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Abstract

We study families of Lagrangian tori that appear in a neighborhood of a resonance

of a near-integrable Hamiltonian system. Such families disappear in the �integrable�

limit ε → 0. Dynamics on these tori is oscillatory in the direction of the resonance

phases and rotating with respect to the other (non-resonant) phases.

We also show that, if multiplicity of the resonance equals one, generically these

tori occupy a set of a large relative measure in the resonant domains in the sense that

the relative measure of the remaining �chaotic� set is of order
√
ε. Therefore for small

ε > 0 a random initial condition in a
√
ε-neighborhood of a single resonance occurs

inside this set (and therefore generates a quasi-periodic motion) with a probability

much larger than in the �chaotic� set.

We present results of numerical simulations and discuss the form of projection

of such tori to the action space.

At the end of Section 4 we discuss the relationship of our results and a conjecture

that tori (in a near-integrable Hamiltonian systems) occupy all the phase space

except a set of measure ∼ ε.

1 Projection of trajectories to the action space

Consider a symplectic map

(y, x) 7→ (y+, x+), y ∈ R2, x ∈ T2 (1.1)

y+ = y − ε ∂V/∂x, x+ = x+ y+, V = V (x). (1.2)

For ε = 0 the dynamics is integrable and (y, x) are action-angle variables on the phase
space R2 × T2. We choose for de�niteness

V = a1 cos(x1 + ϕ1) + a2 cos(x2 + ϕ2) + a3 cos(x1 − x2 + ϕ3)
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Figure 1: KAM-tori

Figure 2: Chaotic trajectories: near KAM-tori (center,right) and near a low order reso-
nance (left)

with constant a1, a2, a3, ϕ1, ϕ2, ϕ3. We study trajectories numerically having in mind the
idea to observe some interesting images and then �nd theoretic explanations. To visualize
objects (closures of trajectories) lying in the 4-dimensional phase space, we project them
to the action plane R2 = {y}. We �x aj ∼ 1, ϕj, ε ∼ 1/10, take a random initial
condition and look at the result. The symplectic map (1.1)-(1.2) belongs to the family of
maps introduced by Claude Froeschl�e in [6], there is also the numerical simulation.

Typical images are presented on Fig. 1. They can be easily identi�ed with ordinary
KAM-tori. We see typical singularities (folds and pleats) of Lagrangian projections (these
singularities are presented for example, in [3]).

It is also easy to observe chaotic trajectories, Fig. 2. The trajectories presented in
Fig. 2, right and center, are situated near KAM-tori, but chaotic e�ects create a small
�defocusing� in comparison with tori from Fig. 1.

Trying more initial conditions, it is possible to obtain more interesting objects, Fig.
3, which look like closed ribbons. Further attempts lead to more exotic images, Fig. 4,
looking as �nite sequences of spots.

In this paper we discuss a mechanism which generates such structures. In particular
we show that these objects form sets of positive measure in the phase space. Hence
probability to observe them is also positive.

On the end of this section let us give some examples. Fix ϕ1 = ϕ2 = 1, ϕ3 = 2,
a1 = 1, a2 = 1, b = 0, 8, ε = 0, 15 and y1 = 1, y2 = 3. If x1 = 0, 74, x2 = 1, 685 we obtain
the right picture on Fig. 1, if x1 = 0, 74, x2 = 1, 684 we obtain the right picture on Fig.
4, if x1 = 1, 3595, x2 = 1, 7 we obtain the right picture on Fig. 2, �nally if x1 = 0, 74,
x2 = 1, 707 we obtain the right picture on Fig. 3.
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Figure 3: Closed "ribbons"

Figure 4: Another type of quasi-periodic trajectories, �sequences of spots�

2 Lower-dimensional tori near resonances

As usual it is more convenient to write formulas for �ows although numerics are faster,
simpler and more precise for maps. Consider a real-analytic near-integrable Hamiltonian
system

Ẋ = ∂H/∂Y, Ẏ = −∂H/∂X, Y ∈ D ⊂ RN , X ∈ TN . (2.1)

H = H0(Y ) + εH1(Y,X) +O(ε2), ε ≥ 0. (2.2)

Below we use the following notation for such a system:

(P, ωP , H), P = D × TN , ωP = dY ∧ dX,

where the symplectic manifold (P, ωP ) is the phase space.
The map (1.1)�(1.2) can be regarded as the Poincar�e map for some system (2.1)�(2.2)

with N = 3 on an energy level Mh = {H = h = const} (see for example [13]). Hence the
dimension of the phase space 6 = 2N drops by 1 because of the reduction to Mh and by
another 1 because of the passage to a (hyper) surface Σ ⊂ Mh transversal to the �ow.
Below N ≥ 3 is arbitrary.

The vector ν(Y ) = ∂H0/∂Y is called an unperturbed frequency. For a �xed Y = Y 0

we have a �xed frequency ν0 = ν(Y 0). Any equation

〈ν0, K〉 = 0, K ∈ ZN \ {0} (2.3)
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is called a resonance. The word �resonance� is also attributed to the integer vector K,
satisfying (2.3).

Given a constant ν0 ∈ RN all the corresponding resonances K (together with 0 ∈ ZN)
form a resonance Z-module

g(ν0) = {K ∈ ZN : K is a resonance} ∪ {0}.

If g(ν0) = 0, the frequency vector ν0 is said to be nonresonant. We de�ne

l = l(ν0) = rank(g(ν0)), m = m(ν0) = N − l,

where rank(g(ν0)) is the number of generators in g(ν0). Informally speaking, l is the
number of independent resonances for the frequency vector ν0. Invariant torus is called
resonant (nonresonant) if the dynamics on the torus is quasi-periodic with a resonant
(nonresonant) frequency vector. Any torus

TNY 0 = {(Y,X) : Y = Y 0}

is invariant with respect to the unperturbed �ow

(Y,X) 7→ (Y,X + ν(Y )t), t ∈ R.

Then TNY 0 is foliated by the m-tori

TmY 0,X0 = closure
({

(Y,X) : Y = Y 0, X = X0 + ν0t, t ∈ R
})
.

Computing frequency vector corresponding to the unperturbed quasi-periodic motion on
TmY 0,X0 , it is easy to show that the tori TmY 0,X0 are non-resonant.

Note that in the non-resonant case (l = 0) we have TmY 0,X0 = TmY 0 for any X0 ∈ TN . If
l > 0 then m 6= N and the foliation is non-trivial.

If l > 0 then a generic perturbation destroys TmY 0 , [11]. However generically some tori
TmY 0,X0 survive a perturbation even if ν0 is resonant. To present the corresponding result,
we �x a Z-module g ⊂ Zn. Consider the resonance set

Σg = {Y ∈ D : g(ν(Y )) = g}.

Under natural non-degeneracy conditions1 Σg is a real-analytic submanifold, dim Σg = m.
It is convenient to study system (2.1)�(2.2) in a

√
ε-neighborhood of the torus TNY 0 ,

Y 0 ∈ Σg by using the scaling

Y = Y 0 +
√
εỸ , X = X̃, H(Y,X, ε) = H0(Y 0) +

√
εH̃(Ỹ , X̃,

√
ε).

Then the system (P, ωP , H) turns to the system (P̃ , ωP̃ , H̃),

H̃ = 〈ν0, Ỹ 〉+ 1
2

√
ε〈ΠỸ , Ỹ 〉+

√
εH1(Y 0, X̃) +O(ε),

P̃ = RN × TN , ωP̃ = dỸ ∧ dX̃, Π = H ′′0Y Y (Y 0).

1the functions 〈K(j), ∂/∂Y 〉H0(Y ) are independent in D where K(1), . . . ,K(l) are generators of g
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The tori TmY 0,X0 which survive the perturbation are generated by �xed points of some
Hamiltonian system which is obtained from the initial one by using averaging, neglecting
some higher order perturbative terms, and by reduction of the order. Now we turn to
description of these steps.

For any function f =
∑

K∈ZN f
Kei〈K,X〉 consider the averaging

〈f〉g =
∑
K∈g

fKei〈K,X〉. (2.4)

Hence, 〈·〉g is a projector, removing all nonresonant Fourier harmonics.
Now it is natural to perform the following standard coordinate change:

(Ỹ , X̃) 7→ (Ŷ , X̂), Ỹ = Ŷ +
√
ε S̃X̃ , X̃ = X̂,

where S̃ = S̃(X̃) is a solution of the (co)homologic equation

〈ν0, S̃X̃〉+H1(Y 0, X̃) = v(Y 0, X̃), v(Y,X) = 〈H1(Y,X)〉g. (2.5)

Under standard Diophantine conditions a real-analytic solution of equation (2.5) exists

and unique up to a g-invariant additive term 〈S̃〉g. For example, S̃ can be chosen so that

〈S̃〉g = 0.

In the new coordinates we have the system (P̂ , ωP̂ , Ĥ),

P̂ = RN × TN , ωP̂ = dŶ ∧ dX̂, Ĥ = Hg +O(ε),

Hg = 〈ν0, Ŷ 〉+

√
ε

2
〈ΠŶ , Ŷ 〉+

√
ε v(Y 0, X̂).

