 ‘hm - hm+1’am74am,bm725 < 8ChCI | m|am —ombm=20m : (1112)
Om

Then estimates (9.5) follow from (11.9), (11.10), and (11.12).
We have:

Vi1 (T I, @) + i1 (5, 1, 2, ) = 0 (5, I + Sy, @ — S5) + it (3, T + Sy, T — S}, 6 — S5).

Since by (11.11)

IN

/ /
|S¢‘am+1,bm+1+26m SChSm S O',rn7

S: 167c, s
|\/gsqu|am+1,bm+1+5m < \/EJSCSTM

Om
167c),Sm,

E < Om,

|am+17 m+1+6

Om

we have:

‘Um—i-l + um+1‘am+1,bm+1 S Sm S Sm+41-
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11.6 Proof of Proposition 10.1
By equations (8.4) and (10.2) we have

m n+1 n+l ™M n+1
L, < 2N; 2cy 22(4n+5)j < N o(4n+5)(m+2)
- =0 >‘j C) =0 C

11.7 Proof of Proposition 11.1
A point (y,I) € Qg my1 if
(V1 (v, 1), K| < N (1 +27"72) Ve,
It is sufficient to show that (y,I) € Qx m, i.e.
[(vm (5, 1), K| < Arep(1+27"7)Ve
We have the inequality

[V, 1), K) = (Vi (y, 1), K)| < (n + D)W |K],
W= ‘Vm(y7l) - Vm+1(y7 ])’

By (9.5)

16¢,,¢, s
W S €|h,T)’L+1y - h:ny|llm+hbm+1 + \/g|h,m+ll - h;n[|am+1,bm+1 S \/g%

m

Therefore for any |K| < N, we have the estimate

! o!
16¢ncy,8,, N
——  Vm

Um

(n+1HW|K| < (n+1)

where s; = /ec and s/, = s,, for all m > 1.
It remains to check the estimate

16¢pc), s e

m

(n+1)
Let ¢y > cx(cs, cn). For m = 0 we have

16 ! o!
(n + 1)%]\70 S )\02_2.
0

and for m > 1

36¢hC, soCn e _om _
(n+ 1) 72 24n—|—142(4'rz—|—12)7ne csm—2 < )2 (2n+2+7’)m.
a
0
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11.8 Proof of Proposition 11.2

Suppose that the arguments of functions A, h lie in U,, (D,,). Let us expand the Jacobian
Jm with respect to the last column

A// + €h” \/—h” )
det J,(y,I) = det| ¥ mly ) =
(y ) < \/_hm yl h‘lrln 11

= det<A” +gh;/nyy)h” H+Z D)™y, 1M

Here M, 41 is the (i,n + 1) minor matrix of J,,(y, I). Using (6.3), (6.4), (7.8) and (7.9)
we obtain

[det Ty, D) < (1N + 2R, 1) 11l + mntVERG, 1 P (1A, + 10, 1) < T,

where C'; is some constant depending on ¢, ¢}, ¢ and n.
Return to estimate for the Jacobian. For sufficiently small ¢}/

c c
iz I/ EA A
¢, < ¢ = min ( —

< /!
2”+1nnlcxl’2)’ |€hmyy| 2¢h

we have

muyy myy

n—1 1
)det <A” + Eh’/nyy> > |[det A} | — nn!|eh; \<|A;'y| + |ehl |) > FEns

Note, that |h! ;| > 2, and for

. c
”<CZ2—IH111< ) An PV %1)
2ntinnlcey ™ ¢,
we have
n
c
n+1+z LA
| DUV M| <
i=1 h
Finally

CA —1
|det J(y, D)a,, > o =C -
8¢, J

12 Further technical statements

12.1 Lemma on a cut off
Lemma 12.1 For any real-analytic function f on Uy(T™) and any 6 € (0,b)

C n
= e =Tl < S (N4 5) e ),

where the constant C' depends only on n.
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Proof. The Fourier coefficients (8.1) satisfy the inequalities
|FE| < e P 1

Then the equation
FoifaTyf= Y gt

|K|>N, k#£0
implies

lf = (e — Unflo—s < |flo Z e OIKl

|K|>N, k0

The sum in the right-hand side does not exceed

oo
—d|z| C2 n,_ —s e3 n_ —oN
cl/ e der < —— s"e fds < (L+0N)"e
2€RMH |z|>N ot Jon gntt 7

where ¢y, ¢9, c3 depend only on n.

12.2 Lemma on the action-angle variables

Lemma 12.2 Let h and v be real-analytic functions, defined in complex neighborhoods of

[—a, a] and [—a, a] x T respectively. Let the canonical change (I, ¢ mod 27) — (I, » mod
2m), determined by the generating function Lo + S(1,¢), (S), =0, be such that

WD) + o7, ) = ha(D), (12.1)
hla<e, WP lap <55 0<0<a/2 (12.2)
Then
|S:0|a—3<7,b S 4CI‘U’a,ba |S’a—30,b S 87TC/|U|a,b, |h - h*la—?)a S 2ccl|lv‘_a7b' (123)
g

Proof. Equation that determines I is well-known:

B 1 27
I(r)=— I de. 12.4
=5 [ 0.1 (12.4)
Here I(r, ) is the solution of the equation
h(I) + (I, ) = h(r).

We use 7 as a constant which fixes the energy h(r).
By Lemma 12.3 the function I = I(r, ¢) is as follows:

I=r+f(r,e), |flacep < 2¢)0|ap. (12.5)
Moreover,

I €Uy 95s([—,a]) implies r € U,_s([—a,a]) for any ¢ € [20,a —0o].  (12.6)
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Equations (12.4) and (12.5) imply

I(r,0) = 1(r) = f(r;0) = (f)e(r), (12.7)
r=r(l), I-1=8,I¢). (12.8)

Combining (12.7) and (12.8), we obtain:

S( o) = / ()~ T) dp = / " (Fr0) — (o) de.

Therefore
|S:0‘a73cr,b S 4C/|U|a,b; ‘S|a73o,b S 87TC/|U|a,b~

A

By using the equation h(r) = h,(I), we have:

c
A(I) = ha(Dlamso - < [P+ f(r,0)) = h(1)la-20 < W]a-ofla-20 < = 2¢0]ap-

12.3 A version of the implicit function theorem

Lemma 12.3 Let the real-analytic functions h,v, defined in a complex neighborhood of
the interval T C R, satisfy the estimates

Wit < <Z ¢ 12.
Wla<d, lasgz  0<o<g (12.9)
Then the equation
h(I)+v(l) = h(r), IeU,,(T) (12.10)
implies
I'=r+ f(r), | fla—2e < 2¢ 0|0 < o, (12.11)

where f(r) is the real-analytic function, r € U,_o,(Z).
Proof. Applying the map h™! to (12.10), we get:
I+u(l)=r, u(I) =h"(h(I) +v(I)) — 1.

If |v], < o/, the function u is defined in a complex neighborhood of Z and admits the

estimate
|u|a—0 < |h/|;1|v|a < C/|U|a-

The function I = I(r), defined by (12.11), is a fixed point of the operator
I(r) = ©(I(r),r) =r —u(I(r)).

This operator is contracting with respect to the norm |- |,_2, because by (12.9)

dll, 1
|q)l[|a_2J = |u,I|a—2z7 S ’ ’ S —.
o 2
Therefore I —r = f(r)7 where |f(,,~)|a_2a S 2|u|a_a S 20/|U|a~ -
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