Consider the approximate system (P̂ , ωP̂ , H
g), which is usually called the partially

averaged system. Any critical point X0 of the �potential� v(Y 0, X) generates an invariant
torus TmY 0,X0 . To study linearization of the averaged system on TmY 0,X0 it is convenient to
consider the reduced system. First we recall general invariant construction (see [2]) and
then give a more explicit coordinate form.

The system (P̂ , ωP̂ , H
g) admits the symmetry group G ∼= Tm. The Lie algebra asso-

ciated with G is naturally identi�ed with

g⊥ = {Q ∈ RN : 〈Q,K〉 = 0 for any K ∈ g}.

Note that ν0 ∈ g⊥ and rank g⊥ = m.
Action of G on P̂ is Poissonian and the corresponding momentum mapMG : P̂ → g∗⊥

is as follows:
MG(Ŷ , X̂)Q = 〈Q, Ŷ 〉 for any Q ∈ g⊥.

Reduction with respect to G means

(a) �xing values of the �rst integrals 〈Q, Ŷ 〉 = 〈Q, γ〉 for any Q ∈ g⊥, where γ =
const ∈ RN ,

(b) passage to the quotient phase space

P = P̂γ/G, P̂γ =
{

(Ŷ , X̂) ∈ P̂ : 〈Q, Ŷ 〉 = 〈Q, γ〉 for all Q ∈ g⊥
}
.
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The reduced phase space has a canonical symplectic structure ωγ [2] while the Hamil-
tonian Hg : P → R is determined by the commutative diagram

P̂γ
pr−→ P

Hg |P̂γ
↘ ↙ Hg

R

where pr is the natural projection. The torus TmY 0,X0 turns to a �xed point p in the reduced
system (P , ωγ,Hg). Flow of the system (P, ωP , H

g) near TmY 0,X0 is essentially determined
by linear approximation of (P , ωγ,Hg) at p. To obtain this approximation, we turn to the
coordinate form of the above order reduction.

Let Θ be an N × l matrix formed by the integer vectors K(1), . . . , K(l), generators
of g. This matrix is not unique: for any M ∈ SL(l,Z) (an integer l × l matrix with
unit determinant) one may take ΘM instead of Θ. We assume that the quadratic form
determined by Π is non-degenerate on gR, where gR ⊂ RN is the natural extension of
g(ν0) to a linear subspace. Equivalently ΘTΠΘ is a non-degenerate l × l-matrix.

Then we can take as local coordinates on P the variables η ∈ Rl, ξ ∈ Tl such that

Ŷ = Θ(η − η0) + γ, ξ = ΘTX, η0 = (ΘTΠΘ)−1ΘTΠγ.

Here the constant η0 is chosen for convenience to remove from Hg a term linear in η.
The form ωγ, the �xed point p, and the function Hg are as follows:

ωγ = dη ∧ dξ, η(p) = 0, ξ(p) = ΘTX0, Hg =

√
ε

2
〈ΘTΠΘη, η〉+

√
ε vP,Y 0(ξ) + hγ.

Here vP,Y 0 : Tl → R is the unique function, satisfying the identity2

vP,Y 0(ΘTX) = v(Y 0, X).

The constant hγ = 1
2
〈Π(γ −Θη0), (γ −Θη0)〉 can be ignored.

Theorem 1 ([8]). Suppose that det Π 6= 0 in D. Then for any su�ciently small ε > 0
there exists a set Λε ⊂ Σg such that for each Y 0 ∈ Λε and for each nondegenerate critical
point ξ0 of vP,Y 0 the perturbed system admits a real-analytic invariant m-torus TmY 0,ξ0(ε).

This torus is close to TmY 0,X0, where X0 is any point satisfying the equation ξ0 = ΘTX0.
Moreover, TmY 0,ξ0(ε) carries a quasi-periodic motion with the same frequency vector.

The perturbed invariant m-tori constitute a �nite number of m-parameter Whitney
smooth families. The relative Lebesgue measure of Λε on the surface

{Y ∈ Σg : vP,Y 0 has nondegenerate critical points}

tends to 1 as ε→ 0.
2Explicit formula for vP is as follows. Let the Fourier expansion for v be

v(Y,X) =
∑
K∈g

vK(Y )ei〈K,X〉 =
∑
j∈Zl

vΘj(Y )ei〈Θj,X〉.

Then vP,Y (ξ) =
∑
j∈Zl vΘj(Y )ei〈j,ξ〉.
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Hamiltonian of the linear approximation for (P , ωγ,Hg) at the �xed point p is

Hg
lin =

√
ε

2
〈ΘTΠΘη, η〉+

√
ε

2
〈V ζ, ζ〉, V =

∂2vP,Y 0

∂ξ2
(0), ζ = ξ − ξ0.

Therefore eigenvalues ±λ1, . . . ,±λl of the �xed point η = ζ = 0 in the system (P , ωγ,Hg
lin)

satisfy the equation
det(εΘTΠΘV + λ2) = 0.

If all λj are purely imaginary, p and the corresponding torus TmY 0,ξ0(ε) are said to be
normally elliptic. The �opposite� case is normally hyperbolic, where no λj is purely
imaginary. In general situation the torus TmY 0,ξ0(ε) has an associated centre manifold.

For m = 1 Theorem 1 was proven by Poincar�e [11]. In this case no small divisors
appear and the proof is based on the ordinary implicit function theorem. The equation
m = N corresponds to the (ordinary) KAM-theorem for Lagrangian tori.

Hyperbolic case with arbitrary m is presented in [18]. In [4] the case of arbitrary m
and arbitrary normal behavior of the perturbed tori is treated. In [8] it is shown that
an additional condition (the so called g-nondegeneracy of H0), introduced in [4], can be
skipped. A statement analogous to Theorem 1 should be true in in�nite dimension but
as far as we know this has not been proven yet.

Since for non-trivial g all the tori TmY 0,ξ0(ε) are lower-dimensional (m < N), their total

measure in the phase space D×TN vanishes. In other words they are practically invisible
in numerical experiments. This does not mean that they are inessential for dynamics. For
example, hyperbolic lower-dimensional tori and their asymptotic manifolds are known as
elementary links which form transition chains, forming a basis for the Arnold di�usion.

3 Visible objects

In this paper we are interested in visible objects. More precisely, in invariant tori of
dimension N . Geometry of their projections to the action space depends on the order of
a resonance at which these tori appear.

No resonance. For example, such objects are ordinary (N -dimensional) KAM-tori.
If ε > 0 is small, KAM tori form a large Cantorian set: the measure of the complement
C(ε) to this set in D×TN does not exceed a quantity of order

√
ε, [2, 7, 10, 12, 17], in the

case N = 2 the measure of C(ε) is exponentially small in ε [10]. The measure estimates
of C(ε) for degenerate systems are contained in [1, 9, 19, 14, 15].

In the �rst
√
ε approximation the projection of a KAM-torus to the action space D

has the form Ŷ = 0 under the condition l = rank g = 0. In the original coordinates we
have: {

Y ∈ D : Y = Y 0 +
√
εS̃X̃(X̃), X̃ ∈ TN

}
,

where S̃ satis�es (2.5).
The discrete system (1.1)�(1.2) can be obtained from a Hamiltonian system (2.1)�(2.2)

with N = 3 degrees of freedom on an energy level H = const by passing to the Poincar�e
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map on the section {X3 = 0}. Hence, the �rst in
√
ε approximation the objects presented

in Fig. 1 are sets of the form{
(Y1, Y2) : Yj = Y 0

j +
√
εS̃X̃j(X̃1, X̃2, 0), j = 1, 2, (X̃1, X̃2) ∈ T2

}
. (3.1)

For a random initial condition the probability to occur on one of such torus is greater
than 1− C0

√
ε for some C0 > 0.

The �resonance� set C(ε) contains other families of quasi-periodic motions. Here it is
reasonable to distinguish the case of a single resonance (rank g = 1) and the case of a
multiple resonance (rank g > 1).

Single resonance. In this case dimension of the commutative symmetry group G is
N − 1. Therefore the system (P, ωP , H

g) is completely integrable. Informally speaking,
it is a product of N − 1 �rotators� and a �pendulum� (such representation in a small
neighborhood of a single resonance is discussed in [3]), where the pendulum is determined
by the reduced system with one degree of freedom (P , ωγ,Hg). The variables η and ξ are
1-dimensional while vector Θ = (Θ1, . . . ,ΘN)T is integer.

Solutions on which the pendulum motions are rotations are ordinary KAM-tori while
solutions on which the pendulum oscillates, lie in C(ε). When we say that the pendulum
oscillates, we mean that in the system (P , ωγ,Hg) the angular variable ξ changes period-
ically in an interval J ⊂ T1, J 6= T1. In the �rst approximation in

√
ε the corresponding

trajectory of (1.1)�(1.2) �lls the set{
(Y1, Y2) : Yj = Y 0

j +
√
εS̃X̃j(X̃1, X̃2, 0), j = 1, 2, Θ1X̃1 +Θ2X̃2 ∈ J, (X̃1, X̃2) ∈ T2

}
.

This is a �ribbon-like� subset of (3.1). This explains the structure of sets in Fig. 3.
Since the system (P, ωP , H

g) is integrable, the set of phase points in a
√
ε-neighborhood

of the torus TNY 0 lying outside invariant N -tori of the original system (P, ωP , H), has a
small relative measure. Precise statement, Theorem 2, is given in Section 4. Hence if
an initial condition is taken randomly the probability to obtain a quasi-periodic orbit
like Fig. 3 is not less than C1

√
ε, C1 > 0, because the width of a resonance domain

corresponding to a single resonance is ∼
√
ε. Pictures analogous to Fig. 3 can be found

in [16]. Similar tori considered in context of Arnold di�usion in [5].

Multiple resonance. If rank g > 1, the systems (P̂ , ωP̂ , H
g) and (P , ωγ,Hg) are

generically non-integrable. Therefore existence of invariant l-tori in the latter one is not
straightforward provided the energy Hg is not very big or not very small. A standard
source for such tori is a neighborhood of a totally elliptic �xed point. However, a totally
elliptic �xed point may not exist if the �kinetic energy� 1

2

√
ε〈ΘTΠΘη, η〉 is inde�nite: a

simple example is
Hg =

√
ε (η1η2 + cos ξ1 + cos ξ2).

System (1.1)�(1.2) corresponds to a positive de�nite kinetic energy and trajectories
presented in Fig. 4 present nonlinear versions of small oscillations near a totally elliptic
periodic orbit in the corresponding system with 3 degrees of freedom. A random initial
condition lies on one of such tori with probability of order ε, because the measure of a
resonant domain corresponding to a double resonance is of order ε. Unlike the case of a
single resonance only a small portion of this domain is �lled with tori, in general.
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4 Invariant N-tori at a single resonance

Putting N = n+ 1, consider the Hamiltonian system (2.1)�(2.2) in a neighborhood of the
resonance Σg × Tn+1, where g is generated by the vector K0 ∈ Zn+1 \ {0} with relatively
prime components. Hence, we plan to study invariant tori, located in the vicinity of a
single resonance

Σ = Σg = {Y ∈ D : 〈K0, ν(Y )〉 = 0}. (4.1)

We assume that the unperturbed system is non-degenerate and K0 is not a light-like
vector:

detH ′′0Y Y 6= 0, Y ∈ D, (4.2)

A(Y ) ≡
〈
K0, H ′′0Y Y K

0
〉
6= 0. (4.3)

Note that (4.3) means that for any Y satisfying (4.1) the function λ 7→ H0(Y − λK0) has
a non-degenerate critical point λ = 0.

Now our aim is to give a defenition of the oscillatory part of the resonance domain
and to introduce convenient notation for the main KAM theorem.

By (4.3) the resonant set Σ ⊂ D is a smooth hypersurface transversal to the constant
vector �eld K0. The equation

d

dλ
H0(Y − λK0) ≡

〈
K0, ν(Y − λK0)

〉
= 0 (4.4)

has a real-analytic solution λ = λ(Y ) in D near Σ.
We have a smooth map χ : U(Σ)→ Σ, where U(Σ) is a neighborhood of the resonance

Σ and χ(Y ) = Y − λ(Y )K0.
Let 〈·〉K0 ≡ 〈·〉g be the operator of resonant averaging

f =
∑

K∈Zn+1

fK ei〈K,X〉 7→ 〈f〉K0

=
∞∑

j=−∞

f jK
0

eijq, q = 〈K0, X〉.

Consider the Hamiltonian system (P, ωP , HK0),

HK0(Y,X) = H0(Y ) + εu(Y, q), u(Y, q) =
〈
H1

(
χ(Y ), X

)〉K0

. (4.5)

The function u is 2π-periodic in the resonant phase q and

u(Y + λK0, q) = u(Y, q) for any λ in a neighborhood of 0 ∈ R.

In fact, below the quantity λ(Y )K0 = Y − χ(Y ) (some sort of distance to the resonant
surface) will be of order

√
ε.

Since H0(Y ) = H0(χ(Y )) + 1
2
A(χ(Y ))λ2(Y ) + O(λ3(Y )), Hamiltonian (4.5) can be

presented in the form

HK0(Y,X) = H0(χ(Y )) +
1

2
A(χ(Y ))λ2(Y ) + εu(Y, q) +O(λ3(Y )). (4.6)
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For any vector J ∈ Rn+1 such that 〈K0, J〉 = 0 the function 〈Y, J〉 is a �rst inte-
gral. Therefore the system (P, ωP , HK0) is completely integrable. It is responsible for the
dynamics of the original system near the resonance (4.1). Below we only deal with the
oscillatory part Dos of the resonance domain, where Dos ⊂ D×Tn+1 is de�ned as follows.
Let qmin(Y ) and qmax(Y ) be points of global minimum and maximum of u(Y, q) for �xed
Y ∈ Σ:

u(Y, qmin(Y )) = min
q∈T

u(Y, q), u(Y, qmax(Y )) = max
q∈T

u(Y, q). (4.7)

Then we de�ne

Dos =
{

(Y,X) ∈ D × Tn+1 :

εu(Y, qmin(Y )) <
1

2
A(χ(Y ))λ2(Y ) + εu(Y, q) < εu(Y, qmax(Y ))

}
. (4.8)

If u(Y, q) is not a constant as a function of q, the domain Dos belongs to an O(
√
ε)-

neighborhood of the resonance Σ × Tn+1. On almost any orbit of this �ow located in
Dos the resonant phase q oscillates between two quantities q1 and q2, depending on initial
conditions and such that

|q2 − q1| < 2π, q̇|q=q1 = q̇|q=q2 = 0.

These orbits lie on (n + 1)-dimensional Lagrangian tori. Below we prove that for small
values of ε all these tori except a set of a small measure survive the perturbation.

To formulate the result, for any Y in a neighborhood of Σ consider the Hamiltonian
system

q̇ =
√
ε ĥ′p(χ(Y ), p, q), ṗ = −

√
ε ĥ′q(χ(Y ), p, q). (4.9)

with one degree of freedom, the Hamiltonian

ĥ(χ(Y ), p, q) =
1

2
A
(
χ(Y )

)
p2 + u(Y, q)

and the symplectic structure 1√
ε
dp ∧ dq. The point Y is regarded as a parameter. Recall

that by (4.3) A 6= 0. This system coincides with (P , ωγ,Hg) from Section 3 written in
slightly other terms.

Proposition 4.1 The point χ(Y ) is a constant of motion in the system (P, ωP , HK0).
The variables λ(Y ) =

√
εp and q in the averaged system satisfy equations (4.9) up to

O(ε+ λ2).

Indeed, the �rst statement of Proposition 4.1 follows from the relation Ẏ ‖ K0.
Applying the operator 〈K0, ∂/∂Y 〉 to (4.4) we get: 〈K0, λY (Y )〉 = 1 +O(λ). Then by

(4.6) in system (P, ωP , HK0)

λ̇ = λ′Y Ẏ = −εu′q(Y, q) +O(ελ) = −εĥ′q +O(ελ),

q̇ = 〈K0, H ′K0 Y 〉 = A(χ(Y ))λ+O(λ2) +O(ε) =
√
ε ĥ′p +O(ε+ λ2).
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Figure 5: Phase portrait of system (4.9). Section of the oscillatory domain D0 by {χ(Y ) =
const} is marked grey.

The projection π : U(Σ× Tn+1)→ Σ× R× T,

π(Y,X) = (χ(Y ), p, q), p = ε−1/2λ(Y ), q = 〈K0, X〉

maps the domain Dos to D̂os = π(Dos), see Fig. 5.
Let the closed curve γ(Y, p, q) be the connected component of the set{

(p̃, q̃) : ĥ(χ(Y ), p̃, q̃) = ĥ(χ(Y ), p, q)
}

containing the point (p, q). We de�ne the action variable I and the Hamiltonian function
h:

I = I(Y, p, q) =
1

2π

∫
γ(Y,p,q)

p̃ dq̃, h(χ(Y ), I) = ĥ(χ(Y ), p, q). (4.10)

Note that if the energy levels h(χ(Y ), p, q) = const are not connected (i.e., consist of
several curves γ), the function h is not single-valued.

If γ = γ(Y, p, q) is a closed smooth curve, the torus

Tn+1
Y 0,γ(ε) =

{
(Y,X) : χ(Y ) = Y 0, (ε−1/2λ(Y ), q) ∈ γ

}
(4.11)

is invariant for the system (P, ωP , HK0) up to terms of order O(ε + λ2). For small ε > 0
majority of tori (4.11) survive the perturbation and exist in the original system. Any
surviving torus has to satisfy several additional conditions.

(1) The frequency vector νY 0,γ associated with Tn+1
Y 0,γ is Diophantine, i.e. for some

τ > 0 and Cτ > 0

|〈K, νY 0,γ〉| >
Cτ

|K|n+1+τ
, K ∈ Zn+1 \ {0}. (4.12)

This is a standard assumption which holds on almost all tori.

(2) The system (P, ωP , HK0) is nondegenerate on Tn+1
Y 0,γ.

This condition essentially means that

|h′I | < c, |h′′II | < c, |h′I |−1 < c, |h′II |−1 < c. (4.13)
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Therefore we have to replace Dos by a smaller domain D0 by throwing out a small neigh-
borhood of asymptotic manifolds (where the tori degenerate) and a small neighborhood
of tori on which the twist conditions (4.13) is violated. Let µ be the measure in the phase
space D × Tn+1 generated by the symplectic structure ωP . Then the measures µ(D) and
µ(D0) are both of order O(

√
ε).

Theorem 2 Suppose that the system (P, ωP , H) is real-analytic. If ε0 > 0 is su�ciently
small, then for all positive ε ≤ ε0 any Diophantine torus Tn+1

Y 0,γ(ε) ⊂ D0 survives the
perturbation. For some constant C > 0 independent of ε, measure of union of such tori
in D0 is not less than µ(D0)− Cε.

The measure of invariant tori in a near-integrable Hamiltonian system. It is
well known that measure of the complement to the KAM tori does not exceed a quantity
of order

√
ε ([2, 7, 10, 12, 17]). In order to prove this one has to construct some KAM

procedure and at each step of the procedure remove from the phase space a small resonant
strip (the measure of this strip is ∼

√
ε). The total measure of all strips is of order

√
ε.

In Theorem 2 we consider a resonant strip of width ∼
√
ε. We remove from this

strip the set where the system degenerates and prove that the remaining part of the
strip has a lot of tori (the relative measure of "chaotic" set is of order

√
ε). It would

be interesting to modify the proof, considering weaker non-degeneracy conditions (4.13)
to improve estimates of the measure of the complement to the tori of a near-integrable
Hamiltonian systems. Here it is natural to remind a conjecture (see [2]) that tori occupy
all the phase space except a set of measure ∼ ε.

5 Preliminaries

Beginning from this place till the end of the paper we prove Theorem 2.

• All vectors by default are regarded as columns. For any u ∈ Rm and any m ×m-
matrix A we use the notation

|u| = max
1≤j≤m

|uj|, |A| = max
06=u∈Rm

|Au|
|u|

.

The brackets 〈 , 〉 denote the standard Euclidean scalar product: 〈u, v〉 =
∑m

j=1 ujvj.

• µ denotes the standard Lebesgue measure on Rm.

• Prime denotes a partial derivative e.g., f ′yk = ∂f/∂yk. If y ∈ Rm, and f : Rm → R
then f ′y is regarded as a vector and f ′′yy as a matrix.

• For any function f : Tm → R we de�ne its average

〈f〉 =
1

(2π)m

∫
Tm
f(x) dx. (5.1)

The same notation is used if f depends on other variables. In this case to avoid
misunderstanding we use for (5.1) the notation 〈 〉x.
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• Below c1, c2, . . . denote positive constants. If cj depends on another constant, say,
α, we write cj(α). Dependence on the dimension n is not indicated.

To present the system (P, ωP , H
g) in a form convenient for application of KAM pro-

cedure, we have to perform several preliminary coordinate changes.
(a). Consider a matrix M ∈ GL(n+ 1,Z) such that K0 is its last column. In the new

coordinates
Ŷ = M−1Y, X̂ = MTX

resonance (4.1) takes the form

ν̂n+1(Ŷ ) ≡ Ĥ ′
0 Ŷn+1

(Ŷ ) = 0, Ĥ0(Ŷ ) = H0(Y ). (5.2)

To have more convenient coordinates in a neighborhood of this resonance, we solve
the �rst equation (5.2) with respect to Ŷn+1. This can be done locally because by (4.3)

Ĥ ′′
0 Ŷn+1Ŷn+1

6= 0. We denote the result

Ŷn+1 = G(Ŷ1, . . . , Ŷn), ν̂n+1

(
Ŷ1, . . . , Ŷn, G(Ŷ1, . . . , Ŷn)

)
≡ 0.

(b). Consider the change of the variables

y = (y1, . . . , yn) = (Ŷ1, . . . , Ŷn), p = ε−1/2(Ŷn+1 −G(y)),

x = (x1, . . . , xn) =
(
X̂1 +G′y1

q, . . . , X̂n +G′ynq
)
, q = X̂n+1.

We are interested in motions which are oscillatory in the coordinate q. Therefore it is
not necessary to assume periodicity of this change with respect to q. Below q lies in an
interval while the variables x are still angular: x ∈ Tn.

The resonance Σ in the new coordinates locally takes the form {p = 0} while y are
local coordinates on Σ.

Then symplectic structure and the Hamiltonian take the form

ω = dy ∧ dx+
√
ε dp ∧ dq,

Λ(y) + ε
(

1
2
A(y)p2 + u(y, q)

)
+ εU1(y, x, q) + ε3/2U2(y, p, x, q,

√
ε), (5.3)

where
Λ(y) = Ĥ0(y,G(y)), A(y) = Ĥ ′′

0 Ŷn+1Ŷn+1
(y,G(y)),

u, U1, U2 are real-analytic, and average of U1 with respect to x vanishes: 〈U1〉x = 0.
By (4.3),(4.5)

A(y) = A
(
χ(Y )

)
, u(y, q) = u(χ(Y ), q). (5.4)

Neglecting the terms εU1+ε3/2U2, we obtain an integrable system which can be regarded as
a skew-product of an n-dimensional rotator in variables y, x and a (generalized) pendulum
in variables p, q.

We put (see (4.7))

q̂min(y) = qmin(χ(Y )), q̂max(y) = qmax(χ(Y )).
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Then the domain Dos (see (4.8)) takes the form

Dos =
{

(y, p, x, q) : u(y, q̂min) <
1

2
A(y)p2 + u(y, q) < u(y, q̂max)

}
. (5.5)

(c). Let W (y, I, q) be a generating function which introduces action-angle variables
I, ϕ in domain (5.5) for the system with one degree of freedom, the symplectic structure
dp ∧ dq and the Hamiltonian 1

2
A(y)p2 + u(y, q), variables y are parameters y:

p = W ′
q, ϕ = W ′

I , h(y, I) =
1

2
A(y)p2 + u(y, q).

Then the canonical change with the generating function ŷx+
√
εW (ŷ, I, q)

y = ŷ, x̂ = x+
√
εW ′

ŷ, p = W ′
q, ϕ = W ′

I

transforms the symplectic structure to dŷ ∧ dx̂+
√
εdI ∧ dϕ and Hamiltonian (5.3) to

Λ(ŷ) + εh(ŷ, I) + εV̂ (ŷ, I, x̂, ϕ,
√
ε), 〈V̂ 〉x = O(

√
ε), (5.6)

where the functions h,Λ, V̂ are real-analytic. The function h satis�es the equation

h(y, I) = h(χ(Y ), I), Y ∈ U(Σ),

where h is de�ned in (4.10). Below we skip hats for brevity.

6 Initial KAM Hamiltonian

For any set D ⊂ Rn+1 let Ua(D) ⊂ Cn+1 be the following neighborhood:

Ua(D) = {(y + η, I + ζ) : (y, I) ∈ D, |η| <
√
εa, |ζ| < a}, η ∈ Cn, ζ ∈ C.

For any function f : D → R which admits a real-analytic extension to Ua(D) we put

|f |a = sup
z∈Ua(D)

|f(z)|.

This norm is anisotropic in y and I directions.
Let Ub(Tn+1) be a complex neighborhood of Tn+1

Ub(Tn+1) = {(x+ ξ, ϕ+ κ) : (x, ϕ) ∈ Tn+1, |ξ| < b, |κ| < b}, ξ ∈ Cn, κ ∈ C.

For any function f : Tn+1 → R which admits a real-analytic extension to Ub(Tn+1) we
put

|f |b = sup
z∈Ub(Tn+1)

|f(z)|.

For functions, real analytic on D × Tn+1 we de�ne |f |a,b as the corresponding double
supremums over

Ua,b(D × Tn+1) = Ua(D)× Ub(Tn+1).
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Consider the Hamiltonian system with the symplectic structure

dy ∧ dx+
√
ε dI ∧ dϕ (6.1)

and the real-analytic Hamiltonian (see (5.6))

H0 = Λ(y)+εh0(y, I)+εv0(y, I, ϕ,
√
ε)+εu0(y, I, x, ϕ,

√
ε), v0(y, I, ϕ, 0) = 0, 〈u0〉x = 0,

where v0 = 〈V 〉x, u0 = V −〈V 〉x and the points (y, I, x, ϕ) lie in a complex neighborhood

Ua0,b0(D0 × Tn+1), D0 ⊂ Rn+1

for some a0, b0 > 0.
The above analyticity assumptions mean that there exist ε0, s̄0, s0 > 0 such that for

any 0 ≤ ε < ε0

|Λ|a0 ≤ s̄0, |h0|a0 ≤ ch, |u0|a0,b0 ≤ s0, |v0|a0,b0 ≤
√
εc. (6.2)

Assumptions of Theorem 2 imply the following non-degeneracy conditions:

cΛ ≤ | det Λ′′yy| ≤ cΛ, |Λ′′yy|a0 ≤ cΛ, |Λ′′ −1
yy |a0 ≤ cΛ, |h′0 I |a0 ≤ c′h, |h′0 I |−1

a0
≤ c′h, (6.3)

|h′′0 II |a0 ≤ c′h, |h′′0 II |−1
a0
≤ c′h, |

√
εh′′0 Iy|a0 ≤ c′′h, |εh′′0 yy|a0 ≤ c′′h. (6.4)

Let ε be su�ciently small, then we can assume that c′′h is small because c′′h ∼
√
ε. Below

we assume that c′′h ≤ c′′h 0(cΛ, cΛ, c
′
h).

7 The Hamiltonian Hm

Below all functions depend smoothly on ε. For brevity we do not write ε in their argu-
ments.

As usual KAM procedure includes a converging sequence F0,F1, . . . of coordinate
changes and a converging sequence of Hamiltonians H0, H1, . . .

Fm : Uam+1,bm+1(Dm+1 × Tn+1)→ Uam,bm(Dm × Tn+1), Hm+1 = Hm ◦ Fm.

Consider an increasing sequence {Nj ∈ Z} (Nj is the maximal order of a resonance
essential on the j-th step), a decreasing sequence {λj > 0} (

√
ε λj determines the width

of resonance strips on the j-th step, N−1 = 0) and the function j : N→ N de�ned by the
inequality

Nj(r)−1 < r ≤ Nj(r) for all r > 0. (7.1)

Then j(r) is the number of the �rst step on which the resonance of order r is essential.
Consider two positive decreasing sequences am, bm,

am = am+1 + 6σm, bm = bm+1 + 3δm (7.2)

Suppose that on the m-th step we have the Hamiltonian

Hm = Λ(y) + εhm(y, I) + εvm(y, I, ϕ) + εum(y, I, x, ϕ), 〈um〉x = 0. (7.3)

15



The function Hm is de�ned in a complex neighborhood Uam,bm(Dm × Tn+1)

Dm+1 = Dm \
⋃

|K|≤Nm, k 6=0

Uam(QK,m), K =
( k
k0

)
∈ Zn+1, k ∈ Zn, (7.4)

where the resonant strips QK,m are de�ned with the help of the sequences Nj and λj:

QK,m =
{

(y, I) ∈ Uam(Dm) :
∣∣〈νm(y, I), K〉

∣∣ ≤ λj(|K|)(1 + 2−m−1)
√
ε
}
, (7.5)

νm(y, I) =
( Λ′y(y) + εh′my(y, I)√

ε h′mI(y, I)

)
. (7.6)

Remark 7.1 Further we show that for any K ∈ Zn+1, |K| ≤ Nm−1

QK,m = �.

Equation (7.4) which de�nes the domains Dm can be represented as

Dm+1 = Dm \ ∪Nm−1<|K|≤NmUam(QK,m).

Proposition 7.1 For any m = 1, 2, . . .

µ(D0 \Dm) ≤ cµ
√
ε,

where cµ > 0 is independent of ε.

Inductive assumptions. For (y, I) ∈ Uam(Dm) the following estimates hold:

|vm|am,bm ≤ sm, |um|am,bm ≤ sm, (7.7)

|hm|am ≤ (2− 2−m)ch, |h′mI |−1
am ≤ (2− 2−m)c′h, |h′′mII |−1

am ≤ (2− 2−m)c′h, (7.8)

|h′′mII |am ≤ (2− 2−m)c′h, |
√
εh′′mIy|am ≤ (2− 2−m)c′′h, |εh′′myy|am ≤ (2− 2−m)c′′h. (7.9)

8 The KAM-step

For any natural N and a periodic function

f : Tn+1 → R, f(x, ϕ) =
∑

K=(k,k0)∈Zn+1

fKei〈k,x〉+ik0ϕ

we de�ne the cut o�
ΠNf(x, ϕ) =

∑
|K|≤N, k 6=0

fKei〈k,x〉+ik0ϕ. (8.1)

Then by Lemma 12.1 for any real-analytic f such that |f |b <∞ and for any δ ∈ (0, b)∣∣f − 〈f〉x − ΠNf
∣∣
b−δ ≤

C

δ

(
N +

1

δ

)n
e−Nδ |f |b. (8.2)
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By using Hamiltonian (7.3), we introduce the canonical3 change of variables (y, I, x, ϕ) 7→
(ŷ, Î , x̂, ϕ̂), determined by the generating function ŷx+

√
ε
(
Îϕ+ S(ŷ, Î , x, ϕ)

)
:

y = ŷ +
√
εS ′x, I = Î + S ′ϕ, x̂ = x+

√
εS ′ŷ, ϕ̂ = ϕ+ S ′

Î
,

where the arguments (ŷ, Î) are supposed to lie in Uam−σm(Dm+1).

Remark 8.1 | · |am−σ,bm−δ (resp. | · |am−σ) denotes the norm in Uam−σ,bm−δ(Dm+1×Tn+1)
(resp. Uam−σ(Dm+1)).

By de�nition the function S is a solution of the homologic equation〈
νm(ŷ, Î),

(S ′x
S ′ϕ

)
(ŷ, Î , x, ϕ)

〉
= −
√
εΠNmVm(ŷ, Î , x, ϕ), Vm = vm + um. (8.3)

Proposition 8.1 For any m = 0, 1, . . . there exists a solution of (8.3) where

|S|am,bm−δm ≤ Lmsm, Lm =
m∑
j=0

2
Nn+1
j

λj
e−(n+1)δmNj−1 . (8.4)

The Hamiltonian (7.3) takes the form

H̃m = Λ(ŷ)+εhm(ŷ, Î)+εvm(ŷ, Î , ϕ̂)+εṽm(ŷ, Î , ϕ̂)+εũm(ŷ, Î , x̂, ϕ̂), 〈ũm〉x = 0. (8.5)

Remark 8.2 Below we show that that

|S ′x|am−σm,bm−2δm ≤ σm, |S ′ϕ|am−σm,bm−2δm ≤ σm, (8.6)

|
√
εS ′y|am−σm,bm−2δm ≤ δm, |S ′I |am−σm,bm−2δm ≤ δm. (8.7)

Estimates (8.6)�(8.7) imply that the coordinate change is well-de�ned for (ŷ, Î , x̂, ϕ̂) ∈
Uam−σm,bm−2δm(Dm+1 × Tn+1).

Proposition 8.2 For m ≥ 1 estimates (8.6)�(8.7) imply the inequalities

|ṽm + ũm|am−σm,bm−2δm ≤ s̃m, (8.8)

s̃m = (cΛ + c′h)
(Lmsm

δm

)2

+ (n+ 2)
Lms

2
m

σmδm
+
C

δm

(
Nm +

1

δm

)n
e−Nmδm sm. (8.9)

9 An additional step

Consider the symplectic transformation (Î , ϕ̂) 7→ (Ī , ϕ̄) with generating function Īϕ̂ +√
εS̃(ȳ, Ī , ϕ̂) which introduces action-angle variables in the system with one degree of

freedom and Hamiltonian

hm(ŷ, Î) + vm(ŷ, Î , ϕ̂) = hm+1(ȳ, Ī). (9.1)

3i.e., preserving symplectic structure (6.1)
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The variables ŷ = ȳ are regarded as parameters. We extend this map to a canonical
transformation of the whole phase space:

ŷ = ȳ, Î = Ī + S̃ ′ϕ̂, x̄ = x̂+
√
εS̃ ′ȳ, ϕ̄ = ϕ̂+ S̃ ′Ī . (9.2)

Then Hamiltonian (8.5) takes the form

Hm+1 = Λ(ȳ) + εhm+1(ȳ, Ī) + εvm+1(ȳ, Ī , ϕ̄) + εum+1(ȳ, Ī , x̄, ϕ̄), 〈um+1〉x̄ = 0.

Proposition 9.1 Suppose that

|v0|a0 ≤
√
εc ≤ σ0δ0

2c′h
, |vm|am−σm,bm−2δm ≤ sm, sm ≤

σmδm
4c′h

, m ≥ 1. (9.3)

Then for any m ≥ 0

|S̃ ′ϕ̂|am−4σm,bm−2δm ≤ 8c′hs
′
m, |S̃|am−4σm,bm−2δm ≤ 16πc′hs

′
m, (9.4)

|hm+1 − hm|am−4σm,bm−2δm ≤
8chc

′
hs
′
m

σm
, |um+1 + vm+1|am+1,bm+1 ≤ s′m, (9.5)

where s′0 =
√
εc and s′m = sm for all m ≥ 1.

Remark 9.1 Below we show that

|S̃ ′
Ī
|am+1,bm+1 ≤ δm, |

√
εS̃ ′ȳ|am+1,bm+1 ≤ δm, (9.6)

|S̃ ′ϕ̂|am+1,bm+1 ≤ σm. (9.7)

Estimates (9.6),(9.7) imply that the coordinate change (9.2) is well-de�ned for (ȳ, Ī , x̄, ϕ̄) ∈
Uam+1,bm+1(Dm+1 × Tn+1).

10 The sequences σm, δm, sm, Lm, Nm, λm

We de�ne σm and δm by (7.2) and put

σm =
a′0
6

2−(2n+5)(m+1), δm =
b0

3
2−(m+1), a′0 =

a0

22n+5 − 1
(10.1)

sm = s0 e
−csm−2m , Nm = cN 22m, λm = cλ 2−(2n+2+τ)m, (10.2)

where τ ∈ (0, 1). The constants a0, b0, s0 are a priori �xed. We can choose only cN , cs, cλ
and ε. First we �x cs, then we de�ne cN = cN(cs) and cλ = cλ(cN , cs). Below we explain
how to do this.

Proposition 10.1 Suppose that the sequences δm, Nm, and λm are de�ned by (10.1) and
(10.2). Then the sequence Lm, de�ned by (8.4) satis�es the estimate

Lm ≤
cn+1
N

cλ
2(4n+5)(m+2). (10.3)

To show that our choice of the sequences am, bm, σm, δm, sm, Lm, Nm, λm makes the
procedure converging, we have to check that assumptions (7.7)�(7.9), (8.6), (8.7) and
(9.6), (9.7) hold. The remaining part of this section contains this check.
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10.1 Several estimates

By using (10.1)�(10.3) we obtain:

(Lmsm
δm

)2

≤ 9
48n+11c

2(n+1)
N 2(8n+12)ms0

b2
0c

2
λ

s0e
−2csm−2m+1 ≤ cLs2

(8n+12)me−cs(m−1)sm+1,

Lms
2
m

δmσm
≤ 18

210n+16cn+1
N 2(6n+11)ms0

b0a′0cλ
s0e
−2csm−2m+1 ≤ cLs2

(8n+12)me−cs(m−1)sm+1,

where cLs = max
(

9
48n+11c

2(n+1)
N s0

b20c
2
λ

, 18
210n+16cn+1

N s0
b0a′0cλ

)
. For the third term of (8.9) we have

C

δm

(
Nm +

1

δm

)n
e−Nmδm sm ≤ 6C

b0

(
cN +

6

b0

)n
2(2n+1)me−b0cN2m/6s0e

−csm−2m

≤ 6C

b0

(
cN +

6

b0

)n
e(2n+1)m+cs−(b0cN/6−2)2m−2msm+1.

10.2 Inequalities (7.7)

Rewrite (8.9) in terms of sm+1

s̃m ≤ (cΛ + c′h)cLs2
(8n+12)me−cs(m−1)sm+1 + (n+ 2)cLs2

(8n+12)me−cs(m−1)sm+1

+
6C

b0

(
cN +

6

b0

)n
e(2n+1)m+cs−(b0cN/6−2)2m−2msm+1.

If cs > cs0 = 16n+ 24 and cλ > cλ 0(a0, b0, s0, cs, cN , cΛ), then for all m ≥ 0 we have

cLs2
(8n+12)me−cs(m−1) ≤ 1

3
max((cΛ + c′h)

−1, (n+ 2)−1).

For su�cently large cN 0 for all cN > cN 0(b0, cs) we obtain

6C

b0

(
cN +

6

b0

)n
e(2n+1)m+cs−(b0cN/6−2)2m−2m ≤ 1

3
.

This implies s̃m ≤ sm+1. From Proposition 9.1 and the last inequality follow estimates
(7.7).

10.3 Inequalities (7.8),(7.9)

By (9.5) h1 − h0 = O(
√
ε). Hence it is su�cient to check (7.8) and (7.9) only for m ≥ 1.

For large cs > cs 1 = cs 1(c′h, a0, s0):

|hm+1 − hm|am+1+2σm ≤ 8chc
′
hsm

σm
≤ 48ch

22n+5c′hs0

a′0
e−(cs−2n−5)m−2m ≤ ch2

−m−1,

|h′′m+1 II − h′′mII |am+1 ≤
8chc

′
hsm

σ3
m

≤ 1728
26n+15chc

′
hs0

a′20
e−(cs−6n−15)m−2m

≤ c′h2
−m−1.
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Note, that for cs > cs 2 = cs 2(ch, c
′
h, a0, s0) we have

|h′m+1 I |am+1+σm ≥ |h′mI |am+1+σm − |h′m+1 I − h′mI |am+1+σm

≥ 1

(2− 2−m)c′h
− 8chc

′
hsm

σ2
m

≥ 1

(2− 2−m)c′h
− 288

24n+10chc
′
hs0

a′20
e−(cs−4n−10)m−2m

≥ 1

(2− 2−m)c′h
− 2m

(2m+1 − 1)(2m+2 − 1)c′h
=

1

(2− 2−m−1)c′h
.

Consider the �rst inequality (7.9). For cs > cs 3 = cs 3(ch, c
′
h, a0, s0)

|h′′m+1 II |am+1 ≥ |h′′mII |am+1+σm − |h′′m+1 II − h′′mII |am+1

≥ 1

(2− 2−m)c′h
− 8chc

′
hsm

σ3
m

≥ 1

(2− 2−m)c′h
− 1728

26n+15chc
′
hs0

a′20
e−(cs−6n−15)m−2m

≥ 1

(2− 2−m)c′h
− 2m

(2m+1 − 1)(2m+2 − 1)c′h
=

1

(2− 2−m−1)c′h
.

For the last two inequalities (7.9) let cs > cs 4 = cs 4(ch, c
′
h, c
′′
h, a0). Then

|
√
εh′′m+1 Iy −

√
εh′′mIy|am+1 ≤

√
ε

8nchc
′
hsm√

εσ3
m

≤ 1728
26n+15nchc

′
hs0

a′20
e−(cs−6n−15)m−2m ≤ c′′h2

−m−1,

|εh′′m+1 yy − εh′′myy|am+1 ≤ ε
8nchc

′
hsm

εσ3
m

≤ c′′h2
−m−1.

For su�cently large cs > max(cs 1, cs 2, cs 3, cs 4) the exponents e−(cs−2n−5)m−2m , e−(cs−4n−10)m−2m ,
e−(cs−6n−15)m−2m are small and all inequalities (7.8),(7.9) hold.

10.4 Inequalities (8.6),(8.7)

Note, that for cλ > cλ 1(cN , cs, b0, a0, s0):

Lmsm
δm

≤ 3
28n+11cn+1

N 2(4n+6)ms0e
−csm−2m

cλb0

≤ 1

6
a′02−(2n+5)(m+1) = σm,

Lmsm
σm

≤ 6
210n+15cn+1

N 2(6n+10)ms0e
−csm−2m

cλa′0
≤ 1

3
b02−(m+1) = δm.

This implies (8.6) and (8.7).

10.5 Inequalities (9.3), (9.6),(9.7)

The �rst inequality in (9.3) holds for small ε. Note, that for cs > cs 5(s0, c
′
h, a0, b0) we

obtain

sm = s0e
−csm−2m ≤ σmδm

4c′h
=
a′0b0

72c′h
2−(2n+6)(m+1), m ≥ 1.

By Proposition 9.1:

|S̃|am−4σm,bm−2δm ≤ 16πc′hs
′
m, |S̃ ′ϕ̂|am−4σm,bm−2δm ≤ 8c′hs

′
m.
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For m = 0 inequalities (9.3), (9.6), (9.7) hold if ε is su�cently small. Consider m ≥ 1.
For cs > cs 6(s0, c

′
h, a0, b0)

|S̃ ′
Î
|am−5σm,bm−2δm ≤ 16πc′h

sm
σm
≤ 96πc′h

s022n+5

a′0
e−(cs−2n−5)m−2m ≤ b0

3
2−(m+1) = δm,

|
√
εS̃ ′ȳ|am−5σm,bm−2δm ≤

√
ε16πc′h

sm√
εσm

≤ δm,

|S̃ ′ϕ̂|am−4σm,bm−2δm ≤ 8c′hsm ≤ 8c′hs0e
−csm−2m ≤ a′0

6
2−(2n+5)(m+1) = σm.

We choose the constants in the following way. Fix cs > max(cs 1, ...cs 6), cN > cN(cs)
and cλ = cλ(cN , cs) > max(cλ 0, cλ 1), we obtain for m ≥ 0 inequalities (7.7), (8.6), (8.7)
and for m ≥ 1 we obtain (7.8), (7.9), (9.3),(9.6),(9.7). Finally, for su�cently small ε
inequalities (7.8), (7.9), (9.3),(9.6),(9.7) hold for m = 0.

11 Proofs

11.1 Diophantine conditions (4.12)

Using (10.2) we obtain

|〈ν,K〉| >
√
ελj(K) = cλ2

−(2n+2+τ)j(K) >
cλc

n+1+τ
N

Nn+1+τ
j(K)

=
Cτ

|K|n+1+τ
, Cτ = cλc

n+1+τ
N .

11.2 Proof of Proposition 7.1

Proposition 11.1 For any K ∈ Zn+1, |K| ≤ Nm

QK,m+1 = �.

Consider the scaled frequency map

ν̃m : (y, I) 7→
(

Λ′y(y) + εh′my(y, I), h′mI(y, I)
)
.

In comparison with (7.6) we remove the multiplier
√
ε at h′mI . It's Jacobi matrix equals

Jm(y, I) =

(
Λ′′yy + εh′′myy h′′mIy

εh′′myI h′′mII

)
. (11.1)

Proposition 11.2 For some positive constants CJ and CJ

|detJm(y, I)|am ≤ CJ , |detJm(y, I)|−1
am ≤ CJ . (11.2)

Estimates (11.2) imply the following inequality for measure of the domain ν̃m(Dm):

µ
(
ν̃m(Dm)

)
< CJ µ(Dm).
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Consider the vector (ωy,
√
εωI), ωy ∈ Rn, ωI ∈ R and set

Qω
K,m =

{
(ωy, ωI) ∈ ν̃m(Dm) :

∣∣〈ωy, k〉+
√
εωIk0

∣∣ ≤ λj(|K|)(1 + 2−m−1)
√
ε
}
. (11.3)

The set Qω
K,m ⊂ Rn+1 is a strip between two planes

〈ωy, k〉√
〈k, k〉+ εk2

0

+

√
εωIk0√

〈k, k〉+ εk2
0

= ±
√
ελj(|K|)(1 + 2−m−1)√
〈k, k〉+ εk2

0

.

Using (8.1) we have, that 〈k, k〉 ≥ 1 and the the distance between the planes is not more
than 4λj(|K|)

√
ε. The measure estimates are

µ
(
Qω
K,m

)
≤ 4λj(|K|)

√
εCJ CD,

µ
(
QK,m ∩Dm

)
≤ µ

(
ν̃−1
m (Qω

K,m)
)
≤ 4λj(|K|)

√
εCJ CJ CD,

where CD depends on diameter and dimension of D0.
Consider estimates for the measure of Dm ∩ Uam(QK,m). Let |y′| ≤

√
εσm, |I ′| ≤ σm.

Then

|〈νm(y + y′, I + I ′)− νm(y, I), K〉| ≤ n|Λ′′yy||K|
√
εσm + n|εh′′yy||K|

√
εσm

+n|
√
εh′′yI ||K|

√
εσm + n|

√
εh′′yI ||K|

√
εσm

+n|
√
εh′′yI ||K|

√
εσm ≤

√
εCψNmσm,

where Cψ = Cψ(cΛ, c
′
h, c
′′
h, n).

Consider the extension of Qω
K,m

Qω+
K,m =

{
(ωy, ωI) ∈ ν̃m(Dm) :

∣∣〈ωy, k〉+
√
εωIk0

∣∣ ≤ (2λj(|K|) + CψNmσm)
√
ε
}
.(11.4)

Note that
(
Dm ∩ Uam(QK,m)

)
⊂ ν̃−1

m (Qω+
K,m). Finally

µ
(
Dm ∩ Uam(QK,m

)
≤ µ(ν̃−1

m (Qω+
K,m)) ≤ 4(λj(|K|) + CψNmσm)

√
εCJ CJCD. (11.5)

We have (Dm \Dm+1) ⊂ ∪Nm−1<|K|≤Nm

(
Dm ∩ Uam(QK,m)

)
. Using (11.5) we obtain

µ
(
D0 \Dm+1

)
≤

m∑
i=0

µ
(
∪Ni−1<|K|≤Ni

(
Di ∩ Uai(QK,i)

))
≤ 4

√
εCJ CJCD

m∑
i=0

Nn+1
i (λi + CψNiσi).

The proposition holds for cµ = 4CJ CJCD
∑m

i=0 N
n+1
i (λi + CψNiσi). To �nish the

proof we need to check
+∞∑
i=0

Nn+1
i (λi + CψNiσi) < +∞. (11.6)

Using (10.1) and (10.2) we obtain

+∞∑
i=0

Nn+1
i (λi + CψNiσi) =

+∞∑
i=0

(
cn+1
N cλ2

−τi +
1

6
a0Cψc

n+2
N 2−i

)
< +∞.
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11.3 Proof of Proposition 8.1

Solution of equation (8.3) has the form

S =
∑

|K|≤Nm, k 6=0

SK ei〈k,x〉+ik0ϕ, SK =
i
√
ε V K

m (ŷ, Î)

〈νm(ŷ, Î), K〉
, (11.7)

where νm(ŷ, Î) is determined by (7.6).
The �rst inequality (7.7) means that

|V K
m e

i〈k,x〉+ik0ϕ|am,bm−δ ≤ 2sme
−(|k1|+|k2|+...+|k0|)δ, 0 ≤ δ ≤ bm.

Then

|S|am,bm−δm ≤
m∑
j=0

∑
Nj−1<|K|≤Nj , k 6=0

2sm
λj

e−δm(n+1)Nj−1 ≤ Lmsm.

11.4 Proof of Proposition 8.2

In this section for brevity we write V, h instead of Vm, hm and a, b, σ, δ,N, L, s, s̃ instead
of am, bm, σm, δm, Nm, Lm, sm, s̃m.

The function Ṽm = ṽm + ũm can be presented in the form

Ṽm(ŷ, Î , x̂, ϕ̂) = R1 +R2 +R3 +R4 +R5, (11.8)

R1 =
1

ε

(
Λ(y)− Λ(ŷ)− 〈Λ′y(ŷ),

√
εS ′x〉

)
,

R2 = h(y, I)− h(ŷ, Î)−
〈
h′y(ŷ, Î),

√
εS ′x
〉
− h′I(ŷ, Î)S ′ϕ,

R3 = V (y, I, x, ϕ)− V (ŷ, Î , x, ϕ),

R4 = V (ŷ, Î , x, ϕ)− 〈V 〉x(ŷ, Î , ϕ)− ΠNV (ŷ, Î , x, ϕ),

R5 = 〈V 〉x(ŷ, Î , ϕ)− 〈V 〉x(ŷ, Î , ϕ̂).

By Proposition (8.1) the �rst term in (11.8) satis�es the estimate

|R1|a−σ,b−2δ ≤
1

2
|Λ′′yy|a |S ′x|2a−σ,b−2δ ≤

cΛ

2

(Ls
δ

)2

.

To estimate the second one we use (7.8),(7.9):

|R2|a−σ,b−2δ ≤
1

2

(
|εh′′yy|a |S ′x|2a−σ,b−2δ + 2n|

√
εh′′yI |a |S ′xS ′ϕ|a−σ,b−2δ + |h′′II |a |S ′ϕ|2a−σ,b−2δ

)
≤ c′′hn

(Ls
δ

)2

+ 2nc′′h

(Ls
δ

)2

+ c′h

(Ls
δ

)2

= (c′h + 3nc′′h)
(Ls
δ

)2

The third term is estimated by (7.7):

|R3|a−σ,b−2δ ≤
√
εn|V ′y |a−σ,b−δ|S ′x|a−σ,b−2δ + |V ′I |a−σ,b−δ|S ′ϕ|a−σ,b−2δ

≤ (n+ 1)
Ls2

σδ
.
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By (8.2)

|R4|a−σ,b−2δ ≤
C

δ

(
N +

1

δ

)n
e−Nδ s.

Finally

|R5|a−σ,b−2δ ≤ |V ′ϕ|a−σ,b−δ|S ′I |a−σ,b−δ ≤
Ls2

σδ
.

Note, that 3nc′′h ≤ cΛ
2
. Therefore

|ũm + ṽm|a−σ,b−2δ ≤ s̃,

where

s̃ = (cΛ + c′h)
(Ls
δ

)2

+ (n+ 2)
Ls2

σδ
+
C

δ

(
N +

1

δ

)n
e−Nδ s.

11.5 Proof of Proposition 9.1

By (6.2), (6.3), (7.7), (7.8), and (8.8), for any m ≥ 1 we have:

|h0|a0 ≤ ch, |h′0I |−1
a0
≤ c′h, |v0|a0,b0 ≤

√
εc, |hm|am ≤ 2ch, |h′mI |−1

am ≤ 2c′h, (11.9)

|vm|am−σm,bm−2δm ≤ sm, |ṽm + ũm|am−σm,bm−2δm ≤ s̃m. (11.10)

Applying Lemma 12.2 to equation (9.1), we obtain:

|S̃ ′ϕ|am−4σm,bm−2δm ≤ 8c′h|vm|am−σm,bm−2δm , |S̃|am−4σm,bm−2δm ≤ 16πc′h|vm|am−σm,bm−2δm , (11.11)

S̃ ′x = 0, |hm − hm+1|am−4σm,bm−2δm ≤ 8chc
′
h

|vm|am−σm,bm−2δm

σm
. (11.12)

Then estimates (9.5) follow from (11.9), (11.10), and (11.12).
We have:

vm+1(ȳ, Ī , ϕ̄) + um+1(ȳ, Ī , x̄, ϕ̄) = ṽm(ȳ, Ī + S̃ ′ϕ̂, ϕ̄− S̃ ′Î) + ũm
(
ȳ, Ī + S̃ ′ϕ̂, x̄−

√
εS̃ ′ȳ, ϕ̄− S̃ ′Î

)
.

Since by (11.11)

|S̃ ′ϕ̂|am+1,bm+1+2δm ≤ 8c′hsm ≤ σm,

|
√
εS̃ ′ȳ|am+1,bm+1+δm ≤

√
ε

16πc′hsm
σm

≤ δm,

|S̃ ′Ī |am+1,bm+1+δm ≤ 16πc′hsm
σm

≤ δm,

we have:
|vm+1 + um+1|am+1,bm+1 ≤ s̃m ≤ sm+1.
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11.6 Proof of Proposition 10.1

By equations (8.4) and (10.2) we have

Lm ≤
m∑
j=0

2Nn+1
j

λj
<

2cn+1
N

cλ

m∑
j=0

2(4n+5)j <
cn+1
N

cλ
2(4n+5)(m+2).

11.7 Proof of Proposition 11.1

A point (y, I) ∈ QK,m+1 if∣∣〈νm+1(y, I), K
〉∣∣ ≤ λj(|K|)(1 + 2−m−2)

√
ε.

It is su�cient to show that (y, I) ∈ QK,m, i.e.∣∣〈νm(y, I), K
〉∣∣ ≤ λj(|K|)(1 + 2−m−1)

√
ε. (11.13)

We have the inequality∣∣〈νm(y, I), K〉 − 〈νm+1(y, I), K〉
∣∣ ≤ (n+ 1)W |K|,

W = |νm(y, I)− νm+1(y, I)|.

By (9.5)

W ≤ ε|h′m+1 y − h′my|am+1,bm+1 +
√
ε|h′m+1 I − h′mI |am+1,bm+1 ≤

√
ε

16chc
′
hs
′
m

σ2
m

.

Therefore for any |K| ≤ Nm we have the estimate

(n+ 1)W |K| ≤ (n+ 1)
16chc

′
hs
′
m

σ2
m

Nm,

where s′0 =
√
εc and s′m = sm for all m ≥ 1.

It remains to check the estimate

(n+ 1)
16chc

′
hs
′
m

σ2
m

Nm ≤ λm2−m−2.

Let cλ > cλ(cs, cN). For m = 0 we have

(n+ 1)
16chc

′
hs
′
0

σ2
0

N0 ≤ λ02−2.

and for m ≥ 1

(n+ 1)
36chc

′
hs0cN
a′20

24n+142(4n+12)me−csm−2m ≤ cλ2
−(2n+2+τ)m.
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11.8 Proof of Proposition 11.2

Suppose that the arguments of functions Λ, h lie in Uam(Dm). Let us expand the Jacobian
Jm with respect to the last column

det Jm(y, I) = det

(
Λ′′yy + εh′′myy

√
εh′′mIy√

εh′′myI h′′mII

)
=

= det
(

Λ′′yy + εh′′myy

)
h′′mII +

n∑
i=1

(−1)n+1+i
√
εh′′mIyiMi,n+1.

Here Mi,n+1 is the (i, n + 1) minor matrix of Jm(y, I). Using (6.3), (6.4), (7.8) and (7.9)
we obtain

| det Jm(y, I)| ≤ n!
(
|Λ′′yy|+ |εh′′myy|

)n
|h′′mII |+ nn!|

√
εh′′mIy|2

(
|Λ′′yy|+ |εh′′myy|

)n−1

≤ CJ ,

where CJ is some constant depending on cλ, c
′
h, c
′′
h and n.

Return to estimate for the Jacobian. For su�ciently small c′′h

c′′h ≤ c′′h 1 = min
( cΛ

2n+1nn!cn−1
Λ

,
cΛ

2

)
, |εh′′myy| ≤ 2c′′h

we have∣∣∣ det
(

Λ′′yy + εh′′myy

)∣∣∣ > | det Λ′′yy| − nn!|εh′′myy|
(
|Λ′′yy|+ |εh′′myy|

)n−1

≥ 1

2
cΛ,

Note, that |h′′mII | ≥ 1
2c′h

and for

c′′h ≤ c′′h 2 = min
( cΛ

2n+4nn!cn−1
Λ c′h

, c′′h 1

)
we have ∣∣∣ n∑

i=1

(−1)n+1+i
√
εh′′mIyiMi,n+1

∣∣∣ ≤ cΛ

8c′h
.

Finally

| det J(y, I)|am ≥
cΛ

8c′h
= C−1

J .

12 Further technical statements

12.1 Lemma on a cut o�

Lemma 12.1 For any real-analytic function f on Ub(Tm+1) and any δ ∈ (0, b)∣∣f − 〈f〉x − ΠNf
∣∣
b−δ ≤

C

δ

(
N +

1

δ

)n
e−Nδ|f |b.

where the constant C depends only on n.

26



Proof. The Fourier coe�cients (8.1) satisfy the inequalities

|fK | ≤ e−b|K||f |b.

Then the equation

f − 〈f〉x − ΠNf =
∑

|K|>N, k 6=0

fKei〈k,x〉+k0ϕ

implies

|f − 〈f〉x − ΠNf |b−δ ≤ |f |b
∑

|K|>N, k 6=0

e−δ|K|.

The sum in the right-hand side does not exceed

c1

∫
x∈Rn+1, |x|>N

e−δ|x| dx ≤ c2

δn+1

∫ ∞
δN

sne−s ds ≤ c3

δn+1
(1 + δN)ne−δN ,

where c1, c2, c3 depend only on n.

12.2 Lemma on the action-angle variables

Lemma 12.2 Let h and v be real-analytic functions, de�ned in complex neighborhoods of
[−α, α] and [−α, α]×T respectively. Let the canonical change (I, ϕ mod 2π) 7→ (Ī , ϕ̄ mod
2π), determined by the generating function Īϕ+ S(Ī , ϕ), 〈S〉ϕ = 0, be such that

h(I) + v(I, ϕ) = h∗(Ī), (12.1)

|h|a ≤ c, |h′|−1
a ≤ c′, |v|a,b ≤ σ

2c′
, 0 < σ < a/2 (12.2)

Then

|S ′ϕ|a−3σ,b ≤ 4c′|v|a,b, |S|a−3σ,b ≤ 8πc′|v|a,b, |h− h∗|a−3σ ≤ 2cc′
|v|a,b
σ

. (12.3)

Proof. Equation that determines Ī is well-known:

Ī(r) =
1

2π

∫ 2π

0

I(r, ϕ) dϕ. (12.4)

Here I(r, ϕ) is the solution of the equation

h(I) + v(I, ϕ) = h(r).

We use r as a constant which �xes the energy h(r).
By Lemma 12.3 the function I = I(r, ϕ) is as follows:

I = r + f(r, ϕ), |f |a−2σ,b ≤ 2c′|v|a,b. (12.5)

Moreover,

I ∈ Ua−2σ−δ([−α, α]) implies r ∈ Ua−δ([−α, α]) for any δ ∈ [2σ, a− σ]. (12.6)
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Equations (12.4) and (12.5) imply

I(r, ϕ)− Ī(r) = f(r, ϕ)− 〈f〉ϕ(r), (12.7)

r = r(Ī), I − Ī = S ′ϕ(Ī , ϕ). (12.8)

Combining (12.7) and (12.8), we obtain:

S(Ī , ϕ) =

∫ ϕ

0

(
I(r, ϕ)− Ī

)
dϕ =

∫ ϕ

0

(
f(r, ϕ)− 〈f〉ϕ(r)

)
dϕ.

Therefore
|S ′ϕ|a−3σ,b ≤ 4c′|v|a,b, |S|a−3σ,b ≤ 8πc′|v|a,b.

By using the equation h(r) = h∗(Î), we have:

|h(I)− h∗(I)|a−3σ ≤ |h(r + f(r, ϕ))− h(r)|a−2σ ≤ |h′|a−σ|f |a−2σ,b ≤
c

σ
2c′|v|a,b.

12.3 A version of the implicit function theorem

Lemma 12.3 Let the real-analytic functions h, v, de�ned in a complex neighborhood of
the interval I ⊂ R, satisfy the estimates

|h′|−1
a ≤ c′, |v|a ≤

σ

2c′
, 0 < σ <

a

2
. (12.9)

Then the equation
h(I) + v(I) = h(r), I ∈ Ua−σ(I) (12.10)

implies
I = r + f(r), |f |a−2σ ≤ 2c′|v|a ≤ σ, (12.11)

where f(r) is the real-analytic function, r ∈ Ua−2σ(I).

Proof. Applying the map h−1 to (12.10), we get:

I + u(I) = r, u(I) = h−1
(
h(I) + v(I)

)
− I.

If |v|a ≤ σ/c′, the function u is de�ned in a complex neighborhood of I and admits the
estimate

|u|a−σ ≤ |h′|−1
a |v|a ≤ c′|v|a.

The function I = I(r), de�ned by (12.11), is a �xed point of the operator

I(r) 7→ Φ(I(r), r) = r − u(I(r)).

This operator is contracting with respect to the norm | · |a−2σ because by (12.9)

|Φ′I |a−2σ = |u′I |a−2σ ≤
c′|v|a
σ
≤ 1

2
.

Therefore I − r = f(r), where |f(r)|a−2σ ≤ 2|u|a−σ ≤ 2c′|v|a.
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